Hypersurfaces réelles de variétés complexes

Mohamed Tayeb Benzemmouri

Table des matières

In	Introduction 4					
1		perquadriques réelles de \mathbb{C}^{n+1} Généralités Actions de groupes Bases adaptées Le sous-groupe d'isotropie H Propriétés de H Structure de Q Formules de Maurer-Cartan	6 6 7 10 12 13 14 16			
	1.8	Chaînes	18			
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Préliminaires	21 22 31 35 41 44 51 60			
3	Thé	éorèmes d'existence	63			
4	Poi	nts ombilicaux	84			
$\mathbf{A}_{]}$	ppen	dice	96			
5	Cor	ntraction de tenseurs	96			
	5.1 5.2 5.3 5.4 5.5 5.6	Produit tensoriel Tenseurs Trace d'un endomorphisme Contraction de tenseurs Contractions itérées Divisibilité par \(\), \(\)	101			
	5.0	Dividibilition bar / , /	TOT			

6	Coı	ntraction des tenseurs symétriques	102	
	6.1	Puissances tensorielles symétriques	102	
	6.2	Tenseurs symétriques	104	
	6.3	Contraction des tenseurs symétriques	106	
7	Contraction de polynômes réels par rapport à une forme her-			
	mit	tienne	112	
	7.1	Polynômes réels sur un espace vectoriel complexe	112	
	7.2	Contraction par rapport à une forme hermitienne non dégé	énérée113	
	7.3	Applications	116	
8	Coı	ntraction de séries formelles	117	
Bi	iblio	graphie	119	

Introduction

L'article de Chern-Moser est consacré à l'étude des hypersurfaces analytiques réelles de \mathbb{C}^{n+1} dont la forme de Levi est non dégénérée, essentiellement du point de vue local.

Cette étude est inspirée par la géométrie riemannienne classique et par le cas n=1, traité par E. Cartan qui, en 1907, a montré par un argument heuristique qu'une hypersurface réelle dans \mathbb{C}^2 admet des invariants locaux pour les transformations biholomorphes et a reconnu l'importance du groupe spécial unitaire agissant sur les hyperquadriques réelles [1]. L'hyperquadrique est l'hyperquadrique réelle associée à une forme sesquilinéaire. C'est un espace homogène sous un groupe spécial unitaire; on note H le groupe d'isotropie d'un point.

On cherche un changement de coordonnées sous la forme $\psi \circ \varphi_0$ avec φ_0 dans H et fortement tangente à l'identité en un certain sens. On démontre alors qu'il existe un unique changement de coordonnées de ce type qui mette l'équation de M sous « forme normale ». Les « formes normales » sont définies par l'annulation de certains coefficients . Ce résultat permet par exemple de déduire que M peut, par changement de coordonnées, être rendue osculatrice à l'ordre 3, mais en général pas à l'ordre 4, à une hyperquadrique.

Soient $z^1, ..., z^{n+1}$, les coordonnées dans \mathbb{C}^{n+1} ; on étudie à l'origine les hyperquadriques réelles définies par l'équation

$$r\left(z^{1},...,z^{n+1},\overline{z^{1}},...,\overline{z^{n+1}}\right)=0,$$
 (0.1)

où r est une fonction analytique réelle qui s'annule à l'origine, telles que ses dérivées partielles ne sont pas toutes nulles à l'origine.

On pose

$$z = (z^1, ..., z^n), z^{n+1} = w = u + iv.$$
 (0.2)

Suite à un changement de variables linéaire convenable, l'équation de M peut s'écrire comme

$$v = F(z, \bar{z}, u) \tag{0.3}$$

où F est une fonction analytique réelle qui s'annule, ainsi que toutes ses dérivées partielles en 0. L'hypothèse de base sur M est que M est non dégénérée : i.e. sa forme de Levi est non dégénérée en 0

$$\langle z, z \rangle = \sum_{1 \le \alpha, \beta \le n} g_{\alpha \overline{\beta}} z^{\alpha} \overline{z^{\beta}}, \ g_{\alpha \overline{\beta}} = \left(\frac{\partial^2 F}{\partial z^{\alpha} \partial \overline{z^{\beta}}} \right)_0. \tag{0.4}$$

Dans les paragraphes 2 et 3, on étudie le problème de réduction à la forme normale par des transformations biholomorphes en z,w. Ceci s'étudie d'abord en terme de séries formelles au §2 et leur convergence vers une fonction holomorphe est établie au §3 . Les résultats sont énoncés dans les théorèmes 2.2 et 3.5. Il est bon de noter que la preuve de convergence se réduit à celle des E.D.O.

La forme normale est trouvée en adaptant l'image holomorphe de l'hyperquadrique à la variété donnée.

Pour n=1 ceci conduit à une osculation d'ordre 5 de l'image holomorphe de la sphère au point en question, alors que pour $n\geq 2$ l'approximation est plus compliquée. Dans les deux cas, cependant l'approximation a lieu le long d'une courbe transverse à l'espace tangent complexe; la famille de courbes ainsi obtenues satisfait à un système d'E.D.O. d'ordre 2 est associé de façon holomorphiquement invariante à la variété.

A cause du rôle principal que jouent les hyperquadriques réelles, le chapitre1 est consacré à la discussion de leurs diverses propriétés. Dans la section 2, on établit la réduction à la forme normale par des séries entières formelles; au chapitre 3, on montre que les séries obtenues convergent vers des applications biholomorphes. On termine au chapitre 4 par l'étude des points ombilicaux.

1 Hyperquadriques réelles de \mathbb{C}^{n+1}

1.1 Généralités

On note z^{α} $(1 \le \alpha \le n)$, $z^{n+1} = w = u + iv$ les coordonnées canoniques dans \mathbb{C}^{n+1} .

