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Abstract

Approximation of the impedance operator for domains

coated with thin multilayers

Abstract

We are interested in diffraction problems of an electromagnetic wave by a perfectly con-

ducting planar obstacle coated with thin multilayers of dielectric materials. The aim is to

obtain a boundary condition that replaces the effect of dielectric thin layers. This condition

is constructed from an approximation of the impedance operator. We first provide the ap-

proximations of this operator for planar, circular and arbitrary shaped obstacles in the case

of two thin layers for a particular problem. Then we generalize those results in the case of

planar obstacles to include all the scattering problems.

Keywords:

Electromagnetic scattering, diffraction, thin dielectric layers, impedance operator, abstract

Cauchy problem.
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Abstract(French version)

Approximation de l’opÃ©rateur d’impÃ©dance pour

les domaines revÃªtus de multicouches minces

RÃ©sumÃ©

Nous nous intÃ©ressons aux problÃ¨mes de diffraction d’une onde Ã©lectromagnÃ©tique

par un obstacle plan parfaitement conducteur revÃªtu de fines multicouches de matÃ©riaux

diÃ©lectriques. L’objectif est d’obtenir une condition aux limites qui remplace l’effet des

fines couches diÃ©lectriques. Cette condition est construite Ã partir d’une approxima-

tion de l’opÃ©rateur d’impÃ©dance. Nous fournissons d’abord les approximations de cet

opÃ©rateur pour des obstacles planaires, circulaires et de forme arbitraire dans le cas de

deux couches minces pour un problÃ¨me particulier. Nous gÃ©nÃ©ralisons ensuite ces

rÃ©sultats dans le cas d’obstacles plans pour inclure tous les problÃ¨mes de diffraction.

Mots clÃ©s :

Diffusion Ã©lectromagnÃ©tique, diffraction, couches minces diÃ©lectriques, opÃ©rateur

d’impÃ©dance, problÃ¨me de Cauchy abstrait.
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Introduction

The diffraction of electromagnetic waves by a perfectly conducting obstacle coated with thin

dielectric layers, emerges in many applications in the industrial world such as electromagnetic

compatibility problems in embedded systems, antennas, satellites, telecommunications, or

also applications involving the detection of objects and radar stealth, see, for example [7],

[28], [3], [32], [31], [12], [25], [26], [30] and the references therein.

In this thesis, we are particularly interested in problems of diffraction by perfectly conducting

obstacles, covered with homogenous thin dielectric multilayers. These problems are called

transmission problems, which consist in solving a system of partial differential equations

in an exterior domain with Silver-MÃ¼ller radiation condition at infinity and in an interior

domain relating to thin dielectric layers. The governing equations are coupled by connecting

conditions set on the common interface between exterior and interior domains and between

thin layers as well. Solving numerically these equations is challenging since it requires dis-

cretizing on the scale of the layers’ thickness. The mesh then contains a very large number

of elements, which makes the calculations long and sometimes imprecise [6], [7], [10], [2],

[20]. For this reason, we try to replace our problem by another problem that does not bring

in any more thin layers.

1



Introduction

Γ

h

Γ1

Ω+

Exterior domain Ω−

Interior domain

Thin multilayers

Ωh

Figure 1: Illustration of the original diffraction domain

The original diffraction problem is given using the transmission problem defined in Ω−∪Ωh,

see figure 1:

Equations in the exterior domain Ω−

Equations in thin layers

with transmission conditions on Γ and interfaces separating thin layers

with perfect conductor condition on Γ1

with radiation condition at infinity.

The use of so-called Dirichlet-to-Neumann operator, relative to the equations set in thin

layers allows to reduce the solving of our original problem to new equivalent or approxi-

mate diffraction problem that is posed only in the exterior domain (see figure 2) with an

appropriate boundary condition known as Dirichlet-to-Neumann condition [7], [9], [14], [15],

[24] and abbreviated DtoN condition, which is also called Steklov-PoincarÃ© condition or

impedance condition as well [8], [5]. The new diffraction problem is then expressed as follows:
Equations in the exterior domain Ω−

with impedance conditions on Γ

with radiation condition at infinity.

The whole difficulty rests on the knowledge of the impedance operator, which is generally

2



Introduction

Γ

Ω+ ∪ Ωh

Exterior domain Ω−

Figure 2: Illustration of the new equivalent or approximate domain

non-explicit [7], [17]. Fortunately, it is possible to explicit and approximate it in many cases

as in planar obstacles [18], [22], [1], we are then able to construct the impedance conditions

in this case. We will exploit the fact that the thicknesses of thin layers tend to zero to derive

the approximations of the impedance operator.

This thesis is organized as follows:

In the first chapter, we begin by presenting briefly the physical problem and the mathematical

governing equations.

In the second chapter we are particularly interested in a problem of diffraction of a harmonic

wave, by a two-dimensional obstacle coated with thin multilayers of homogeneous dielectric

materials. We will provide approximations of the impedance operator for planar, circular

and arbitrary shaped obstacles in the case of two thin layers.

In chapter three, we decompose the electromagnetic vector field into its tangential and

normal components and then we transform the Maxwell’s system from a PDEs system to first

order linear abstract Cauchy problem. Then we reformulate our problem using impedance

operator, after that, we determine the exact formula of this operator. The third section

3



Introduction

of this chapter is devoted to constructing approximations of the impedance operator using

two approaches: the first one consists of writing Taylor expansions iteratively in the thin

layers and the second approach is to use asymptotic expansions. In the last section of this

chapter we apply the results obtained in the third section to a particular scattering problem

of electromagnetic waves.

4



Chapter 1

Some basic mathematical and physical

concepts

The purpose of this preliminary chapter is to provide a brief overview of the physical model

that motivates the mathematical work presented in this thesis.

1.1 Fundamental equations of electromagnetism

In this paragraph, we delve into exploring Maxwell’s equations, which form the foundation

of the electromagnetic theory and govern the behavior of electromagnetic waves in theory

and application. Details for this section can be found in many references, see for instance

[13].

First we mention that, if φ ∈ L2 (R3) and F ∈ (L2 (R3))
3
, then

∇φ = gradφ =
3∑

i=1

∂φ

∂xi

−→ei ,

∇ · F = divF =
3∑

i=1

∂Fi

∂xi

,

5



1.1. Fundamental equations of electromagnetism

and

∇× F = curlF =

(
∂F3

∂x2
− ∂F2

∂x3

)
−→e1 +

(
∂F1

∂x3
− ∂F3

∂x1

)
−→e2 +

(
∂F2

∂x1
− ∂F1

∂x2

)
e⃗3.

The physical phenomena related to electromagnetism in a propagation medium are described

using two functions or distributions E (the electric field) and B (the magnetic induction),

defined on R3
x×Rt −→ R3 or most often C3

x×Rt −→ C3, defining the electromagnetic field,

noted {E,B}.

The fields E and B are related to four functions (or distributions): the electric charge density

ρ, the magnetic charge density ρm, the electric current density J and the magnetic current

density M.

The appearance of induced currents in a fixed conductor, placed in a non-stationary electric

field, is translated by the Maxwell-Faraday equation and the conservation law of the flux of

the magnetic field:

curlE +
∂B

∂t
= −M,

divB = ρm.

In unsteady state, the volume current J is no longer at a conservative flow taking into account

the conservation law and the variation of the volume charge ρ over time.

The continuity equation (or the conservation of electricity) is then defined by

div J+
∂ρ

∂t
= 0, (1.1)

which reflects the fact that, if there is variation over time in the charge contained in a volume

then there is a current between the interior and exterior of this volume.

Identically, the magnetic charge conservation equation is defined by

divM+
∂ρm
∂t

= 0. (1.2)

6



1.1. Fundamental equations of electromagnetism

The local expression of Gauss’s theorem for steady states is expressed by:

divE = ρ.

Experiments have shown that the flow of the electric field through any closed surface does

not depend on the state of the movement of charges, thus Gauss’ theorem can be general-

ized to unsteady states. However, by applying the generalized Gauss’ theorem and using

the geometric properties of the electric field, it is easy to establish the Maxwell-AmpÃ¨re

equation:

curlB − ∂E

∂t
= J.

Thus in a propagation medium, in the presence of charge, the electromagnetic field {E,B}

satisfies the following four equations:

curlE +
∂B

∂t
= −M (Maxwell-Faraday), (1.3)

divB = ρm (Gauss-magnetic), (1.4)

divE = ρ (Gauss-electric), (1.5)

curlB − ∂E

∂t
= J (Maxwell-AmpÃ¨re). (1.6)

We note that:

• These equations are hyperbolic in E and B.

• By derivation with respect to time of the Gauss-electric equation (1.5) and by applying

the div operator to the equation (1.6), we find the relation called continuity or conser-

vation of electricity (1.1). An identical demonstration makes it possible to obtain the

equation for conservation of the magnetic charge (1.2).

7



1.2. Maxwell’s equations

• The evolution of {E,B} is given by the Maxwell-AmpÃ¨re and Maxwell-Faraday equa-

tions.

• If ρ, ρm,M and J are zero, then E and B satisfy the wave equation.

1.2 Maxwell’s equations

In the problems encountered in the electromagnetism, the charge and current densities are

not known, or rather are only partially known. Indeed, {E,B} creates a charge density ρ∗

and a current density J∗ creating in turn an electric field E∗ and a magnetic field B∗ which

are unknown.

Thus, we can decompose ρ and J :

ρ = ρ∗ + ϱ and J = J∗ + J,

where ϱ and J respectively represent the given so-called “external” charge and current den-

sities.

The system then becomes: 

curlE +
∂B

∂t
= −M,

divB = ρm,

divE − ρ∗ = ϱ,

curlB − ∂E

∂t
− J∗ = J.

(1.7)

We now introduce two fields of vectors P and M of R3
x × Rt related to ρ∗ and J∗ by div (−P ) = ρ∗,

curl (M)− ∂ (−P )
∂t

= J∗.
(1.8)

P called the polarization vector and M the magnetization vector. From (1.8) we can deduce

that J∗ and ρ∗ also satisfy the continuity equation

∂ρ∗

∂t
+ div (J∗) = 0.

8



1.2. Maxwell’s equations

Finally, by setting:  D = E + P,

H = B −M,
(1.9)

where D is called the electric induction or electric displacement and H the magnetic field.

We can verify that the fields D and H satisfy the equations divD = ϱ,

curlH − ∂D

∂t
= J.

(1.10)

Finally, we obtain the new system in R3
x × Rt

−∂D
∂t

+ curlH = J,

divD = ϱ,
∂B

∂t
+ curlE = −M,

divB = ρm.

• E,B,D and H are the unknowns.

• If ϱ and J are assumed to be given, there are therefore twelve scalar unknowns for

eight scalar equations (of which only six are independent).

It is therefore necessary to add additional conditions in order to have as many equations

as unknowns, to be able to solve the problem. These so-called constitutive conditions are

behavioral laws, between E and D; B and H, they depend on physical considerations and

describe the properties of the material considered. Without them, the problem of evolution

would be indeterminate.

These conditions are given in the case of a linear medium as:

D = εE + ξH ε : electrical permittivity of the medium,

B = µH + ζE µ : magnetic permeability of the medium.

J∗ and E are related by the equation: J∗ = σE, σ called electrical conductivity.

These behavioral laws are characteristic of the medium in which the fields propagate. In

9



1.2. Maxwell’s equations

general, ε, µ, ξ, ζ, σ have a tensor character and their value is not necessarily constant (sat-

uration, hysteresis phenomenon, dependence on temperature, etc.).

