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Abstract

Among the mathematical background of coding theory, we can cite linear algebra,
group theory, rings and finite fields and other areas of discrete mathematics, such as
Graph Theory. Constacyclic codes over rings constitute an important class of codes.
These codes are widely studied for their interesting algebraic structures and their var-
ious applications.
Our study consists, of studying constacyclic and quasi-twisted(QT) codes over R =

Zq + vZq with v2 = 1. We present some new linear codes over Z4. Finally, a charac-
terization of linear complementary pair (LCP) constacyclic codes over R is provided.

Keywords: Constacyclic codes, Gray map, quasi-twisted codes, linear complementary
pair codes.



Résumé

Parmi les bases mathématiques de la théorie des codes correcteurs d erreurs, on
peut citer l’algèbre linéaire, la théorie des groupes, les anneaux et les corps finis, ainsi
que d’autres domaines des mathématiques discrètes, tels que la théorie des graphes.
Les codes constacycliques sur les anneaux constituent une classe importante de codes
qui a été largement étudiée en raison de leurs structures algébriques intéressantes et
de leurs nombreuses applications. Notre étude se concentre sur l’examen des codes
constacycliques et quasi-twisted (QT) sur l’anneau R, où R = Zq + vZq tel que v2 =

1. Nous présentons de nouveaux codes linéaires sur Z4. Enfin, nous fournissons une
caractérisation des codes linéaires complémentaires par paires (LCP) constacycliques
sur R.

Mots Clés : Codes constacycliques ; Gray map; codes quasi-twisted ; LCP.



Notation
Zp : the ring of integers modulo p.

Zp[X]: polynomials over Zp in the variable X.

Fq : finite field of size q.

[n, k, d]-code: linear code of length n and dimension k with minimum distance d.

C⊥: Euclidean dual code of a Linear code.

C⊥H: Hermitian dual code of a Linear code.

|C|: size of C.

G: generator matrix of a Linear code.

Gt: the transpose of a matrix G.

H: Parity-check matrix of a Linear code.

d(C) = d: Minimum distance of a Linear code.

WH: Hamming weight of a Linear code.

WHom: Homogeneous weight of a Linear code.

〈x.y〉: the Euclidean scalar product of x and y.

〈x.y〉H: the Hermitian scalar product of x and y.

gcd : greatest common divisor.

QT: Quasi-twisted.

QC: Quasi-cyclic.

LCD: linear complementary dual.

LCP: Linear Complementary Pair.
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Introduction

1 Review of Litterature

The birth of coding theory was inspired by a classic paper of Shannon in 1948 [53]. In
1949, the American Scientist, Physicist and Mathematician Warren Weaver (1894-1978)
established, “The Mathematics of Communication” appeared in the Scientific Ameri-
can [51]. Moreover, other roots of the later so-called “Information Theory” could be
found in the Cybernetics of the Norbert Wiener (1894-1964) in [51]. In the 20th cen-
tury Coding theory arose as a problem in engineering concerning the efficient trans-
mission of information. Hence, coding theory, in this perspective, using the binary
field as the alphabet was largely done. Although, the alphabets were quickly gener-
alized to finite fields, at least for mathematicians, because a lots of the techniques and
proofs were identical to the binary case seen as the field with two elements [25]. In the
very beginning of this study, coding theory was viewed by mathematicians not only
as an application to electrical engineering and computer science, but also as a part of
pure mathematics [25]. They were interested not only in the fundamental questions
of coding theory, but also into its connections by other areas of discrete mathematics.
The early results of the connected codes to lattices, combinatorics, and designs. While
the alphabets were a finite field these connections were generally made by codes [25].
Some papers were written when the used alphabets were rings, such as Blake’s early
papers [15] and [16]. It was not until, coding theorists in 1990’s started to study codes
over finite rings in earnest [25]. The interested reader could consult Sloane’s seminal
text and MacWilliams “The Theory of Error-Correcting Codes”, for the description of
classical coding theory [39]. For more description, see Pless’s and Huffman, “Funda-
mentals of Error Correcting Codes” [36]. For the description of the connection between
codes and designs see Key’s and Assmus “Designs and their Codes” [4]. Codes are
generally defined over finite fields, in these all three classic text book. A great deal of
research has been devoted to find efficient schemes by which digital information can
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INTRODUCTION

be coded for reliable transmission through a noisy channel [35]. Error-correcting codes
are now widely used in applications such as returning pictures from deep space, de-
sign of registration numbers, and storage of date on magnetic tape [36]. Coding theory
is also of great mathematical interest, relying on ideas from pure mathematics and, in
particular, illustrating the power and the beauty of algebra [35].

2 Toward Codes over Finite Rings

The theory of error-correcting codes has historically been most useful in the context
of linear codes. Such codes may be viewed as vector spaces over finite fields carrying
with them many familiar and well-studied properties. A generalization of finite fields
is the concept of finite rings. Therefore, it is natural to consider codes over finite rings
to study which properties such codes maintain in the move to a more general setting.
Codes over rings started being of interest to many researchers since the appearance of
[34], [39], where it was shown that the binary non-linear codes known as Kerdock and
Preparata codes are actually dual codes when viewed as codes over Z4, via the Gray
map. So the most natural class of rings that is suitable for coding theory is given by
finite chain rings as it allows to formulate the dual code similar to finite fields. So it
is worth to delve into codes over finite chain rings. The class of cyclic codes is one of
the most studied class of linear codes. In particular, Dinh and Permouth [21] gave the
algebraic structure of simple cyclic codes over finite chain rings. Cyclic codes and their
various generalizations such as constacyclic codes and quasi-cyclic (QC) codes have
played a key role in this quest. One particularly useful generalization of cyclic codes
has been the class of quasi-twisted (QT) codes that produced hundreds of new codes
with best known parameters.

3 Motivation

Coding theory was originated as the mathematical foundation for the transmission of
messages over noisy communication channels and deals with the problem of detecting
and correcting transmission errors caused by the noise of the channel.

2



INTRODUCTION

The mathematical background of coding theory is, for example, linear algebra, theory
of groups, rings and finite fields, and other areas of discrete mathematics, such as the-
ory of designs. Thus, coding theory has now become an active part of mathematical
research. Within the family of codes, linear codes are special codes with rich mathe-
matical structure. One of the most studied class of linear codes is the class of cyclic
codes. The algebraic structure of cyclic codes makes easier their implementation. For
this reason many practically important codes are cyclic. The study of codes over rings
has advanced from the middle of 90’s. However, in 1963, Assmus and Mattson first
considered rings as possible alphabets for codes in [5]. Later, Blake investigate linear
codes over certain rings in [15] and [16]. But coding theory really gets a shock when
it was discovered that the mentioned families of non-linear binary codes (Preparata,
Kerdock, Goethals, ...) can be represented as linear codes over Z4, see [2] and [34], via
the Gray map. The theory of codes over rings has not been developed in depth for
general rings. It has been developed principally for codes over finite chain rings since
they have similar properties to those of finite fields, as it will be shown later. In recent
decades, codes over finite commutative chain rings have been studied considerably
(see Refs. [3]; [45] ). In the last few years, some specific non-chain rings have been
used as an alphabet for codes (see Refs. [29]; [30]). Constacyclic codes form an impor-
tant class of linear codes and have practical applications to other disciplines including
classical and quantum communication systems as they can be encoded with shift reg-
isters because of their algebraic structures. Since the factorization of the polynomials
over noncommutative structures is not unique, they are potentially more convenient
for obtaining good code parameters than commutative structures. This fact made the
study of polynomial rings more attractive. Over standard polynomial rings the alge-
braic structure of λ-constacyclic codes of length n is totally determined by the poly-
nomial divisors of the binomial xn − λ. The construction of constacyclic codes over
Z4 + uZ4, u2 = u, together with a Gray map and their Z4-images was investigated in
[22]. One of the extensions of Z4 of order 16 is the ring Z4 + uZ4 with u2 = 1. Codes

3



INTRODUCTION

over this ring have been studied recently [46], [54], [61], [7]. This ring can be written as
Z4[u]/〈u2 − 1〉 and it is isomorphic to Z4[u]/〈u2 + 2u〉 by the map u → u + 1. Codes
over Z4[u]/〈u2 + 2u〉 were studied in [41]. The ring Z4[u]/〈u2 + 2u〉 is one of the four
Frobenius local non-chain rings of characteristic 4 [40]. It was shown that there exists
a duality-preserving map for codes over Z4[u]/〈u2 + 2u〉 to codes over Z4, whereas
no such map exists for codes over Z4[u]/〈u2〉, which is another Frobenius local non-
chain ring of characteristic 4. The other generalization of the constacyclic codes which
is mentioned in our thesis is quasi-twisted (QT) codes which was first studied in [12],
[19], [52], that contain the class of quasi-cyclic (QC) codes as a special case. They have
been shown to be promising in addressing one of the most important problems in cod-
ing theory, namely the construction of codes with best possible parameters.
Linear Complementary Pair (LCP) of codes and Linear Complementary Dual (LCD)
has drawn much attention recently due to their applications to cryptography, in the
context of side channel and fault injection attacks. These codes offer valuable solutions
for error detection, correction, and data compression. In the realm of cryptography,
LCD and LCP codes can be employed to enhance the security of cryptographic sys-
tems. By incorporating these codes as part of the encryption process, additional layers
of protection can be added to safeguard against potential vulnerabilities.

This thesis is organized as follows:
Chapter 1 aims to give a brief introduction about the research topics of the thesis
In Chapter 2, we give a brief introduction with elementary definitions and prop-

erties of rings and finite fields, also we will introduce modules and submodules, and
we consider some basic theory about linear codes over finite fields and over rings, in
particular, we give some structural properties of cylic and QC codes over the Galois
ring Zq and some basic definitions of computer algebra system.

In Chapter 3, we give some results on the linear codes over the ring R = Zq + vZq

with v2 = 1 , q = pm for a prime p and a positive integer m. We give the algebraic struc-
ture of the ring R, define a suitable inner product to derive the dual codes and obtain
the systematic form of their respective generator matrix, we investigate the algebraic
structures and properties of constacyclic codes over the ring R and gave a direct sum
decomposition of a λ-constacyclic code C over R. After that we give the standard
generator of a free constacyclic code over R and finally, we show that the image of a
constacyclic code over R under a natural Gray map is a QT code of index 2 over Zq.

In Chapter 4, we mainly focus on QT codes since QT codes include cyclic codes,
quasi-cyclic codes and constacyclic codes as special cases. We decompose a QT code to

4



INTRODUCTION

a direct sum of component codes – linear codes over rings, it is shown that the dual of
a QT code is a QT code of the same length and index. By decomposing R into a product
of local rings, we show that the polynomial xs− λ factors into pairwise coprime monic
irreducible polynomials over R, and finally, we use the Gray images of QT codes over
this ring where q = 4, we obtain some new linear codes over Z4.

In Chapter 5, we consider linear complementary pair (LCP) codes (C, D), as a
generalization of LCD (linear complementary dual) codes, we give a necessary and suf-
ficient condition on the existence of LCD codes over R. We present a characterization
of constacyclic LCP of codes over R. In particular, for any pair (C, D) of constacyclic
LCP codes, we prove that C and D⊥ are equivalent. Hence, finding best λ-constacyclic
LCP codes (C, D) and finding best λ-constacyclic codes.

5



Chapter 1

Preliminaries

1 Introduction

In coding theory, a linear code is an error-correcting code for which any linear combi-
nation of codewords is also a codeword. In this section, we give some basics definitions
and properties of linear codes over finite fields and rings.

Definition 1.1. Let A be an alphabet (often we consider finite fields) and let A be the
set of vectors formed from A. A code C is a subset of vectors of A. An element of C is
called a codeword.

2 Coding Theory

2.1 Linear Codes over Finite Fields

In order to simplify the encoding and decoding methods, if we impose an additional
structure to a code, then we may have many practical advantages. The most popular
block codes are linear, this means that the component-wise sum of two codewords is
again a codeword.
By choosing our alphabet to be Fq, we see that all words of length n over Fq is the n-
dimensional vector space over Fq. We would like to take advantage of this vector space
structure in order to perform vector space operations on our codewords. However,
we need to ensure that the sum of any two codewords is a codeword and the scalar
multiple of a codeword is also a codeword. This leads us to the following definition.

Definition 2.1. A code C of length n is said to be a linear code if it is a subspace of Fq. If

6



CHAPTER 1. PRELIMINARIES

C has dimension k over Fq, we say that C is an [n; k]-code. Moreover, if C has minimum
distance d, we say that C is an [n; k; d]-code. Notice that our code C must contain the
codeword containing all zeros. We will call this codeword the zero codeword.

Example 2.1.

{0}

Fn
q are trivial linear codes.

In F3
3 the linear code generated by (1, 0, 2) and (1, 1, 2) on F3 is

C = {000, 102, 112, 201, 221, 211, 020, 122, 010}

The words of a linear code can be written in several ways depending on the choice of
a code base. A base of a linear code is represented in matrix form.

2.2 Parameters of a Code

Let C be a linear code of dimension k and length n.

Definition 2.2. A generator matrix for C is a matrix, denoted as G, of size k× n with
coefficients in Fq, whose rows form a basis for C.

Proposition 1. For any invertible matrix M of order k and with coefficients in Fq, MG is a
generating matrix of C, where G is the generator matrix of C.

Example 2.2. LetH be the [7, 4]-binary code defined by the following generator matrix

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


This code is known as the Hamming code.

Definition 2.3. We can define over Fn
q a metric d(., .) called Hamming distance, given by:

d(x, y) = |{i | 0 ≤ i ≤ n− 1, xi 6= yi}|.

Definition 2.4. The Hamming weight of a word x denoted by w(x) is the number of

7
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non-zero coordinates of x, i.e.,
w(x) = d(x, 0).

Definition 2.5. The minimum distance of a code C ⊂ Fn
q is given by:

d(C) = min{d(x, y) | x, y ∈ C, x 6= y}.

Example 2.3. The triple binary repetition code C = {000, 111} has minimum distance 3.
The binary code of length n has minimum distance 2.

Definition 2.6. The minimum weight of a code C is :

w(C) = min{w(x) | x ∈ C, x 6= 0}

Let C be an [n, k] linear code over Fq, then it is well known that there exists an (n −
k)× n matrix H, with entries in Fq and independent rows, such that C is the null space
of H, i.e., C is the set of all c ∈ Fn

q such that Hct = 0. The matrix H is called a parity
check matrix of C.

