N° d'ordre : 18/2010-M/PH REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE HOUARI BOUMEDIENE USTHB / ALGER FACULTE DE PHYSIQUE

Mémoire

Présenté pour l'obtention du diplôme de MAGISTER

EN: PHYSIQUE

Spécialité : Physique Théorique des Basses et Moyennes Energies

Par HAMMACHE Faiza Sujet

Contribution à l'étude de l'appariement isovectoriel pour des systèmes possédant un nombre impair de particules

Soutenu le 03/07/2010 devant le jury composé de

Mme . A. ABABOU Mlle. N-H. ALLAL Mme . K. KHALLAL Mlle. N. BENHAMOUDA Mr. O. CHERBAL Professeur Professeur Professeur Maître de conférences/A Maître de conférences/B U.S.T.H.B. Présidente
U.S.T.H.B. Directrice de thèse
U.S.T.H.B. Examinatrice
U.S.T.H.B. Examinatrice
U.S.T.H.B. Invité

Table des matières

Introduction

1 Traitement de l'appariement isovectoriel dans le cas d'un système pair-pair par l					
	méthode de linéarisation				
	1.1	Introd	luction	10	
	1.2	Hamil	tonien du système	11	
	1.3	Diago	nalisation	12	
		1.3.1	Méthode de linéarisation	12	
		1.3.2	Diagonalisation	16	
		1.3.3	Transformation de Bogoliubov - Valatin	18	
	1.4	Repré	sentation quasiparticules	19	
		1.4.1	Expression de l'hamiltonien H'	19	
		1.4.2	Rediagonalisation de l'hamiltonien H - Nouvelle transformation de Bogoliubov-		
			Valatin	20	
	1.5	Equat	ions du gap	22	
	1.6	Etats	BCS :	22	
		1.6.1	Etat fondamental :	22	
		1.6.2	Etat à une quasiparticule	24	
		1.6.3	Etat à deux quasiparticules	25	
	1.7	Energ	ie du système	26	
	1.8	Limite	e lorsque $\Delta_{np} \to 0$	26	
2	Tra	itemer	nt de l'appariement isovectoriel dans le cas d'un système pair-pair par le	е	
	théo	orème	de Wick	29	
	2.1	Introd	luction	29	

 $\mathbf{7}$

	2.2	Diagonalisation de l'hamiltonien	30
		2.2.1 Théorème de Wick	30
		2.2.2 Diagonalisation	32
	2.3	Représentation quasiparticules	33
		2.3.1 Transformation de Bogoliubov - Valatin	33
	2.4	Equations du gap	35
	2.5	Etats BCS	36
		2.5.1 Etat fondamental	36
		2.5.2 Etat à une quasiparticule	36
		2.5.3 Etat à deux quasiparticules	37
	2.6	Energie du système	37
	2.7	Limite lorsque $\Delta_{np} \to 0$	38
3	Tra	itement de l'appariement isovectoriel dans le cas d'un système possédant un	
	non	bre impair de particules par la méthode de linéarisation	40
	3.1	Introduction	40
	3.2	Hamiltonien du système	41
	3.3	Diagonalisation	42
		3.3.1 Méthode de linéarisation	42
		3.3.2 Transformation de Bogoliubov - Valatin	46
	3.4	Représentation quasiparticules	47
		3.4.1 Expression de l'hamiltonien H	47
		3.4.2 Rediagonalisation de l'hamiltonien H - Nouvelle transformation de Bogoliubov-	
		Valatin	49
	3.5	Fonction d'onde	50
	3.6	Equations du gap	52
	3.7	Energie du système	53
	3.8	Limite lorsque $\Delta_{np}^{(KT)} \to 0$	53
4	\mathbf{R} és	ultats numériques et discussion	57
	4.1	Modèle à un niveau	57
		4.1.1 Paramètres du gap et énergie BCS	57
			00

	4.2.1	Calcul des constantes d'appariement	63
	4.2.2	Expressions de G_{pp} , G_{nn} et G_{np}	81
4.3	Energ	ies de séparation d'un ou deux protons pour les noyaux des terres rares riches en	
	protor	15	88
	4.3.1	Energies de séparation de deux protons	89
	4.3.2	Energies de séparation d'un proton	92
a 1			100
Conclu	Conclusion 103		

Table des figures

4-1	Variations des différents paramètres du gap Δ_{pp}, Δ_{nn} et Δ_{np} en fonction du rapport	
	G_{np}/G_{pp} dans le cadre du modèle à un niveau pour un système pair-pair (Z=4, N=8,	
	$\Omega=12)$	58
4-2	Variation de l'énergie BCS en fonction du rapport G_{np}/G_{pp} dans le cadre du modèle à	
	un niveau pour un système pair-pair (Z=4, N=8, $\Omega = 12$)	59
4-3	Vairation des différents paramètres du gap Δ_{pp}, Δ_{nn} et Δ_{np} en fonction du rapport	
	G_{np}/G_{pp} dans le cadre du modèle à un niveau pour un système possédant un nombre	
	impair de particules (Z=4, N=7, $\Omega = 12$) (a), (Z=5, N=8, $\Omega = 12$) (b)	60
4-4	Variation de l'énergie BCS en fonction du rapport G_{np}/G_{pp} dans le cadre du modèle	
	à un niveau pour un système possédant un nombre impair de particules (Z=4, N=7,	
	$\Omega = 12$ (a) (Z=5, N=8, $\Omega = 12$)(b)	61
4-5	Formes caractéristiques des noyaux pour différentes valeurs de ε_2 et ε_4 (d'après R. W.	
	Hasse and W. D. Myers [34])	62
4-6	Formes caractéristiques des noyaux pour différentes valeurs de c et h (les traits pleins	
	correspondent à $\alpha = 0$ et les pointillés correspondent à $\alpha \neq 0$)(d'après R. W. Hasse and	
	W. D. Myers [34])	63
4-7	Variation des produits $AG_{tt'}$ en fonction de I . Les lignes continues correspondent aux	
	expressions (4-7), (4-8) et (4-9). Les points (\blacksquare) ont été déduits des valeurs expérimentales.	82
4-8	Variation de G_{pp} , G_{nn} et G_{np} en fonction de $\frac{1}{A}$ dans le cas des noyaux pair-pairs. Les	
	lignes continues correspondent aux expressions (4-10), (4-11) et (4-12). Les points (\blacksquare)	
	ont été déduits des valeurs expérimentales.	84
4-9	Variation de G_{pp} , G_{nn} et G_{np} en fonction de $\frac{1}{A}$ dans le cas des noyaux impairs. Les	
	lignes continues correspondent aux expressions (4-13), (4-14) et (4-15). Les points (\blacksquare)	
	ont été déduits des valeurs expérimentales.	85

Liste des tableaux

4.1	Valeurs du paramètre d'élongation c (colonne 5), d'étranglement h (colonne 6) et valeurs	
	expérimentales des paramètres du gap \triangle_{pp} (colonne 7), \triangle_{nn} (colonne 8) et \triangle_{np} (colonne	
	9) lorsqu'elles existent pour les noyaux tels que (N-Z)<8	66
4.2	Valeurs des constantes d'appariement G_{pp}^{\exp} (colonne 5), G_{nn}^{\exp} (colonne 6) et G_{np}^{\exp} (Co-	
	lonne 7)	75
4.3	Comparaison entre les valeurs des constantes d'appariement déduites des valeurs expé-	
	rimentales des $\triangle_{tt'}$ et celles obtenues par fitage (expressions (4-10) à (4-12) ou (4-13) à	
	(4-15)) pour quelques noyaux	86
4.4	Comparaison entre les valeurs expérimentales du paramètre du gap \triangle_{pp} (colonne 2)	
	et les valeurs obtenues à partir des différentes expressions des constantes d'apparie-	
	ment : présent travail (colonne 3) et refs $\left[20\right]$ et $\left[23\right]$ (colonne 4). Les écarts relatifs	
	correspondants (définis par $\triangle_{tt'} = ((\triangle_{tt'}^{exp} - \triangle_{tt'})/(\triangle_{tt'}^{exp})))$ sont également donnés dans	
	les colonnes 5 à 6	87
4.5	Même chose que le tableau (4-4) pour \triangle_{nn}	88
4.6	Comparaison entre les valeurs expérimentales du paramètre du gap \triangle_{np} (colonne 2) et	
	les valeurs obtenues à partir des différentes expressions des constantes d'appariement :	
	présent travail (colonne 3) et refs $[23]$ (colonne 4) et $[20]$ (colonne 5). Les écarts relatifs	
	correspondants (définis par $\triangle_{tt'} = ((\triangle_{tt'}^{exp} - \triangle_{tt'})/(\triangle_{tt'}^{exp})))$ sont également donnés dans	
	les colonnes 6 à 8	88
4.7	Comparaison des valeurs de l'énergie de séparation de deux protons pour quelques	
	noyaux pair-pairs choisis à titre d'exemple obtenues avec (colonne 2) et sans (colonne $% \mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}($	
	3) prise en compte de l'appariement np et celles de l'expérience (colonne 4). Nous avons	
	reporté l'écart relatif δS^{exp}_{2p} avec (colonne 5) et sans (colonne 6) appariement np . Nous	
	avons également reporté l'écart relatif δS^{th}_{2p} entre les deux méthodes (colonne 7)	95

4.8	Même chose que le tableau	(4-7) pour	quelques noyaux	impairs choisis à	titre d'exemple.	96
	1		1 1 1	1	1	

- 4.11 Comparaison des valeurs de l'énergie de séparation d'un proton pour quelques noyaux pair-pairs choisis à titre d'exemple obtenues avec (colonne 2) et sans (colonne 3) prise en compte de l'appariement np et celles de l'expérience (colonne 4). Nous avons reporté l'écart relatif δS_p^{exp} avec (colonne 5) et sans (colonne 6) appariement np. Nous avons également reporté l'écart relatif δS_p^{th} entre les deux méthodes (colonne 7). 99
- 4.12 Même chose que le tableau (4-11) pour quelques noyaux impairs choisis à titres d'exemple.100

4.13	Comparaison des valeurs de l'énergie de séparation d'un proton pour des noyaux pair-	
	pairs riches en protons de la région des terres rares avec (colonne 2) et sans (colonne 3)	
	prise en compte de l'appariemennt np et celles de l'expérience (colonne 4). Nous avons	
	également reporté l'écart relatif δS_p^{th} (colonne 5)	101
4.14	Même chose que le tableau (4-13) pour quelques noyaux impairs riches en protons de	
	la région des terres rares	102

Introduction

Au cours des dernières années, l'étude des noyaux exotiques a connu un important développement que ce soit dans la région des noyaux riches en protons ou des noyaux riches en neutrons. Ceci est dû aux progrès rapides sur le plan expérimental concernant en particulier les faisceaux d'ions radioactifs (Radioactive Ion Beam) et une nouvelle génération de détecteurs [1].

Parmi les noyaux exotiques, les noyaux riches en protons (tels que N est voisin de Z) montrent beaucoup de propriétés structurales intéressantes qui sont importantes aussi bien pour la physique nucléaire que pour l'astrophysique. Ils jouent en effet un rôle important dans la nucléosynthèse explosive [2].

La structure et les modes de désintégration des noyaux au voisinage de la ligne de stabilité des protons (ou "drip-line" protons) représentent un des secteurs les plus actifs des études expérimentales et théoriques des noyaux avec des valeurs extrêmes de l'isospin [3,4]. Dans ce contexte, les corrélations d'appariement neutron-proton (np) restent un sujet d'un grand intérêt car on s'attend à ce qu'elles jouent un rôle important dans la structure des noyaux tels que N est voisin de Z [5–7]. En effet, dans ces noyaux, riches en protons, les neutrons et les protons occupent les mêmes couches et les niveaux de Fermi (au voisinage desquels l'appariement est important) sont proches. Dans ce cas les corrélations d'appariement np jouent un rôle significatif [7–16]. Par contre, pour les noyaux les plus lourds, dans lesquels existe un grand excès de neutrons (qui fait que les niveaux de Fermi sont éloignés), les corrélations d'appariement np sont négligeables.

L'effet de l'appariement isoscalaire (T=0), qui caractérise uniquement l'appariement np, et isovectoriel (T=1), qui inclut en plus l'appariement proton-proton (pp) et neutron-neutron (nn), a été étudié dans divers contextes. Les méthodes les plus couramment utilisées sont alors l'approximation de la phase aléatoire (ou Random Phase Approximation (RPA)) [17,18] et la théorie BCS (Bardeen-Cooper-Schrieffer) [5,19,20]. Toutefois, la fonction d'onde BCS ne permet de décrire que des systèmes pair-pairs, ce qui explique que la majorité des études théoriques concerne ce type de systèmes. Ce problème, qui existe également dans le cas de l'appariement entre particules identiques, est résolu dans le cadre de la théorie BCS usuelle en se donnant une fonction d'onde d'essai à l'aide de la technique du niveau bloqué [21].

Un des rares travaux concernant les systèmes impairs est celui de Engel et al. [2] qui ont utilisé un modèle simple basé sur le groupe SO(5). Pour sa part, Chasman [6] a étudié l'effet de l'appariement np pour des noyaux impair-impairs tels que N=Z par la méthode variationnelle dans le cadre du modèle BCS. Citons également Kaneko et Hasegawa [22] qui ont étudié l'effet des corrélations d'appariement np sous leurs deux formes : isoscalaire (T=0) et isovectorielle (T=1) dans le cas des noyaux tels que N=Z (pair-pairs et impair-impairs) par le formalisme de la théorie BCS. Satula et Wyss [23] ont généralisé la méthode précédente en tenant compte des fluctuations du nombre de particules à l'aide de la méthode approximative de Lipkin- Nogami.

Par ailleurs, afin d'améliorer notre connaissance des noyaux exotiques et localiser la position des "drip lines", il est nécessaire de calculer les énergies de séparation d'un ou deux protons et d'un ou deux neutrons.

La "drip line" proton a été presque entièrement tracée expérimentalement jusqu'à Z=21 [3,4]. Sur le plan théorique, plusieurs études ont été consacrées à la prévision des positions de cette ligne limite en utilisant diverses méthodes. Entre autres, la théorie du champ moyen relativiste (Relativistic Mean Field (RMF)) a été appliquée par Lalazissis et al. [4] pour étudier les émetteurs de protons. Dans les refs [3,24] les "drip line"proton pour $31 \le Z \le 49$ et $51 \le Z \le 73$ ont été également étudiées dans le cadre de la théorie d'Hartree-Bogoliubov Relativiste (RHB). L'intérêt se porte également sur les noyaux impairs qui décroissent par émission d'un proton issu d'une résonance étroite [25].

Concernant la position de ligne limite de deux protons Vretenar et al. [26] ont calculé l'énergie de séparation de deux protons en utilisant également la théorie RHB en décrivant les corrélations d'appariement par l'interaction de Gogny. Pour leur part, Lalazissis et Ramman [27] ont utilisé la RMF en incluant les corrélations d'appariement au moyen du formalisme BCS.

Cependant, les études citées précédemment tiennent compte seulement de l'appariement entre particules identiques. Ceci explique par exemple pourquoi les prévisions de la RHB sous-estiment les énergies de séparation de deux protons pour les noyaux tels que N=Z [28]. En effet, comme nous l'avons souligné précédemment, pour ces noyaux, les corrélations d'appariement np doivent nécessairement être prises en considération. Pour leur part, Kerrouchi et al. [7] ont calculé l'énergie de séparation de deux protons pour des noyaux de la région des terres rares riches en protons. Ils ont non seulement inclus les corrélations d'appariement np de type isovectoriel, mais également effectué une projection sur le bon nombre de particules. Toutefois leur étude ne concerne que des noyaux pair-pairs.

Le but du présent travail est d'étudier l'effet de l'appariement np, de type isovectoriel, sur des systèmes possédant un nombre impair de particules, dans le cadre de la théorie BCS. Une fois le formalisme établi, il sera appliqué à l'énergie de séparation d'un ou deux protons aussi bien pour des systèmes pair-pairs que pour des systèmes impairs.

Le présent travail est organisé de la manière suivante : dans un souci de cohérence, le premier chapitre sera consacré au rappel du traitement de l'appariement np de type isovectoriel, dans le cadre de l'approximation BCS, dans le cas des systèmes pair-pairs, à l'aide de la méthode de linéarisation. Les équations du gap, les expressions de la fonction d'onde du système et de l'énergie du fondamental seront établies. Nous montrerons au second chapitre que le traitement de ce type d'appariement peut également se faire à l'aide du théorème de Wick.

Le chapitre trois est consacré au traitement de l'appariement np de type isovectoriel dans le cas des systèmes possédant un nombre impair de particules. Nous nous proposons pour cela de généraliser la technique du niveau bloqué. Des expressions de l'hamiltonien du système et de la fonction d'onde correspondante seront proposées. Les équations du gap ainsi que l'expression de l'énergie du système seront établies.

Les résultats numériques sont présentés et discutés au chapitre quatre. Ils concernent aussi bien le modèle schématique à un niveau que des cas réalistes traités dans le cadre du modèle de Woods-Saxon.

Les principaux résultats sont résumés dans la conclusion générale.

Chapitre 1

Traitement de l'appariement isovectoriel dans le cas d'un système pair-pair par la méthode de linéarisation

1.1 Introduction

Pendant ces dernières années, les corrélations d'appariement neutron-proton (np) ont été un défi important en théorie de la structure des noyaux tels que N $\simeq Z$ [5,7,20]. Pour ces noyaux les neutrons et les protons occupent les mêmes couches. Dans ce cas l'appariement np a en principe la même importance que celle de l'appariement entre particules identiques [7–13,15,16,20], tandis que pour les noyaux les plus lourds, les niveaux de Fermi des systèmes protons et neutrons sont fort distants et dans ce cas l'appariement np est négligeable [12,16,20].

L'appariement des nucléons peut exister sous deux formes : la forme isoscalaire (T = 0) tenant compte seulement de l'appariement neutron-proton et la forme isovectorielle (T = 1) qui tient compte en plus de l'appariement proton-proton et neutron-neutron [5,7,12,16]. Le principe de Pauli n'interdit pas qu'un neutron et un proton occupent le même niveau.

Le but du présent chapitre est de rappeler le traitement de l'appariement np de type isovectoriel (T = 1), dans le cas des systèmes pair-pairs dans le cadre de l'approximation BCS [12, 16]. L'hamiltonien du système est considéré dans sa forme la plus générale et sera diagonalisé approximativement par la méthode de linéarisation. Cette dernière nécessite une rediagonalisation de l'hamiltonien qui sera par la suite exprimé dans la nouvelle représentation des quasiparticules. Les équations du gap, la fonction d'onde et l'énergie de l'état fondamental dans le cas des systèmes pair-pairs seront établies.

1.2 Hamiltonien du système

Soit un système de masse A, constitué de N neutrons et Z protons. Dans le formalisme du spin isotopique et de la seconde quantification, l'hamiltonien du système s'écrit sous sa forme la plus générale [12, 15, 16] :

$$H = \sum_{\nu>0,t} \varepsilon_{\nu t} \left(a_{\nu t}^{+} a_{\nu t} + a_{\widetilde{\nu} t}^{+} a_{\widetilde{\nu} t} \right) - \frac{1}{2} \sum_{tt'} G_{tt'}^{T=1} \sum_{\nu,\mu>0} \left(a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t'} a_{\mu t} + a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t} a_{\mu t'} \right) - \frac{1}{2} \sum_{tt'} G_{tt'}^{T=0} \sum_{\nu,\mu>0} \left(a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t'} a_{\mu t} - a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t} a_{\mu t'} \right)$$
(1.1)

où:

t est l'indice correspondant à la composante du spin isotopique (t=p,n)

 $a_{\nu t}^+$ et $a_{\nu t}$ représentent respectivement les opérateurs de création et d'annihilation de la particule dans l'état $|\nu t\rangle$ d'énergie $\varepsilon_{\nu t}$, et qui vérifient les relations d'anticommutation de fermions :

$$\begin{cases} a_{\nu t}^{+}, a_{\mu t'}^{+} \\ a_{\nu t}^{+}, a_{\mu t'} \end{cases} = \begin{cases} a_{\nu t}, a_{\mu t'} \\ \delta_{\nu \mu} \delta_{t t'} \end{cases} = \delta_{\nu \mu} \delta_{t t'}$$

 $a_{\widetilde{\nu}t}^+$ et $a_{\widetilde{\nu}t}$ représentent respectivement les opérateurs de création et d'annihilation de l'état $|\widetilde{\nu}t\rangle$ renversé par rapport au sens du temps de l'état $|\nu t\rangle$.

 $G_{tt'}^{T=1}$ et $G_{tt'}^{T=0}$ sont des constantes caractérisant l'intensité de la force d'appariement dans les cas isovectoriel et isoscalaire respectivement.

Dans ce qui suit, nous nous restreindrons au cas isovectoriel et nous noterons $G_{tt'}^{T=1} = G_{tt'}$. L'hamiltonien du système s'écrit alors :

$$H = \sum_{\nu > 0,t} \varepsilon_{\nu t} \left(a_{\nu t}^{+} a_{\nu t} + a_{\widetilde{\nu} t}^{+} a_{\widetilde{\nu} t} \right) - \frac{1}{2} \sum_{tt'} G_{tt'} \sum_{\nu,\mu > 0} \left(a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t'} a_{\mu t} + a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t} a_{\mu t'} \right)$$
(1.2)

La diagonalisation exacte de cet hamiltonien n'est possible que dans des cas très simples, c'est pourquoi

on se contente d'un traitement approximatif. On introduit alors l'hamiltonien auxiliaire :

$$H' = H - \sum_{t=n,p} \lambda_t N_t \tag{1.3}$$

où λ_p et λ_n sont des paramètres qui correspondent aux potentiels chimiques et N_p, N_n représentent respectivement les opérateurs nombre de protons et nombre de neutrons donnés par :

$$N_t = \sum_{\nu>0} \left(a_{\nu t}^+ a_{\nu t} + a_{\widetilde{\nu} t}^+ a_{\widetilde{\nu} t} \right) \quad , \quad t=n,p$$
(1.4)

de manière à imposer la conservation en moyenne du nombre de protons et du nombre de neutrons.

Compte tenu de (1.2) et (1.4), H' s'écrit :

$$H' = \sum_{\nu > 0,t} \tilde{\varepsilon}_{\nu t} \left(a_{\nu t}^{+} a_{\nu t} + a_{\tilde{\nu} t}^{+} a_{\tilde{\nu} t} \right) - \frac{1}{2} \sum_{tt'} G_{tt'} \sum_{\nu,\mu > 0} \left(a_{\nu t}^{+} a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t'} a_{\mu t} + a_{\nu t}^{+} a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t} a_{\mu t'} \right)$$
(1.5)

où :

$$\widetilde{\varepsilon}_{\nu t} = \varepsilon_{\nu t} - \lambda_t$$

1.3 Diagonalisation

1.3.1 Méthode de linéarisation

Principe de la méthode

Nous allons dans ce qui suit brièvement rappeler le principe de la méthode de linéarisation

Si H est l'hamiltonien du système et a⁺ un opérateur qui satisfait à la relation :

$$\left[H,a^+\right] = \omega a^+ \tag{1.6}$$

où ω est un nombre réel positif, alors , pour tout $|\Psi\rangle$ état propre de H d'énergie E, il existe un autre état propre de H, $|\Psi'\rangle$ d'énergie E' tel que :

$$\begin{cases} |\Psi'\rangle = a^+ |\Psi\rangle \\ E' = E + \omega \end{cases}$$
(1.7)

De même, puisque $[H, a] = -\omega a$, il existe en général un troisième état $|\Psi''\rangle$ d'énergie E'', tel que :

$$\begin{cases} |\Psi''\rangle = a |\Psi\rangle \\ E'' = E - \omega \end{cases}$$
(1.8)

Dans le cas où $|\Psi\rangle$ est l'état fondamental de H, alors $|\Psi''\rangle=0$

De façon générale, s'il existe un ensemble d'opérateurs, a_i^+ , i=1,...,n (n entier quelconque), tels que :

$$[H, a_i^+] = \sum_{j=1}^n P_{ij} a_j^+ \quad , \quad i=1,...,n$$
 (1.9)

où les P_{ij} sont les éléments d'une matrice P de dimension $n \times n$, on peut alors trouver un ensemble d'opérateurs A_k^+ , k = 1, ..., n qui satisfait à la relation (1.6), c'est à dire :

$$[H, A_k^+] = \omega_k A_k^+$$
, k=1,...,n (1.10)

Ces opérateurs sont combinaisons linéaires des \mathbf{a}_i^+

$$A_k^+ = \sum_{i=1}^n x_i^k a_i^+ \quad , \quad k=1,...,n$$
 (1.11)

où les x_i^k sont les composantes d'un vecteur X_k

En utilisant les relations (1.9) et (1.11), on trouve que le commutateur $[H, A_k^+]$ peut se mettre aussi sous la forme :

$$[H, A_k^+] = \sum_{ij=1}^n P_{ij} x_i^k a_j^+$$
(1.12)

D'autre part, en utilisant les relations (1.10) et (1.11) on trouve :

$$[H, A_k^+] = \omega_k \sum_{i=1}^n x_i^k a_i^+ , \quad k=1,...,n$$
 (1.13)

Donc en égalant (1.12) et (1.13) on trouve que :

$$\sum_{ij=1}^{n} P_{ij} x_i^k a_i^+ = \omega_k \sum_{i=1}^{n} x_i^k a_i^+$$
(1.14)

Pour que cette égalité soit vérifiée il suffit que :

$$\sum_{ij=1}^{n} (P_{ij} - \omega_k \delta_{li}) x_i^k = 0 \qquad \forall \ l = 1, ..., n$$
(1.15)

ce qui devient en notation matricielle :

$$(P - \omega_k I) X_k = 0 \tag{1.16}$$

Donc les énergies ω_k sont les valeurs propres de la matrice énergie d'excitation.

 $P = (P_{ij})_{ij=1,...,n} \text{ et les } \mathbf{X}_k = (x_i^k)_{i=1,...n} \text{ sont les vecteurs propres correspondants.}$ Si $|\Psi\rangle$ est l'état fondamental, alors $A_k^+ |\Psi\rangle$ est l'état excité d'énergie $E_k = E_0 + \omega_k$; et $\mathbf{A}_k |\Psi\rangle = 0$.

Linéarisation de l'hamiltonien

L'application de la méthode de linéarisation à l'hamiltonien (1.5) nécessite le calcul des commutateurs suivants :

$$\left[H', a_{jr}^{+}\right] = \widetilde{\varepsilon}_{jr}a_{jr}^{+} - \sum_{t} G_{tr}\sum_{\nu>0} \left(a_{\nu r}^{+}a_{\widetilde{\nu}t}^{+} + a_{\nu t}^{+}a_{\widetilde{\nu}r}^{+}\right)a_{\widetilde{j}t}$$
(1.17)

 et

$$\left[H', a_{\tilde{j}r}\right] = -\widetilde{\varepsilon}_{jr}a_{\tilde{j}r} - \sum_{t} G_{tr} \sum_{\nu > 0} a_{jt}^{+} \left(a_{\tilde{\nu}t}a_{\nu r} + a_{\tilde{\nu}r}a_{\nu t}\right)$$
(1.18)

En appliquant le théorème de Wick, les expressions (1.17) et (1.18) deviennent :

$$\begin{bmatrix} H', a_{jr}^{+} \end{bmatrix} = \widetilde{\varepsilon}_{jr} a_{jr}^{+} - \sum_{t} G_{tr} \sum_{\nu > 0} \begin{bmatrix} a_{\nu r}^{+\sqcap} a_{\widetilde{\nu} t}^{+} a_{\widetilde{j} t}^{-} - a_{\nu r}^{+\sqcap} a_{\widetilde{j} t}^{-} a_{\widetilde{\nu} t}^{+} + a_{\widetilde{\nu} t}^{+\sqcap} a_{\widetilde{j} t}^{-} a_{\nu r}^{+} \\ + a_{\widetilde{\nu} t}^{+\sqcap} a_{\widetilde{j} t}^{-} a_{\nu r}^{+} + a_{\nu t}^{+\sqcap} a_{\widetilde{\nu} r}^{+} a_{\widetilde{j} t}^{-} - a_{\widetilde{\nu} r}^{+\sqcap} a_{\widetilde{j} t}^{-} a_{\nu t}^{+} \\ + : a_{\nu r}^{+} a_{\widetilde{\nu} t}^{+} a_{\widetilde{j} t}^{-} : + : a_{\nu t}^{+} a_{\widetilde{\nu} r}^{+} a_{\widetilde{j} t}^{-} : \end{bmatrix}$$

$$(1.19)$$

 et

$$\begin{bmatrix} H', a_{\tilde{j}r} \end{bmatrix} = -\widetilde{\varepsilon}_{jr}a_{\tilde{j}r} - \sum_{t} G_{tr} \sum_{\nu>0} \left[a_{jt}^{+\sqcap} a_{\tilde{\nu}t} a_{\nu r} - a_{jt}^{+\sqcap} a_{\nu r} a_{\tilde{\nu}t}^{+} + a_{\tilde{\nu}t}^{\sqcap} a_{\nu r} a_{jt}^{+} + a_{jt}^{+\sqcap} a_{\tilde{\nu}r} a_{\nu t} - a_{jt}^{+\sqcap} a_{\nu t} a_{\tilde{\nu}r}^{-} + a_{\tilde{\nu}r}^{\sqcap} a_{\nu t} a_{jt}^{+} + a_{jt}^{+} a_{\tilde{\nu}t} a_{\nu r} : + : a_{jt}^{+} a_{\tilde{\nu}r} a_{\nu t} : \end{bmatrix}$$

$$(1.20)$$

où les notations \sqcap et : : correspondent respectivement à la contraction et au produit normal.