Remark 1.1

• If the materials are bi-anisotropic (the most general case), the four tensors are non-

zero.

• If the materials are anisotropic, the tensors ξ and ζ are zero, hence B = µH and

D = εE. Note that a medium in which these relationships are verified, with µ and ε

constants, called a ideal or perfect medium.

• If the materials are isotropic then the tensors ε and µ are diagonal and are written

ε ≡ εI and µ ≡ µI where I is the unit diagonal tensor.

• In linear media, ε and µ are independent of the fields H and E.

• In conductive materials, the electrical conductivity σ is positive, while σ is zero in

insulators. Note that a perfect insulator will be a medium in which σ = 0 (non-

conductive material).

• A perfect conductor corresponds to the limit σ −→ ∞. We must have E = B = 0

otherwise the power dissipated by the Joule effect, σE · E, would be infinite, which is

absurd. Maxwell’s equations remain valid in a metal.

1.2.1 Transmission conditions

When crossing the interface separating two media, the electromagnetic field undergoes dis-

continuities. It is, however, possible to consider these discontinuities. Indeed, let Ω1 and Ω2

be two continuous media and Γ be the interface that separates them, see figure 1.1.

10



1.2. Maxwell’s equations

Γ

Ω1 Ω2
n

Figure 1.1: Transmission conditions.

Where n is the unit vector normal to Γ directed from Ω1 to Ω2. We note by ϱΓ (respectively

ρmΓ) and JΓ (respectively MΓ) the density of charge and electric current (respectively mag-

netic) created at the interface of the two domains.

The equations (1.3), (1.4), (1.5) and (1.6) integrated on volumes including portions of the

surface Γ, the application of the divergence theorem then gives the transmission conditions

[13]: 

(D2 −D1) · n = ϱΓ,

(H2 −H1) ∧ n = −JΓ,

(B2 −B1) · n = ρmΓ,

(E2 − E1) ∧ n = −MΓ,

(1.11)

where `·´ designating the scalar product and ∧ the vector product of R3, and the index

i = 1, 2 the restriction of the field or the induction to the domain Ωi.

In the classical case MΓ = 0 and ρmΓ = 0, the well-known continuity relationships are

recovered:

• continuity of the tangential component of the electric field E and of the normal com-

11



1.2. Maxwell’s equations

ponent of the magnetic induction B,

• discontinuity of the normal component of the electric induction D measured by the

surface charge density Γ and of the tangential component of the magnetic field H

measured by the surface current density JΓ.

Some particular cases are interesting:

1. Γ is a perfect electrical conductor, then MΓ = 0 and ρmΓ = 0,

2. Γ is a perfect magnetic conductor, then JΓ = 0 and ϱΓ = 0,

3. the media Ω1 and Ω2 are perfect dielectrics, thenMΓ = 0, ρmΓ = 0, JΓ = 0 and ϱΓ = 0.

1.2.2 Boundary conditions

We position ourselves in an external domain Ω of R3 with the boundary Γ. Additionally,

assuming that R3\Ω is a perfect conductor: D = E = 0 and B = H = 0 in (R3\Ω) × Rt.

By using this property, along with the transmission conditions and the condition on the

interface between two domains from the paragraph 1.2.1, we deduce on Γ:

D · n = −ϱΓ,

H ∧ n = JΓ,

B · n = ρmΓ,

E ∧ n = −MΓ.

(1.12)

In the case of a perfect medium occupying Ω, the previous conditions (1.12) are reduced to

the following (refer to [13], page 85):  B · n = 0,

E ∧ n = 0.
(1.13)
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1.3. Propagation in an anisotropic dielectric medium

1.3 Propagation in an anisotropic dielectric medium

Anisotropy can be intrinsic (i.e. caused by the crystal structure of the medium) or extrinsic

(i.e. caused by the imposition of an external electric or magnetic field).

In an anisotropic linear dielectric medium, the relationship between the electric induction D

and the electric field E is as follows:

D = εE,

where ε is a second-order tensor called the dielectric tensor. The components of this tensor

generally depend on frequency. It can be shown (using Maxwell’s equations) that this tensor

is symmetric or Hermitian when the tensor is complex (refer to [16]).

As ε is symmetric, it is possible to diagonalize it through an orthogonal transformation. This

means it is possible to choose three mutually perpendicular axes, referred to as principal axes,

such that the dielectric tensor is diagonal along these axes. In other words, if we denote the

principal axes as Ox1, Oy1, Oz1, the dielectric tensor takes the form:

ε =


ε1 0 0

0 ε2 0

0 0 ε3

,
where ε1, ε2 and ε3 are the eigenvalues of the dielectric tensor matrix.

If we position ourselves in this frame of reference, we can define three different refractive

indices, n1, n2 and n3, along x1, y1 and z1 respectively:

n1 =
√
ε1, n2 =

√
ε2, n3 =

√
ε3.

Three different characterizations of crystal systems can be distinguished based on the degree

of degeneracy of the dielectric tensor:
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1.3. Propagation in an anisotropic dielectric medium

1. In an isotropic crystal, all principal axes are arbitrary. The three eigenvalues of the

dielectric tensor are equal. This is the case only for the cubic system. Even if a cubic

crystal is not isotropic in space at all, its dielectric properties are entirely isotropic, as

if the medium were a liquid or glass.

2. In a uniaxial crystal, two of the eigenvalues of the dielectric tensor are equal. There

exists an axis of symmetry about which a rotation of the axes does not change the

dielectric tensor. Crystal systems such as trigonal, tetragonal, and hexagonal fall into

this category.

3. In a biaxial crystal, all three eigenvalues are distinct, and the dielectric tensor does

not possess any axis of symmetry. This is observed in crystal systems such as triclinic,

monoclinic, and orthorhombic.

Now, let P be the matrix that transforms the coordinate system Oxyz into the system of

principal axes Ox1y1z1 :

Ox1 = POx ;Oy1 = POy ; Oz1 = POz.

If E = (Ex, Ey, Ez) represents the electric field given in the coordinate system Oxyz, we can

express the new coordinates E1 = (Ex1 , Ey1 , Ez1) as E1 = PE.

We can also rewrite the constitutive condition D = εE in the new coordinates:

D1 = PεP−1E1 = ε1E1,

where ε1 = PεP−1 is a diagonal matrix.
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1.4. Harmonic Maxwell equations

1.4 Harmonic Maxwell equations

We now consider the harmonic case, where each physical quantity varies periodically in time

under the frequency ω, with ε and µ being medium-dependent tensors:

F (x, t) = Re
(
F (x) eiωt

)
,

where F is one of the physical quantities B,H,E,D, J, ϱ.

In the case of perfect mediums, the system is reduced within Ω to the following equations:

curlH − iεωE = J, (1.14a)

div (εE) = ϱ, (1.14b)

curlE + iωµH = 0, (1.14c)

div (µH) = 0, (1.14d)

defining the Maxwell problem in the harmonic regime, with the conditions on Γ as those

defined in the paragraph 1.2.2.

It can be noted that

i. The equation (1.14d) is redundant. Indeed, by applying the divergence operator to the

equation (1.14c), we retrieve the conservation of flux condition (1.14d).

ii. The condition on Γ for the electric field combined with equation (1.14a) yields:

curlH ∧ n = J ∧ n on Γ.

Moreover, by applying the curl operator to equation (1.14a) and then combining it with

(1.14c), we obtain the following second-order equation:

curl
(
ε−1 curlH

)
− ω2µH = curl

(
ε−1J

)
, (1.15)

15



1.4. Harmonic Maxwell equations

which allows us to decouple the problem. We can then focus on the following second-order

problem:  curl (ε−1 curlH)− ω2µH = curl (ε−1J), in Ω,

curlH ∧ n = J ∧ n, on Γ.
(1.16)

The electric field E is directly derived from H using the equation (1.14a):

E = (iωµ)−1 (curlH − J) in Ω. (1.17)

Symmetrically, the problem can be reduced to the single unknown E: curl (µ−1 curlE)− ω2εE = −iωJ, in Ω,

E ∧ n = 0 on Γ.
(1.18)

Remark 1.2 – In the case where ε is a constant scalar, using the formula

curl curlH = −∆H + grad divH

and taking into account (1.14d), we see that H satisfies the vector Helmholtz equation:

∆H + ω2εµH = − curl J in Ω.

When the surface is invariant under translation along an axis, it’s possible to reduce the

3-dimensional vector system to a 2-dimensional scalar problem. That is the aim of the

following paragraph.

1.4.1 The case of two-dimensional Maxwell equations

We are interested in a propagation problem of a “cylindrical” nature, that is:

• the propagation domain is of the form:

Ω× R, Ω ⊂ R2,
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1.4. Harmonic Maxwell equations

• the coefficients are independent of the coordinate x3:

ε = ε (x1, x2) µ = µ (x1, x2) σ = σ (x1, x2) ,

• the sources are independent of x3:

E0 = E0 (x1, x2) H0 = H0 (x1, x2) J0 = J0 (x1, x2) .

The concept of polarization

The wave vector is defined as k = kν, derived from the unit vector ν indicating the direction

of propagation. In the two-dimensional approximation, the axis of translational invariance

is Oz, and the propagation plane containing the vector k is defined by (Ox1, Ox2). The

polarization is said transverse electric (TE) if the electric field E lies within the propagation

plane, thus making H collinear with the axis of invariance. When the electric field E is

perpendicular to this plane, the polarization is transverse magnetic (TM).

The direction x3 plays a particularly privileged role. It can be shown (refer to [11]) that the

solutions (E,H) of (1.14) are, in this context, independent of x3 and that the system (1.14)

is decoupled into two subsystems of equations posed within Ω. Namely, (Ex, Ey, Ez) are the

coordinates of E in the (O, x, y, z) frame, (Hx, Hy, Hz) are those of H, and (Jx, Jy, Jz) are

those of J :

– A system in (Ex, Ey, Hz) : TE Polarization
iεωEx − ∂yHz + Jx = 0,

iεωEy + ∂xHz + Jy = 0,

iµωHz + ∂xEy − ∂yEx = 0.

This is the system of transverse electromagnetic waves. Indeed, the electric field E

remains in the ”transverse” plane Oxy, orthogonal to the invariant direction Ox3.
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1.4. Harmonic Maxwell equations

– A system in (Hx, Hy, Ez) : TM Polarization
iµωHx + ∂yEz = 0,

iµωHy − ∂xEz = 0,

iεωEz − (∂xHy − ∂yHx) = 0.

This is the system of transverse magnetic waves.

All other polarization cases are linear combinations of these two states. There is no depolar-

ization of the incident wave during the diffraction phenomenon (see reference [27]. Therefore,

only these two cases should be studied.

Remark 1.3 – In TE case, only the components Hz, Ex and Ey are non-zero. Knowing Hz

alone is sufficient to determine the components Ex and Ey.

– In TM case, only the components Hx, Hy and Ez are non-zero. Knowledge of Ez is

sufficient to determine the components Hx and Hy.

Radiation of electromagnetic waves

Two types of sources can be used to characterize the radiation of objects in the external

medium: a plane wave or a dipole.

Plane waves: By using the classical method of variable separation or equivalently, using a

Fourier transformation, a generic solution to the wave equation is a plane wave in the form:

u (x, y) = e−ikν·x (1.19)

where ν is the unit vector ν = [cos θ, sin θ]T , x is the position vector x = [x, y]T , and θ is the

angle of incidence.

