
N◦ Ordre: 01/2008-M/IN

UNIVERSITE DES SCIENCES ET TECHNOLOGIES HOUARI

BOUMEDIEN

USTHB/ALGER

FACULTE de Génie Eléctrique et Informatique

MEMOIRE

Présenté pour l’optention du diplôme de : MAGISTER

EN:Informatique

Spécialité: Programmation et systèmes

Présenté par:

SAIDI Selma

Optimization and Implementation of techniques for the

Verification of Infinite Data Softwares

Soutenu le 11/03/2008, devant le jury composé de:

Mme M.Bouakala, Professeur, USTHB Président

Mr M.Ahmed Nacer, Professeur,USTHB Directeur de thèse

Mme Gherbi, Docteur, USTHB Examinateur

Mr Boukraâ, Docteur, USTHB Examinateur

Contents

1 Introduction 1

I The Context of the Work 4

2 Software Verification 5
2.1 Introduction . 5
2.2 Definition of Formal Verification 5
2.3 Approaches to Formal Verification 6
2.4 SAT-based Formal Verification 7

2.4.1 Boolean SAT Problem and Solvers 8
2.4.2 SAT Modulo Theories Problem and Solvers 10
2.4.3 The Yices Tool 11
2.4.4 Verification System W 11

2.5 Conclusion . 13

3 Constrainted Petri Nets and their Verification 15
3.1 Introduction . 15
3.2 Colored Marking Logic (CML) 16

3.2.1 Syntactical Forms and Fragments 17
3.2.2 Satisfiability Problem for CML 18

3.3 Modeling System: Constrained Petri Nets (CPN) 18
3.4 Verification of CPN’s . 19

3.4.1 Post and Pre Computation 20
3.4.2 Checking Invariance Properties 21

3.5 Example of Modeling: Reader-Writer Lock 21

1

II Our contribution 25

4 Building a Verification System for CPN 26
4.1 Introduction . 26
4.2 Tool Architecture . 26
4.3 Encoding CML in WHY 27
4.4 Encoding CPN in WHY 32
4.5 Encoding Invariants in WHY 33
4.6 Example of Reader-Writer Lock in WHY 33
4.7 Abstract Syntax Tree of CPN 37
4.8 Feasibility test . 39

4.8.1 Checking for Σ2 fragment 39
4.8.2 Checking for B(Σ1) fragment 40

4.9 Conclusion . 41

5 Checking Invariant Properties 42
5.1 Introduction . 42
5.2 Simple Form for Invariants 43
5.3 Localizing Invariants . 45
5.4 Computing Post/Pre Images of Rules 47
5.5 Invariant Splitting . 51
5.6 Invariant Checking . 53
5.7 Conclusion . 54

6 Checking Satisfiability for CML 56
6.1 Introduction . 56
6.2 General Procedure for Satisfiability 57
6.3 Discussion . 58
6.4 Implementation Issues 58

6.4.1 Rename redundant variables 59
6.4.2 Computing PNF 59
6.4.3 Reduction from Σ2 to Σ1 60
6.4.4 Calling Yices for Σ1 61

6.5 Experimental Results . 62
6.6 Conclusion . 62

7 Conclusion and Perspectives 63

Chapter 1

Introduction

The verification of software systems requires in general the consideration
of infinite-state models. The sources of infinity in softwares are multiple.
One of them is the manipulation of variables and data structures ranging
over infinite domains (such as integers, reals, arrays, etc). Another source
of infinity is the fact that the number of processes running in parallel in the
system can be either a parameter (fixed but arbitrarily large), or it can be
dynamically changing due to process creation.

For example, protocols for mobile phones like PGM (Pragmatic General
Multicast) protocol (RFC 3208, [3]) suppose the transport of information
from multiple sources (phones) to multiple receivers (phones) and the num-
ber of participants is not fixed. Moreover, a participant may enter dynami-
cally in the spool of users. The protocol PGM specifies for each participant
a number of counters to be stored in order to ensure reliable transmission
and reception of data. The verification of such protocols is important be-
cause their behavior is very complex and the impact of a bug may produce
important financial problems.

In the last ten years, several approaches have been proposed for the ver-
ification of infinite-state systems taking into account either the aspects re-
lated to infinite data domains, or the aspects related to unbounded network
structures due to parametrization or dynamism. (While parametric systems
are static networks of any (infinite) number of processes, dynamic systems
may involve the change of the network by creation or termination of pro-
cesses.) However, only few works addressed the verification problem tak-
ing into account both infinite data manipulation and parametric/dynamic
network structures.

In [11] is proposed a generic framework for reasoning about
parametrized and dynamic networks of concurrent processes which can ma-
nipulate (local and global) variables over infinite data domains. The frame-

1

CHAPTER 1. INTRODUCTION 2

work is parametrized by a data domain (which may be a product of do-
mains) and a first-order theory on it (e.g., Presburger arithmetic on natural
numbers). It consists of (1) expressive models, called CPN, allowing to
cover a wide class of systems, and (2) a logic, called CML, allowing to
specify and to reason about the configurations of these models.

A positive result is that the satisfiability problem (i.e., checking that the
formula have a model) is decidable for the fragment ∃∗∀∗ of CML whenever
the underlying color logic has a decidable satisfiability problem, e.g., Pres-
burger arithmetics, the first-order logic of addition and multiplication over
reals, etc.

Moreover, it is proved that the fragment ∃∗∀∗ of CML is effectively
closed under post and pre image computations (i.e., computation of im-
mediate successors and immediate predecessors) for CPN’s where all tran-
sition guards are also in ∃∗∀∗.

These generic decidability and closure results can be applied in the ver-
ification of CPN models following different approaches such as pre-post
condition (Hoare triples based) reasoning, bounded reachability analysis,
and inductive invariant checking.

The theoretical results published in [11] have been implemented last
year in a prototype using C++ and the Mona tool for the decision proce-
dure for first order logic on integers. However, this implementation is not
able to deal with simple examples because it implements naively the theo-
retical algorithms proposed. Indeed, it suffers from an explosion of the size
of formulas generated for the invariance checking. Moreover, it can only
consider models with integer data.

Our work consists in providing a new implementation such that:

• The logic of colors has to be as much generic as possible. The user
may choose the domain of this logic, its operations and relations.

• The theoretical algorithms for invariance checking shall be imple-
mented efficiently. For this, we have to identify some special cases
of systems or invariants that allow efficient implementation and sim-
plifications.

• The implementation has to benefit from the recent advances on satis-
faction modulo theory (SMT) domain and reuse, as much as possible
these results.

Although the accent is put on the implementation, an important part of
this work is theoretical: understand verification techniques (e.g., invariant
checking), understand the SMT tools and their limits, define formally the
algorithms used to obtain an efficient implementation, etc. Moreover, the

CHAPTER 1. INTRODUCTION 3

language used for the implementation, O, belongs to an interesting
family of languages, the functional languages, which is new for me.

This document is organized in two parts. The first part presents the
context of the work. It contains two chapters as follows:

Chapter 2 provides a short introduction to the principles and techniques
used for the software verification. It allows to introduce techniques
like model-checking, proof, abstraction, and SMT. Two examples of
implementation of these techniques are shortly described: the verifi-
cation system W and the SMT solver Y.

Chapter 3 is mainly an abstracted version of the work presented in [11]. It
provides the main definitions of CPN and CML, the main theoretical
results obtained, and an example of modeling with CPN, the Reader-
Writer lock.

The second part presents our contribution in building a verification sys-
tem for CPN. It contains three chapters as follows:

Chapter 4 shows how the language W is used to encode CPN models
and the abstract syntax tree provided after the lexical and syntactical
analysis of the W code. The Reader-Writer lock is encoded in W.

Chapter 5 presents the work done for the invariance checking. Several op-
timizations are presented theoretically and how they are implemented
in practice. Experimental results are provided on the Reader-Writer
lock example.

Chapter 6 shows how the satisfaction procedure presented in [11] is imple-
mented for formulas generated from the invariance checking problem.

Chapter 7 concludes this work and gives some directions for future works.

Part I

The Context of the Work

4

Chapter 2

Software Verification

2.1 Introduction

“The overall Resolve vision is that of a future in which no production soft-
ware is considered properly engineered unless it has been fully specified,
and fully verified as satisfying these specifications.” [27]

Software verification is a broad and complex discipline of software engi-
neering whose goal is to assure that a software fully satisfies all the expected
requirements. Actually it is largely applied to software embedded in sys-
tems which are critical by their cost or their complexity (planes, launchers,
cars, etc.). Recently, several big software editors are developing and using
systems for verification of the produced software.

This chapter provides a short introduction to the principles and tech-
niques actually used for the software verification. It introduces techniques
like model-checking, proof, abstraction, and SMT. Two examples of imple-
mentation of these techniques are shortly described: the verification system
W and the SMT solver Y.

2.2 Definition of Formal Verification

For a hardware or software systems, formal verification is the act of proving
or disproving the correctness of the system with respect to a certain formal
specification or property, using formal methods of mathematics. Indeed, the
process of testing the system cannot prove that the system does not contain
any defects. Neither can it prove that it does have a certain property. Only
the process of formal verification can prove that a system does not have a

5

CHAPTER 2. SOFTWARE VERIFICATION 6

certain defect or does have a certain property. It is impossible to prove or
test that a system has “no defect” since it is impossible to formally specify
what “no defect” means. All that can be done is prove that a system does not
have any of the defects that can be thought of, and has all of the properties
that together make it functional and useful.

Formal verification can be used for systems such as cryptographic pro-
tocols, combinational circuits, digital circuits with internal memory, and
software expressed as source code.

The verification of these systems is done by providing a formal proof
on an abstract mathematical model of the system, the correspondence be-
tween the mathematical model and the nature of the system being otherwise
known by construction or obtained by applying abstraction tools. Examples
of mathematical objects often used to model systems are: finite state ma-
chines, labelled transition systems, Petri nets, timed automata, hybrid au-
tomata, process algebra, formal semantics of programming languages such
as operational semantics, denotational semantics, axiomatic semantics and
Hoare logic. The properties that shall be checked on these models may
be expressed using different formalisms, e.g., first order formulas, tempo-
ral logic formulas, labelled transition systems, etc. Figure 2.1 resumes the
components of the verification process.

system

specification

construction/ model

property

verificationabstraction

tool

Yes No
(+counter−example)(+proof)

Figure 2.1: General approach for the verification process.

2.3 Approaches to Formal Verification

There are roughly two approaches to formal verification.
The first approach is called model-checking and has as inputs a (state-

transition) model for the system under verification and a property about the
reachable configurations of the model. The property may be either a log-
ical property (given, e.g., in temporal logic) or another model built from

CHAPTER 2. SOFTWARE VERIFICATION 7

the specification. Then, the model-checking consists of a systematically ex-
haustive exploration of the model while the property tested is true. Usually
this consists of exploring all states and transitions in the model built from
the intersection of the initial model with the property. This process is fully
automatic. Since this exploration may be intensive time and memory con-
suming, smart techniques have been proposed to represent compactly sets
of states (e.g., BDD) and to reduce the computing time of applying transi-
tions. Moreover, sound abstraction techniques are usually applied to obtain
results when the models are very big.

Model-checking has been first applied to finite state models, and then
extended to infinite models where infinite sets of states can be effectively
(finitely) represented. A successful approach to finitely represent infinite
sets of states is the use of constraint systems. In such systems, the sets of
states are represented using a set (conjunction) of constraints over variables
belonging to an appropriate domain (Boolean for finite variables, integers
or reals for infinite variables). Then, the model-checking can be reduced
at checking the satisfaction of several systems of constrains. For this, SAT
solvers can be used.

The second approach is the logical inference. The model and the prop-
erty are both modelled by a logical system and a tool for mathematical
reasoning is used. Such a tool is called a theorem prover. This process can
be only partially automated and it is driven by the user’s understanding of
the system to validate.

2.4 SAT-based Formal Verification

As mentionned in the previous section, SAT solvers can be an useful tool
for the model-checking techniques: explored sets of states can be repre-
sented as constraints and transitions between these sets can be computed by
reduction to satisfaction of constraints.

Dramatic improvements in SAT solver technology over the last decade
have accelerated the research in verification methods based on SAT solvers.
Several powerful SAT-solvers have been developed [23, 25, 26, 31].

Verification methods based on these solvers have been shown to push the
limit of verification in terms of both size of the systems dealt and efficiency,
as reported in several academic and industrial case studies [6, 9, 10, 13].
Reversely, this has raised further the research activity in the area of SAT-
solvers developement.

CHAPTER 2. SOFTWARE VERIFICATION 8

2.4.1 Boolean SAT Problem and Solvers

The Boolean satisfiability problem (SAT) asks whether a given proposi-
tional formula is satisfiable. It is of central importance in various areas
of computer science, including theoretical computer science, algorithmics,
artificial intelligence, hardware design and verification.

The input of the SAT problem is a Boolean expression written using
only logical operators (AND, OR, NOT), variables, and parentheses. The
problem can be reformulated in: given such an expression, is there some
assignment of TRUE and FALSE values to the variables that will make the
entire expression true? A formula of propositional logic is said to be satis-
fiable if logical values can be assigned to its variables in a way that makes
the formula true [1]. The SAT problem is known to be NP-Complete [22].
However, in practice, there has been tremendous progress in SAT-solvers
technology over the years, summarized in a recent survey [32]. Earlier
work in the context of theorem proving is covered in [12].

Most SAT solvers use a Conjunctive Normal Form (CNF) representation
of the Boolean formula. In CNF, the formula is represented as a conjunction
of clauses, each clause is a disjunction of literals, and a literal is a variable
or its negation. Note that in order for the formula to be satisfied, each clause
must also be satisfied, i.e., evaluate to true. There exist polynomial algo-
rithms to transform an arbitrary propositional formula into a satisfiability
equivalent CNF formula that is satisfiable if and only if the original formula
is satisfiable.