La linéarisation consiste à négliger les produits normaux : $a_{\nu t}^+ a_{\widetilde{\nu} r}^+ a_{\widetilde{j} t}^-$: $, : a_{\nu r}^+ a_{\widetilde{\nu} t}^+ a_{\widetilde{j} t}^-$: $a_{jt}^+ a_{\widetilde{\nu} t} a_{\widetilde{\nu} t} a_{\nu r}$: $a_{t}^+ a_{\widetilde{\nu} t} a_{\widetilde{\nu} t} a_{\nu t}$: dans les expressions (1.19) et (1.20) respectivement. Sachant que :

$$a_{\widetilde{\nu}t}^{+\sqcap} a_{\widetilde{j}t} = a_{\widetilde{\nu}t}^{+\sqcap} a_{\widetilde{\nu}t} \delta_{\nu j}$$
$$a_{\widetilde{\nu}r}^{+\sqcap} a_{\widetilde{j}t} = a_{\widetilde{\nu}r}^{+\sqcap} a_{\widetilde{\nu}t} \delta_{\nu j} \delta_{rt}$$

et si l'on suppose que :

$$a_{\nu r}^{+\sqcap}a_{\widetilde{j}t} = a_{\nu t}^{+\sqcap}a_{\widetilde{j}t} = 0$$
 si j>0

il vient alors :

$$\left[H', a_{jr}^+\right] = \xi_{jr} a_{jr}^+ - \sum_t \Delta_{rt} a_{\tilde{j}t}$$

$$\tag{1.21}$$

 et

$$\left[H', a_{\tilde{j}r}\right] = -\xi_{jr}a_{\tilde{j}r} - \sum_{t} \Delta_{rt}a_{jt}^{+}$$
(1.22)

où nous avons posé :

$$\xi_{jr} = \widetilde{\varepsilon}_{jr} - \sum_{t} G_{tr} \left(1 + \delta_{tr}\right) a_{\widetilde{j}t}^{+\sqcap} a_{\widetilde{j}t}$$
(1.23)

$$\Delta_{rt} = G_{tr} \sum_{\nu > 0} \left(a_{\nu r}^{+\sqcap} a_{\widetilde{\nu}t}^{+} + a_{\nu t}^{+\sqcap} a_{\widetilde{\nu}r}^{+} \right) = G_{tr} \sum_{\nu > 0} \left(a_{\widetilde{\nu}t}^{\sqcap} a_{\nu r} + a_{\widetilde{\nu}r}^{\sqcap} a_{\nu t} \right)$$
(1.24)

Soit, en fonction de la nature des nucléons $(\mathbf{r}, t{=}\mathbf{n}, \mathbf{p})$:

$$\begin{cases} \left[H', a_{\nu p}^{+}\right] = \xi_{\nu p}a_{\nu p}^{+} - \Delta_{pp}a_{\tilde{\nu}p} - \Delta_{np}a_{\tilde{\nu}n} \\ \left[H', a_{\nu n}^{+}\right] = \xi_{\nu n}a_{\nu n}^{+} - \Delta_{np}a_{\tilde{\nu}p} - \Delta_{nn}a_{\tilde{\nu}n} \\ \left[H', a_{\tilde{\nu}p}\right] = -\Delta_{pp}a_{\nu p}^{+} - \xi_{\nu p}a_{\tilde{\nu}p} - \Delta_{np}a_{\nu n}^{+} \\ \left[H', a_{\tilde{\nu}n}\right] = -\Delta_{pn}a_{\nu p}^{+} - \xi_{\nu n}a_{\tilde{\nu}n} - \Delta_{nn}a_{\nu n}^{+} \end{cases}$$

Ce système peut s'écrire sous forme matricielle :

$$\begin{pmatrix} [H', a_{\nu p}^+] \\ [H', a_{\nu n}^+] \\ [H', a_{\widetilde{\nu} p}] \\ [H', a_{\widetilde{\nu} n}] \end{pmatrix} = A_{\nu} \begin{pmatrix} a_{\nu p}^+ \\ a_{\nu n}^+ \\ a_{\widetilde{\nu} p}^- \\ a_{\widetilde{\nu} n}^- \end{pmatrix}$$
(1.25)

où la matrice d'excitation A_ν est définie par :

$$A_{\nu} = \begin{pmatrix} \xi_{\nu p} & 0 & -\Delta_{pp} & -\Delta_{np} \\ 0 & \xi_{\nu n} & -\Delta_{np} & -\Delta_{nn} \\ -\Delta_{pp} & -\Delta_{np} & -\xi_{\nu p} & 0 \\ -\Delta_{pn} & -\Delta_{nn} & 0 & -\xi_{\nu n} \end{pmatrix}$$
(1.26)

1.3.2 Diagonalisation

Les valeurs propres de A_{ν} sont solutions de l'équation bicarrée :

$$\lambda^{4} - \lambda^{2} \left(E_{\nu n}^{2} + E_{\nu p}^{2} + 2\Delta_{np}^{2} \right) + E_{\nu n}^{2} E_{\nu p}^{2} + \Delta_{np}^{4} + 2\Delta_{np}^{2} \left(\xi_{\nu p} \xi_{\nu n} - \Delta_{nn} \Delta_{pp} \right) = 0$$
(1.27)

où nous avons posé :

$$E_{\nu t} = \sqrt{\xi_{\nu t}^2 + \Delta_{tt}^2}$$
 t=n,p

Les valeurs propres de A_{ν} sont alors $\pm~E_{\nu\tau},~\tau=1,2$ avec :

$$E_{\nu\tau}^{2} = \frac{1}{2} \left[\left(E_{\nu n}^{2} + E_{\nu p}^{2} + 2\Delta_{np}^{2} \right) + (-1)^{\tau+1} \sqrt{\left(E_{\nu n}^{2} - E_{\nu p}^{2} \right)^{2} + 4\Delta_{np}^{2} \left[E_{\nu n}^{2} + E_{\nu p}^{2} - 2 \left(\xi_{\nu p} \xi_{\nu n} - \Delta_{nn} \Delta_{pp} \right) \right]} \right]$$
(1.28)

Les vecteurs propres de la matrice A_{ν} correspondant aux valeurs propres $E_{\nu 1}$ et $E_{\nu 2}$ sont :

$$X_{\nu 1} = \begin{pmatrix} u_{\nu 1p} \\ u_{\nu 1n} \\ v_{\nu 1p} \\ v_{\nu 1n} \end{pmatrix} , \qquad X_{\nu 2} = \begin{pmatrix} u_{\nu 2p} \\ u_{\nu 2n} \\ v_{\nu 2p} \\ v_{\nu 2p} \\ v_{\nu 2n} \end{pmatrix}$$

En normalisant ces vecteurs, il vient :

$$u_{\nu 1p}^2 + u_{\nu 1n}^2 + v_{\nu 1p}^2 + v_{\nu 1n}^2 = u_{\nu 2p}^2 + u_{\nu 2n}^2 + v_{\nu 2p}^2 + v_{\nu 2n}^2 = 1$$

La relation d'orthogonalité nous permet d'écrire également :

$$u_{\nu 1p}u_{\nu 2p} + u_{\nu 1n}u_{\nu 2n} + v_{\nu 1p}v_{\nu 2p} + v_{\nu 1n}v_{\nu 2n} = 0$$

Les composantes du vecteur $X_{\nu 1}$ sont données par :

$$u_{\nu 1p} = \frac{T_{\nu 1}}{T_{\nu}} , \quad u_{\nu 1n} = -\frac{T_{\nu 2}}{T_{\nu}} , \quad v_{\nu 1p} = \frac{T_{\nu 3}}{T_{\nu}} , \quad v_{\nu 1n} = -\frac{T_{\nu 4}}{T_{\nu}}$$
(1.29)

avec :

$$T_{\nu} = \sqrt{T_{\nu 1}^2 + T_{\nu 2}^2 + T_{\nu 3}^2 + T_{\nu 4}^2}$$

 et

$$T_{\nu 1} = (\xi_{\nu p} + E_{\nu 1})(\xi_{\nu n}^{2} - E_{\nu 1}^{2}) + \Delta_{np}^{2}(\xi_{\nu n} + E_{\nu 1}) + \Delta_{nn}^{2}(\xi_{\nu p} + E_{\nu 1})$$

$$T_{\nu 2} = \Delta_{np} [\Delta_{pp} (\xi_{\nu n} + E_{\nu 1})] + \Delta_{nn} [\Delta_{np} (\xi_{\nu p} + E_{\nu 1})]$$

$$T_{\nu 3} = -(\xi_{\nu n} - E_{\nu 1}) [\Delta_{pp} (\xi_{\nu n} + E_{\nu 1})] - \Delta_{nn} [\Delta_{pp} \Delta_{nn} - \Delta_{np}^{2}]$$

$$T_{\nu 4} = (\xi_{\nu n} - E_{\nu 1}) [\Delta_{np} (\xi_{\nu p} + E_{\nu 1})] - \Delta_{np} (\Delta_{pp} \Delta_{nn} - \Delta_{np}^{2})$$
(1.30)

Les composantes du second vecteur propre s'obtiennent en remplaçant $E_{\nu 1}$ par $E_{\nu 2}$ dans (1.30), soit :

$$u_{\nu 2p} = \frac{T'_{\nu 1}}{T'_{\nu}} \qquad , \ u_{\nu 2n} = -\frac{T'_{\nu 2}}{T'_{\nu}} \qquad , \ v_{\nu 2p} = \frac{T'_{\nu 3}}{T'_{\nu}} \qquad , \ v_{\nu 2n} = -\frac{T'_{\nu 4}}{T'_{\nu}} \qquad (1.31)$$

avec :

$$T'_{\nu} = \sqrt{T'^2_{\nu 1} + T'^2_{\nu 2} + T'^2_{\nu 3} + T'^2_{\nu 4}}$$

 et

$$T'_{\nu 1} = (\xi_{\nu p} + E_{\nu 2})(\xi_{\nu n}^{2} - E_{\nu 2}^{2}) + \Delta_{np}^{2}(\xi_{\nu n} + E_{\nu 2}) + \Delta_{nn}^{2}(\xi_{\nu p} + E_{\nu 2})$$

$$T'_{\nu 2} = \Delta_{np} [\Delta_{pp} (\xi_{\nu n} + E_{\nu 2})] + \Delta_{nn} [\Delta_{np} (\xi_{\nu p} + E_{\nu 2})]$$

$$T'_{\nu 3} = -(\xi_{\nu n} - E_{\nu 2}) [\Delta_{pp} (\xi_{\nu n} + E_{\nu 2})] - \Delta_{nn} [\Delta_{pp} \Delta_{nn} - \Delta_{np}^{2}]$$

$$T'_{\nu 4} = (\xi_{\nu n} - E_{\nu 2}) [\Delta_{np} (\xi_{\nu p} + E_{\nu 2})] - \Delta_{np} (\Delta_{pp} \Delta_{nn} - \Delta_{np}^{2})$$
(1.32)

1.3.3 Transformation de Bogoliubov - Valatin

La transformation T qui diagonalise l'hamiltonien H' s'écrit :

$$T = \begin{pmatrix} u_{\nu 1p} & u_{\nu 1n} & \upsilon_{\nu 1p} & \upsilon_{\nu 1n} \\ u_{\nu 2p} & u_{\nu 2n} & \upsilon_{\nu 2p} & \upsilon_{\nu 2n} \\ -\upsilon_{\nu 1p} & -\upsilon_{\nu 1n} & u_{\nu 1p} & u_{\nu 1n} \\ -\upsilon_{\nu 2p} & -\upsilon_{\nu 2n} & u_{\nu 2p} & u_{\nu 2n} \end{pmatrix}$$
(1.33)

En introduisant des nouveaux opérateurs $\alpha_{\nu\tau}^+$, $\alpha_{\tilde{\nu}\tau}$ qui sont des opérateurs de création et d'annihilation de quasiparticules respectivement, il vient :

$$\begin{pmatrix} \alpha_{\nu 1}^{+} \\ \alpha_{\nu 2}^{+} \\ \alpha_{\tilde{\nu} 1} \\ \alpha_{\tilde{\nu} 2} \end{pmatrix} = T \begin{pmatrix} a_{\nu p}^{+} \\ a_{\nu n}^{+} \\ a_{\tilde{\nu} p}^{-} \\ a_{\tilde{\nu} n} \end{pmatrix}$$
(1.34)

Cette transformation est donc la transformation généralisée de Bogoliubov -Valatin. Sous forme condensée, elle s'écrit :

$$\alpha_{\nu\tau}^{+} = \sum_{t=n,p} \left(u_{\nu\tau t} \ a_{\nu t}^{+} + v_{\nu\tau t} \ a_{\tilde{\nu} t}^{-} \right) \qquad , \qquad \tau = 1,2$$
(1.35)

Le vide correspondant est appellé état BCS, noté $|\Psi\rangle$, et est défini implicitement par :

$$\left. \begin{array}{l} \alpha_{\nu\tau} \left| \Psi \right\rangle = 0 \\ \left\langle \Psi \right| \alpha_{\nu\tau}^+ = 0 \end{array} \right\} \qquad \forall \nu, \tau$$

La transformation inverse de Bogoliubov-Valatin généralisée s'écrit :

$$a_{\widetilde{\nu}t} = \sum_{\tau} \left(u_{\nu\tau t} \; \alpha_{\widetilde{\nu}\tau} + v_{\nu\tau t} \; \alpha_{\nu\tau}^+ \right) \tag{1.36}$$

1.4 Représentation quasiparticules

1.4.1 Expression de l'hamiltonien H'

En appliquant le théorème de Wick, et à l'aide de la transformation de Bogoliubov-Valatin, l'hamiltonien peut se mettre sous la forme suivante :

$$H' = E_0 + H_{11} + H_2 + H_{resid} \tag{1.37}$$

où E_0 est le terme entièrement contracté

 H_{11} contient les termes en $\alpha^+ \alpha$

 H_2 contient les termes en $\alpha^+ \alpha^+$ et $\alpha \alpha$

 H_{resid} contient les produits normaux : $a_{\nu t}^+ a_{\widetilde{\nu}t'}^+ a_{\widetilde{\mu}t'} a_{\mu t}$: et : $a_{\nu t}^+ a_{\widetilde{\nu}t'}^+ a_{\widetilde{\mu}t} a_{\mu t'}$:

L'approximation des quasiparticules indépendantes consiste à négliger l'interaction résiduelle. Dans le présent travail, nous considèrerons comme dans les références [12, 15, 16] que cette interaction résiduelle est composée de la somme des termes H_2 et H_{resid} .

Dans ce cas, l'hamiltonien (1.37) s'écrit :

$$H' = E_0 + H_{11}$$

avec :

$$E_{0} = 2 \sum_{\nu > 0,t} \left[\widetilde{\varepsilon}_{\nu t} - \frac{1}{2} G_{tt} \left(\sum_{\tau} \upsilon_{\nu \tau t}^{2} \right) \right] \left(\sum_{\tau} \upsilon_{\nu \tau t}^{2} \right)$$
$$-G_{np} \sum_{\nu > 0} \left[\left(\sum_{\tau} \upsilon_{\nu \tau p}^{2} \right) \left(\sum_{\tau} \upsilon_{\nu \tau n}^{2} \right) + \left(\sum_{\tau} \upsilon_{\nu \tau p} \upsilon_{\nu \tau n} \right)^{2} \right]$$
$$-\frac{1}{4} \frac{\Delta_{pp}^{2}}{G_{pp}} - \frac{1}{4} \frac{\Delta_{nn}^{2}}{G_{nn}} - \frac{1}{2} \frac{\Delta_{np}^{2}}{G_{np}}$$
(1.38)

où :

$$\Delta_{nn} = -2G_{nn} \sum_{\nu > 0,\tau} u_{\nu\tau n} v_{\nu\tau n}$$

$$\Delta_{pp} = -2G_{pp} \sum_{\nu > 0,\tau} u_{\nu\tau p} v_{\nu\tau p}$$

$$\Delta_{np} = -G_{np} \sum_{\nu > 0,\tau} (u_{\nu\tau n} v_{\nu\tau p} + u_{\nu\tau p} v_{\nu\tau n})$$
(1.39)

 et

$$H_{11} = \sum_{\nu > 0, \tau, \tau'} E_{\nu \tau \tau'} \left(\alpha^+_{\nu \tau} \alpha_{\nu \tau'} + \alpha^+_{\widetilde{\nu} \tau} \alpha_{\widetilde{\nu} \tau'} \right)$$
(1.40)

où :

$$E_{\nu\tau\tau'} = \sum_{t} \left[\varepsilon_{\nu t} - \frac{1}{2} \sum_{t'} G_{tt'} \sum_{\tau} v_{\nu\tau t}^{2} \right] (u_{\nu\tau t} \ u_{\nu\tau' t} - v_{\nu\tau t} \ v_{\nu\tau' t}) - \frac{1}{2} \sum_{t'} G_{tt'} \left\{ (v_{\nu\tau t} \ v_{\nu\tau t'}) (u_{\nu\tau t} \ u_{\nu\tau' t'} - v_{\nu\tau t} \ v_{\nu\tau' t'}) \right\} - \sum_{tt'} \Delta_{tt'} (u_{\nu\tau t} \ v_{\nu\tau' t'} + u_{\nu\tau' t} \ v_{\nu\tau t'})$$
(1.41)

1.4.2 Rediagonalisation de l'hamiltonien *H* - Nouvelle transformation de Bogoliubov-Valatin

Il apparait clairement, d'après l'équation (1.40) que H_{11} est l'hamiltonien de quasiparticules indépendantes sous forme non diagonale. En effet, H_{11} s'écrit également sous forme matricielle :

$$H_{11} = \sum_{\nu} \left(\alpha_{\nu 1}^{+}, \alpha_{\nu 2}^{+} \right) \begin{pmatrix} E_{\nu 11} & E_{\nu 12} \\ E_{\nu 21} & E_{\nu 22} \end{pmatrix} \begin{pmatrix} \alpha_{\nu 1} \\ \alpha_{\nu 2} \end{pmatrix}$$
(1.42)

H est hermitique, donc $E_{\nu 12}=E_{\nu 21}$

Soient $\lambda_{\nu 1}$ et $\lambda_{\nu 2}$ les valeurs propres de $C = \begin{pmatrix} E_{\nu 11} & E_{\nu 12} \\ E_{\nu 12} & E_{\nu 22} \end{pmatrix}$:

$$\lambda_{\nu 1,2} = \frac{1}{2} \left[(E_{\nu 11} + E_{\nu 22}) \pm \sqrt{(E_{\nu 11} - E_{\nu 22})^2 + 4E_{\nu 12}^2} \right]$$

Les vecteurs propres correspondants sont :

$$\begin{pmatrix} y_{\nu 11} \\ y_{\nu 12} \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} y_{\nu 21} \\ y_{\nu 22} \end{pmatrix}$$

avec :

 ${\cal H}_{11}$ est diagonalisée à l'aide de la transfomation :

$$T = \begin{pmatrix} y_{\nu 11} & y_{\nu 21} \\ y_{\nu 12} & y_{\nu 22} \end{pmatrix}$$
(1.43)

Soit :

$$H_{11} = \sum_{\nu} \begin{pmatrix} \alpha_{\nu 1}^+, \alpha_{\nu 2}^+ \end{pmatrix} T \begin{pmatrix} \lambda_{\nu 1} & 0\\ 0 & \lambda_{\nu 2} \end{pmatrix} T^{-1} \begin{pmatrix} \alpha_{\nu 1}\\ \alpha_{\nu 2} \end{pmatrix}$$
(1.44)

Introduisons des nouveaux opérateurs $\beta_{\nu\tau}$ tels que :

$$\begin{pmatrix} \beta_{\nu 1} \\ \beta_{\nu 2} \end{pmatrix} = T^{-1} \begin{pmatrix} \alpha_{\nu 1} \\ \alpha_{\nu 2} \end{pmatrix}$$

avec :

$$\beta_{\nu\tau} = \sum_{j} y_{\nu\tau j} \alpha_{\nu j} \quad , \quad \tau = 1, 2 \tag{1.45}$$

Ces derniers sont reliés aux opérateurs de création et d'annihilation de particules par la nouvelle transformation de Bogoliubov-Valatin qui s'écrit donc :

$$\beta_{\nu\tau} = \sum_{t} \left(U_{\nu\tau t} \ a_{\nu t} + V_{\nu\tau t} \ a_{\widetilde{\nu} t}^{+} \right) \tag{1.46}$$

avec :

$$\begin{cases} U_{\nu\tau t} = \sum_{j=1,2} y_{\nu\tau j} u_{\nu j t} \\ V_{\nu\tau t} = \sum_{j=1,2} y_{\nu\tau j} v_{\nu j t} \end{cases}, \quad \tau = 1, 2 \quad , \quad t=n, p$$

La rediagonalisation se traduit donc par une renormalisation des paramètres de la transformation de Bogoliubov-Valatin. On a donc finalement :

$$H' = E_0 + \sum_{\nu\tau} \lambda_{\nu\tau} \beta^+_{\nu\tau} \beta_{\nu\tau}$$
(1.47)

qui est bien diagonal.

L'expression (1.23) conduit à :

$$\xi_{jn} = \widetilde{\varepsilon}_{jn} - 2G_{nn} \sum_{\tau} V_{\nu\tau n}^2 - G_{np} \sum_{\tau} V_{\nu\tau p}^2$$
(1.48)

$$\xi_{jp} = \tilde{\varepsilon}_{jp} - 2G_{pp} \sum_{\tau} V_{\nu\tau p}^2 - G_{np} \sum_{\tau} V_{\nu\tau n}^2$$
(1.49)

1.5 Equations du gap

Les paramètres du gap définis par (1.24) deviennent :

$$\Delta_{nn} = -2G_{nn} \sum_{\nu > 0,\tau} U_{\nu\tau n} V_{\nu\tau n}$$

$$\Delta_{pp} = -2G_{pp} \sum_{\nu > 0,\tau} U_{\nu\tau p} V_{\nu\tau p}$$

$$\Delta_{np} = -G_{np} \sum_{\nu > 0,\tau} (U_{\nu\tau n} V_{\nu\tau p} + V_{\nu\tau p} V_{\nu\tau n})$$
(1.50)

Les conditions de conservation du nombre de protons et du nombre de neutrons s'écrivent :

$$N_{p} = 2 \sum_{\nu > 0,\tau} V_{\nu\tau p}^{2}$$

$$N_{n} = 2 \sum_{\nu > 0,\tau} V_{\nu\tau n}^{2}$$
(1.51)

Les équations (1.50) et (1.51) constituent les équations du gap d'un système pair-pair.

1.6 Etats BCS :

1.6.1 Etat fondamental :

L'état BCS est le vide des quasiparticules, il est défini par :

$$|\Psi\rangle = k \prod_{\nu>0} \beta_{\nu 1} \beta_{\tilde{\nu}1} \beta_{\nu 2} \beta_{\tilde{\nu}2} |0\rangle$$
(1.52)

A l'aide de la transformation (1.46), on obtient :

$$|\Psi\rangle = \prod_{\nu>0} |\Psi_{\nu}\rangle \tag{1.53}$$

où :

$$|\Psi_{\nu}\rangle = \left[B_{1}^{\nu}A_{\nu p}^{+}A_{\nu n}^{+} + B_{p}^{\nu}A_{\nu p}^{+} + B_{n}^{\nu}A_{\nu n}^{+} + B_{4}^{\nu}\left(a_{\widetilde{\nu}n}^{+}a_{\nu p}^{+} + a_{\widetilde{\nu}p}^{+}a_{\nu n}^{+}\right) + B_{5}^{\nu}\right]|0\rangle$$
(1.54)

avec la notation :

$$A_{\nu t}^{+} = a_{\widetilde{\nu}t}^{+} a_{\nu t}^{+} \qquad , \quad t=n,p$$

Les coefficients $B_1^\nu,\,B_p^\nu,B_n^\nu,\,B_4^\nu,\,B_5^\nu$ sont donnés par :

$$B_i^{\nu} = b_i^{\nu}/k$$
 , $i = 1, 2, p, n, 4, 5$ (1.55)

k étant la constante de normalisation :

$$k = \left\{ (b_1^{\nu})^2 + (b_p^{\nu})^2 + (b_n^{\nu})^2 + 2(b_4^{\nu})^2 + (b_5^{\nu})^2 \right\}^{\frac{1}{2}}$$
(1.56)

 et

$$\begin{split} b_{1}^{\nu} &= (V_{\nu 1p}V_{\nu 2n} - V_{\nu 1n}V_{\nu 2p})^{2} \\ b_{p}^{\nu} &= V_{\nu 1p}^{2} \left(U_{\nu 2p}V_{\nu 2p} + U_{\nu 2n}V_{\nu 2n}\right) + V_{\nu 2p}^{2} \left(U_{\nu 1n}V_{\nu 1n} - U_{\nu 1p}V_{\nu 1p}\right) - 2U_{\nu 1n}V_{\nu 1p}V_{\nu 2p}V_{\nu 2n} \\ b_{n}^{\nu} &= V_{\nu 1n}^{2} \left(U_{\nu 2p}V_{\nu 2p} + U_{\nu 2n}V_{\nu 2n}\right) - V_{\nu 2n}^{2} \left(U_{\nu 1n}V_{\nu 1n} - U_{\nu 1p}V_{\nu 1p}\right) - 2U_{\nu 1p}V_{\nu 1n}V_{\nu 2p}V_{\nu 2n} \\ b_{4}^{\nu} &= V_{\nu 1p}V_{\nu 1n} \left(U_{\nu 2p}V_{\nu 2p} + U_{\nu 2n}V_{\nu 2n}\right) - V_{\nu 2n}^{2} \left(U_{\nu 1n}V_{\nu 1p}\right) - V_{\nu 2p}^{2} \left(U_{\nu 1p}V_{\nu 1n}\right) \\ b_{5}^{\nu} &= \left(U_{\nu 1n}V_{\nu 1n} + U_{\nu 1p}V_{\nu 1p}\right) \left(U_{\nu 2p}V_{\nu 2p} + U_{\nu 2n}V_{\nu 2n}\right) - \left(U_{\nu 1n}V_{\nu 2n} + U_{\nu 1p}V_{\nu 2p}\right)^{2} \end{split}$$

L'état BCS correspond donc à une superposition d'états possédant un nombre pair de particules. En effet, le niveau ν peut comprendre :

- soit deux paires homogènes neutron-neutron et proton-proton avec une probabilité B_1^{ν} .
- soit une paire homogène proton-proton avec une probabilité $B_p^\nu.$
- soit une paire homogène neutron-neutron avec une probabilité $B_n^\nu.$
- soit une paire mixte neutron-proton avec une probabilité B_4^{ν} .
- soit une paire mixte proton- neutron avec une probabilité $B_4^\nu.$
- soit aucune particule avec une probabilité B_5^{ν} .

Cet état ne peut donc pas décrire un système possédant un nombre impair de particules.

1.6.2 Etat à une quasiparticule

L'état à une quasiparticule est défini par :

$$|\nu\tau\rangle = \beta_{\nu\tau}^+ |\Psi\rangle \tag{1.57}$$

Compte tenu de (1.46), il s'écrit :

$$|\nu\tau\rangle = \left(U_{\nu\tau p} \ a^+_{\nu p} + V_{\nu\tau p} \ a_{\widetilde{\nu}p} + U_{\nu\tau n} \ a^+_{\nu n} + V_{\nu\tau n} \ a_{\widetilde{\nu}n}\right) |\Psi\rangle$$

Soit encore :

$$|\nu\tau\rangle = \left(U_{\nu\tau p} \ a_{\nu p}^{+} + V_{\nu\tau p} \ a_{\widetilde{\nu} p} + U_{\nu\tau n} \ a_{\nu n}^{+} + V_{\nu\tau n} \ a_{\widetilde{\nu} n} \right)$$

$$[B_{1}^{\nu} A_{\nu p}^{+} A_{\nu n}^{+} + B_{p}^{\nu} A_{\nu p}^{+} + B_{n}^{\nu} A_{\nu n}^{+} + B_{4}^{\nu} \left(a_{\widetilde{\nu} n}^{+} a_{\nu p}^{+} + a_{\widetilde{\nu} p}^{+} a_{\nu n}^{+} \right) + B_{5}^{\nu}] \prod_{j \neq \nu} |\Psi_{j}\rangle$$

$$(1.58)$$

D'où finalement :

$$|\nu\tau\rangle = \left(B^{p,n}_{3\nu\tau}A^{+}_{\nu p}a^{+}_{\nu n} + B^{n,p}_{3\nu\tau}A^{+}_{\nu n}a^{+}_{\nu p} + \gamma_{\nu\tau p}a^{+}_{\nu p} + \gamma_{\nu\tau n}a^{+}_{\nu n}\right)\prod_{j\neq\nu}|\Psi_{j}\rangle$$
(1.59)

avec :

$$B_{3\nu\tau}^{p,n} = \left(-B_{4}^{\nu}U_{\nu\tau p} + B_{p}^{\nu}U_{\nu\tau n} + B_{1}^{\nu}V_{\nu\tau n}\right)$$

$$B_{3\nu\tau}^{n,p} = \left(-B_{4}^{\nu}U_{\nu\tau n} + B_{n}^{\nu}U_{\nu\tau p} + B_{1}^{\nu}V_{\nu\tau n}\right) \qquad \tau = 1, 2 \qquad (1.60)$$

$$\gamma_{\nu\tau p} = \left(B_{5}^{\nu}U_{\nu\tau p} + B_{p}^{\nu}V_{\nu\tau p} + B_{4}^{\nu}V_{\nu\tau n}\right)$$

$$\gamma_{\nu\tau n} = \left(B_{5}^{\nu}U_{\nu\tau n} + B_{n}^{\nu}V_{\nu\tau n} + B_{4}^{\nu}V_{\nu\tau p}\right)$$

Ils correspondent donc à une superposition d'états possédant un nombre impair de particules. En effet, le niveau ν peut comprendre :

- soit une paire homogène proton-proton et un neutron avec une probabilité $B^{p,n}_{3\nu\tau}$.
- soit une paire homogène neutron-neutron et un proton avec une probabilité $B^{n,p}_{3\nu\tau}$.
- soit un neutron avec une probabilité $\gamma_{\nu\tau n}$.
- soit un proton avec une probabilité $\gamma_{\nu\tau p}$.

Remarquons à ce niveau que, contrairement au cas de l'appariement entre particules identiques, l'état à une quasiparticules ne se ramène pas à l'état excité à une quasiparticule. En effet, dans ce dernier cas, l'état à une quasiparticule s'écrit :

$$|\nu\rangle = \alpha_{\nu}^{+} |\Psi\rangle$$

= $a_{\nu}^{+} \prod_{j \neq \nu} \left(U_{j} + V_{j} A_{j}^{+} \right) |0\rangle$ (1.61)

Le niveau bloqué ne contient donc qu'une particule.

1.6.3 Etat à deux quasiparticules

L'état à deux quasiparticules est défini par :

$$\left|\nu\tau\widetilde{\mu}\tau'\right\rangle = \beta^{+}_{\nu\tau}\beta^{+}_{\widetilde{\mu}\tau'}\left|\Psi\right\rangle$$

Compte tenu de (1.46), on obtient :

$$|\nu\tau\tilde{\mu}\tau'\rangle = \left\{ \left(B^{p,n}_{3\nu\tau}A^{+}_{\nu p}a^{+}_{\nu n} + B^{n,p}_{3\nu\tau}A^{+}_{\nu n}a^{+}_{\nu p} + \gamma_{\nu\tau p}a^{+}_{\nu p} + \gamma_{\nu\tau n}a^{+}_{\nu n} \right)$$

$$\times \left(B^{p,n}_{3\mu\tau'}A^{+}_{\mu p}a^{+}_{\tilde{\mu}n} + B^{n,p}_{3\mu\tau'}A^{+}_{\mu n}a^{+}_{\tilde{\mu}p} + \gamma_{\mu\tau' p}a^{+}_{\tilde{\mu}p} + \gamma_{\mu\tau' n}a^{+}_{\tilde{\mu}n} \right) \right\} \prod_{j\neq\nu\mu} |\Psi_{j}\rangle$$

$$si \nu \neq \mu$$

$$(1.62)$$

Lorsque $\nu = \mu$, il s'écrit :

$$\left|\nu\tau\tilde{\nu}\tau'\right\rangle = \left[C_{1\tau\tau'}^{\nu}A_{\nu p}^{+}A_{\nu n}^{+} + C_{p\tau\tau'}^{\nu}A_{\nu p}^{+} + C_{n\tau\tau'}^{\nu}A_{\nu n}^{+} + C_{4\tau\tau'}^{\nu n p}a_{\tilde{\nu}n}^{+}a_{\nu p}^{+} + C_{4\tau\tau'}^{\nu p n}a_{\tilde{\nu}p}^{+}a_{\nu n}^{+} + C_{5\tau\tau'}^{\nu}\right]\prod_{j\neq\nu}|\Psi_{j}\rangle$$

avec :

$$C_{1\tau\tau'}^{\nu} = \left(U_{\nu\tau p} \ B_{3\nu\tau'}^{np} + U_{\nu\tau n} \ B_{3\nu\tau'}^{pn} \right) / K_{\nu\tau\tau'}$$

$$C_{p\tau\tau'}^{\nu} = \left(V_{\nu\tau n} B_{3\nu\tau'}^{np} - U_{\nu\tau p} \ \gamma_{\nu\tau' p} \right) / K_{\nu\tau\tau'}$$

$$C_{n\tau\tau'}^{\nu} = \left(V_{\nu\tau p} B_{3\nu\tau'}^{np} - U_{\nu\tau n} \ \gamma_{\nu\tau' p} \right) / K_{\nu\tau\tau'}$$

$$C_{4\tau\tau'}^{\nu np} = - \left(V_{\nu\tau p} B_{3\nu\tau'}^{np} + U_{\nu\tau p} \ \gamma_{\nu\tau' n} \right) / K_{\nu\tau\tau'}$$

$$C_{4\tau\tau'}^{\nu pn} = - \left(V_{\nu\tau n} B_{3\nu\tau'}^{np} + U_{\nu\tau n} \ \gamma_{\nu\tau' p} \right) / K_{\nu\tau\tau'}$$

$$C_{5\tau\tau'}^{\nu} = \left(U_{\nu\tau n} \ \gamma_{\nu\tau' n} + V_{\nu\tau p} \ \gamma_{\nu\tau' p} \right) / K_{\nu\tau\tau'}$$

où :

$$K_{\nu\tau\tau'} = \left\{ (C_{1\tau\tau'}^{\nu})^2 + (C_{p\tau\tau'}^{\nu})^2 + (C_{n\tau\tau'}^{\nu})^2 + (C_{4\tau\tau'}^{\nu np})^2 + (C_{4\tau\tau'}^{\nu pn})^2 + (C_{5\tau\tau'}^{\nu})^2 \right\}^{\frac{1}{2}}$$

Ils correspondent donc à une superposition d'états ayant un nombre pair de particules. En effet, le niveau ν peut comprendre :

- soit deux paires homogènes neutron-neutron et proton-proton avec une probabilité $C^{\nu}_{1\tau\tau'}$.
- soit une paire homogène proton-proton avec une probabilité $C^{\nu}_{p\tau\tau'}$.
- soit une paire homogène neutron-neutron avec une probabilité $C^{\nu}_{n\tau\tau'}$.
- soit une paire mixte neutron-proton avec une probabilité $C_{4\tau\tau'}^{\nu np}$.
- soit une paire mixte proton- neutron avec une probabilité $C^{\nu pn}_{4\tau\tau'}$
- soit aucune particule avec une probabilité $C_{5\tau\tau'}^{\nu}$.