Remark 1.4 The plane wave defined by (1.19) is a wave with an amplitude of 1. It is

obvious that any multiple of this solution also defines a plane wave.
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1.5. Theory of Semigroups

Dipole Radiation: A dipole is modeled by a line of magnetic current in TE polarization

or a line of electric current in TM polarization. In both configurations, when this current

line is applied at a point x0, the field created at a point x is given by

u (x) = G (k |x− x0|) =
i

4
H

(1)
0 (k |x− x0|) .

where, G is the Green’s function and H
(1)
0 is the Hankel function of the first kind and order 0.

1.5 Theory of Semigroups

1.5.1 Semigroups of Linear Operators

Consider X be a Banach space and let L(X ) be the set of all linear bounded operators from

X into X , norm on L(X ) defined by

∥S∥L(X ) = sup
x∈X
x ̸=0

∥Sx∥X
∥x∥X

, (1.20)

which makes L(X ) a Banach space.

Definition 1.5 A family {T (t); t ≥ 0} in L(X ) is a semigroup of bounded linear operators

on X if

(i) T (0) = I, I is the identity operator on X .

(ii) T (t+ s) = T (t)T (s) for every t, s ≥ 0.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→+∞

T (t)x− x
t

exists in X} (1.21)

and

Ax = lim
t↓0

T (t)x− x
t

for x ∈ D(A) (1.22)

is the infinitesimal generator of the semigroup T (t), D(A) is the domain of A.
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1.5. Theory of Semigroups

• A semigroup of bounded linear operators T (t), is uniformly continuous if

lim
t→0
∥T (t)− I∥ = 0. (1.23)

• A semigroup of linear operators T (t) is called C0 semigroup if

lim
t→0

T (t)x = x, for each x ∈ X . (1.24)

Theorem 1.6 A linear operator A is the infinitesimal generator of a uniformly continuous

semigroup if and only if A in L(X ).

Theorem 1.7 Let T (t) and S (t) be uniformly continuous semigroup of bounded linear op-

erators. If

lim
t→0

T (t)− I
t

= A = lim
t→0

S (t)− I
t

,

then T (t) = S (t) for t ≥ 0.

1.5.2 Some theorems of C0 semigroups

The Hille-Yosida Theorem

Theorem 1.8 (Hille-Yosida)

A linear (unbounded) operator A is the infinitesimal generator of a C0 semigroup of contrac-

tions T (t), t ≥ 0 if and only if

(i) A is closed and D(A) = X .

(ii) The resolvent set ρ(A) of A contains R+and for every λ > 0

∥R(λ : A)∥ ≤ 1

λ
.
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1.5. Theory of Semigroups

The Lumer-Phillips Theorem

Theorem 1.9 (Lumer-Phillips) Let A : D(A) ⊂ X → X be a densely defined operator.

Then A generates a C0-semigroup of contractions on X if and only if

1. A is dissipative.

2. There exists ω > 0 such that ωI − A is surjective.

The Stone Theorem

The following theorem, credited to Stone , pertains to the scenario of a C0 semigroup of

unitary operators on Hilbert spaces. It’s worth revisiting that an operator U ∈ L(H) is

termed unitary if UU∗ − U∗U = I.

Theorem 1.10 (Stone Theorem) The necessary and sufficient condition for A : D(A) ⊆

H → H to be the infinitesimal generator of a C0-group of unitary operators on H is that iA

be self-adjoint.

1.5.3 The Abstract Cauchy Problem

Definition

Let X be a Banach space and let A be a linear operator from D(A) ⊂ X into X . The

abstract Cauchy problem for A with initial data x ∈ X consists of finding a solution u(t) to

the initial value problem 
d
dt
u (t) = Au (t) , t > 0

u (0) = x

(1.25)

Theorem 1.11 Let A be a densely defined linear operator with a nonempty resolvent set

P(A). The initial value problem (1.25) has a unique solution u(t), which is continuously
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differentiable on [0,∞), for every initial value x ∈ D(A) if and only if A is the infinitesimal

generator of a C0 semigroup T (t).

1.5.4 The Maxwell Operator

The objective of this section is to introduce a partial differential operator that creates a C0

semigroup of unitary operators. This operator undoubtedly ranks among the most pivotal

operators in the field of Field Theory.

The development of the intensity of both the electric field E and the magnetic field H in the

three-dimensional space R3 devoid of any material presence is expounded by the Maxwell

system. 

Et = −c∇×H (t, x) ∈ R× R3

Ht = c∇× E (t, x) ∈ R× R3

∇ · E = 0 and ∇ ·H = 0 (t, x) ∈ R× R3

E(0, x) = E0(x) and H(0, x) = H0(x) x ∈ R3,

In this context, where c > 0 is a positive constant, the system can be reformulated within a

carefully selected Hilbert space as follows: u′ = Au

u(0) = u0,

where A is the generator of a C0-semigroup of contractions.

Example 1.1 (The Maxwell Operator)

Let us consider the Hilbert space H = (L2 (R3))
3× (L2 (R3))

3
, and we shall symbolize this by

u = (E,H) = (E1,E2,E3,H1,H2,H3)

an arbitrary element in H. Let H0 = {u ∈ H;∇ · E = ∇ ·H = 0}, where the differential

operator ∇ is interpreted in the distributional sense, which means that ∇·F = 0 if and only
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if ∫
R3

∇g · Fdω = 0

for each g ∈ C∞
0 (R). This means that u is in H0 if and only if it is orthogonal on each

element v in H of the form v = (∇φ,∇ψ) with φ, ψ ∈ H1 (R3). We shall define the Maxwell

operator, A : D(A) ⊆ H → H, by D(A) = {(E,H) ∈ H; (−c∇×H, c∇× E) ∈ H}

A(E,H) = (−c∇×H, c∇× E),

for (E,H) ∈ D(A). Let us observe that A maps D(A) in H0, and therefore H0 is invariant

under A, because the divergence of a curl is always 0 .This clarifies the reason why, in all

subsequent discussions, we will focus on examining the constrained behavior of A limited to

H0, restriction which, for simplicity’s sake, we denote it again as A. We want to stress that

the operator A is not densely defined in H, but its restriction to H0 does so.

Theorem 1.12 The operator A, defined as mentioned above, acts as the generator of a

C0-group of unitary operators.

Proof. We show that A satisfies the hypotheses of Stone Theorem 3.9.1. To this aim,

let C∞
σ (Rn) = {F ∈ C∞

0 (Rn) ;∇ · F = 0}. Inasmuch as C∞
σ (Rn) × C∞

σ (Rn) is included in

D(A), and dense in H0, Consequently, it can be deduced that A is densely defined. Subse-

quently, we proceed to establish that A is skew-adjoint. Initially, let us note that, for every

E,H ∈ C∞
σ (Rn), we have

⟨A(E,H), (E,H)⟩ = 0.

Indeed, considering the integral over R3 of the divergence of a C1 function with compact

support is 0 , we have

⟨A(E,H), (E,H)⟩ =
∫
R3

div(H× E)dω = 0
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for each (E,H) ∈ C∞
σ (Rn). Inasmuch as C∞

σ (Rn)×C∞
σ (Rn) is dense in H0 , consequently,

it can be deduced that equation (4.3.1) is valid for each (E,H) ∈ D(A), A is skew-symmetric,

or equivalently, iA is symmetric. To check that A is skew-adjoint we prove that iA is self-

adjoint and, to this aim, we shall prove that 1 ∈ ρ(iA). Let us denote by Ĥ and Ê the

Fourier transform of H and respectively of E, i.e. Ê(ξ) = 1
(2π)3/2

∫
R3 e

−i⟨ξ,x⟩E(x)dx,

Ĥ(ξ) = 1
(2π)3/2

∫
R3 e

−i⟨ξ,x⟩H(x)dx.

Then the mapping (E,H) 7→ (Ê, Ĥ) is an isomorphism from H to a Hilbert space Ĥ analo-

gously defined. More that this, this isomorphism maps H0 into a subspace Ĥ0 in Ĥ, subspace

defined by

Ĥ0 = {(Ê, Ĥ) ∈ Ĥ; ξ · Ê = ξ · Ĥ = 0}

and it maps the operator A to the operator Â : D(Â) ⊆ Ĥ0 → Ĥ0, defined by D(Â) =
{
(Ê, Ĥ) ∈ Ĥ0; (−cξ × Ĥ, cξ × Ê) ∈ Ĥ0

}
Â(Ê, Ĥ) = (−cξ × Ĥ, cξ × Ê).

Let v̂ ∈ Ĥ0, v̂ = (v̂1, v̂2), and now, let’s consider the equation

(iÎ − Â)û = v̂,

where Î denotes the identity operator on Ĥ. Obviously, 1 ∈ ρ(iA) if and only if i ∈ ρ(Â).

But this last condition holds if and only if, for each v̂ ∈ Ĥ0, the equation (4.3.2) has a unique

solution R1v̂ and there exists K > 0 such that

∥R1v̂∥ ≤ K∥v̂∥

for each v̂ ∈ Ĥ0.Evidently, within this context, the solution operator R1 coincides with

R(1; Â).Let’s note that, when expressed in components, (4.3.2) has the form cξ × û2 + iû1 = v̂1

−cξ × û1 + iû2 = v̂2,
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system for which the only solution is provided by û1 =
−iv̂1+cξ×v̂2

c2∥ξ∥2+1

û2 =
iv̂2−cξ×v̂1

c2∥ξ∥2+1

From the equalities above one may observe that û is a linear continuous function of v̂.

Therefore i ∈ ρ(Â), or equivalently 1 ∈ ρ(iA). Analogously we deduce that −1 ∈ ρ(iA),

shows that A is skew-adjoint. The conclusion of this theorem follows from Stone Theorem.

The proof is complete.
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Chapter 2

Study of a model problem

We are particularly interested in a problem of diffraction of a harmonic wave, by a two-

dimensional obstacle coated with thin multilayers of homogeneous dielectric materials. The

contents of this chapter is inspired from [7] and [21].

2.1 Problem statement

We consider the case of a perfectly conducting obstacle made of metal, covered by p thin

layers, p being an integer ≥ 1, of anisotropic dielectric with thickness hj, 1 ≤ j ≤ p. Inside

the obstacle, the fields are considered null. The dielectric with thickness hj is characterized

by a relative permittivity εj and a relative permeability µj, 1 ≤ j ≤ p. The εj and µj are

3× 3 matrices.

We are interested in the case where εj and µj are diagonal matrices.

εj =


εj,1 0 0

0 εj,2 0

0 0 εj,3

 ; µj =


µj,1 0 0

0 µj,2 0

0 0 µj,3

.
The metallic obstacle covered with thin layers of dielectric is placed in a propagation medium

assumed to be perfect dielectric (i.e., with conductivity σ = 0, homogeneous, isotropic).
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2.1. Problem statement

This medium can potentially be a vacuum and is characterized by a permittivity ε0 and a

permeability µ0.

We illuminate this system with a harmonic incident wave characterized by its frequency

ω > 0. This information reflects the sinusoidal dependence of the electromagnetic field

through the multiplicative factor eiωt. When this wave encounters the obstacle, it generates

a diffracted wave by the obstacle. In the case of radar stealth problems, the objective is to

understand the nature of the wave diffracted by this type of structure.

Γ

(outward normal)
n

hphjh1

h

Γp

Γj+1
ΓjΓ2

Γ1

....
....