The modern SAT solvers are based on the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [14, 15], which performs takes as input a for-
mula in CNF and performs a branching search with backtracking for valua-
tions of variables. The DPLL algorithm is sound and complete, i.e., it finds
a solution if and only if the formula is satisfiable.

In the following, we summarize the main features of modern DPLL-
based SAT solvers. The basic skeleton of DPLL-based SAT solvers is
shown in the listing below, adapted from the GRASP work [25]:

sat-solve() {

if preprocess() = CONFLICT

then return UNSAT;

while TRUE do

if not decide-next-branch()

then return SAT;

CHAPTER 2. SOFTWARE VERIFICATION 9

while deduce() = CONFLICT do

blevel = analyze-conflict();

if blevel = 0

then return UNSAT;

backtrack (blevel);

done;

done;

The initial step consists of some preprocessing, during which it may
be discovered that the formula is unsatisfiable. The outer loop starts by
choosing an unassigned variable, and a value to assign to it (decide-next-
branch). If no such variable exists, a solution has been found. Otherwise,
the variable assignments deducible from this decision are made (using de-
duce), through a procedure called Boolean Constraint Propagation (BCP).
It typically consists of iterative application of the unit clause rule, which
is invoked whenever a clause becomes a unit clause, i.e., all but one of its
literals are false and the remaining literal is unassigned. According to the
rule, the last unassigned literal is implied to be true this avoids the search
path where the last literal is also false, since such a path cannot lead to a
solution. A conflict occurs when a variable is implied to be true as well
as false. If no conflict is discovered during BCP, then the outer loop is re-
peated, by choosing the next variable for making a decision. However, if a
conflict does occur, backtracking is performed within an inner loop in or-
der to undo some decisions and their implications. If all decisions need to
be undone (i.e., the backtracking level blevel is 0), the formula is declared
unsatisfiable since the entire search space has been exhausted.

The original DPLL algorithm used chronological backtracking, i.e., it
would backtrack up to the most recent decision, for which the other value of
the variable had not been tried. However, modern SAT solvers use conflict
analysis techniques (shown as (analyze-conflict) in the algorithm), to ana-
lyze the reasons for a conflict. Conflict analysis is used to perform conflict-
driven learning and conflict-driven backtracking. Conflict-driven learning
consists of adding conflict clauses to the formula, in order to avoid the same
conflict in the future. Conflict-driven backtracking allows nonchronologi-
cal backtracking, i.e., up to the closest decision which caused the conflict.
These techniques greatly improve the performance of the SAT solver on
structured problems, i.e., problems where the conjunctions belonging to the
formula have a symmetric form.

Examples of Boolean SAT solvers are: GRASP [25], GSAT [30], rel-
sat [8], WALKSAT [29], etc.

CHAPTER 2. SOFTWARE VERIFICATION 10

2.4.2 SAT Modulo Theories Problem and Solvers

An extension of the Boolean SAT-solvers that has gained significant popu-
larity since 2003 is satisfiability modulo theories (SMT). It enrich CNF for-
mulas by allowing that some of binary variables are replaced by predicates
over a suitable set of non-binary variables. These predicates are classified
according to the theory the non-binary variables belong to. For instance,
linear inequalities over real variables are evaluated using the rules of the
theory of linear real arithmetic, whereas predicates involving uninterpreted
terms and function symbols are evaluated using the rules of the theory of
uninterpreted functions with equality. Such extensions typically remain NP-
complete, but very efficient solvers are now available that can handle many
such kinds of constraints [1].

Then, the SMT problem is a decision problem for logical formulas over
a signature (i.e., a domain, a set of functions and a set of relations) which
have a particular meaning given by a theory. For example, the signature
(N, {+}, {≤, <}) represents natural numbers with addition and comparison
relation. The theory corresponding to this signature defines the “+” function
and the comparison relations by logical formulas, called axioms. One of
them is the neutrality of 0 for addition, i.e., ∀x. x + 0 = x. Most SMT
solvers support only quantifier free fragments of their logics.

Early attempts for solving SMT instances involved translating them to
Boolean SAT instances (e.g., a 32-bit integer variable would be encoded by
32 bit variables with appropriate weights and word-level operations such
as “plus” would be replaced by lower-level logic operations on the bits)
and passing this formula to a Boolean SAT solver. This approach has its
merits: by pre-processing the SMT formula into an equivalent Boolean SAT
formula we can use existing Boolean SAT solvers “as-is” and leverage their
performance and capacity improvements over time. On the other hand, the
loss of the high-level semantics of the underlying theories means that the
Boolean SAT solver has to work a lot harder than necessary to discover
“obvious” facts (such as x + y = y + x for integer addition.)

This observation led to the development of a number of SMT solvers
that tightly integrate the Boolean reasoning of a DPLL-style search with
theory-specific solvers that handle conjunctions (ANDs) of predicates from
a given theory [1]. Because the problem of checking the validity of a ground
formula ϕ in a theory T is equivalent to checking that no interpretation of
T satisfies ¬ϕ, the literature on the subject more often speaks in terms of
satisfiability in T.

The use of SMT solvers in formal methods is not new. It was cham-
pioned in the early 1980s by Greg Nelson and Derek Oppen at Stanford
University, by Robert Shostak at SRI, and by Robert Boyer and J. Moore
at the University of Texas at Austin. Building on this work, several SMT

CHAPTER 2. SOFTWARE VERIFICATION 11

solvers have been developed in academia and industry with continually in-
creasing scope and performance. Some of them have or are being integrated
into: interactive theorem provers for high-order logic (such as HOL and
Isabelle); extended static checkers (such as CAsCaDE, Boogie, and ESC/-
Java 2); verification systems (such as ACL2, Caduceus, SAL, UCLID and
W); formal CASE environments (such as KeY); model checkers (such as
BLAST, MAGIC and SLAM); certifying compilers (such as Touchstone);
unit test generators (such as CUTE and MUTT). In industry, there are cur-
rently SMT-related projects at Cadence Berkeley Labs, Intel Strategic CAD
Labs, Microsoft Research, and NEC Labs, just to name some.

In the remaining of this chapter, we present two of the tools above that
we used in this work. First, we present the SMT solver Yices and then the
verification system W.

2.4.3 The Yices Tool

Yices is an efficient SMT solver developed at SRI (USA) that decides the
satisfiability of arbitrary formulas containing uninterpreted function sym-
bols with equality, linear real and integer arithmetic, quantifiers, etc. Yices
has its own input language but also supports the common language SMT-
LIB defined to be the common language for several SMT provers. Yices is
available at [5]

Yices is implemented in C++, it uses the Nelson-Oppen method for
combining decision procedures. Yices is based on a generalized search en-
gine which supports different kinds of case splits and constraint propagation
rules. Yices tracks which atoms are relevant/irrelevant for the satisfiability
of the whole formula, this feature is specially useful for handling expensive
theories (e.g., arrays), and to control the instantiation of quantified formu-
las. Every deduction step in Yices is associated with a proof object. The
proofs of unsatisfiability produced by Yices are composed by a sequence of
lemmas and a main theorem [16].

2.4.4 Verification System W

The verification tool W [4] was developed by Jean-christophe Filliâtre at
the university of Paris Sud.

Basically, the W tool takes annotated programs written in a very sim-
ple imperative programming language of its own, produces verification con-
ditions and sends them to existing provers (proof assistants such as Coq,
PVS, etc. or automatic provers such as Simplify, CVC Lite, etc.) as illus-
trated below [19]:

CHAPTER 2. SOFTWARE VERIFICATION 12

annotated programs
↓

WHY
↓

verification conditions = first-order formulas
↓

WHY
↙↘

Interactive provers Automatic Provers
↙ ↘

(Coq, PVS, Isabelle/HOL, etc.) (Simplify, Yices, Ergo, CVC3, etc.)

Indeed, the general approach is to generate Verification Conditions
(VC): logical formulas whose validity implies the soundness of the code
with respect to the given specifications. These VCs must be discharged by
any theorem prover. Additionally, VCs are generated to guarantee the ab-
sence of run-time errors: null pointer dereferencing, out-of-bounds array
access, etc [20].

This tool ressembles many others. However, it relies on a technology
and on some design choices which are less common. It differs from other
systems in that it accepts several languages as input (currently C and ML,
and Java with the help of the companion tool Krakatoa) and outputs condi-
tions for severals existing provers (currently Coq, PVS, HOL Light, Mizar,
simplify and haRVey). It also provides a geat safety through some de Bruijn
criterion: once the obligations are established, a proof that the program sat-
isfies its specification is built and type-checked automatically [17]. In par-
ticular there is a unique, stand-alone verification condition generator called
W, which is able to output VCs in the syntax of many provers, both au-
tomatic and interactive ones [20].

The W tool implements a programming language designed for the
verification of sequential programs. This is an intermediate language to
which existing programming languages can be compiled and from which
verification conditions can be computed [18].

Indeed, W is not limited to one input language. Instead, it provides
its own internal language -let us call it WL from now on- is a small ML-like
language with imperative features(references and arrays), exceptions and
annotations. In the ML tradition, WL merges expressions, statements, local
variables and functions into a single syntactic class, which eases symbolic
manipulations and limits the number of cases to consider when computing
weakest preconditions or verification conditions. Similarly, exceptions are
used to deal with abruptterminations such as return, break or continue when
translating C or Java programs, and thus there is no need to implement
special rules for these constructs; the rules for exceptions are giving the

CHAPTER 2. SOFTWARE VERIFICATION 13

excepted verification conditions [17]. W currently interprets C programs,
and Java programs with the help of the companion tool Krakatoa [24]. W
also provides an input syntax for its internal language WL, which is very
close to a subset of Objective Caml [2].

In the following, we present a trivial example to illustrate the mechanism
of W.

A Trivial Example Here is a small example of W input code:

logic min: int, int -> int

parameter r: int ref

let f (n:int) = r := min !r n {r <= r@}

This code declares a function symbol min and gives its arity. Whatever
the status of this function is on the prover side (primitive, user-defined,
axiomatized, etc.), it simply needs to be declared in order to be used in the
following of the code. The next line declares a parameter, that is a value that
is not defined but simply assumed to exist i.e. to belong to the environment.
Here the parameter has name r and is an integer reference (W’s concrete
syntax is very close to Ocaml’s syntax). The third line defines a function f
taking a integer n as argument (the type has to be given since there is no type
inference in W) and assigning to r the value of min !r n. The function f
has no precondition and a postcondition expressing that the final value of r
is smaller than its initial value. The current value of a reference x is directly
denoted by x within annotations (not !x) and within postconditions x@ is
the notation for the value of x in the prestate(i.e. at the precondition point).

Let us assume the three lines code above to be in file test.why. Trying an
automatic decision procedure is an easy as running W with a command
line option. For instance, to use Yices , we type in

why --yices test.why

A yices input file test why.ys is produced.

2.5 Conclusion

We presented shortly in this chapter concepts involved in the software veri-
fication, especially verification methods based on SAT solvers as they have
recently emerged as a promising solution.

We conclude by giving further references for lecture to the reader.

CHAPTER 2. SOFTWARE VERIFICATION 14

A basic presentation of the SAT and SMT solvers is given in the book
of Bradley and Manna (Springer 2007). This book also presents the Nelson
Oppen decision procedure and other decision procedures (e.g., on arrays).

[28] is a very rich overview of the SMT techniques and their application
to formal verification.

Chapter 3

Constrainted Petri Nets and their

Verification

3.1 Introduction

This chapter introduces the main definitions and results proposed in [11].
The models in proposed in [11] to model unbounded dynamic networks

of infinite state systems are called Constrained Petri Nets (CPN for short).
They are based on (place/transition) Petri nets where tokens are colored by
data values. Intuitively, tokens represent different occurrences of processes,
and places are associated with control locations and contain tokens corre-
sponding to processes which are at a same control location. Since processes
can manipulate local variables, each token (process occurrence) has several
colors corresponding to the values of these variables. Then, configurations
of CPN models are markings where each place contains a set of colored
tokens, and transitions modify the markings as usual by removing tokens
from some places and creating new ones in some other places. Transitions
are guarded by constraints on the colors of tokens before and after firing the
transition.

In the papers is shown that CPNs allow to model various aspects such as
unbounded dynamic creation of processes, manipulation of local and global
variables over unbounded domains such as integers, synchronization, com-
munication through shared variables, locks, etc.

Concerning verification, a logic is proposed for specifying configura-
tions of CPN, logic called Colored Markings Logic (CML for short). It is a
first order logic over tokens and their colors. It allows to reason about the

15

CHAPTER 3. CONSTRAINTED PETRI NETS AND THEIR VERIFICATION16

presence of tokens in places, and also about the relations between the colors
of these tokens. The logic CML is parametrized by a first order logic over
the color domain allowing to express constraints on tokens. For example,
it allows to reason about the presence of tokens in places, and about the
colors of these tokens. For instance, it is possible to express in CML that
there exists a token x in the place p and a token y in the place q such that
the colors of x and y satisfy some constraint φ1(x, y), and for every token z
in the place r, the colors of x and r satisfy some other constraint φ2(x, z).

Bouajjani et all. show that the CML is decidable for finite color do-
mains (such as booleans), but as soon as is added an infinite domain color
(e.g., naturals) with the usual ordering relation (and without any arithmeti-
cal operations), CML becomes undecidable for a fragment where universal
quantifiers over tokens precedes existential ones (i.e., the fragment ∀∗∃∗ of
the logic).

These results have been used in [11] to deal with the parametric verifica-
tion of a Reader-Writer lock with an arbitrarily large number of processes.
This case study was introduced in [21] where the authors provide a correc-
tion proof for the case of one reader and one writer.