Soit $h:h(z)=\sum_{\alpha=1}^n\sum_{\beta=1}^nh_{\alpha\overline{\beta}}z^{\alpha}\overline{z^{\beta}}$ une forme hermitienne non dégénérée sur \mathbb{C}^n , de signature (p,q). On considère l'hyperquadrique réelle $Q\subset\mathbb{C}^{n+1}$ définie par

$$v = h(z). (1.1)$$

Par la transformation

$$Z^{\alpha} = \frac{2z^{\alpha}}{w+i}, \quad W = \frac{w-i}{w+i}, \tag{1.2}$$

l'équation (1.1) devient

$$h(Z) + W\overline{W} = 1. (1.3)$$

En effet, les relations (1.2) et v = Im w entraı̂nent

$$W\overline{W} = \frac{w\overline{w} - 2v + 1}{w\overline{w} + 2v + 1},$$
$$h(Z) = \frac{4h(z)}{w\overline{w} + 2v + 1},$$
$$h(Z) + W\overline{W} - 1 = \frac{4(h(z) - v)}{w\overline{w} + 2v + 1},$$

ce qui montre l'équivalence de (1.3) et (1.1).

On note $\mathbb{P}_n(\mathbb{C})$ l'espace projectif complexe de dimension n

 $\mathbb{P}_n(\mathbb{C}) = \left\{ \text{droites complexes de } \mathbb{C}^{n+1} \text{ passant par l'origine} \right\};$

la droite passant par $z=(z^0,\ldots,z^n)\in\mathbb{C}^{n+1}\diagdown\{0\}$ est notée $[z^0,\ldots,z^n]$. L'application

$$(z^0, \dots, z^n) \mapsto [z^0, \dots, z^n]$$

 $\mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}_n(\mathbb{C})$

est surjective et $\mathbb{P}_n(\mathbb{C})$ est le quotient de $\mathbb{C}^{n+1} \setminus \{0\}$ par cette application. On munit $\mathbb{P}_n(\mathbb{C})$ de la structure quotient de variété analytique complexe correspondante. L'espace \mathbb{C}^{n+1} est plongé dans l'espace projectif complexe $\mathbb{P}_{n+1}(\mathbb{C})$ par

$$(z^1, \dots, z^n, z^{n+1}) \mapsto [1, z^1, \dots, z^n, z^{n+1}];$$

ce plongement identifie un point (z^1,\ldots,z^n,z^{n+1}) de \mathbb{C}^{n+1} avec le point de coordonnées homogènes $[\zeta^0,\zeta^1,\ldots,\zeta^n,\zeta^{n+1}]$ $(\zeta^0\neq 0)$ tel que

$$z^j = \zeta^j/\zeta^0 \quad (1 \le j \le n+1).$$

Par cette identification, l'équation (1.1) devient

$$h(\zeta^1, \dots, \zeta^n) + \frac{\mathrm{i}}{2} \left(\zeta^{n+1} \overline{\zeta^0} - \overline{\zeta^{n+1}} \zeta^0 \right) = 0.$$
 (1.4)

En effet, on a

$$v = \operatorname{Im} z^{n+1} = \frac{1}{2i} \left(z^{n+1} - \overline{z^{n+1}} \right)$$
$$= -\frac{i}{2} \left(\zeta^{n+1} / \zeta^0 - \overline{\zeta^{n+1}} / \overline{\zeta^0} \right)$$
$$= -\frac{i}{2\zeta^0 \overline{\zeta^0}} \left(\zeta^{n+1} \overline{\zeta^0} - \overline{\zeta^{n+1}} \zeta^0 \right),$$

d'où

$$h(z) - v = \frac{1}{\zeta^0 \overline{\zeta^0}} \left(h(\zeta^1, \dots, \zeta^n) + \frac{\mathrm{i}}{2} \left(\zeta^{n+1} \overline{\zeta^0} - \overline{\zeta^{n+1}} \zeta^0 \right) \right).$$

1.2 Actions de groupes

Soit $\langle \ , \ \rangle$ la forme hermitienne définie dans \mathbb{C}^{n+2} par

$$\langle Z, Z' \rangle = \sum_{\alpha, \beta = 1}^{n} h_{\alpha \overline{\beta}} \zeta^{\alpha} \overline{\zeta'^{\beta}} + \frac{\mathrm{i}}{2} \left(\zeta^{n+1} \overline{\zeta'^{0}} - \overline{\zeta'^{n+1}} \zeta^{0} \right), \tag{1.5}$$

avec

$$Z = (\zeta^{0}, \zeta^{1}, \dots, \zeta^{n}, \zeta^{n+1}), \quad Z' = (\zeta'^{0}, \zeta'^{1}, \dots, \zeta'^{n}, \zeta'^{n+1}).$$
 (1.6)

L'hyperquadrique réelle Q est alors la trace sur \mathbb{C}^{n+1} de la sous-variété \widetilde{Q} de $\mathbb{P}_{n+1}(\mathbb{C})$, d'équation homogène

$$\langle Z, Z \rangle = 0. \tag{1.7}$$

(Pour vérifier que \widetilde{Q} est une sous-variété réelle de $\mathbb{P}_{n+1}(\mathbb{C})$, il suffit d'écrire son équation dans les cartes canoniques de $\mathbb{P}_{n+1}(\mathbb{C})$).

Comme h est de signature (p,q), la forme hermitienne (1.5) est de signature (p+1,q+1). Soit SU(p+1,q+1) le groupe des matrices de déterminant 1 qui préservent la forme hermitienne (1.5). Désignons par J la matrice de la forme (1.5) dans la base canonique de \mathbb{C}^{n+2} :

$$J = \left(\begin{array}{ccc} 0 & 0 & -\frac{i}{2} \\ 0 & h & 0 \\ \frac{i}{2} & 0 & 0 \end{array}\right),$$

décomposée en blocs, avec $h = (h_{\alpha \overline{\beta}})$. Une matrice A appartient à SU(p+1, q+1) si elle vérifie

$$A^*JA = J$$
, $\det A = 1$,

où $A^* = {}^t \bar{A}$ est la matrice adjointe de A. Si $A \in SU(p+1,q+1)$, A opère sur \tilde{Q} par

$$A[\zeta] = [A\zeta]$$
.

On définit ainsi une action de SU(p+1, q+1) sur \tilde{Q} .

Cette action est transitive : pour $Z, Z' \in Q$, il existe $A \in SU(p+1, q+1)$ tel que AZ = Z'. Ceci revient à démontrer la proposition suivante.

Proposition 1.1. Soient ζ, ζ' deux vecteurs non nuls isotropes pour la forme hermitienne non dégénérée (1.5):

$$\langle \zeta, \zeta \rangle = \langle \zeta', \zeta' \rangle = 0.$$

Alors il existe $A \in SU(p+1, q+1)$ tel que $A\zeta = \lambda \zeta'$.