Ω+
p

Ω+
j

Ω+
1

Ω+

Ω−

Perfectly conducting

Obstacle

Diffracted wave

Incoming wave

Figure 2.1: Diffraction by a metallic obstacle covered by thin layers of dielectrics.

The metallic obstacle occupies the domain Ω+ in Rd in dimension d = 2 or 3; the interior of

the outer domain Rd\Ω+ is denoted as Ω∞, the domains

Ω+
j =

{
x ∈ Ω∞ ;

∑
0≤l≤j−1

hl < d
(
x, ∂Ω+

)
<
∑
0≤l≤j

hl

}
, 1 ≤ j ≤ p, with h0 = 0

characterize the thin layers, finally, the external propagation medium is represented by Ω−.

The interface between Ω− and Ω+
p is called Γ, the metallic boundary is noted as Γ1, the
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interfaces between the thin layers are denoted Γj, 2 ≤ j ≤ p, where

Γj =

{
y ∈ Ω∞ ; y = x−

∑
j≤l≤p

hln (x) , x ∈ Γ

}
. (2.1)

d is the distance function from a point x to the boundary ∂Ω+.

The unit normal to Γ, oriented outward from Ω+
p , is designated by n.

It is recalled that the speed of electromagnetic waves in a vacuum is

c =
1

√
ε0µ0

.

The square root of the ratio of these two constants is the impedance of vacuum

Z0 =

√
µ0

ε0
.

The wavelength is associated with the frequency and speed by

λ =
2πc

ω
.

The wave number k will be an essential parameter in the problem to characterize the fre-

quency.

k =
2π

λ
.

The previous parameters are related to the propagation domain.

The total wave described by the electromagnetic pair (E,H) satisfies the harmonic Maxwell’s

equations. In the dielectric medium, these equations are given by curlE + ikZ0µjH = 0,

curlH − ikZ−1
0 εjE = 0.

(2.2)

In TE polarization, simplifications occur in the field components.

E =


Ex (x, y)

Ey (x, y)

0

 H =


0

0

u (x, y)

. (2.3)
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In this TE polarization, the Maxwell-Faraday equation is scalar and is given in each of the

p+ 1 mediums by  curlE + ikZ0u = 0 in Ω−,

curlE + ikZ0µju = 0 in Ω+
j .

(2.4)

However, the Maxwell-AmpÃ¨re equation remains vectorial curlu− ikZ−1
0 E = 0 in Ω−,

curlu− ikZ−1
0 εjE = 0 in Ω+

j

(2.5)

where the expression of the vector curl applied to a function φ (x, y) is given by

curlφ =

 ∂yφ

−∂xφ

.
To solve the system of equations (2.4)-(2.5), It is necessary to add conditions on the interfaces

Γ and Γj, 1 ≤ j ≤ p which can be classified into three types.

• The transmission conditions when crossing the boundaries Γ and Γj, 2 ≤ j ≤ p. They

impose the connection of the electromagnetic field components

a) [E ∧ n]Γ = 0, [E ∧ n]Γj
= 0,

b) [εE · n]Γ = 0, [εE · n]Γj
= 0,

c) [H ∧ n]Γ = 0, [H ∧ n]Γj = 0,

d) [µH · n]Γ = 0, [µH · n]Γj
= 0.

(2.6)

The bracket [ψ]Γ denotes the jump of the trace of the function ψ across the boundary

Γ. This quantity is given by

[ψ] = ψ+
|Γ − ψ

−
|Γ,

where the function ψ− (respectively, ψ+) denotes the restriction of the function ψ to

the domain Ω− (respectively, Ω+
p ). Similarly to [ψ]Γj

.

• A perfect conductor condition on the boundary Γ1

E ∧ n = 0.
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• A radiation condition at infinity satisfied by each element of the pair

{E − Einc, H −Hinc}

which is of the form

lim
|x|→∞

|x|
d−1
2
(
∂r
(
u− − uinc

)
− ik

(
u− − uinc

))
= 0, (2.7)

representing the propagation of energy carried by the diffracted wave from the obstacle

to infinity.

It is possible to reduce the vectorial system (2.5) to a scalar problem in two dimensions. Let’s

recall the two calculation steps. For instance, in the domain Ω−, it involves multiplying the

Maxwell-Faraday equation by ikZ−1
0 and applying the vector curl to the Maxwell-AmpÃ¨re

relation; this results in the Helmholtz equation for the magnetic field.

∆u+ k2u = 0 in Ω−. (2.8)

In the same way, we have

div (Aj∇u) + k2µj,3u = 0 in Ω+
j ,

where Aj is a 2× 2 matrix

Aj =


1

εj,1
0

0
1

εj,2

. (2.9)

Noting the magnetic field u− in Ω− and u+j in Ω+
j , the boundary conditions (2.6) in TE

mode result in the following boundary conditions:

∂nu
− =

(
Ap∇u+p

)
· n ; u− = u+p on Γ,(

Aj∇u+j
)
· n =

(
Aj−1∇u+j−1

)
.n ; u+j = u+j−1 on Γj, 2 ≤ j ≤ p,(

A1∇u+1
)
· n = 0 on Γ1,

(2.10)
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2.1. Problem statement

indeed, for example, on Γp, the equations (2.6 a and c) are written in the form

E+
p · τ = E+

p−1 · τ ; u+p = u+p−1,

where

τ =

 ny

−nx

, Ep−1 =

 (E+
x

)
p−1(

E+
y

)
p−1

 and E+
p =

 (E+
x )p(

E+
y

)
p

.
Then, using the Maxwell-AmpÃ¨re equation (2.5), we obtain

(
ε−1
p curlu+p

)
· τ =

(
ε−1
p−1 curlu

+
p−1

)
· τ ; u+p = u+p−1.

Since

curlu+p−1 =

 ∂yu
+
p−1

−∂xu+p−1

 ; curlu+p =

 ∂yu
+
p

−∂xu+p


we obtain the following conditions on Γp

(
Ap∇u+p

)
· n =

(
Ap−1∇u+p−1

)
· n ; u+p = u+p−1.

Remark 2.1 If the unknown u is sought in the Frechet space H1
loc

(
Ω−
)
, its trace on Γ is in

the space H
1
2 (Γ). Then, the trace of (A∇u) ·n on Γ is in the space H−1

2 (Γ), to make sense

of the boundary condition.
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2.1. Problem statement

Ultimately, it comes to

find the total field u =
(
u−,

(
u+j
)
1≤j≤p

)
in H1

loc

(
Ω−
)
∩

1≤j≤p
H1
(
Ω+

j

)
such that

△u− + k2u− = 0 in D′ (Ω−), (2.11a)

div
(
Aj∇u+j

)
+ k2µj,3u

+
j = 0 in D′ (Ω+

j

)
, (2.11b)

• with the transmission conditions on Γ and Γj (2 ≤ j ≤ p)

∂nu
− =

(
Ap∇u+p

)
· n in H− 1

2 (Γ), (2.11c)

u− = u+p in H
1
2 (Γ), (2.11d)

(
Aj∇u+j

)
· n =

(
Aj−1∇u+j−1

)
· n in H− 1

2 (Γj) (2 ≤ j ≤ p) , (2.11e)

u+j = u+j−1 in H
1
2 (Γj) (2 ≤ j ≤ p) , (2.11f)

• with the perfect conductor condition on Γ1(
A1∇u+1

)
· n = 0 in H− 1

2 (Γ1) , (2.11g)

• with the radiation condition at infinity

lim
|x|→∞

|x|
d−1
2 (∂r (u

− − uinc)− ik (u− − uinc)) = 0. (2.11h)

If the polarization is chosen to be TM , we obtain the same problem with the condition

u+1 = 0 on Γ1 instead of
(
A1∇u+1

)
· n = 0 and by substituting µ for ε.

The data εj and µj verify

Re (εj) ξ.ξ ≥ c1 |ξ|2 , Im (εj) ξ.ξ ≤ 0, Re (µj) ξ.ξ ≥ c2 |ξ|2 , Im (µj) ξ.ξ ≥ 0 ∀ξ ∈ R2. (2.12)

In the case where one of the inequalities on the imaginary parts are strict, there is dissipation

of energy. This results in a property of coercivity, possibly partial, on the variational problem

of the system (2.11).

Theorem 2.2 The problem (2.11) has one solution and one only. Moreover, when the
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2.1. Problem statement

boundary Γ is C∞, as assumed here, the solution is in C∞
(
Ω+

1

)
∩ C∞

(
Ω+

2

)
∩ C∞ (Ω−).

The problem (2.11) constitutes a simple two-dimensional model for the aforementioned ap-

plication. We aim to find an approximate problem (2.11) posed solely in Ω− with boundary

conditions on Γ in which the thin layers no longer appear.

2.1.1 Reduction to an equation in Ω−

The numerical resolution of the problem set within the domain with thin layers, as mentioned

in introduction, is challenging because it requires discretization at the scale of the layers’

thickness. The mesh then contains a very large number of elements, making the calculations

lengthy and sometimes imprecise. For this reason, the goal is to replace the initial problem

with another problem whose solution is close to the one sought, and which no longer involves

thin layers. The use of the impedance operator, concerning the partial differential equation

posed within the thin layers, allows the resolution of our initial problem to be reduced to

that of a problem posed solely within the propagation medium.

Impedance operator

With the aim of reformulating the transmission problem (2.11) as a diffraction problem in

the external propagation domain Ω−, incorporating an appropriate boundary condition on

the boundary Γ. This boundary condition, also known as the impedance condition, relates

the tangential components of the electric and magnetic fields. To precisely express this

condition, we introduce the Steklov-PoincarÃ© operator. This approach is characteristic of

a non-overlapping domain decomposition method.

Let’s start by defining this new operator denoted as S [7], also known (up to a multiplicative

factor) as the impedance by physicists.
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2.1. Problem statement

For a sufficiently regular function φ defined on Γ, let u+ =
(
u+1 , u

+
2 , · · · , u+p

)
be the solution

of the boundary problem:

div
(
Aj∇u+j

)
+ k2µj,3u

+
j = 0 in D′ (Ω+

j

)
, 1 ≤ j ≤ p,(

A1∇u+1
)
· n = 0 on Γ1, in H

−1
2 (Γ1), for TE polarization,

u+1 = 0 on Γ1, in H
1
2 (Γ1), for TM polarization,(

Aj∇u+j
)
· n =

(
Aj−1∇u+j−1

)
· n; in H− 1

2 (Γj) (2 ≤ j ≤ p) ,

u+j = u+j−1 in H
1
2 (Γj) (2 ≤ j ≤ p) ,

u+p = φ on Γ with φ ∈ Hs (Γ).

(2.13)

Regardless of the polarization studied, the operator S on the bounded domain
⋃

1≤j≤p

Ω+
j is

defined by the mapping

S : H
1
2 (Γ) −→ H−1

2 (Γ)

φ 7−→ Sφ =
(
Ap∇u+p

)
· n|Γ.

(2.14)

S−1 = T is thus the admittance operator.

The exterior problem becomes:

∆u− + k2u− = 0 in D′ (Ω−),

∂nu
− = Su− on Γ,

lim
|x|→∞

|x|
1
2 (∂r (u− uinc)− ik (u− uinc)) = 0.

(2.15)

It is well known that S is a pseudo-differential (non-local) operator [7]. This operator

accounts for the effect of thin layers and thus leads to an impedance boundary condition.

This condition is associated with the Helmholtz equation and the radiation condition to

reformulate the initial transmission problem as a boundary value problem, where the primary

challenge arises from the boundary condition.