1.7 Energie du système

La valeur moyenne de l'hamiltonien calculée sur le vide de quasiparticules $|\Psi\rangle$ est donnée tout simplement par :

$$E_{BCS} = \langle \Psi | H | \Psi \rangle$$

$$= 2 \sum_{\nu > 0,t} \left[\varepsilon_{\nu t} - \frac{1}{2} G_{tt} \left(\sum_{\tau} V_{\nu \tau t}^2 \right) \right] \left(\sum_{\tau} V_{\nu \tau t}^2 \right)$$

$$-G_{np} \sum_{\nu > 0} \left[\left(\sum_{\tau} V_{\nu \tau p}^2 \right) \left(\sum_{\tau} V_{\nu \tau n}^2 \right) + \left(\sum_{\tau} V_{\nu \tau p} V_{\nu \tau n} \right)^2 \right]$$

$$-\frac{1}{4} \frac{\Delta_{pp}^2}{G_{pp}} - \frac{1}{4} \frac{\Delta_{nn}^2}{G_{nn}} - \frac{1}{2} \frac{\Delta_{np}^2}{G_{np}}$$
(1.64)

1.8 Limite lorsque $\Delta_{np} \to 0$

En l'absence d'appariement neutron-proton c'est à dire lorsque $\Delta_{np} \to 0$ et $G_{np} = 0$, la matrice d'excitation A_{ν} définie par (1.26) devient :

$$A_{\nu} = \begin{pmatrix} \xi_{\nu p} & 0 & -\Delta_{pp} & 0\\ 0 & \xi_{\nu n} & 0 & -\Delta_{nn}\\ -\Delta_{pp} & 0 & -\xi_{\nu p} & 0\\ 0 & -\Delta_{nn} & 0 & -\xi_{\nu n} \end{pmatrix}$$
(1.65)

dont les valeurs propres sont respectivement :

$$E_{\nu t} = \sqrt{\xi_{\nu t}^2 + \Delta_{tt}^2} \qquad , \quad t=n,p \tag{1.66}$$

Les vecteurs propres s'écrivent quant à eux :

$$X_{\nu 1} = \begin{pmatrix} U_{\nu 1p} \\ U_{\nu 1n} \\ V_{\nu 1p} \\ V_{\nu 1n} \end{pmatrix} , \qquad X_{\nu 2} = \begin{pmatrix} U_{\nu 2p} \\ U_{\nu 2n} \\ V_{\nu 2p} \\ V_{\nu 2n} \end{pmatrix}$$

avec :

$$\begin{cases} U_{\nu 1p}^{2} = \frac{1}{2} \left[1 + \frac{\xi_{\nu p}}{E_{\nu p}} \right] = U_{\nu p}^{2} \\ V_{\nu 1p}^{2} = \frac{1}{2} \left[1 - \frac{\xi_{\nu p}}{E_{\nu p}} \right] = V_{\nu p}^{2} \end{cases}, \quad \begin{cases} U_{\nu 1n} = 0 \\ V_{\nu 1n} = 0 \end{cases}$$
(1.67)

 et

$$\begin{cases} U_{\nu 2p} = 0 \\ V_{\nu 2p} = 0 \end{cases}, \quad \begin{cases} U_{\nu 2n}^2 = \frac{1}{2} \left\{ 1 + \frac{\xi_{\nu n}}{E_{\nu n}} \right\} = U_{\nu n}^2 \\ V_{\nu 2p}^2 = 0 \end{cases}, \quad \begin{cases} U_{\nu 2n}^2 = \frac{1}{2} \left\{ 1 - \frac{\xi_{\nu n}}{E_{\nu n}} \right\} = V_{\nu n}^2 \end{cases}$$
(1.68)

Les $\xi_{\nu t},$ t=n,p définis par (1.48) et (1.49) deviennent :

$$\xi_{\nu p} = \tilde{\varepsilon}_{\nu p} - 2G_{pp}V_{\nu p}^2 \tag{1.69}$$

$$\xi_{\nu n} = \tilde{\varepsilon}_{\nu n} - 2G_{nn}V_{\nu n}^2 \tag{1.70}$$

De même, les conditions de conservation du nombre de protons et du nombre de neutrons deviennent :

$$N_{p} = 2 \sum_{\nu > 0} V_{\nu p}^{2}$$

$$N_{n} = 2 \sum_{\nu > 0} V_{\nu n}^{2}$$
(1.71)

Pour sa part, l'énergie du système s'écrit :

$$E_{BCS} = 2\sum_{\nu>0} \left(\varepsilon_{\nu n} - \frac{G_{nn}}{2} V_{\nu n}^2 \right) V_{\nu n}^2 - \frac{\Delta_{nn}^2}{G_{nn}} + 2\sum_{\nu>0} \left(\varepsilon_{\nu p} - \frac{G_{pp}}{2} V_{\nu p}^2 \right) V_{\nu p}^2 - \frac{\Delta_{pp}^2}{G_{pp}}$$
(1.72)

Soit :

$$E_{BCS} = E_{BCSn} + E_{BCSp} \tag{1.73}$$

L'énergie totale du système se ramène donc à la somme des énergies des deux systèmes proton et neutron.

On constate donc, lorsque $\Delta_{np} \to 0$ et $G_{np} = 0$, que les probabilités d'occupation et d'inoccupation, les énergies de quasiparticules, la condition de conservation du nombre de particules, la fonction d'onde totale et l'énergie du système se ramènent à celles de l'appariement entre particules identiques.

Par ailleurs, les coefficients B_1^{ν} , B_p^{ν} , B_n^{ν} , B_4^{ν} , B_5^{ν} s'écrivent, compte tenu de (1.67) et (1.68) :

$$B_1^{\nu} = V_{\nu p} V_{\nu n} \quad , \quad B_p^{\nu} = V_{\nu p} U_{\nu n} \quad , \quad B_n^{\nu} = V_{\nu n} U_{\nu p} \quad , \quad B_4^{\nu} = 0 \quad , \quad B_5^{\nu} = U_{\nu n} U_{\nu p} \tag{1.74}$$

En remplaçant ces derniers dans (1.54), la fonction d'onde devient :

$$|\Psi
angle = \prod_{
u>0} |\Psi_{
u}
angle$$

avec :

$$|\Psi_{\nu}\rangle = \prod_{\nu>0} \left[V_{\nu p} V_{\nu n} A^{+}_{\nu p} A^{+}_{\nu n} + V_{\nu p} U_{\nu n} A^{+}_{\nu p} + V_{\nu n} U_{\nu p} A^{+}_{\nu n} + U_{\nu n} U_{\nu p} \right] |0\rangle$$

= $|\Psi_{\nu n}\rangle |\Psi_{\nu p}\rangle$

 et

$$|\Psi_{\nu n}\rangle = \prod_{\nu>0} \left(U_{\nu n} + V_{\nu n} A_{\nu n}^{+} \right) |0\rangle$$

$$|\Psi_{\nu p}\rangle = \prod_{\nu>0} \left(U_{\nu p} + V_{\nu p} A_{\nu p}^{+} \right) |0\rangle$$

$$(1.75)$$

La fonction d'onde totale du système se ramène au produit des deux fonctions d'onde des deux systèmes neutron et proton.

Par contre, lorsque $\Delta_{np} \to 0$ et $G_{np} \neq 0$, l'énergie du système s'écrit :

$$E_{BCS} = E_{BCSn} + E_{BCSp} - G_{np} \sum_{\nu > 0} V_{\nu n}^2 V_{\nu p}^2$$
(1.76)

Ce dernier cas se produit lorsque G_{np} est inférieur à sa valeur critique, comme nous le verrons dans la partie résultats numériques.

Chapitre 2

Traitement de l'appariement isovectoriel dans le cas d'un système pair-pair par le théorème de Wick

2.1 Introduction

Pour étudier les corrélations d'appariement dans le cadre de la théorie BCS, trois méthodes sont utilisées : la méthode variationnelle [29], la méthode de linéarisation [33] et le théorème de Wick. Ces dernières sont généralement utilisées dans le cas de l'appariement entre particules identiques. La méthode varitionnelle consiste à minimiser l'énergie de système dans l'espace des états quasiparticules. Toutefois, cette dernière est difficile à appliquer dans le cas de l'appariement np. Elle n'a été utilisée, à notre connaissance que par un seul auteur [6] et sous une forme numérique. Par contre, la méthode de linéarisation est plus simple à appliquer comme l'on a vu au chapitre précédent mais présente un défaut qui est la nécessité de rediagonaliser l'hamiltonien dans le cas de l'appariement np.

Nous nous proposons dans le présent chapitre, d'utiliser le théorème de Wick pour le traitement de l'appariement isovectoriel dans le cas d'un système pair-pair. Nous utiliserons, de manière à pouvoir effectuer des comparaisons, le même hamiltonien qu'au chapitre précédent.

2.2 Diagonalisation de l'hamiltonien

Soit l'hamiltonien auxiliaire H 'défini par l'expression (1.5) :

$$H' = \sum_{\nu > 0,t} \tilde{\varepsilon}_{\nu t} \left(a_{\nu t}^{+} a_{\nu t} + a_{\widetilde{\nu} t}^{+} a_{\widetilde{\nu} t} \right) - \frac{1}{2} \sum_{tt'} G_{tt'} \sum_{\nu,\mu > 0} \left(a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\mu t'} + a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\mu t} \right)$$
(2.1)

2.2.1 Théorème de Wick

En appliquant le théoème de Wick, l'hamiltonien ${\cal H}$'s'écrit :

$$\begin{split} H' &= \sum_{\nu > 0,t} \tilde{\varepsilon}_{\nu t} \left[a_{\nu t}^{+\sqcap} a_{\nu t} + a_{\tilde{\nu} t}^{+\sqcap} a_{\tilde{\nu} t} + : a_{\nu t}^{+} a_{\nu t} : + : a_{\tilde{\nu} t}^{+} a_{\tilde{\nu} t}^{-} : \right] \\ &- \frac{1}{2} \sum_{tt'} G_{tt'} \sum_{\nu,\mu > 0} \left\{ a_{\nu t}^{+\sqcap} a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t'}^{\Pi} a_{\mu t} - a_{\nu t}^{+\sqcap} a_{\tilde{\mu} t'} a_{\tilde{\nu} t'}^{+\sqcap} a_{\mu t} + a_{\tilde{\nu} t}^{+\sqcap} a_{\mu t} a_{\tilde{\nu} t'}^{+\sqcap} a_{\tilde{\mu} t'} \right] \\ &+ a_{\nu t}^{+\sqcap} a_{\tilde{\nu} t'}^{+} : a_{\tilde{\mu} t'} a_{\mu t} : + : a_{\nu t}^{+} a_{\tilde{\nu} t'}^{+} : a_{\tilde{\mu} t'}^{\Pi} a_{\mu t} - a_{\nu t}^{+\sqcap} a_{\tilde{\mu} t'} : a_{\tilde{\nu} t'}^{+} a_{\mu t} : \right. \\ &- : a_{\nu t}^{+} a_{\tilde{\mu} t'}^{+} : a_{\tilde{\nu} t'}^{+\sqcap} a_{\mu t} + a_{\nu t}^{+\sqcap} a_{\mu t} : a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t'} : + : a_{\nu t}^{+} a_{\mu t} : a_{\tilde{\nu} t'}^{+\sqcap} a_{\tilde{\mu} t} \right. \\ &+ a_{\nu t}^{+\sqcap} a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t}^{+} a_{\mu t'}^{-} - a_{\nu t}^{+\sqcap} a_{\tilde{\mu} t'} a_{\tilde{\nu} t'}^{+} a_{\mu t'} + a_{\nu t}^{+\sqcap} a_{\mu t'} a_{\tilde{\nu} t'}^{+\sqcap} a_{\mu t'} \right. \\ &+ a_{\nu t}^{+\sqcap} a_{\tilde{\nu} t'}^{+} : a_{\tilde{\mu} t}^{+} a_{\mu t'}^{+} : a_{\tilde{\nu} t}^{+} a_{\tilde{\nu} t'}^{+} a_{\mu t'}^{+} - a_{\nu t}^{+\sqcap} a_{\tilde{\mu} t'}^{+} a_{\tilde{\nu} t'}^{+} a_{\mu t'}^{+} \right. \\ &+ a_{\nu t}^{+\sqcap} a_{\tilde{\nu} t'}^{+} : a_{\tilde{\mu} t}^{+} a_{\mu t'}^{+} : a_{\tilde{\nu} t}^{+} a_{\mu t'}^{+} - a_{\nu t}^{+\sqcap} a_{\mu t'}^{+} : a_{\tilde{\nu} t'}^{+} a_{\mu t'}^{+} \right. \\ &+ : a_{\nu t}^{+} a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} : a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t}^{+} : a_{\nu t}^{+} a_{\mu t'}^{+} : a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t'}^{+} \right. \\ &+ : a_{\nu t}^{+} a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} : a_{\tilde{\mu} t}^{+} a_{\mu t'}^{+} : a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t'}^{+} \right. \\ &+ : a_{\nu t}^{+} a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} \right. \\ &+ : a_{\nu t}^{+} a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} \right. \\ &+ : a_{\nu t}^{+} a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} \right. \\ &+ : a_{\nu t}^{+} a_{\tilde{\nu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} a_{\tilde{\mu} t'}^{+} \right.$$

Dans ce qui suit , nous négligerons comme au chapitre 1 les produits normaux : $a_{\nu t}^+ a_{\tilde{\nu}t'}^+ a_{\mu t'} a_{\mu t}$: et : $a_{\nu t}^+ a_{\tilde{\nu}t'}^+ a_{\tilde{\mu}t} a_{\mu t'}^+ a_{\mu t}$: ce qui consiste en fait à linéariser l'hamiltonien.

Sachant que les différentes contractions sont telles que :

$$a_{\nu t}^{+\sqcap} a_{\mu t'} = a_{\nu t}^{+\sqcap} a_{\nu t'} \delta_{\nu \mu} \delta_{tt'}$$
$$a_{\widetilde{\nu} t'}^{+\sqcap} a_{\widetilde{\mu} t} = a_{\widetilde{\nu} t'}^{+\sqcap} a_{\widetilde{\nu} t} \delta_{\nu \mu} \delta_{tt'}$$

il vient :

$$H' = E_{0} + \sum_{\nu > 0,t} \widetilde{\varepsilon}_{\nu t} (: a_{\nu t}^{+} a_{\nu t} : + : a_{\widetilde{\nu} t}^{+} a_{\widetilde{\nu} t} :)$$

$$-\frac{1}{2} \sum_{tt'} G_{tt'} \sum_{\nu > 0} \left[a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} : a_{\widetilde{\nu} t'} a_{\nu t} : + a_{\widetilde{\nu} t'}^{-} a_{\nu t} : a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} \right]$$

$$+ a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} : a_{\widetilde{\nu} t} a_{\nu t'} : + a_{\widetilde{\nu} t}^{-} a_{\nu t'} : a_{\widetilde{\nu} t}^{+} a_{\widetilde{\nu} t'}^{+} :]$$

$$-\frac{1}{2} \sum_{tt'} G_{tt'} \sum_{\nu > 0} \left[a_{\nu t}^{+} a_{\nu t} : a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\nu} t'} : + a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\nu} t'} : a_{\nu t}^{+} a_{\nu t} : + a_{\nu t}^{+} a_{\nu t} : a_{\nu t}^{+} a_{\nu t} : + a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\nu} t'} : a_{\widetilde{\nu} t}^{+} a_{\nu t'} : \right]$$

$$(2.2)$$

où E_0 est le terme contenant les termes entièrement contractés qu'on le déterminera par la suite, soit :

$$E_{0} = \sum_{\nu > 0,t} \tilde{\varepsilon}_{\nu t} \left\{ a_{\nu t}^{+\sqcap} a_{\nu t} + a_{\widetilde{\nu} t}^{+\sqcap} a_{\widetilde{\nu} t} \right\} - \frac{1}{2} \sum_{tt'} G_{tt'} \sum_{\nu,\mu > 0} \left\{ a_{\nu t}^{+\sqcap} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t'}^{+} a_{\mu t} - a_{\widetilde{\nu} t'}^{+\sqcap} a_{\mu t'}^{+\sqcap} a_{\mu t} + a_{\nu t}^{+\sqcap} a_{\mu t'} a_{\widetilde{\mu} t'}^{+\sqcap} a_{\mu t'}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t'}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t}^{+} \right\}$$

$$(2.3)$$

Posons :

$$\Delta_{tt'} = G_{tt'} \sum_{\nu > 0} a_{\nu t}^{+\sqcap} a_{\widetilde{\nu} t'}^{+} = G_{tt'} \sum_{\nu > 0} a_{\widetilde{\nu} t'}^{\sqcap} a_{\nu t}$$
(2.4)

 et

$$h_{\nu}^{tt} = a_{\nu t}^{+\sqcap} a_{\nu t} \tag{2.5}$$

$$h_{\widetilde{\nu}}^{t't} = a_{\widetilde{\nu}t'}^{+\sqcap} a_{\widetilde{\nu}t} \tag{2.6}$$

Il vient alors :

$$H' = E_{0} + \sum_{\nu > 0,t} \widetilde{\varepsilon}_{\nu t} (: a_{\nu t}^{+} a_{\nu t} : + : a_{\widetilde{\nu} t}^{+} a_{\widetilde{\nu} t} :)$$

$$- \sum_{t t'} \Delta_{t t'} \sum_{\nu > 0} [: a_{\widetilde{\nu} t'} a_{\nu t} : + : a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} :]$$

$$- \frac{1}{2} \sum_{t'} G_{t t'} \sum_{\nu > 0} \left[(1 + \delta_{t t'}) h_{\nu}^{t' t'} (: a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\nu} t'} : + : a_{\nu t}^{+} a_{\nu t} :) \right]$$

(2.7)

On a donc finalement :

$$H' = E_0 + \sum_{\nu > 0,t} \xi_{\nu t} (: a_{\nu t}^+ a_{\nu t} : + : a_{\widetilde{\nu} t}^+ a_{\widetilde{\nu} t} :) - \sum_{\nu > 0,tt'} \Delta_{tt'} (: a_{\widetilde{\nu} t'} a_{\nu t} : + : a_{\nu t}^+ a_{\widetilde{\nu} t'}^+ :)$$
(2.8)

où l'on a posé :

$$\xi_{\nu t} = \widetilde{\varepsilon}_{\nu t} - \frac{1}{2} \sum_{t'} G_{tt'} \left(1 + \delta_{tt'} \right) h_{\nu}^{t't'}$$

$$(2.9)$$

Soit, en explicitant la nature des nucléons $(t,t'\!=\!n,p)$:

$$H' = E_{0} + \sum_{\nu > 0} \left\{ \xi_{\nu p} (: a_{\nu p}^{+} a_{\nu p} : + : a_{\widetilde{\nu} p}^{+} a_{\widetilde{\nu} p} :) + \xi_{\nu n} (: a_{\nu n}^{+} a_{\nu n} : + : a_{\widetilde{\nu} n}^{+} a_{\widetilde{\nu} n} :) - \Delta_{nn} (: a_{\widetilde{\nu} n} a_{\nu n} : + : a_{\nu n}^{+} a_{\widetilde{\nu} n}^{+} :) - \Delta_{pp} (: a_{\widetilde{\nu} p} a_{\nu p} : + : a_{\nu p}^{+} a_{\widetilde{\nu} p}^{+} :) - \Delta_{np} (: a_{\widetilde{\nu} n} a_{\nu p} : + : a_{\nu p}^{+} a_{\widetilde{\nu} n}^{+} :) \right\}$$

$$(2.10)$$

 ${\cal H}$ 'peut s'écrire sous forme matricielle :

$$H' = E_0 + \sum_{\nu > 0} \left\{ \left(a_{\nu p}^+, a_{\nu n}^+, a_{\tilde{\nu} p}, a_{\tilde{\nu} n} \right) A_{\nu} \begin{pmatrix} a_{\nu p} \\ a_{\nu n} \\ a_{\tilde{\nu} p}^+ \\ a_{\tilde{\nu} p}^+ \\ a_{\tilde{\nu} n}^+ \end{pmatrix} + \xi_{\nu p} + \xi_{\nu n} \right\}$$
(2.11)

où A_{ν} est la matrice d'excitation définie par :

$$A_{\nu} = \begin{pmatrix} \xi_{\nu p} & 0 & -\Delta_{pp} & -\Delta_{np} \\ 0 & \xi_{\nu n} & -\Delta_{np} & -\Delta_{nn} \\ -\Delta_{pp} & -\Delta_{np} & -\xi_{\nu p} & 0 \\ -\Delta_{np} & -\Delta_{nn} & 0 & -\xi_{\nu n} \end{pmatrix}$$
(2.12)

2.2.2 Diagonalisation

La matrice (2.12) étant identique à la matrice (1.26), ses valeurs propres sont donc $\pm E_{\nu\tau}$, t=1,2, où $E_{\nu\tau}$ est donné par (1.28), soit :

$$E_{\nu\tau}^{2} = \frac{1}{2} \left[\left(E_{\nu n}^{2} + E_{\nu p}^{2} + 2\Delta_{np}^{2} \right) + \left(-1 \right)^{\tau+1} \sqrt{\left(E_{\nu n}^{2} - E_{\nu p}^{2} \right)^{2} + 4\Delta_{np}^{2} \left[E_{\nu n}^{2} + E_{\nu p}^{2} - 2 \left(\xi_{\nu p} \xi_{\nu n} - \Delta_{nn} \Delta_{pp} \right) \right]} \right]$$
(2.13)

 avec :

$$E_{\nu t} = \sqrt{\xi_{\nu t}^2 + \Delta_{tt}^2}$$
 t=n,p

Les vecteurs propres correspondants sont :

$$X_{\nu 1} = \begin{pmatrix} u_{\nu 1p} \\ u_{\nu 1n} \\ v_{\nu 1p} \\ v_{\nu 1n} \end{pmatrix} , \qquad X_{\nu 2} = \begin{pmatrix} u_{\nu 2p} \\ u_{\nu 2n} \\ v_{\nu 2p} \\ v_{\nu 2n} \end{pmatrix}$$

dont les composantes sont définies par (1.29) et (1.31).

2.3 Représentation quasiparticules

2.3.1 Transformation de Bogoliubov - Valatin

La transformation T qui diagonalise l'hamiltonien H 'est identique à celle du chapitre 1 et s'écrit :

$$T = \begin{pmatrix} u_{\nu 1p} & u_{\nu 1n} & \upsilon_{\nu 1p} & \upsilon_{\nu 1n} \\ u_{\nu 2p} & u_{\nu 2n} & \upsilon_{\nu 2p} & \upsilon_{\nu 2n} \\ -\upsilon_{\nu 1p} & -\upsilon_{\nu 1n} & u_{\nu 1p} & u_{\nu 1n} \\ -\upsilon_{\nu 2p} & -\upsilon_{\nu 2n} & u_{\nu 2p} & u_{\nu 2n} \end{pmatrix}$$
(2.14)

En effet :

$$H' = E_0 + \sum_{\nu > 0} \left(a_{\nu p}^+, a_{\nu n}^+, a_{\widetilde{\nu} p}, a_{\widetilde{\nu} n} \right) T^{-1} D T \begin{pmatrix} a_{\nu p} \\ a_{\nu n} \\ a_{\widetilde{\nu} p}^+ \\ a_{\widetilde{\nu} n}^+ \end{pmatrix} + \sum_{\nu > 0} \xi_{\nu t}$$
(2.15)

où :

$$D = \begin{pmatrix} E_{\nu 1} & 0 & 0 & 0\\ 0 & E_{\nu 2} & 0 & 0\\ 0 & 0 & -E_{\nu 1} & 0\\ 0 & 0 & 0 & -E_{\nu 2} \end{pmatrix}$$
(2.16)

En introduisant des nouveaux opérateurs $\alpha^+_{\tilde{\nu}\tau}$, $\alpha_{\nu\tau}$ qui sont des opérateurs de création et d'annihilation de quasiparticules respectivement, il vient :

$$\begin{pmatrix} \alpha_{\nu 1} \\ \alpha_{\nu 2} \\ \alpha_{\widetilde{\nu}1}^+ \\ \alpha_{\widetilde{\nu}2}^+ \end{pmatrix} = T \begin{pmatrix} a_{\nu p} \\ a_{\nu n} \\ a_{\widetilde{\nu}p}^+ \\ a_{\widetilde{\nu}p}^+ \\ a_{\widetilde{\nu}n}^+ \end{pmatrix}$$
(2.17)

Cette transformation est donc la transformation généralisée de Bogoluibov -Valatin. Sous forme condensée, elle s'écrit :

$$\alpha_{\nu\tau}^{+} = \sum_{t=n,p} \left(u_{\nu\tau t} \ a_{\nu t}^{+} + v_{\nu\tau t} \ a_{\tilde{\nu} t} \right) \qquad , \qquad \tau = 1,2$$
(2.18)

Le vide correspondant, appellé état BCS, noté $|\Psi\rangle$, et est défini implicitement par :

$$\left. \begin{array}{l} \alpha_{\nu\tau} \left| \Psi \right\rangle = 0 \\ \left\langle \Psi \right| \alpha_{\nu\tau}^{+} = 0 \end{array} \right\} \qquad \forall \nu, \tau$$

La transformation inverse s'écrit :

$$a_{\widetilde{\nu}t} = \sum_{\tau} \left(u_{\nu\tau t} \; \alpha_{\widetilde{\nu}\tau} + v_{\nu\tau t} \; \alpha_{\nu\tau}^+ \right) \tag{2.19}$$

En utilisant ces relations, on a finalement :

$$H' = E_0 + \sum_{\nu > 0,\tau} E_{\nu\tau} \left(\alpha_{\nu\tau}^+ \alpha_{\nu\tau} + \alpha_{\widetilde{\nu}\tau}^+ \alpha_{\widetilde{\nu}\tau} \right)$$
(2.20)

H 'est donc l'hamiltonien des quasiparticules indépendantes et $E_{\nu\tau}$ n'est autre que l'énergie d'une quasiparticule.

Par ce traitement à l'aide du théorème de Wick, nous avons pu diagonaliser l'hamiltonien de manière plus rapide et plus efficace qu'en utilisant la méthode de linéarisation habituelle.

En effet, dans l'expression (2.20), H' est déjà diagonal, alors que la méthode utilisée au chapitre 1 et dans les références [12, 15, 16] nécessite une rediagonalisation de l'hamiltonien.

En utilisant la transformation (2.18), h_{ν}^{tt} défini par (2.5), devient :

$$h_{\nu}^{tt} = \sum_{\tau} v_{\nu\tau t}^2 \tag{2.21}$$

Pour leur part, les $\xi_{\nu t}$ définis par (2.9) s'écrivent :

$$\xi_{\nu p} = \widetilde{\varepsilon}_{\nu p} - G_{pp} \sum_{\tau} v_{\nu \tau p}^2 - \frac{1}{2} G_{np} \sum_{\tau} v_{\nu \tau n}^2$$

$$\xi_{\nu n} = \widetilde{\varepsilon}_{\nu n} - G_{nn} \sum_{\tau} v_{\nu \tau n}^2 - \frac{1}{2} G_{np} \sum_{\tau} v_{\nu \tau p}^2$$

$$(2.22)$$

Par ailleurs, compte tenu de la transformation (2.19), le terme E_0 défini par (2.3) s'écrit :

$$E_{0} = 2 \sum_{\nu > 0,t} \left[\widetilde{\varepsilon}_{\nu t} - \frac{1}{2} G_{tt} \left(\sum_{\tau} \upsilon_{\nu \tau t}^{2} \right) \right] \left(\sum_{\tau} \upsilon_{\nu \tau t}^{2} \right)$$
$$-G_{np} \sum_{\nu > 0} \left[\left(\sum_{\tau} \upsilon_{\nu \tau p}^{2} \right) \left(\sum_{\tau} \upsilon_{\nu \tau n}^{2} \right) + \left(\sum_{\tau} \upsilon_{\nu \tau p} \upsilon_{\nu \tau n} \right)^{2} \right]$$
$$-\frac{\Delta_{pp}^{2}}{G_{pp}} - \frac{\Delta_{nn}^{2}}{G_{nn}} - \frac{\Delta_{np}^{2}}{G_{np}}$$
(2.23)

2.4 Equations du gap

Les paramètres du gap s'écrivent, compte tenu de $\left(2.4\right)$:

$$\Delta_{nn} = -G_{nn} \sum_{\nu > 0,\tau} u_{\nu\tau n} \upsilon_{\nu\tau n}$$

$$\Delta_{pp} = -G_{pp} \sum_{\nu > 0,\tau} u_{\nu\tau p} \upsilon_{\nu\tau p}$$

$$\Delta_{np} = -G_{np} \sum_{\nu > 0,\tau} (u_{\nu\tau n} \upsilon_{\nu\tau p} + u_{\nu\tau p} \upsilon_{\nu\tau n})$$
(2.24)

De même, les conditions de conservation du nombre de protons et du nombre de neutrons deviennent :

$$N_{p} = 2 \sum_{\nu > 0,\tau} v_{\nu\tau p}^{2}$$

$$N_{n} = 2 \sum_{\nu > 0,\tau} v_{\nu\tau n}^{2}$$
(2.25)
Les équations (2.24) et (2.25) constituent les équations du gap pour un système pair-pair.

On constate alors que les conditions de conservation du nombre de particules sont identiques à celles du chapitre 1 (voir (1.51)), sauf qu'il faut substituer les (u, v) aux (U, V).

Par contre, la définition des paramètres du gap étant différente dans les deux chapitres, les expressions de Δ_{nn} et Δ_{pp} dans le cadre de la présente méthode diffèrent d'un facteur 2 par rapport à celles du chapitre 1 (voir (1.50)) c'est pour cette même raison que les expressions de $\xi_{\nu t}$, t=n,p et de E_0 semblent différer de celles du chapitre 1 (voir les équations (1.38),(1.48) et (1.49)) alors qu'elles sont parfaitement équivalentes. La seule différence consiste toutefois en l'utilisation des (u, v) au lieu des (U, V).