Démonstration. Appelons base orthonormale pour \langle , \rangle une base $(\eta_0, \ldots, \eta_{n+1})$, orthogonale pour \langle , \rangle et telle que

$$\langle \eta_0, \eta_0 \rangle = \dots = \langle \eta_p, \eta_p \rangle = 1,$$

 $\langle \eta_{p+1}, \eta_{p+1} \rangle = \dots = \langle \eta_{n+1}, \eta_{n+1} \rangle = -1.$

Alors $B \in U(p+1, q+1)$ si et seulement si elle transforme une base orthonormale en base orthonormale.

Un vecteur non nul ζ est isotrope pour \langle , \rangle si et seulement s'il existe une base orthonormale $(\eta_0, \ldots, \eta_{n+1})$ telle que $\zeta = \alpha \, (\eta_0 + \eta_{n+1})$. Cette condition est évidemment suffisante. Si ζ est un vecteur isotrope non nul, soit E un sous-espace vectoriel de dimension 2 contenant ζ ; la restriction de \langle , \rangle à E est alors de type (1,1). Soit alors (η_0, η_{n+1}) une base orthonormale de E:

$$\langle \eta_0, \eta_0 \rangle = 1, \quad \langle \eta_{n+1}, \eta_{n+1} \rangle = -1, \quad \langle \eta_0, \eta_{n+1} \rangle = 0.$$

Dans cette base, ζ s'écrit $\zeta = \alpha \eta_0 + \beta \eta_{n+1}$ et on a $(\zeta, \zeta) = |\alpha|^2 - |\beta|^2$; comme ζ est isotrope, on a $|\alpha| = |\beta| \neq 0$. On obtient $\alpha = \beta$ en multipliant η_0 par le nombre complexe de module 1 convenable. Il suffit maintenant de compléter (η_0, η_{n+1}) en une base orthonormale $(\eta_0, \ldots, \eta_{n+1})$, en prenant pour (η_1, \ldots, η_n) une base orthonormale de l'orthogonal de (η_0, η_{n+1}) par rapport à \langle , \rangle , qui est un supplémentaire de $\langle \eta_0, \eta_{n+1} \rangle$.

Si ζ, ζ' sont deux vecteurs isotropes, ils s'écrivent

$$\zeta = \alpha \left(\eta_0 + \eta_{n+1} \right), \quad \zeta' = \alpha' \left(\eta'_0 + \eta'_{n+1} \right),$$

où $(\eta_0, \ldots, \eta_{n+1})$ et $(\eta'_0, \ldots, \eta'_{n+1})$ sont des bases orthonormales. La matrice B qui transforme $(\eta_0, \ldots, \eta_{n+1})$ en $(\eta'_0, \ldots, \eta'_{n+1})$ appartient à U(p+1, q+1), et $B\zeta$ est un multiple de ζ' . On a $|\det B| = 1$; si μ est une racine d'ordre n+2 de $\det B$, la matrice $A = \mu^{-1}B$ a les propriétés cherchées.

Soit K le sous-groupe formé des éléments de SU(p+1,q+1) qui opèrent trivialement sur \widetilde{Q} . Alors K est un sous-groupe normal de SU(p+1,q+1) et de SU(p+1,q+1)/K opère transitivement et effectivement sur \widetilde{Q} .

Proposition 1.2. Le groupe K est formé des homothéties εI telles que $\varepsilon^{n+2} = 1$.

Le groupe K est donc un groupe fini d'ordre n+2.

Démonstration. Soit $A \in K$; on a donc $A[\zeta] = [\zeta]$, c'est-à-dire $A\zeta = \lambda(\zeta)\zeta$, pour tout vecteur isotrope non nul ζ . Soit $(\eta_0, \ldots, \eta_{n+1})$ une base orthonormale pour \langle , \rangle . Les vecteurs

$$\eta_0 + \beta \eta_{n+1}, \quad (|\beta| = 1)$$

sont alors des vecteurs isotropes, donc des vecteurs propres de A. Comme ils engendrent le sous-espace $\langle \eta_0, \eta_{n+1} \rangle$, on a $A \langle \eta_0, \eta_{n+1} \rangle = \langle \eta_0, \eta_{n+1} \rangle$. Comme

A restreinte à $\langle \eta_0, \eta_{n+1} \rangle$ possède au plus deux valeurs propres, il existe $\beta, \beta', \beta \neq \beta'$ tels que

$$A (\eta_0 + \beta \eta_{n+1}) = \lambda (\eta_0 + \beta \eta_{n+1}),$$

$$A (\eta_0 + \beta' \eta_{n+1}) = \lambda (\eta_0 + \beta' \eta_{n+1}).$$

Les vecteurs $\eta_0 + \beta \eta_{n+1}$ et $\eta_0 + \beta' \eta_{n+1}$ engendrent $\langle \eta_0, \eta_{n+1} \rangle$, donc A restreinte à $\langle \eta_0, \eta_{n+1} \rangle$ est l'homothétie de rapport λ , et on a $A\eta_0 = \lambda \eta_0$, $A\eta_{n+1} = \lambda \eta_{n+1}$.

Pour tout couple (i,j) tel que $0 \le i \le p, p+1 \le j \le n+1$, le même raisonnement montre que A induit une homothétie sur le sous espace $\langle \eta_i, \eta_j \rangle$. On en déduit que A est une homothétie εI . La condition det A=1 entraı̂ne alors $\varepsilon^{n+2}=1$.

La réciproque est immédiate : toute matrice εI , avec $\varepsilon^{n+2}=1$, opère trivialement sur \widetilde{Q} .

1.3 Bases adaptées

Une base adaptée à Q (appelée Q-frame dans [3]) est une base (Z_0, \ldots, Z_{n+1}) de \mathbb{C}^{n+2} dans laquelle la forme hermitienne (1.5) a la même matrice que dans la base canonique :

$$\begin{pmatrix}
\langle Z_0, Z_0 \rangle & \langle Z_0, Z_\beta \rangle & \langle Z_0, Z_{n+1} \rangle \\
\langle Z_\alpha, Z_0 \rangle & \langle Z_\alpha, Z_\beta \rangle & \langle Z_\alpha, Z_{n+1} \rangle \\
\langle Z_{n+1}, Z_0 \rangle & \langle Z_0, Z_{n+1} \rangle & \langle Z_{n+1}, Z_{n+1} \rangle
\end{pmatrix} = \begin{pmatrix}
0 & 0 & -\frac{i}{2} \\
0 & h_{\alpha\overline{\beta}} & 0 \\
\frac{i}{2} & 0 & 0
\end{pmatrix}$$
(1.8)

et vérifie

$$\det(Z_0, Z_1, \dots, Z_{n+1}) = 1. \tag{1.9}$$

Les matrices de passage d'une base adaptée à une autre sont alors exactement les éléments de SU(p+1,q+1).