Theorem 2.3 The operator S is well-defined, linear, and continuous from H
1
2 (Γ) to H−1

2 (Γ).
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2.2. Impedance operator for planar obstacles

2.2 Impedance operator for planar obstacles

We begin constructing approximations of the impedance operator for thin layers by consid-

ering the case of a planar geometry. This model geometry simplifies the description of the

thin layers problem, particularly by excluding curvature terms.

We initiate the approximation of the impedance operator by employing a Taylor expansion

within the thin layers.

2.2.1 Approximation of the impedance operator using a Taylor

expansion

We start from the perfect conductor condition at y = − (h1 + · · ·+ hp) and establish a

Taylor expansion at points (x, y = − (h2 + · · ·+ hp)) and (x, y = − (h3 + · · ·+ hp)).

Γ1

Γ2

Γj

Γj+1

Γp

Γ

x

y(outward normal)
n

hp

hj

h1

..
..
.

..
..
..

..
..
.

..
..
..

Ω+
p

Ω+
j

Ω+
1

Ω+ (obstacle)

Ω−

Figure 2.2: Illustration of a planar problem.

By utilizing the fact that u+1 (respectively u+2 ) satisfies the Helmholtz equation in Ω+
1 (respec-

tively Ω+
2 ) and considering the transmission conditions, we derive a formula connecting ∂yu

+

and u+ at the point (x,− (h3 + · · ·+ hp)). By applying recursively, the obtained formula
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2.2. Impedance operator for planar obstacles

and taking into account the continuity through the interfaces between the thin layers, we

obtain a formula connecting ∂yu
+ (x, 0) and u+ (x, 0). Subsequently, we can easily deduce

an approximation of the impedance operator; the order of the expansion will determine the

order of the approximation.

Here we present the approximation of order 2 for planar obstacles covered with two thin

layers, for details see [21]. The general formulas for the case of p thin layers at any order

will be studied in the following chapter.

Case of TE polarization

We introduce the operators

L (εi) = ε2,2

(
∂x

1

εi,1
∂x + k2µi,3

)
; M (εi) = εi,2

[
∂x

(
∂y

1

εi,1

)
∂x + k2 (∂yµi,3)

]
i = 1, 2,

Λ1 = 1− h21
2
L (ε1) ; Λ2 = 1− h22

2
L (ε2),

P = h2Λ1

(
L (ε2)−

h2
2
M (ε2)

)
+
ε2,2
ε1,2

h1

(
L (ε1)−

h1
2
M (ε1)

)
Λ2,

Q = Λ1Λ2 −
ε2,2
ε1,2

h1h2

(
L (ε1)−

h1
2
M (ε1)

)(
1 +

h2
2
ε2,2

(
∂y

1

ε2,1

))
.

A second-order (2, 2) approximation of the impedance operator S by a Taylor expansion is

given by

QSφ = −Pφ.

Case of TM polarization

In this polarization, the operators P and Q are defined as

P =
µ2,2

µ1,2

Λ1Λ2 − h1h2
(
1 +

h1
2
µ1,2

(
∂y

1

µ1,1

))(
L (µ2)−

h2
2
M (µ2)

)
,

Q = −µ2,2

µ1,2

h2Λ1

(
1 +

h2
2
µ2,2

(
∂y

1

µ2,1

))
− h1

(
1 +

h1
2
µ1,2

(
∂y

1

µ1,2

))
Λ2.
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2.2. Impedance operator for planar obstacles

At order (2, 2), we obtain a result similar to the TE polarization case

QSφ = −Pφ.

The associated impedance conditions are referred to as ”quasi-local impedance conditions.”

2.2.2 Plane wave analysis

We are going to introduce another approach used by physicists to describe the effects of

thin dielectric layers covering a perfect conductor. In the case where the incident field is

a plane wave decomposed into Fourier-Hankel modes, the impedance operator is explicitly

determined through its symbol. Approximating this symbol by a polynomial or a rational

fraction allows us to construct the different impedance conditions.

Here, we limit ourselves to the case where the thin dielectric layers are isotropic and homo-

geneous (i.e., ε1, ε2, µ1 and µ2 are constant scalar values).

Exact impedance operator

The total symbol σS of the impedance operator S is given by

σS (ξ) = −
α2 (ξ) tan (h2α2 (ξ)) + α1 (ξ)

ε2
ε1

tan (h1α1 (ξ))

1− α1 (ξ) ε2
α2 (ξ) ε1

tan (h2α2 (ξ)) tan (h1α1 (ξ))

for TE polarization, (2.16a)

σS (ξ) =

ε2
ε1
− α2 (ξ) tan (h2α2 (ξ))

tan (h1α1 (ξ))

α1 (ξ)

ε2
tan (h2α2 (ξ))

α2 (ξ) ε1
+

tan (h1α1 (ξ))

α1 (ξ)

for TM polarization, (2.16b)

where

αi (ξ) =
√
k2n2

i − ξ2 ; ni =
√
εiµi i = 1, 2.

The total symbol σS determines the impedance operator S by the formula

Sφ (x) =
1

2π

∫
eixξσS (ξ) φ̂ (ξ) dξ. (2.17)
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2.2. Impedance operator for planar obstacles

Construction of the impedance operator

The symbol σS of the impedance operator (pseudo-differential) S is given using a trigono-

metric fraction by the formulas (2.16). As it is not a rational fraction in ξ, this symbol

does not correspond to a differential operator. Our goal now is to approximate the symbol

σS with a symbol corresponding to a local or quasi-local operator, in practice, a rational

fraction with respect to ξ.

Case of TE polarization To provide an approximation of the impedance operator, the

most straightforward approach is to approximate the symbol (2.16) using a Taylor series

expansion. Upon expanding the complete symbol (2.16) up to the (3, 3) order, we arrive at

the approximation

S = −ε2
ε1
h1

(
1 + h22L2 +

(
ε2
ε1
h1h2 +

1

3
h21

)
L1

)
L1 − h2

(
1 +

1

3
h22L2

)
L2. (2.18)

Where we set

Li = ∂2x + k2n2
i , i = 1, 2.

To derive lower-order conditions, one simply needs to successively eliminate the terms con-

taining h3i , h
2
i (i = 1, 2),....

By letting h1 tend towards 0, we obtain the following approximation of the operator S.

S = −h2
(
∂2x + k2n2

2

)
− h32

3

(
∂2x + k2n2

2

)2
. (2.19)

The associated impedance condition is identical to that obtained in [9] and [7], for more

details see [21]. This condition involves a fourth-order operator that is difficult to discretize.
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2.3. Curved shapes

One idea to avoid these high-order operators [7] is to rewrite the total symbol σS in the form

σS = −
α2 sin (α2h2) cos (α1h1) + α1

ε2
ε1

sin (α1h1) cos (α2h2)

cos (α1h1) cos (α2h2)−
ε2α1

ε1α2

sin (α1h1) sin (α2h2)
= −Q−1P ,

A Taylor expansion of P and Q up to the (3, 3) order yields

P =
ε2
ε1
h1L1 + h2L2 −

1

2

(
h2h

2
1 +

ε2
ε1
h1h

2
2

)
L1L2,

Q = 1− 1

2
h22L2 −

(
1

2
h21 +

ε2
ε1
h1h2

)
L1 +

1

4
h22h

2
1L1L2.

By setting h1 = 0, we find the condition in [7]

∂yu
− (x, 0) +

h

ε2

(
∂xQ

−1∂x + k2n2
2Q

−1
)
= 0. (2.20)

Case of TM polarization In this polarization, we are concerned with the approximation

of the admittance operator T . Its total symbol is given by:

σT =
1

σS
=

µ2

µ1

tan (h2α2)

α2

+
tan (h1α1)

α1

µ2

µ1

− α2 tan (h2α2)
tan (h1α1)

α1

.

An approximation up to order (3, 3) provided by

σT =
µ1

µ2

h1

(
1 +

1

3
h21α

2
1

)
+ h2

(
1 +

(
µ1

µ2

h1

(
µ1

µ2

h1 + h2

)
+

1

3
h22

)
α2
2

)
.

Another approach to construct approximations of the impedance operator based on asymp-

totic expansion relative to the small parameters of the problem helps to recover the above

approximations.

2.3 Curved shapes

2.3.1 Impedance operator for a circular boundary

As seen in the previous paragraph, planar geometry enabled us to determine the exact

impedance operator using its symbol. Similarly, circular geometry allows the explicit ex-

pression of this operator through a Fourier series decomposition. The advantage of this
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2.3. Curved shapes

approach, compared to the previous one, is its consideration of curvature effects through the

radius R. Once the exact impedance operator is calculated, one can establish an approxi-

mation process at different orders.

Γ

(outward normal)
n

R− h1 − h2

R− h2 R

h2 h1 Γ2

Γ1

Ω+
2

Ω+
1

Ω−

Ω+

Diffracted wave

Incoming wave

Perfectly conducting
Obstacle

Figure 2.3: Illustration of a circular shaped obstacle.

Case of TE polarization

An approximation of order (3, 3) for the operator S is given by

S (h1, h2) = −ε2
ε1
h1L1 − h2L2 +

ε2
ε1

h21
2R

(
L1 − 2

∂2θ
R2

)
+
ε2
ε1

h1h2
R

(
L1 − 2

∂2θ
R2

)
+
h22
2R

(
L2 − 2

∂2θ
R2

)
− ε2
ε1

h31
3

(
L2
1 +

∂2θ
R4

)
− ε2
ε1
h21h2

(
ε2
ε1
L2
1 +

∂2θ
R4

)
−ε2
ε1
h1h

2
2

(
L1L2 +

∂2θ
R4

)
− h32

3

(
L2
2 +

∂2θ
R4

)
,

(2.21)

where we set

Li = k2n2
i +

∂2θ
R2

i = 1, 2. (2.22)
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2.3. Curved shapes

Case of TM polarization

An approximation of order (3, 3) for the admittance operator T is expressed as

T (h1, h2) =
µ1

µ2

h1 + h2 +
µ1

µ2

h21
2R

+
µ1

µ2

h1h2
R

+
h22
2R

+
µ1

µ2

h31
3

(
L1 +

1

R2

)
+
µ1

µ2

h21h2

(
µ1

µ2

L2 +
1

R2

)
+

(
µ1

µ2

h1h
2
2 +

h32
3

)(
L2 +

1

R2

)
.

2.3.2 Extension to arbitrary shaped obstacles

Starting from the circular canonical case, it is easy to extend the approximations of the

impedance operator to a more general framework. This allows on the one hand to be able to

deal with diffraction problems by obstacles of arbitrary geometries and, on the other hand,

the validation of new conditions.

Γ

(outward normal)
n

h2
h1

Γ2

Γ1

Ω+
2

Ω+
1

Ω−

Perfectly conducting

Obstacle

Diffracted wave

Incoming wave

Figure 2.4: Illustration of an arbitrary shaped obstacle.
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We use the following formal substitutions:
∂r ←→ ∂n
1

R
←→ κ (s)

∂θ
R
←→ ∂s = ∇Γ,

(2.23)

to derive impedance conditions on a boundary of an arbitrary domain. Here, κ (s) represents

the curvature of the boundary (oriented in the positive sense) at the curvilinear abscissa

point s.