2.5 Etats BCS

2.5.1 Etat fondamental

De même qu'au chapitre précédent, l'état BCS est le vide des quasiparticules, il est défini par :

$$|\Psi\rangle = k \prod_{\nu>0,\tau} \alpha_{\nu 1} \alpha_{\widetilde{\nu}1} \alpha_{\nu 2} \alpha_{\widetilde{\nu}2} |0\rangle$$
(2.26)

soit, à l'aide de la transformation généralisée de Bogoliubov-Valatin (2.18)

$$|\Psi
angle = \prod_{
u>0} |\Psi_{
u}
angle$$

où :

$$|\Psi_{\nu}\rangle = \left[B_{1}^{\nu}A_{\nu p}^{+}A_{\nu n}^{+} + B_{p}^{\nu}A_{\nu p}^{+} + B_{n}^{\nu}A_{\nu n}^{+} + B_{4}^{\nu}\left(a_{\widetilde{\nu}n}^{+}a_{\nu p}^{+} + a_{\widetilde{\nu}p}^{+}a_{\nu n}^{+}\right) + B_{5}^{\nu}\right]|0\rangle$$
(2.27)

avec la notation :

$$A_{\nu t}^+ = a_{\widetilde{\nu} t}^+ a_{\nu t}^+ \qquad , \quad t=n,p$$

Les coefficients B_1^{ν} , B_p^{ν} , B_n^{ν} , B_4^{ν} , B_5^{ν} sont donnés par (1.55) en substituant les (u, v) aux (U, V).

2.5.2 Etat à une quasiparticule

L'état à une quasiparticule est défini par :

$$|\nu\tau\rangle = \alpha_{\nu\tau}^{+} |\Psi\rangle$$

$$= \left(B_{3\nu\tau}^{p,n} A_{\nu p}^{+} a_{\nu n}^{+} + B_{3\nu\tau}^{n,p} A_{\nu n}^{+} a_{\nu p}^{+} + \gamma_{\nu\tau p} a_{\nu p}^{+} + \gamma_{\nu\tau n} a_{\nu n}^{+} \right) \prod_{j \neq \nu} |\Psi_{j}\rangle$$

$$(2.28)$$

où les différents coefficients sont donnés par (1.63) en substituant les (u, v) aux (U, V).

2.5.3 Etat à deux quasiparticules

L'état à deux quasiparticules est défini par :

$$\left|\nu\tau\widetilde{\mu}\tau'\right\rangle = \alpha_{\nu\tau}^{+}\alpha_{\widetilde{\mu}\tau'}^{+}\left|\Psi\right\rangle$$

Compte tenu de (2.18), on obtient :

$$|\nu\tau\tilde{\mu}\tau'\rangle = \left\{ \left(B^{p,n}_{3\nu\tau}A^{+}_{\nu p}a^{+}_{\nu n} + B^{n,p}_{3\nu\tau}A^{+}_{\nu n}a^{+}_{\nu p} + \gamma_{\nu\tau p}a^{+}_{\nu p} + \gamma_{\nu\tau n}a^{+}_{\nu n} \right) \\ \times \left(B^{p,n}_{3\mu\tau'}A^{+}_{\mu p}a^{+}_{\tilde{\mu}n} + B^{n,p}_{3\mu\tau'}A^{+}_{\mu n}a^{+}_{\tilde{\mu}p} + \gamma_{\mu\tau' p}a^{+}_{\tilde{\mu}p} + \gamma_{\mu\tau' n}a^{+}_{\tilde{\mu}n} \right) \right\} \prod_{j\neq\nu\mu} |\Psi_{j}\rangle \qquad \text{si } \nu\neq\mu$$

Lorsque $\nu = \mu$, il s'écrit :

$$\left|\nu\tau\tilde{\nu}\tau'\right\rangle = \left[C_{1\tau\tau'}^{\nu}A_{\nu p}^{+}A_{\nu n}^{+} + C_{p\tau\tau'}^{\nu}A_{\nu p}^{+} + C_{n\tau\tau'}^{\nu}A_{\nu n}^{+} + C_{4\tau\tau'}^{\nu n p}a_{\tilde{\nu}n}^{+}a_{\nu p}^{+} + C_{4\tau\tau'}^{\nu p n}a_{\tilde{\nu}p}^{+}a_{\nu n}^{+} + C_{5\tau\tau'}^{\nu}\right]\prod_{j\neq\nu}\left|\Psi_{j}\right\rangle$$
(2.30)

où les différents coefficients sont donnés par (1.60) en substituant les (u, v) aux (U, V).

2.6 Energie du système

L'énergie du système s'écrit :

$$E_{0} = 2 \sum_{\nu > 0,t} \left[\tilde{\varepsilon}_{\nu t} - \frac{1}{2} G_{tt} \left(\sum_{\tau} \upsilon_{\nu \tau t}^{2} \right) \right] \left(\sum_{\tau} \upsilon_{\nu \tau t}^{2} \right)$$
$$-G_{np} \sum_{\nu > 0} \left[\left(\sum_{\tau} \upsilon_{\nu \tau p}^{2} \right) \left(\sum_{\tau} \upsilon_{\nu \tau n}^{2} \right) + \left(\sum_{\tau} \upsilon_{\nu \tau p} \upsilon_{\nu \tau n} \right)^{2} \right]$$
$$-\frac{\Delta_{pp}^{2}}{G_{pp}} - \frac{\Delta_{nn}^{2}}{G_{nn}} - \frac{\Delta_{np}^{2}}{G_{np}}$$
(2.31)

On constate alors que, la principale différence entre cette expression de l'énergie et celle du chapitre précédent (voir 1.64) est d'utiliser les (u, v) au lieu des (U, V)

2.7 Limite lorsque $\Delta_{np} \rightarrow 0$

En l'absence d'appariement neutron-proton c'est à dire lorsque $\Delta_{np} \to 0$ et $G_{np} = 0$, la matrice d'excitation A_{ν} définie par (2.12) devient :

$$A_{\nu} = \begin{pmatrix} \xi_{\nu p} & 0 & -\Delta_{pp} & 0\\ 0 & \xi_{\nu n} & 0 & -\Delta_{nn} \\ -\Delta_{pp} & 0 & -\xi_{\nu p} & 0\\ 0 & -\Delta_{nn} & 0 & -\xi_{\nu n} \end{pmatrix}$$
(2.32)

dont les valeurs propres sont respectivement :

$$E_{\nu t} = \sqrt{\xi_{\nu t}^2 + \Delta_{tt}^2} \quad , \quad t=n,p$$
(2.33)

Les vecteurs propres s'écrivent quant à eux :

$$X_{\nu 1} = \begin{pmatrix} u_{\nu 1p} \\ u_{\nu 1n} \\ v_{\nu 1p} \\ v_{\nu 1n} \end{pmatrix} , \qquad X_{\nu 2} = \begin{pmatrix} u_{\nu 2p} \\ u_{\nu 2n} \\ v_{\nu 2p} \\ v_{\nu 2p} \\ v_{\nu 2n} \end{pmatrix}$$

avec :

$$\begin{cases} u_{\nu 1p}^2 = \frac{1}{2} \left[1 + \frac{\xi_{\nu p}}{E_{\nu p}} \right] = u_{\nu p}^2 \\ v_{\nu 1p}^2 = \frac{1}{2} \left[1 - \frac{\xi_{\nu p}}{E_{\nu p}} \right] = v_{\nu p}^2 \end{cases}, \quad \begin{cases} u_{\nu 1n} = 0 \\ v_{\nu 1n} = 0 \end{cases}$$
(2.34)

 et

$$\begin{cases} u_{\nu 2p} = 0 \\ v_{\nu 2p} = 0 \end{cases}, \quad \begin{cases} u_{\nu 2n}^2 = \frac{1}{2} \left\{ 1 + \frac{\xi_{\nu n}}{E_{\nu n}} \right\} = u_{\nu n}^2 \\ v_{\nu 2n}^2 = \frac{1}{2} \left\{ 1 - \frac{\xi_{\nu n}}{E_{\nu n}} \right\} = v_{\nu n}^2 \end{cases}$$
(2.35)

Les $\xi_{\nu t}$, t=n,p définis par (2.22) deviennent alors :

$$\xi_{\nu p} = \tilde{\varepsilon}_{\nu p} - G_{pp} v_{\nu p}^2 \tag{2.36}$$

$$\xi_{\nu n} = \tilde{\varepsilon}_{\nu n} - G_{nn} v_{\nu n}^2 \tag{2.37}$$

Les conditions de conservation du nombre de protons et du nombre de neutrons s'écrivent dans ce cas :

$$N_{p} = 2\sum_{\nu>0} v_{\nu p}^{2}$$

$$N_{n} = 2\sum_{\nu>0} v_{\nu n}^{2}$$
(2.38)

Ce qui signifie que les probabilités d'occupation et d'inoccupation, les énergies de quasiparticules et les conditions de conservation du nombre de protons et du nombre de neutrons se ramènent à celles de l'appariement entre particules identiques.

L'énergie du système s'écrit dans ce cas :

$$E_{BCS} = 2\sum_{\nu>0} \left(\varepsilon_{\nu n} - \frac{G_{nn}}{2} v_{\nu n}^2 \right) v_{\nu n}^2 - \frac{\Delta_{nn}^2}{G_{nn}} + 2\sum_{\nu>0} \left(\varepsilon_{\nu p} - \frac{G_{pp}}{2} v_{\nu p}^2 \right) v_{\nu p}^2 - \frac{\Delta_{pp}^2}{G_{pp}}$$
(2.39)

Soit :

$$E_{BCS} = E_{BCSn} + E_{BCSp} \tag{2.40}$$

Lorsque $\Delta_{np} \to 0$ et $G_{np} \neq 0$ l'énergie du système s'écrit dans ce cas :

$$E_{BCS} = E_{BCSn} + E_{BCSp} - G_{np} \sum_{\nu > 0} v_{\nu n}^2 v_{\nu p}^2$$
(2.41)

Chapitre 3

Traitement de l'appariement isovectoriel dans le cas d'un système possédant un nombre impair de particules par la méthode de linéarisation

3.1 Introduction

Nous avons explicité dans les deux premiers chapitre, la façon de comprendre et de décrire le traitement de l'appariement isovectoriel dans le cas des systèmes pair-pairs. Dans le présent chapitre nous suivrons la même démarche dans le cas des systèmes possédant un nombre impair de particules, en introduisant la technique du niveau bloqué pour définir l'hamiltonien du système [21].

Comme le montre l'expression (1.53), l'état BCS ne peut décrire que des systèmes pair-pairs. Ceci était déjà le cas dans la théorie usuelle décrivant l'appariement entre particules identiques. Dans ce dernier cas, on utilise la technique du niveau bloqué pour décrire les systèmes impairs. On se donne alors comme fonction d'onde d'essai l'état à une quasiparticule qui coincide avec l'état excité à une particule.

Nous nous proposons dans le présent chapitre, de généraliser cette technique dans le cas de l'appariement iovectoriel. Cependant, comme le montre l'expression (1.59), l'état à une quasiparticule ne coincide pas dans ce cas avec l'état à une particule. C'est plutôt ce dernier que nous adopterons comme fonction d'onde d'essai.

Après avoir écrit l'hamiltonien du système sous une forme adéquate, nous nous proposons de le diagonaliser approximativement par la méthode de linéarisaton. Les équations du gap correspondantes et l'énergie de l'état fondamental seront établies.

3.2 Hamiltonien du système

Si la particule célibataire occupe l'état $|KT\rangle$, avec T = n ou p, du modèle à particules indépendantes, l'hamiltonien du système possédant un nombre impair de particules est donné par :

$$H = \varepsilon_{KT} a_{KT}^{+} a_{KT} + \sum_{\substack{\nu > 0, t \\ \nu \neq K}} \varepsilon_{\nu t} \left(a_{\nu t}^{+} a_{\nu t} + a_{\widetilde{\nu} t}^{+} a_{\widetilde{\nu} t} \right) - \frac{1}{2} \sum_{tt'} G_{tt'}^{T=1} \sum_{\substack{\nu, \mu > 0 \\ \nu \neq K}} \left(a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t'} a_{\mu t} + a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t} a_{\mu t'} \right) - \frac{1}{2} \sum_{tt'} G_{tt'}^{T=0} \sum_{\substack{\nu, \mu > 0 \\ \nu \neq K}} \left(a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t'} a_{\mu t} - a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t} a_{\mu t'} \right)$$
(3.1)

On se restreint dans ce qui suit au cas isovectoriel, en posant comme précédemment $G_{tt'}^{T=1} = G_{tt'}$. On a alors :

$$H = \varepsilon_{KT} a_{KT}^+ a_{KT} + H^{(K)}$$

où :

$$H^{(K)} = \sum_{\substack{\nu > 0, t \\ \nu \neq K}} \varepsilon_{\nu t} \left(a_{\nu t}^{+} a_{\nu t} + a_{\widetilde{\nu} t}^{+} a_{\widetilde{\nu} t} \right) - \frac{1}{2} \sum_{tt'} G_{tt'} \sum_{\substack{\nu, \mu > 0 \\ (\nu, \mu) \neq K}} \left(a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t'} a_{\mu t} + a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\widetilde{\mu} t} a_{\mu t'} \right)$$
(3.2)

L'opérateur nombre de particules est donné par l'expression :

$$N = a_{KT}^+ a_{KT} + \sum_t N_t^{(K)}$$

avec :

$$N_t^{(K)} = \sum_{\substack{\nu > 0\\\nu \neq K}} \left(a_{\nu t}^+ a_{\nu t} + a_{\widetilde{\nu} t}^+ a_{\widetilde{\nu} t} \right) \quad , \quad t=n,p$$

$$(3.3)$$

Soit l'hamiltonien auxiliaire :

$$H' = \left(\varepsilon_{KT} - \lambda_T\right) a_{KT}^+ a_{KT} + H^{(K)} - \sum_t \lambda_t N_t^{(K)}$$
(3.4)

où $\lambda_t, t = n, p$, sont des paramètres qui correspondent aux potentiels chimiques.

Il vient alors :

$$H' = \tilde{\varepsilon}_{KT} a_{KT}^+ a_{KT} + H'^{(K)}$$
(3.5)

où l'on a posé :

$$\widetilde{\varepsilon}_{KT} = \varepsilon_{KT} - \lambda_T$$
$$\widetilde{\varepsilon}_{\nu t} = \varepsilon_{\nu t} - \lambda_t$$

 et

$$H^{'(K)} = \sum_{\substack{\nu > 0, t \\ \nu \neq K}} \tilde{\varepsilon}_{\nu t} \left(a_{\nu t}^{+} a_{\nu t} + a_{\widetilde{\nu} t}^{+} a_{\widetilde{\nu} t} \right) - \frac{1}{2} \sum_{tt'} G_{tt'} \sum_{\substack{\nu, \mu > 0 \\ (\nu, \mu) \neq K}} \left(a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\mu t} + a_{\nu t}^{+} a_{\widetilde{\nu} t'}^{+} a_{\mu t} \right)$$
(3.6)

3.3 Diagonalisation

3.3.1 Méthode de linéarisation

Comme nous l'avons vu au chapitre 1, la méthode de linéarisation nécessite le calcul des commutateurs suivants :

$$\left[H^{\prime(K)}, a_{jr}^{+}\right] = \tilde{\varepsilon}_{jr} a_{jr}^{+} - \sum_{t} G_{tr} \sum_{\substack{\nu > 0\\ \nu \neq K}} \left(a_{\nu r}^{+} a_{\widetilde{\nu} t}^{+} + a_{\nu t}^{+} a_{\widetilde{\nu} r}^{+}\right) a_{\widetilde{j} t} \qquad , \quad j \neq K$$
(3.7)

 et

$$\left[H^{\prime(K)}, a_{\tilde{j}r}\right] = -\tilde{\varepsilon}_{jr}a_{\tilde{j}r} - \sum_{t} G_{tr} \sum_{\substack{\nu > 0\\\nu \neq K}} a_{jt}^{+} \left(a_{\tilde{\nu}t}a_{\nu r} + a_{\tilde{\nu}r}a_{\nu t}\right) \qquad , \qquad j \neq K$$
(3.8)

En utilisant le théorème de Wick, les expressions (3.7) et (3.8) deviennent

$$\begin{bmatrix} H^{\prime(K)}, a_{jr}^{+} \end{bmatrix} = \widetilde{\varepsilon}_{jr} a_{jr}^{+} - \sum_{t} G_{tr} \sum_{\substack{\nu > 0 \\ \nu \neq K}} \begin{bmatrix} a_{\nu r}^{+} a_{\widetilde{\nu} t}^{+} a_{\widetilde{j} t} - a_{\nu r}^{+} a_{\widetilde{j} t} a_{\widetilde{\nu} t}^{+} + a_{\widetilde{\nu} t}^{+} a_{\widetilde{j} t} a_{\nu r}^{+} \\ + a_{\widetilde{\nu} t}^{+} a_{\widetilde{j} t} a_{\nu r}^{+} + a_{\nu t}^{+} a_{\widetilde{\nu} r}^{+} a_{\widetilde{j} t}^{-} - a_{\widetilde{\nu} r}^{+} a_{\widetilde{j} t} a_{\nu t}^{+} \\ + : a_{\nu r}^{+} a_{\widetilde{\nu} t}^{+} a_{\widetilde{j} t} : + : a_{\nu t}^{+} a_{\widetilde{\nu} r}^{+} a_{\widetilde{j} t}^{-} : \end{bmatrix} , \quad j \neq K$$

$$(3.9)$$

$$\begin{bmatrix} H'^{(K)}, a_{\tilde{j}r} \end{bmatrix} = -\widetilde{\varepsilon}_{jr} a_{\tilde{j}r} - \sum_{t} G_{tr} \sum_{\substack{\nu > 0\\\nu \neq K}} \left[a_{jt}^{+\sqcap} a_{\tilde{\nu}t} a_{\nu r} - a_{jt}^{+\sqcap} a_{\nu r} a_{\tilde{\nu}t}^{+} + a_{\tilde{\nu}t}^{\sqcap} a_{\nu r} a_{jt}^{+} + a_{jt}^{+\sqcap} a_{\tilde{\nu}r} a_{\nu t} - a_{jt}^{+\sqcap} a_{\nu t} a_{\tilde{\nu}r}^{-} + a_{\tilde{\nu}r}^{\sqcap} a_{\nu t} a_{jt}^{+} + a_{\tilde{\nu}t}^{+} a_{\tilde{\nu}t} a_{\nu r} : + :a_{jt}^{+} a_{\tilde{\nu}r} a_{\nu t} : \right] , \quad j \neq K$$

$$(3.10)$$

Comme dans le chapitre 1, la linéarisation consiste à négliger les produits normaux : $a_{\nu t}^+ a_{\widetilde{\nu} r}^+ a_{\widetilde{j} t}^-$:, : $a_{\nu t}^+ a_{\widetilde{\nu} r}^+ a_{\widetilde{j} t}^-$:, : $a_{jt}^+ a_{\widetilde{\nu} t} a_{\nu r}$: et : $a_{jt}^+ a_{\widetilde{\nu} r} a_{\nu t}$: dans les expressions (3.9) et (3.10) respectivement. Sachant que :

$$\begin{aligned} a_{\widetilde{\nu}t}^{+\sqcap} a_{\widetilde{j}t} &= a_{\widetilde{\nu}t}^{+\sqcap} a_{\widetilde{\nu}t} \delta_{\nu j} \\ a_{\widetilde{\nu}r}^{+\sqcap} a_{\widetilde{j}t} &= a_{\widetilde{\nu}r}^{+\sqcap} a_{\widetilde{\nu}t} \delta_{\nu j} \delta_{rt} \end{aligned}$$

et si l'on suppose que :

$$a_{\nu r}^{+\sqcap}a_{\widetilde{j}t} = a_{\nu t}^{+\sqcap}a_{\widetilde{j}t} = 0$$
 si j>0

il vient alors :

$$\left[H^{'(K)}, a_{jr}^{+}\right] = \xi_{jr} a_{jr}^{+} - \sum_{t} \Delta_{rt}^{(KT)} a_{\tilde{j}t}$$
(3.11)

 et

$$\left[H^{\prime(K)}, a_{\tilde{j}r}\right] = -\xi_{jr}a_{\tilde{j}r} - \sum_{t}\Delta_{rt}^{(KT)}a_{jt}^{+}$$

$$(3.12)$$

où nous avons posé :

$$\xi_{jr} = \varepsilon_{jr} - \lambda_r - \sum_t G_{tr} \left(1 + \delta_{tr} \right) a_{\tilde{j}t}^{+\sqcap} a_{\tilde{j}t}$$
(3.13)

 et

$$\Delta_{rt}^{(KT)} = G_{tr} \sum_{\substack{\nu > 0\\\nu \neq K}} \left(a_{\nu r}^{+\sqcap} a_{\widetilde{\nu}t}^{+} + a_{\nu t}^{+\sqcap} a_{\widetilde{\nu}r}^{+} \right) = G_{tr} \sum_{\substack{\nu > 0\\\nu \neq K}} \left(a_{\widetilde{\nu}t}^{\sqcap} a_{\nu r} + a_{\widetilde{\nu}r}^{\sqcap} a_{\nu t} \right)$$
(3.14)

Soit, en explicitant la nature des nucléons (r,t=n,p) :

$$\begin{cases} \begin{bmatrix} H'^{(K)}, a_{\nu p}^{+} \end{bmatrix} = \xi_{\nu p} a_{\nu p}^{+} - \Delta_{pp}^{(KT)} a_{\tilde{\nu} p} - \Delta_{np}^{(KT)} a_{\tilde{\nu} n} \\ \begin{bmatrix} H'^{(K)}, a_{\nu n}^{+} \end{bmatrix} = \xi_{\nu n} a_{\nu n}^{+} - \Delta_{np}^{(KT)} a_{\tilde{\nu} p} - \Delta_{nn}^{(KT)} a_{\tilde{\nu} n} \\ \begin{bmatrix} H'^{(K)}, a_{\tilde{\nu} p} \end{bmatrix} = -\Delta_{pp}^{(KT)} a_{\nu p}^{+} - \xi_{\nu p} a_{\tilde{\nu} p} - \Delta_{np}^{(KT)} a_{\nu n}^{+} \\ \begin{bmatrix} H'^{(K)}, a_{\tilde{\nu} n} \end{bmatrix} = -\Delta_{pn}^{(KT)} a_{\nu p}^{+} - \xi_{\nu n} a_{\tilde{\nu} n} - \Delta_{nn}^{(KT)} a_{\nu n}^{+} \end{cases}$$

Ce système peut également s'écrire sous forme matricielle :

$$\begin{pmatrix} \begin{bmatrix} H'^{(K)}, a_{\nu p}^{+} \\ H'^{(K)}, a_{\nu n}^{+} \end{bmatrix} \\ \begin{bmatrix} H'^{(K)}, a_{\tilde{\nu} p} \\ H'^{(K)}, a_{\tilde{\nu} n} \end{bmatrix} \end{pmatrix} = A_{\nu} \begin{pmatrix} a_{\nu p}^{+} \\ a_{\nu n}^{+} \\ a_{\tilde{\nu} p} \\ a_{\tilde{\nu} n} \end{pmatrix}$$
(3.15)

où A_{ν} est la matrice d'excitation définie par :

$$A_{\nu} = \begin{pmatrix} \xi_{\nu p} & 0 & -\Delta_{pp}^{(KT)} & -\Delta_{np}^{(KT)} \\ 0 & \xi_{\nu n} & -\Delta_{np}^{(KT)} & -\Delta_{nn}^{(KT)} \\ -\Delta_{pp}^{(KT)} & -\Delta_{np}^{(KT)} & -\xi_{\nu p} & 0 \\ -\Delta_{np}^{(KT)} & -\Delta_{nn}^{(KT)} & 0 & -\xi_{\nu n} \end{pmatrix}$$
(3.16)

Les valeurs propres de A_{ν} sont solutions de l'équation bicarrée :

$$\lambda^{4} - \lambda^{2} \left(E_{\nu n}^{2} + E_{\nu p}^{2} + 2 \left(\Delta_{np}^{(KT)} \right)^{2} \right) + E_{\nu n}^{2} E_{\nu p}^{2} + \left(\Delta_{np}^{(KT)} \right)^{4} + 2 \left(\Delta_{np}^{(KT)} \right)^{2} \left(\xi_{\nu p} \xi_{\nu n} - \Delta_{nn}^{(KT)} \Delta_{pp}^{(KT)} \right) = 0$$
(3.17)

où nous avons posé :

$$E_{\nu t} = \sqrt{\xi_{\nu t}^2 + \left(\Delta_{tt}^{(KT)}\right)^2} \quad , \quad t=n,p$$

Les valeurs propres de A_{ν} sont donc $\pm E_{\nu\tau'}, \tau = 1, 2$ avec :

$$E_{\nu\tau}^{2} = \frac{1}{2} \left[\left(E_{\nu n}^{2} + E_{\nu p}^{2} + 2 \left(\Delta_{np}^{(KT)} \right)^{2} \right) + \left(-1 \right)^{\tau+1} \sqrt{(E_{\nu n}^{2} - E_{\nu p}^{2})^{2} + 4 \left(\left(\Delta_{np}^{(KT)} \right)^{2} E_{\nu n}^{2} + E_{\nu p}^{2} - 2 \left(\xi_{\nu p} \xi_{\nu n} - \Delta_{nn}^{(KT)} \Delta_{pp}^{(KT)} \right) \right)} \right]$$

Les vecteurs propres de la matrice A_{ν} correspondant aux valeurs propres $E_{\nu 1}$ et $E_{\nu 2}$ sont :

$$X_{\nu 1} = \begin{pmatrix} u_{\nu 1p} \\ u_{\nu 1n} \\ v_{\nu 1p} \\ v_{\nu 1n} \end{pmatrix} , \qquad X_{\nu 2} = \begin{pmatrix} u_{\nu 2p} \\ u_{\nu 2n} \\ v_{\nu 2p} \\ v_{\nu 2n} \end{pmatrix}$$

En normalisant ces vecteurs, on a :

$$u_{\nu 1p}^2 + u_{\nu 1n}^2 + v_{\nu 1p}^2 + v_{\nu 1n}^2 = u_{\nu 2p}^2 + u_{\nu 2n}^2 + v_{\nu 2p}^2 + v_{\nu 2n}^2 = 1$$

La relation d'orthogonalité nous permet d'écrire également :

$$u_{\nu 1p}u_{\nu 2p} + u_{\nu 1n}u_{\nu 2n} + v_{\nu 1p}v_{\nu 2p} + v_{\nu 1n}v_{\nu 2n} = 0$$

Les composantes du vecteur $X_{\nu 1}$ sont données par :

$$u_{\nu 1p} = \frac{T_{\nu 1}}{T_{\nu}} , \quad u_{\nu 1n} = -\frac{T_{\nu 2}}{T_{\nu}} , \quad v_{\nu 1p} = \frac{T_{\nu 3}}{T_{\nu}} , \quad v_{\nu 1n} = -\frac{T_{\nu 4}}{T_{\nu}}$$
(3.18)

avec :

$$T_{\nu} = \sqrt{T_{\nu 1}^2 + T_{\nu 2}^2 + T_{\nu 3}^2 + T_{\nu 4}^2}$$

 et

$$T_{\nu 1} = (\xi_{\nu p} + E_{\nu 1})(\xi_{\nu n}^{2} - E_{\nu 1}^{2}) + (\Delta_{np}^{(KT)})^{2}(\xi_{\nu n} + E_{\nu 1}) - (\Delta_{nn}^{(KT)})^{2}(\xi_{\nu p} + E_{\nu 1})$$

$$T_{\nu 2} = \Delta_{np}^{(KT)} \left[-\Delta_{pp}^{(KT)}(\xi_{\nu n} + E_{\nu 1}) \right] - \Delta_{nn}^{(KT)} \left[\Delta_{np}^{(KT)}(\xi_{\nu p} + E_{\nu 1}) \right]$$

$$T_{\nu 3} = -(\xi_{\nu n} - E_{\nu 1}) \left[\Delta_{pp}^{(KT)}(\xi_{\nu n} + E_{\nu 1}) \right] - \Delta_{nn}^{(KT)} \left[\Delta_{pp}^{(KT)} \Delta_{nn}^{(KT)} - (\Delta_{np}^{(KT)})^{2} \right]$$

$$T_{\nu 4} = (\xi_{\nu n} - E_{\nu 1}) \left[\Delta_{np}^{(KT)}(\xi_{\nu p} + E_{\nu 1}) \right] - \Delta_{np}^{(KT)} \left[\Delta_{pp}^{(KT)} \Delta_{nn}^{(KT)} - (\Delta_{np}^{(KT)})^{2} \right]$$
(3.19)

Les composantes du vecteur $X_{\nu 2}$ s'obtiennent en remplaçant $E_{\nu 1}$ par $E_{\nu 2}$ dans (3.19) on trouve :

$$u_{\nu 2p} = \frac{T'_{\nu 1}}{T'_{\nu}} \qquad , \ u_{\nu 2n} = -\frac{T'_{\nu 2}}{T'_{\nu}} \qquad , \ v_{\nu 2p} = \frac{T'_{\nu 3}}{T'_{\nu}} \qquad , \ v_{\nu 2n} = -\frac{T'_{\nu 4}}{T'_{\nu}} \qquad (3.20)$$

avec :

$$T'_{\nu} = \sqrt{T'^2_{\nu 1} + T'^2_{\nu 2} + T'^2_{\nu 3} + T'^2_{\nu 4}}$$

$$T'_{\nu 1} = (\xi_{\nu p} + E_{\nu 2})(\xi_{\nu n}^{2} - E_{\nu 2}^{2}) + (\Delta_{np}^{(KT)})^{2}(\xi_{\nu n} + E_{\nu 2}) + (\Delta_{nn}^{(KT)})^{2}(\xi_{\nu p} + E_{\nu 2})$$

$$T'_{\nu 2} = \Delta_{np}^{(KT)} \left[\Delta_{pp}^{(KT)}(\xi_{\nu n} + E_{\nu 2}) \right] + \Delta_{nn}^{(KT)} \left[\Delta_{np}^{(KT)}(\xi_{\nu p} + E_{\nu 2}) \right]$$

$$T'_{\nu 3} = -(\xi_{\nu n} - E_{\nu 2}) \left[\Delta_{pp}^{(KT)}(\xi_{\nu n} + E_{\nu 2}) \right] - \Delta_{nn}^{(KT)} \left[\Delta_{pp}^{(KT)} \Delta_{nn}^{(KT)} - (\Delta_{np}^{(KT)})^{2} \right]$$

$$T'_{\nu 4} = (\xi_{\nu n} - E_{\nu 2}) \left[\Delta_{np}^{(KT)}(\xi_{\nu p} + E_{\nu 2}) \right] - \Delta_{np} \left(\Delta_{pp}^{(KT)} \Delta_{nn}^{(KT)} - (\Delta_{np}^{(KT)})^{2} \right)$$
(3.21)

Nous remarquons qu'on trouve les mêmes composantes des vecteurs $X_{\nu 1}$ et $X_{\nu 2}$ dans le système impair que dans le système pair-pair, il suffit de remplacer les $\Delta_{tt'}$ par $\Delta_{tt'}^{(KT)}$.