Si $(Z_0, Z_1, ..., Z_n, Z_{n+1})$ est une base adaptée, les points $[Z_0]$ et $[Z_{n+1}]$ appartiennent à \tilde{Q} .

On fixe $Z_0 \in \mathbb{C}^{n+2}$, tel que $[Z_0] \in \widetilde{Q}$ (on peut prendre $Z_0 = (1, 0,, 0)$) et on complète en une base adaptée $(Z_0, Z_1,, Z_n, Z_{n+1})$ (on peut prendre la base canonique de \mathbb{C}^{n+2}).

Proposition 1.3. La forme générale d'une base adaptée $(Z_0^*, Z_1^*,, Z_n^*, Z_{n+1}^*)$ telle que $[Z_0^*] = [Z_0]$ est alors

$$\begin{cases}
Z_0^* = tZ_0, \\
Z_{\alpha}^* = t_{\alpha}Z_0 + t_{\alpha}^{\beta}Z_{\beta}, \\
Z_{n+1}^* = \tau Z_0 + \tau^{\beta}Z_{\beta} + \overline{t}^{-1}Z_{n+1},
\end{cases} (1.10)$$

avec

$$\begin{cases}
t_{\alpha} = -2i t t_{\alpha}^{\varrho} \overline{\tau^{\sigma}} h_{\varrho \overline{\sigma}} = -2i t t_{\alpha}^{\varrho} \tau_{\varrho}, \\
t \overline{t}^{-1} \det \left(t_{\alpha}^{\beta} \right) = 1, \\
t_{\alpha}^{\varrho} \overline{t_{\beta}^{\sigma}} h_{\varrho \overline{\sigma}} = h_{\alpha \overline{\beta}}, \\
h_{\varrho \overline{\sigma}} \tau^{\varrho} \tau^{\overline{\sigma}} + \frac{i}{2} \left(\overline{\tau} \overline{t}^{-1} - \tau t^{-1} \right) = 0.
\end{cases}$$
(1.11)

Démonstration. En effet, la condition $[Z_0^*] = [Z_0]$ équivaut à $Z_0^* = tZ_0$, avec $t \neq 0$. Si $1 \leq \alpha \leq n$, soit

$$Z_{\alpha}^* = t_{\alpha} Z_0 + t_{\alpha}^{\beta} Z_{\beta} + u_{\alpha} Z_{n+1}$$

la décomposition de Z_{α}^* dans la base (Z_0,\ldots,Z_{n+1}) . On a alors

$$\langle Z_0^*, Z_\alpha^* \rangle = -\frac{\mathrm{i}}{2} t \overline{u_\alpha}$$

et la condition $(Z_0^*, Z_\alpha^*) = 0$ équivaut donc à $u_\alpha = 0$, d'où

$$Z_{\alpha}^* = t_{\alpha} Z_0 + t_{\alpha}^{\beta} Z_{\beta}. \tag{1.12}$$

On en déduit $(Z^*_{\alpha}, Z^*_{\beta}) = t^{\varrho}_{\alpha} \overline{t^{\sigma}_{\beta}} h_{\varrho \overline{\sigma}}$, ce qui entraı̂ne les conditions

$$t_{\alpha}^{\varrho} \overline{t_{\beta}^{\sigma}} h_{\varrho \overline{\sigma}} = h_{\alpha \overline{\beta}}, \tag{1.13}$$

pour $1 \le \alpha \le \beta \le n$. Soit

$$Z_{n+1}^* = \tau Z_0 + \tau^{\beta} Z_{\beta} + u Z_{n+1}.$$

On a

$$\langle Z_0^*, Z_{n+1}^* \rangle = t\overline{u}(Z_0, Z_{n+1})$$

et la condition $\langle Z_0^*, Z_{n+1}^* \rangle = \langle Z_0, Z_{n+1} \rangle$ équivaut donc à $u = \overline{t}^{-1}$; on a donc

$$Z_{n+1}^* = \tau Z_0 + \tau^{\beta} Z_{\beta} + \overline{t}^{-1} Z_{n+1}. \tag{1.14}$$

De (1.12) et (1.14), on déduit

$$\langle Z_a^*, Z_{n+1}^* \rangle = -\frac{\mathrm{i}}{2} t_\alpha t^{-1} + t_\alpha^\rho \overline{\tau}^{\overline{\sigma}} h_{\rho \overline{\sigma}},$$
$$\langle Z_{n+1}^*, Z_{n+1}^* \rangle = -\frac{\mathrm{i}}{2} \tau t^{-1} + \tau^\rho \overline{\tau}^{\overline{\sigma}} h_{\rho \overline{\sigma}} + \frac{\mathrm{i}}{2} \overline{t}^{-1} \overline{\tau}.$$

Les conditions $\left\langle Z_a^*,Z_{n+1}^*\right\rangle=0$ et $\left\langle Z_{n+1}^*,Z_{n+1}^*\right\rangle=0$ sont alors équivalentes à

$$t_{\alpha} = -2 i t t_{\alpha}^{\varrho} \tau^{\overline{\sigma}} h_{\varrho \overline{\sigma}}, \tag{1.15}$$

$$h_{\varrho \overline{\sigma}} \tau^{\varrho} \tau^{\overline{\sigma}} + \frac{\mathrm{i}}{2} \left(\overline{\tau} \overline{t}^{-1} - \tau t^{-1} \right) = 0. \tag{1.16}$$