Case of TE polarization

An asymptotic expansion up to order (3, 3) provides an approximation of order (3, 3) for the

impedance operator S, which is given by

S (h1, h2) = −
ε2
ε1
L1h1 − L2h2 +

1

2

ε2
ε1

(κk2n2
1 − ∂s (κ∂s))h21 +

ε2
ε1

(κk2n2
1 − ∂s (κ∂s))h1h2

+
1

2
(κk2n2

2 − ∂s (κ∂s))h22 −
1

3

ε2
ε1

(L2
1 + ∂s (κ

2∂s))h
3
1 −

ε2
ε1

(
ε2
ε1
L2

1 + ∂s (κ
2∂s)

)
h21h2

−ε2
ε1

(L1L2 + ∂s (κ
2∂s))h1h

2
2 −

1

3
(L2

2 + ∂s (κ
2∂s))h

3
2,

(2.24)

where we set

L1 =
(
∂2s + k2n2

1

)
; L2 =

(
∂2s + k2n2

2

)
. (2.25)

Case of TM polarization

An approximation of order (3, 3) for the admittance operator T is given by

T (h1, h2) =
µ1

µ2

h1 + h2 +
1

2

µ1

µ2

κh21 +
µ1

µ2

κh1h2 +
1

2
κh22 +

1

3

µ1

µ2

(L1 + κ2)h31

+
µ1

µ2

(
µ1

µ2

L2 + κ2
)
h21h2 +

µ1

µ2

(L2 + κ2)h1h
2
2 +

1

3
(L2 + κ2)h32.
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Chapter 3

Approximation of impedance operator

for planar obstacles

In this chapter, we generalize the results presented in the previous chapter in the case of

planar obstacles to include all the scattering problems of electromagnetic waves by a perfectly

conducting obstacle coated with thin dielectric multilayers. The content of this chapter has

been published in [4].

3.1 Problem statement

We consider the case of a perfectly conducting obstacle (made of metal) coated with p par-

allel thin dielectric layers of thicknesses hj, j = 1, . . . , p. The dielectric of thickness hj is

characterized by a relative permittivity εj and a relative permeability µj, j = 1, . . . , p. The

metallic obstacle coated with thin dielectric layers is placed in a dielectric medium (propa-

gation medium). This medium can be the vacuum and it is characterized by a permittivity

ε0 and permeability µ0. This system is illuminated by an incident wave characterized by its

number k > 0. When this wave encounters the obstacle, it generates a wave diffracted by

this latter.

43



3.1. Problem statement

The metallic obstacle occupies a three-dimensional planar domain Ω; the thin layers are

denoted by Ωj with interior boundary ∂intΩj, j = 1, . . . , p.. The domain Ω adding to it the

p thin layers is denoted by Ω+ with boundary Γ and unit outward normal vector n. The

exterior domain of Ω+ is designated Ω−. The thickness of the layers from the first till the

jth is h̃j = h1 + . . . + hj. We set h̃p = h and hj = βjh with
p∑

j=1

βj = 1, by convention

h̃0 = h0 = β0 = 0.

We introduce the family Γ (s) of parallel surfaces

Γ (s) = {y; y = x− sn (x) , x ∈ Γ} , s ∈ (−∞, h] .

We notice that Γ (0) = Γ, ∂intΩj = Γ
(
h̃j

)
and Ωj is the domain limited by Γ

(
h̃j

)
and

Γ
(
h̃j−1

)
. We set Γj = Γ

(
h̃j

)
, j = 1, . . . , p. See Figure 3.1.

Γp

Γp−1

Γj

Γj−1

Γ1

Γ

x

z(outward normal)
n

h1

hj

hp

..
..
.

..
..
..

h̃j

h̃p−1
h

..
..
.

..
..
..

Ω1

Ωj

Ωp

Ω (obstacle)

Ω−

Figure 3.1: Illustration of a planar obstacle covered with p thin layers of different dielectric

materials.

Decomposing the electromagnetic vector field into its tangential and normal components

[28], [17], the Maxwell’s system can be transformed from a PDEs system to first order linear

abstract Cauchy problem [17]. Therefore, scattering problems of electromagnetic waves

by a perfectly conducting obstacle coated with thin dielectric layers can be represented in
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3.1. Problem statement

curvilinear coordinates [28] by the equations

∂
∂s
Yp (s) =MpYp (s) in C

((
h̃p−1, h̃p

)
;X
)
,

Yp

(
h̃p

)
= [φ1, φ2]

T , with σ1φ1 + σ2φ2 = φ,

∂
∂s
Yj (s) =MjYj (s) in C

((
h̃j−1, h̃j

)
;X
)
, j = 1, . . . , p− 1,

Yj

(
h̃j

)
= Yj+1

(
h̃j

)
j = 1, . . . , p− 1,

∂
∂s
Y0 (s) =M0Y0 (s) in C ((−∞, 0) ;X) ,

Y0 (0) = Y1 (0) ,

+ Silver-MÃ¼ller radiation condition for s→ −∞.



(3.1)

Where Yj = [Uj, Vj]
T is in C1

((
h̃j−1, h̃j

)
;X
)
, see Figure 3.2. The matricesMj =

 Aj Gj

Fj Bj


are linear differential operators at most of second-order with values in a Sobolev space X on

Rn, n = 1, 2, 3. Note that φ1 represents Dirichlet’s condition and φ2 represents Neumann’s

condition which are linearly combined as σ1φ1 + σ2φ2 = φ with σ1, σ2 and φ being given

constants.

h̃p

=

h

h̃p−1h̃jh̃j−1h̃1h̃0 .... ....

=

h1

=

0

−∞
YpYjY1

Y0

Figure 3.2: Domain representation of the planar obstacle and the p thin layers.

For arbitrary shaped obstacles, the operators Mj are depending on s, however for planar

obstacles, they are independent of s and in this case the well-posedness of the problem (3.1)

follows immediately from the theory of linear abstract Cauchy problems, see [19, page 83]

and [29, page 104].
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3.1. Problem statement

3.1.1 Dirichlet-to-Neumann operator

As we mentioned in the introduction, solving numerically the problem (3.1) is challenging

since it requires discretizing on the scale of the layers’ thickness. The mesh then contains a

very large number of elements, which makes the calculations long and sometimes imprecise.

For this reason, we reformulate our problem (3.1) and replace it by another problem that

does not bring in any more thin layers. The use of Dirichlet-to-Neumann operator, relative

to the equations set in thin layers allows to reduce the solving of our original problem to a

problem that is posed only in the exterior domain Ω− corresponding to s ∈ (−∞, 0).

Our goal, therefore, is to rewrite the problem (3.1) as a problem in the exterior domain

with an appropriate boundary condition on Γ corresponding to s = 0, which is known as

Dirichlet-to-Neumann condition. To express this condition accurately, we introduce the

Dirichlet-to-Neumann operator, abbreviated DtoN, which is also called Steklov-PoincarÃ©

operator and is known as impedance operator as well [8], [5].

We begin by defining this new operator. For ϕ = [ϕ1, ϕ2]
T sufficiently smooth defined on

s = 0, we consider Y+ = (Y1, . . . ,Yp) the solution of the following problem:

∂
∂s
Y1 (s) =M1Y1 (s) in C

((
0, h̃1

)
;X
)
,

Y1 (0) = [ϕ1, ϕ2]
T ,

∂
∂s
Yj (s) =MjYj (s) in C

((
h̃j−1, h̃j

)
;X
)
, j = 2, . . . , p,

Yj

(
h̃j−1

)
= Yj−1

(
h̃j−1

)
j = 2, . . . , p,

Yp

(
h̃p

)
= [φ1, φ2]

T with σ1φ1 + σ2φ2 = φ.



(3.2)

Definition 3.1 We define the DtoN operator by the mapping

S : ϕ1 7−→ Sϕ1 = ϕ2. (3.3)

46



3.1. Problem statement

The problem for s ∈ (−∞, 0), becomes then

∂
∂s
Y0 (s) =M0Y0 (s) in C ((−∞, 0) ;X) ,

(Y0 (0))2 = S (Y0 (0))1 ,

+ Silver-MÃ¼ller radiation condition for s→ −∞.


(3.4)

The inverse operator S−1 : ϕ2 7−→ S−1ϕ2 = ϕ1 is called Neumann-to-Dirichlet operator [23].

Remark 3.2 If we are interested in the values inside the thin layers, we define in a similar

manner, the DtoN operator S posed in the exterior domain.

3.1.2 Determination of the exact Dirichlet-to-Neumann operator

Note that the calculation of the DtoN operator returns to express Yp

(
h̃p

)
= [φ1, φ2]

T in

terms of Y0 (0) = [ϕ1, ϕ2]
T.

Theorem 3.3 The exact Dirichlet-to-Neumann operator is given by

S : ϕ1 7−→ Sϕ1 = (σ1Q1 + σ2Q2)
−1 (φ− (σ1P1 + σ2P2)ϕ1) . (3.5)

where  P1 P2

Q1 Q2

 = exp (hpMp) ... exp (hjMj) ... exp (h1M1) .

Proof. Existence and uniqueness of the DtoN operator S comes from solving successively

linear abstract Cauchy problems [19], [29].

The unique solution of the Cauchy problem

∂
∂s
Yj (s) =MjYj (s) in C

((
h̃j−1, h̃j

)
;X
)
,

Yj

(
h̃j−1

)
= Yj−1

(
h̃j−1

)
,

 (3.6)

is given by

Yj (s) = exp
((
s− h̃j−1

)
Mj

)
Yj

(
h̃j−1

)
, s ∈

(
h̃j−1, h̃j

)
47



3.1. Problem statement

therefore for s = h̃j and replacing Yj

(
h̃j−1

)
by Yj−1

(
h̃j−1

)
yields

Yj

(
h̃j

)
= exp

((
h̃j − h̃j−1

)
Mj

)
Yj−1

(
h̃j−1

)
= exp (hjMj)Yj−1

(
h̃j−1

)
.

By induction it follows that

[φ1, φ2]
T = Yp

(
h̃p

)
= M̃p [ϕ1, ϕ2]

T , (3.7)

where

M̃p ≡

 P1 Q1

P2 Q2

 = exp (hpMp) ... exp (hjMj) ... exp (h1M1) . (3.8)

The equation (3.7) is equivalent to

P1ϕ1 +Q1ϕ2 = φ1,

P2ϕ1 +Q2ϕ2 = φ2.


Since σ1φ1 + σ2φ2 = φ then we get

(σ1P1 + σ2P2)ϕ1 + (σ1Q1 + σ2Q2)ϕ2 = φ.

Consequently

S : ϕ1 7−→ Sϕ1 = ϕ2 = (σ1Q1 + σ2Q2)
−1 (φ− (σ1P1 + σ2P2)ϕ1) .

In most cases either σ1 or σ2 is equal to zero.

In the case where σ2 = 0 the DtoN operator S1 is

S1 : ϕ1 7−→ S1ϕ1 = Q−1
1 (φ1 − P1ϕ1) . (3.9)

Similarly if σ1 = 0 the DtoN operator S2 is

S2 : ϕ1 7−→ S2ϕ1 = Q−1
2 (φ2 − P2ϕ1) . (3.10)

Unfortunately, the formula of the exact DtoN operator is not practical for computation and

it will be useful and interesting to approximate it. Our goal here is to approximate this
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3.2. Approximation of Dirichlet-to-Neumann operator

operator by an operator that is a rational fraction with respect to the thickness of thin

layers.

3.2 Approximation of Dirichlet-to-Neumann operator

We present two different approaches to approximate the DtoN operator. A first approach

consists in using a Taylor expansions. A second approach concerns the asymptotic analysis

of the problem with respect to the thickness of thin layers.

In order to simplify the formulas of the approximate DtoN operator, we introduce the multi-

index notation.