Remark. For a linear code the minimum distance and the minimum weight are equals.

There is an important link between the capacity of correction of a linear codes and its
minimum distance. It has been demonstrated (see [39]) that a linear code C of mini-
mum distance d can correct up to b d−1

2 c errors and detect d− 1 errors.

2.3 The Duality of Linear Codes

Each linear code C can be associated with a linear code given by the following defini-
tion.

Definition 2.7. (The Euclidean Dual) Let C ⊂ Fn
q be a linear code of dimension k and the

size of C is qk. The Euclidean dual code or simply, dual code of C is the orthogonal of C for the
usual inner product defined over Fn

q ×Fn
q by

〈x.y〉 =
n

∑
i=1

xiyi,

where x = (x1, . . . , xn) and y = (y1, . . . , yn). This code is denoted C⊥ and it is defined by

C⊥ = {x ∈ Fn
q | 〈x, y〉 = 0, ∀y ∈ C}.

8
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Lemma 2.1. Let C be a code of length n over F. Then

• C⊥ is a linear code over F.

• If C is an [n, k]-linear code, then
∣∣C⊥∣∣ · |C| = |F|n.

The dual code C⊥ is a linear code of dimension k⊥ = n− k. Its generator matrix H is
called the parity check matrix of C, because it satisfies:

C = {x ∈ Fn
q | Hxt = 0}.

The minimum distance of C⊥ is called dual distance and noted d⊥.

If we consider codes on Fq2 , then we can consider the Hermitian inner product.

Definition 2.8. (The Hermitian dual) The Hermitian dual code is defined by:

C⊥h = {x ∈ Fn
q2 |

n

∑
i=1

xiy
q
i = 0, ∀y ∈ C}.

Definition 2.9. (Self-Dual Codes)

A linear code is said to be self-orthogonal in the Euclidean sense if it satisfies C ⊂ C⊥. It
is said to be self-dual in the Euclidean sense if it satisfies C = C⊥. In this case, C must be
an [n, n/2] code with n even. This property comes from the fact that for a linear code
C we have:

dim C + dim C⊥ = n.

From the above, we deduce that a linear [n, k] code is self-dual if and only if it is self-
orthogonal with k = n/2.

A linear code is said to be self-orthogonal in the Hermitian sense if it satisfies C ⊂ C⊥h. It
is said to be self-dual in the Hermitian sense if it verifies C = C⊥h.

3 Cyclic Codes

Definition 3.1. A linear code C of length n is cyclic if:

c = (c0, c1, . . . , cn−1) ∈ C, then(cn−1, c0.c1, . . . , cn−2) ∈ C.

In the following, each codeword c = (c0, c1, . . . , cn−1) is conventionally recognized via

9
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its polynomial form c(x) = c0 + c1x + · · ·+ cn−1xn−1.
We remember that since Fq[x] is principle ideal domain also the ring Rn = Fq[X]/〈Xn−
1〉 is a principal ideal hence the cyclic codes are principal ideals of Rn when writing a
code word of a cyclic code as c(x) we mean the coset c(x) + 〈Xn − 1〉 in Rn.

Theorem 3.1. A linear code C in Fq is cyclic if and only if C is an ideal in Rn =

Fq[X]/〈Xn − 1〉.

Proof. If C is an ideal in Fq[X]/〈Xn − 1〉 and c(X) = c0 + c1X + · · · + cn−1Xn−1 is
any codeword, then Xc(X) is also a codeword, i.e. (cn−1, c0, c1, . . . , cn−2) ∈ C . Con-
versely, if C is cyclic, then c(X) ∈ C we have Xc(X) ∈ C. Therefore Xic(X) ∈ C , and
since C is linear, then a(X)c(X) ∈ C for each polynomial a(X). Hence C is an ideal of
Fq[X]/〈Xn − 1〉.

4 Linear Codes over Rings

Galois rings are a generalization of finite fields. Like the latter, they can be defined by
a quotient ring structure of a polynomial ring. Many properties result directly from
the fact that Galois rings are finite, commutative, unitary and local which means that
the number of elements is finite, their product is commutative and admits a neutral
element, and that there exists a unique maximal ideal. However, we prefer a more
concrete approach and use their quotient ring structure of a polynomial ring to obtain
their properties.

4.1 Some Basic Properties of Zq

Let q = pr ,where p is a prime and r a positive integer. In the rest of this section, we
shall recall some basic properties of Zq and its extensions, called Galois rings. These
rings are a special case of finite commutative local rings.

Definition 4.1. A Galois ring is a ring of the form Zpr [x]/(P), where small p is a prime
number, r a strictly positive integer and P ∈ Zpr [x] a B-polynome.

A commutative ring R with identity is called a local ring if it has a unique maximal
ideal M. Then the residue class ring R/M is a field, called the residue field of R. Let
R be a finite commutative local ring with identity and let R be the residue field of R.
We use the notation − for the natural projection of R[x] onto R[x]. Thus the image of
f (x) ∈ R[x] under the map − is denoted by f (x) in R[x].

10
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Definition 4.2. Let R be a finite commutative local ring with identity. A polynomial
f (x) ∈ R[x] is said to be a regular polynomial if f (x) is not a zero divisor in R[x].

Equivalently, f (x) = f0 + f1x + · · ·+ fnxn ∈ R[x] is regular if and only if fi is a unit in
R for some i = 0, 1, . . . , n, if and only if, f (x) 6= 0 in R[x].
A simple example of a finite commutative local ring with identity is Zq , q = pr, p a
prime and r a positive integer. The maximal ideal of Zq is 〈p〉 = pZq and the residue
field is Zq/〈p〉 = Fp, the prime field of characteristic p. The image of an element
a ∈ Zq in the residue field Fp is the element a = a(modp) of Fp. Two polynomials f (x)
and g(x) over R are said to be coprime if there exist polynomials a(x), b(x) in R[x] such
that

a(x) f (x) + b(x)g(x) = 1.

It is to be noted that in R[x] two coprime polynomials may have a common divisor of
degree ≥ 1.

Example 4.1. Let R = Z4. Let f (x) = 2x3 + x2 + 2x + 1 and g(x) = 2x2 + x + 2. Then
f (x) and g(x) are coprime over Z4 as we have f (x) + (−x)g(x) = 1. Also we have
f (x) =

(
x2 + 1

)
(2x + 1) and g(x) = (x + 2)(2x + 1). Therefore, 2x + 1 is a common

divisor of f (x) and g(x). We further note that the polynomial 2x + 1 is a unit in Z4

since (2x + 1)2 = 1(mod4).

Definition 4.3. Let R be a finite commutative local ring with identity. A polynomial
f (x) ∈ R[x] is said to be basic irreducible if f̄ (x) is irreducible in R̄[x], and basic prim-
itive if f̄ (x) is a primitive polynomial in R̄[x].

Definition 4.4. If f (x) ∈ Zq[x] is a monic basic irreducible polynomial of degree m,

then the Galois ring of degree m over Zq is the residue class ring GR(q, m) =
Zq[x]
〈 f (x)〉 .

The Galois ring GR(q, m) is a ring of characteristic q = pr and cardinality qm. We have
GR(q, 1) = Zq and GR(p, m) = Fpm , the finite field of characteristic p with pm ele-
ments. The Galois ring GR(q, m) is a local ring with the maximal ideal 〈p〉 = pGR(q, m)

and the residue field GR(q, m)/pGR(q, m) = Fpm .

To understand the structure of cyclic codes of length n over Zq, we often require divi-
sors of xn − 1 over Zq .

Theorem 4.1. [12] Let q = pr, where p is a prime and r a positive integer, and (n, q) = 1.
Let g(x) ∈ Zp[x] be a monic divisor of xn− 1 over Zp. Then there exists a unique monic
polynomial f (x) in Zq[x] such that f (x) = g(x) and f (x)|(xn − 1) in Zq[x].

11
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The monic polynomial f (x) in Theorem 4.1 is called the Hensel lift to Zq of the poly-
nomial g(x).

4.2 Linear Codes over Zq

Let C be a linear code on the Galois ring Zq of length n, where q is a power of a prime
number p.

Definition 4.5. A linear codes of length n over Zq is a submodule of Zn
q . The generator

matrix of a linear code on Zq is any matrix of M(Zq) whose lines form a minimal
generator family of code.

Theorem 4.2. [58] Let Cpr be a linear code over Zpr , with a permutation of coordinates,
Cpr admits a generator matrix of normal form:

G =


I`0 A0,1 . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . A0,k

0 p · I`1 p ·A1,2 . . . . . . . . . p ·A1,k
... . . . . . . . . . ...
0 . . . 0 pk−1 · I`k−1

pk−1 ·Ak−1,k


where Ai,j are matrices `i × `j with coefficients in {0, . . . , p − 1} ⊂ Zpr et I`i is the
identity matrix of size `i. In particular, the code Cpr a ∏−1

=0 p(r−i)`i elements.

Definition 4.6. (Dual code over Zpr) Let Cpr be a linear code over Zpr , the dual code
of Cpr is C⊥pr , defined by:

C⊥pr =
{

a | ∀b ∈ Cpr , a · b = 0
}

.

When the generating matrix of the Cpr is in normal form, the generating matrix of the
dual code takes the form:

G⊥ =


B0,0 . . . . . . . . . . . . . . . . . . . . . . . . B0,k−1 I`k

p · B1,0 . . . . . . . . . p · B1,k−2 p · I`k−1
0

... .· .· .· ...
pk−1 · Bk−1,0 pk−1 · I`1 0 . . . . . . 0


12
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where Bi,j are matrices `r−i × `j with coefficients in {0, . . . , p− 1} ⊂ Zpr .

4.3 Weights and Distances on the Ring Zpr

Associate with the vector x = (x1, x2, . . . xn) different weights and distances other than
the Hamming weight and distance. We have already defined the Hamming weight
wHam(x) as the number of non-zero components of x.
Euclidean weight:

wE(x) =
n

∑
i=1

min
{

x2
i ,
(

q− x2
i

)}
.

Lee weight:

wLee (x) =
n

∑
i=1

min {|xi| , |(q− xi)|} .

Similarly for the distance, we define these three distances.
Hamming distance

dHam(x, y) = wHam(x− y).

Lee Distance:
dLee(x, y) = wLee(x− y).

Euclidian Distance
dE(x, y) = wE(x− y).

Homogeneous distance
dHom(x, y) = wHom(x− y).

Thus, the Lee weight of the elements 0, 1, 2 and 3 of Z4 are 0, 1, 2 and 1, respectively.

Binary codes are obtained from codes over Z4 by the Gray map

φ : Z4 → Z2
2

φ(0) = (0, 0),

φ(1) = (0, 1),

φ(2) = (1, 1),

and
φ(3) = (1, 0).

This map is then extended componentwise from Zn
4 to Z2n

2 and φ is a distance preserv-

13
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ing map from Zn
4 with Lee distance to Z2n

2 with Hamming distance.

Remark. The structure of the Gray map for the general case of q is not as well under-
stood; it is not even uniquely defined and there are different interpretations on the
right generalization. As we are studying codes over Zq, we prefer the usual Hamming
distance.

5 Hensel Lifting

We present the Hensel lifting, which allows obtaining (lifting) a factorization of a poly-
nomial in the ring Zpr under certain conditions, based on a factorization in Zp. This
will serve us in two different contexts: firstly, it enables an effective construction of
Galois rings, and secondly, Hensel’s lifting will be a technique for constructing cyclic
codes over Zpr . We illustrate the lifting function by calculation algorithm in the case
of p = 2.

Lemma 5.1. [43] (Hensel lemma) Let p be a prime number, r an integer greater than or
equal to 2, and P ∈ Zpr [x] be a unitary polynomial such that:

P ≡ QR(modP),

for Q, R ∈ Zp are coprime, then there is a unique pair (Q(r), R(r)) unitary polynomial
of Zpr , such that

1. P = Q(r)R(r),

2. Q(r) ≡ Q(modp) and R(r) ≡ R(modp),

3. Q(r) and R(r) are coprime,

and we have deg (Q(r))= deg (Q) and deg (R(r))= deg (R).

The ring Zp[x] being factorial, so any polynomial with coefficient in Zp uniquely de-
composes into product of irreducibles factors. We have for any polynomial P ∈ Zpr [x]

P ≡ f e1
1 . . . f el

l (modp),

where f1, . . . , fl are irreductible poynomials of Zp[x] and e1, . . . , el strictly positive in-
tegers. From its factorization in Zp[X]. It is thus possible to obtain a factorization of
any polynomial in Zpr [x] based on its factorization in Zp[x].

Theorem 5.2. [43] Let p be a prime number, r an integer greater than or equal to 2

14
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and P ∈ Zpr [X] a monic polynomial. Let P mod p = f e1
1 . . . f el

l the factorisation of
P in Zp[X] where f1, . . . , fl are irreducible polynomials and e1, . . . , el strictly positive
integers. There is a unique l-uplet (g(r)1 , . . . , g(r)l ) of unitary polynomials of Zpr [X] such
that:

1. P = g(r)1 . . . g(r)l

2. g(r)i ≡ f ei
i (modp).

3. The g(r)i are pairwise coprime.

In other words, the unitary polynomials of Zpr [X] can be uniquely decomposed into
products of polynomials of the type g(r)i . Reduced modulo p, they are powers of an
irreducible polynomial. This property will allow us to define the Hensel lift by a factor
of Xn− 1, where n is coprime with p. In this case, Xn − 1 includes only simple factors.

Definition 5.1. (Hensel lift) Let Q and R be two polynomials with coefficients in Zp

such that Xn − 1 = Q(x)R(x), where n is coprime with p. We call Hensel lift of order r
of the polynomial Q is the polynomial Q(r) for (Q(r), R(r)).

5.1 Cyclic Codes over Zq

Definition 5.2. A linear code C of length n over Zq is a Zq-submodule of Zn
q and the

elements of C are called codewords. We define the cyclic shift on Zn
q as:

ρ(c0, c1, . . . , cn−1) = (cn−1, c0.c1, . . . , cn−2).

A linear code C is called a cyclic code if ρ(C) = C. Each codeword c = (c0, c1, . . . , cn−1)

is conventionally recognized via its polynomial form c(x) = c0 + c1x + . . . + cn−1xn−1,
and the code C is identified with the collection of all polynomial forms of its code-
words. Then, ρ is the cyclic shift of c(x) in the quotient ring R[x]

〈xn−1〉 .