3.3.2 Transformation de Bogoliubov - Valatin

La transformation T qui diagonalise l'hamiltonien H' s'écrit :

$$T = \begin{pmatrix} u_{\nu 1p} & u_{\nu 1n} & \upsilon_{\nu 1p} & \upsilon_{\nu 1n} \\ u_{\nu 2p} & u_{\nu 2n} & \upsilon_{\nu 2p} & \upsilon_{\nu 2n} \\ -\upsilon_{\nu 1p} & -\upsilon_{\nu 1n} & u_{\nu 1p} & u_{\nu 1n} \\ -\upsilon_{\nu 2p} & -\upsilon_{\nu 2n} & u_{\nu 2p} & u_{\nu 2n} \end{pmatrix}$$
(3.22)

En introduisant des nouveaux opérateurs $\alpha_{\nu\tau}^+$, $\alpha_{\tilde{\nu}\tau}$ qui sont des opérateurs de création et d'annihilation de quasiparticules respectivement, il vient :

$$\begin{pmatrix} \alpha_{\nu 1}^{+} \\ \alpha_{\nu 2}^{+} \\ \alpha_{\tilde{\nu} 1} \\ \alpha_{\tilde{\nu} 2} \end{pmatrix} = T \begin{pmatrix} a_{\nu p}^{+} \\ a_{\nu n}^{+} \\ a_{\tilde{\nu} p}^{-} \\ a_{\tilde{\nu} n}^{-} \end{pmatrix}$$
(3.23)

Cette transformation est donc la transformation généralisée de Bogoluibov -Valatin. Sous forme condensée, elle s'écrit :

$$\alpha_{\nu\tau}^{+} = \sum_{t=n,p} \left(u_{\nu\tau t} \ a_{\nu t}^{+} + v_{\nu\tau t} \ a_{\tilde{\nu} t} \right) \quad , \quad \tau = 1, 2 \quad \nu \neq K$$

$$(3.24)$$

Le vide correspondant, appellé état BCS, noté $|\Psi\rangle$, et est défini implicitement par :

$$\begin{aligned} &\alpha_{\nu\tau} \left| \Psi \right\rangle = 0 \\ &\left\langle \Psi \right| \alpha_{\nu\tau}^+ = 0 \end{aligned} \right\} \qquad \forall \nu, \tau$$

La transformation inverse de Bogoliubov-Valatin généralisée s'écrit :

$$a_{\widetilde{\nu}t} = \sum_{\tau} \left(u_{\nu\tau t} \, \alpha_{\widetilde{\nu}\tau} + v_{\nu\tau t} \, \alpha_{\nu\tau}^+ \right) \qquad \nu \neq K \tag{3.25}$$

D'autre part, dans le cas où une particule est bloquée dans l'état $|KT\rangle$, on a :

$$a_{KT}^+ = \alpha_{K\tau_T}^+ \qquad \quad \tau_T = 1,2 \quad , \quad T=n,p$$

Dans ce cas la particule se réduit à la quasiparticule, il vient alors :

$$a_{KT}^+ a_{KT} = \alpha_{K\tau_T}^+ \alpha_{K\tau_T}$$

3.4 Représentation quasiparticules

3.4.1 Expression de l'hamiltonien H

En appliquant le théorème de Wick, et à l'aide de la transformation de Bogoliubov-Valatin, l'hamiltonien peut se mettre sous la forme suivante :

$$H' = E_0 + H_{11} + H_2 + H_{resid} \tag{3.26}$$

où E_0 est le terme entièrement contracté

 H_{11} contient les termes en $\alpha^+ \alpha$

 H_2 contient les termes en $\alpha^+ \alpha^+$ et $\alpha \alpha$

 H_{resid} contient les produits normaux : $a_{\nu t}^+ a_{\widetilde{\nu} t'}^+ a_{\widetilde{\mu} t'} a_{\mu t}$: et : $a_{\nu t}^+ a_{\widetilde{\nu} t'}^+ a_{\widetilde{\mu} t} a_{\mu t'}$:

Comme au chapitre 1, nous utiliserons l'approximation des quasiparticules indépendantes et nous considèrerons que l'interaction résiduelle est composée de la somme des termes H_2 et H_{resid} .

Dans ce cas, l'hamiltonien (3.26) s'écrit :

$$H' = E_0 + H_{11}$$

A l'aide de la transformation (3.25), E_0 s'écrit :

$$E_{0} = 2 \sum_{\substack{\nu > 0, t \\ \nu \neq K}} \left[\widetilde{\varepsilon}_{\nu t} - \frac{1}{2} G_{tt} \left(\sum_{\tau} v_{\nu \tau t}^{2} \right) \right] \left(\sum_{\tau} v_{\nu \tau t}^{2} \right)$$
$$-G_{np} \sum_{\substack{\nu > 0 \\ \nu \neq K}} \left[\left(\sum_{\tau} v_{\nu \tau p}^{2} \right) \left(\sum_{\tau} v_{\nu \tau n}^{2} \right) + \left(\sum_{\tau} v_{\nu \tau p} v_{\nu \tau n} \right)^{2} \right]$$
$$-\frac{1}{4} \frac{\left(\Delta_{pp}^{(KT)} \right)^{2}}{G_{pp}} - \frac{1}{4} \frac{\left(\Delta_{nn}^{(KT)} \right)^{2}}{G_{nn}} - \frac{1}{2} \frac{\left(\Delta_{np}^{(KT)} \right)^{2}}{G_{np}}$$
(3.27)

avec :

$$\Delta_{nn}^{(KT)} = -2G_{nn} \sum_{\substack{\nu > 0 \\ \nu \neq K}} u_{\nu\tau n} v_{\nu\tau n}$$

$$\Delta_{pp}^{(KT)} = -2G_{pp} \sum_{\substack{\nu > 0 \\ \nu \neq K}} u_{\nu\tau p} v_{\nu\tau p}$$

$$\Delta_{np}^{(KT)} = -G_{np} \sum_{\substack{\nu > 0 \\ \nu \neq K}} (u_{\nu\tau n} v_{\nu\tau p} + u_{\nu\tau p} v_{\nu\tau n})$$
(3.28)

De même, H_{11} s'écrit :

$$H_{11} = \widetilde{\varepsilon}_{KT} \alpha^+_{K\tau_T} \alpha_{K\tau_T} + \sum_{\substack{\nu > 0, \tau, \tau' \\ \nu \neq K}} E_{\nu\tau\tau'} \left(\alpha^+_{\nu\tau} \alpha_{\nu\tau'} + \alpha^+_{\widetilde{\nu}\tau} \alpha_{\widetilde{\nu}\tau'} \right)$$
(3.29)

où :

$$E_{\nu\tau\tau'} = \sum_{t} \left[\varepsilon_{\nu t} - \frac{1}{2} \sum_{t'} G_{tt'} \sum_{\tau} v_{\nu\tau t}^{2} \right] (u_{\nu\tau t} \ u_{\nu\tau' t} - v_{\nu\tau t} \ v_{\nu\tau' t}) - \frac{1}{2} \sum_{t'} G_{tt'} \left\{ (v_{\nu\tau t} \ v_{\nu\tau t'}) \left(u_{\nu\tau t} \ u_{\nu\tau' t'} - v_{\nu\tau t} \ v_{\nu\tau' t'} \right) \right\} - \sum_{tt'} \Delta_{tt'}^{(KT)} \left(u_{\nu\tau t} \ v_{\nu\tau' t'} + u_{\nu\tau' t} \ v_{\nu\tau t'} \right)$$
(3.30)

3.4.2 Rediagonalisation de l'hamiltonien *H* - Nouvelle transformation de Bogoliubov-Valatin

 ${\cal H}_{11}$ est l'hamiltonien des quasiparticules, sous forme non diagonale, en effet :

$$H_{11} = \widetilde{\varepsilon}_{KT} \alpha^+_{K\tau_T} \alpha_{K\tau_T} + \sum_{\substack{\nu\tau\tau'\\\nu\neq K}} E_{\nu\tau\tau'} \alpha^+_{\nu\tau} \alpha_{\nu\tau'} \alpha_{\nu\tau'}$$
(3.31)

 ${\cal H}_{11}$ peut s'écrire sous forme matricielle :

$$H_{11} = \widetilde{\varepsilon}_{KT} \alpha^+_{K\tau_T} \alpha_{K\tau_T} + \sum_{\nu \neq K} \begin{pmatrix} \alpha^+_{\nu 1}, \alpha^+_{\nu 2} \end{pmatrix} \begin{pmatrix} E_{\nu 11} & E_{\nu 12} \\ E_{\nu 21} & E_{\nu 22} \end{pmatrix} \begin{pmatrix} \alpha_{\nu 1} \\ \alpha_{\nu 2} \end{pmatrix}$$
(3.32)

H est hermitique, donc $E_{\nu 12} = E_{\nu 21}$

Soient $\lambda_{\nu 1}$ et $\lambda_{\nu 2}$ les valeurs propres de $C = \begin{pmatrix} E_{\nu 11} & E_{\nu 12} \\ E_{\nu 12} & E_{\nu 22} \end{pmatrix}$

$$\lambda_{\nu 1,2} = \frac{1}{2} \left[(E_{\nu 11} + E_{\nu 22}) \pm \sqrt{(E_{\nu 11} - E_{\nu 22})^2 + 4E_{\nu 12}^2} \right]$$

Les vecteurs propres correspondants sont :

$$\begin{pmatrix} y_{\nu 11} \\ y_{\nu 12} \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} y_{\nu 21} \\ y_{\nu 22} \end{pmatrix}$$

avec :

 ${\cal H}_{11}$ est diagonalisée à l'aide de la transfomation :

$$T = \begin{pmatrix} y_{\nu 11} & y_{\nu 21} \\ y_{\nu 12} & y_{\nu 22} \end{pmatrix}$$
(3.33)

Soit :

$$H_{11} = \tilde{\varepsilon}_{KT} \alpha^+_{K\tau_T} \alpha_{K\tau_T} + \sum_{\nu \neq K} \begin{pmatrix} \alpha^+_{\nu 1}, \alpha^+_{\nu 2} \end{pmatrix} T \begin{pmatrix} \lambda_{\nu 1} & 0 \\ 0 & \lambda_{\nu 2} \end{pmatrix} T^{-1} \begin{pmatrix} \alpha_{\nu 1} \\ \alpha_{\nu 2} \end{pmatrix}$$
(3.34)

Les nouveaux opérateurs de quasiparticules sont alors définis par :

$$\begin{pmatrix} \beta_{\nu 1} \\ \beta_{\nu 2} \end{pmatrix} = T^{-1} \begin{pmatrix} \alpha_{\nu 1} \\ \alpha_{\nu 2} \end{pmatrix} \quad , \quad \nu \neq K$$

avec :

$$\beta_{\nu\tau} = \sum_{j} y_{\nu\tau j} \alpha_{\nu j} \tag{3.35}$$

La nouvelle transformation de Bogoliubov-Valatin s'écrit donc :

$$\beta_{\nu\tau} = \sum_{t} \left(U_{\nu\tau t} \ a_{\nu t} + V_{\nu\tau t} \ a_{\widetilde{\nu} t}^{+} \right) \qquad , \quad \nu \neq K$$
(3.36)

 avec :

$$\begin{array}{l} U_{\nu\tau t} = \sum_{j=1,2} y_{\nu\tau j} u_{\nu j t} \\ V_{\nu\tau t} = \sum_{j=1,2} y_{\nu\tau j} v_{\nu j t} \end{array}, \quad \tau = 1,2 \quad , \quad t=n,p \end{array}$$

On a donc finalement :

$$H' = E_0 + \tilde{\varepsilon}_{KT} \beta^+_{K\tau_T} \beta_{K\tau_T} + \sum_{\substack{\nu\tau\\\nu\neq K}} \lambda_{\nu\tau} \beta^+_{\nu\tau} \beta_{\nu\tau}$$
(3.37)

qui est bien sous forme diagonale.

3.5 Fonction d'onde

Si la particule célibataire occupe l'état $|KT\rangle$, avec T =n ou p, du modèle à particules indépendantes, le système possédant un nombre impair de particules est décrit par la fonction d'onde :

$$|KT\rangle = a_{KT}^{+} \prod_{j \neq K} |\Psi_{j}\rangle = \sum_{\tau} C_{K\tau T} \beta_{K\tau}^{+} |\Psi\rangle$$
(3.38)

En effet, comme nous l'avons souligné dans l'introduction, l'expression (1.59) montre bien que l'état à une quasiparticule ne coincide pas avec l'état excité à une particule. De notre point de vue, c'est ce dernier qui semble le plus adaptée à la description d'un système impair.

Déterminons à présent les coefficients $C_{K\tau T}$ et utilisons pour ce la la relation de fermeture qui s'écrit :

$$1 = |\Psi\rangle \langle \Psi| + \sum_{\nu\tau} \beta_{\nu\tau}^+ |\Psi\rangle \langle \Psi| \beta_{\nu\tau} + \frac{1}{2} \sum_{\substack{\nu\mu\\\tau,\tau'}} \beta_{\nu\tau}^+ \beta_{\tilde{\mu}\tau'}^+ |\Psi\rangle \langle \Psi| \beta_{\tilde{\mu}\tau'} \beta_{\nu\tau} + \dots$$

Nous aurons alors :

$$a_{KT}^{+} \prod_{j \neq K} |\Psi_{j}\rangle = |\Psi\rangle \langle \Psi| a_{KT}^{+} \prod_{j \neq K} |\Psi_{j}\rangle + \sum_{\nu\tau} \beta_{\nu\tau}^{+} |\Psi\rangle \langle \Psi| \beta_{\nu\tau} a_{KT}^{+} \prod_{j \neq K} |\Psi_{j}\rangle$$

$$+ \frac{1}{2} \sum_{\substack{\nu\mu\\\tau,\tau'}} \beta_{\nu\tau}^{+} \beta_{\tilde{\mu}\tau'}^{+} |\Psi\rangle \langle \Psi| \beta_{\tilde{\mu}\tau'} \beta_{\nu\tau} a_{KT}^{+} \prod_{j \neq K} |\Psi_{j}\rangle + \dots$$
(3.39)

L'état $|KT\rangle$ correspondant à un nombre impair de particules, il vient :

$$\langle \Psi | KT \rangle = \langle \Psi | \beta_{\tilde{\mu}\tau'} \beta_{\nu\tau} | KT \rangle = 0$$
(3.40)

Compte tenu de l'expression (1.59), il vient :

$$\langle \Psi | \beta_{\nu\tau} a_{KT}^+ \prod_{j \neq K, \nu} | \Psi_j \rangle = 0$$
 si $\nu \neq K$

Et si $\nu = K$, on a :

$$\begin{split} \langle \Psi | \beta_{K\tau} a_{KT}^{+} \prod_{j \neq K} | \Psi_{j} \rangle &= \prod_{j \neq K} \langle \Psi_{K} | \Psi_{K} \rangle \langle 0 | (\beta_{3K\tau}^{p,n} a_{Kn} A_{Kp} + \beta_{3K\tau}^{n,p} a_{Kp} A_{Kn} + \gamma_{K\tau n} a_{Kn} + \gamma_{K\tau p} a_{Kp}) a_{Kp}^{+} | 0 \rangle \\ &= \gamma_{K\tau p} \end{split}$$

D'où :

$$\langle \Psi | \beta_{\nu\tau} a_{KT}^{+} \prod_{j \neq K} | \Psi_{j} \rangle = \sum_{\tau} \gamma_{K\tau T}$$

$$= \sum_{\tau} \left(U_{K\tau T} B_{5}^{K} + V_{K\tau T} B_{T}^{K} + V_{K\tau \overline{T}} B_{4}^{K} \right)$$

$$\text{où } \overline{n} = p \quad \text{et} \quad \overline{p} = n$$

$$(3.41)$$

En normalisant l'état (3.38), on trouve finalement :

$$|KT\rangle = \left(\sum_{\tau} \gamma_{K\tau T}^2\right)^{-\frac{1}{2}} \sum_{\tau} \gamma_{K\tau T} \beta_{K\tau}^+ |\Psi\rangle$$
(3.42)

On constate que cet état est une combinaison linéaire d'états à une quasiparticule.

3.6 Equations du gap

Compte tenu de la définition (3.14), les paramètres du gap sont donnés par :

$$\Delta_{nn}^{(KT)} = -2G_{nn} \sum_{\substack{\nu > 0 \\ \nu \neq K}} U_{\nu\tau n} V_{\nu\tau n}$$

$$\Delta_{pp}^{(KT)} = -2G_{pp} \sum_{\substack{\nu > 0 \\ \nu \neq K}} U_{\nu\tau p} V_{\nu\tau p}$$

$$\Delta_{np}^{(KT)} = -G_{np} \sum_{\substack{\nu > 0 \\ \nu \neq K}} (U_{\nu\tau n} V_{\nu\tau p} + U_{\nu\tau p} V_{\nu\tau n})$$
(3.43)

La valeur moyenne de l'opérateur nombre de particules dans le cas d'un système possédant un nombre impair de particules s'écrit :

$$\langle N \rangle = \langle KT \left| a_{KT}^{+} a_{KT} \right| KT \rangle + \sum_{\substack{\nu > 0, t \\ \nu \neq K}} \langle KT \left| \left(a_{\nu t}^{+} a_{\nu t} + a_{\widetilde{\nu} t}^{+} a_{\widetilde{\nu} t} \right) \right| KT \rangle$$
(3.44)

La condition de conservation du nombre de particules devient alors :

$$N = N_p + N_n = 1 + 2 \sum_{\substack{\nu > 0, \tau \\ \nu \neq K}} \left(\sum_t V_{\nu \tau t}^2 \right)$$
(3.45)

Le nombre 1 correspond ici à la probabilité d'occupation de la particule célibataire. Nous remarquons que ces expressions sont analogues à celles des systèmes pair-pairs sauf que les sommations portent sur tous les niveaux sauf le niveau bloqué.

Les équations (3.43) et (3.45) sont les équations du gap correspondant à un système possédant un nombre impair de particules.

3.7 Energie du système

L'énergie du système s'écrit :

$$E_{BCS} = \langle KT | H | KT \rangle$$

$$= \varepsilon_{KT} + 2 \sum_{\substack{\nu > 0, t \\ \nu \neq K}} \left[\varepsilon_{\nu t} - \frac{1}{2} G_{tt} \left(\sum_{\tau} V_{\nu \tau t}^2 \right) \right] \left(\sum_{\tau} V_{\nu \tau t}^2 \right)$$

$$-G_{np} \sum_{\substack{\nu > 0 \\ \nu \neq K}} \left[\left(\sum_{\tau} V_{\nu \tau p}^2 \right) \left(\sum_{\tau} V_{\nu \tau n}^2 \right) + \left(\sum_{\tau} V_{\nu \tau p} V_{\nu \tau n} \right)^2 \right]$$

$$-\frac{1}{4} \frac{\left(\Delta_{pp}^{(KT)} \right)^2}{G_{pp}} - \frac{1}{4} \frac{\left(\Delta_{nn}^{(KT)} \right)^2}{G_{nn}} - \frac{1}{2} \frac{\left(\Delta_{np}^{(KT)} \right)^2}{G_{np}}$$
(3.46)

C'est la somme de l'énergie de la particule célibataire et de celle du reste du système qui est apparié. Cette dernière est analogue à celle d'un système pair-pair.

3.8 Limite lorsque $\Delta_{np}^{(KT)} \rightarrow 0$

Lorsque $\Delta_{np}^{(KT)} \to 0$, et $G_{np} = 0$, la matrice d'excitation A_{ν} devient :

$$A_{\nu} = \begin{pmatrix} \xi_{\nu p} & 0 & -\Delta_{pp}^{(KT)} & 0\\ 0 & \xi_{\nu n} & 0 & -\Delta_{nn}^{(KT)}\\ -\Delta_{pp}^{(KT)} & 0 & -\xi_{\nu p} & 0\\ 0 & -\Delta_{nn}^{(KT)} & 0 & -\xi_{\nu n} \end{pmatrix}$$
(3.47)

dont les valeurs propres sont :

$$E_{\nu t} = \sqrt{\xi_{\nu t}^2 + \left(\Delta_{tt}^{(KT)}\right)^2} \qquad , \qquad t=n,p \qquad (3.48)$$

Les vecteurs propres s'écrivent quant à eux :

$$X_{\nu 1} = \begin{pmatrix} U_{\nu 1p} \\ U_{\nu 1n} \\ V_{\nu 1p} \\ V_{\nu 1n} \end{pmatrix} , \qquad X_{\nu 2} = \begin{pmatrix} U_{\nu 2p} \\ U_{\nu 2n} \\ V_{\nu 2p} \\ V_{\nu 2n} \end{pmatrix}$$

avec :

$$\begin{cases} U_{\nu 1p}^2 = \frac{1}{2} \left[1 + \frac{\xi_{\nu p}}{E_{\nu p}} \right] = U_{\nu p}^2 \\ V_{\nu 1p}^2 = \frac{1}{2} \left[1 - \frac{\xi_{\nu p}}{E_{\nu p}} \right] = V_{\nu p}^2 \end{cases}, \begin{cases} U_{\nu 1n} = 0 \\ V_{\nu 1n} = 0 \end{cases}$$
(3.49)

 et

$$\begin{cases} U_{\nu 2p} = 0 \\ V_{\nu 2p} = 0 \end{cases}, \begin{cases} U_{\nu 2n}^2 = \frac{1}{2} \left\{ 1 + \frac{\xi_{\nu n}}{E_{\nu n}} \right\} = U_{\nu n}^2 \\ V_{\nu 2n}^2 = \frac{1}{2} \left\{ 1 - \frac{\xi_{\nu n}}{E_{\nu n}} \right\} = V_{\nu n}^2 \end{cases}$$
(3.50)

Les énergies $\xi_{\nu t},\,t=n,p$ deviennent :

$$\xi_{\nu n} = \tilde{\varepsilon}_{\nu n} - 2G_{nn}V_{\nu n}^2 \tag{3.51}$$

 et

$$\xi_{\nu p} = \tilde{\varepsilon}_{\nu p} - 2G_{pp}V_{\nu p}^2 \tag{3.52}$$

La condition de conservation du nombre de particules s'écrit alors :

$$N = N_n + N_p = 1 + 2 \sum_{\substack{\nu > 0\\ \nu \neq K}} V_{\nu t}^2$$
(3.53)

Or, dans la théorie BCS habituelle (i.e dans le cas de l'appariement entre particules identiques), la condition de conservation du nombre de particules s'écrit :

$$N = N_t + N_{t'}$$

avec :

$$N_{t} = 1 + 2 \sum_{\substack{\nu > 0 \\ \nu \neq K}} V_{\nu t}^{2}$$

$$N_{t'} = 2 \sum_{\nu > 0} V_{\nu t'}^{2} \qquad t \neq t' \qquad (3.54)$$

en supposant que c'est le système t qui possède un nombre impair de particules.

La différence entre les expressions (3.53) et (3.54) s'explique par la définition du niveau bloqué. En effet, dans le cas de l'appariement entre particules identiques les niveaux des systèmes neutrons et protons sont indépendants et lorsque l'on bloque le niveau ν pour le système t, cela n'a aucune influence sur le niveau t'. Par contre, dans le cas de l'appariement n-p, les neutrons et les protons sont supposés occuper les mêmes niveaux et le niveau bloqué concerne donc simultanément les deux types de particules.

Quand à l'énergie du système, elle s'écrit :

$$E_{BCS} = \varepsilon_{KT} + 2 \sum_{\substack{\nu > 0 \\ \nu \neq K}} \left(\varepsilon_{\nu n} - \frac{G_{nn}}{2} V_{\nu n}^2 \right) V_{\nu n}^2 - \frac{\left(\Delta_{nn}^{(K)}\right)^2}{G_{nn}} + 2 \sum_{\substack{\nu > 0 \\ \nu \neq K}} \left(\varepsilon_{\nu p} - \frac{G_{pp}}{2} V_{\nu p}^2 \right) V_{\nu p}^2 - \frac{\left(\Delta_{pp}^{(K)}\right)^2}{G_{pp}} \qquad T = n \text{ ou } p \qquad (3.55)$$

On constate alors que cette énergie est différente de celle de la théorie de BCS habituelle. En effet, cette dernière s'écrit :

$$E_{BCS} = E_{BCSt} + E_{BCSt'}$$

avec :

$$E_{BCSt} = \varepsilon_{KT} + 2\sum_{\substack{\nu > 0 \\ \nu \neq K}} \left(\varepsilon_{\nu t} - \frac{G_{tt}}{2} V_{\nu t}^2 \right) V_{\nu t}^2 - \frac{\left(\Delta_{tt}^{(K)} \right)^2}{G_{tt}}$$
$$E_{BCSt'} = 2\sum_{\nu > 0} \left(\varepsilon_{\nu t'} - \frac{G_{t't'}}{2} V_{\nu t'}^2 \right) V_{\nu t'}^2 - \frac{\left(\Delta_{t't'} \right)^2}{G_{t't'}} \qquad t \neq t'$$

en supposant que le système t qui possède un nombre impair de particules.

La différence entre les deux expressions est dûe, comme pour la condition de conservation du nombre de particules à la définition du niveau bloqué.

Lorsque $\Delta_{np}^{(KT)} \to 0$ et $G_{np} \neq 0$, l'énergie du système, devient :

$$E_{BCS} = \varepsilon_{KT} + 2 \sum_{\substack{\nu > 0 \\ \nu \neq K}} \left(\varepsilon_{\nu n} - \frac{G_{nn}}{2} V_{\nu n}^2 \right) V_{\nu n}^2 - \frac{\left(\Delta_{nn}^{(K)}\right)^2}{G_{nn}}$$
$$+ 2 \sum_{\substack{\nu > 0 \\ \nu \neq K}} \left(\varepsilon_{\nu p} - \frac{G_{pp}}{2} V_{\nu p}^2 \right) V_{\nu p}^2 - \frac{\left(\Delta_{pp}^{(K)}\right)^2}{G_{pp}}$$
$$- G_{np} \sum_{\substack{\nu > 0 \\ \nu \neq K}} V_{\nu n}^2 V_{\nu p}^2$$

Par ailleurs, lorsque $\Delta_{np}^{(KT)} \to 0$ et $G_{np} = 0$, la fonction d'onde définie par (3.38) devient, compte tenu

de (1.74) :

$$|KT\rangle = a_{KT}^{+} \prod_{\substack{\nu > 0, t \\ \nu \neq K}} |\Psi_{\nu t}\rangle \qquad T = n \text{ ou } p \qquad (3.56)$$

où $|\Psi_{\nu t}\rangle$, t = n, p est définie par (1.75)

On constate alors que cette fonction d'onde diffère de celle de la théorie BCS habituelle. En effet, cette dernière s'écrit :

$$|KT\rangle = a_{KT}^{+} \prod_{\substack{\nu > 0\\\nu \neq K}} \left(U_{\nu t} + V_{\nu t} A_{\nu t}^{+} \right) |0\rangle \prod_{\nu > 0} \left(U_{\nu t'} + V_{\nu t'} A_{\nu t'}^{+} \right) |0\rangle$$

En supposant que c'est le système t qui possède un nombre impair de particules. Les raisons de cette différence sont déja été exposées précédemment.

Chapitre 4

Résultats numériques et discussion

Nous avons réalisé le code de calcul permettant de résoudre les équations du gap, dans le cas d'un système possédant un nombre impair de particules, définies par les expressions (3.43) et (3.45). Ces dernières forment un système de cinq équations non linéaires à cinq inconnues : Δ_{pp} , Δ_{nn} , Δ_{np} , λ_p et λ_n . Ce système a été résolu numériquement par la méthode de Brown [32]. Dans un but de comparaison, nous avons aussi réalisé le code de calcul permettant de résoudre les équations du gap dans le cas d'un système pair-pair définies par les expressions (1.50) et (1.51).

Afin de tester ces codes, nous avons considéré un modèle schématique simple : le modèle à un niveau. Dans ce dernier, on considère un seul niveau d'énergie $\varepsilon = 0$ et de dégénérescence Ω .

4.1 Modèle à un niveau

4.1.1 Paramètres du gap et énergie BCS

Système pair-pair

Les équations du gap ont été résolues dans le cadre du modèle à un niveau, et pour ce type de systèmes, dans plusieurs travaux (voir par exemple [19], [45], [48] - [54], [57]- [16]). Nous avons considéré les mêmes paramètres que dans la référence [45], c'est à dire Z=4, N=8, $\Omega = 12$ et $G_{pp} = G_{nn} = 0.125$.

D'après la figure (4-1) qui représente les variations des différents paramètres du gap Δ_{pp}, Δ_{nn} et Δ_{np} en fonction du rapport G_{np}/G_{pp} , nous remarquons qu'il existe deux régions : $G_{np} < (G_{np})_c$ et $G_{np} > (G_{np})_c$. $(G_{np})_c$ est la valeur critique qui correspond au passage de l'appariement entre particules identiques à l'appariement n-p. Dans la première région, les Δ_{pp} et Δ_{nn} restent constants, ils gardent les même valeurs que dans le cas de l'appariement entre particules identiques, tandis que Δ_{np} est

FIG. 4-1 – Variations des différents paramètres du gap Δ_{pp} , Δ_{nn} et Δ_{np} en fonction du rapport G_{np}/G_{pp} dans le cadre du modèle à un niveau pour un système pair-pair (Z=4, N=8, $\Omega = 12$)

nul. Dans la deuxième région, c'est à dire au-delà de la valeur critique, Δ_{pp} et Δ_{nn} diminuent puis se stabilisent, alors que Δ_{np} croit rapidement. Ces résultats sont analogues à ceux de la littérature (voir par exemple [20], [45], [48], [16])

Nous avons également calculé l'énergie BCS définie par (1.64) dans le cadre du même modèle. Ses variations en fonction du rapport G_{np}/G_{pp} sont représentées dans la figure (4-2). On constate là aussi une différence d'allure entre les régions $G_{np} < (G_{np})_c$ et $G_{np} > (G_{np})_c$. Notons ici que l'énergie BCS n'est pas constante lorsque G_{np} est inférieure à sa valeur critique, même si Δ_{pp} et Δ_{nn} sont constants et Δ_{np} est nul dans cette région . En effet, comme nous l'avons souligné au chapitre I (voir l'équation (1.76)), l'énergie du système ne se ramène pas dans ce cas à la somme des énergies des deux systèmes neutrons et protons pris séparément. Le terme supplémentaire $(-G_{np}\sum_{\nu>0}V_{\nu n}^2V_{\nu p}^2)$, explique le fait que l'énergie prend la forme d'une droite décroissante dans cette région. Au-delà de la valeur critique de G_{np} , la courbe est également une droite, mais la décroissance est plus rapide.

Système possédant un nombre impair de particules

Dans le cas d'un système possédant un nombre impair de particules, nous avons envisagé aussi bien le cas où Z est impair et N pair, que le cas où Z est pair et N impair. Nous avons dans tous les cas supposé que le niveau bloqué KT est tel que $KT=E\left(\frac{N_T}{2}\right)+1$ où $E\left(\frac{N_T}{2}\right)$ désigne la partie entière

FIG. 4-2 – Variation de l'énergie BCS en fonction du rapport G_{np}/G_{pp} dans le cadre du modèle à un niveau pour un système pair-pair (Z=4, N=8, $\Omega = 12$)

de $\frac{N_T}{2}$.

Nous avons utilisé dans le premier cas les paramètres Z=4, N=7, $\Omega = 12$ et $G_{pp} = G_{nn} = 0.125$. Dans le second cas, nous avons considéré Z=5, N=8, $\Omega = 12$ et $G_{pp} = G_{nn} = 0.125$. Les variations des différents paramètres du gap Δ_{pp} , Δ_{nn} et Δ_{np} en fonction du rapport G_{np}/G_{pp} sont représentées dans les figures (4-3)(a) et (4-3)(b). On constate alors que l'allure des différents paramètres du gap est tout à fait similaire à celle de la figure (4-1) dans le cas d'un système pair-pair. En effet, il existe là aussi une valeur critique de G_{np} en dessous delaquelle $\Delta_{np} = 0$. Lorsque $G_{np} < (G_{np})_c \Delta_{pp}$ et Δ_{nn} sont constants, tandis que Δ_{np} est nul. Au-delà de la valeur critique, Δ_{np} croit rapidement, tandis que Δ_{pp} et Δ_{nn} diminuent puis se stabilisent.