En définissant les coordonnées covariantes τ_{ρ} par « descente des indices » :

$$\tau_{\rho} = \tau^{\overline{\sigma}} h_{\varrho \overline{\sigma}},$$

la relation (1.15) s'écrit encore

$$t_{\alpha} = -2i t t_{\alpha}^{\varrho} \tau_{\rho}. \tag{1.17}$$

Les éléments du stabilisateur H de $[Z_0]$ dans SU(p+1,q+1) sont donc les matrices de déterminant 1

$$\begin{pmatrix}
t & t_{\alpha} & \tau \\
0 & t_{\alpha}^{\beta} & \tau^{\beta} \\
0 & 0 & \overline{t}^{-1}
\end{pmatrix}$$
(1.18)

dont les coefficients vérifient les relations (1.15), (1.13), (1.16). En écrivant que la matrice (1.18) est de déterminant 1, on obtient

$$t\bar{t}^{-1}\det\left(t_{\alpha}^{\beta}\right) = 1. \tag{1.19}$$

1.4 Le sous-groupe d'isotropie H

On choisit pour $(Z_0, Z_1, \ldots, Z_n, Z_{n+1})$ la base canonique de \mathbb{C}^{n+2} . Soit H le stabilisateur de $[Z_0]$ dans SU(p+1, q+1). Comme H est un sous-groupe fermé de SU(p+1, q+1), c'est un groupe de Lie.

Les relations (1.10) et (1.11) peuvent être écrites de la façon suivante. Les éléments de H sont les matrices

$$A = \begin{pmatrix} t & \widetilde{t} & \tau \\ 0 & \theta & \widetilde{\tau} \\ 0 & 0 & \overline{t}^{-1} \end{pmatrix}, \tag{1.20}$$

avec $\widetilde{t} = (t^{\alpha}), \ \widetilde{\tau} = (\tau_{\beta}), \ \tau \in \mathbb{C}, \ \theta = (t_{\alpha}^{\beta}), \ \text{v\'erifiant les conditions}$

$$\begin{cases}
\widetilde{t} = 2 i t \widetilde{\tau}^* h \theta, \\
t \overline{t}^{-1} \det \theta = 1, \\
\theta^* h \theta = h, \\
\frac{i}{2} \left(t^{-1} \tau - \overline{t}^{-1} \overline{\tau} \right) + \widetilde{\tau}^* h \widetilde{\tau} = 0.
\end{cases} (1.21)$$

La troisième équation signifie que $\theta \in U(h) \simeq U(p,q)$, qui est de dimension n^2 . La deuxième condition montre que l'argument de t est déterminé par θ . La dernière condition montre que la partie imaginaire de $t^{-1}\tau$ est déterminée par $\tilde{\tau}$. La première condition montre que \tilde{t} est déterminée par t, $\tilde{\tau}$ et θ . On peut donc prendre comme coordonnées locales sur $H:\theta$ (dimension réelle n^2), $\tilde{\tau}$ (dimension réelle 2n), |t| et Re $(t^{-1}\tau)$; ceci montre que H est de dimension $n^2 + 2n + 2$.

Comme \widetilde{Q} est isomorphe au quotient $SU\left(p+1,q+1\right)/H$, on peut également obtenir ce résultat à partir de

$$\dim H = \dim SU (p+1, q+1) - \dim \widetilde{Q},$$

$$\dim SU (p+1, q+1) = (n+2)^2 - 1,$$

$$\dim \widetilde{Q} = \dim Q = 2n + 1.$$

1.5 Propriétés de H

Soit $A \in H$, représentée par la matrice (1.18); soit $[\zeta] \in \widetilde{Q}$ et $\zeta^* = A\zeta$. on a alors

$$\begin{cases}
\zeta^{*0} = t\zeta^{0} + t_{\alpha}\zeta^{\alpha} + \tau\zeta^{n+1}, \\
\zeta^{*\beta} = t_{\alpha}^{\beta}\zeta^{\alpha} + \tau^{\beta}\zeta^{n+1}, \\
\zeta^{*n+1} = \bar{t}^{-1}\zeta^{n+1}.
\end{cases} (1.22)$$

En coordonnées non homogènes

$$z^{i} = \zeta^{i}/\zeta^{0}$$
 $(1 \le i \le n), \quad w = \zeta^{n+1}/\zeta^{0},$

les relations (1.22) s'écrivent

$$z^{*\beta} = \frac{t_{\alpha}^{\beta} \zeta^{\alpha} + \tau^{\beta} \zeta^{n+1}}{t\zeta^{0} + t_{\alpha} \zeta^{\alpha} + \tau \zeta^{n+1}} = \frac{t_{\alpha}^{\beta} z^{\alpha} + \tau^{\beta} w}{t + t_{\alpha} z^{\alpha} + \tau w} \quad (1 \le \beta \le n),$$

$$w^{*} = \frac{\overline{t}^{-1} \zeta^{n+1}}{t\zeta^{0} + t_{\alpha} \zeta^{\alpha} + \tau \zeta^{n+1}} = \frac{\overline{t}^{-1} w}{t + t_{\alpha} z^{\alpha} + \tau w},$$

c'est-à-dire

$$\begin{cases}
z^{*\beta} = C_{\alpha}^{\beta} (z^{\alpha} + a^{\alpha}w) \delta^{-1}, \\
w^{*} = \varrho w \delta^{-1},
\end{cases} (1.23)$$

avec

$$\delta = 1 + t^{-1}t_{\alpha}z^{\alpha} + t^{-1}\tau w \tag{1.24}$$

et

$$C_{\alpha}^{\beta} = t^{-1}t_{\alpha}^{\beta}, \quad C_{\alpha}^{\beta}a^{\alpha} = t^{-1}\tau^{\beta}, \quad \varrho = \mid t\mid^{-1}.$$
 (1.25)

1.6 Structure de Q

D'autre part, l'hyperquadrique Q peut être munie d'une structure de groupe de Lie.

Pour cela, on considère le sous-groupe d'isotropie H' de $[Z_{n+1}]$ dans \widetilde{Q} . La matrice

$$E = \left(\begin{array}{ccc} 0 & 0 & -1\\ 0 & I_n & 0\\ 1 & 0 & 0 \end{array}\right)$$

induit une involution E de \widetilde{Q} , qui échange $[Z_0]$ et $[Z_{n+1}]$. Les éléments de H' sont les matrices EAE^{-1} avec $A \in H$. Ce sont donc les matrices

$$\left(\begin{array}{ccc}
\bar{t}^{-1} & 0 & 0 \\
-\tau^{\beta} & t^{\beta}_{\alpha} & 0 \\
-\tau & t_{\alpha} & t
\end{array}\right),$$

dont les coefficients vérifient les conditions (1.11).