In this section, we briefly discuss cyclic codes over the Galois ring R = GR(q, l). As
usual, a cyclic code of length n overR is an ideal of R[x]

〈xn−1〉 . We assume (n, q) = 1, then
xn − 1 factorizes uniquely into monic pairwise coprime basic irreducible polynomials
overZq [58]. Also, in this case it is known that R[x]

〈xn−1〉 is a principal ideal ring [58],

and a cyclic code of length n over R[x] is a principal ideal of R[x]
〈xn−1〉 generated by a

polynomial:
g(x) = h0 + ph1 + · · ·+ pr−1hr−1,

15



CHAPTER 1. PRELIMINARIES

where h0, h1, . . . , hr−1 are monic polynomials inR[x] satisfying:

hr−1|hr−2| . . . |h0|(xn − 1).

Let C be a cyclic code of length n over R generated by a polynomial g(x). Unlike the
finite field case, g(x) does not necessarily divide xn − 1 over R [57]. It is related to
whether C is a freeR-module or not. We first require the following lemma.

Lemma 5.3. [58] Let C be a free cyclic code of length n over R. Then there exists a
monic polynomial overR generating C.

If the generating polynomial of g(x) of a cyclic code C of length n over R divides
xn− 1, then we have the following result, which is an immediate extension of a similar
result for cyclic codes over Z4 given in [8].

Proposition 2. [12] A non-zero cyclic code C of length n over R is a free module over R if
and only if it is generated by a monic polynomial g(x) dividing xn − 1 overR. Further, if C is
free, then C has rank n− deg g(x) and the elements g(x), xg(x), . . . , xn−deg g(x)−1g(x) form
a basis for C.

The monic polynomial g(x) in the above Proposition which generates the free cyclic
code C is called the generator polynomial of C.

5.2 Quasi Cyclic Codes over Zq

Definition 5.3. Let T be the standard cyclic shift operator. A linear code C of length n
over R is said to be a quasi-cyclic (QC) code if it is invariant under Tl for some positive
integer l, i.e., if Tl(C) = C. The smallest positive integer l such that Tl(C) = C is called
the index of C; in this case l is a divisor of n. For l = 1, C is simply a cyclic code over
R. A QC code of index l is also called an l-QC code.

A quasi-cyclic (QC) code C of length lm and index l over Zq is a Zq-submodule of Zlm
q

invariant under Tl. It is well known that C can be regarded a Zq
〈xm−1〉 -submodule of

(Zq

〈xm−1〉)l [8]. This definition of QC codes is known as the conventional row circulant
definition. We also use a different representation of QC codes over Zq , which goes as
follows. Let v = (v00, v01, . . . , v0,l−1, . . . , vm−1,0, vm−1,1, . . . , vm−1,l−1) be an element of
Zlm

q . We define an isomorphism between Zlm
q and GR(q, l)m by associating with each

l-tuple (vi0, vi1, . . . , vi,l−1) ∈ Zl
q, 0 ≤ i ≤ m− 1, the element:

vi = vi0 + vi1ξ+, . . . ,+vi,l−1ξ l−1 ∈ GR(q, l),
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where
{

1, ξ, ξ2, . . . , ξ l−1} is a fixed basis of GR(q, l) over Zq with ξ being a root of
a monic basic irreducible polynomial of degree l over Zq. Then for every element
(v00, v01, v0,l−1, . . . , vm−1,0, vm−1,1, . . . , vm−1,l−1) of Zlm

q , there is a corresponding ele-
ment (v0, v1, . . . , vm−1) in GR(q, l)m and vice-versa. Under this isomorphism, Tl(v)
for some v = (v00, v01, v0,l−1, . . . , vm−1,0, vm−1,1, . . . , vm−1,l−1) ∈ Zlm

q corresponds to
the element (vm−1, v0, . . . , vm−2) ∈ GR(q, l)m. We fix the notationR for the Galois ring
GR(q, l). Using the natural isomorphism betweenRm and the residue class ring R

〈xm−1〉 ,
an element (v0, v1, . . . , vm−1) ∈ Rm can be represented by the element

v0 + v1x + · · ·+ vm−1xm−1 + 〈xm − 1〉,

in R
xm−1 . For convenience, we simply write v0 + v1x + · · ·+ vm−1xm−1 for the residue

class v0 + v1x + · · ·+ vm−1xm−1 + 〈xm − 1〉. In this setting, multiplication by x to any
element of R

〈xm−1〉 is equivalent to applying Tl on the corresponding element of Zlm
q .

Now let C be a QC code of length lm and index l over Zq. Then by the equivalence
shown above between Zlm

q and R
〈xm−1〉 , C is a Zq-submodule of R

〈xm−1〉 . As C is a QC
code of index l, for any c(x) ∈ C, xc(x)mod(xm− 1) is also in C. By linearity a(x)c(x) ∈
C for all a(x) ∈ Zq

〈xn−1〉 -submodule of R
〈xm−1〉 .

If a QC code C of length lm and index l over Zq is generated by the elements v0(x),
v1(x) · · · vt(x) ∈ R[x]

〈xm−1〉 as a Zq
〈xm−1〉 -submodule of R

〈xm−1〉 , then

C = {a1(x)v1(x) + a2(x)v2(x) + · · ·+ at(x)vt(x) |

ai(x) ∈
Zq[x]
〈xm − 1〉 , i = 1, 2, . . . , t

}
.

C is also a Zq-submodule of R[x]
〈xm−1〉 . As a Zq-submodule of R[x]

〈xm−1〉 , C is generated by
the set: {

v1(x), xv1(x), . . . , xm−1v1(x), . . . ,
vt(x), xvt(x), . . . , xm−1vt(x)

}
.

If C is generated by a single element v0(x), v1(x), . . . , vt(x) ∈ R[x]
〈xm−1〉 , as a Zq[x]

〈xm−1〉 -

submodule of R[x]
〈xm−1〉 , then we say that C is a 1 -generator QC code.

6 Bounds on Codes

Several theorems on the existence and non-existence of bounds are known, but the
exact bound is, in fact, still an open problem. We have introduced certain parameters
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of a linear code in this section. In coding theory, one of the most fundamental problems
is to find the optimal value of a parameter when other parameters have been given. In
this section, we discuss some bounds on code parameters.
In the following bound, we provide the minimum and maximum distance of a code
with a given length and dimension. This bound is called the Singleton bound.

Theorem 6.1. [47] Let C an [n, k, d]q code, then

d ≤ n− k + 1.

Theorem 6.2. [47]( Griesmer Bound )
If C is an [n, k, d]d code with k > 0, then

n ≥
i=k−1

∑
i=0

⌈
d
qi

⌉
.

Since
⌈
d/q0⌉ = d and

⌈
d/qi⌉ ≥ 1 for i ∈ [k− 1], then the Griesmer bound implies the

Singleton bound.

Another important bound on the parameters that resolves one of the most significant
problems in coding theory is whether there exists an [n, k, d] code over Fq for given n, k
and d.
The following theorem called the Hamming bound gives the answer.

Theorem 6.3. [47] For integers n, k, d there exists a [n, k, d] code over Fq when :

qk
b d−1

2 c
∑
i=0

(
n
i

)
(q− 1)i ≤ qn.

7 Computer Algebra System

The software packages Maple and Magma have been used in teaching and research in
many universities throughout the world. They can be used for the construction of
linear and non-linear codes. It is important to assess the relative merits of the two
packages for the construction of codes.

Magma is a computer algebra system designed to deal with a wide variety of problems
in algebra, number theory, geometry and combinatorics. It is produced and distributed
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by the computational algebra group within the school of Mathematics and statistics of the
university of sydney. In June 1996 Magma Version 2.0 was released and after that a
new version of Magma has been released approximately once per year. Magma con-
tains many of the most advanced and efficient known algorithms for the areas which it
covers, such as, groups, rings, fields, algebras, vector spaces, algebraic geometries, lat-
tices, graphs, combinatorics and codes. It has facilities provided for linear codes over
fields Fq, including codes constructed in terms of generator matrices, parity check ma-
trices and generating polynomials. This facility will be used later to construct linear
codes. In addition, a large number of constructions for particular families of codes, (e.g.
quadratic residue codes) are available. There are also algorithms for the calculation of
the minimum weight and weight enumerator, including the MacWilliams transform.
For more details refer to [55].

Furthermore, the two software packages Maple and Magma have been applied to con-
struct several classes of [n, k, d] binary linear codes such as Hamming codes, cyclic
codes. In fact Magma has many built-in facilities which aid the construction of linear
codes. It is shown that Magma software is very much more convenient for the construc-
tion of linear codes, and makes the construction of [n, k, d] binary linear codes much
easier than Maple, saving both time and effort in developing the software. In terms of
computation time, Magma appears generally to be faster than Maple.
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Chapter 2

Constacyclic Codes over Zq+vZq

In this chapter, we remind algebraic structure of the ring R and we present some basic
results on linear codes and constacyclic codes over the ring R = Zq + vZq, we recall
the structure of the linear codes over the ring R. The results of this chapter can be
found in [11].

Definition 0.1. Let R be a finite ring, a linear code C of length n on R is a submodule
of the R-module of Rn, which can be free or not. The vectors of C are called the words
of the code C.
We give Rn the following product :

v.w = ∑ viwi.

The dual code C⊥ is defined by:

C⊥ = {v ∈ Rn|v.w = 0, ∀w ∈ C}.

If C ⊂ C⊥, we say that the code C is self-orthogonal.

1 Algebraic Structure of the Ring R

The ring R = Zq[v]/〈v2 − 1〉 such that v2 = 1 and q = pm for a prime p and a positive
integer m. This ring is commutative, semi-local and non-chain principal ideal. It has
two maximal ideals 〈α〉 and 〈α∗〉, where α = a + bv is an element of R and α∗ = a− bv,
which is called as the conjugate of the element α. The ideal lattice of R is given in
Figure 2.1.
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R = Zq[v]/〈v2 − 1〉

〈α∗ = a− bv〉 〈α∗ = a− bv〉

〈0〉

Figure 2.1: The ideal lattice of the ring R = Zq[v]/〈v2 − 1〉

Each element x of R can be expressed uniquely as:

x = a + vb,

where a, b ∈ Zq, i = 1, 2.
Recall that R = Zq + vZq where v2 = 1. Any r ∈ R is of the form r = a + vb =

ε1 â + ε2b̂, where a, b, â, b̂ ∈ Zq and â = (a− b), b̂ = (a + b), ε1 = 1−v
2 , and ε2 = 1+v

2 . It
is easy to check that ε2

i = εi, εiεj = 0 and ε1 + ε2 = 1 for i = 1, 2 and i 6= j. Therefore,
R = ε1Zq ⊕ ε2Zq and any r ∈ R can be expressed as r = ε1r1 + ε2r2 where r1, r2 ∈ Zq.

Lemma 1.1. Let R∗ denote the group of units of R then R∗ = ε1Z∗q ⊕ ε2Z∗q .

Definition 1.1. A subset C of Rn is a linear code over R if C is an R-submodule. For
any codeword c = (a0, a1, . . . , an−1) ∈ Rn we can identified by polynomial such that:

c(X) = a0 + a1X + · · ·+ an−1Xn−1 ∈ R[X]/ 〈Xn − λ〉 .

This identification gives a one-to-one correspondence between Rn and

Rn := R[X]/ 〈Xn − λ〉 .

The product of c(X) = a0 + a1X + · · · + an−1Xn−1 and r(X) = b0 + b1X + . . . +
bn−1Xn−1 in Rn is given by

c(X) · r(X) mod (Xn − λ) .
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2 Gray Map over R

The Gray map is defined as follows:

Φ : Zpm + vZpm −→ Z2
pm

a + bv 7−→ (a, a + b)

This map is naturally extended to
(
Zpm + vZpm

)n, the Gray map Φ is a weight preserv-

ing map from
(

Rn
pm ; Lee weight ) to

(
Z2n

pm ; Hamming weight ) it is an isometry from

Rn
pm to Z2n

pm . The Hamming weight wH(c) of a codeword c is the number of nonzero
components in c. For a linear C code of length n over R, define

C1 = {r1 ∈ Zn
q : ε1r1 + ε2r2 ∈ C, for some r2 ∈ Zn

q},
C2 = {r2 ∈ Zn

q : ε1r1 + ε2r2 ∈ C, for some r1 ∈ Zn
q}.

It is clear that C1 and C2 are linear codes of length n over Zq. Let C1 and C2 be two
linear codes. Then the operations ⊕ and ⊗ are defined as follows:

C1 ⊕ C2 = {(c1 + c2) : c1 ∈ C1, c2 ∈ C2},
C1 ⊗ C2 = {(c1, c2) : c1 ∈ C1, c2 ∈ C2}.

Theorem 2.1. Let C be a linear code of length n over Zq + vZq. Then Φ(C) = C1 ⊗ C2,
and |C| = |C1||C2|.

Proof. For any,(r1, r2, . . . , rn, q1, q2, . . . , qn) ∈ Φ(C), let ci = (ri + qi) + (qi − ri) v, i =

1, 2, . . . , n. Since Φ is a bijection, c = (c1, c2, . . . , cn) ∈ C. By the definitions of C1 and C2,
we obtain that (r1, r2, . . . , rn) ∈ C1, (q1, q2, . . . , qn) ∈ C2, therefore, (r1, r2, . . . , rn, q1, q2, . . . , qn) ∈
C1⊗C2. This implies that Φ(C) ⊆ C1⊗C2. On the other hand, for any (r1, r2, . . . , rn, q1, q2, . . . , qn) ∈
C1 ⊗ C2, where (r1, r2, . . . , rn) ∈ C1, (q1, q2, . . . , qn) ∈ C2, there are c = (c1, c2, . . . , cn) ∈
C. such that ci = (ri + qi) + (qi − ri) v where 1 6 i 6 n. Since C is linear, we have c =

r+ q+(q− r)v = (1+ v)q+(1− v)r ∈ C. It follows that Φ(C) = (r1, r2, . . . , rn, q1, q2, . . . , qn)

, which gives C1 ⊗ C2 ⊆ Φ(C). Therefore Φ(C) = C1 ⊗ C2.
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3 Generator matrix

A generator matrix for the code C is a matrix that comprises rows capable of generating
the code C. Let G1 and G2 be the generator matrix of C1 and C2 respectively, then[

(1− v)G1

(1 + v)G2

]
,

is the generator matrix of the code C.

Proposition 3. Let C be a linear code over Zq + vZq. Then dL(C) = dH(Φ(C)) = dH(C1⊗
C2) = min{dH(C1), dH(C2)}.