3.2 Colored Marking Logic (CML)

The CML logic is built on the notions of colors, tokens, coloring symbols
and places, that are defined in the following.

Let C be an infinite domain of values over which are defined functions
(constant or or) in Ω and relations in Ξ. Intuitively, the domain C is the
domain of data used in the software system and Ω and Ξ are operators on
these data.

Let T be an enumerable set of tokens. Intuitively, tokens represent oc-
currences of (parallel) processes. We assume that tokens may have colors
corresponding for instance to data values attached to the corresponding pro-
cesses.

Colors are associated with tokens through coloring functions. Let Γ be
a finite set of token coloring symbols. Each element in Γ is interpreted as
a mapping from T (the set of tokens) to C (the set of colors). Then, let a
valuation of the token coloring symbols be a mapping in [Γ→ (N→ C)].

Tokens can be located at places. Let P be a finite set of such places. A
marking is a mapping in [T → P ∪ {⊥}] which associates with each token
in T the unique place where it is located if it is defined, or ⊥ otherwise. A
colored marking is a pair 〈M, µ〉 where M is a marking and µ is a valuation
of the token coloring symbols.

Let T be set of token variables (which take values in T) and let C be set

CHAPTER 3. CONSTRAINTED PETRI NETS AND THEIR VERIFICATION17

of color variables (which take values in C), and assume that T ∩C = ∅. The
set of CML terms (called token color terms) is given by the grammar:

t ::= z | γ(x) | ω(t1, . . . , tn)

where z ∈ C, γ ∈ Γ, x ∈ T , and ω ∈ Ω. Then, the set of CML formulas is
given by:

ϕ ::= x = y | p(x) | ξ(t1, . . . , tm) | ¬ϕ | ϕ ∨ ϕ | ∃z. ϕ | ∃x. ϕ

where x, y ∈ T , z ∈ C, p ∈ P ∪ {⊥}, ξ ∈ Ξ, and t1, . . . , tm are token color
terms. Boolean connectives such as conjunction (∧) and implication (⇒),
and universal quantification (∀) can be defined in terms of ¬, ∨, and ∃.

The notation ∃x ∈ p. ϕ (resp. ∀x ∈ p. ϕ) is used as an abbreviation of
the formula ∃x. p(x) ∧ ϕ (resp. ∀x. p(x)⇒ ϕ).

The notions of free/bound occurrences of variables in formulas and the
notions of closed/open formulas are defined as usual in first-order logics [7].
In the sequel, we assume w.l.o.g. that in every formula, each variable is
quantified at most once.

The semantics of CML formulas is defined formally in [11].

3.2.1 Syntactical Forms and Fragments

Prenex Normal Form

A formula is in prenex normal form (PNF) if it is of the form

Q1y1Q2y2 . . .Qmym. ϕ

where (1) Q1, . . . ,Qm are (existential or universal) quantifiers, (2) y1, . . . , ym

are variables in T ∪ C, and ϕ is a quantifier-free formula. It can be proved
that for every formula ϕ in CML, there exists an equivalent formula ϕ′ in
prenex normal form.

Quantifier Alternation Hierarchy

Let consider two families {Σn}n≥0 and {Πn}n≥0 of fragments of CML defined
according to the alternation depth of existential and universal quantifiers in
their PNF:

• Let Σ0 = Π0 be the set of formulas in PNF where all quantified vari-
ables are in C,

CHAPTER 3. CONSTRAINTED PETRI NETS AND THEIR VERIFICATION18

• For n ≥ 0, let Σn+1 (resp. Πn+1) be the set of formulas Qy1 . . . ym. ϕ in
PNF where y1, . . . , ym ∈ T ∪ C, Q is the existential (resp. universal)
quantifier ∃ (resp. ∀), and ϕ is a formula in Πn (resp. Σn).

It is easy to see that, for every n ≥ 0, Σn and Πn are closed under conjunc-
tion and disjunction, and that the negation of a Σn formula is a Πn formula
and vice versa. For every n ≥ 0, let B(Σn) denote the set of all boolean
combinations of Σn formulas. Clearly, B(Σn) subsumes both Σn and Πn, and
is included in both Σn+1 and Πn+1.

Special Form

The set of formulas in special form is given by the grammar:

ϕ ::= x = y | ξ(t1, . . . , tn) | ¬ϕ | ϕ ∨ ϕ | ∃z. ϕ | ∃x ∈ p. ϕ

where x, y ∈ T , z ∈ C, p ∈ P ∪ {⊥}, ξ ∈ Ξ, and t1, . . . , tn are token color
terms.

3.2.2 Satisfiability Problem for CML

Bouajjani and all investigate the decidability of the satisfiability problem of
the logic CML(L), assuming that the underlying color logic L has a decid-
able satisfability problem.

Let us mention that in the case of a finite color domain, for instance for
the domain of booleans with equality and usual operations, the logic CML
is decidable.

In [11] is proved that the satisfiability problem for formula in the Σ2

fragment of CML is decidable. The proof is giving a procedure to test satis-
fiability which is discussed in details in Section 6.

Moreover, this result can be extended to Σ1 and Π1 fragments.

3.3 Modeling System: Constrained Petri Nets (CPN)

Let T be a set of token vaiables and C be a set of color variables such that
T ∩C , ∅. A constraint Petri Net (CPN) is a tuple S = (P, L,Γ,∆) where P
is a finite set of places, L = (C,Ω,Ξ) is a colored tokens logic, Γ is a finite
set of token coloring symbols, and ∆ is a finie set of transitions of the form:

−→x ∈ −→p ↪→ −→y ∈ −→q : ϕ(−→x ,−→y)

CHAPTER 3. CONSTRAINTED PETRI NETS AND THEIR VERIFICATION19

where −→x = (x1, . . . , xn) ∈ T n, −→y = (y1, . . . , ym) ∈ T m, −→p = (p1, . . . , pn) ∈ Pn,
−→q = (q1, . . . , qm) ∈ Pm, and ϕ(−→x ,−→y) is a CML formula called the transition
guard.

Given a fragment Θ of CML, we denote by CPN[Θ] the class of CPN
where all transition guards are formulas in the fragment Θ. Due to the
(un)decidability results of section 3.2.2, we focus in the sequel on the
classes CPN[Σ2] and CPN[Σ1].

The semantics of a CPN is defined formally in [11] in terms of colored
markings.

Intuitively, a constrained transition above says that it’s firing:

• n different tokens represented by token variables x1, . . . , xn are deleted
from the places p1, . . . , pn,

• m new different tokens represented by token variables y1, . . . , ym are
added to the places q1, . . . , qm

• provided that the colors of all these (old and new) tokens satisfy the
formula ϕ,

• and this operation does not modify the rest of the tokens (others than
x1, . . . , xn and y1, . . . , ym).

CPN can be used to model (unbounded) dynamic networks of parallel
processes. We assume w.l.o.g that all processes are identically defined. We
consider that a process is defined by a finite control state machine supplied
with variables and data structures ranging over potentially infinite domains
(such as integer variables, reals, etc). Processes running in parallel can
communiate and synchronize using various kinds of mechanisms (rendez-
vous, shared variables, locks, etc). Moreover, they can dynamically spawn
new (copies of) processes in the network [11].

Given a configuration of the CPN represented by a colored markingM,
let post(M) be the set of immediate successors of M by all transitions of
the CPN. Similarly, pre(M) is the set of immediate predecessors ofM.

Since the CML formulas can represent colored marking, the definition
of post and pre above can be extended to formulas in CML.

3.4 Verification of CPN’s

The Pre-post condition reasoning consists of the following: given a transi-
tion τ in S and given two formulas ϕ and ϕ′, 〈ϕ, τ, ϕ′〉 is a hoare triple if
whenever the condition ϕ holds, the condition ϕ′ holds after the execution
of τ. In other words, we must have postτ(~ϕ�) ⊆ ~ϕ′� , or equivalently that
postτ(~ϕ�) ∩ ~¬ϕ′� = ∅.

CHAPTER 3. CONSTRAINTED PETRI NETS AND THEIR VERIFICATION20

This reasonning is used to check the invariant properties. Indeed to
check an invariant property I in the system S : if whenever the property I
holds, the same property I must hold after the execution of each transition
τ of the system S . In other words, we must have postτ(~I�) ⊆ ~I� , or
equivalently that postτ(~I�) ∩ ~¬I� = ∅.

In the following sections, we will recall the main results provided in [11]
about computing the post and pre images, and about checking invariant
properties for CPN.

3.4.1 Post and Pre Computation

Let ϕ be a closed formula, and let τ be a transition −→x ∈ −→p ↪→ −→y ∈ −→q : ψ
of the system S . W.l.o.g, we suppose that ϕ and ψ are in special form. We
define hereafter the formulas ϕpost and ϕpre for this single transition. The
generalization to the set of all transitions is straightforward.

Intuitively, the idea is to express first the effect of deleting/adding to-
kens, and then composing these operations to compute the effect of a tran-
sition. Two transformations 	 and ⊕ corresponding to deletion and creation
of tokens.

The operation 	(−→z , loc, col) is parameterized by a vector −→z of token
variables to be deleted, a mapping loc associating with token variables in −→z
the places from which they will be deleted, and a mapping col associating
with each coloring symbol in Γ and each token variable in −→z a fresh color
variable in C. Intuitively, 	 projects a formula on all variables which are
not in −→z .

The operation ⊕(−→z , loc) is parameterized by a vector −→z of token vari-
ables to be added and a mapping loc associating with each variable in z ∈ −→z
a place (in which it will be added). Intuitively, ⊕ transforms a formula tak-
ing into account that the added tokens by the transition were not present
in the previous configuration (and therefore not constrained by the original
formula describing the configuration before the transition).

These operations are defined in detail in [11].
ϕpost and ϕpre are defined to be the following formulas:

ϕpost = ∃
−→y ∈ −→q . ∃−→c .

(
(ϕ ∧ ψ) 	 (−→x ,−→x 7→ −→p ,Γ 7→ (−→x 7→ −→c))

)
⊕ (−→y ,−→y 7→ −→q)

ϕpre = ∃
−→x ∈ −→p . ∃−→c .

(
(ϕ ⊕ (−→x ,−→x 7→ −→p)) ∧ ψ

)
	 (−→y ,−→y 7→ −→q ,Γ 7→ (−→y 7→ −→c))

Bouajjani and all proved the closure properties of the CML frag-
ments under the computation of immediate successors and predecessors for
CPN’s. The theorem proved is the following:

Theorem 3.1. Let S be a CPN[Σn], for n ∈ {1, 2}. Then, for every closed for-

mula ϕ in the fragment Σn of CML, it’s possible to construct two closed for-

CHAPTER 3. CONSTRAINTED PETRI NETS AND THEIR VERIFICATION21

mulas ϕpost and ϕpre in the same fragment Σn such that ~ϕpost� = postS (~ϕ�)

and ~ϕpre� = preS (~ϕ�)

3.4.2 Checking Invariance Properties

An instance of the invariance cheching problem is given by a pair of sets
of configurations (colored markings) (Init, Inv), and consists in deciding
whether starting from any configuration in Init, every computation of S can
only visit configurations in Inv, i.e.,

⋃
k>0 postk

S (Init) ⊆ Inv. This problem
is of course undecidable in general. However, a deductive approach using
inductive invariants (provided by the user) can be adopted. Bouajjani and
all show that their results allow to automatize the steps of this approach.

A set of configurationsM is an inductive invariant if postS (M) ⊆ M, or
equivalently, ifM ⊆ preS (M) [11] .

Theorem 3.2. If S is a CPN[Σ2], then for every formula ϕ in B(Σ1), the

problem of checking whether ϕ defines an inductive invariant is decidable.

The deductive approach for establishing an invariance property con-
siders the inductive invariance checking problem given by a triple
(Init,Inv,Aux) of sets of configurations, and which consists in deciding
whether (1) init ⊆ Aux, (2) Aux ⊆ Inv, and (3) Aux is an inductive invari-
ant. Indeed, a (sound and) complete rule for solving an invariance checking
problem (Init,Inv) is in finding a set of configurations Aux allowing to solve
the inductive invariance checking problem (Init,Inv,Aux).

Theorem 3.3. If S is a CPN[Σ2], then the inductive invariance checking

problem is decidable for every instance (ϕInit, ϕ, ϕ
′) where ϕInit ∈ Σ2, and

ϕ,ϕ′ ∈ B(Σ1).

3.5 Example of Modeling: Reader-Writer Lock

Reader-writer is a classical synchronisation scheme used in operating sys-
tems or other large scale systems. Several readers and writers work on
common data. Readers may read data in parallel but they are exclusive
with writers. Writers can only work in exclusive mode with other threads.
Reader-writer lock is used to implement such kind of synchronization.
Readers have to acquire the lock in read mode, and writers in write mode.

The implementation in Java of atomic operations for acquire and release
in read and write mode is classical. This implementation uses an integer

CHAPTER 3. CONSTRAINTED PETRI NETS AND THEIR VERIFICATION22

t h r e a d s W r i t e r :

1 : l . a c q w r i t e (p i d) ;

2 : x = g (x) ;

3 : l . r e l w r i t e (p i d) ;

4 :

t h r e a d s Reader :

1 : l . a c q r e a d (p i d) ;

2 : y = f (x) ;

3 : l . r e l r e a d (p i d) ;

4 :

Table 3.1: Example of program using reader-writer lock.

w to identifies the thread holding the lock in write mode or -1 if no such
thread exists (threads identifiers are suppsed to be positive integers). Also,
an integer set r is used to store the identifiers of all threads holding the lock
in read mode. Acquire and release operations are accessing variables w and
r in mutual exclusion.