Soit H_0 le sous-ensemble de H' formé des matrices telles que $(t^{\beta}_{\alpha}) = (\delta^{\beta}_{\alpha}) = I_n$ et t = 1. Pour un élément de H_0 , les conditions (1.11) deviennent

$$\begin{cases}
t_{\alpha} = -2 i \overline{\tau^{\rho}} h_{\varrho \overline{\sigma}} = -2 i \tau_{\alpha}, \\
h_{\varrho \overline{\sigma}} \tau^{\varrho} \tau^{\overline{\sigma}} + \operatorname{Im} \tau = 0.
\end{cases}$$
(1.26)

Ces conditions montrent que l'application

$$u: \left(\begin{array}{c} z \\ w \end{array}\right) \mapsto \left(\begin{array}{ccc} 1 & 0 & 0 \\ z & I_n & 0 \\ w & \widetilde{t} & 1 \end{array}\right),$$

où \widetilde{t} est défini par

$$t_{\alpha} = 2 i \, \overline{z^{\rho}} h_{\varrho \overline{\sigma}}, \tag{1.27}$$

est un isomorphisme de variétés de Q sur H_0 . Pour $\begin{pmatrix} z \\ w \end{pmatrix} \in Q$, l'image $u \begin{pmatrix} z \\ w \end{pmatrix}$ est l'unique élément de H_0 qui transforme Z_0 en $\begin{pmatrix} 1 \\ z \\ w \end{pmatrix}$ (ou, en coordonnées non homogènes, qui transforme $0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ en $\begin{pmatrix} z \\ w \end{pmatrix}$).

Proposition 1.4. L'ensemble H_0 est un sous-groupe de H'.

Démonstration. Les éléments de H_0 sont les matrices de H' qui peuvent s'écrire sous la forme

$$\begin{pmatrix}
1 & 0 & 0 \\
z & I_n & 0 \\
w & \widetilde{t} & 1
\end{pmatrix}.$$
(1.28)

Le produit de deux matrices de ce type appartient à H' et est égal à

$$\begin{pmatrix} 1 & 0 & 0 \\ z & I_n & 0 \\ w & \widetilde{t} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ z' & I_n & 0 \\ w' & \widetilde{t}' & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ z + z' & I_n & 0 \\ w + \widetilde{t}z' + w' & \widetilde{t} + \widetilde{t}' & 1 \end{pmatrix}; \quad (1.29)$$

il appartient donc à H_0 . La matrice unité est obtenue pour z=0, t=0 et appartient donc à H_0 . La relation (1.29) montre que l'inverse de la matrice (1.28) est

$$\begin{pmatrix} 1 & 0 & 0 \\ -z & I_n & 0 \\ -w + \widetilde{t}z & -\widetilde{t} & 1 \end{pmatrix},$$

qui appartient également à H_0 .

Comme $t_{\alpha} = 2 i \overline{z^{\rho}} h_{\varrho \overline{\sigma}}$, on a

$$\widetilde{t}z' = 2 i t_{\alpha} z'^{\alpha} = 2 i \overline{z^{\rho}} h_{\varrho \overline{\sigma}} z'^{\alpha} = 2 i \overline{h} (z', z),$$

où \overline{h} désigne la forme hermitienne sur \mathbb{C}^n dont la matrice est $(\overline{h}_{\alpha\overline{\beta}}) = (h_{\beta\overline{\alpha}})$. La loi de multiplication dans H_0 s'écrit donc

$$\begin{pmatrix} 1 & 0 & 0 \\ z & I_n & 0 \\ w & \tilde{t} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ z' & I_n & 0 \\ w' & \tilde{t}' & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ z + z' & I_n & 0 \\ w + 2i\bar{h}(z',z) + w' & \tilde{t} + \tilde{t}' & 1 \end{pmatrix}.$$
(1.30)

À l'aide de l'isomorphisme de variétés u, on transporte cette loi de groupe sur l'hyperquadrique réelle Q:

$$\begin{pmatrix} z \\ w \end{pmatrix} \begin{pmatrix} z' \\ w' \end{pmatrix} = \begin{pmatrix} z+z' \\ w+2i\overline{h}(z',z)+w' \end{pmatrix}. \tag{1.31}$$

Si z,z' sont tels que $\overline{h}(z',z)$ n'est pas réel, on a $\overline{h}(z',z)\neq \overline{h}(z,z')$; la loi de groupe sur Q n'est donc pas commutative.

1.7 Formules de Maurer-Cartan

Les formules de Maurer-Cartan sont inspirées de la méthode dite du repère mobile qui donne les formules de Serret-Frenet pour une courbe de l'espace euclidien \mathbb{R}^3 .

Soit $(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_n, \varepsilon_{n+1})$ la base canonique de \mathbb{C}^{n+2} . On identifie un élément u du groupe spécial unitaire SU(p+1, q+1) de la forme hermitienne (1.5) avec la base adaptée

$$(Z_0, Z_1, \ldots, Z_n, Z_{n+1}) = u(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_n, \varepsilon_{n+1}).$$

On identifie ainsi G = SU(p+1, q+1) à la variété des bases adaptées, qui sont les suites $(Z_0, Z_1, \ldots, Z_n, Z_{n+1})$ vérifiant les relations

$$\langle Z_A, Z_B \rangle = h_{A\overline{B}} \qquad (0 \le A, B \le n+1) \tag{1.32}$$

et

$$\det(Z_0, Z_1, \dots, Z_n, Z_{n+1}) = 1. \tag{1.33}$$

Les formules de Maurer-Cartan de SU(p+1,q+1) sont alors

$$d Z_A = \pi_A^B Z_B. \tag{1.34}$$

Elles définissent une matrice (π_A^B) de formes différentielles de degré 1 sur G. Soit $(h_{A\overline{B}})$ la matrice de la forme hermitienne (1.5) par rapport à la base canonique. On définit $(\pi_{A\overline{B}})$, $(\pi_{\overline{B}A})$ par descente des indices par rapport à cette matrice :

$$\pi_{A\overline{B}} = \pi_A^C h_{C\overline{B}}, \quad \pi_{\overline{B}A} = \pi_{\overline{B}}^{\overline{C}} h_{A\overline{C}} = \overline{\pi_{B\overline{A}}}.$$
(1.35)