Proof. Because Φ is an weight-preserving map, then dL(C) = dH(Φ(C)) = dH (C1 ⊗ C2) =

min {d (C1) , d (C2)}, and dH = dL is obvious.

If we reduce the generator matrix of C then we obtain a matrix for the equivalent code
of the form:  Ik1 A B D1 + (1− v)D2

0 (1− v)Ik2 0 (1− v)C1

0 0 (1 + v)Ik3 (1 + v)E

 ,

where A, B, C, D1, D2, E are matrices with all entries in Zpm . In this case we have |C| =(
p2m)k1 pmk2 pmk3 .

4 Dual Codes of Linear Codes over R

The Euclidean inner product is given as 〈x, y〉E = ∑n
i=1 xiyi. The dual code C⊥ of C

with respect to the Euclidean inner product is defined as follows:

C⊥ =
{

x ∈
(
Zq + vZq

)n | 〈x, y〉E = 0 for all y ∈ C
}

.

The Hermitian inner product is given as 〈x, y〉H = ∑n
i=1 xiyi. The dual code C⊥ of C

with respect to the Hermitian inner product is defined as follows:

C⊥ =
{

x ∈
(
Zq + vZq

)n | 〈x, y〉H = 0 for all y ∈ C
}

.

One of the important properties of the Gray map we defined is that it preserves the
duality as illustrated in the following lemma:
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Lemma 4.1. Let C⊥ be the dual code of C then Φ
(
C⊥
)
= Φ(C)⊥. In particular, if C is

self dual then so is Φ(C).

Proof. Let c1 = r1 + vq1, c2 = r2 + vq2 ∈
(
Zq + vZq

)n, where r1, q1, r2, q2 ∈ Zn
q and

〈c1, c2〉 be the Euclidean inner product. If 〈c1, c2〉 = 0 in Zq + vZq, then this means

〈c1, c2〉 = (r1 + vq1) (r2 + vq2) = r1r2 + v (r1q2 + q1r2 + q1q2) = 0,

which implies that r1r2 + q1q2 = r1q2 + q1r2 = 0. Since, Φ (C1) = (r1, r1 + q1), Φ (C2) =

(r2, r2 + q2) we have 〈Φ (c1) , Φ (c2)〉 = r1r2 + r1r2 + r1q2 + q1r2+ q1q2 = 0. Thus
Φ
(
C⊥
)
⊆ Φ(C)⊥. Let |C| =

(
p2t)k1 ptk2 ptk3 and C is of length n. Then Φ(C) has the

parameters [2n, 2k1 + k2 + k3]. Since |Φ(C)| = |C| then
∣∣Φ(C)⊥

∣∣ = pt(2n−(2k1+k2+k3)).

Furthermore,
∣∣Φ (C⊥)∣∣ = ∣∣C⊥∣∣ = (p2t)n /|C| =

(
p2t)n−(k1+k2+k3) pt(k2+k3) = pt(2n−(2k1+k2+k3))

therefore Φ
(
C⊥
)
= Φ(C)⊥.

We can obtain the next commutative diagram over ring R.

C Φ(C)

C⊥ Φ(C⊥)

Figure 2.2: Diagram Over Ring R

Theorem 4.2. Let C be a linear code of length n over Zpm + vZpm and let Φ(C) = C1⊗
C2. Then C can be uniquely expressed as C = ε1C1 ⊕ ε2C2. Furthermore, Φ

(
C⊥
)
=

C⊥1 ⊗ C⊥2 , which then gives us C⊥ = ε1C⊥1 ⊕ ε2C⊥2 .

Proof. By Lemma 4.1, Φ
(
C⊥
)

= (C1 ⊗ C2)
⊥. Hence, we only need to prove that

(C1 ⊗ C2)
⊥ = C⊥1 ⊗ C⊥2 . Obviously, C⊥1 ⊗ C⊥2 ⊆ (C1 ⊗ C2)

⊥. On the other hand, sup-
pose that C1 and C2 are [n, k1] , [n, k2] linear codes, respectively, then C⊥1 , C⊥2 and C1 ⊗
C2 are [n, n− k1] , [n, n− k2] and [2n, k1 + k2] linear codes, respectively, thus,

∣∣C⊥1 ⊗ C⊥2
∣∣ =∣∣C⊥1 ∣∣ ∣∣C⊥2 ∣∣ = ∣∣∣(C1 ⊗ C2)

⊥
∣∣∣ = pt(2n−k1−k2). Hence, C⊥1 ⊗ C⊥2 = (C1 ⊗ C2)

⊥.
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5 Constacyclic Codes over R

5.1 Definition and Properties

We define the constacyclic shift on Rn as:

ρλ(c0, c1, . . . , cn−1) = (λcn−1, c0, c1, . . . , cn−2),

where λ is a unit in R. A linear code C is called constacyclic if ρλ(C) = C. As usual,
we represent a vector c = (c0, c1, . . . , cn−1) ∈ Rn as the corresponding polynomial
c(x) = c0 + c1x + · · · + cn−1xn−1 and the code C is identified with the codewords in

polynomial form. Then, ρλ(c) corresponds to x · c(x) in the quotient ring
R[x]
〈xn − λ〉 ,

and constacyclic codes are precisely the ideals of this ring.
Now we define a Gray map on Rn

q as follows:

Ψ : Rn −→ Z2n
q

Ψ(r1 + vr2) = (r1, r1 + r2),

where r1, r2 ∈ Rn.
The Lee weight is defined as the Hamming weight of the Gray image

wL(r) = wH(r1, r1 + r2).

The Lee distance between r and s is defined by:

dL((r, s)) = wL(r− s).

The minimum Lee distance between distinct pairs of code words of a code C is called
the minimum distance of C and denoted by dL(C).

6 Generator Polynomials and Check Polynomials

We associate with the vector c = (c0, c1, . . . , cn−1) ∈ Zn
q as the corresponding polyno-

mial c(x) = c0 + c1x + · · ·+ cn−1xn−1 . Then a constacyclic code of length n over Zq

can be defined as an ideal in the ring of polynomials modulo xn − λ over Zq. Under
this correspondence, a constacyclic code has the following properties.
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Theorem 6.1. [39] Let C be a nonzero ideal in R, then

1. There is a unique monic polynomial G(x) of minimal degree in C.

2. C = 〈G(x)〉, i.e., G(x) is a generator polynomial generating of C.

3. G(x) divides xn − λ.

4. Any c(x) ∈ C can be written uniquely as c(x) = k(x)G(x) in Zq[x], where k(x) ∈ Zq[x]
has degree < n−deg G(x). The dimension of C is n−deg G(x) Thus the message k(x)
becomes the codeword k(x)G(x).

5. If G(x) = G0 + G1x + · · ·+ Gbxb, then a generator matrix of C is

G =


G0 G1 G2 · · · Gb 0

G0 G1 · · · Gb−1 Gb

· · · · · ·

0 G0 · · · · · · Gb


(n−b)×n

,

=


G(x)

xG(x)
. . .

xn−b−1G(x)

 .

using an obvious notation. From the above theorem, for a constacyclic code C of length
n, the generator polynomial G(x) divides xn − λ. Then

H(x) = (xn − λ)/G(x) =
k

∑
i=0

Hixi, Hk 6= 0.

is called the check polynomial of C. The reason for this name is that H(x) can be used
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to compute a parity check matrix for C :

G =


H0 H1 H2 · · · Hb 0

H0 H1 · · · Hb−1 Hb

· · · · · ·

0 H0 · · · · · · Hb

 .

Furthermore, the check polynomial H(x) of C is related to the generator polynomial
of C⊥ as follows. To simplify the notation, we give the following definition regarding
polynomials.

Definition 6.1. Let f (x) = f0 + f1x + · · ·+ fixi with fi 6= 0 be a polynomial in Zq[x].
Then the reciprocal polynomial of f (x), denoted by f ∗(x), is

f ∗(x) = f−1
0
←−
f (x)

= f−1
0 xi f

(
x−1
)

= f−1
0

(
fi + fi−1x + · · ·+ f0xi

)
,

where
←−
f (x) is the polynomial obtained by reversing the order of the coefficients of

f (x). In particular, if f (x) = f ∗(x), then f (x) is called self-reciprocal. Note that
f ∗(x) = f−1

0 xi f
(
x−1) if i = deg( f (x)).

Theorem 6.2. [39] Let C be a constacyclic code of length n with generator polynomial
G(x) and check polynomial H(x) = (xn − λ) /G(x). Then the dual code C⊥ is consta-
cyclic and has generator polynomial

G⊥(x) = H∗(x).

Now we give some results about λ-constacyclic codes and free λ-constacyclic codes
over R. First, let λ ∈ R be such that λ = λ1 + vλ2 where λ1, λ2 ∈ Zq.

Since v2 = 1, we have
λε1 = (λ1 + vλ2)

1
2(1− v)

= 1
2 λ1 − 1

2 vλ1 +
1
2 vλ2 − 1

2 λ2

= λ1
2 (1− v)− λ2

2 (1− v)
= ε1(λ1 − λ2)
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= ε1α1, where α1 = λ1 − λ2.
Similarly, we can show that λε2 = ε2α2 where α2 = λ1 + λ2. Therefore

λ = λ(ε1 + ε2) = ε1α1 + ε2α2,

and λ−1 = λ∗1 + vλ∗2 , where α−1
1 = λ∗1 − λ∗2 and α−1

2 = λ∗1 + λ∗2 .

Proposition 4. An element λ = λ1 + vλ2 is a unit of R if and only if α1, α2 are units in Z∗q ,
where α1 = λ1 − λ2 and α2 = λ1 + λ2.

Proof. Let λ = λ1 + vλ2 = ε1α1 + ε2α2 where α1 = λ1 − λ2 and α2 = λ1 + λ2. By the
Chinese Remainder Theorem, λ is a unit of R⇐⇒ α1, α2 are both units of Z∗q .

6.1 Decomposition of a λ-Constacyclic Code over R

The following theorem provide an explicit decomposition into a direct sum of a con-
stacyclic code C over the ring R.

Theorem 6.3. Let C be a linear code over R of length n and let C = ε1C1 ⊕ ε2C2 be
its decomposition where C1 and C2 are codes over Zq of length n. Then C is a λ-
constacyclic code over R if and only if C1 and C2 are αj-constacyclic codes over Zq for
j = 1, 2, where λ, α1 and α2 are as in Proposition 4.

Proof. For any s = (s0, s1, . . . , sn−1) ∈ C, we can write its components as si = ε1ai⊕ ε2bi

where ai, bi ∈ Zq, 0 ≤ i ≤ n− 1. Let a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1).
Now, assume that Cj is a αj-constacyclic code of length n over Zq, j = 1, 2. This implies
that

ρα1(a) = (α1an−1, a0, . . . , an−2) ∈ C1, ρα2(b) = (α2bn−1, b0, . . . , bn−2) ∈ C2. (2.1)

It is easily seen that ε1ρα1(a) + ε2ρα2(b) = ρλ(s), so C is a λ-constacyclic code of length
n over R.

Conversely, suppose that C is a λ-constacyclic code of length n over R. Let si = ε1ai +

ε2bi for any a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1). Then a ∈ C1, b ∈ C2 so s =

(s0, s1, . . . , sn−1) ∈ C. By the hypothesis,

ρλ(s) = (λ(sn−1), s0, . . . , sn−2) ∈ C.
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Using the fact that λεj = εjαj for j = 1, 2, we get

λ(sn−1) = λ(ε1an−1 + ε2bn−1)

= ε1α1(an−1) + ε2α2(bn−1).

Therefore,
ρλ(s) = (λ(sn−1), s0, . . . , sn−2)

= ε1(α1(an−1), a0, . . . , an−2) + ε2(α2(bn−1), b0, . . . , bn−2).

Thus, ρα1(a) ∈ C1, ρα2(b) ∈ C2. This implies that Cj is an αj-constacyclic code of length
n over Zq for j = 1, 2.

The previous Theorem gave a direct sum decomposition of a constacyclic code C over
R. Now, we recall a fundamental fact about free constacyclic codes over R. Together
with Theorem 7.4, this generalizes Theorem 4 in [59].

Definition 6.2. Let R be a commutative ring with identity. A linear code of length n
over R is an R-submodule of Rn. If C is a free R-module, then it is called a free code.

7 The Standard Generator of a Free Constacyclic Code

over R

The polynomial in the following Theorem is called the standard generator of a free
constacyclic code over R and it characterizes all other generator polynomials. When
we refer to “the generator” polynomial of a constacyclic code, we mean this standard
generator, which is unique up to an associate.

Theorem 7.1. A λ-constacyclic code C over R is free if C = 〈g(x)〉 and g(x)|xn − λ in
R[x].

Proof. Let C be a λ-constacyclic code where C = 〈g(x)〉 and xn − λ = g(x)h(x). Since
xn − 1 is monic, the leading coefficients of g(x) and h(x) are units, and they are not
zero divisors. Let k = deg(h(x)). Then deg(g(x)) = n− k. We claim that the set B =

{g(x), xg(x), . . . , xk−1g(x)} is a basis for C. First we show that B is linearly indepen-
dent. Suppose a0g(x) + a1xg(x) + · · ·+ ak−1xk−1g(x) = 0 for some a0, a1, . . . ak−1 in R.
This equation can be rewritten as a(x)g(x) = 0 where a(x) = a0 + a1x+ · · ·+ ak−1xk−1.
Hence, a(x)g(x) ≡ 0 mod xn − λ. Therefore, xn − λ|a(x)g(x). Since g(x) is not a zero
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divisor, we conclude h(x)|a(x), and a(x) = h(x)s(x) for some s(x) ∈ R[x]. Since h(x)
is not a zero divisor, deg(a(x)) ≥ deg(h(x)) = k. However, this yields a contradiction
unless a(x) is the zero polynomial. This shows that B is linearly independent.

Now we show that B spans C. Let c(x) ∈ C. For any polynomial f (x) in R[x], let f (x)
denote f (x) mod xn − λ. Since C = 〈g(x)〉, c(x) = b(x)g(x) for some b(x) ∈ R[x].
Then, c(x) = b(x)g(x) = b(x) · g(x) = b(x) · g(x). Since the leading coefficient of g(x)
is a unit and deg(c(x)) < n, we must have deg(b(x)) < k. Hence c(x) is in the span of
B.

Lemma 7.2. Let C = 〈g(x)〉 be a free λ-constacyclic code of length n over R such
that gcd(n, q) = 1. Then Ci = 〈gi(x)〉 is a free αi-constacyclic code over Zq where
g(x) = ε1g1(x) + ε2g2(x).