Our model of reader-writer lock follows the implementation above. The
(global) lock variable is modeled by a place rw where each token represents
a thread using the lock (i.e., it has acquired but not yet released the lock).
Each token in rw has two colors: ty gives the type of the access to the lock
(read or write), and Id gives the identifier of the thread represented by the
token. The Id color is useful to ensure that the releasing of a lock is done
by the thread which acquired it. Since acquire and release should be atomic
operations, we model them by single transitions (see Table 3.5).

Let consider the program using the reader-writer lock given in Table 3.5.
It consists on several Reader and Writer threads, a global reader-writer lock
variable l, a global variable x, and a local variable y for Reader threads.
Writer threads change the value of the global variable x after acquiring in
write mode the lock. Reader threads are setting their local variable y to a
value depending on x after acquiring in read mode the lock. (Let us assume
that for example the variables range over the domain of positive integers.)
Each thread has an unique identifier represented by the pid local variable.

For this program, the safety property to verify is the absence of race on
variable x: value of x should not change while the lock is held in read mode,
i.e., a reader thread at line 3 has a value of local variable y equal to f (x).

The CPN model corresponding to this program is given in Table 3.5. We
use the logic DL as colored tokens logic. To each control point we associate
a place (e.g., place r3 for control point corresponding to line 3 of Reader
threads) and a transition (e.g., transition r3 for statement at line 3 of Reader
threads). The global variable x is modeled as explained in previous section:
we have a place px containing an unique token which color α stores the
current value of x. With each token in the places corresponding to Reader

CHAPTER 3. CONSTRAINTED PETRI NETS AND THEIR VERIFICATION23

w1 : t ∈ w1 ↪→ t′ ∈ w2, l′ ∈ rw

: ¬(∃z ∈ rw. true) ∧ Id(l′) = Id(t) ∧ ty(l′) = W ∧ Γ(t′, t)

w2 : t ∈ w2, tx ∈ px ↪→ t′ ∈ w3, t′x ∈ px

: α(t′x) = g(α(tx)) ∧ Γ(t′, t)

w3 : t ∈ w3, l ∈ rw ↪→ t′ ∈ w4

: Id(l) = Id(t) ∧ ty(l) = W ∧ Γ(t′, t)

r1 : t ∈ r1 ↪→ t′ ∈ r2, l′ ∈ rw

: ¬(∃z ∈ rw. ty(z) = W) ∧ Id(l′) = Id(t) ∧ ty(l′) = R ∧ Γ(t′, t)

r2 : t ∈ r2, tx ∈ px ↪→ t′ ∈ r3, t′x ∈ px

: y(t′) = f (α(tx)) ∧ Id(t′) = Id(t) ∧ Γ(t′x, tx)

r3 : t ∈ r3, l ∈ rw ↪→ t′ ∈ r4

: Id(l) = Id(t) ∧ ty(l) = R ∧ Γ(t′, t)

Table 3.2: Model of reader-writer lock.

control points we associate a color y to model the local variable y. We
denote by Γ(t′, t) the (conjunctive) formula expressing that t′ and t have the
same colors. It can be observed that the obtained model is a CPN[Σ2].

The race-free property that the system must satisfy can be expressed by
the following Π1 formula:

RF ≡ ∀t ∈ r3. ∀tx ∈ px. y(t) = f (α(tx))

Actually, in order to establish the invariance of the property above, it
must be strengthened by other auxiliary properties:

• Place px contains a single token:

Ax ≡ ∀x, x′ ∈ px. x = x′

• Reader-writer lock is either kept by a set of readers or by a unique
writer:

RW ≡ ∀u, u′ ∈ rw. (ty(u) = ty(u′)) ∧ (ty(u) = W =⇒ u = u′)
∧ (ty(u) = R ∨ ty(u) = W)

CHAPTER 3. CONSTRAINTED PETRI NETS AND THEIR VERIFICATION24

• For all threads in places w2 and w3 of the Writer, the tokens in the
lock place have the same identities and are of writer type:

RWw ≡ ∀w ∈ {w2,w3}. ∀lw ∈ rw. Id(w) = Id(lw) ∧ ty(lw) = W

• If threads exist in places r2 and r3 of the Reader, then there is a token
in the lock place with reader type:

RWr ≡ (∃r ∈ {r2, r3}. true) =⇒ (∃lr ∈ rw. ty(lr) = R)

It can be seen that all the formulas above are in the fragment B(Σ1).

Part II

Our contribution

25

Chapter 4

Building a Verification System for

CPN

4.1 Introduction

This chapter begins the presentation of the verification system built for ver-
ifying invariance properties on CPN. It shows the general architecture of
the tool and how it uses the verification system W, as well as the tools
provided by W for the interface with the SMT solvers. The algorithms
for efficient invariance checking on CPN and for satisfaction checking for
CML are presented in the next chapters.

4.2 Tool Architecture

The architecture of the verification system proposed is presented on Fig-
ure 4.1. In this architecture, the greyed parts are not parts of our implemen-
tation. Then, we shortly describe here the different parts of our implementa-
tion and give the references to the sections and chapters dealing with these
parts in detail.

First of all, we use the input language of W to define the components
of the CML logic, the rules of the CPN model, and the inductive invariant to
be checked. This part of our system is described in detail in the remainder of
this chapter. From the output of the W parser and type-cheker, we obtain
an abstract syntax tree which we transform slightly to extract information
about the system.

26

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 27

Then, we check that the CPN model and the invariant satisfy the neces-
sary conditions to apply the procedure of invariant checking (see Theorem 6
in [11]). Some optimisations on invariant are then applied in order to accel-
erate the computation of post images of the invariant. Finally, verification
conditions are generated as formulas in CML. This part of the tool is fully
described in chapter 5.

The verification formulas generated are given to the SMT-solver for
the CML logic which implements in an efficient way the procedure given
in [11], as described in detail in chapter 6. This procedure produces first
order formula in the theory of the underlying colour logic. These formulas
are given to the interface of the W with the decision procedures (tool)
in order to call the Yices tool to test their satisfiability. The results of this
call are then interpreted to produce the results of our tool.

In the remainder of this section we present the encoding of the CPN
system and invariant property in W. The rationale of using W is to
benefit from the work done in the parsing, type-checking and managing
of logic specifications and first-order formulas. We don’t use at all the pro-
gramming language of W since this language is not adapted to concurrent
programming.

4.3 Encoding CML in WHY

Color Domain: The color domain is encoded in W using the existing
types (C = N,C = R,...), or by defining a new abstract type. For example, if
the color domain is the set of all stacks with integer elements, we can define
it as an abstract type in W:

type stack

Functions: Functions of the color logic are expressed in W using func-
tions. For the color domain already defined in W (N ,R , etc.), W
provides all the necessary functions.

For example, two uninterpreted functions f and g over integers are en-
coded in W as follows:

logic g : int -> int

logic f : int -> int

Another example are functions manipulating the stack of integers:

logic push : stack -> int -> stack

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 28

system specification

construction/
abstraction

CPN model Ind. invariant

WHY

parser

type−checker

CML formulas

generator of verification conditions

invariant decoration

feasability tester

AbstractSyntax Tree

SMT−solver for CML

FO formulas

WHY interface

to SMT solvers

Yes
(+proof) (+counter−example)

No

Figure 4.1: The architecture of the verification system for CPN.

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 29

logic pop : stack -> stack

logic top : stack -> int

Relations: Relations in the color logic are encoded in using W unin-
terpreted predicates. For example, equality between elements of the color
domain can be expressed as follows:

logic is_equal : C -> C -> prop

For stacks of integers, the empty test may be declared as follows:

logic empty : stack -> prop

Tokens: An abstract type token is introduced to represent the enumerable
set of tokens T. The equality between tokens is expressed using an unin-
terpreted predicate eq token, and we introduce also a the coloring symbol
correspoding to the token identity:

type token

logic eq_token : token, token -> prop

logic id : token -> int

The above signature may be transformed into a theory by providing the
axioms of the equality predicate, e.g., two equal tokens have the same iden-
tity colour:

axiom id_axiom :

forall x:token. forall xp:token. eq_token(x,xp) => id(x)=id(xp)

Places: Each place in P is encoded using an uninterpreted predicate taking
a token as a parameter and returning a proposition. A special function bot
is defined for the special place ⊥.

For example, let consider the following set of places P = {r1,w1, rw}. Its
encoding is given by the following W declarations:

logic r1 : token -> prop

logic w1 : token -> prop

logic rw : token -> prop

logic bot : token -> prop

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 30

The theory on tokens considered in [11] asks that all places in P are
pairwise disjoint and disjoint from ⊥. This is encoded by the following
axiom:

axiom token_axiom :

forall x:token. r1(x) => not (w1(x) or rw(x) or bot(x))

and w1(x) => not (r1(x) or rw(x) or bot(x))

and rw(x) => not (r1(x) or w1(x) or bot(x))

and bot(x) => not (r1(x) or w1(x) or rw(x))

This theory may be dealt, under some conditions, by the theorem proving
tools, but not by the existing SMT-solver.

Coloring Symbols: The coloring symbols are encoded in W using un-
interpreted functions mapping tokens to the color domain. For example, a
coloring symbol corresponding to the local, integer variable y is encoded
by:

logic var_y : token -> int

Global Colors: Introduced to simplify the specification of global variables
in CPN, global colors are syntactic sugar for a place with an unique token
which colors provide the values of global variables. The programming lan-
guage of W provides a mean to declare global variables: it is a parameter
with a reference type, i.e., which can be modified in place. We use this
mean to encode global colors. For example, a global variable x is encoded
by:

parameter var_x : int ref

Formulas: W provides a large choice of operators to obtain first order
formula. Table 4.1 shows the correspondence between the syntax proposed
for CML and the W syntax.

Note that the special form proposed for the CML formulas can be repre-
sented in W only for universally quantified tokens. Indeed, W allows
to specify triggers in universal quantification, i.e., Boolean expressions se-
lecting the variables (here tokens) which are covered by the quantification.
For us, the trigger shall be a place uninterpreted function. Then, for the spe-
cial form of existentially quantified formula, we have to use its translation
in ordinary CML formula.

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 31

CML W

x = y eq_token(x,y)

p(x) p(x)

ξ(t1, . . . , tn) xi(t1,...,tn)

¬ϕ not ϕ

ϕ ∨ ϕ ϕ or ϕ

ϕ ∧ ϕ ϕ and ϕ

ϕ =⇒ ϕ ϕ -> ϕ

ϕ⇔ ϕ ϕ <-> ϕ

∃z. ϕ exists z:int . ϕ

∀z. ϕ forall z:int . ϕ

∃x. ϕ exists x:token . ϕ

∀x. ϕ forall x:token . ϕ

∃x ∈ p. ϕ exists x:token . p(x) and ϕ

∀x ∈ p. ϕ forall x:token [p(x)] . ϕ

forall x:token . p(x) -> ϕ

Table 4.1: Correspondence between the syntax of CML and W.

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 32

4.4 Encoding CPN in WHY

W programming language deal only with sequential programs. Since we
are dealing with concurrent programs, we cannot encode directly the CPN
in W.

The trick we propose is to use W parameters to encode each rule. This
is somewhat coherent with the semantics given in W to parameters.

Indeed, parameters are introduced in W to specify external functions
(or procedures) by providing their parameters, their pre- and post-condition.
For example, an external implementation of a function sorting an array
given as parameter is declared as follows:

parameter sort :

t:array ->

{ true }

array

{ sorted(result) and permutation(t,result) }

The function takes as parameter an array (we suppose that such a type is
already declares) and output an array; its pre-condition is empty and is post-
condition says that the resulting array (keyword result) is sorted and it is
a permutation of the initial array t.

Then, a CPN transition is encoded into a parameter as follows:

• the arguments encode the tokens in the left and right side of the tran-
sition,

• the result type is void (written unit in W),

• the pre-condition is a conjunction of formulas specifying the places of
tokens in the left side of the transition and the guard of the transition,

• the post-condition is a conjunction of formulas specifying the places
of tokens in the right side of the transition and the effect of the transi-
tion.

For example, the following CPN transition r:

t ∈ pl −→ t1 ∈ pl1, t2 ∈ pl2 : ¬(∃z ∈ pl2. true)∧id(t) = id(t1)∧id(t) = id(t2)

is encoded in W as follows:

parameter r: t:token -> t1:token -> t2:token ->

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 33

{ pl(t) and bot(t1) and bot(t2) and

not(exists z:token. pl2(z)) }

unit

{ bot(t) and pl1(t1) and pl2(t2) and

id(t)=id(t1) and id(t)=id(t2) }

4.5 Encoding Invariants in WHY

Since W allows specification of predicates, invariants are naturally writ-
ten in a form of a predicate with an empty list of parameters. For example,
the invariant:

RW ≡ ∀u, u′ ∈ rw. (ty(u) = ty(u′))∧(ty(u) = W =⇒ u = u′)∧(ty(u) = R∨ty(u) = W)

is encoded in:

predicate RW () =

forall u:token [rw(u)]. forall up:token [rw(up)].

ty(u)=ty(up) and

(ty(u)=Write -> eq_token(u,up)) and

(ty(u)= Read or ty(u)= Write)

Note the splitting of the special form universal quantifier in order to
properly use the triggers. For this, we use the following equivalence:

∀u, u′ ∈ rw. ϕ ⇔ ∀u, u′. (rw(u) ∧ rw(u′)) =⇒ ϕ

⇔ ∀u, u′. ¬rw(u) ∨ ¬rw(u′) ∨ ϕ
⇔ ∀u. ¬rw(u) ∨ (∀u′. ¬rw(u′) ∨ ϕ)
⇔ ∀u. rw(u) =⇒ (∀u′. rw(u′) =⇒ ϕ)
⇔ ∀u ∈ rw. ∀u′ ∈ rw. ϕ

4.6 Example of Reader-Writer Lock in WHY

We provide in this section the full specification in W of the reader-writer
example given in section 3.5.