Nous avons également représenté dans les figures (4-4)(a) et (4-4)(b) les variations de l'énergie BCS définie par l'eq.(3.55) en fonction du rapport G_{np}/G_{pp} . On constate ici aussi que l'allure obtenue dans ce cas est tout à fait similaire à celle des systèmes pair-pairs. Elle est sous forme d'une droite décroissante à cause du terme $(-G_{np}\sum_{\substack{\nu>0\\\nu\neq K}}V_{\nu p}^2V_{\nu p}^2)$, quand $G_{np} < (G_{np})_c$. Au-delà de la valeur critique, l'énergie diminue plus rapidement.

FIG. 4-3 – Vairation des différents paramètres du gap Δ_{pp} , Δ_{nn} et Δ_{np} en fonction du rapport G_{np}/G_{pp} dans le cadre du modèle à un niveau pour un système possédant un nombre impair de particules (Z=4, N=7, $\Omega = 12$) (a), (Z=5, N=8, $\Omega = 12$) (b).

FIG. 4-4 – Variation de l'énergie BCS en fonction du rapport G_{np}/G_{pp} dans le cadre du modèle à un niveau pour un système possédant un nombre impair de particules (Z=4, N=7, $\Omega = 12$)(a) (Z=5, N=8, $\Omega = 12$)(b).

FIG. 4-5 – Formes caractéristiques des noyaux pour différentes valeurs de ε_2 et ε_4 (d'après R. W. Hasse and W. D. Myers [34]).

4.2 Cas réalistes

Dans une seconde étape, nous avons considéré des noyaux réels. Nous avons pour cela utilisé les énergies à particules indépendantes d'un champ moyen déformé de Woods-Saxon avec les paramètres de la référence [38]. Nous avons utilisé un nombre de couches maximal $N_{max} = 12$, ce qui correspond à une dégénérescence totale des niveaux $\Omega = 455$. Comme dans le cas schématique, nous avons supposé que le niveau bloqué KT est tel que $KT = E(\frac{N_T}{2}) + 1$. Soulignons que dans ce cas la fonction d'onde définie par (3.38) sera mieux adaptée à la description des noyaux tels que N=Z+1. Les paramètres de déformation du fondamental utilisés sont ceux de la table d'Audi [51]. Soulignons toutefois que cette dernière donne les valeurs des paramètres de déformation ($\varepsilon_2, \varepsilon_4$) alors que le code de calcul dont nous disposons nécessite la connaissance du paramètre d'élongation c, du paramètre d'étranglement h et du paramètre d'asymétrie gauche-droite α [34]. (Notons que dans le présent travail, nous n'avons considéré que des formes possédant la symétrie gauche-droite et donc telles que $\alpha = 0$). Nous avons donc converti les couples ($\varepsilon_2, \varepsilon_4$) (voir figure 4-5) en couples (c, h) (voir figure 4-6) à l'aide de la méthode décrite dans la référence [37].

Par ailleurs, nous n'avons considéré dans le présent travail que des noyaux pour lesquels le nombre de protons est proche du nombre de neutrons, c'est à dire tels que (N-Z) < 8. En effet, il a été montré dans les références [20] et [48] que Δ_{np} décroit rapidement en fonction de (N-Z) et en pratique s'annule

FIG. 4-6 – Formes caractéristiques des noyaux pour différentes valeurs de c et h (les traits pleins correspondent à $\alpha = 0$ et les pointillés correspondent à $\alpha \neq 0$)(d'après R. W. Hasse and W. D. Myers [34]).

lorsque (N-Z) ≥ 8 .

4.2.1 Calcul des constantes d'appariement

Le calcul des constantes d'appariement G_{pp} , G_{nn} et G_{np} est un problème fondamental pour la détermination des paramètres du gap Δ_{pp} , Δ_{nn} et Δ_{np} . La méthode idéale serait de déduire les constantes d'appariement G_{pp} , G_{nn} et G_{np} des valeurs "expérimentales" de Δ_{pp} , Δ_{nn} et Δ_{np} . Toutefois, dans le présent travail, nous nous intéressons aussi bien à des noyaux impairs qu'à des noyaux pairpairs *riches en protons*. Pour ces noyaux, les paramètres du gap Δ_{pp} , Δ_{nn} et Δ_{np} ne sont pas toujours connus expérimentalement et donc les constantes d'appariement G_{pp} , G_{nn} et G_{np} ne peuvent pas toujours être déduites directement.

Les solutions proposées dans la littérature sont diverses. Dans la plupart des cas, les valeurs de G_{pp} et G_{nn} utilisées sont celles de l'appariement entre particules identiques et G_{np} prend une forme arbitraire. Par exemple :

Chen et Goswami [30] ont proposé la forme :

$$G_{np} = G_{nn} + \frac{6}{A} \tag{4.1}$$

Pour leur part, Civitarese et al. choisissent la forme [19] :

$$G_{np} = \frac{C\left(z\right)}{A} \tag{4.2}$$

où C(z) est une constante qui change en fonction de l'élement considéré, ou encore la forme [20] :

$$\begin{cases} G_{np} = 1.1 \frac{16}{A+56} & N-Z > 4 \\ G_{np} = 1.25 \frac{16}{A+56} & N-Z < 4 \end{cases}$$
(4.3)

Dans la référence [23], Satula et Wyss proposent la forme suivante :

$$G_{np} = \frac{1}{2} \left(G_{nn} + G_{pp} \right)$$
 (4.4)

Chasman [49] propose une forme très simple :

$$G_{np} = \frac{1}{2}G_{nn} = \frac{1}{2}G_{pp}$$
(4.5)

Mokhtari et al. [7, 50, 54] ont adopté une autre approche dans le cas des noyaux pair-pairs tels que N=Z en supposant que dans ce cas $\Delta_{pp} = \Delta_{nn} = \Delta_{np}$. Les Δ_{pp} et Δ_{nn} ont été déduits des différences de masse pair -impair lorsque cela était possible, ce qui a permis de déduire les valeurs de G_{nn} et G_{pp} . Dans une seconde étape, G_{np} a été déterminée de façon à minimiser la distance D définie par :

$$D = \left[\left(\Delta_{pp} - \Delta_{pp}^{\exp} \right)^2 + \left(\Delta_{nn} - \Delta_{nn}^{\exp} \right)^2 + \left(\Delta_{np} - \Delta_{np}^{\exp} \right)^2 \right]$$

Finalement, les valeurs de G_{np} ainsi obtenues ont été traitées par la méthode des moindres carrés. L'expression de G_{np} obtenue est de la forme :

$$G_{np} = \frac{6.02}{A} + 0.084 \tag{4.6}$$

Dans le présent travail, nous avons essayé de généraliser la méthode précédante. En effet,

-Nous avons considéré à la fois des noyaux pair-pairs et des noyaux impairs et non plus uniquement des noyaux pair-pairs.

-Nous avons considéré des noyaux tels que N est voisin de Z et non plus uniquement des noyaux tels que N=Z

-Nous avons évalué simultanément le triplet (G_{pp}, G_{nn}, G_{np}) à partir des valeurs "expérimentales"

des paramètres du gap lorsque ces dernières existent.

-Finalement, les valeurs obtenues seront fitées de manière à obtenir des expressions de G_{pp} , G_{nn} et G_{np} . Ces dernières seront utilisées pour les noyaux dont les valeurs "expérimentales" de Δ_{pp} , Δ_{nn} , et Δ_{np} ne sont pas connues.

Calcul des paramètres du gap

Les valeurs "expérimentales" des paramètres du gap Δ_{pp} , Δ_{nn} , et Δ_{np} , sont déterminées à partir des différences de masse pair-impair [5, 36] :

$$\begin{split} \Delta_{pp}^{\exp} &= -\frac{1}{8} \left[M \left(Z+2,N \right) - 4M \left(Z+1,N \right) + 6M \left(Z,N \right) - 4M \left(Z-1,N \right) + M \left(Z-2,N \right) \right] \\ \Delta_{nn}^{\exp} &= -\frac{1}{8} \left[M \left(Z,N+2 \right) - 4M \left(Z,N+1 \right) + 6M \left(Z,N \right) - 4M \left(Z,N-1 \right) + M \left(Z,N-2 \right) \right] \\ \Delta_{np}^{\exp} &= \frac{1}{4} \left\{ 2 \left[M \left(Z,N+1 \right) + M \left(Z,N-1 \right) + M \left(Z-1,N \right) + M \left(Z+1,N \right) \right] \\ &- 4M \left(Z,N \right) - \left[M \left(Z+1,N+1 \right) + M \left(Z-1,N+1 \right) + M \left(Z+1,N-1 \right) \right] \\ &+ M \left(Z-1,N-1 \right) \right] \right\} \end{split}$$

où M(Z, N) est la masse expérimentale d'un noyau constitué de Z protons et N neutrons. Les valeurs des masses expérimentales utilisées sont celles de la table d'Audi [51].

Les valeurs de Δ_{pp}^{\exp} , Δ_{nn}^{\exp} et Δ_{np}^{\exp} sont reportées dans le tableau (4-1) où nous avons également reporté les valeurs des paramètres de déformation (c, h). Notons que la présente étude concerne 165 noyaux au lieu de 22 dans l'étude des références [48] et [15] précédemment citées.

TAB. 4.1: Valeurs du paramètre d'élongation c (colonne 5), d'étranglement h (colonne 6) et valeurs expérimentales des paramètres du gap \triangle_{pp} (colonne 7), \triangle_{nn} (colonne 8) et \triangle_{np} (colonne 9) lorsqu'elles existent pour les noyaux tels que (N-Z)<8.

Elément	Z	Ν	Α	с	h	$\triangle_{pp}^{\exp}(MeV)$	$\triangle_{nn}^{\exp}(MeV)$	$\triangle_{np}^{\exp}(MeV)$
S	16	16	32	1	0	2.141	2.195	1.047
	16	17	33	1	0	1.316	2.047	0.561
	16	18	34	1	0	1.562	1.817	0.246
	16	19	35	1	0	1.025	1.977	0.498
	16	20	36	1	0	1.522	2.225	0.515
	16	21	37	1	0	1.097	2.089	0.537
Cl	17	18	35	0.820	0.765	1.928	1.374	0.691
	17	20	37	1	0	1.535	1.512	6.04
	17	22	39	1	0	1.780	1.060	0.736
Ar	18	18	36	1	0	2.265	2.311	1.373
	18	19	37	1	0	1.064	2.225	0.841
	18	20	38	1	0	1.440	2.099	0.249
	18	21	39	0.988	2.80E-03	1.019	1.944	0.570
	18	22	40	1	0	1.776	1.767	0.683
	18	23	41	1	0	1.207	1.778	0.630
K	19	20	39	1	0	1.874	1.731	0.491
	19	22	41	1	0	1.875	1.190	0.548
	19	24	43	1	0	1.949	1.049	0.701
Ca	20	20	40	1	0	2.389	2.503	1.160
	20	21	41	1	0	1.345	2.132	0.838
	20	22	42	1	0	2.110	1.676	0.523
	20	23	43	1	0	1.397	1.707	0.665
	20	24	44	1	0	2.089	1.701	0.628
suite page suivante								

Elément	Z	Ν	Α	с	h	$\triangle_{pp}^{\exp}(MeV)$	$\triangle_{nn}^{\exp}(MeV)$	$\triangle_{np}^{\exp}(MeV)$		
	20	25	45	1	0	1.438	1.599	0.623		
Sc	21	22	43	1	0	2.477	0.886	1.359		
	21	24	45	1	0	2.170	1.079	0.725		
	21	26	47	0.994	1.32E-03	1.991	1.075	0.444		
Ti	22	22	44	1	0	2.632	2.653	2.068		
	22	23	45	1	0	0.930	2.300	1.491		
	22	24	46	1	0	2.092	1.879	0.900		
	22	25	47	1	0	1.349	1.661	0.650		
	22	26	48	1	0	1.895	1.564	0.584		
	22	27	49	1	0	1.286	1.705	0.494		
V	23	24	47	1	0	2.132	0.707	1.286		
	23	26	49	1	0	1.832	0.896	0.695		
	23	28	51	1	0	1.606	1.295	2.96		
Cr	24	24	48	1	0	2.128	2.138	1.361		
	24	25	49	1.277	-0.240	1.089	1.791	0.805		
	24	26	50	1	0	1.696	1.584	0.526		
	24	27	51	1.070	-1.75 E-02	1.061	1.674	0.579		
	24	28	52	1	0	1.578	1.594	0.336		
	24	29	53	1	0	1.366	1.391	0.276		
Mn	25	26	51	1.158	-8.82 E-02	1.789	1.053	0.733		
	25	28	53	1	0	1.540	1.129	0.487		
	25	30	55	1.174	-0.120	1.586	1.072	0.278		
Fe	26	26	52	1	0	1.991	2.007	1.122		
	26	27	53	1.056	1.32 E-02	0.949	1.871	0.804		
	26	28	54	1	0	1.496	1.594	0.259		
	26	29	55	1	0	1.232	1.425	0.335		
	26	30	56	1	0	1.571	1.244	0.615		
	26	31	57	1.110	1.80 E-02	1.290	1.476	0.384		
	suite page suivante									

Tab. 4.1 –(suite)

Elément	Z	Ν	Α	с	h	$\triangle_{pp}^{\exp}(MeV)$	$\triangle_{nn}^{\exp}(MeV)$	$\triangle_{np}^{\exp}(MeV)$		
Со	27	28	55	1.021	2.34 E-02	1.807	1.244	0.615		
	27	30	57	1.056	1.32 E-02	1.650	1.097	0.291		
	27	32	59	1.078	2.80 E-02	1.707	1.204	0.277		
Ni	28	28	56	1	0	2.077	2.150	1.107		
	28	29	57	0.988	2.80 E-03	1.300	1.694	0.578		
	28	30	58	1	0	1.669	1.349	0.233		
	28	31	59	1	0	1.336	1.445	0.302		
	28	32	60	1.016	-4.21E-03	1.664	1.537	0.337		
	28	33	61	0.922	9.25E-03	1.301	1.610	0.439		
Cu	29	30	59	1.150	-0.18147	1.603	0.936	0.645		
	29	32	61	1.123	-8.17E-02	1.468	1.157	0.426		
	29	34	63	1.091	2.40E-02	1.495	1.229	0.441		
Zn	30	30	60	1.160	-0.118	1.595	1.769	1.032		
	30	31	61	1.141	-3.54E-02	0.595	1.735	0.909		
	30	32	62	1.123	1.38E-02	1.402	1.622	0.548		
	30	33	63	1.107	8.06E-02	0.920	1.645	0.464		
	30	34	64	1.100	0.103	1.430	1.699	0.519		
	30	35	65	1.198	-4.95E-02	0.880	1.756	0.519		
Ga	31	32	63	1.113	6.07E-02	1.649	0.851	1.054		
	31	34	65	1.094	0.125	1.543	1.157	0.640		
	31	36	67	1.100	0.122	1.486	1.252	0.578		
Ge	32	32	64	1.094	0.125	1.807	2.141	1.435		
	32	33	65	1.090	0.160	0.567	2.019	1.180		
	32	34	66	1.086	0.181	1.586	1.859	0.754		
	32	35	67	0.821	0.157	0.966	1.870	0.631		
	32	36	68	0.832	0.189	1.608	1.881	0.629		
	32	37	69	0.842	0.213	0.979	1.878	0.594		
	32	38	70	0.846	0.210	1.551	1.866	0.593		
	suite page suivante									

Tab. 4.1 –(suite)

Elément	Z	Ν	Α	с	h	$\triangle_{pp}^{\exp}(MeV)$	$\triangle_{nn}^{\exp}(MeV)$	$\triangle_{np}^{\exp}(MeV)$	
As	33	34	67	1.080	0.231	1.769	0.900	1.127	
	33	36	69	0.824	0.193	1.714	1.268	0.702	
	33	38	71	0.832	0.253	1.701	1.388	0.543	
Se	34	34	68	1.074	0.265	1.909	2.174	1.522	
	34	35	69	0.812	0.200	0.583	2.123	1.299	
	34	36	70	0.816	0.198	1.754	2.015	0.899	
	34	37	71	0.822	0.225	1.069	2.034	0.797	
	34	38	72	0.824	0.259	1.799	2.035	0.785	
	34	39	73	1.202	0.1.02	1.1627	1.983	0.725	
	34	40	74	8.384	0.2.819	1.807	1.860	0.643	
Br	35	36	71	0.798	0.2.41	1.918	0.815	1.212	
	35	38	73	0.804	0.2.73	1.743	1.136	0.619	
	35	40	75	0.818	0.2.975	1.768	1.1526	0.554	
Kr	36	36	72	0.794	0.243	2.001	1.985	1.353	
	36	37	73	1.196	9.05E-02	0.942	1.684	0.799	
	36	38	74	1.209	8.44E-02	1.535	1.450	0.394	
	36	39	75	1.209	0.112	1.061	1.510	0.545	
	36	40	76	1.202	0.102	1.675	1.568	0.542	
	36	41	77	8.43	0.335	1.222	1.605	0.511	
	36	42	78	8.43	0.335	1.799	1.671	0.5.49	
Rb	37	38	75	1.196	0.105	1.555	0.696	0.7.22	
	37	40	77	1.189	0.122	1.520	0.913	0.492	
	37	42	79	0.845	0.363	1.728	1.078	0.585	
Sr	38	38	76	1.209	0.112	-	-	-	
	38	39	77	1.204	0.126	0.875	1.285	0.528	
	38	40	78	1.204	0.126	1.333	1.241	0.105	
	38	41	79	1.204	0.126	1.186	1.443	0.301	
	38	42	80	1.034	-8.54E-03	1.616	1.624	0.501	
	suite page suivante								

Tab. 4.1 –(suite)

Elément	Z	Ν	Α	с	h	$\triangle_{pp}^{\exp}(MeV)$	$\triangle_{nn}^{\exp}(MeV)$	$\triangle_{np}^{\exp}(MeV)$		
	38	43	81	1.034	-8.54E-03	1.074	1.727	0.606		
	38	44	82	1.034	-8.5478E-03	1.787	1.713	0.603		
Y	39	40	79	1.198	0.142	1.472	0.988	0.399		
	39	42	81	1.198	0.142	1.517	1.168	0.331		
	39	44	83	1.034	-8.54E-03	1.677	1.053	0.613		
Zr	40	40	80	1.199	0.154	-	-	-		
	40	41	81	1.208	0.159	1.225	1.415	0.300		
	40	42	82	1.034	-8.54E-03	1.420	1.345	9.92E-02		
	40	43	83	1.034	-8.54E-03	1.133	1.495	0.303		
	40	44	84	1.034	-8.54E-03	1.448	1.561	0.457		
	40	45	85	1.034	-8.54E-03	0.934	1.556	0.608		
	40	46	86	1.034	-8.54E-03	1.506	1.491	0.461		
Nb	41	42	83	0.846	0.444	1.581	1.120	0.433		
	41	44	85	1.034	-8.54E-03	1.227	1.155	0.129		
	41	46	87	1.042	-4.02E-02	1.448	0.978	0.395		
Mo	42	42	84	1.034	-8.54E-03	-	-	-		
	42	43	85	1.0341	-8.54E-03	0.981	1.451	0.458		
	42	44	86	1.034	-8.54E-03	1.153	1.100	9.14E-02		
	42	45	87	1.034	-8.54E-03	1.156	1.099	0.143		
	42	46	88	1.034	-8.54E-03	1.589	1.267	0.520		
	42	47	89	1.0341	-8.54E-03	0.927	1.444	0.687		
	42	48	90	1.034	-8.54E-03	1.598	1.460	0.589		
Тс	43	44	87	1.034	-8.54E-03	1.397	0.835	0.390		
	43	46	89	1.034	-8.54E-03	1.774	0.620	0.752		
	43	48	51	1.034	-8.54E-03	1.581	0.803	0.612		
Ru	44	44	88	1.034	-8.54E-03	-	-	-		
	44	45	89	1.042	-4.02E-02	1.086	1.329	0.615		
	44	46	90	1.034	-8.54E-03	1.783	1.249	0.653		
	suite page suivante									

Tab. 4.1 –(suite)

Elément	Z	Ν	Α	с	h	$\triangle_{pp}^{\exp}(MeV)$	$\triangle_{nn}^{\exp}(MeV)$	$\triangle_{np}^{\exp}(MeV)$
	44	47	91	1.042	-4.02E-02	0.988	1.377	0.675
	44	48	92	1.034	-8.54E-03	1.542	1.380	0.517
	44	49	93	1.026	0.218	1.057	1.534	0.383
	44	50	94	1.030	-3.77E-02	1.327	1.628	0.151
Rh	45	46	91	1.042	-4.02E-02	-	-	-
	45	48	93	1.034	-8.54E-03	1.488	0.911	0.431
	45	50	95	1.030	-3.77E-02	1.317	1.443	0.147
Pd	46	46	92	1.034	-8.54E-03	-	-	-
	46	47	93	1.034	-8.54E-03	-	-	-
	46	48	94	1.021	2.34E-02	1.44	1.296	0.331
	46	49	95	1.026	2.18E-02	1.091	1.462	0.265
	46	50	96	1.004	5.25E-02	1.318	1.613	0.137
	46	51	97	1.042	-4.02E-02	1.259	1.346	7.13E-02
	46	52	98	1.036	-3.90E-02	1.348	1.156	9.63E-02
Ag	47	48	95	1.042	-4.02E-02	-	-	-
	47	50	97	1.036	-3.90E-02	1.316	1.476	0.149
	47	52	99	1.042	-4.02E-02	1.359	1.040	0.178
Cd	48	48	96	1.028	-7.15E-03	-	-	-
	48	49	97	1.026	2.18E-02	-	-	-
	48	50	98	1.024	-3.66E-2	1.373	1.668	0.227
	48	51	99	1.042	-4.02E-02	1.052	1.449	0.319
	48	52	100	1.030	-3.77E-02	1.401	1.284	0.253
	48	53	101	1.034	-8.54E-03	1.294	1.221	7.06E-03
	48	54	102	1.042	-4.02E-02	1.223	1.124	0.137
In	49	50	99	1.009	5.08E-02	-	-	-
	49	52	101	1.026	2.18E-02	1.652	1.110	0.225
	49	54	103	1.026	2.18E-02	1.392	1.335	0.172
Sn	50	50	100	0.993	5.63E-02	-	-	-
suite page suivante								

Tab. 4.1 -(suite)
Elément	Z	Ν	Α	с	h	$\triangle_{pp}^{\exp}(MeV)$	$\triangle_{nn}^{\exp}(MeV)$	$\triangle_{np}^{\exp}(MeV)$
	50	51	101	1.043	-0.101	-	-	-
	50	52	102	0.993	5.63E-02	-	-	-
	50	53	103	0.999	5.43E-02	-	-	-
	50	54	104	1.026	-6.45E-02	1.650	1.350	0.253
	50	55	105	1.024	-3.66E-02	1.351	1.38	0.347
	50	56	106	1.032	-6.55E-02	1.708	1.373	0.353
Sb	51	52	103	1.075	-0.140	-	-	-
	51	54	105	1.134	-0.221	-	-	-
	51	56	107	1.151	-0.223	1.431	1.062	0.3.65
Те	52	52	104	1.045	-6.76E-02	-	-	-
	52	53	105	1.051	-6.87E-02	-	-	-
	52	54	106	1.151	-0.223	-	-	-
	52	55	107	1.235	-0.287	-	-	-
	52	56	108	1.186	-0.227	1.291	1.507	0.534
	52	57	109	1.166	-0.183	0.868	1.550	0.476
	52	58	110	1.175	-0.184	1.348	1.550	0.522
Ι	53	54	107	1.247	-0.289	-	-	-
	53	56	109	1.215	-0.231	-	-	-
	53	58	111	1.183	-0.185	1.402	1.075	0.509
Xe	54	54	108	1.261	-0.293	-	-	-
	54	55	109	1.215	-0.231	-	-	-
	54	56	110	1.191	-0.186	-	-	-
	54	57	111	1.2091	-0.188	-	-	-
	54	58	112	1.187	-0.154	1.386	1.565	0.479
	54	59	113	1.212	-0.158	0.982	1.539	0.354
	54	60	114	1.212	-0.158	1.248	1.560	0.528
Cs	55	56	111	1.209	-0.188	-	-	-
	55	58	113	1.204	-0.157	-	-	-
							suite	page suivante

Tab. 4.1 –(suite)

Elément	Z	Ν	Α	с	h	$\triangle_{pp}^{\exp}(MeV)$	$\triangle_{nn}^{\exp}(MeV)$	$\triangle_{np}^{\exp}(MeV)$
	55	60	115	1.324	-0.249	1.627	0.993	0.448
Ba	56	56	112	1.204	-0.157	-	-	-
	56	57	113	1.288	-0.242	-	-	-
	56	58	114	1.312	-0.247	-	-	-
	56	61	117	1.380	-0.261	0.638	1.331	0.421
	56	62	118	1.284	-0.169	1.106	1.313	0.282
La	57	62	119	1.326	-0.206	1.120	1.117	0.200

Tab. 4.1 –(suite)

Calcul des constantes d'appariement

Les constantes d'appariement sont directement déduites à partir des valeurs "expérimentales" des paramètres du gap Δ_{pp} , Δ_{nn} et Δ_{np} . Il suffit pour cela de résoudre soit le système d'équations (1.50), (1.51), soit le système (3.43), (3.45) selon que le noyau considéré est pair-pair ou impair, en se donnant les valeurs de Δ_{pp}^{\exp} , Δ_{nn}^{\exp} et Δ_{np}^{\exp} .

Les valeurs correspondantes sont listées dans le tableau (4-2).

Elément	\mathbf{Z}	Ν	Α	$G_{pp}^{\exp}(MeV)$	$G_{nn}^{\exp}(MeV)$	$G_{np}^{\exp}(MeV)$
S	16	16	32	0.088	0.093	0.103
	16	17	33	0.086	0.094	0.100
	16	18	34	0.083	0.087	0.100
	16	19	35	0.082	0.092	0.098
	16	20	36	0.083	0.088	0.099
	16	21	37	0.080	0.089	0.100
Cl	17	18	35	0.091	0.083	0.094
	17	20	37	0.087	0.077	0.094
	17	22	39	0.089	0.068	0.095
Ar	18	18	36	0.087	0.092	0.101
	18	19	37	0.087	0.093	0.093
	18	20	38	0.081	0.088	0.095
	18	21	39	0.078	0.089	0.095
	18	22	40	0.084	0.078	0.092
	18	23	41	0.080	0.079	0.093
K	19	20	39	0.087	0.080	0.090
	19	22	41	0.087	0.070	0.090
	19	24	43	0.088	0.068	0.091
Ca	20	20	40	0.086	0.091	0.095
	20	21	41	0.085	0.091	0.091
	20	22	42	0.084	0.078	0.088
	20	23	43	0.085	0.079	0.088
	20	24	44	0.085	0.074	0.090
	20	25	45	0.085	0.075	0.089
Sc	21	22	43	0.088	0.073	0.089
	21	24	45	0.086	0.071	0.089
					suite	page suivante

TAB. 4.2: Valeurs des constantes d'appariement G_{pp}^{\exp} (colonne 5), G_{nn}^{\exp} (colonne 6) et G_{np}^{\exp} (Colonne 7)

Elément	\mathbf{Z}	Ν	Α	$G_{pp}^{\exp}(MeV)$	$G_{nn}^{\exp}(MeV)$	$G_{np}^{\exp}(MeV)$			
	21	26	47	0.086	0.064	0.089			
Ti	22	22	44	0.085	0.090	0.090			
	22	24	46	0.078	0.076	0.870			
	22	25	47	0.075	0.076	0.850			
	22	26	48	0.077	0.071	0.860			
	22	27	49	0.073	0.074	0.850			
V	23	24	47	0.080	0.101	0.100			
	23	26	49	0.078	0.064	0.082			
	23	28	51	0.076	0.063	0.083			
Cr	24	24	48	0.075	0.079	0.086			
	24	25	49	0.075	0.081	0.081			
	24	26	50	0.071	0.072	0.082			
	24	27	51	0.070	0.074	0.079			
	24	28	52	0.071	0.068	0.080			
	24	29	53	0.071	0.068	0.080			
Mn	25	26	51	0.076	0.071	0.080			
	25	28	53	0.073	0.062	0.078			
	25	30	55	0.076	0.059	0.080			
Fe	26	26	52	0.072	0.076	0.082			
	26	27	53	0.069	0.077	0.077			
	26	28	54	0.068	0.068	0.076			
Al	27	28	55	0.072	0.066	0.076			
	27	30	57	0.071	0.060	0.077			
	27	32	59	0.072	0.060	0.079			
Ni	28	28	56	0.069	0.074	0.079			
	28	29	57	0.066	0.072	0.075			
	28	30	58	0.066	0.063	0.074			
	28	31	59	0.065	0.066	0.074			
	suite page suivante								

Tab. 4.2 –(suite)

Elément	Z	Ν	Α	$G_{pp}^{\exp}(MeV)$	$G_{nn}^{\exp}(MeV)$	$G_{np}^{\exp}(MeV)$			
	28	32	60	0.066	0.062	0.076			
	28	33	61	0.068	0.066	0.076			
Cu	29	30	59	0.067	0.061	0.072			
	29	32	61	0.066	0.061	0.074			
	29	34	63	0.066	0.060	0.076			
Zn	30	30	60	0.064	0.069	0.073			
	30	31	61	0.059	0.070	0.070			
	30	32	62	0.062	0.064	0.073			
	30	33	63	0.06	0.066	0.072			
	30	34	64	0.063	0.063	0.073			
	30	35	65	0.059	0.064	0.073			
Ga	31	32	63	0.067	0.062	0.070			
	31	34	65	0.065	0.059	0.072			
	31	36	67	0.065	0.057	0.073			
Ge	32	32	64	0.064	0.071	0.075			
	32	33	65	0.070	0.072	0.068			
	32	34	66	0.062	0.067	0.073			
	32	35	67	0.060	0.068	0.073			
	32	36	68	0.063	0.064	0.072			
	32	37	69	0.060	0.065	0.072			
	32	38	70	0.063	0.062	0.073			
As	33	34	67	0.066	0.060	0.069			
	33	36	69	0.066	0.058	0.071			
	33	38	71	0.065	0.057	0.072			
Se	34	34	68	0.064	0.070	0.071			
	34	35	69	0.069	0.072	0.069			
	34	36	70	0.063	0.066	0.071			
	34	37	71	0.062	0.067	0.069			
	suite page suivante								

Tab. 4.2 –(suite)

Elément	Z	Ν	Α	$G_{pp}^{\exp}(MeV)$	$G_{nn}^{\exp}(MeV)$	$G_{np}^{\exp}(MeV)$						
	34	38	72	0.063	0.063	0.071						
	34	39	73	0.061	0.063	0.070						
	34	40	74	0.063	0.060	0.071						
Br	35	36	71	0.066	0.058	0.068						
	35	38	73	0.064	0.056	0.069						
	35	40	75	0.064	0.054	0.070						
Kr	36	36	72	0.063	0.068	0.070						
	36	37	73	0.057	0.065	0.065						
	36	38	74	0.059	0.059	0.067						
	36	39	75	0.059	0.061	0.065						
	36	40	76	0.060	0.057	0.068						
	36	41	77	0.058	0.060	0.068						
	36	42	78	0.060	0.057	0.069						
Rb	37	38	75	0.061	0.055	0.065						
	37	40	77	0.060	0.052	0.066						
	37	42	79	0.061	0.051	0.068						
Sr	38	39	77	0.052	0.060	0.063						
	38	40	78	0.055	0.054	0.065						
	38	41	79	0.055	0.058	0.066						
	38	42	80	0.057	0.060	0.068						
	38	43	81	0.056	0.062	0.067						
	38	44	82	0.058	0.059	0.069						
Y	39	40	79	0.057	0.054	0.065						
	39	42	81	0.057	0.054	0.066						
	39	44	83	0.059	0.056	0.067						
Zr	40	41	81	0.053	0.058	0.065						
	40	42	82	0.055	0.058	0.065						
	40	43	83	0.055	0.061	0.065						
				suite page suivante								

Tab. 4.2 –(suite)

Elément	\mathbf{Z}	Ν	Α	$G_{pp}^{\exp}(MeV)$	$G_{nn}^{\exp}(MeV)$	$G_{np}^{\exp}(MeV)$
	40	44	84	0.055	0.058	0.066
	40	45	85	0.054	0.060	0.065
	40	46	86	0.056	0.056	0.066
Nb	41	42	83	0.056	0.054	0.064
	41	44	85	0.056	0.057	0.065
	41	46	87	0.057	0.054	0.065
Mo	42	43	85	0.054	0.061	0.063
	42	44	86	0.052	0.055	0.063
	42	45	87	0.054	0.058	0.063
	42	46	88	0.055	0.056	0.064
	42	47	89	0.052	0.059	0.064
	42	48	90	0.055	0.055	0.065
Тс	43	44	87	0.055	0.056	0.062
	43	46	89	0.057	0.055	0.063
	43	48	91	0.057	0.048	0.062
Ru	44	45	89	0.055	0.060	0.060
	44	46	90	0.055	0.056	0.063
	44	47	91	0.053	0.059	0.061
	44	48	92	0.054	0.055	0.062
	44	49	93	0.052	0.057	0.062
	44	50	94	0.055	0.056	0.063
Rh	45	48	93	0.055	0.049	0.060
	45	50	95	0.054	0.050	0.061
Pd	46	48	94	0.052	0.055	0.060
	46	49	95	0.052	0.056	0.060
	46	50	96	0.052	0.053	0.060
	46	51	97	0.053	0.052	0.059
	46	52	98	0.052	0.047	0.059
					suite	page suivante

Tab. 4.2 –(suite)

Elément	Z	Ν	Α	$G_{pp}^{\exp}(MeV)$	$G_{nn}^{\exp}(MeV)$	$G_{np}^{\exp}(MeV)$
Ag	47	50	97	0.054	0.051	0.059
	47	52	99	0.054	0.044	0.059
Cd	48	50	98	0.051	0.054	0.058
	48	51	99	0.051	0.053	0.056
	48	52	100	0.051	0.048	0.057
	48	53	101	0.052	0.048	0.057
	48	54	102	0.051	0.044	0.057
In	49	52	101	0.053	0.046	0.058
	49	54	103	0.053	0.046	0.058
Sn	50	54	104	0.050	0.046	0.057
	50	55	105	0.050	0.048	0.057
	50	56	106	0.051	0.045	0.058
Sb	51	56	107	0.050	0.044	0.056
Те	52	56	108	0.046	0.048	0.056
	52	57	109	0.044	0.049	0.055
	52	58	110	0.047	0.047	0.057
Ι	53	58	111	0.048	0.044	0.056
Xe	54	58	112	0.046	0.048	0.056
	54	59	113	0.044	0.049	0.055
	54	60	114	0.045	0.047	0.055
Cs	55	60	115	0.047	0.044	0.054
Ba	56	61	117	0.043	0.048	0.052
	56	62	118	0.044	0.045	0.053
La	57	62	119	0.045	0.044	0.053

Tab. 4.2 –(suite)

4.2.2 Expressions de G_{pp} , G_{nn} et \mathbf{G}_{np}

Afin de trouver les valeurs des constantes d'appariement G_{pp} , G_{nn} et G_{np} des noyaux pour lesquels il est impossible de connaitre les valeurs "expérimentales" des paramètres du gap Δ_{pp} , Δ_{nn} et Δ_{np} , nous avons procédé à un fitage des valeurs précédemment obtenues.