Proof. From Theorem 6.3, C = ε1C1 ⊕ ε2C2 and C is λ-constacyclic over R if and only
if Ci is αj-constacyclic Zq[x]. It is well known [31] that a constacyclic code Ci over
Zq[x] of length coprime with n is a principal ideal generated by a polynomial gi(x) in
Zq[x]. Thus C = 〈g(x)〉 = ε1〈g1〉 ⊕ ε2〈g2〉. Consider the projection map Pri : C −→ Ci

which is a module epimorphism. Since C is free, Ci as the image of Pri is also free [49]
(Exercise 1 on page 137). Hence the result follows.

Theorem 7.3. Let C = 〈g(x)〉 be a free λ-constacyclic code where g(x)|xn − λ. Then
C = 〈g(x)〉 = 〈g(x) f (x)〉 if and only if gcd( f (x), h(x)) = 1 over R[x] where g(x)h(x) =
xn − λ.

Proof. ⇒: Assume 〈g(x)〉 = 〈g(x) f (x)〉. Since g(x) ∈ 〈g(x)〉 = 〈g(x) f (x)〉, we
have g(x) = g(x) f (x)a(x) for some a(x) ∈ R[x]. Thus, g(x)(1 − f (x)a(x)) = 0 =

b(x)g(x)h(x) in R[x] for some b(x) ∈ R[x]. Hence, g(x)(1− f (x)a(x)− b(x)h(x)) = 0,
and given that g(x) cannot be a zero divisor in R[x] (because its leading term is a unit),
1 = f (x)a(x) + b(x)h(x), which implies that gcd( f (x), h(x)) = 1.

⇐: Assume gcd( f (x), h(x)) = 1. The inclusion 〈g(x)〉 ⊇ 〈g(x) f (x)〉 is obvious. For
the other direction, take an arbitrary c(x) ∈ 〈g(x)〉 = C, so c(x) = g(x)a(x) for some
a(x) ∈ R[x]. Given that gcd( f (x), h(x)) = 1, there exist A(x), B(x) ∈ R[x] such that
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A(x) f (x) + B(x)g(x) = 1. Hence, we have

c(x) = g(x)a(x) = g(x)a(x)A(x) f (x) + g(x)a(x)B(x)h(x)

= g(x) f (x)(a(x)A(x)) + (xn − λ)B(x)a(x)

= g(x) f (x)(a(x)A(x)) ∈ 〈g(x) f (x)〉 in
R[x]
〈xn − λ〉 ,

so that 〈g(x)〉 ⊆ 〈g(x) f (x)〉, which implies 〈g(x)〉 = 〈g(x) f (x)〉.

Theorem 7.4. Let C = ε1C1 ⊕ ε2C2 be a free λ-constacyclic code of length n over R
where Cj is a constacyclic code over Zq with shift constant αj for j = 1, 2. Then

(i)
C = 〈ε1g1(x), ε2g2(x)〉, and |C| = q2n−(deg (g1)+deg (g2)).

(ii) There exists a polynomial g(x) ∈ R[x] such that C = 〈g(x)〉 and g(x) | xn − λ where
g(x) = ε1g1(x) + ε2g2(x).

Proof.(i) Let C = ε1C1⊕ ε2C2 be a free λ-constacyclic code of length n over R. Since C is a
free module and R a principal ideal ring, Cj’s as submodules are also free, so Cj is a free
αj-constacyclic code of length n over Zq for j = 1, 2, and from Lemma 1, gj(x) is the
generator polynomial of Cj, so Cj = 〈gj(x)〉 ⊆ Zq[x]/〈xn − αj〉 for j = 1, 2. Therefore,
by the construction, C has the form

C = 〈ε1g1(x), ε2g2(x)〉.

For the statement on the size, since |C| = |φ(C)| = |C1||C2|, we have

|C| = q2n−(deg (g1)+deg (g2)).

(ii) From the first part
C = 〈ε1g1(x), ε2g2(x)〉.

Let g(x) = ε1g1(x) + ε2g2(x). Then it is easily seen that 〈g(x)〉 ⊆ C. On the other
hand, C ⊆ (ε1g1(x), ε2g2(x)) ⊆ R[x]/xn − λ, which means C ⊆ 〈g(x)〉 and hence
C = 〈g(x)〉.

Now suppose gj(x) is the generator polynomial of Cj for j = 1, 2, respectively. Since Cj

is free, gj(x) divides xn− αj so that xn− αj = hj(x)gj(x). This implies that εj(xn− αj) =
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εjhj(x)gj(x) for j = 1, 2. Then
xn − λ = (ε1 + ε2)xn − (ε1α1 + ε2α2) (because ε1 + ε2 = 1)

= ε1(xn − α1) + ε2(xn − α2))

= ε1h1(x)g1(x) + ε2h2(x)g2(x)
= (ε1h1(x) + ε2h2(x))(ε1g1(x) + ε2g2(x)) (because ε2

i = εi, εiεj = 0 where
i = 1, 2 and i 6= j).

= (ε1h1(x) + ε2h2(x))g(x).
Therefore, g(x) is a divisor of xn − λ.

8 Dual of a Free λ-Constacyclic Code over R

Theorem 8.1. Let C1, C2 be free codes over Zq and let C = ε1C1 ⊕ ε2C2 be a free λ-
constacyclic code of length n over R. Then C⊥ = ε1C⊥1 ⊕ ε2C⊥2 is a free λ−1-constacyclic
code of length n over R where C⊥j is a free α−1

j -constacyclic code of length n over Zq

for j = 1, 2.

Proof. Let C = ε1C1 ⊕ ε2C2 be a linear code of length n over R. Then by the direct sum
decomposition, the dual code C⊥ = ε1C⊥1 ⊕ ε2C⊥2 of C is also a linear code of length
n over R. Theorems 6.3 and 7.4 give the direct sum decomposition of a λ-constacyclic
code over R and its generators, respectively. According to [23], [24], the dual of a free
λ-constacyclic code of length n over R is a free λ−1-constacyclic code of length n over
R. Therefore, C⊥ = ε1C⊥1 ⊕ ε2C⊥2 is also a free λ−1-constacyclic code of length n over
R where C⊥j is a free α−1

j -constacyclic code of length n over Zq for j = 1, 2.

corollary 1. Let C = ε1C1 ⊕ ε2C2 be a free λ-constacyclic code of length n over R, and let
gj(x) be the generator polynomial of the constacyclic code Cj for j = 1, 2 which divides xn− λ.
Then

C⊥ = 〈ε1h∗1 , ε2h∗2〉 and |C⊥| = q(deg (g1(x))+deg (g2(x))),

C⊥ = 〈h∗(x)〉, where h∗(x) = 〈ε1h∗1 + ε2h∗2〉,

where xn − λ = hj(x)gj(x) for some hj(x) ∈ Zq[x] and h∗j (x) = x deg (hj(x))hj(x−1) gener-
ates the dual constacyclic code C⊥j for j = 1, 2.
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9 Gray Image of a Free λ-Constacyclic Code over R

In this section, we recall the definition of a Gray map on R, and other results which we
will needed in the sequel.

Definition 9.1. Let Cβ be a linear code over R of length β = N` and let λ be unit in R.
If for any codeword

(c0,0, c0,1, . . . , c0,`−1, c1,0, c1,1, . . . , c1,`−1, . . . , cN−1,0, cN−1,1, . . . , cN−1,`−1) ∈ Cβ

then

(λ(cN−1,0), λ(cN−1,1), . . . , λ(cN−1,`−1), c0,0, c0,1, . . . , c0,`−1, . . . , cN−2,0, cN−2,1, . . . , cN−2,`−1) ∈ Cβ

Then we say that Cβ is a λ-quasi-twisted code of length β. If ` is the least positive
integer such that β = N`, then Cβ is called an `-quasi-twisted code or a quasi-twisted
code with index ` over R.

According to the subsection 1.8.2, we define a Gray map Φ over R by

Φ : Rβ −→ Z
2β
q

Φ(a + vb) = (a, a + b),

where a, b ∈ Rβ .
Let a ∈ Z

2β
q with a(0), a(1) = (a(0) | a(1)), a(i) ∈ Rβ, for i = 0, 1. Let σ a quasi twisted

shift from Z
2β
q to Z

2β
q given by

σ(a(0) | a(1)) = (ρλ(a(0)) | ρλ(a(1))),

where | is vector concatenation, and and ρλ is the constacyclic shift operator from Z
β
q

to Z
β
q defined by

ρλ(a(i)) = (λa(i,β−1), a(i,0) . . . , a(i,β−2)),

For every a(i) = (a(i,0), a(i,1), . . . , a(i,β−1)) where a(i,j) ∈ Zq, for j = 0, 1, . . . , β− 1.

Proposition 5. With the notation above, we have Φ ◦ ρλ = σ ◦Φ.

Proof. Let r = (r0, r1, . . . , rβ−1) ∈ Rβ where ri = ai + ubi, 0 ≤ i ≤ β− 1. Then we have
Φ(r) = (a0, a1, . . . , aβ−1, a0 + b0, a1 + b1, . . . , aβ−1 + bβ−1), so that
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Φ(ρλ(r)) = (λaβ−1, a0, . . . , aβ−2, λ(aβ−1 + bβ−1), a0 + b0, . . . , aβ−2 + bβ−2).

On the other hand,

σ(Φ(r)) = σ(a0, a1, . . . , aβ−1, a0 + b0, a1 + b1, . . . , aβ−1 + bβ−1)

=
(
λaβ−1, a0, . . . , aβ−2, λ(aβ−1 + bβ−1), a0 + b0, . . . , aβ−2 + bβ−2

)
.

Hence the result follows.

Proposition 6. Let C be a linear code of length β over R. Then C is a constacyclic code of
length β over R if and only if Ψ(C) is a QT code of length 2β over Zq of index 2.

Proof. Let C be a constacyclic code. Then ρλ(C) = C. We have Φ (ρλ(C)) = Φ (C), and
from Proposition 1

σ (Φ(C)) = Φ (ρλ(C)) = Φ(C).

Hence, Φ(C) is a QT code of index 2.

Conversely, let Φ(C) be a QT code of index 2. Then we have

σ(Φ(C)) = Φ(C).

By Proposition 1
Φ(C) = σ (Φ(C)) = Φ (ρλ(C)) .

Since Φ is injective, it follows that ρλ(C) = C.

Remark. Based on computational findings, it seems that the Gray image of a free con-
stacyclic code over R, particularly when q = 4, shows characteristics of a free code
over Z4. Subsequently, it has been established that this holds true in a general case.

We prove this one in the following theorem.

Theorem 9.1. Let C be a free constacyclic code of length n over R. Then the Gray image
Φ(C) is also a free code over Zq.

Proof. Let C be a free constacyclic code of length β over R. Then from Theorem 2, there
exists a minimum degree polynomial g(x) whose leading coefficient is a unit such that
C = 〈g(x)〉, g(x)|xβ − λ, and the set

{g(x), xg(x), . . . , xβ−deg(g(x)−1g(x)},
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where k = β− deg(g(x)), forms a basis for C. We claim that the set
B := {Φ(g(x)), Φ(xg(x)), . . . , Φ(xk−1g(x)), Φ(ug(x)), Ψ(uxg(x)), . . . , Ψ(uxk−1g(x))}
is a basis for Φ(C).

Note that the map Φ is a vector space isomorphism. First we show that B is linearly
independent. Suppose

a0Φ(g(x)) + a1Φ(xg(x)) + · · ·+ ak−1Φ(xk−1g(x))

+b0Φ(ug(x)) + b1Φ(uxg(x)) + · · ·+ bk−1Φ(uxk−1g(x)) = 0.

Since Φ is a vector space homomorphism, we have

Φ(a0g(x) + a1xg(x) + · · ·+ ak−1xk−1g(x) + b0ug(x) + · · ·+ bk−1uxk−1g(x)) = 0.

Since Φ is injective, we conclude that

a0g(x) + a1xg(x) + · · · ak−1xk−1g(x) + b0ug(x) + b1uxg(x) + · · ·+ bk−1uxk−1g(x) = 0.

We can rewrite this equation as A(x)g(x) = 0 in
R[x]
〈xβ − λ〉

where A(x) = a0 + a1x +

· · ·+ bk−1uxk−1. Since g(x)|xβ−λ, the leading coefficient of g(x) is a unit and deg(A(x)) <
k = β − deg(g(x)). This is only possible if A(x) is the zero polynomial. Hence,
ai = 0 = bj for all i and j, and B is linearly independent.

Now we show that B spans Φ(C). Let z ∈ Φ(C). Then z = Φ(c) for some c ∈ C and
c(c) = a(x)g(x) for some a(x) ∈ R[x] with deg(a(x)) < k. Let a(x) = A(x) + uB(x)
where A(x), B(x) ∈ Zq[x]. Then we have

z = Φ(A(x)g(x) + uB(x)g(x)) = Φ(A(x)g(x)) + Φ(uB(x)g(x)).

Now let A(x) = a0 + a1x + · · ·+ ak−1xk−1 and B(x) = b0 + b1x + · · ·+ bk−1xk−1 where
ai, bj ∈ Zq. Using the fact that Φ is a vector space homomorphism we have

c = a0Φ(g(x)) + a1Φ(xg(x)) + · · ·+ bk−1Φ(uxk−1g(x)).

Hence, c is in the span of B.
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Chapter 3

Quasi Twisted Codes over R

1 Introduction

We have seen that the class of QC codes contain many codes with good or the best
possible parameters. Therefore a larger class of linear codes, called quasi-twisted (QT)
codes, deserves a careful study. The class of QT codes is not as well studied as that of
QC codes.

Quasi-twisted (QT) codes over rings form an important class of block codes that in-
cludes cyclic codes, quasi-cyclic codes and constacyclic codes as special cases.
In this chapter, we investigate issues related to the decomposition and construction of
a QT code. From [1], we give the definition of λ-quasi-twisted codes. Some results of
this chapter can be found in [11]

Definition 1.1. Let λ be a unit in R, ` be a positive integer, and τ`,λ be the permutation
of Rn, given by

τ`,λ(c) = (λcn−`, . . . , λcn−1,c0, . . . , cn−`−1)

for any c = (c0, . . . , cn−1) ∈ R. For a linear code C of length n over R, if τ`,λ(C) = C,
then C is called an `-quasi twisted (QT) code (or a QT code of index `), over R. For
` = 1, we obtain the important special case τ1,λ = ρλ of a λ-constacyclic code of length
n over R. The unit λ is called the shift constant.