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 34

(* abstract type token *)

type token

logic eq_token : token, token -> prop

(* places *)

logic r1 : token -> prop

logic r2 : token -> prop

logic r3 : token -> prop

logic r4 : token -> prop

logic w1 : token -> prop

logic w2 : token -> prop

logic w3 : token -> prop

logic w4 : token -> prop

logic rw : token -> prop

logic bot : token -> prop

(* abstract type lock *)

type lock

logic Read : lock

logic Write : lock

(* type lock have only 2 values: Read and Write *)

axiom lock_axiom : forall l:lock. l=Read or l=Write

(* coloring symbols *)

(* - global variable x *)

parameter var_x : int ref

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 35

(* - local variables ty, y, id *)

logic ty : token -> lock

logic y : token -> int

logic id : token -> int

(* uninterpreted functions used on colors *)

logic g : int -> int

logic f : int -> int

(* transition w1:acq_write *)

parameter rule_w1 : t:token -> tp:token -> lp:token ->

{ w1(t) and bot(tp) and bot(lp) and not(exists z:token. rw(z))

}

unit

{ bot(t) and w2(tp) and rw(lp) and id(t)=id(tp)

and ty(lp)=Write and y(tp)=y(t) }

(* transition w2:x=g(x) *)

parameter rule_w2 : t:token -> tp:token ->

{ w2(t) and bot(tp) }

unit writes var_x

{ bot(t) and w3(tp) and y(t)=y(tp) and var_x = g(var_x@) }

(* transition w3:rel_write *)

parameter rule_w3 : t:token -> l:token -> tp:token ->

{ w3(t) and rw(l) and bot(tp) and id(l)=id(t) and ty(l)=Write }

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 36

unit

{ w4(tp) and id(t)=id(tp) and y(tp)=y(t) }

(* transition r1:acq_read *)

parameter rule_r1 : t:token -> tp:token -> lp:token ->

{ r1(t) and bot(tp) and bot(lp) and id(lp)=id(t)

and ty(lp)=Write and not(exists z:token. rw(z) and

ty(z)=Write) }

unit

{ r2(tp) and rw(lp) and id(t)=id(tp) and

ty(lp)=Read and y(tp)=y(t) }

(* transition r2:y=f(x) *)

parameter rule_r2 : t:token -> tp:token ->

{ r2(t) and bot(tp) }

unit writes var_x

{r3(tp) and y(tp)=f(var_x@) and

id(t)=id(tp) and var_x=var_x@ }

(* transition r3:rel_read *)

parameter rule_r3 : t:token -> l:token -> tp:token ->

{ r3(t) and rw(l) and bot(tp) and id(l)=id(t) and ty(l)=Read }

unit

{ r4(tp) and y(tp)=y(t)}

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 37

(* Invariants *)

predicate RF () =

forall t:token [r3(t)]. y(t)=f(var_x)

predicate RW () =

forall u:token [rw(u)]. forall up:token [rw(up)].

ty(u)=ty(up) and

(ty(u)=Write -> eq_token(u,up)) and

(ty(u)= Read or ty(u)= Write)

predicate RW_w () =

forall w:token [w2(w)| w3(w)]. forall lw:token [rw(lw)].

id(w)= id(lw) and ty(lw)=Write

predicate RW_r () =

(forall r:token [r2(r)| r3(r)].false) or

(exists lr:token. rw(lr) and ty(lr)=Read)

4.7 Abstract Syntax Tree of CPN

By calling the W parser on a CPN specification built as above, we obtain
an abstract syntax tree A. On A, we call the W type-checker in order to
check that all declarations type correctly and to obtain type informations on
these declarations.

Then, we analyse the abstract syntax tree obtained in order to identify
the CPN elements as follows:

• We check the presence of the token type and its equality predicate

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 38

eq_token.

• We build the list of places P by collecting at all uninterpreted predicate
declarations which unique parameter is of type token.

• We build the list of coloring symbols by collecting at all uninterpreted
function declarations which unique parameter is of type token.

• We build a list of transitions by collecting parameters declarations
with only tokens as parameters and with void result; the places of
each token is obtained by analysing the pre- and post-condition of the
parameter.

• We build a list of invariants by collecting all predicates with empty
list of parameters and using quantifiers over tokens.

All these elements are collected into an abstract syntax tree that we de-
fined in as follows:

type ty_cpn_rule = {

name : Ident.t;

leftside : Ident.t Ident.map; (* mapping token->place *)

rightside : Ident.t Ident.map; (* mapping token->place *)

cond : predicate

}

type ty_inv = {

subinv : predicate; (* subinvariant, see next chapter *)

... (* see next chapters *)

}

type ty_cpn_model = {

places : Ident.set; (* logic *)

globals : Ident.set; (* parameters *)

colors : Ident.set; (* logic *)

rules : ty_cpn_rule list;

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 39

inv : ty_inv list (* see next chapter *)

}

In this tree, we store only identifiers for places, global variables, and col-
oring symbols, since their definition is already stored in the abstract syntax
tree of W.

4.8 Feasibility test

Recall from chapter 3 that Theorem 6 in [11] asks that, in order to be able
to check invariance properties, the side conditions of transitions shall be Σ2

formulas and invariants shall be in B(Σ1).
For time optimisation, the feasibility test is done while looking through

the abstract syntaxt tree to collect elements of the system: rules and invari-
ants.

The feasibility test checks these conditions for each transition and each
invariant. For this, we implemented algorithms to test that a formula is in
Σ2 or B(Σ1). In this section, we present these algorithms.

4.8.1 Checking for Σ2 fragment

In order to check that a CML formula ϕ is in the Σ2 fragment, we tra-
verse the abstract tree of the formula and check that the quantifiers ap-
pear in a order given by the Σ2 definition, i.e., a list of existentially quan-
tified token and (possibly) color variables, followed by a list of universally
quantified token and (possibly) color variables, followed by any quantifi-
cation on color variables. More formally, the word built from the quanti-
fiers appearing in the tree traversal is analysed using the automaton given
on Figure 4.2. In this automaton, the initial state is 0 and the accept-
ing state are {0, 1, 2, 3}. Labels of transitions represent the kind of quan-
tifiers seen through the traversal; we use the following notations: exT
(allT) if an exists x:token (forall x:token) is seen, exC (allC) if an
exists x:color_type (forall x:color_type) is seen. We put a list
of labels on a transition when there are several transitions with these labels
and the same source and target states.

The word of quantifiers is build on the fly when traversing the tree. Since
the tree may contain negations, the traversal keeps a parameter saying if
the formula considered is negated or not. This parameter is updates in the
recursive call depending on the form of the formula, while applying the de
Morgan laws.

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 40

Figure 4.2: Automaton accepting a sequence of quantifiers in Σ2.

4.8.2 Checking for B(Σ1) fragment

In order to check that a CML formula ϕ is in the B(Σ1) fragment, we traverse
the abstract tree of the formula, ignore all top-most Boolean operators, and,
as soon as we traverse a quantifier node, we check if the formula is in Σ1

fragment (if the quantifier seen is ∃) or in Π1 fragment (if the quantifier seen
is ∀). The tests for Σ1 and Π1 fragments are described formally by automata
on Figure 4.3 resp. Figure 4.4. On these figures, we use the same notations
as above. The word tested by these automata is built as above, i.e., on the
fly with the propagation of negations.

Figure 4.3: Automaton accepting a sequence of quantifiers in Σ1.

CHAPTER 4. BUILDING A VERIFICATION SYSTEM FOR CPN 41

Figure 4.4: Automaton accepting a sequence of quantifiers in Π1.

4.9 Conclusion

We presented in this chapter the overall architecture of the verification sys-
tem for CPN, build for invariance checking.

We presented its first steps which consist of encoding the CPN and its
logic CML using the W syntax. An abstract syntax tree is produced. In
this way, we avoid heavy development of parser and type-checker by using
the ones provided by the verification system W, and we also benefit from
the general specification of the color logic allowed by W.

Finally, we show how we implement the checks needed to apply the
invariance checking procedure described in the next chapter.

Chapter 5

Checking Invariant Properties

5.1 Introduction

This chapter presents the part of our tool which deals with the verification
of invariant properties for CPN. The inputs of this part are the CPN and the
invariant to be checked. The tool produces as output, a list of CML formulas
to be checked for satisfiability by the CML-SAT checker presented in the
next chapter. Moreover, the tool stops to produce such formulas as soon as
one unsatisfiable formula is found.

Recall that checking an invariant property I is equivalent to check that,
e.g., post(I)∧¬I is unsatisfiable. To do efficiently this checking, we propose
three techniques, each of them being discussed in the following sections.
Let us give here an informal description of them.

First, we observe that a simpler form of invariants may optimize the
computation of both post(I) part and ¬I part. This simple form is the CNF
form where atoms are Σ1 and Π1 formulas. Such form may be obtained
from any kind of B(Σ1) formulas by using an algorithm similar to one use in
SAT-solvers. As shown in section 5.4, using this simple form of invariants,
we can avoid the full computation of post(I). Indeed, we have to compute
the post effect only on conjuncts of I which refer to places concerned by
the transition of post.

This last remark asks to compute the places concerned by each conjunct
of the invariants I. We describe this computation as a second optimization
technique in section 5.3.

Third, we prove how these optimizations can be combined to generate a
small number of verification conditions.

42

CHAPTER 5. CHECKING INVARIANT PROPERTIES 43

5.2 Simple Form for Invariants

Theoretical Results

In order to obtain efficient invariant checking, we consider that the invariant
is in conjunctive normal form (CNF), each elementary subformula being
a Σ1 or a Π1 formula. Formally, the allowed syntax for invariants is the
following:

I =
∧

i=1..n

Ii

where
Ii =

∨
j=1..m

[¬] Ii j

where

Ii j =

 (
−→
∃t |
−→
∃c)∗(

−→
∃c |
−→
∀c)∗. ψi j ∈ Σ1

(
−→
∀t |
−→
∀c)∗(

−→
∃c |
−→
∀c)∗. ψi j ∈ Π1

with all t ∈ T (set of token variables), all c ∈ C (set of color variables), and
for all i and j, ψi j are quantifier free formulas in Σ0.

Note that Ii j may appear negated, but their negation is still a Σ1 or Π1

formula. Indeed, for example if Ii j has the form (
−→
∃t |
−→
∃c)∗(

−→
∃c |

−→
∀c)∗. ψi j ,

then:

¬Ii j = ¬(
−→
∃t |
−→
∃c)∗(

−→
∃c |
−→
∀c)∗. ψi j

= (
−→
∀t |
−→
∀c)∗(

−→
∀c |
−→
∃c)∗. ¬ψi j

In the reader-writer lock example presented in section 3.5, the invariant
I ≡ (RF∧RW∧RWw∧RWr) is written according to the simple form defined
above. Let us recall each one of these formulas:

• RF ≡ ∀t ∈ r3. ∀tx ∈ px. y(t) = f (α(tx))

• RW ≡ ∀u, u′ ∈ rw. (ty(u) = ty(u′)) ∧ (ty(u) = W =⇒ u = u′)
∧ (ty(u) = R ∨ ty(u) = W)

• RWw ≡ ∀w ∈ {w2,w3}. ∀lw ∈ rw. Id(w) = Id(lw) ∧ ty(lw) = W

• RWr ≡ (∃r ∈ {r2, r3}. true) =⇒ (∃lr ∈ rw. ty(lr) = R) ≡ RWr1 ∨

RWr2

Then, the invariant I corresponds indeed to a conjunction of subformulas
such that, RF, RW, RWw are in Π1 and RWr ∈ B(Σ1) since RWr1 is a Π1

formula and RWr2 is a Σ1 formula.

CHAPTER 5. CHECKING INVARIANT PROPERTIES 44

Implementation Issues

As already presented in section 4.7, the invariant is not manipulated in its
abstract syntax tree but as a list of predicates data structure. Each predi-
cate corresponds to a subinvariant Ii. For example, in the reader-writer, the
invariant I is represented by a list [RF,RW,RWw,RWr].

The invariant introduced by the user, using the W syntax, is first
checked to make sure that the simple form is respected. This is done ac-
cording to the following algorithme:

We look through the predicate of each subinvariant Ii,

1. if ∀ is found, goto 4

2. if ∃ is found, goto 5

3. if Ii = p1 ∨ p2, goto 1 for p1, goto 1 for p2

4. check that it’s a Π1 formula (see Figure 4.4)

5. check that it’s a Σ1 formula (see Figure 4.3)

Example 1. Consider the formula I below saying that all tokens in the place

rw have a unique type and if this type is writer, then the place rw contains a

unique token:

I ≡ ∃u. ∀u′ ∈ rw. (ty(u) = ty(u′)) ∧ (ty(u) = W =⇒ u = u′)

∧ (ty(u) = R ∨ ty(u) = W)

This formula is written in W using the following syntax:

predicate I :bool ->

{}

bool

{ exists u:token. forall up:token [rw(up)]. ty(u)=ty(up)

and (ty(u)=Write -> eq_token(u,up))

and (ty(u)=Read or ty(u)=Write) }

When checked, this invariant doesn’t match with the simple form defined

above. It’s not accepted because it is a Σ2 formula. The procedure is then

stopped and an exception of ”Bad invariant” is raised.

CHAPTER 5. CHECKING INVARIANT PROPERTIES 45

When the invariant introduced respects the simple form defined in this
section, a set of places is computed and associated to each conjunct of this
invariant as described in the following section.

5.3 Localizing Invariants

This section shows how we compute an over-approximation of places con-
cerned by each conjunct of an invariant in simple form. This computation
is useful for the optimization of post computation.