Dans la littérature, plusieurs formes d'expressions des constantes d'appariement ont été proposées. Nous avons dans une première étape adopté la forme [35,39] :

$$G_{pp} = g_0^{pp} \left(1 + g_1^{pp} I + g_2^{pp} I^2 \right) / A$$
(4.7)

$$G_{nn} = g_0^{nn} \left(1 - g_1^{nn} I + g_2^{nn} I^2 \right) / A$$
(4.8)

 et

$$G_{np} = g_0^{np} \left(1 + g_1^{np} I + g_2^{np} I^2 \right) / A$$
(4.9)

où $I = \frac{N-Z}{A}$ est l'isospin .

Nous avons effectué le fitage à la fois pour les noyaux pair-pairs et pour les noyaux impairs c'est à dire 165 noyaux.

Nous avons alors obtenu les valeurs :

 $g_0^{pp} = 3.934, \ g_1^{pp} = 6.249 \text{ et } g_2^{pp} = -65.864$ $g_0^{nn} = 4.255, \ g_1^{nn} = 3.743 \text{ et } g_2^{nn} = -53.616$

 et

$$g_0^{np} = 4.367, \ g_1^{np} = 7.171 \text{ et } g_2^{np} = -73.848$$

Nous avons reporté dans la figure (4-7) les valeurs du produit A $G_{tt'}$ obtenues à partir des valeurs "expérimentales" des $\Delta_{tt'}$ (t,t' =n,p) en fonction de I (points (\blacksquare)). Nous avons également représenté dans la même figure les valeurs correspondant aux expressions (4.7) ,(4.8) et (4.9). Il est clair que ces denières ne sont pas satisfaisantes, ce qui nous a amené à procéder différemment.

Nous allons étudier séparément les noyaux pair-pairs et les noyaux impairs. Dans le cas des noyaux pair-pairs, soulignons que nous disposons des données concernant 61 noyaux. Les variations des constantes d'appariement G_{pp} , G_{nn} et G_{np} obtenues à partir des valeurs "expérimentales" des $\Delta_{tt'}$ (t,t'=n,p) sont représentées en fonction de $(\frac{1}{A})$ dans la figure (4-8) (points (\blacksquare)). L'allure obtenue nous a suggéré une forme linéaire. Ceci nous a conduit aux expressions suivantes des constantes

FIG. 4-7 – Variation des produits $AG_{tt'}$ en fonction de I. Les lignes continues correspondent aux expressions (4-7), (4-8) et (4-9). Les points (\blacksquare) ont été déduits des valeurs expérimentales.

d'appariement G_{pp} , G_{nn} et G_{np} :

$$G_{pp} = 0.03 + 2.03 \left(\frac{1}{A}\right) \tag{4.10}$$

avec un coefficient de corrélation R=0.97

$$G_{nn} = 0.03 + 2.14 \left(\frac{1}{A}\right) \tag{4.11}$$

avec un coefficient de corrélation R=0.95

$$G_{np} = 0.03 + 2.21 \left(\frac{1}{A}\right) \tag{4.12}$$

avec un coefficient de corrélation R=0.98

Les courbes correspondantes sont représentées en lignes continues dans la figure (4-8).

Dans le cas des noyaux impairs, nous avons envisagé à la fois le cas où Z est impair et N pair et le cas où Z est pair et N est impair, ce qui correspond à 104 noyaux. La figure (4-9) représente les variations de G_{pp}, G_{nn} et G_{np} obtenues à partir des valeurs "expérimentales" des $\Delta_{tt'}$ (t,t'=n,p) en fonction de $(\frac{1}{A})$ (points (\blacksquare)). Là aussi, l'allure obtenue nous a suggéré une forme linéaire. Ceci nous a conduit aux expressions suivantes des constantes d'appariement G_{pp}, G_{nn} et G_{np} :

$$G_{pp} = 0.03 + 2.17 \left(\frac{1}{A}\right) \tag{4.13}$$

avec un coefficient de corrélation R=0.95

$$G_{nn} = 0.03 + 1.93 \left(\frac{1}{A}\right) \tag{4.14}$$

avec un coefficient de corrélation R=0.90

$$G_{np} = 0.03 + 2.19\left(\frac{1}{A}\right) \tag{4.15}$$

avec un coefficient de corrélation R=0.98

Les courbes correspondantes sont représentées en lignes continues dans la figure (4-9).

Nous avons reporté dans le tableau (4-3) les valeurs des constantes d'appariement G_{pp} , G_{nn} et G_{np} obtenues à l'aide des expressions (4.10) à (4.12) ou (4.13) à (4.15) (suivant que le système considéré est pair-pair ou impair) pour quelques noyaux choisis à titre d'exemple. Nous y avons également reporté

FIG. 4-8 – Variation de G_{pp} , G_{nn} et G_{np} en fonction de $\frac{1}{A}$ dans le cas des noyaux pair-pairs. Les lignes continues correspondent aux expressions (4-10), (4-11) et (4-12). Les points (\blacksquare) ont été déduits des valeurs expérimentales.

FIG. 4-9 – Variation de G_{pp} , G_{nn} et G_{np} en fonction de $\frac{1}{A}$ dans le cas des noyaux impairs. Les lignes continues correspondent aux expressions (4-13), (4-14) et (4-15). Les points (\blacksquare) ont été déduits des valeurs expérimentales.

leurs homologues "expérimentales".

TAB. 4.3 – Comparaison entre les valeurs des constantes d'appariement déduites des valeurs expérimentales des $\Delta_{tt'}$ et celles obtenues par fitage (expressions (4-10) à (4-12) ou (4-13) à (4-15)) pour quelques noyaux.

Ζ	Ν	Α	$G_{pp}(MeV)$	$G_{nn}(MeV)$	$G_{np}(MeV)$	$G_{pp}^{\exp}(MeV)$	$G_{nn}^{\exp}(MeV)$	$G_{np}^{\exp}(MeV)$
16	16	32	0.095	0.097	0.107	0.088	0.093	0.103
17	18	35	0.093	0.087	0.100	0.091	0.083	0.094
18	18	36	0.088	0.090	0.099	0.087	0.092	0.101
18	21	39	0.086	0.082	0.094	0.078	0.089	0.095
19	20	39	0.086	0.082	0.094	0.087	0.080	0.090
20	20	40	0.082	0.084	0.093	0.086	0.091	0.095
20	21	41	0.083	0.079	0.091	0.085	0.091	0.091
21	22	43	0.081	0.077	0.088	0.088	0.073	0.089
23	24	47	0.077	0.073	0.084	0.080	0.101	0.100
24	24	48	0.074	0.070	0.084	0.075	0.079	0.086
24	28	52	0.071	0.072	0.081	0.071	0.068	0.080
25	26	51	0.073	0.070	0.080	0.076	0.071	0.080
27	28	55	0.070	0.067	0.077	0.072	0.066	0.076
28	30	58	0.067	0.067	0.076	0.066	0.063	0.074
30	32	62	0.064	0.065	0.074	0.062	0.064	0.073
31	32	63	0.065	0.063	0.072	0.067	0.062	0.070
32	32	64	0.063	0.064	0.073	0.064	0.071	0.075
32	33	65	0.064	0.062	0.071	0.070	0.072	0.068
36	38	74	0.059	0.059	0.068	0.059	0.059	0.067
37	40	77	0.059	0.057	0.066	0.060	0.052	0.066
40	41	81	0.057	0.056	0.065	0.053	0.058	0.065
44	47	91	0.054	0.053	0.062	0.053	0.059	0.061

Malheureusement ce tableau ne permet pas vraiment de juger de la validité des expressions (4.10) à (4.15). Pour juger de cette dernière, nous avons évalué les paramètres du gap $\Delta_{tt'}$ en utilisant les valeurs de $G_{tt'}$ obtenues par les expressions (4.10) à (4.15). Les valeurs correspondantes sont reportées dans les tableaux (4-4) à (4-6). Elles sont comparées d'une part aux valeurs "expérimentales" $\Delta_{tt'}^{exp}$ et d'autre part aux valeurs déduites des $G_{tt'}$ de la littérature (voir section 4.2.1) pour quelques noyaux. Nons nous sommes en particulier intéressés à l'expression (4.3) proposée par Civiterese et al. [20] et à l'expression (4.4) proposé par Satula et Wyss [23]. Notons que dans ces derniers cas, les expressions de G_{pp} et G_{nn} utilisées sont celles de Nilsson [31], soit :

 et

$$G_{pp} = (19.2 + 4.7I) / A$$

 $G_{nn} = (19.2 - 4.7I) / A$

Nous avons dans chaque cas également reporté la valeur de l'écart relatif par rapport aux valeurs expérimentales $\delta \Delta_{tt'}$ défini par :

$$\delta \Delta_{tt'} = \frac{\left| \Delta_{tt'}^{\exp} - \Delta_{tt'} \right|}{\Delta_{tt'}^{\exp}}$$

Des tableaux (4-4) à (4-6), ils ressort que se sont les $G_{tt'}$ obtenues à partir des expressions (4.10) à (4.15) qui permettent de reproduire au mieux les valeurs expérimentales, même si dans certains cas, l'accord peut sembler médiocre.

TAB. 4.4 – Comparaison entre les valeurs expérimentales du paramètre du gap Δ_{pp} (colonne 2) et les valeurs obtenues à partir des différentes expressions des constantes d'appariement : présent travail (colonne 3) et refs [20] et [23] (colonne 4). Les écarts relatifs correspondants (définis par $\Delta_{tt'}=((|\Delta_{tt'}^{exp}-\Delta_{tt'}|)/(\Delta_{tt'}^{exp})))$ sont également donnés dans les colonnes 5 à 6.

Noyau	$\Delta_{pp}^{\exp}(MeV)$	$\Delta_{pp}(MeV)$	$\Delta_{pp}(MeV)$	$\delta\Delta_{pp}^{\mathrm{exp}}$ (%)	$\delta\Delta_{pp}^{\exp}$ (%)
		(présent travail)	(refs [20], [23])	(présent travail)	(refs, [20],
					[23])
$_{18}Ar^{36}$	2.265	2.329	6.559 E-06	3	100
$_{18}Ar^{38}$	1.440	0.929	9.237 E-07	35	100
$_{18}Ar^{39}$	1.019	1.200	9.101 E-07	18	100
$_{18}Ar^{40}$	1.776	1.222	4.797 E-06	31	100
$_{19}K^{39}$	1.874	1.068	62.361	43	3226
$_{21}Sc^{43}$	2.477	1.022	1.632 E-09	56	100
$_{25}{\rm Mn}^{51}$	1.789	0.685	4.121E-04	62	100
$_{31}Ga^{63}$	1.649	1.698	2.251 E-05	3	100
$_{37}\mathrm{Rb}^{77}$	1.520	1.202	2.68E-07	26	100

Noyau	$\Delta_{nn}^{\exp}(MeV)$	$\Delta_{nn}(MeV)$	$\Delta_{nn}(MeV)$	$\delta\Delta_{nn}^{\mathrm{exp}}~(\%)$	$\delta\Delta_{nn}^{\exp}$ (%)
		(présent travail)	(refs [20], [23])	(présent travail)	(refs [20],
					[23])
$_{18}Ar^{36}$	2.311	1.734	7.841E-06	25	100
$_{18}Ar^{38}$	2.099	1.501	8.996E-09	29	100
$_{18}Ar^{39}$	1.944	0.818	3.513E-08	58	100
$_{18}Ar^{40}$	1.767	2.237	8.577E-06	28	100
$_{19}K^{39}$	1.731	1.315	64.286	24	3612
$_{21}\mathrm{Sc}^{43}$	0.886	1.207	3.810E-08	36	100
$_{25}\mathrm{Mn}^{51}$	1.053	1.035	3.533E-08	2	100
$_{31}Ga^{63}$	0.851	1.270	5.067E-06	49	100
$_{37}\mathrm{Rb}^{77}$	0.913	1.344	8.921E-07	57	100

TAB. 4.5 – Même chose que le tableau (4-4) pour \triangle_{nn}

TAB. 4.6 – Comparaison entre les valeurs expérimentales du paramètre du gap Δ_{np} (colonne 2) et les valeurs obtenues à partir des différentes expressions des constantes d'appariement : présent travail (colonne 3) et refs [23] (colonne 4) et [20] (colonne 5). Les écarts relatifs correspondants (définis par $\Delta_{tt'}=((|\Delta_{tt'}^{exp}-\Delta_{tt'}|)/(\Delta_{tt'}^{exp})))$ sont également donnés dans les colonnes 6 à 8.

Noyau	$\Delta_{np}^{\exp}(MeV)$	$\Delta_{np}(MeV)$	$\Delta_{np}(MeV)$	$\Delta_{np}(MeV)$	$\delta\Delta_{np}^{\exp}(\%)$	$\delta\Delta_{np}^{\exp}(\%)$	$\delta\Delta_{np}^{\exp}(\%)$
		(présent	(ref [23])	(ref [20])	(présent	(ref [23])	(ref [20])
		travail)			travail)		
$_{18}Ar^{36}$	1.37	1.534	1.550E-06	1.16E-04	12	100	100
$_{18}Ar^{38}$	0.249	0.3	6.991E-08	1.18E-06	20	100	100
$_{18}Ar^{39}$	0.570	0.23	6.629E-08	1.14E-07	60	100	100
$_{18}Ar^{40}$	0.683	1.02	2.397E-07	2.70E-06	49	100	100
$_{19}K^{39}$	0.491	0.39	0.001	2.37 E-05	21	100	100
$_{21}Sc^{43}$	1.359	2.096	1.294E-08	1.38E-06	54	100	100
$_{25}Mn^{51}$	0.733	0.960	2.855E-08	1.48E-05	31	100	100
$_{31}$ Ga ⁶³	1.054	0.549	1.610E-06	2.75 E-05	48	100	100
$_{37}\mathrm{Rb}^{77}$	0.492	0.419	2.118E-08	2.23E-06	15	100	100

4.3 Energies de séparation d'un ou deux protons pour les noyaux des terres rares riches en protons

L'énergie de séparation d'un ou deux protons est la quantité d'énergie nécessaire pour extraire un ou deux protons d'un noyau. Elle sera notée S_p pour l'énergie de séparation d'un proton et S_{2p} pour l'énergie de séparation de deux protons.

Elles sont définies respectivement par :

$$S_p = E\left(N, Z\right) - E\left(N, Z - 1\right)$$

$$\operatorname{et}$$

$$S_{2p} = E(N, Z) - E(N, Z - 2)$$

où E(N, Z) est l'énergie de l'état fondamental d'un système constitué de Z protons et de N neutrons. Elle est donnée par l'expression (1.64) pour les noyaux pair-pairs et par l'expression (3.46) pour les noyaux impairs dans le cas de l'appariement np. Dans le cas de l'appariement entre particules identiques, l'énergie est donnée par l'expression (1.72) pour les noyaux pair-pairs et par l'expression (3.55) pour les noyaux impairs.

4.3.1 Energies de séparation de deux protons

Noyaux "ordinaires"

Pour avoir une base de comparaison, nous avons considéré des noyaux "ordinaires" aussi bien pairpairs qu'impairs *riches en protons* et pour lesquels les valeurs "expérimentales" de Δ_{pp} , Δ_{nn} , Δ_{np} et des énergies de séparation sont connues. Les valeurs de S_{2p} pour les noyaux pair-pairs avec et sans prise en compte de l'appariement np sont reportées dans le tableau (4-7), celles des noyaux impairs sont reportées dans le tableau (4-8), où elles sont comparées aux valeurs expérimentales pour quelques noyaux choisis à titre d'exemple.

Nous avons dans chaque cas reporté les valeurs de l'écart relatif par rapport à l'expérience défini par :

$$\delta S_{2p}^{\exp} = \frac{|S_{2p\exp} - S_{2p}|}{|S_{2p\exp}|}$$

ainsi que l'écart relatif entre les deux méthodes défini par :

$$\delta S_{2p}^{th} = \frac{|S_{2pBCS} - S_{2pnp}|}{|S_{2pBCS}|}$$

On constate d'après le tableau (4-7), que dans le cas des noyaux pair-pairs l'écart entre les prévisions des deux méthodes n'est pas très prononcé et est de l'ordre de 8% en moyenne. Et ceci malgré le fait que l'écart entre les énergies E_{np} (avec inclusion de l'appariement np) et EBCS (dans le cas de l'appariement entre particules identiques) soit important.

Par exemple, dans le cas du noyau 36 Ar, on a :

$$\delta E(N,Z) = E_{\rm np}(N,Z) - EBCS(N,Z) = 35.48MeV$$

alors que :

$$\delta E(N, Z-2) = E_{\rm np}(N, Z-2) - EBCS(N, Z-2) = 35.20MeV$$

 $\delta E(N,Z)$ et $\delta E(N,Z-2)$ étant très voisins, l'écart :

$$\Delta S_{2p} = S_{2p}^{np} - S_{2p}^{BCS} = 0.28 MeV$$

est très petit.

De même pour le noyau 40 Ca, on a :

$$\delta E(N,Z) = 37.13 MeV$$

$$\delta E(N,Z-2) = 37.12 MeV$$

d'où :

 $\Delta S_{2p} = 0.01 MeV$

Toutefois les prévisions de la théorie BCS habituelle semblent de meilleure qualité que lorsque l'appariement np pris en compte. En effet, l'écart relatif moyen par rapport à l'expérience est de l'ordre de 25% dans le premier cas et de 30% de le second cas.La situation est complétement différente dans le cas des noyaux impairs. En effet, on constate d'après le tableau (4-8) que l'écart entre les prévisions des deux méthodes est important et est de l'ordre 35% en moyenne. En effet, dans ce cas $\delta E(N, Z)$ et $\delta E(N, Z - 2)$ sont nettement différents. Par exemple pour le noyau ³⁹K, on a :

$$\delta E(N,Z) = 28.45 MeV$$

$$\delta E(N,Z-2) = 29.47 MeV$$

On a alors :

$$\Delta S_{2p} = 1.02 M eV$$

De même pour le noyau 43 Sc, on a :

$$\delta E(N,Z) = 28.22 MeV$$

$$\delta E(N,Z-2) = 39.78 MeV$$

On a alors :

$$\Delta S_{2p} = 11.56 MeV$$

O n remarque également que les résultats de la présente méthode sont plus proches de l'expérience que ceux de la théorie BCS usuelle. En effet, l'écart relatif moyen par rapport à l'expérience est de l'ordre de 23% lorsque l'on prend en compte l'appariement isovectoriel et de 29% dans le cas de l'appariement entre particules identiques. Le fait que la méthode faisant l'objet du présent travail reproduise mieux les valeurs expérimentales dans le cas des systèmes impairs que dans les systèmes pair-pairs est assez surprenant. En effet, la fonction d'onde dans le cas des systèmes impairs (voir eq.(3.56)) présente l'inconvénient d'exclure des calculs du niveau bloqué pour les deux types de nucléons (i.e neutrons et protons). Ceci n'est pas le cas avec la théorie BCS usuelle où les deux systèmes sont considérés séparément. Lorsqu'un niveau est bloqué pour le système neutron, il ne l'est pas pour le système proton, et réciproquement.

Un autre défaut de la fonction d'onde définie par l'eq.(3.56) est qu'elle décrit à priori les noyaux tels que N=Z±1. Ceci ne semble cependant pas influer sur l'énergie de séparation de deux protons. En effet, l'erreur relative moyenne par rapport à l'expérience est de 24% (respectivement 30% dans le cas de la théorie BCS usuelle) pour les noyaux tels que N-Z =1 et 22% (respectivement 27% dans le cas de la théorie usuelle) pour les noyaux tels que N-Z=3.

La qualité de l'ensemble des résultats obtenus, que ce soit pour les noyaux pair-pairs ou pour les noyaux impairs, est cependant assez médiocre. Ceci est probablement dû au fait que nous n'avons pas pris en compte la fluctuation du nombre de particules, ce qui représente le principal défaut de la théorie BCS (voir par exemple [7]).

Noyaux de la région des terres rares

Nous avons ensuite établi des prévisions concernant l'énergie de séparation de deux protons pour les noyaux de la région des terres rares *riches en protrons*.

Les résultats correspondants sont reportés dans le tableau (4-9) pour les noyaux pair-pairs et dans le tableau (4-10) pour les noyaux impairs. Les valeurs obtenues au moyen de la théorie BCS usuelle y sont également reportées, ainsi que les valeurs expérimentales lorsqu'elles sont disponibles.

On constate d'après le tableau (4-9) que l'écart relatif moyen est important entre les prévisions théoriques et est de l'ordre de 43%. De plus, les écarts relatifs par rapport à l'expérience que ce soit dans le cas de l'appariement np ou dans le cas de la théorie BCS usuelle sont très importants (de l'ordre de 165% et 168% respectivement). Toutefois, le manque de données expérimentales ne permet pas vraiment de juger de la qualité des résultats obtenus.

On constate d'après le tableau (4-10) que dans le cas des systèmes impairs l'écart relatif est également très important entre les prévisions théoriques et est de l'ordre de 56% en moyenne. Comme dans le cas précédent, l'écart par rapport à l'expérience (lorsque les données existent) est très important, avec ou sans inclusion de l'appariement np.

Notons que là aussi dans certains cas, les valeurs obtenues ne reproduisent pas le signe de la valeur expérimentale de S_{2p} que ce soit dans le cas de la théorie BCS usuelle ou dans le cas de l'appariement np.

Il s'avère donc qu'une projection dans l'espace nombre d'occupation est nécessaire.

4.3.2 Energies de séparation d'un proton

Noyaux "ordinaires"

De même que dans la section précédante, nous avons préalablement considédé des noyaux "ordinaires" pour lesquels les valeurs "expérimentales" de Δ_{pp} , Δ_{nn} , Δ_{np} et des énergies de séparation sont connues. Les valeurs correspondant à l'énergie de séparation d'un proton, pour les mêmes noyaux que dans la section précédente, sont reportées dans le tableau (4-11) pour les noyaux pair-pairs et dans le tableau (4-12) pour les noyaux impairs.

Nous avons dans chaque cas également reporté les valeurs de l'écart relatif par rapport à l'expérience défini par :

$$\delta S_p^{\exp} = \frac{|S_{p\exp} - S_p|}{|S_{p\exp}|}$$

ainsi que l'écart relatif entre les deux méthodes défini par :

$$\delta S_p^{th} = \frac{|S_{pBCS} - S_{pnp}|}{|S_{pBCS}|}$$

D'après le tableau (4-11), on constate que l'écart entre les valeurs sans et avec prise en compte de l'appariement np est très important (de l'ordre de 70% en moyenne), contrairement à ce qui se produisait dans le cas de S_{2p} .

De plus c'est la théorie BCS usuelle qui reproduit mieux les valeurs expérimentales. En effet, l'écart relatif par rapport à l'expérience est en moyenne de 25% (respectivement 44%) sans (respectivement avec) prise en compte de l'appariement np.

D'après le tableau (4-12) on constate aussi un écart très important entre les prévisions théoriques dans le cas des systèmes impairs : l'écart relatif moyen est en effet de l'ordre de 75%. Le fait que les prévisions de la théorie BCS usuelle reproduisent mieux l'expérience que lorsque l'appariement np est pris en compte est encore plus net dans ce cas que pour les noyaux pair-pairs. Les écarts relatifs moyens sont en effet de 40% et 84% respectivement. Dans certains cas, les valeurs obtenues avec inclusion de l'appariement np ne permettent même pas une description qualitative, puisque même le signe de la valeur expérimentale de S_p n'est pas reproduit.

Ce désaccord avec l'expérience est probablement dû au défaut de la fonction d'onde que nous avons discuté ci-dessus. La quantité S_p semble y être plus sensible que la quantité S_{2p} .

Le fait que la fonction d'onde définie par (3.56) soit mieux adaptée à la description des noyaux tels que $N=Z\pm 1$ est nettement apparent dans le cas de S_p . En effet, l'écart relatif moyen par rapport à l'expérience est de 63% (respectivement 49% dans le cas de la théorie BCS usuelle) pour les noyaux tels que N=Z+1 et 106% (respectivement 32% dans le cas de la théorie BCS usuelle) pour les noyaux tels que N=Z+3.

Notons que là aussi, une élimination de fluctuations du nombre de particules semble nécessaire, que ce soit avec ou sans inclusion de l'appariement np.

Noyaux de la région des terres rares

Malgré la faible qualité des résultats obtenus dans le cas des noyaux "ordinaires" nous avons établi des prévisions concernant les énergies de séparation d'un proton pour les noyaux riches en protons de la région des terres rares. Les résultats correspondants sont reportés dans le tableau (4-13) pour les noyaux pair-pairs et dans le tableau (4-14) pour les noyaux impairs. Ils sont comparés aux prévisions de la théorie BCS usuelle et aux données expérimentales lorsqu'elles existent.

D'après les résultats du tableau (4-13) on constate que l'écart relatif entre les prévisions théoriques est énorme et est de l'ordre de 131% en moyenne. (Notons que nous avons éliminé les écarts relatifs pour quelques noyaux car leurs valeurs de l'énergie de séparation d'un proton dans le cas de la théorie BCS usuelle sont très petites)

Dans le cas des noyaux impairs, et d'apès le tableau (4-14), on constate que l'écart relatif moyen entre les prévisions théoriques est de l'ordre de 71%. Ceci est nettement inférieur à celui des noyaux pair-pairs, mais encore très important. L'écart de chacune des deux méthodes par rapport à l'expérience (lorsque les données existent) est également très important.

Il s'avère donc là aussi que l'approximation BCS est insuffisante et qu'une projection dans l'espace nombre d'occupation est nécessaire.

En résumé, pour l'énergie de séparation de deux protons, l'apport de l'appariement np est as-

sez faible dans le cas des noyaux pair-pairs. De plus, les résultats avec inclusion de l'appariement isovectoriel sont plus éloignés des valeurs expérimentales que ceux de la théorie BCS usuelle.

Par contre, pour les noyaux impairs l'apport de l'appariement isovectoriel est important. Ce dernier permet de mieux reproduire les valeurs expérimentales. Par ailleurs, il n'y a pas de différence notable entre les noyaux tels que N=Z+1 ou N=Z+3.

Concernant l'énergie de séparation d'un proton, l'écart entre les prévisions sans et avec inclusion de l'appariement isovectoriel est important que ce soit pour les noyaux pair -pairs ou les noyaux impairs. De plus lorsque l'on tient compte de l'appariement np, les valeurs expérimentales sont moins bien reproduites.

Finalement, le fait que la fonction d'onde utilisée soit à priori mieux adaptée aux noyaux tels que N=Z+1 qu'à ceux tels que N=Z+3 apparait nettement dans le calcul de S_p .

Vue la médiocrité de l'ensemble des résultats obtenus une projection dans l'espace nombre d'occupation semble nécessaire dans tous les cas.

TAB. 4.7 – Comparaison des valeurs de l'énergie de séparation de deux protons pour quelques noyaux pair-pairs choisis à titre d'exemple obtenues avec (colonne 2) et sans (colonne 3) prise en compte de l'appariement np et celles de l'expérience (colonne 4). Nous avons reporté l'écart relatif δS_{2p}^{exp} avec (colonne 5) et sans (colonne 6) appariement np . Nous avons également reporté l'écart relatif δS_{2p}^{th} entre les deux méthodes (colonne 7).