3.2.1 Multi-index notation

A p-dimensional multi-index is an p-tuple α = (α1, α2, ..., αp) of non-negative integers, which

is in the set p-dimensional natural numbers, denoted Np
0.

For multi-indices α and η in Np
0 we define:

Componentwise sum and difference as α± η = (α1 ± η1, α2 ± η2, . . . , αp ± ηp).

Sum of components or absolute value as |α| = α1 + α2 + . . .+ αp.

Factorial as α! = α1!α2! . . . αp!.

A vector V = (V1, V2, . . . , Vp) to the power of multi-index α as Vα = V α1
1 V α2

2 . . . V
αp
p .

3.2.2 Approximation of the DtoN operator by Taylor expansions

Recall that the calculation of the DtoN operator returns to express Yp

(
h̃p

)
in terms of

Y0 (0).
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3.2. Approximation of Dirichlet-to-Neumann operator

We start from the condition of electrical conductor at s = h̃p which is Yp

(
h̃p

)
= [φ1, φ2]

T

and we write a Taylor expansion at the points s = h̃j−1, j = p, . . . , 1. Using the fact that

Yj (s) satisfies the equation ∂
∂s
Yj (s) = MjYj (s) in

(
h̃j−1, h̃j

)
and taking into account of

the transmission conditions Yj

(
h̃j−1

)
= Yj−1

(
h̃j−1

)
, we obtain a formula that connects

Yp

(
h̃p

)
and Y0 (0). Then we can easily derive an approximation of the DtoN operator; the

order of Taylor expansion will give the order of the approximation.

Theorem 3.4 An approximation of order n for DtoN operator (3.5) is given by

S : ϕ1 7−→ Sϕ1 = (σ1Q1,n + σ2Q2,n)
−1 (φ− (σ1P1,n + σ2P2,n)ϕ1) , (3.11)

where

P1,n =
n∑

l=0

Alh
l, Q1,n =

n∑
l=0

Glh
l, P2,n =

n∑
l=0

Flh
l, Q2,n =

n∑
l=0

Blh
l, (3.12)

with

Nl ≡

 Al Gl

Fl Bl

 =
∑
|α|=l

Mα

α!
, M = (βpMp, . . . , β1M1) .

Proof. By Taylor expansions

Yj

(
h̃j

)
=

n∑
l=0

Y(l)
j

(
h̃j−1

) (hj)
l

l!
, (3.13)

where Y(l)
j is the derivative of order l of Yj with respect to s with the convention Y(0)

j ≡ Yj.

For simplicity in writing we omitted the term o ((hj)
n).

Since the matrix operatorMj is independent of s, we can easily see that

Y(l)
j (s) = (Mj)

l Yj (s) . (3.14)

Replacing Y(l)
j

(
h̃j−1

)
by its value of (3.14) in (3.13), then substituting Yj−1

(
h̃j−1

)
for

Yj

(
h̃j−1

)
, we obtain

Yj

(
h̃j

)
=Mj,nYj−1

(
h̃j−1

)
, (3.15)
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3.2. Approximation of Dirichlet-to-Neumann operator

where

Mj,n =
n∑

l=0

(Mj)
l (hj)

l

l!
=

n∑
l=0

(βjMj)
l h

l

l!
, (3.16)

with (Mj)
0 is the 2× 2 identity matrix. By induction we obtain

Yp

(
h̃p

)
= M̃p,nY0 (0) , (3.17)

with

M̃p,n =Mp,nMp−1,n...M2,nM1,n. (3.18)

According to the formula of exact DtoN operator (3.5), its approximation of order n can be

expressed as

S : ϕ1 7−→ Sϕ1 = (σ1Q1,n + σ2Q2,n)
−1 (φ− (σ1P1,n + σ2P2,n)ϕ1) , (3.19)

where  P1,n Q1,n

P2,n Q2,n

 = M̃p,n. (3.20)

To get approximation of any order with respect to h, we need to express M̃p,n as a polynomial

ordered by increasing powers of h.

The matrix M̃p,n can be written as

M̃p,n =Mp,n . . .M2,nM1,n =

 n∑
lp=0

(βpMp)
lp h

lp

lp!

 . . .

(
n∑

l1=0

(β1M1)
l1 h

l1

l1!

)
, (3.21)

which can be rearranged to the conventional form

M̃p,n =
n∑

l=0

Nlh
l, (3.22)

where

Nl ≡

 Al Gl

Fl Bl

 =
∑

l1+l2+...+lp=l

(
(βpMp)

lp

lp!
. . .

(β2M2)
l2

l2!

(β1M1)
l1

l1!

)
, (3.23)

or alternatively it can be written as

Nl =
∑

0≤l1≤l2≤...≤lp−1≤l

(
(βpMp)

l−lp−1

(l − lp−1)!
. . .

(β2M2)
l2−l1

(l2 − l1)!
(β1M1)

l1

l1!

)
.
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3.2. Approximation of Dirichlet-to-Neumann operator

With the multi-indices notations introduced above, the term Nl can simply be written as

Nl =
∑
|α|=l

Mα

α!
, (3.24)

where M = (βpMp, . . . , β1M1) . The calculation of Nl, l = 1, . . . , n determines the approxi-

mation of order n of DtoN operator, which is given by the formula (3.19) with

P1,n =
n∑

l=0

Alh
l, Q1,n =

n∑
l=0

Glh
l, P2,n =

n∑
l=0

Flh
l, Q2,n =

n∑
l=0

Blh
l.

Approximation of order 0

We begin the calculations with something that is more simple, i.e. an approximation of order

0. In this case the corresponding matrix N0 is a 2 × 2 identity matrix. The approximation

of order 0 is therefore given by

Sϕ1 =
1

σ2
(φ− σ1ϕ1) if σ2 ̸= 0 and S−1ϕ2 = φ1 if σ2 = 0.

The associated DtoN conditions are

(Y0 (0))2 =
1

σ2
(φ− σ1 (Y0 (0))1) if σ2 ̸= 0 and (Y0 (0))1 = φ1 if σ2 = 0.

These conditions are in fact quite reasonable, they simply consist of completely removing

the thin layers. However, they are uninteresting because they do not take into account the

effect of thin layers. They are not satisfactory only when the thicknesses of the layers become

almost zero. We should therefore go further in our Taylor expansion to lead to conditions

of higher order that are more useful. These conditions of order 0 must be recovered in all

higher order approximations by letting the thickness h tend to zero.
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3.2. Approximation of Dirichlet-to-Neumann operator

Approximation of order 1

Let us now examine the approximation of order 1. The matrix N1 is given by

N1 ≡

 A1 G1

F1 B1

 =

p∑
j=1

βjMj =

p∑
j=1

βj

 Aj Gj

Fj Bj

 .
Therefore, the approximate DtoN operator of order 1 is

Sϕ1 = (σ2 + (σ1G1 + σ2B1)h)
−1 (φ− (σ1 + (σ1A1 + σ2F1)h)ϕ1) ,

where

A1 =

p∑
j=1

βjAj, G1 =

p∑
j=1

βjGj, F1 =

p∑
j=1

βjFj, B1 =

p∑
j=1

βjBj.

Approximation of order 2

The matrix N2 can be written as

N2 =

p∑
i,j,i>j

βiβjMiMj +
1

2

p∑
j=1

β2
jM2

j ≡

 A2 G2

F2 B2

 , (3.25)

and thus the approximation of DtoN operator in this case is

Sϕ1 = Q−1
(
φ−

(
σ1 + (σ1A1 + σ2F1)h+ (σ1A2 + σ2F2)h

2
)
ϕ1

)
, (3.26)

Q = σ2 + (σ1G1 + σ2B1)h+ (σ1G2 + σ2B2)h
2, (3.27)

with

A2 =

p∑
i,j,i>j

βiβj (AiAj +GiFj) +
1

2

p∑
j=1

β2
j

(
A2

j +GjFj

)
, (3.28)

G2 =

p∑
i,j,i>j

βiβj (AiGj +GiBj) +
1

2

p∑
j=1

β2
j (AjGj +GjBj) , (3.29)

F2 =

p∑
i,j,i>j

βiβj (FiAj +BiFj) +
1

2

p∑
j=1

β2
j (FjAj +BjFj) , (3.30)

B2 =

p∑
i,j,i>j

βiβj (FiGj +BiBj) +
1

2

p∑
j=1

β2
j

(
FjGj +B2

j

)
. (3.31)
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3.2. Approximation of Dirichlet-to-Neumann operator

Obtaining the expression of S in terms of Aj, Gj, Fj and Bj for the approximations of higher

order is not such a simple task. The computations are cumbersome, the formulas are too

long and we would rather not give them here.

3.2.3 Asymptotic analysis

We will now present another approach of constructing approximations of the DtoN operator,

based on the construction of an asymptotic expansion with respect to the thickness of thin

layers.

Problem reformulation

The determination of the approximated DtoN operator by asymptotic expansions, based

primarily on reformulating the problem (3.2), which helps eliminate the dependence of the

problem geometry on the small parameter h. This can be done by the following change of

variable:

t =
s− h̃j
hj

+ j, h̃j−1 ≤ s ≤ h̃j, j = 1, ..., p. (3.32)

We then set

Ej (t) = Yj (s) , j − 1 ≤ t ≤ j, j = 1, ..., p. (3.33)

We are now able to write the equations of the problem (3.2) verified by the new unknowns

Ej (t) , j = 1, ..., p.

The derivative of E with respect to the new variable t is written as

∂
∂t
Ej (t) = hj

∂
∂s
Yj (s) , j − 1 ≤ t ≤ j, j = 1, ..., p. (3.34)
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3.2. Approximation of Dirichlet-to-Neumann operator

By inserting these formulas in the problem (3.2), we obtain

∂
∂t
E1 (t) = h1M1E1 (t) in C ((0, 1) ;X) ,

E1 (0) = [ϕ1, ϕ2]
T ,

∂
∂t
Ej (t) = hjMjEj (t) in C ((j − 1, j) ;X) , j = 2, . . . , p,

Ej (j − 1) = Ej−1 (j − 1) j = 2, . . . , p,

Ep (p) = [φ1, φ2]
T .



(3.35)

Asymptotic expansion

The thickness h of the thin layers is assumed to be small enough. This allows us to postu-

late the existence of an asymptotic expansion for the solution of the problem (3.35) in the

following form:

Ej (t) =
∞∑
l=0

Ej,l (t)hl, j − 1 ≤ t ≤ j, j = 1, . . . , p, (3.36)

where the functions Ej,l are independent of h.

By inserting these expressions in our problem (3.35) and formally identifying the same powers

in hl, it will lead to systems of equations that are independent of h. They allow to determine

iteratively the terms of our asymptotic expansion.

We will start by writing the auxiliary problems arising from this formal identification in the

equations of the problem (3.35).

∂
∂t
E1,0 = 0; ∂

∂t
E1,l = β1M1E1,l−1, l ≥ 1 in C ((0, 1) ;X) ,

E1,0 (0) = [ϕ1, ϕ2]
T ; E1,l (0) = 0, l ≥ 1

∂
∂t
Ej,0 = 0; ∂

∂t
Ej,l = βjMjEj,l−1, l ≥ 1 in C ((j − 1, j) ;X) , j = 2, . . . , p,

Ej,l (j − 1) = Ej−1,l (j − 1) , l ≥ 0, j = 2, . . . , p.