En utilisant les relations (1.32) on voit que la définition (1.35) équivaut à

$$\pi_{A\overline{B}} = \langle d Z_A, Z_B \rangle, \quad \pi_{\overline{B}A} = \langle Z_A, d Z_B \rangle \qquad (0 \le A, B \le n+1).$$
(1.36)

En différentiant les relations (1.32), on voit que la famille $(\pi_{A\overline{B}})$ de 1-formes différentielles sur G vérifie les relations

$$\pi_{A\overline{B}} + \pi_{\overline{B}A} = 0 \qquad (0 \le A, B \le n+1),$$
 (1.37)

que l'on peut aussi écrire

$$\pi_{A\overline{B}} + \overline{\pi_{B\overline{A}}} = 0 \qquad (0 \le A, B \le n+1).$$
 (1.38)

En dérivant (1.9), on obtient en plus

$$\operatorname{tr}\left(\pi_{A}^{B}\right)=0,$$

c'est-à-dire

$$\pi_A^A = 0. (1.39)$$

L'étude de la géométrie de Q est facilitée par l'écriture explicite des équations (1.37) et (1.39); pour cela, on tient compte des propriétés particulières des $h_{A\overline{B}}$ relatifs à une base adaptée (voir (1.8)) :

$$\begin{cases} h_{0\overline{B}} = 0 & (0 \le B \le n), \\ h_{n+1,\overline{B}} = 0 & (1 \le B \le n+1), \\ h_{n+1,\overline{0}} = \frac{i}{2}. \end{cases}$$
 (1.40)

On a alors, en appliquant les relations de définition (1.35),

$$\begin{split} \pi_{0,\overline{0}} &= \pi_0^{n+1} h_{n+1,\overline{0}} = \frac{\mathrm{i}}{2} \pi_0^{n+1}, \\ \pi_{0\overline{\beta}} &= \pi_0^{\alpha} h_{\alpha\overline{\beta}} \qquad (1 \leq \beta \leq n) \;, \\ \pi_{0,\overline{n+1}} &= \pi_0^0 h_{0,\overline{n+1}} = -\frac{\mathrm{i}}{2} \pi_0^0, \\ \pi_{\alpha\overline{0}} &= \pi_\alpha^{n+1} h_{n+1,\overline{0}} = \frac{\mathrm{i}}{2} \pi_\alpha^{n+1} \qquad (1 \leq \alpha \leq n) \;, \\ \pi_{\alpha,\overline{n+1}} &= \pi_\alpha^0 h_{0,\overline{n+1}} = -\frac{\mathrm{i}}{2} \pi_\alpha^0 \qquad (1 \leq \alpha \leq n) \;, \\ \pi_{n+1,\overline{0}} &= \pi_{n+1}^{n+1} h_{n+1,\overline{0}} = \frac{\mathrm{i}}{2} \pi_{n+1}^{n+1}, \\ \pi_{n+1,\overline{\beta}} &= \pi_{n+1}^{\alpha} h_{\alpha\overline{\beta}} \qquad (1 \leq \beta \leq n) \;, \\ \pi_{n+1,\overline{n+1}} &= \pi_{n+1}^0 h_{0,\overline{n+1}} = -\frac{\mathrm{i}}{2} \pi_{n+1}^0. \end{split}$$

Compte tenu de ces relations, les relations (1.38), appliquées successivement aux cas $(A, B) = (\alpha, \beta)$, (A, B) = (0, 0), (A, B) = (n + 1, n + 1), (A, B) = (n + 1, 0), $(A, B) = (n + 1, \alpha)$ et $(A, B) = (0, \alpha)$, s'écrivent

$$\pi_{\alpha\overline{\beta}} + \pi_{\overline{\beta}\alpha} = 0 \qquad (1 \le \alpha, \beta \le n),
\pi_0^{n+1} - \overline{\pi_0^{n+1}} = \pi_{n+1}^0 - \overline{\pi_{n+1}^0} = 0,
\overline{\pi_0^0} + \pi_{n+1}^{n+1} = 0,
\frac{i}{2}\overline{\pi_\alpha^0} + \pi_{n+1}^\beta h_{\beta\overline{\alpha}} = 0 \qquad (1 \le \alpha \le n),
-\frac{i}{2}\overline{\pi_{\alpha}^{n+1}} + \pi_0^\beta h_{\beta\overline{\alpha}} = 0 \qquad (1 \le \beta \le n).$$
(1.41)

La relation (1.39) est alors, compte tenu de la troisième de ces relations, équivalente à

$$\pi_{\alpha}^{\alpha} + \pi_{0}^{0} - \overline{\pi_{0}^{0}} = 0. \tag{1.42}$$

En différentiant les relations (1.34), on obtient

$$0 = (\mathrm{d}\,\pi_A^B)\,Z_B - \pi_A^B \wedge \mathrm{d}\,Z_B,$$

d'où, en utilisant à nouveau (1.34),

$$(\mathrm{d}\,\pi_A^B)\,Z_B = \pi_A^C \wedge \pi_C^B Z_B.$$

On en déduit les équations de structure de SU(p+1,q+1):

$$d \pi_A^B = \pi_A^C \wedge \pi_C^B \qquad (0 \le A, B \le n+1). \tag{1.43}$$

1.8 Chaînes

Rappelons que la sous-variété \widetilde{Q} de $\mathbb{P}_{n+1}(\mathbb{C})$ est l'ensemble des $[Z]\in\mathbb{P}_{n+1}(\mathbb{C})$ tels que

$$\langle Z, Z \rangle = 0,$$

où $Z = (\zeta^0, \dots, \zeta^{n+1}) \in \mathbb{C}^{n+2} \setminus \{0\}$ et

$$\langle Z, Z \rangle = h(\zeta^1, \dots, \zeta^n) + \frac{\mathrm{i}}{2} \left(\zeta^{n+1} \overline{\zeta^0} - \overline{\zeta^{n+1}} \zeta^0 \right);$$

l'hyperquadrique réelle Q est alors la trace de \widetilde{Q} dans \mathbb{C}^{n+1} identifié à un ouvert de $\mathbb{P}_{n+1}(\mathbb{C})$ par

$$(z^1, \dots, z^{n+1}) \mapsto [1, z^1, \dots, z^{n+1}].$$
 (1.44)