Noyau	$S_{2p} (MeV)$	$S_{2p} (MeV)$	$S_{2p \exp} (MeV)$	$\delta S_{2p}^{\exp}(\%)$	$\delta S_{2p}^{\exp}(\%)$	$\delta \mathbf{S}_{2p}^{th}\left(\%\right)$
	BCS np	BCS		$\dot{\rm BCS}~{ m np}$	BCS	1
$_{18}Ar^{36}$	-12.39	-13.24	-14.87	16.65	10.95	6.40
$_{18}Ar^{38}$	-16.72	-16.65	-18.62	10.21	10.58	0.41
$_{20}Ca^{40}$	-12.53	-13.01	-14.70	14.75	11.5	3.68
$_{20}Ca^{42}$	-16.30	-16.26	-18.08	9.84	10.08	0.27
$_{22}$ Ti ⁴⁴	-8.05	-10.52	-13.57	40.65	22.51	23.41
$_{22}{ m Ti}^{46}$	-10.83	-11.80	-17.23	37.12	31.50	8.20
$_{24}\mathrm{Cr}^{48}$	-6.69	-8.53	-13.26	49.52	35.70	21.48
$_{24}\mathrm{Cr}^{50}$	-10.00	-10.38	-16.34	38.77	36.50	3.58
$_{26}$ Fe ⁵²	-7.41	-8.16	-12.65	41.40	35.45	9.20
$_{26}$ Fe ⁵⁴	-10.37	-10.45	-15.41	32.66	32.18	0.71
$_{28}{ m Ni}^{56}$	-5.76	-7.37	-12.22	52.86	39.72	21.80
$_{28}{ m Ni}^{58}$	-8.47	-8.88	-14.20	40.28	37.44	4.54
$_{30} Zn^{60}$	-4.26	-5.71	-8.53	50.08	33.11	25.37
$_{30} Zn^{62}$	-7.26	-7.65	-11.27	53.55	32.11	5.05
$_{32}Ge^{64}$	-5.84	-5.98	-7.83	25.41	23.66	2.29
$_{32}{ m Ge}^{66}$	-7.65	-7.78	-10.19	24.92	23.66	1.65
$_{34}\mathrm{Se}^{68}$	-3.94	-5.56	-7.10	44.5	21.70	29.05
$_{34}\mathrm{Se}^{70}$	-7.94	-7.95	-9.64	17.64	17.53	0.13
$_{36}{ m Kr}^{72}$	-3.58	-5.24	-6.75	46.94	22.31	31.71
$_{36} Kr^{74}$	-6.82	-6.94	-9.01	24.32	22.95	1.78
$_{38}{ m Sr}^{78}$	-4.42	-4.89	-8.73	49.40	44.02	9.60
$_{38}{ m Sr}^{80}$	-9.29	-9.2	-10.70	13.18	13.41	0.25
$_{40}\mathrm{Zr}^{82}$	-6.58	-6.58	-8.46	22.13	22.18	0.06
$_{40} Zr^{84}$	-8.44	-8.44	-10.06	16.05	16.12	0.08
$_{42}\mathrm{Mo}^{86}$	-5.59	-5.52	-7.64	26.79	27.71	1.26
$_{42}Mo^{88}$	-7.36	-7.43	-9.47	22.22	21.47	0.95
$_{44}\mathrm{Ru}^{90}$	-4.79	-5.16	-7.18	33.29	28.17	7.13
$_{44}\mathrm{Ru}^{92}$	-6.68	-6.70	-8.81	24.22	23.96	0.34

Noyau	$S_{2p} (MeV)$	$S_{2p} (MeV)$	$S_{2p \exp} (MeV)$	$\delta \mathbf{S}_{2p}^{\exp}\left(\%\right)$	$\delta \mathbf{S}_{2p}^{\exp}\left(\%\right)$	$\delta \mathbf{S}_{2p}^{th}\left(\% ight)$
	BCS np	BCS		$\dot{\mathrm{BCS}}$ np	BCS	-
$_{19}K^{39}$	-15.64	-14.81	-16.62	5.89	10.87	5.59
$_{19}K^{41}$	-19.18	-18.18	-20.33	5.67	10.57	5.47
$_{21}Sc^{43}$	-23.54	-12.5	-15.20	54.84	17.40	87.46
$_{21}SC^{45}$	-26.91	-15.40	-19.05	41.27	19.15	74.73
$_{23}V^{47}$	-10.10	-10.66	-15.51	34.87	31.22	5.31
$_{23}V^{47}$	-12.68	-12.87	-18.20	30.29	29.27	1.44
$_{25}\mathrm{Mn}^{51}$	-14.65	-9.42	-14.86	1.35	36.56	55.50
$_{25}\mathrm{Mn}^{53}$	-13.10	-11.92	-17.06	23.23	30.11	9.84
$_{27}{\rm Co}^{55}$	-12.90	-8.19	-13.91	7.20	41.09	57.52
$_{27}{\rm Co}^{57}$	-14.32	-9.84	-16.21	11.64	39.25	45.45
$_{29}{ m Cu}^{59}$	-11.01	-6.76	-11.59	5.00	41.66	62.86
$_{29}Cu^{61}$	-12.44	-8.65	-14.33	13.17	39.60	43.77
$_{31}Ga^{63}$	-6.69	-7.30	-9.14	26.79	20.08	8.39
$_{31}Ga^{65}$	-9.39	-9.21	-11.65	19.40	20.95	1.96
$_{33}As^{67}$	-10.27	-6.56	-8.56	19.95	23.37	56.55
$_{33}As^{69}$	-9.58	-9.37	-10.78	11.12	13.07	2.24
$_{35}{ m Br}^{71}$	-12.40	-6.42	-8.55	45.04	24.91	93.16
$_{35}{ m Br}^{73}$	-14.70	-7.96	-10.31	42.60	22.80	84.73
$_{37}\mathrm{Rb}^{75}$	-7.87	-5.13	-8.17	3.56	37.09	53.31
$_{37}\mathrm{Rb}^{77}$	-9.93	-6.76	-10.26	3.16	34.04	46.81
$_{39}Y^{79}$	-4.13	-4.50	-8.10	49.00	44.41	8.23
$_{39}Y^{81}$	-6.20	-6.03	-9.791	36.61	38.38	2.86
$_{41}\mathrm{Nb}^{83}$	-4.51	-4.78	-7.519	40.00	36.37	5.68
$_{41}\mathrm{Nb}^{85}$	-11.55	-6.95	-9.40	22.92	26.00	66.04
$_{43}\mathrm{Tc}^{87}$	-5.04	-4.54	-6.55	23.00	30.62	11.00
$_{43} Tc^{89}$	-6.75	-6.17	-8.23	18.00	25.10	9.52

TAB. 4.8 – Même chose que le tableau (4-7) pour quelques noyaux impairs choisis à titre d'exemple.

TAB. 4.9 – Comparaison des valeurs de l'énergie de séparation de deux protons pour quelques noyaux pair-pairs de la région des terres rares riches en protons obtenues avec (colonne 2) et sans (colonne 3) prise en compte de l'appariement np et celles de l'expérience (colonne 4). Nous avons également reporté l'écart relatif δS_{2p}^{th} entre les deux méthodes (colonne 5).

Noyau	$S_{2p} (MeV)$	$S_{2p} (MeV)$	$S_{2p \exp} (MeV)$	$\delta S_{2p}^{th}(\%)$
	BCSnp	BCS		-
$_{62} Sm^{124}$	4.28	4.80	-	10.78
$_{62} Sm^{126}$	2.93	3.90	-	24.90
$_{62} Sm^{128}$	1.42	2.16	-1.97	34.50
$_{62} Sm^{130}$	-0.29	0.36	-0,73	180.97
$_{64}Gd^{128}$	4.94	5.13	-	3.64
$_{64}Gd^{130}$	3.40	3.68	-	7.57
$_{64}Gd^{132}$	1.75	1.99	-	11.91
$_{64}Gd^{134}$	0.30	0.51	-0.90	40.38
$_{64}Gd^{136}$	-1.03	-0.75	-2.12	37.5
$_{66} Dy^{134}$	3.73	3.07	-	21.67
$_{66} Dy^{136}$	2.37	1.63	-	45.46
$_{66} Dy^{138}$	0.94	0.40	-0.46	134
$_{66} Dy^{140}$	-0.59	-0.82	-1.63	28.24
$_{68}{\rm Er}^{138}$	4.49	5.20	-	13.60
$_{68}\mathrm{Er}^{142}$	3.01	3.27	-	7.94
$_{68} \mathrm{Er}^{144}$	1.45	0.99	-	46.38
$_{70} Yb^{144}$	-0.30	-1.37	-1.52	77.70
$_{70}{ m Yb^{146}}$	3.54	2.82	-	25.44
$_{70}{ m Yb^{148}}$	1.93	2.10	-	8.03
$_{72}\mathrm{Hf}^{150}$	2.50	2.63	-	4.89
$_{72}\mathrm{Hf}^{152}$	1.17	1.22	-	3.83
$_{74}W^{154}$	2.91	2.14	-	36.22
$_{74}W^{156}$	1.95	0.90	-	116.48
$_{76} Os^{160}$	2.39	0.99	-	141.18

Noyau	$S_{2p} (MeV)$	$S_{2p} (MeV)$	$S_{2p \exp} (MeV)$	$\delta S_{2p}^{th}(\%)$
	BCSnp	BCS		-
$_{63}{\rm Eu}^{133}$	0.70	-0.64	-2.12	209.62
$_{65} \text{Tb}^{135}$	-1.06	0.91	-	16.24
$_{65}{ m Tb}^{137}$	-0.36	-0.25	-1.38	45.41
$_{67} Ho^{137}$	0.62	2.03	-	69.18
$_{67} Ho^{139}$	0.09	0.81	-	88.11
$_{67} Ho^{141}$	-0.42	-0.38	-0.78	9.09
$_{69} \mathrm{Tm}^{143}$	3.31	3.87	-	14.62
$_{69} \mathrm{Tm}^{145}$	1.78	1.97	-	9.67
$_{71} Lu^{147}$	0.33	-0.53	-0.17	163.58
$_{71} Lu^{149}$	2.38	2.54	-	6.47
$_{73}$ Ta ¹⁴⁹	1.01	1.34	-	24.46
$_{73}$ Ta ¹⁵¹	2.49	3.10	-	19.76
$_{73} Ta^{153}$	0.91	1.81	-	49.55
$_{75}\mathrm{Re}^{157}$	2.22	1.38	-	61.28

TAB. 4.10 – Même chose que le tableau (4-9) pour quelques noyaux impairs de la région des terres rares riches en protons.

TAB. 4.11 – Comparaison des valeurs de l'énergie de séparation d'un proton pour quelques noyaux pair-pairs choisis à titre d'exemple obtenues avec (colonne 2) et sans (colonne 3) prise en compte de l'appariement np et celles de l'expérience (colonne 4). Nous avons reporté l'écart relatif δS_p^{exp} avec (colonne 5) et sans (colonne 6) appariement np. Nous avons également reporté l'écart relatif δS_p^{th} entre les deux méthodes (colonne 7).

Noyau	$S_p (MeV)$	$S_p (MeV)$	$S_{p \exp} (MeV)$	$\delta \mathbf{S}_{p}^{\mathrm{exp}}\left(\% ight)$	$\delta \mathbf{S}_{p}^{\mathrm{exp}}\left(\% ight)$	$\delta \mathbf{S}_{p}^{th}\left(\% ight)$
	BCS np	BCS		BCS np	BCS	-
$_{18}Ar^{36}$	-8.76	-8.17	-8.50	3.04	3.92	7.25
$_{18}Ar^{38}$	-19.80	-8.87	-10.24	93.37	13.33	123.14
$_{20}Ca^{40}$	-16.45	-8.10	-8.32	97.5	2.5	102.92
$_{20}Ca^{42}$	-22.04	-9.13	-10.27	114.53	11.06	141.23
$_{22}{ m Ti}^{44}$	-6.34	-7.51	-8.64	26.5	13.00	15.50
$_{22}{ m Ti}^{46}$	-8.72	-7.19	-10.34	15.61	30.41	21.26
$_{24}\mathrm{Cr}^{48}$	-5.38	-5.70	-8.1	33.5	29.5	5.74
$_{24}\mathrm{Cr}^{50}$	-10.77	-5.79	-9.59	12.30	39.53	85.73
$_{26}$ Fe ⁵²	-7.65	-5.35	-7.38	4.00	27.5	42.98
$_{26} \text{Fe}^{54}$	-12.12	-5.74	-8.85	37.00	35.09	111.08
$_{28}\mathrm{Ni}^{56}$	-4.63	-5.10	-7.16	35.00	28.5	9.18
$_{28}\mathrm{Ni}^{58}$	-8.12	-4.99	-8.17	0.63	38.86	62.53
$_{30} Zn^{60}$	-3.18	-4.21	-5.12	38.00	17.5	24.34
$_{30} Zn^{62}$	-5.87	-4.53	-6.47	9.23	30.03	29.72
$_{32}Ge^{64}$	-5.84	-5.98	-7.83	25.41	23.66	2.29
$_{32}{ m Ge}^{66}$	-8.82	-4.43	-6.25	41.01	29.07	98.82
$_{34}\mathrm{Se}^{68}$	-3.24	-4.46	-4.79	32.33	7.00	27.30
$_{34}\mathrm{Se}^{70}$	-11.78	-4.67	-6.24	88.58	25.20	152.15
$_{36} Kr^{72}$	-3.58	-5.24	-6.75	47.00	22.5	31.71
$_{36}{ m Kr}^{74}$	-7.89	-3.92	-5.99	31.81	34.50	101.24
$_{38} { m Sr}^{78}$	-3.89	-3.38	-5.63	30.87	39.90	15.02
$_{38}{ m Sr}^{80}$	-11.64	-5.27	-6.79	71.47	22.42	121.02
$_{40} Zr^{82}$	-9.46	-3.84	-5.46	73.26	29.64	146.27
$_{40} Zr^{84}$	-11.56	-4.78	-6.45	79.11	25.94	141.88
$_{42}\mathrm{Mo}^{86}$	-5.35	-3.19	-4.69	14.01	31.87	67.36
$_{42}\mathrm{Mo}^{88}$	-8.65	-4.36	-5.80	49.14	24.75	98.21
$_{44}\mathrm{Ru}^{90}$	-4.79	-5.16	-7.18	33.29	28.16	7.13
$_{44}\mathrm{Ru}^{92}$	-11.26	-3.95	-5.71	97.11	30.82	184.94

Noyau	$S_p (MeV)$	$S_p (MeV)$	$S_{p \exp} (MeV)$	$\delta \mathbf{S}_{p}^{\exp}\left(\% ight)$	$\delta \mathbf{S}_{p}^{\exp}\left(\% ight)$	$\delta \mathbf{S}_{p}^{th}\left(\% ight)$
	BCS np	BCS		BCS np	BCS	1
${}_{19}\mathrm{K}^{39}$	4.64	-4.81	-6.38	172.8	24.5	196.43
${}_{19}{ m K}^{41}$	4.71	-7.7	-7.80	160.39	1.38	161.24
$_{21}\mathrm{Sc}^{43}$	-23.54	-12.56	-15.20	55.00	17.5	87.46
$_{21}\mathrm{Sc}^{45}$	-2.87	-4.87	-6.88	58.33	29.26	41.09
${}_{23}V^{47}$	-10.10	-10.66	-15.51	35.00	31.22	5.31
${}_{23}V^{49}$	1.24	-4.82	-6.75	118.37	28.58	125.73
$_{25}\mathrm{Mn}^{51}$	-2.37	-2.26	-5.27	55.00	57.00	4.80
$_{25}\mathrm{Mn}^{53}$	1.56	-4.97	-6.55	123.81	24.10	131.37
${}_{27}\mathrm{Co}^{55}$	-1.46	-1.68	-5.06	71.00	66.64	13.14
$_{27}{\rm Co}^{57}$	-1.60	-3.37	-6.02	73.41	44.00	52.58
$_{29}\mathrm{Cu}^{59}$	-1.56	-1.2	-3.20	51.27	62.50	30.08
$_{29}{ m Cu}^{61}$	-2.44	-306	-4.8	49.06	36.22	20.12
$_{31}{ m Ga}^{63}$	-6.69	-7.30	-9.14	26.79	20.08	8.39
$_{31}{ m Ga}^{65}$	0.65	-3.53	-3.94	116.69	10.32	118.61
$_{33}As^{77}$	-0.81	-1.04	-2.31	64.80	54.58	22.49
$_{33}As^{79}$	3.57	-3.58	-3.39	205.21	5.56	199.66
$_{35}{ m Br}^{71}$	-0.87	-0.72	-2.30	62.05	68.38	20.02
$_{35}{ m Br}^{73}$	-1.48	-2.41	-3.02	50.74	20.07	38.36
$_{37}\mathrm{Rb}^{75}$	-7.87	-5.13	-8.17	3.56	37.09	53.31
$_{37}\mathrm{Rb}^{77}$	-0.20	-2.08	-3.09	93.51	32.59	90.37
${}_{39}Y^{79}$	-4.13	-4.50	-8.10	49.00	44.41	8.23
$_{39}Y^{81}$	-0.56	-1.65	-2.99	81.28	44.96	66
$_{41}\mathrm{Nb^{83}}$	-0.33	-0.47	-2.05	83.55	76.83	29
$_{41}\mathrm{Nb}^{85}$	-0.63	0.69	-2.94	78.61	123.52	190.90
$_{43}\mathrm{Tc}^{87}$	-0.26	-0.51	-1.85	85.54	72.38	47.65
$_{43}\mathrm{Tc}^{89}$	1.56	-1.98	-2.43	164.11	18.33	178.51

TAB. 4.12 – Même chose que le tableau (4-11) pour quelques noyaux impairs choisis à titres d'exemple.

TAB. 4.13 – Comparaison des valeurs de l'énergie de séparation d'un proton pour des noyaux pair-pairs riches en protons de la région des terres rares avec (colonne 2) et sans (colonne 3) prise en compte de l'appariemennt np et celles de l'expérience (colonne 4). Nous avons également reporté l'écart relatif δS_p^{th} (colonne 5).

Noyau	$S_p(MeV)$	$S_p(MeV)$	$S_{p \exp} (MeV)$	$\delta \mathbf{S}_p^{th}(\%)$
	BCSnp	BCS		-
$_{62} { m Sm}^{124}$	1.22	1.85	-	34.00
$_{62} { m Sm}^{126}$	-0.09	0.95	-	109.75
$_{62} { m Sm}^{128}$	-1.55	-0.84	-1.28	84.30
$_{62} { m Sm}^{130}$	-3.64	-2.67	-1.92	36.38
$_{64}Gd^{128}$	1.46	2.16	-	32.46
$_{64}Gd^{130}$	-0.01	0.64	-	102.03
$_{64}Gd^{132}$	-2.31	-1.07	-	115.98
$_{64}Gd^{134}$	-4.61	-2.59	-1.57	77.64
$_{64}Gd^{136}$	-6.63	-3.88	-2.14	70.94
$_{66} Dy^{136}$	-3.77	-1.50	-	150.43
$_{66} Dy^{138}$	-5.47	-2.76	-1.22	98.15
$_{66} Dy^{140}$	-7.28	-3.99	-1.96	82.30
$_{68} \mathrm{Er}^{138}$	-1.00E-03	2.036	-	100.00
$_{68}\mathrm{Er}^{142}$	-5.68	-2.20	-	157.17
$_{68}\mathrm{Er}^{144}$	-8.14	-4.68	-1.91	73.95
$_{70} Yb^{144}$	-3.76	-0.40	-	823.28
$_{70} Yb^{146}$	-1.08	-1.15	-	6.64
$_{70} Yb^{148}$	-2.97	-2.44	-1.27	21.69
$_{72}\mathrm{Hf}^{150}$	-1.58	2.63	-	160.34
$_{72}\mathrm{Hf}^{152}$	-5.54	-2.16	-	156.26
$_{74}W^{154}$	-3.36	2.01	-	267.03

Noyau	$S_p(MeV)$	$S_p(MeV)$	$S_{p \exp} (MeV)$	$\delta \mathbf{S}_p^{th}(\%)$
	BCSnp	BCS		
$_{63}{\rm Eu}^{133}$	4.28	3.11	0.67	37.62
$_{65} { m Tb}^{135}$	5.52	3.14	-	75.85
$_{65} Tb^{137}$	5.81	3.17	0.76	83.09
$_{67} Ho^{137}$	4.26	3.17	-	34.20
$_{67} Ho^{139}$	5.36	3.20	-	67.08
$_{67} Ho^{141}$	6.49	3.23	1.17	100.61
$_{69} \mathrm{Tm}^{141}$	5.46	3.23	-	68.81
$_{69} \mathrm{Tm}^{143}$	6.60	3.27	-	101.86
$_{69} \mathrm{Tm}^{145}$	7.90	3.30	1.74	139.20
$_{71} Lu^{147}$	3.15	3.30	-	4.74
$_{71} Lu^{149}$	3.48	3.33	-	4.43
$_{73}$ Ta ¹⁵¹	4.43	3.44	-	28.87
$_{73}$ Ta ¹⁵³	6.16	3.50	-	76.15
$_{75} \mathrm{Re}^{157}$	10.12	3.57	-	183.06

TAB. 4.14 – Même chose que le tableau (4-13) pour quelques noyaux impairs riches en protons de la région des terres rares .

Conclusion

Le présent travail est une contribution à l'étude de l'effet de l'appariement neutron-proton (np) de type isovectoriel sur les systèmes possédant un nombre impair de particules, dans le cadre de l'approximation BCS.

Dans un souci de cohérence, nous avons préalablement rappelé le traitement de ce type d'appariement pour les systèmes pair-pairs par la méthode généralement utilisée pour diagonaliser approximativement l'hamiltonien, à savoir la méthode de linéarisation. Nous avons également montré qu'une linéarisation à l'aide du théorème de Wick permet d'obtenir des résultats similaires, mais de manière plus rapide.

Pour les systèmes possédant un nombre impair de particules, nous avons utilisé la technique du niveau bloqué pour définir l'hamiltonien et la fonction d'onde décrivant le système. L'hamiltonien a été diagonalisé approximativement par la méthode de linéarisation. Les équations du gap et l'expression de l'énergie de l'état fondamental ont été établies. Il a été montré que ces dernières ne généralisent pas exactement leurs homologues obtenues dans le cadre de l'appariement entre particules identiques. En effet, à la limite où le paramètre du gap et la constante d'appariement np s'annulent, une différence existe par rapport aux expressions de la théorie BCS usuelle. Ce défaut est inhérent à la construction de l'hamiltonien du système et de la fonction d'onde correspondante.

Nous avons ensuite réalisé notre propre code de calcul permettant de résoudre les équations du gap aussi bien dans le cas des systèmes pair-pairs que dans le cas des systèmes impairs. Ce code a été testé dans le cadre du modèle schématique à un niveau. Pour les systèmes pair-pairs, nos résultats sont en bon accord avec ceux de la littérature. Pour les systèmes impairs, nous avons montré que le comportement des paramètres du gap et de l'énergie du fondamental en fonction de la constante d'appariement G_{np} est similaire à ceux des systèmes pair-pairs.

Nous avons ensuite considéré des cas réalistes en utilisant les énergies à particules indépendantes d'un champ moyen de Woods-Saxon.

Le choix des constantes d'appariement G_{pp} , G_{nn} et G_{np} étant dans ce cas très important, leurs valeurs ont été systématiquement calculées (pour les systèmes pair-pairs et impairs) pour les noyaux tels que N \simeq Z lorsque cela était possible. Ces dernières sont déduites des valeurs "expérimentales" des paramètres du gap Δ_{pp} , Δ_{nn} et Δ_{np} déterminées à partir des différences de masse pair-impair. Les valeurs obtenues ont été ajustées de manière à obtenir des expressions de G_{pp} , G_{nn} et G_{np} qui puissent être extrapolées aux noyaux pour lesquels les valeurs "expérimentales" des paramètres du gap ne sont pas connues.

Deux observables physiques ont ensuite été étudiées : l'énergie de séparation de deux protons S_{2p} et l'énergie de séparation d'un proton S_p pour des noyaux ordinaires et des noyaux de la région des terres rares riches en protons.

S'agissant de S_{2p} , il a été montré que l'apport de l'appariement np est assez faible dans le cas des noyaux pair-pairs. De plus, les résultats avec inclusion de l'appariement isovectoriel sont plus éloignés des valeurs expérimentales que ceux de la théorie BCS usuelle.

Par contre, pour les noyaux impairs l'apport de l'appariement isovectoriel est important. Ce dernier permet de mieux reproduire les données expérimentales. De plus, il n'y a pas de différence notable entre les noyaux tels que N=Z+1 ou N=Z+3.

S'agissant de S_p , l'écart entre les prévisions sans et avec inclusion de l'appariement isovectoriel est important que ce soit pour les noyaux pair-pairs ou les noyaux impairs. De plus, lorsqu'on tient compte de l'appariement np les valeurs expérimentales sont moins bien reproduites. Par ailleurs, le fait que la fonction d'onde soit à priori mieux adaptée aux noyaux tels que N=Z+1 qu'à ceux tels que N=Z+3 apparait nettement dans le calcul de S_p .

En conclusion, l'approximation BCS semble insuffisante pour une bonne description de S_p et S_{2p} et une projection dans l'espace nombre d'occupation est nécessaire. De plus, concernant l'énergie de séparation d'un proton, il serait souhaitable de définir une fonction d'onde mieux adaptée pour la description de tous les noyaux impairs.

Bibliographie

- [1] G. G. Dussel, R. Id. Betan, R. J. Liotta and T. Verste, Nucl. Phys. A789 (2007) 182.
- [2] J. Engel, K. Langanke and P. Vogel, Phys. Lett. B429 (1998) 215.
- [3] G. A. Lalazissis, D. Vretenar and P. Ring, Phys. Rev. C60 (1999) 051302.
- [4] L. S. Geng, H. Toki and J. J. Meng, arXiv : nucl-th/ 0309016v2 (2004).
- [5] F. Simkovic, Ch. C. Moustakidis, L. Pacearescu and A. Faessler, Phys. Rev. C68 (2003) 054319.
- [6] R. R. Chasman , Phys Let **B553** (2003) 204.
- [7] S. Kerrouchi, D. Mokhtari, N. H. Allal and M. Fellah, Int. J. Mod. Phys. E18 (2009) 141.
- [8] A. L. Goodman, Adv. Nucl. Phys. **11**(1979) 263.
- [9] R. Smolanczuk and J. Dobaczewski, Phys. Rev. C48 (1993) (R) 2166.
- [10] A. L. Goodman, Phys. Rev. C63 (2001) 044325.
- [11] E. Perlinska, S. G. Rohozinski, J. Dobaczewski and W. Nazarewicz, Phys. Rev. C69 (2004) 014316.
- [12] I. Ami, Mémoire de Magister, USTHB, 2005.
- [13] K. Kaneko and M. Hasegawa, Phys. Rev. C72(2005) 031302.
- [14] W. Satula, R. Wyss and M Rafalski, Eur. Phys. J. A25 (2005) 559.
- [15] D. Mokhtari, I. Ami, M. Fellah and N. H. Allal, Int. J. Mod. Phys. E17 (2008) 655.
- [16] M. Douici, Mémoire de Magister, USTHB, 2008.
- [17] J. Dukelsky and P. Schuck, Nucl. Phys. A512 (1990) 466.
- [18] J. Dukelsky, G. G. Dussel, J. G. Hirsch and P. Schuck, Nucl. Phys. A714 (2003) 63.
- [19] O. Civitarese and M. Reboiro, Phys. Rev. C56 (1997) 1179.
- [20] O. Civitarese, M. Reboiro and P. Vogel, Phys. Rev. C56 (1997) 1840.

- [21] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980).
- [22] K. Kaneko and M. Hasegawa, Phys. Rev. C69 (2004) 06130.
- [23] W. Satula and R.Wyss, Nucl. Phys. A676 (2000) 120.
- [24] G. A. Lalazissis, D. Vretenar and P. Ring, Nucl. Phys. A679 (2001) 481.
- [25] T. Duguet, thèse de doctorat, Paris 6 (2000).
- [26] D. Vretenar, G. A. Lalazissis and P. Ring, Phys. Rev. C57 (1998) 3071.
- [27] G. A. Lalazissis and S. Raman, Phys. Rev. C58 (1998) 1467.
- [28] K. Kaneko, Phys. Rev. C60 (1999) 024301.
- [29] A. Messiah, Mécanique Quantique, Dunod, Paris, (1960).
- [30] H. Chen and A. Goswami, Phys. Lett. **24B** (1967) 257.
- [31] S. G. Nilsson , C. F. Tsang, A. Sobiczewski, I. L. Lamm, P. Moller and B. Nilsson, Nucl. Phys. A131 (1969) 1
- [32] K. M. Brown, "Numerical Solution of systems of Nonlinear Algebraic Equations" Edited by G. D. Byrne and C.A. Hall (Academic Press, New-York, 1973) p.281.
- [33] A. M. Lane, "Nuclear Theory" (W. A. Benjamain, NewYork, 1964).
- [34] R. W. Hasse and W. D. Myers, "Geometrical Relationships of Macroscopic Nuclear Physics" (Springer, Heidelberg, 1988).
- [35] J. M. Pearson, Y. Aboussir, A. K. Dutta, R. C. Nayak and M. Farine, Nucl. Phys. A528 (1991) 1
- [36] P. Moller and J. R. Nix, Nucl. Phys. A536 (1992) 20.
- [37] N. Daira-Aifa, Thèse de Magister, USTHB, 1993.
- [38] N. H. Allal and M. Fellah, Phys. Rev. C50 (1994) 1404.
- [39] N. H. Allal, Thèse de Doctorat, USTHB (1994).
- [40] K. Kumar, Phys. Rep. **264** (1996) 267.
- [41] P. J. Woods and C. N. Davids, Annu. Rev. Nucl. Part. Sci. 47 (1997) 541
- [42] P. Vogel, Czech. J. Phys. 48 (1998) 2.
- [43] J. Dobes and S. Pittel, Phys. Rev. C57 (1998) 688.
- [44] S. Frauendorf, J. Sheikh, Phys. Rev. C59 (1999) 1400.

- [45] A. A. Raduta and E. Moya de Guerra, Ann. Phys. (New-York). 284 (2000) 134.
- [46] S. Szpikowski, Acta Phys. Pol. **B31** (2000) 443.
- [47] A.V. Afanasjev, J. König, P. Ring, L.M. Robledo and J.L. Egido, Phys. Rev. C62 (2000) 054306.
- [48] D. Mokhtari, Mémoire de Magister, USTHB, 2002.
- [49] R. R. Chasman, Phys. Lett. **B524** (2002) 81.
- [50] D. Mokhtari, N. H. Allal and M. Fellah Alg. Rev. Nucl. Sc. 4 (2002) 79.
- [51] A. H. Wapstra, G. Audi and C. Thibault, Nucl. Phys. A729 (2003) 129.
- [52] H. Y. Zhang, W. Q. Shen, Z. Z. Ren, Y. G. Ma, J. G. Chen, X. Z. Cai, C. Zhong, X. F. Zhou, Y. B. Wei, G. L. Ma, and K. Wang, Nucl. Phys. A722 (2003) 518c.
- [53] T. Sil, S. K. Patra, B. K. Sharma, M. Centelles and X. Vinas, Phys. Rev. C69 (2004) 044315.
- [54] D. Mokhtari, N. H. Allal and M. Fellah. Acta Phys. Hung. A : Heavy Ion Phys. 19 (2004) 187.
- [55] M. Theonnessen, Rep. Progr. Phys. 67 (2004) 1187.
- [56] A. V. Afanasjev and S. Frauendrfor, Phys. Rev. C71 (2005) 064318.
- [57] M. Fellah, N. H. Allal, M. Bellabbas, M.R. Oudih and N. Benhamouda, Phys. Rev. C76 (2007) 047306.
- [58] W. A. Freidman and G. H. Bertsch, Phys.Rev. C76 (2007) 057301.
- [59] J. Janecke and T.W. O'Donnell, Nucl. Phys. A781 (2007) 317.
- [60] L. S. Ferreira, M. C. Lopes and E. Maglione, Progr. Part. Nucl. Phys. 59 (2007) 418.