(3.37)
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3.2. Approximation of Dirichlet-to-Neumann operator

Solving these equations allows us to proceed to the determination of DtoN operator approx-

imations. We immediately observe that

E1,l (t) =
1

l!
(tβ1M1)

l [ϕ1, ϕ2]
T , l ≥ 0 in C ((0, 1) ;X) .

Then solving iteratively for Ej,l we obtain

Ep,l (t) =

∑
|α|=l

(M (t))α

α!

 [ϕ1, ϕ2]
T , l ≥ 0, in C ((p− 1, p) ;X) . (3.38)

where M (t) = ((t− p+ 1) βpMp, βp−1Mp−1, ..., β2M2, β1M1) .

Recall that the asymptotic expansion of the solution Ep is given by

Ep (t) =
∞∑
l=0

Ep,l (t)hl.

Substituting p for t in Ep (t), we obtain

Ep (p) =
∞∑
l=0

Ep,l (p)hl = [φ1, φ2]
T .

with

Ep,l (p) =

∑
|α|=l

Mα

α!

 [ϕ1, ϕ2]
T , l ≥ 0,

where M = M (p) = (βpMp, βp−1Mp−1, . . . , β2M2, β1M1) .

Finally we obtain the following formula: ∞∑
l=0

∑
|α|=l

Mα

α!

hl

 [ϕ1, ϕ2]
T = [φ1, φ2]

T ,

which allows to determine the asymptotic expansion of DtoN operator that is given by

Sϕ1 = (σ1Q1 + σ2Q2)
−1 (φ− (σ1P1 + σ2P2)ϕ1) ,

where  P1 Q1

P2 Q2

 =
∞∑
l=0

∑
|α|=l

Mα

α!

hl.
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We restrict the sum over l from 0 to n to get an approximation of order n. We observe that

is the same formula as obtained in Taylor expansions.

We comment that if Yh is the solution obtained by solving the problem (3.1) with approx-

imate boundary condition and Y its exact solution, then we postulated the convergence in

the following meaning:

∥Yh −Y∥X ≤ chr, c, r > 0.

3.3 Applications

In this section we apply the results obtained in approximating the DtoN operator, to a prob-

lem of scattering of a transverse electric (TE) electromagnetic wave by perfectly conducting

planar obstacles, covered with thin homogenous dielectric multilayers.

In TE electromagnetic waves, there will be simplifications in the components of electric and

magnetic fields

E =


Ex (x, y)

Ey (x, y)

0

 , H =


0

0

Hz (x, y)

 .
The total electromagnetic wave (E,H) can be represented only by its non zero magnetic

component, which is a scalar two variables x and y function denoted u (x, y). In this case

the Maxwell equations are reduced in the domains Ω−,Ωj, j = 1, ..., p to Helmholtz equations

△uj + κjuj = 0, j = 0, . . . , p,

where κj = k2εjµj, j = 0, ..., p.

The transmission conditions [E ∧ n]Γj
= 0 and [H ∧ n]Γj

= 0 that impose the connection of

the components of the electromagnetic field can be reduced to

1

εj
∂nuj =

1

εj+1

∂nuj+1, uj = uj+1 on Γj, j = 0, . . . , p− 1,
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3.3. Applications

where [.] denotes the jump across the boundary Γj.

The above conditions have to be complemented by the Silver-MÃ¼ller radiation condition

lim
r→∞

√
r

(
∂

∂r
(u0 − uinc)− ik (u0 − uinc)

)
= 0,

and perfect conductor condition

∂nup = 0 on Γp,

with r =
√
x2 + y2 and uinc is the incident wave.

Since the normal derivative ∂n in planar domains is the derivative with respect to y, then

the scattering problem can be represented by the following scalar problem in dimension two.

△up + κpup = 0 in Ωp,

∂up
∂y

(
x,−h̃p

)
= 0, x ∈ R,

△uj + κjuj = 0 in Ωj, j = 1, . . . , p− 1,

1

εj

∂uj
∂y

(
x,−h̃j

)
=

1

εj+1

∂uj+1

∂y

(
x,−h̃j

)
; x ∈ R, j = 1, . . . , p− 1,

uj

(
x,−h̃j

)
= uj+1

(
x,−h̃j

)
x ∈ R, j = 1, . . . , p− 1,

△u0 + κ0u0 = 0 in Ω−,

1

ε0

∂u0
∂y

(x, 0) =
1

ε1

∂u1
∂y

(x, 0) ; u0 (x, 0) = u1 (x, 0) , x ∈ R,

lim
r→∞

√
r
(

∂
∂r

(u0 − uinc)− ik (u0 − uinc)
)
= 0,


Note that this problem has been handled by a similar approach in [17] and [18]. For one thin

layer, is also treated in [6] and they demonstrated the efficiency of using approximations of

DtoN operator by numerical experiments.

Rewriting the Helmholtz equation△uj+κjuj = 0 in the form
−∂
∂y

(
1
εj

∂uj
∂y

)
= 1

εj

(
κj +

∂2

∂x2

)
uj

provides us an idea to set

Yj (s) = [Uj (s) , Vj (s)]
T =

[
uj (x,−s) ,

1

εj

∂uj
∂y

(x,−s)
]T
.

58



3.3. Applications

Then the matrixMj in the corresponding problem (3.2) will be

Mj =

 Aj Gj

Fj Bj

 =

 0 −εj
1

εj

(
κj +

∂2

∂x2

)
0

 .
Since the perfect conductor condition

∂up
∂y

(
x,−h̃p

)
= 0 is a Neumann condition, then

σ1 = φ = 0 and σ2 ̸= 0.

In this case, the approximated DtoN operator of order n is

S : ϕ 7−→ Sϕ = − (Q2,n)
−1 P2,nϕ, (3.39)

where [P2,n, Q2,n] is the second row of the 2× 2 matrix M̃p,n =
n∑

l=0

Nlh
l, Nl =

∑
|α|=l

Mα

α!
with

M = (βpMp, . . . , β1M1) .

We can prove easily that Nl is a diagonal matrix if l is even and it is with zeros in its diagonal

if l is odd number. Consequently, P2,n has only odd powers of h and Q2,n has only even ones.

Remark 3.5 If the scattered wave is transverse magnetic (TM), it will be reduced to the

same problem with the condition up

(
x,−h̃p

)
= 0 instead of

∂up
∂y

(
x,−h̃p

)
= 0 and substi-

tuting µ for ε.

3.3.1 Approximation of order 0

Since σ1 = φ = 0, the approximate DtoN operator of order 0 is simply Sϕ = 0. The

associated DtoN condition is
∂u0
∂y

(x, 0) = 0, which corresponds to the case where the thin

layers are completely neglected.
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3.3. Applications

3.3.2 Approximation of order 1

The matrix M̃p,1 for the approximation of order 1 is M̃p,1 = N0 + N1h. As we have seen

before, the matrices N0 and N1 are

N0 =

 1 0

0 1

 ; N1 =

p∑
j=1

βj

 Aj Gj

Fj Bj

 =

 0 G1

F1 0

 , (3.40)

where

G1 = −
p∑

j=1

βjεj, F1 =

p∑
j=1

βj
εj
Lj with Lj = κj +

∂2

∂x2
. (3.41)

Since σ1 = φ = 0 and A1 = B1 = 0, then the approximate DtoN operator of order 1 is

S : ϕ 7−→ Sϕ = −F1hϕ.

Approximation of order 2

The matrix M̃p,2 for the approximation of order 2 is M̃p,2 = N0 + N1h + N2h
2. Using the

results obtained in the formulas (3.25)-(3.31) we see that the matrix N2 can be written as

N2 =

 A2 0

0 B2

 ,
where

A2 = −
p∑

j=1

(
1
2
βjεj +

p∑
k=j+1

βkεk

)
βj
εj
Lj, B2 = −

p∑
j=1

(
1
2
βjεj +

j−1∑
k=1

βkεk

)
βj
εj
Lj.

Thus, the approximate DtoN operator of order 2 is

S : ϕ 7−→ Sϕ = −
(
1 +B2h

2
)−1

F1hϕ. (3.42)

Let’s take a look at the higher order. We will provide the approximation of order 4. That

of order 3 can be recovered by replacing h4 by 0.
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3.3. Applications

Approximation of order 4

As we mentioned above the matrices N3 and N4 are in the form

N3 =

 0 G3

F3 0

 , N4 =

 A4 0

0 B4

 .
Since the approximated DtoN operator of order 4 is

S : ϕ 7−→ Sϕ = −
(
1 +B2h

2 +B4h
4
)−1 (

F1h+ F3h
3
)
ϕ, (3.43)

we need to calculate only F3 and B4.

Using the general formula (3.24) for calculating Nl we see that

F3 = −
p∑

i,j,i>j

ωij
βiβj

εiεj
LjLi − 1

6

p∑
j=1

β3
j

εj
L2
j ,

B4 =

p∑
i,j,i>j

γij
βiβj

εiεj
LjLi +

1
6

p∑
j=1

bj
β3
j

εj
L2
j ,

where

ωij =
1
2
(βiεi + βjεj) +

i−1∑
k=j+1

βkεk, γij = ωijaj − 1
12
β2
j ε

2
j ,

aj =
1
2
βjεj +

j−1∑
k=1

βkεk, bj =
1
4
βjεj +

j−1∑
k=1

βkεk.

An approximation of order 4 that is a polynomial with respect to the thickness of thin layers

is

S : ϕ 7−→ Sϕ =
(
−F1h− (F3 − F1B2)h

3
)
ϕ,

where

F3 − F1B2 = 2

p∑
i,j,i>j

aj
βiβj

εiεj
LjLi +

p∑
j=1

cj
β2
j

ε2j
L2
j ,

with

aj =
1
2
βjεj +

j−1∑
k=1

βkεk, cj =
1
3
βjεj +

j−1∑
k=1

βkεk.

61



3.3. Applications

In the case where the scattered wave is transverse magnetic (TM), the approximated DtoN

operator of order 4 is

S : ϕ 7−→ Sϕ = −
(
G1h+G3h

3
)−1 (

1 +A2h
2 +A4h

4
)
ϕ, (3.44)

where

G1 = −
p∑

i=1

βiµi, A2 = −
p∑

i=1

ai
βi

µi
Li, G3 =

p∑
i=1

ci
βi

µi
Li,

A4 =

p∑
i,j,i>j

γij
βiβj

µiµj
LjLi +

1
6

p∑
i=1

bi
β3
i

µi
L2
i ,

with

ωij =
1
2
(βiµi + βjµj) +

i−1∑
k=j+1

βkµk, γij = ωijai − 1
12
β2
i µ

2
i ,

ai =
1
2
βiµi +

p∑
k=i+1

βkµk, bi =
1
4
βiµi +

p∑
k=i+1

βkµk,

ci =

(
1
2
βiµi +

i−1∑
k=1

βkµk

)
ai − 1

12
β2
i µ

2
i .
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Conclusion and perspectives

The scattering problems of electromagnetic waves by a perfectly conducting obstacle coated

with thin multilayered dielectric materials can be transformed, with the help of curvilinear

coordinates, into evolution problems and in planar obstacles into abstract Cauchy problems.

The use of impedance operator replaces the effect of the thin layers by a boundary condi-

tion. The main result in this thesis is analyzing the construction and the approximation of

this operator in the case of planar obstacles using two approaches: Taylor and asymptotic

expansions.

Obtaining the expression of approximated impedance operator for higher order is not such

a simple task. The computations are cumbersome and the formulas are too long.

The study presented here can be extended to arbitrarily shaped obstacles, but simplifying

the expressions remains a challenge.
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