Theoretical Results

Recall from section 3.2 that the set of CML formulas written in special form
is given by the grammar:

ϕ ::= x = y | ξ(t1, . . . , tn) | ¬ϕ | ϕ ∨ ϕ | ∃z. ϕ | ∃x ∈ p. ϕ

where x, y ∈ T , z ∈ C, p ∈ P ∪ {⊥}, ξ ∈ Ξ, and t1, . . . , tn are token color
terms.

This special form locate quantified token in places, which are shorthand
notations as follows:

∃t ∈ p.ϕ ≡ ∃t.p(t) ∧ ϕ

and
∀t ∈ p.ϕ ≡ ∀t.p(t)⇒ ϕ

When several tokens are quantified by these formulas, the shorthand
notations are extended naturally:

∃
−→t ∈ −→p . ϕ ≡ ∃−→t .

n∧
i=1

pi(ti) ∧ ϕ

and

∀
−→t ∈ −→p . ϕ ≡ ∀−→t . (

n∧
i=1

pi(ti))⇒ ϕ ≡ ∀
−→t . ¬(

n∧
i=1

pi(ti))∨ϕ ≡ ∀
−→t . (

n∨
i=1

¬pi(ti))∨ϕ

Then, for each conjunct Ii of an invariant I in simple form, we define
Places(Ii) to be the set of places concerned by the subinvariant Ii as The
union of all the sets of places concerned by the subinvariants Ii j:

Places(Ii) = ∪ jPlaces(Ii j)

CHAPTER 5. CHECKING INVARIANT PROPERTIES 46

where Places(Ii j) is over-approximated by the following definition:

Places(Ii j) =

−→p if Ii j = (∃−→t | ∃−→c)∗(∃−→c | ∀−→c)∗.

∧n
k=1 pk(tk) ∧ ψi j

P if Ii j = (∃−→t | ∃−→c)∗(∃−→c | ∀−→c)∗.
∧m<n

k=0 pk(tk) ∧ ψi j
−→p if Ii j = (∀−→t | ∀−→c)∗(∃−→c | ∀−→c)∗. (

∧n
k=1 pk(tk)) =⇒ ψi j

P if Ii j = (∀−→t | ∀−→c)∗(∃−→c | ∀−→c)∗. (
∧m<n

k=0 pk(tk)) =⇒ ψi j

where −→t = (t1, ..., tn) ∈ T n, and −→p = (p1, ..., pm) ∈ Pm. Indeed, if a quanti-
fied token is not located in the formula, then the set of places concerned by
this formula is the set of places P, as the quantified token can be located in
any place.

Hereafter, we present an example to illustrate the computation of the set
of places for a given formula in CML. Let’s consider the subinvariant RWr

of the reader-writer example:

RWr ≡ (∃r ∈ {r2, r3}. true) =⇒ (∃lr ∈ rw. ty(lr) = R)

This invariant is not in the simple form defined above, therefore, we trans-
form it as follows:

RWr ≡ (∃r. r2(r) ∨ r3(r)) =⇒ (∃lr. rw(lr) ∧ ty(lr) = R)

Then, we rewrite the implication (⇒) in terms of the negation (¬) and the
disjunction (∨) :

RWr ≡ ¬(∃r. r2(r) ∨ r3(r)) ∨ (∃lr. rw(lr) ∧ ty(lr) = R)

We can then push negations over quantifiers and obtain:

RWr ≡ ∀r. (¬r2(r) ∧ ¬r3(r)) ∨ (∃lr. rw(lr) ∧ ty(lr) = R)

Following our definition, the set of Places(RWr) is therefore be equal to P.
However, by applying the definition of the special form, we can also

write:

RWr ≡ (∀r ∈ {r1, r3}. f alse) ∨ (∃lr. . rw(lr) ∧ ty(lr) = R)

and Places(RWr) is therefore equal to {r2, r3, rw}. Note then that the second
formula gives a more accurate set of Places(RWr)

Implementation Issues

As it was mentionned previously, we consider the simple form of an invari-
ant to be a conjunction of disjunction of formulas in Σ1 and Π1.

CHAPTER 5. CHECKING INVARIANT PROPERTIES 47

• Formulas in Π1 have the form: (
−→
∀t |

−→
∀c)∗(

−→
∃c |

−→
∀c)∗. ψi j. For these

formulas, the locations of tokens are collected in the triggers and in
the left side of the implications when looking through the quantified
free formula ψi j. For example, in the formula : Ii = ∀t. p(t) ⇒ φ, the
place p ∈ Places(Ii)

• Formulas in Σ1 have the form: (
−→
∃t |

−→
∃c)∗(

−→
∃c |

−→
∀c)∗. ψi j. For these

formulas, the locations of tokens are collected in the sides of con-
junctions when looking through the quantified free formula ψi j. For
example, in the formula : Ii = ∃t. p(t) ∧ φ, the place p ∈ Places(Ii)

Let’s consider the following formula: forall t [p(t)]. q(t) =>
ψ. This formula respects the simple form defined and is therefore accepted
by the system. However, this formula is false considering the semantic of
the CPN system because the same token can’t be located in two different
places at the same time.

Note that the negation conserves the location of tokens as follows:

¬(∀x ∈ p.ψ) ≡ ¬(∀x.p(x)⇒ ψ) ≡ ∃x.p(x) ∧ ψ

¬(∃x ∈ p.ψ) ≡ ¬(∃x.p(x) ∧ ψ) ≡ ∀x.¬p(x) ∨ ¬ψ ≡ ∀x.p(x)⇒ ¬ψ

Considering the reader writer example, the results of the computation of
the set of places concerned by each subinvariant are the following:

• Places(RF) = {r3}

• Places(RW) = {rw}

• Places(RWw) = {w2,w3, rw}

• Places(RWr) = {r2, r3, rw}

5.4 Computing Post/Pre Images of Rules

Theoretical Results

Let ϕ be a Σ2 closed formula, and let τ be a transition −→x ∈ −→p ↪→ −→y ∈ −→q : ψ
of the CPN. In [11], it has been shown that the pre/post-images of ϕ formula
by the transition τ is given by:

Postτ(ϕ) = ∃
−→y ∈ −→q . ∃−→c .

(
(ϕ ∧ ψ) 	 (−→x ,−→x 7→ −→p ,Γ 7→ (−→x 7→ −→c))

)
⊕ (−→y ,−→y 7→ −→q)

Preτ(ϕ) = ∃
−→x ∈ −→p . ∃−→c .

(
(ϕ ⊕ (−→x ,−→x 7→ −→p)) ∧ ψ

)
	 (−→y ,−→y 7→ −→q ,Γ 7→ (−→y 7→ −→c))

where operations ⊕ and 	 are defined in Tables 5.1 and 5.2.

CHAPTER 5. CHECKING INVARIANT PROPERTIES 48

Intuitively, the operation 	 is parameterized by a vector −→z of token vari-
ables to be deleted, a mapping loc associating with token variables in −→z
the places from which they will be deleted, and a mapping col associating
with each coloring symbol in Γ and each token variable in −→z a fresh color
variable in C. Intuitively, 	 projects a formula on all variables which are not
in −→z . Rule 	1 substitutes in a color formula ξ(−→t) all occurences of colored
tokens in −→z by fresh color variables given by the mapping col. A formula
x = y is unchanged by the application of 	 if the token variables x and y
are not in −→z ; otherwise, rule 	2 replaces x = y by true if it is trivially true
(i.e., we have the same variable in both sides of the equality) or by false if x
or y is in −→z . Indeed, each token variable in −→z represents (by the semantics
of CPN) a different token, and since this token is deleted by the transition
rule, it cannot appear in the reached configuration. Rules 	3 and 	4 are
straightforward. Rule 	5(resp. 	6) does a case splitting according to the
fact whether a deleted token is precisely the one referenced by the existen-
tial (resp. universal) token quantification or not. Rule 	7 (resp. 	8) does
the same thing as rule 	5 (resp. 	6) with the difference that the substitution
made over tokens is not based on their location as the token quantified exis-
tentially (resp. universally) is not located in a specific place. As the formula
x ∈ p in the special form is written p(x) in a predicate (as described in sec-
tion 4.2.), the rule 	9 was added to replace by true p(x) if one of the deleted
tokens is located in p, false otherwise; the formula remains unchanged if x
is not to be deleted.

The operation ⊕ is parameterized by a vector −→z of token variables to be
added and a mapping loc associating with each variable in z ∈ −→z a place
(in which it will be added). Intuitively, ⊕ transforms a formula taking into
account that the added tokens by the transition were not present in the pre-
vious configuration (and therefore not constrained by the original formula
describing the configuration before the transition). Then, the application of
⊕ has no effect on color formulas ξ(−→t) (rule ⊕1). When equality of tokens is
tested, rule ⊕2 takes into account that all added tokens are distinct and dif-
ferent from the existing tokens. For token quantification, rule ⊕5 says that
quantified tokens of the previous configuration cannot be equal to the added
tokens. Rule ⊕7(resp. ⊕8) deals with token quantification without location.
Rule⊕9 was added to deal with formulas not in special form.

Implementation Issues

In order to obtain the Postτ(ϕ) formula, we first compute the predicate:

(ϕ ∧ ψ). 	 (−→x ,−→x 7→ −→p ,Γ 7→ (−→x 7→ −→c)). ⊕ (−→y ,−→y 7→ −→q)

and we prefix it afterthat with: ∃−→y ∈ −→q . ∃−→c

CHAPTER 5. CHECKING INVARIANT PROPERTIES 49

	1 : ξ(~t) 	 (~z, loc, col) = ξ(~t)[col(γ)(z)/γ(z)]γ∈Γ,z∈~z

	2 : (x = y) 	 (~z, loc, col) =

x = y if x, y < ~z

true if x ≡ y

false otherwise

	3 : (¬ϕ) 	 (~z, loc, col) = ¬(ϕ 	 (~z, loc, col))

	4 : (ϕ1 ∨ ϕ2) 	 (~z, loc, col) = (ϕ1 	 (~z, loc, col)) ∨ (ϕ2 	 (~z, loc, col))

	5 : (∃x ∈ p. ϕ) 	 (~z, loc, col) = ∃x ∈ p. (ϕ 	 (~z, loc, col)) ∨
∨

z∈~z:loc(z)=p(ϕ[z/x]) 	 (~z, loc, col)

	6 : (∀x ∈ p. ϕ) 	 (~z, loc, col) = ∀x ∈ p. (ϕ 	 (~z, loc, col)) ∧
∧

z∈~z:loc(z)=p(ϕ[z/x]) 	 (~z, loc, col)

	7 : (∃x. ϕ) 	 (~z, loc, col) = ∃x. (ϕ 	 (~z, loc, col)) ∨
∨

z∈~z(ϕ[z/x]) 	 (~z, loc, col)

	8 : (∀x. ϕ) 	 (~z, loc, col) = ∀x. (ϕ 	 (~z, loc, col)) ∧
∧

z∈~z(ϕ[z/x]) 	 (~z, loc, col)

	9 : p(x) 	 (~z, loc, col) =

true if x = z ∈ ~z, loc(z) = p

false if x = z ∈ ~z, loc(z) , p

p(x) if x < ~z

Table 5.1: Definition of the 	 operator.

CHAPTER 5. CHECKING INVARIANT PROPERTIES 50

⊕1 : ξ(~t) ⊕ (~z, loc) = ξ(~t)

⊕2 : (x = y) ⊕ (~z, loc) =

x = y if x, y < ~z

true if x ≡ y

false otherwise

⊕3 : (¬ϕ) ⊕ (~z, loc) = ¬(ϕ ⊕ (~z, loc))

⊕4 : (ϕ1 ∨ ϕ2) ⊕ (~z, loc) = (ϕ1 ⊕ (~z, loc)) ∨ (ϕ2 ⊕ (~z, loc))

⊕5 : (∃x ∈ p. ϕ) ⊕ (~z, loc) = ∃x ∈ p. (ϕ ⊕ (~z, loc)) ∧
∧

z∈~z:loc(z)=p ¬(x = z)

⊕6 : (∀x ∈ p. ϕ) ⊕ (~z, loc) = ∀x ∈ p. (ϕ ⊕ (~z, loc)) ∨
∨

z∈~z:loc(z)=p(x = z)

⊕7 : (∃x. ϕ) ⊕ (~z, loc) = ∃x. (ϕ ⊕ (~z, loc)) ∧
∧

z∈~z ¬(x = z)

⊕8 : (∀x. ϕ) ⊕ (~z, loc) = ∀x. (ϕ ⊕ (~z, loc)) ∨
∨

z∈~z(x = z)

⊕9 : p(x) ⊕ (~z, loc) =

true if x = z ∈ ~z, loc(z) = p

false if x = z ∈ ~z, loc(z) , p

p(x) if x < ~z

Table 5.2: Definition of the ⊕ operator.

CHAPTER 5. CHECKING INVARIANT PROPERTIES 51

As mentionned before, the invariant ϕ has the form of a list of predicates.
We compute the post only for subinvariants concerned by the rule τ as it’s
explained in section 5.5, the post is then computed for each predicate of the
list Iτ as well as the formula ψ of the transition τ.

We start by applying 	 on each formula of the list Iτ and ψ and we
cumulate the results.

The vector −→z of the tokens to be deleted and the mapping loc, associ-
ating with token variables in −→z the places from which they will be deleted,
are collected in the leftside of the transition τ.

the first optimization made in the computation of the 	 operation con-
cerns the mapping col associating with each coloring symbol in Γ and each
token variable in −→z a fresh color variable in C. Indeed, not all the color-
ing symbols in Γ are considered, only those mensionned in the formula to
compute. This reduces significantly the number of color variables −→c quan-
tified existentially that pefix the Post formula. The coloring symbols to be
substitute are collected while looking through the predicate. The new color
variables are cumulated to prefix the Post formula.