In this section, we consider that gcd(n, p) = 1 where q = pm for a prime p and a
positive integer m. Let Rt = R[x]/〈xt − λ〉 and suppose C is a QT code of length
n = t` and index ` over R.
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2 Factorisation of xn − λ over R

Definition 2.1. A polynomial f (x) ∈ Zq[x] is irreducible in Zq if whenever f (x) =

g(x)h(x) for two polynomials g(x) and h(x) in Zq[x], one of g(x) or h(x) is a unit.

We now consider the factorization of xn − λ over R. We denote by − the natural ring
homomorphism

− : R −→ Zq

a + bu→ a

Now extend − to a ring homomorphism from R[x] into Zq[x] by

f (x) = ∑ ukxk, for all f (x) = ∑ ukxk ∈ R[x] where uk ∈ R.

A monic polynomial f (x) ∈ R[x] is said to be monic basic irreducible over R if f (x) is
an irreducible polynomial over Zq[x].

Lemma 2.1. Let g(x) be an irreducible polynomial over Zq[x], where g(x) | (xn − λ).
Then there exists a unique basic irreducible polynomial f (x) ∈ R[x] such that f (x) =
g(x) and f (x) | (xn − λ) over R.

Proof. Let xn − λ = g(x)k(x) ∈ Zq[x]. Since gcd(n, p) = 1, g(x) has no multiple
roots. Further, it is clear that x - g(x). Then according to ([56] Theorem 13.10), we
have that g(x) has a unique Hensel lift f (x) over Zq[x] such that f (x) | (xn − λ). Since
Zq[x] is a subring of R, the factorization of xn − λ is still valid over R. This means
that f (x) | (xn − λ) over R. Therefore, g(x) is irreducible over Zq[x] and f (x) is basic
irreducible over R.

Since gcd(n, p) = 1 and Zq[x] is a subring of R, the factorization of xn − λ is still valid
over R. It follows that xt − λ can be factored uniquely into pairwise coprime basic
irreducible polynomials over R, i.e., for i = 1, . . . , s

xt − λ = f1(x) f2(x) . . . fs(x), (3.1)

where fi(x) is a basic irreducible polynomial over Zq[x].
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3 Decomposition of QT Code over R

Let C be a (λ, `)-QT code of length n over Zq. Recall that C is a module over the ring
R[x]/(xt − λ), where t = n/`. Denote R[x]/(xt − λ) by Rt.
In order to know more about the algebraic structure of QT codes, we next focus on the
ring Rt.
Therefore, since Rt is a principal ideal ring, it can be decomposed into a direct sum of
semi local rings. Hence, the Chinese Remainder Theorem gives the following decom-
position

Rt = R[x]/〈xt − λ〉 = R[x]/〈 f1(x)〉 ⊕ R[x]/〈 f2(x)〉 ⊕ · · · ⊕ R[x]/〈 fs(x)〉. (3.2)

The direct sum on the right hand side is endowed with coordinate-wise addition and
multiplication. For convenience, we denote the ring R[x]/〈 fi(x)〉 by Ri for 1 ≤ i ≤ t It
follows that

R`
t
∼=

s⊕
i=1

R`
i .

Then the following theorem is an immediate consequence.

Theorem 3.1. Let C be a QT code of length n = t` over R. Then C is a linear code over
Rt of length ` which can be decomposed as the direct sum

C ∼=
m⊕

i=1

Ci, (3.3)

where Ci is a linear code over Ri of length ` for 1 ≤ i ≤ s.

Theorem 3.2. Let T = Zqn + vZqn where v2 = 1. Further, let f , g ∈ T[x] and f̃ , g̃ ∈
Zq[x] where f̃ = f mod qn−1v and g̃ = g mod qn−1v. Then gcd( f , g) = 1 if and only
if gcd( f̃ , g̃) = 1.

Proof. Let f , g ∈ T[x] and suppose gcd( f , g) = 1. Then there exist a, b ∈ T[x] such that
a f + bg = 1. Therefore, we have the following

1 = a f + bg

= ã f + b̃g

= ã f̃ + b̃g̃,

where ã, b̃, f̃ , g̃ ∈ Zq[x]. Hence, gcd( f̃ , g̃) = 1.
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Now suppose gcd( f̃ , g̃) = 1. Then there exist ã, b̃ ∈ Zq such that ã f̃ + b̃g̃ = 1. Thus,
for some k ∈ T[x] we have a f + bg = 1 + kqn−1v. Multiplying both sides by kqn−1, we
have

kqn−1v(a f + bg) = kqn−1v + kqn−1ukqn−1v, (3.4)

kqn−1v(a f + bg) = kqn−1v + qnk2qn−2 = kqn−1v. (3.5)

Substituting (3.4) in a f + bg = 1 + kqn−1v gives a f + bg = 1 + kqn−1v(a f + bg). Then
(1− kqn−1v)a f + (1− kqn−1v)bg = 1, which implies that gcd( f , g) = 1.

4 Dual Codes of QT Codes over R

In this section, we examine more closely the structure of the dual code of a QT code
when λ2 = 1. In particular, we show that the dual of a QT code over R of length t`
and index ` is also a QT code of the same length and index. We first recall some basic
definitions.

Definition 4.1. Let a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1) be two n-tuples
whose elements are from R` where ai = (ai0, ai1, . . . , ai(`−1)) and bi = (bi0, bi1, . . . , bi(`−1)) ∈
R` for 0 ≤ i ≤ n− 1. The usual Euclidean inner product of a and b is defined by

a.b =
n−1

∑
i=0

aibi =
n−1

∑
i=0

`−1

∑
j=0

aijbij,

and the dual of C with respect to Euclidean inner product is then

C⊥ = {b ∈ Rt` | a · b = 0∀a ∈ C}.

If C ∩ C⊥ = {0}, then C is an LCD code over R.

For any ai = (ai0, ai1, . . . , ai(`−1)) and bi = (bi0, bi1, . . . , bi(`−1)) ∈ R` for 0 ≤ i ≤ n− 1,
the usual Hermitian inner product of a(x) and b(x) is defined as

a(x) ∗ b(x) =
`−1

∑
j=0

aij(x)bij(x−1).

Further, for the element a = (a0, a1, . . . , as−1) ∈ Rt`, the action of the map τ` on Rt` can
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be expressed as
τ`(u0, u1, . . . , us−1) = (us−1, u0, . . . , us−2),

where ui = (ui,0, ui,1, . . . , ui,`−1). Thus, τ` is a QT shift operator on the t-tuples of
elements from R`.

In the next proposition, we show that the dual of a QT code over R of length t` and
index ` is a QT code of the same index.

Proposition 7. Let C be a QT code of length t` over R and C⊥ be the dual code of C. Then C⊥

is a QT code of length t` and index ` over R.

Proof. Let C be a QT code of length t` and index `, and let a ∈ C and b ∈ C⊥ be two
arbitrary elements. Then we have

a · τ`(b) =
t−1

∑
i=0

ai · bi+t−1 =
t−1

∑
i=0

aibi+t−1 = τt−1
` (a) · b = 0,

where the subscript i + t− 1 is taken modulo t. Hence, τ`(a) ∈ C⊥ and so C⊥ is also a
QT code of length t` and index `.

By the above proposition, we know that C⊥ is a submodule of R
′
t =

R[x]
〈xt−λ−1〉 over Rt

and hence a linear code over Rt.
First, note that λ2 = 1, and notice that a QT code is an Rt-module while its dual code
is an R

′
t-module. However, two rings Rt and R

′
t are isomorphic:

Rt ' R
′
t

x ←→ x−1

where x−1 = λ−1xt−1 in the ring Rt and x−1 = λxt−1 in the ring R′t.
By the above isomorphism, we now define a map which induces a one-to-one corre-
spondence between QT codes over R of length t` with index ` and linear codes over Rt

of length `.

Definition 4.2. For all r1(x), r2(x), . . . , r`(x) ∈ Ŕ`
t , we define the map Φ : Ŕ`

t −→ R`
t by

Φ(r1(x), r2(x), . . . , r`(x)) = (r1(x−1), r2(x−1), . . . , r`(x−1)). (3.6)

It follows that the map Φ is bijective since it is derived from the isomorphism between
R′t and Rt.
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Hence we have proved the following proposition.

Proposition 8. The map Φ gives a one-to-one correspondence between the set of linear codes
of length ` over Rt and the set of linear codes of length ` over R′t.

Next, we consider the case when λ ∈ {−1, 1}. It is well know that a finite commutative
ring always decomposes into a product of local rings. We will make use of this decom-
position in our context to facilitate the study of QT codes over R. According to (3.1),
we have that the polynomial xt − λ factors into pairwise coprime monic irreducible
polynomials over R and hence we may write

xt − λ = f1(x) f2(x) . . . fs(x), with λ ∈ {−1, 1}.

In this section, we focus on the case when λ = ±1, that is, xt− λ = xt− λ−1 and hence
Rt = R

′
t. Denote the factors fi in the factorization of xt − λ which are self-reciprocal by

g1 . . . gl and the remaining fi’s grouped in pairs by h1, h∗1 , . . . , ht, h∗t . Then we have

xt − λ = g1(x) . . . gl(x) (h1(x)h∗1(x) . . . hl(x)h∗t (x)) .

Consequently, we have the following expression

Rt ∼=
(

m⊕
i=1

R[x]
gi

)
⊕

 t⊕
j=1

(
R[x]

hj
⊕ R[x]

h∗j

) . (3.7)

Throughout this section, we denote R[x]
gi

by Gi,
R[x]

hj
by Hj and R[x]

h∗j
by H∗j . It follows

from (3.7) that

R`
s =

(
m⊕

i=1

G`
i

)
⊕

 t⊕
j=1

(H`
j ⊕ (H∗j )

`)

 . (3.8)

In particular, every linear code C of length ` over Rt can be decomposed as follows

C ∼=
m⊕

i=1

Ći ⊕

 t⊕
j=1

(Ćj ⊕ ´́Cj)

 , (3.9)

where for each 1 ≤ i ≤ m, Ci is a linear code of length ` over Gi and for each 1 ≤
j ≤ t, Ćj is a linear code of length ` over Hj and ´́Cj is a linear code of length ` over
H∗j . Therefore, in this case the map Φ is an automorphism of R`

t . We also define
isomorphisms between component rings as follows.
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Definition 4.3. For 1 ≤ i ≤ m, define

Φi : G`
i −→ G`

i

by
Φi((r1(x) + (gi(x)), . . . , r`(x) + (gi(x)))

= (r1(x−1) + (gi(x)), . . . , r`(x−1) + (gi(x))).

For 1 ≤ j ≤ t, define
Φ́j : (Hj)

` −→ (H∗j )
`

by
Φ́j(r1(x) + (hj(x)), . . . , r`(x) + (hj(x)))

= (r1(x−1) + (h∗j )(x)), . . . , r`(x−1) + (h∗j (x))).

Actually, when λ = ±1, the maps Φ,Φi and Φj are exactly the conjugate maps defined
in [37].

Lemma 4.1. Let the decomposition of the ring R be as in (3.7). Assume that λ = ±1
and r(x) ∈ Rt and its decomposition in Rt is

(r1(x), . . . , rm(x), ŕ1(x), ´́r1(x), . . . , ŕs(x), ´́rs(x)),

where for 1 ≤ i ≤ m, ri(x) = r(x) + (gi(x)) ∈ Gi and for 1 ≤ j ≤ t, ŕj(x) = r(x) +
(hj(x)) ∈Hj and ´́rj(x) = r(x)+ ((h∗j )(x)) ∈H∗j . Then the decomposition Φ−1(r(x)) ∈
Rt is

(r1(x−1), . . . , rm(x−1), ´́r1(x−1), ŕ1(x−1), . . . , ´́rs(x−1), ŕs(x−1)).

Proof. for 1 ≤ i ≤ m, since ri(x) = r(x) + (gi(x)), then

ri(x−1) = r(x−1 + gi(x−1)

Since g(x) is an associate of its reciprocal polynomial, then

(gi(x) = gi(x−1).

Therefore, we have
ri(x−1) = r(x−1) + gi(x),
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i.e., the component of Φ−1(r(x)) = r(x−1) in Gi is ri(x−1)

For 1 ≤ j ≤ t, we have
ŕj(x−1) = r(x−1) + ((hj)(x−1)).

Then
ŕj(x−1) = r(x−1) + ((h∗j )(x−1)),

i.e., the component of Φ−1(r(x)) = r(x−1) in H∗j is ŕj(x−1). Similarly, the component
of Φ−1(r(x)) = r(x−1) in H∗j is ´́rj(x−1).

An immediate consequence of this lemma is the following theorem which gives the
algebraic structure of the dual of a QT code when λ ∈ {−1, 1}.

Theorem 4.2. Let C be a QT code of length n = t` over R and λ ∈ {−1, 1}. Assume
that the decomposition of Rt is as in (3.8) and the corresponding decomposition of C is
as in (3.9). Then the decomposition of its dual code is

C⊥ ∼=
r⊕

i=1

Ψi(C
⊥Gi
i )⊕

 t⊕
j=1

(Ψ́j)
−1(( ´́Cj)

⊥H∗j )⊕ Ψ́j((Ćj)
⊥Hj)

 ,

where the duality on the left is the duality with respect to the inner product over R,
while the dualities on the right are the dualities with respect to the inner products over
the respective component rings. For simplicity, we denote ´́C⊥j = (Ψ́j)

−1(( ´́Cj)
⊥H∗j ) and

Ćj
⊥
= Ψ́j((Ćj)

⊥Hj). Then we can write C as

C⊥ ∼=
r⊕

i=1

C⊥Gi
i ⊕

 t⊕
j=1

´́C⊥j ⊕ Ćj
⊥

 . (3.10)

5 New Linear Codes over Z4

Codes over Z4, sometimes called quaternary codes as well, have a special place in cod-
ing theory. Due to their importance, a database of quaternary codes was introduced in
[6] and it is availabe online [10]. Hence we consider the case q = 4 to possibly obtain
quaternary codes with good parameters.
We now present a theorem which is the basis of the ASR search algorithm (first intro-
duced in [9] and subsequently generalized), which has been very effective in finding
new linear codes from the class of QT codes. Our goal is to generalize this theorem to
codes over R and adapt the search method for codes over this ring.
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Theorem 5.1. Let Cg = 〈g(x)〉 be a free λ-constacyclic code of length n and mini-
mum distance d where xn − λ = g(x)h(x) and g(x), h(x) ∈ R[x]. In addition, let
C = 〈g f1, g f2, . . . , g f`〉 where gcd( fi, h) = 1 for i = 1, 2, . . . , `. Then C is a QT code of
length n`, dimension n− deg(g(x)), and minimum distance D ≥ d`.