The second optimization made is that the 	 rules and the color substitu-
tion are made at the same time. This reduces the execution time.

5.5 Invariant Splitting

Theoretical Results

Let consider an invariant I and the following transition τ:

~x ∈ ~p ↪→ ~y ∈ ~q : ϕ

the successor of I over τ is computed as follows:

Postτ(I) = ∃~y ∈ ~q,∃~cx. [ϕ ∧ I] 	 (~x, ~x 7→ ~p,Γ 7→ (~x 7→ ~cx)) ⊕ (~y, ~y 7→ ~q)

where ⊕ and 	 are the operators defined in tables 5.1 and 5.2. We remark
that these operators don’t have any effect on formulas that are not concerned
with places in which the tokens are added or removed. therefore, it’s inter-
essting to split the invariant I into a conjunction of two new formulas:

I = Iτ ∧ I¬τ

where I¬τ is {Qiti. ϕi | Places(ti) ∩ {~p, ~q} = ∅}

CHAPTER 5. CHECKING INVARIANT PROPERTIES 52

Let consider the transition w2 and the property RW of the reader-writer
example :

w2 : t ∈ w2, tx ∈ px ↪→ t′ ∈ w3, t′x ∈ px : α(t′x) = g(α(tx)) ∧ Γ(t′, t)

In this transition {~p, ~q} = {w2, px,w3}.

RW ≡ ∀u, u′ ∈ rw. (ty(u) = ty(u′)) ∧ (ty(u) = W =⇒ u = u′)
∧ (ty(u) = R ∨ ty(u) = W)

Since Places(RW) = {rw} ∩ {w2, px,w3} = ∅, therefore RW ∈ I¬w2

We note that if I = ∀x. ϕ, then Places(x) = P ∩ {~p, ~q} , ∅, therefore,
this formula is an Iτ

The post computation of the invariant I becomes:

Postτ(Iτ ∧ I¬τ)
= ∃~y ∈ ~q. ∃~cx. [ϕ ∧ Iτ ∧ I¬τ] 	 (~x, ~x 7→ ~p,Γ 7→ (~x 7→ ~cx)) ⊕ (~y, ~y 7→ ~q)
= ∃~y ∈ ~q. ∃~cx.

[((ϕ ∧ Iτ) 	 (~x, ~x 7→ ~p,Γ 7→ (~x 7→ ~cx)) ⊕ (~y, ~y 7→ ~q))
∧(I¬τ 	 (~x, ~x 7→ ~p,Γ 7→ (~x 7→ ~cx)) ⊕ (~y, ~y 7→ ~q))]

= ∃~y ∈ ~q. ∃~cx.

[((ϕ ∧ Iτ) 	 (~x, ~x 7→ ~p,Γ 7→ (~x 7→ ~cx)) ⊕ (~y, ~y 7→ ~q))

(
∧

i

Qiti : token. ϕi 	 (~x, ~x 7→ ~p,Γ 7→ (~x 7→ ~cx)) ⊕ (~y, ~y 7→ ~q))]

By applying the rules 	3, 	4,	5, there is no effect on I¬τ:

Postτ(Iτ ∧ I¬τ) = ∃~y ∈ ~q. ∃~cx.

[((ϕ ∧ Iτ) 	 (~x, ~x 7→ ~p,Γ 7→ (~x 7→ ~cx)) ⊕ (~y, ~y 7→ ~q))

∧(
∧

i

Qiti : token. ϕi ⊕ (~y, ~y 7→ ~q))]

By applying the rules ⊕3, ⊕4,⊕5, there is no effect on I¬τ:

Postτ(Iτ ∧ I¬τ) = ∃~y ∈ ~q. ∃~cx.

[((ϕ ∧ Iτ) 	 (~x, ~x 7→ ~p,Γ 7→ (~x 7→ ~cx)) ⊕ (~y, ~y 7→ ~q))

∧(
∧

i

Qiti : token. ϕi)]

Since ~y and ~cx are free variables in I¬τ, so we obtain:

Postτ(Iτ ∧ I¬τ) = ∃~y ∈ ~q. ∃~cx.

[((ϕ ∧ Iτ) 	 (~x, ~x 7→ ~p,Γ 7→ (~x 7→ ~cx)) ⊕ (~y, ~y 7→ ~q))
∧I¬τ

= Ipost ∧ I¬τ

CHAPTER 5. CHECKING INVARIANT PROPERTIES 53

where

Ipost = ∃~y ∈ ~q. ∃~cx. [ϕ ∧ Iτ] 	 (~x, ~x 7→ ~p,Γ 7→ (~x 7→ ~cx)) ⊕ (~y, ~y 7→ ~q)

Implementation Issues

Let’s recall that we consider in our implementation the invariant to be a
list of predicates representing the subinvariants. Before checking the in-
variant given in the model on each rule, the set of places concerning each
subinvariant is first computed independently from each rule as described in
section 5.3. The intersection with the places in the left side and the right
side of a rule τ is next made to determine Iτ and I¬τ. The lists of predicates
Iτ and I¬τ are stored in two different lists. The post computation will only
be performed on predicates in the Iτ list.

Hereafter, we will give examples and concrete results about how this
splitting reduces the computation of the post and how it makes the proce-
dure efficient.

Reasonning about the reader-writer example, we give the lists Iτ and I¬τ
for each transition of the system:

• Iw1 = [RW,RWw,RWr] and I¬w1 = [RF]

• Iw2 = [RWw] and I¬w2 = [RF,RW,RWr]

• Iw3 = [RW,RWw,RWr] and I¬w3 = [RF]

• Ir1 = [RW,RWw,RWr] and I¬r1 = [RF]

• Ir2 = [RF,RWr] and I¬r2 = [RW,RWw]

• Ir3 = [RF,RW,RWw,RWr] and I¬r3 = []

The splitting of the invariant reduces the post computation of formu-
las, and therefore reduces the complexity and the size of these formulas.
Indeed, the post computation increases the number of quantified variables
and therefore increases the complexity of formulas.

5.6 Invariant Checking

Theoretical Results

To check that I is invariant through a given transition τ, we have to prove
the following:

CHAPTER 5. CHECKING INVARIANT PROPERTIES 54

Postτ(I) ∈ I valid

Postτ(I) ∈ Iτ ∧ I¬τ valid

¬Postτ(I) ∨ (Iτ ∧ I¬τ) valid

Postτ(I) ∧ (¬Iτ ∨ ¬I¬τ) unsat

(Postτ(I) ∧ ¬Iτ) ∨ (Postτ(I) ∧ ¬I¬τ) unsat

(Ipost ∧ I¬τ ∧ ¬Iτ) ∨ (Ipost ∧ I¬τ ∧ ¬I¬τ) unsat

Ipost ∧ I¬τ ∧ ¬Iτ unsat

Ipost ∧ (
∧

i

Ii¬τ) ∧ (
∨

j

¬I jτ) unsat

∨
j

Ipost ∧ (
∧

i

Ii¬τ) ∧ ¬I jτ unsat

We end up with a disjunction of formulas. Each formula can be given
separately to the CML sat-solver. This disjunction could be built considering
the simple form of the invariants described in section 5.2.

Implementation Issues

For each transition τ and for each jth formula of the list Iτ, we build the
formula Ipost ∧ (

∧
i Ii¬τ) ∧ ¬I jτ. A SAT problem is then generated for this

formula. If the problem is not unsat, then the invariant is not true. The
procedure stops at the first rule so that the invariant is not checked. an
exception ”Invariant not true” is then raised.

5.7 Conclusion

We presented in this section the techniques adopted to make the invariants
checking more efficient.

One technique is to consider a CNF form of invariants which help have
a disjunction of SAT formulas. Each one can be solved separately by a
solver. Another technique is to associate a set of places to each conjunct
of invariant. For each rule, we consider two lists with the intersection of
the places concerned by each rule. The post computation is applied on
subinvariants concerned by the rule and the others stay unchanged.

When combined, these techniques help us gain in execution time and
formulas complexity.

CHAPTER 5. CHECKING INVARIANT PROPERTIES 55

After the steps described in this chapter, we end up with a list of verifi-
cation conditions which are CML SAT problems. These formulas have to
be reduced and then be given to SAT solvers as described in the following
chapter.

Chapter 6

Checking Satisfiability for CML

6.1 Introduction

The W tool provides an interface with a wide set of provers (Coq, Is-
abelle, etc.) and SAT-solvers (Yices, CVC, etc.). Most of these SAT-
solvers provides algorithms for satisfaction modulo theory (SMT) of first
order formulas over classical theories like integers with common opera-
tions, reals, etc. Due to a very known competition between SMT-solvers,
all these tools supports as input formulas in the SMTlib format (see
combination.cs.uiowa.edu/smtlib/).

The CML logic does not correspond to a theory supported by SMT
solvers. However, formulas in the Σ0 fragment of CML (which are also
formulas of the first-order logic of color L) can be solved using the SMT-
solvers for some classical theories of colors.

Then, the formulas in the Σ2 fragment, which are produced by the in-
variant checking, shall be reduced into formulas in Σ0 fragment in order to
check their satisfiability. Theorem 2 in [11] provides a reduction procedure
from the satisfiability problem of Σ2 formulas to the satisfiability problem
of Σ0 formulas. We provide a quick view of this procedure in 6.2.

Then, we consider each step of this general algorithms and try to opti-
mize its implementation.

First, we show how to use the localization of tokens to optimize the first
step of the reduction, from Σ2 formulas to Σ1 formulas.

Second, we observe that the second step of the reduction (from Σ1 for-
mulas to Σ0 formulas) can be simplified for Σ1 formulas which don’t have
p(x) sub-formulas (localization of the token x in place p). Indeed, such for-
mulas can be checked for satisfiability by some SMT-solvers (e.g., Yices)
by considering that tokens belongs to the theory of an abstract data type

56

CHAPTER 6. CHECKING SATISFIABILITY FOR CML 57

with equality, and coloring symbols are uninterpreted functions.
Finally, we conclude with experimental results.

6.2 General Procedure for Satisfiability

We recall the main result proved in [11] about the decidability of the satis-
fiability problem of CML.

Theorem 6.1. (Theorem 2) Let L be a colored tokens logic. If the satisfiabil-

ity problem of L is decidable, then the fragment Σ2 of CML(L) is decidable.

We shortly resume here the proof of this theorem, which proceeds by
reduction of the satisfiability problem of the Σ2 fragment to the one of the
Σ0 fragment.

Let ϕ be a closed formula in Σ2 in prenex normal form:

ϕ = ∃~x. ∃~z. ∀~y. φ

where ~x, ~y are token variables and ~z color variables, and let assume that all
variables are different.

First, the satisfiability problem can be reduced from Σ2 to Σ1 due to the
“small model” property of the Σ2 fragment. This property says that if there
exists a model for ϕ, then there exists also a “small model” of size at most
equal to the number of existentially quantified variables ~x. In this small
model, universally quantified variables (in ~y) will be taken in the set of the
existential variables. The, we consider all mappings σ ∈ [~y → ~x] from
elements of ~y to elements of ~x and ϕ becomes:

ϕ = ∃~x. ∃~z.
∧

σ∈[~y→~x]

φ[~y→ σ(~y)]

The satisfiability problem can then be reduced from Σ1 to Σ0 with the
following transformations:

1. We eliminate sub-formulas corresponding to token equality by enu-
merating all the possible equivalence classes for equality between the
finite number of variable in ~x.

2. We eliminate sub-formulas of the form p(x) by enumerating all the
possible mappings from a token variable x to the set of places.

3. We replace terms of the form γ(x) by fresh color variables.

CHAPTER 6. CHECKING SATISFIABILITY FOR CML 58

Finally, the formula obtained after these transformations is in the frag-
ment Σ0 and has the following form:

ϕ = ∃~z′. φ′′

6.3 Discussion

The problem with the general procedure of satisfiability described above is
the explosion of the size of formulas. In fact, to reduce a Σ2 formula to
a Σ1 formula, we need to map each token variable quantified universally
to each token variable quantified existentially. Therefore, if the number of
token variable quantified existentially is |x| and the number of token variable
quantified universally is |y|, then the number of formulas generated after the
mapping is |x||y|.

We propose to optimize this process by using the localization of tokens
to chose mappings which are not trivially inconsistent with the localization.
Indeed, a consistent mapping shall map a variable y on a variable x only
if the place in which y is localized by the formula is a place where x is
localized. Of course, if a variable y is not localized by the formula, it can
be mapped on any variable of ~x. In practice, this optimization reduces sig-
nificantly the number of formulas added. Indeed, existential variables are
usually localized in the right side of transitions and universal variables are
localized in general by invariant.

Generating all possible equivalence classes is very expensive. Instead,
recent researches on SMT solvers propose efficient algorithms to deal with
theory with equality and uninterpreted functions. Then, formulas in Σ1 ob-
tained are given to such SMT solver (e.g., Yices) to decide of their satisfia-
bility if they don’t contain p(x) sub-formulas. Therefore, we don’t need to
implement the full procedure to reduce formulas from Σ1 to Σ0, but only the
step 2 which eliminates p(x) formulas based on localization of tokens.

6.4 Implementation Issues

After the steps performed for the invariant checking and described in chap-
ter 5, for each rule τ, we obtain formulas with the following form:∨

j

Ipost ∧ (
∧

i

Ii¬τ) ∧ ¬I jτ

Each jth CML formula in Σ2 has to be reduced to Σ0 using the following
steps:

CHAPTER 6. CHECKING SATISFIABILITY FOR CML 59

1. Rename redundant quantified variables in formulas.

2. Compute the prenex normal form of these formulas.

3. Reduce formulas from Σ2 to Σ1 without p(x) sub-formulas.

4. Call Yices for the Σ1 formulas obtained.

The remaining of this section details each step above.

6.4.1 Rename redundant variables

As shown in section 6.2, the reduction procedure supposes that the Σ2 for-
mula ϕ to be reduced is prenex form and all quantified variables are differ-
ent. We have to ensure this before performing the reduction.

Due to the invariant splitting, we note a redundancy of quantified vari-
ables in formulas Ipost and ¬I jτ. Indeed, they are both based on the formula
I jτ.

We chose to rename variables of the formula ¬I jτ. We give new time-
stamps to variables and thus each variable is defined by a unique couple:
name and time-stamp.

6.4.2 Computing PNF

Then, we have to put the formula in a prenex normal form. We note that
each one of the formulas Ipost, (

∧
i Ii¬τ), and ¬I jτ is (or can be put easily) in

the prenex normal form. Naturally, their conjunction is not in PNF.
The problem now is how to build a Σ2 prenex normal form of a con-

junction of B(Σ1) formulas. Let’s consider two formulas ϕ1 and ϕ2 in B(Σ1),
each one in a prenex normal form. We want to compute the prenex normal
form of the formula ϕ = ϕ1 ∧ ϕ2, so that ϕ ∈ Σ2.

The idea is to look through the list of quantified variables of ϕ1 simul-
taneously with the list of quantified variables of ϕ2 from right to left (i.e.,
from Σ0 to Σ2). The merging of two lists is done such that variables quan-
tified universally are brought out before variables quantified existentially.
The list obtained by merging is reversed in order to obtain the final list.

Collecting Places for Quantified Token Variables: During the computation
of the prenex normal form, the set of possible places for each token variable
is collected. This will help in the next step of the reduction from Σ2 to Σ1.

For variables quantified universally, their possible places are collected
from triggers. For variables quantified existentially, the possible places are
collected by looking at p(x) conjuncts; if the formula is not a conjunction,

CHAPTER 6. CHECKING SATISFIABILITY FOR CML 60

the full set of places is considered. A new data structure quant ty is de-
fined to store this useful information.

Let’s note that for variables quantified universally, we don’t look
through the whole formula for implications to collect places, we only look
in the triggers. The, the set of places we obtain it‘s an over-approximation
of the exact result. However, it allows to make a significant optimization.

6.4.3 Reduction from Σ2 to Σ1

At this point, we have a closed formula in Σ2 in prenex normal form ready
to be reduced:

ϕ = ∃~x. ∃~z. ∀~y. φ

The, we have to map all token variables quantified universally ~y into token
variables quantified existentially ~x. The optimization we propose is to map
only variables which are located at the same place. The collection of the set
of places for each variable is done during the prenex normal form.

Formally, the mapping is done using a set of substitution σ which is
consistent with the localization of tokens. Moreover, in order to reduce the
number of traversals of the formula built, its sub-formulas p(x) are simpli-
fied to true or false, depending on the localization considered for ~x:

ϕ = ∃~x. ∃~z..
∧

σ∈[~y→~x]p

φ[σ][~x→ ~p]

Let’s consider a formula of the Reader-Writer lock example to reduce,
with the following quantified token variables (we mention for each variable
its location):

• Existential quantification: u:rw; up:rw; lp:rw; tp:w2; l:rw

• Universal quantification: t:r3; r:r2,r3; w:w2,w3; lw:rw; u: rw; up: rw

where u, up, lp, tp, l, t, rw, lw are token variables, and
rw, w2, r2, r3, w2, w3 are places.

Taking this localization information into consideration, we remark that:

• It is not consistent to map variable lw on tp, since places(lp) ∩
places(tp) = ∅.

• Since places(t) ∩ places(u, up, lp, lr) = ∅, only one mapping is con-
sistent for t, i.e., the one to tp.

Then, the algorithm implemented for the reduction is the following:

1. Build two mappings:

CHAPTER 6. CHECKING SATISFIABILITY FOR CML 61

(a) exmap: p → { set of token variables quantified existentially in
p} which associates to each place p the set of token variables
quantified existentially and localized in p. For example, rw →
{u, up, lp, lr}

(b) allmap: p → { set of token variables quantified universally in
p} which associates to each place p the set of token variables
quantified universally and in localized in p. Example, rw→ {lw,
u, up}

2. Build a partial substitution (list of pairs) σ1 ∈ [~y′ → ~x] such that at
most one choice is possible for each variable in ~y′ ⊆ ~y, i.e., quanti-
fied universally. Then, substitution σ1 does the mapping for universal
variables which have only one consistent choice w.r.t. localization. It
is easily computed by considering places p such that allmap(p) is not
empty and exmap(p) has at most an element.

3. Apply σ1 on each predicate of the list of predicates and simplify fol-
lowing the localization chosen. A new list of predicates is produced.

4. For the variables quantified universally which don’t have a unique
mapping, build a list of substitutions Lσ2 to variables quantified exis-
tentially localized in the same place.

5. Apply each substitution σ2 ∈ Lσ2 on each formula of the list of for-
mulas and simplify sub-formulas p(x) according to the localization.

6.4.4 Calling Yices for Σ1

The last step to do is to print the formulas obtained into a file in the SMTlib
format and to call Yices. Recall (from section 5.6) that, in order to prove
that the invariant is inductive, all the formulas obtained have to be checked
for unsatisfiability since they all belongs to a disjunction.

Then, for each formula a query is generated to the solver and the result
is monitored:

• If the result is “unsat”, it means that the sub-formula checked is un-
sat, but we have to continue to check that there is not another satisfi-
able formula.

• If the result is “sat”, it means that the disjunction checked is satisfi-
able, then we interrupt all the process of invariant checking. This is
done by raising an exception.

CHAPTER 6. CHECKING SATISFIABILITY FOR CML 62

• If the result is “unknown”, it means that the SMT-solver is not power-
ful enough to solve this problem and the reduction from Σ1 to Σ0 shall
be done. In our experiments with Yices, we don’t find such formulas.

6.5 Experimental Results

The results of the implementation of the verification system for CPN were
tested using the Reader-Writer lock example as described in [11]. The
results obtained are the following: 25 queries are generated for Yices; each
query has a size varying from 65 to 566 lines with a total of 5218 lines for
the 25.

Yices was able to solve all of them, but as there are still some bugs,
Yices answers SAT when it should answer UNSAT.

The time of execution for the example of the Reader-Writer lock on the
4GHZ, bi-processor, Pentium V is of 0,697sec.

The results are very promising. We keep on fixing the bugs and on trying
the verifying system on other examples.

6.6 Conclusion

We presented in this chapter the last step for the invariant checking which is
the satisfiability checking of the formulas obtained in the previous chapter.
For this, these Σ2 formulas need to be reduced into Σ0 formulas which can
be solved by the existing solvers. However, due to the improvement of
techniques in the SMT-solvers field, for example with Yices, we can stop
the reduction to a subset of Σ1 formulas.

Besides the reduction, we presented some necessary work done: (1) the
renaming of quantified variables in formulas and (2) the building of the
prenex normal form of formulas in the fragment Σ2.

Chapter 7

Conclusion and Perspectives

In [11] is proposed a generic framework for reasoning about parametrized
and dynamic networks of concurrent processes which can manipulate (local
and global) variables over infinite data domains. The framework consists of
the expressive model CPN, and of the first order logic CML.

The purpose of this work is to build an efficient verifying system for
CPN. This has been done using the verification system W to avoid heavy
development of parser and type-checker, by using the ones provided by the
verification system W. We also benefit from the general specification of
the color logic allowed by W and the SMT solver Yices that he supports.

Several techniques are adopted to make efficient computations, starting
with a CNF simple form of invariants, and by taking into account the places
associated to each subinvariant. As a result, small SAT formulas in Σ2 are
generated to check the invariant introduced.

Hereafter, the formulas are reduced into Σ1 using also some optimization
techniques. The resulted formulas can be given directly to Yices to decide
of their satifiability.

The system built as a result for this work was applied to the reader writer
example and gave satisfying results.

This work has several perspectives. One of them is improve the existing
system and to apply it to other examples.

[11] are working on another system of verification, which is an exten-
sion of CPN. This new system considers different data domains in order to
deal with other classes of systems such as multithreaded programs where
each process (thread) has an unbounded stack (due to procedure calls).
Building a new verifying system, or improving the existing one, to take
into account the new verification system defined by [11] can be considered
as another important perspective of our work.

63

Bibliography

[1] The free encyclopedia. http://www.wikipedia.org/.

[2] The objective caml language. http://caml.inria.fr/.

[3] Rfc 3208. http://www.javvin.com/protocol/rfc3208.pdf.

[4] The why verification tool. http://why.lri.fr/.

[5] Yices: An SMT solver. http://yices.csl.sri.com/.

[6] N. Amla, R. Kurshan, K. McMillan, and R. Medel. Experimental
Analysis of Different Techniques for Bounded Model Checking. In
Hubert Garavel and John Hatcliff, editors, Proceedings of the 9th In-
ternational Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 2619 of Lecture Notes in
Computer Science, pages 34–48. Springer, April 2003.

[7] André Arnold and Irène Guessarian. Mathematics for Computer Sci-
ence. Prentice-Hall, Masson. Prentice-Hall, Masson, 1996.

[8] Roberto J. Bayardo and Robert C. Schrag. Using CSP lookback tech-
niques to solve real-world SAT instances. In Proceedings of the Na-
tional Conference on Artificial Intelligence(AAAI), pages 203–208,
July 1997.

[9] A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties
of a PowerPC microprocessor using symbolic model checking without
BDDs. In Nicolas Halbwachs and Doron Peled, editors, Proceedings
of the 11th International Conference on Computer Aided Verification
(CAV), volume 1633 of Lecture Notes in Computer Science, pages 60–
71. Springer, July 1999.

[10] P. Bjesse, T. Leonard, and A. Mokkedem. Finding Bugs in an Alpha
Microprocessor Using Satisfiability Solvers. In G´erard Berry, Hu-
bert Comon, and Alain Finkel, editors, Proceedings of the 13th Inter-
national Conference on Computer Aided Verification (CAV), volume

64

BIBLIOGRAPHY 65

2102 of Lecture Notes in Computer Science, pages 454–464. Springer,
July 2001.

[11] A. Bouajjani, Y. Jurski, and M. Sighireanu. A generic framework
for reasoning about dynamic networks of infinite-state processes. In
O. Grumberg and M. Huth, editors, Proceedings of the 13rd In-
tern. Conf. on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’07), volume 4424 of LNCS, pages 690–705.
Springer-Verlag, March 2007.

[12] H. B¨uning and T. Lettmann. Propositional logic: Deduction and Al-
gorithms, volume 48 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1999.

[13] F. Copti, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M. Y. Vardi. Benefits of Bounded Model Checking in an Industrial
Setting. In G´erard Berry, Hubert Comon, and Alain Finkel, editors,
Proceedings of the 13th International Conference on Computer Aided
Verification (CAV), volume 2102 of Lecture Notes in Computer Sci-
ence, pages 436–453. Springer, July 2001.

[14] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem proving. Communications of the ACM, 5(7):394–
397, July 1962.

[15] Martin Davis and Hilary Putnam. A computing procedure for quan-
tification theory. Journal of the ACM, 7(3):201–215, July 1960.

[16] L. de Moura. System Description : Yices 0.1.

[17] J. Filliatre. Why: a multi-language multi-prover verification condition
generator.

[18] J. Filliatre. Why: an Intermediate Language for Program Verification,
2007.

[19] J. Filliatre. The WHY Verification Tool: Tutorial and Reference Man-
ual, version 2.03 edition, apr 2007.

[20] J. Filliatre and C. Marché. The why/krakatoa/caduceus platform for
deductive program verification (CAV07). jul 2007.

[21] C. Flanagan, S.N. Freund, and S. Qadeer. Thread-modular verification
for shared-memory programs. In ESOP, pages 262–277, 2002.

[22] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness. W. H. Freeman, San
Francisco, 1979.

BIBLIOGRAPHY 66

[23] E. Goldberg and Y. Novikov. Berkmin: a Fast and Robust Sat-Solver.
In Proceedings of Design Automation and Test in Europe (DATE),
pages 142–149, March 2002.

[24] C. Marché, C. Paulin, and X.Urbain. The Krakatoa Tool
for JML/Java Program Certification. Submitted to JLAB.
http://www.lri.fr/ marche/Krakatoa/.

[25] Jo?ao P. Marques-Silva and Karem A. Sakallah. GRASP: A Search
Algorithm for Propositional Satisfiability. IEEE Transactions on Com-
puters, 48(5):506–521, may 1999.

[26] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In Proceedings of the 38th De-
sign Automation Conference (DAC), pages 530–535, June 2001.

[27] William F. Ogden, Joseph E. Hollingsworth, Joan Krone, Murali
Sitaraman, and Bruce W. Weide. The resolve software verification
vision.

[28] M.R. Prasad, A. Biere, and A. Gupta. A survey of recent advances in
SAT-based formal verification. 2005.

[29] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise Strategies for
Improving Local Search. In Proceedings of the 12th National Confer-
ence on Artificial Intelligence(AAAI), pages 337–343, July 1994.

[30] Bart Selman, Hector J. Levesque, and David Mitchell. A New Method
for Solving Hard Satisfiability Problems. In Proceedings of the 10th
National Conference on Artificial Intelligence(AAAI), pages 440–446,
July 1992.

[31] H. Zhang. SATO: An Efficient Propositional Prover. In Proceedings of
the 14th International Conference on Automated Deduction (CADE),
volume 1249, pages 272–275. Springer, July 1997.

[32] L. Zhang and S. Malik. The Quest for Efficient Boolean Satisfiability
Solvers. In Ed Brinksma and Kim G. Larsen, editors, Proceedings
of the 14th International Conference on Computer Aided Verification
(CAV), volume 2404 of Lecture Notes in Computer Science, pages 17–
36. Springer, July 2002.