Proof. Since gh = xn − λ, it follows that if h|g fi, then pg fi = 0 for all p ∈ R[x]. Further,
note that if pg fi = 0 for all p ∈ R[x], then pg fi = (xn − λ)A = ghA where A ∈ R[x].
Given that g and xn − λ are monic polynomials, g cannot be a zero divisor. Moreover,
gcd( fi, h) = 1 for i = 1, 2, . . . , l, so h|g fi. Therefore, pg fi = 0 for some i if and only
if h|g fi for all i = 1, 2, . . . , `. This implies that p(g f1, g f2, . . . , g f`) = 0 if and only if
pg fi = 0 for i = 1, 2, . . . , `. Since every nonzero codeword in each component has
weight greater than or equal to d, any nonzero codeword in P has weight greater than
d`. Since each component of C is the λ-constacyclic code Cg of length n and dimension
n− deg(g), we conclude that C is a QT code of length n`, dimension n− deg(g), and
minimum distance D ≥ d`.

We conducted a search over QT codes with generators of the form given in Theorem
5.1. Taking the Gray images of these codes we found 116 new linear codes over Z4 and
some examples are shown in Table 1. All 116 codes have been added to the database
[10]. Note that since the QT codes obtained have index 2, n = 4 × m. A Z4-linear
code of length n is often denoted by (n, 4k12k2 , d) where d is the minimum Lee dis-
tance. We will denoted such a code by [n, k1, k2, d]. Table 1 below shows the parameters
and generators of a sample of these 116 new codes. The parameters of the codes not
given in Table 1 are given below and the corresponding generators are available in the
database[10].

The parameters of the new Z4-linear codes found are as follows. [8,0,2,8], [12,0,2,12],
[16, 2, 1, 8], [16, 2, 2, 8], [16, 2, 3, 8], [16, 2, 4, 4], [16, 3, 1, 8], [16, 3, 2, 4], [16, 3, 3, 4], [16,
4, 1, 8], [16, 4, 2, 6], [20,0,2,20], [24, 2, 1, 12], [24, 2, 2, 12], [24, 2, 3, 8], [24, 2, 4, 8], [24, 2,
5, 8], [24, 2, 6, 8], [24, 3, 1, 12], [24, 3, 2, 4], [24, 3, 4, 8], [24, 4, 2, 12], [24, 4, 4, 10], [24, 4,
5, 8], [24, 4, 6, 8], [24, 5, 1, 8], [24, 5, 4, 8], [24, 5, 5, 4], [24, 6, 2, 8], [24, 6, 4, 8], [24, 7, 1, 4],
[24, 8, 1, 8], [24, 8, 2, 8], [28, 2, 3, 12], [28, 2, 6, 12], [28, 5, 3, 8], [28, 6, 1, 12], [28,0,2,28],
[28, 6, 2, 12], [28, 6, 6, 8], [28, 7, 1, 10], [28, 9, 3, 8], [32, 2, 1, 16], [32, 2, 2, 16], [32, 2, 3,
16], [32, 2, 4, 16], [32, 2, 5, 16], [32, 2, 6, 16], [32, 2, 7, 8], [32, 2, 8, 8], [32, 2, 10, 8], [32, 3,
1, 16], [32, 3, 2, 16], [32, 3, 3, 16], [32, 3, 4, 16], [32, 3, 5, 8], [32, 3, 6, 8], [32, 3, 7, 8], [32, 3,
8, 8], [32, 4, 1, 16], [32, 4, 2, 16], [32, 4, 3, 16], [32, 4, 4, 16], [32, 4, 5, 8], [32, 4, 6, 8], [32, 4,
7, 8], [32, 4, 8, 8], [32, 5, 1, 16], [32, 5, 2, 16], [32, 5, 3, 12], [32, 5, 4, 8], [32, 5, 5, 8], [32, 5,
6, 8], [32, 5, 7, 8], [32, 6, 1, 12], [32, 6, 2, 12], [32, 6, 3, 12], [32, 6, 4, 8], [32, 6, 5, 8], [32, 6,
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Tableau 3.1: Examples of new Z4 codes [n, k1, k2, d] obtained by Gray maps from 2-QT
codes of the form 〈g f1, g f2〉 over Z4 + uZ4
[n, k, d]2 xm − λ g f1 f2

[16, 2, 1, 8] x4 + 3 x2 + 2u + 1 x + 2u + 1 x + 2u + 1

[24, 2, 2, 12] x6 + 1 x4 + 3x2 + 1 x + u + 2 x + u

[24, 4, 6, 8] x6 + 3 x + u + 2 x4 +(u+ 3)x2 +(u+ 2)x+
u + 3

x4 + 3ux3 + (2u + 1)x + u + 2

[24, 8, 2, 8] x6 + 2 x + u + 2 x4 + ux3 + (u + 2)x2 +
(3u + 3)x + 2u + 1

x4 + (3u + 1)x3 + (u + 2)x2 +
(u + 3)x + 3u + 3

[28, 6, 2, 12] x7 + 3u x3 + 2ux2 + x + 3u x3 + (2u + 2)x2 + (u +
2)x + u + 3

x3 + (3u+ 1)x2 + (2u+ 2)x +
1

[32, 2, 6, 16] x8 + 3 x4 + 2ux2 + (2u + 2)x + 2u +
3

x3 + 3ux2 + (2u + 3)x +
u + 2

x3 + ux2 + 3x + 3u + 2

[36, 12, 4, 10] x9 + u x + u x7 + (3u + 2)x6 + (u +
2)x5 + x4 + 2ux3 + 2x2 +
(2u + 1)x + u + 1

x7 + 2x6 + (2u + 1)x5 + (u +
3)x4 + (u + 1)x3 + (3u +
3)x2 + 2ux + u + 2

6, 8], [32, 6, 7, 8], [32, 6, 8, 4], [32, 7, 1, 8], [32, 7, 2, 8], [32, 7, 3, 8], [32, 7, 4, 8], [32, 7, 5, 8],
[32, 7, 6, 4], [32, 7, 7, 4], [32, 8, 1, 12], [32, 8, 2, 8], [32, 8, 3, 8], [32, 8, 4, 8], [32, 8, 5, 8], [32,
8, 6, 8], [32, 9, 1, 8], [32, 9, 2, 8], [32, 9, 3, 8], [32, 9, 4, 8], [32, 10, 1, 8], [32, 10, 2, 8], [32,
10, 3, 8], [32, 11, 1, 8], [32, 12, 1, 8], [36, 2, 4, 12], [36, 4, 1, 12], [36, 4, 2, 12], [36, 5, 1, 12],
[36, 10, 6, 4], [36, 12, 1, 10], [36, 12, 2, 10], [36, 12, 4, 10], [36, 13, 1, 10], and [36, 14, 2, 8].
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Chapter 4

LCD Codes and LCP of Codes

1 Introduction

Linear Complementary Dual (LCD) codes and Linear Complementary Pair (LCP) of
codes have been intensively studied in literature due to their cryptographic applica-
tions [13], [44]. They are used in protection against side channel (SCA) and fault in-
jection (FIA) attacks. A pair of linear codes (C,D) over Fq of length n is called LCP
if C ⊕ D = Fn

q . When D = C⊥, C is called an LCD code. In this context the secu-
rity parameter for LCP of codes (C, D) is defined to be the minimum of the minimum
distances of C and D⊥, i.e. it is mind(C), d(D⊥). For the LCD case, this parameter is
simply d(C) since D⊥ = C.
From now on we focus on giving cryptographic motivation on LCD and LCP of codes.
We also provide some important results on these codes accordingly for the rest of this
section.

1.1 Construction of LCD Codes over R

A linear codes with complementary dual (LCD) code is defined as a linear code C
whose dual code C⊥ satisfies C ∩ C⊥ = 0 , that is, Hull(C) = C ∩ C⊥ = 0.
LCD codes have been shown to provide an optimum linear coding solution. For LCD
codes over R, we have the following result due to Massey [43].

Proposition 9. If G is a generator matrix for an [n, k, d] linear code C over Zq , then C is an
LCD code if and only if the k× k matrix GGt be non-singular.

Theorem 1.1. If G is a generator matrix for a linear code C over R , then C is an LCD
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code if and only if GGt is non-singular.

Proof. The generator matrix of C can be expressed in canonical formas(
ε1G1

ε2G2

)

Since the ε1 and ε2 are idempotents, a simple calculation gives

GGt =

(
ε1G1Gt

1 0
0 ε2G2Gt

2

)

From the above proposition, a necessary and sufficient condition for a code over Zq

with generator matrix Gi to be LCD is that GGt be non-singular. Hence the proof
follows from the generator matrix given in the above matrix.

Theorem 1.2. Let λ ∈ {±1} and C be a λ-constacyclic code of length n over Zq with
C = 〈g(x)〉. Let h(x) ∈ Zq[x] with h(x)g(x) = xn − λ. Then,

• C is an Euclidean LCD code⇔ gcd (g, h∗) = 1. (Here, gcd (g, h∗) represents the great-
est common divisor of g and h∗.)

• Let q be an even power of a prime number. Then, C is a Hermitian LCD code ⇔
gcd (g, h∗) = 1. ( For a(x) = ∑ aixi, a(x) = ∑ aq

i xi.
)

Definition 1.1. A linear code C over R is called an Euclidean (resp. Hermitian) LCD
code if C ∩ C⊥ = 0 ( resp, C ∩ C⊥h = 0).

Lemma 1.3. Let C = ε1C1 ⊕ ε2C2 is a LCD code over Zpm + vZpm if and only if C1 and
C2 are LCD codes of length n over Zpm .

Proof. The dual of C = ε1C1 ⊕ ε2C2 is C⊥ = ε1C⊥1 ⊕ ε2C⊥2

Hull(C) = ε1

(
C1 ∩ C⊥1

)
⊕ ε2

(
C2 ∩ C⊥2

)
Then we have,

Hull(C) = 0 if and only if C1 ∩ C⊥1 = 0 and C2 ∩ C⊥2 = 0.
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In the next, the construction of LCD codes over Zq + vZq are given.

Theorem 1.4. A λ-constacyclic code C = 〈ε1g1(x) + ε2g2(x)〉, is an Euclidean LCD
code (resp. Hermitian LCD code) over Zq + vZq if and only if GCD

(
gi(x), h∗i (x)

)
= 1

(resp. GCD
(

gi(x),
(
h∗i
)
(x)
)
= 1

)
for i = 1, 2. Where gi(x) and h∗i (x) in Zq[x] and

gi(x) is a generated polynomial such a condition above for λ ∈ {−1, 1}

2 Cryptographic Motivation on LCD and LCP of Codes

Definition 2.1. pair of linear codes (C, D) in Rn is called a linear complementary pair
(LCP) of codes if

C⊕ D = Rn.

In the case D = C⊥, C is referred to as a linear complementary dual (LCD) code over
R.

Recent studies have shown that LCD and LCP of codes help to improve the security
of the information (processed by sensitive devices), especially against side-channel at-
tacks (SCA) and fault injection attacks (FIA). The aim is to produce an LCP of codes
(C,D) which has a security parameter as high as possible. Let us explain how LCD
codes are used in the FIA.
Let x ∈ Fk

q be our sensitive data. For a k× n matrix G of rank k, we code our informa-
tion to xG ∈ Fn

2 . Then we add an (n− k) bit “mask” y via encoding it with a (n− k)× n
matrix H of rank (n− k): yH - encoded mask. So, we work with z = xG + yH and try
not to reveal x at any point. Let C and D be length n codes with generating matrices G
and H, respectively.
Assume that D = C⊥ and the two codes satisfy C ⊕ C⊥ = Fn

2 (i.e. C ∩ C⊥ = 0 ). i.e
a code C is an LCD code. Here we need the following characterization by Massey in
[20].

Theorem 2.1. Let C be a linear code with a generator matrix G and a parity-check
matrix H. Then C is an LCD code iff GGT is non-singular iff HHT is non-singular.

Note that one can recover both the sensitive info x and the mask y from z as follows:

zGt(GGt)−1 = (xG + yH)Gt(GGt)−1

= xGGt(GGt)−1 + yHGt(GGt)−1 = x

zHt(HHt)−1 = y
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Suppose one inserts an error ε into z to observe the system statistically, with the hope
of reaching x. This is called FIA. Since C⊕ C⊥ = Fn

2 , we have ε = eG + f H for some e
and f. So, the corrupted word is z + ε. We want to detect if there is such an attack but
we do not want to reveal x. Check y during the process:

(z + ε)Ht(HHt)−1 = y + f = y⇐⇒ f = 0

So the attack may be undetected if f = 0 in ε. In this case ε = eG ∈ C. Therefore,
set d(C) (security parameter) as high as possible so that FIA is only successful when a
high weight codeword is inserted.
The definition of the security parameter for LCP of codes is as follows:

Definition 2.2. The security parameter of an LCP (C, D) is defined to be min{d(C), d(D⊥)}.
For the LCD case, this parameter is simply d(C), since D⊥ = C.

In the following we give the construction of LCP constacyclic codes.

2.1 Construction of LCP Constacyclic Codes

Definition 2.3. An R-module C of rank k is projective if there is an R-module M such
that Rn and C⊕M are isomorphic (as R-modules).

Remark. Note that, with the notation in the above definition, if C and D are two R-
modules and C⊕ D is a free R-module, then both C and D are projective modules.

Lemma 2.2. If (C, D) are LCP codes in Rn, then both C and D are free modules (codes).

Proof. Note that by definition (being direct summands of the free module Rn), both C
and D are projective modules over R. By [62], any projective module over a commuta-
tive semi local ring is free.

Theorem 2.3. Let C and D be free λ-constacyclic codes of length n over Rn with the
generator polynomials g(x) and h(x), respectively. Then (C, D) is LCP if and only if
h(x) = (xn − λ)/g(x) and gcd(g(x), h(x)) = 1.

Proof. The intersection of C and D has generator polynomial lcm(g(x), h(x)). For a
trivial intersection, the least common multiple must be xn − λ. If C + D = Rn =

R[x]/〈xn − λ〉, then 1 ≡ a(x)g(x) + b(x)h(x) mod xn − λ for some a(x), b(x) ∈ R[x].
A non-trivial common divisor for g and h would contradict this congruence, hence
gcd(g, h) = 1. These two observations together imply in particular that h(x) = (xn −
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λ)/g(x). For the converse, g and h being relatively prime implies that C + D =

R[x]/〈xn − λ〉. This, combined with the assumption h(x) = (xn − λ)/g(x) implies
that lcm(h, g) = xn − λ, which yields C ∩ D = {0}.

Corresponding scheme of constacyclic codes in terms of generator polynomials when
(C, D) is LCP of codes would be as follows :

C⊥ ←→ C ←→ D ←→ D⊥

h∗(x)←→ g(x)←→ h(x)←→ g∗(x)

where h(x) = (xn − λ)/g(x).

Remark. In the case gcd(p, n) = 1, the polynomial xn − λ is separable hence gcd(xn −
λ)/g(x), g(x)) = 1. Therefore, the above condition for (C, D) to be LCP simply reduces
to h(x) = (xn − λ)/g(x).

Remark. Theorem 2.3 generalizes the result of Yang and Massey on the characterization
of LCD cyclic codes ([60]). Note that λ = 1 in this case. A cyclic code C being LCD
means (C, C⊥) is LCP. If C has a generator polynomial g(x), then a generator poly-

nomial of C⊥ is h∗(x) for h(x) = (xn − λ)/g(x). Theorem 2.3 yields
(

xn − λ

g(x)

)∗
=

xn − λ

g(x)
, which is equivalent to g(x) being self-reciprocal as stated in [60].

Now, we give some examples of LCP codes.

Example 2.1. Let g = x4 + x3 + (3u + 1)x2 + (2u + 1)x + u + 2|x6 − 3− 2u and h =
x6−3−2u

g = x2 + 3x + u. Then (C, D) is an LCP of codes where C = 〈g〉whose Gray im-
age has the parameters [12, 4, 0, 6] and D = 〈h〉 whose Gray image has the parameters
[12, 4, 0, 3].

Example 2.2. let g = x3 + (u + 2)x2 + 2x + u + 2|x7 − 2− 3u and h = x7−2−3u
g . Then

(C, D) is an LCP code where C = 〈g〉whose Gray image parameters are [14, 8, 0, 4] and
D = 〈h〉 whose Gray image parameters are [14, 6, 0, 6].

The previous results lead to the following important conclusion.

Theorem 2.4. If (C, D) are free λ-constacyclic LCP of codes, then C and D⊥ are equiv-
alent.

Proof. By Theorem 11, if g(x) = g0 + g1x + . . . + xk is the (standard) generator polyno-
mial of C, then the dual D⊥ of the complementary free λ-constacyclic code is generated
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by
g∗(x) = g−1

0 xkg(x−1).

The generator matrices of C and D⊥ are

GC =


g0 g1 . . . 1 0 . . .
0 g0 g1 . . . 1 0 . . .
...

...
...

0 . . . 0 g0 g1 . . . 1

 ,

and

GD⊥ = g−1
0


1 gk−1 . . . g1 g0 0 . . .
0 1 gk−1 . . . g1 g0 0 . . .
...

...
...

0 . . . 0 1 gk−1 . . . g1 g0

 .

The codes generated by these matrices are equivalent (up to a multiplication by a
nonzero scalar in each coordinate), under the coordinate permutation that sends the
ith coordinate to the (n− 1− i)th coordinate for 0 ≤ i ≤ n− 1.

Hence, finding the best λ-constacyclic LCP of codes (C, D) and finding the best λ-
constacyclic codes are equivalent problems.
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1 Mathematics for codes

1.1 Ring Theory

Starting from number theory to the modern algebraic geometry, ring has an impor-
tance part in the pure algebra and applied algebra. They are important in the number
theory, cryptology, and many types of another a mathematical sections. A multiplica-
tion ring has a multiplication identity, and it is also commutative. Family of the rings
were always chosen for a particular application, with understanding that all the finite
commutative rings was being direct products of the local ring by Chinese Remainder
Theorem. Thus, in this study we are studying codes over rings, and using the assump-
tion that all the rings work like the alphabets to the codes in a finite Frobenius ring.
There is now a rapidly expanding literature on codes over various ring families [27]
and [25] .The binary field was largely used as the alphabet in coding theory. The al-
phabet, on the other hand, was applied to finite fields quickly and effectively. Rings
and codes could be communicate through two an important ways. In the first way, a
ring structure can have the alphabet to the any codes, including finite field. In second
way, some rings could become an ideal or even a module over through the code.

1.2 Finite Commutative Rings

Finite commutative ring theory is a fast-developing subject and has recently been seen
to have important applications in theoretical areas like combinatorics, Finite Geome-
tries and the Analysis of Algorithms. Moreover, in the last twenty years, there has been
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a growing interest in application of commutative rings to Algebraic Cryptography and
Coding Theory. In fact, several codes over finite fields, which are widely used in Infor-
mation and Communication Theory, have been investigated as images of codes over
Galois rings (especially over the ring of integers modulo 4). On the one side, applied
mathematical research has motivated a more systematic analysis of Finite Commuta-
tive Algebra; on the other side, pure Mathematics has offered innovative tools in Cod-
ing Theory. This work is not intended as an exhaustive survey of all topics of either
Finite Commutative Algebra or Coding Theory over finite rings. Mc Donald’s classical
reference (see [43]) offers a more theoretical approach to the algebraic point of view
of the subject. MacWilliams’ and Sloane’s book or van Lint’s book just to mention a
few-are standard references for codes over finite fields, whereas [48] collects some of
the latest articles concerning codes over Galois rings.

Definition 1.1. A ring A is a nonempty set, endowed with two laws of internal composition,
often denoted by (+) and (.) (by analogy to integers) such as:

- the set (A,+) is a commutative group.

- (.) is distributive with respect to (+).

- (.) is associative.

It is about an abelian group, noted additively, on which is defined a second internal
law noted multiplicative. This second law is associative and distributive with respect
to the first. If, moreover, the second law is commutative then the ring is said to be
commutative. And if, the ring A has a neutral element for the second law (often noted
1A), then A is said to be unitary.

In the following we consider (A,+, .) a unitary ring, x and y two elements of A.

A is said to be integral, if it has no divisors of zero, in other words, if x.y = 0 implies
that x is zero or y is zero.

In the case where A is not integral, x is called a left divisor and y is a right divisor. If A
is abelian the two notions coincide and we will simply speak of divisors of zero.

The nilpotent elements are a type of divisors of zero, we define them as follows: we
always consider the ring A, and x element of A, we say that x is nilpotent if there exists
an integer n such that xn = 0.

In mathematics and computer science, the concept of idempotents essentially means
that an operation has the same effect, whether it is applied once or several times. An
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element of x is said to be idempotent if x2 = x. Note that 0A and 1A are trivial idempo-
tents.

Let B be a finite ring, a ring homomorphism is a map g, from A to B, satisfying the
following three conditions, for all x, y in A:

- g(x + y) = g(x) + g(x).

- g(x.y) = g(x).g(y).

- g(1A) = 1B.

We speak of endomorphism if A = B, of isomorphism if the map g is a one to one and
of automorphism if there is bijectivity and the equality of the two sets.

Let B be a subset of A, (B,+, .) is a subring of A if (B,+, .) is a ring such as 1A is the
neutral element of the ”.” law on B.

A part I of A is said to be an ideal to the left of A, if I is a subgroup of A, and for all x of
I and a of A, the product a.x is an element of I. In the same way we can define an ideal
on the right, but instead of requiring that a.x be in A, it is necessary to require that x.a
be in A. In the commutative case the two notions are confused and we then speak of
ideal simply. If 1 ∈ I then I = A.

A ring A is said to be semi-simple if it is isomorphic to a fields product. Let I be a
proper ideal of A (different from A), I is said to be maximal if for any ideal J of A we
have: I ⊂ J then J = A or I = J.

Remark. If an ideal is a sub-ring, then 1A ∈ I and therefore 1A.x ∈ I (according to the
definition of an ideal), thus A = I.

Theorem 1.1. (Krull) Any ideal I 6= A of a commutative ring A is included in a maximal
ideal.

Definition 1.2. Let A be an abelian ring, and I an ideal of A, I is a principal ideal if I = aA
with a in A.

This definition brings us directly to that of a principal ring. A ring is said to be principal
if it is integral and if all of its ideals are principals.

property 1. A finite commutative ring with unity is called

1. A local ring if it has a unique maximal ideal.

2. A Galois ring if all its zero-divisors including 0 (or equivalently, all its non-units) form an
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ideal generated by some prime number p.

3. A finite chain ring,R, is a finite commutative local ring such that its ideals are linearly ordered
by inclusion, i.e., if γ is a fixed generator of the maximal ideal ofR and e is the nilpotency of γ,
then the ideals ofR form a chain

0 = 〈γe〉 ( 〈γe−1〉 ( · · · ( 〈γ1〉 ( 〈γ0〉 = R.

2 Quotient rings

The study of quotient rings requires an introduction to equivalence relations.

Definition 2.1. A binary relation R on a set E is defined by a part ER of E× E such that aRb
(a is in relation to b) if and only if (a, b) ∈ ER.

A binary relation R on a set E is an equivalence relation if and only if R is reflexive,
symmetric and transitive.

For any element x of E, we call the equivalence class of x modulo R, denoted by x̄, the
set x̄ = {y ∈ E | yRx}.

The set of equivalence classes of x modulo R is called the quotient set of E by R, and
denoted E/R.

Solving some simple arithmetic equations on Z can be a little more complex on Z/bZ,
and the primality of b plays a very decisive role. If b is a prime number then Z/bZ is
a field which makes it possible to benefit from the richness of this structure.

Definition 2.2. Let E and F be two sets, and f be a map of E in F. If A is a part of E and B is
a part of F, such that ∀a ∈ A we have f (a) ∈ B, then f is the map induced by f on A.

Let I be an ideal of A, we define the quotient ring A/I as the set classes of equivalences
of the relation induced by I on A. Hence the proposition:

Proposition 10. We consider the commutative ring A, and I an ideal of A. The quotient ring
A/I is a ring for addition and induced multiplication, such that: a+ b = a + b, and a.b = a.b.

We immediately deduce the following theorem.

Theorem 2.1. We consider the ring morphism f : A → B, there is a unique morphism of
rings:

g : A/ker ( f )→ B
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g 7→ g ◦ p

Where p is the canonical surjection from A into ker ( f ). Moreover A/ker ( f ) is isomorphic to
Im ( f ).

An ideal I is said to be prime, if A/I is integral.

Proposition 11. Let I be an ideal, I is maximal if and only if A/I is a field.

In ring theory, the Chinese remainder theorem is fundamental. It allows, among other
things, to perform the rapid multiplication of polynomials.

Theorem 2.2. (Chinese RemainderTheorem) Let R be a ring, and let I1, I2 be ideals of
R such that I1 + I2 = R. Then

R/(I1) ∩ (I2) ∩ (I3) ∩ · · · ∩ (Ir) = R/(I1)⊕ R/(I2)⊕ R/(I3)⊕ · · · ⊕ R/(Ir)

2.1 Modules

Definition 2.3. Let R be a ring. A right R-module is a set M which has addition and
scalar multiplication on the right by elements of R; thus if m, n ∈ M and r ∈ R, there
are element sm + n ∈ M and mr ∈ M. Under addition, M must be an Abelian group.
The scalar multiplication must

• m(rs) = (mr)s for all m ∈ M and r, s ∈ R,

• (m + n)r = mr + nr and m(r + s) = mr + ms for all m, n ∈ M and r, s ∈ R,

• m1 = m for all m ∈ M and r, s ∈ R, where 1-is the identity element in R.

A left R-module-is defined similarly, except that we have a left scalar multiplication: if
m is in M and r in R, then rm ∈ M. The axioms are

• (rs)m = r(sm) for all m ∈ M and r, s ∈ R,

• r(m + n) = rm + rn and (r + s)m = rm + sm for all m, n ∈ M and r, s ∈ R,

• 1m = m for all m ∈ M and r, s ∈ R, where 1-is the identity element in R.

Example 2.1. A ring R can be viewed as a right R-module, using its addition and mul-
tiplication as a ring to define its addition and scalar multiplication as a right module.
More generally, any right ideal of R is a right R-module, the zero ideal being thought
of as the zero module 0 = 0. Likewise, left ideals of R can be considered to be left
R-modules.
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Definition 2.4. Let M be an R- module. A subset N ⊆ M is said to be a submodule of
M if:

• N is a subgroup of (M,+).

• For all r ∈ R, and for all m ∈ N one has rm ∈ N.

2.1.1 Free module

Definition 2.5. Let M be an R- module and let subset N ⊆ M. Then

• N is linearly independent, that is

r1x1 + r2x2 + · · ·+ rnxn = 0 =⇒ r1 = r2 = · · · = rn = 0

for ri ∈ R and distinct x1, x2, . . . , xn ∈ N.

• N spans M if every m ∈ M can be written as

m = r1x1 + r2x2 + · · ·+ rnxn

where r1, r2, . . . rn ∈ R and x1, x2, . . . xn ∈ N.

• N is a basis of M if M is linearly independent and N spans M.

Definition 2.6. Let N be a subset of an R-module M. If M has a nonempty basis N,
then M is a free R-module on the set N.

Example 2.2.

R-module R has the base 1. Then R is a free R-module.

The vector space F over a field F is a free F-module.

Proposition 12. If M is a finitely generated free R-module, then the cardinality of any basis of
M is finite. Furthermore, any two bases have the same cardinality.

Definition 2.7. Let M be a finitely generated free R-module. Then the cardinality of
any basis of M is called the rank of the free module M.
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Conclusion and future works

In this thesis, We have studied some structural properties of some linear codes over
Zq to find the structure of some codes over R, at the beginnig, we investigate some
properties of constacyclic codes and QT codes over the ring R = Zq + vZq , v2 = 1 and
q = pm for a prime p and a positive integer m. It is shown that the Gray image of a free
constacyclic code over R is also free over Zq. The decomposition of a QT code and its
dual code are obtained. Considering the case q = 4, we obtained dozens of new linear
codes over Z4 from Gray images of QT codes over R. Based on our survey and study,
now we present a few open directions for future investigation .

• It would be an interesting problem to determine 1-generator QT codes over this
ring.

• Another interesting problem would be to study the characterizations for LCP of
QT codes over this ring.

• the notion of `-intersection codes introduced in [32] can be extended to this ring.
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