Soient $z_0 \in Q$, $Z_0 = (1, z_0)$ et soit $[Z_0] \in \widetilde{Q}$ le point associé à z_0 par l'identification (1.44) ci-dessus. L'hyperquadrique Q est définie par

$$\phi(z) \equiv \langle (1, z), (1, z) \rangle = 0;$$

son espace tangent réel $T_{z_0}Q$ en z_0 est l'ensemble des vecteurs liés (z_0,w) tels que

$$\mathrm{d}\,\phi(z_0)w=0,$$

c'est-à-dire

$$\langle (0, w), (1, z_0) \rangle + \langle (1, z_0), (0, w) \rangle = 0.$$

Le fibré tangent réel de Q est donc

$$TQ = \bigcup_{z} T_{z} Q$$

= $\{ (z, w) \in Q \times \mathbb{C}^{n+1} | \langle (0, w), (1, z_{0}) \rangle + \langle (1, z_{0}), (0, w) \rangle = 0 \}.$

Avec les mêmes notations, l'hyperplan complexe $H_{z_0}Q$ tangent en z_0 à Q est l'ensemble des vecteurs (z_0, w) tels que

$$\overline{\partial}\phi(z_0)w=0,$$

c'est-à-dire

$$\langle (1, z_0), (0, w) \rangle = 0.$$

Cette relation s'écrit encore

$$\langle Z_0, (0, w) \rangle = 0. \tag{1.45}$$

L'hyperplan complexe affine tangent en z_0 à Q est l'ensemble $\widetilde{H_{z_0}Q}$ des points $u=z_0+w$, où $w\in H_{z_0}Q$. Comme $\langle Z_0,Z_0\rangle=0$, on voit que les points u de $\widetilde{H_{z_0}Q}$ sont caractérisés par

$$\langle Z_0, (1, u) \rangle = 0. \tag{1.46}$$

Le complété projectif de $\widetilde{H_{z_0}Q}$ pour l'identification $u\mapsto [(1,u)]$, qui sera encore noté $\widetilde{H_{z_0}Q}$, est alors l'ensemble des $[V]\in \mathbb{P}_{n+1}(\mathbb{C})$ tels que

$$\langle Z_0, V \rangle = 0. (1.47)$$

Soit (Z_0, \ldots, Z_{n+1}) est une base adaptée à Q dont le premier vecteur est Z_0 . Il résulte alors de la définition d'une base adaptée que V vérifie (1.47) si et seulement si V appartient à l'espace vectoriel engendré par Z_0, \ldots, Z_n . Il est équivalent de dire que $\widetilde{H_{z_0}Q}$ (comme hyperplan projectif de $\mathbb{P}_{n+1}(\mathbb{C})$) est engendré par $[Z_0], \ldots, [Z_n]$.

Définition 1.1. On appelle chaîne de Q (passant par le point $z_0 \in Q$) l'intersection de Q avec une droite complexe affine passant par z_0 , transverse à l'hyperplan complexe tangent $\widetilde{H_{z_0}Q}$.

Le théorème des fonctions implicites implique qu'une chaîne passant par z_0 est une courbe régulière (sous-variété réelle de dimension 1) de Q au voisinage de z_0 .

Soit D une droite complexe affine passant par $z_0 \in Q$ et transverse à $H_{z_0}Q$. Ceci équivaut à

$$D = z_0 + \mathbb{C}w,$$

où $w \in \mathbb{C}^{n+1}$ et $(z_0, w) \notin H_{z_0}Q$; on en déduit comme ci-dessus que $u = z_0 + w$ vérifie

$$\langle Z_0, (1, u) \rangle \neq 0. \tag{1.48}$$

Soit $u \in D \cap Q$, $u \neq z_0$ et soit U = (1, u). En remplaçant U par un multiple complexe convenable, on a $\langle Z_0, U \rangle = -\mathrm{i}/2$; comme $u \in Q$, on a aussi $\langle U, U \rangle = 0$. L'orthogonal $\langle Z_0, U \rangle^{\perp}$ par rapport à $\langle \cdot, \cdot \rangle$ est alors un supplémentaire de l'espace engendré par Z_0 et U; en effet, si $X = \alpha Z_0 + \beta U$, on a $(X, Z_0) = \mathrm{i} \beta/2$ et $(X, U) = -\mathrm{i} \alpha/2$, donc $X \in \langle Z_0, U \rangle^{\perp}$ entraîne X = 0. Si (Z_1, \ldots, Z_n) est une base orthonormale de $\langle Z_0, U \rangle^{\perp}$ pour $\langle \cdot, \cdot \rangle$, $(Z_0, Z_1, \ldots, Z_n, U)$ est alors une base adaptée à Q.

Pour toute droite complexe affine D passant par z_0 et transverse à $H_{z_0}Q$, il existe donc une base adaptée $(Z_0, Z_1, \ldots, Z_n, Z_{n+1})$ telle que $[Z_0] = [(1, z_0)]$ et telle que $[Z_{n+1}]$ représente un point arbitraire $u \neq z_0$ de $D \cap Q$. Dans $\mathbb{P}_{n+1}(\mathbb{C})$, la complétée projective de D est la droite projective qui joint $[Z_0]$ à $[Z_{n+1}]$.

Dans ce cas, $(Z_{n+1}, Z_1, \ldots, Z_n, -Z_0)$ est également une base adaptée à Q; ceci montre que la droite D, qui joint $[Z_{n+1}]$ à $[-Z_0] = [Z_0]$ est également transverse en u à l'hyperplan tangent complexe à Q.

2 Construction d'une forme normale

2.1 Préliminaires

On considère une hypersurface analytique-réelle M d'une variété analytique complexe X. Toute l'étude qui suit étant locale au voisinage d'un point $p \in M$, on se restreint au cas où $X = \mathbb{C}^{n+1}$ et p = 0.

Soit M une hypersurface analytique-réelle dans \mathbb{C}^{n+1} ; M est alors définie au voisinage de $0 \in M$ par

$$U \cap M = \{ z \in U \mid r(z) = 0 \}, \tag{2.1}$$

où U est un voisinage ouvert de 0 et $r:U\to\mathbb{R}$ une fonction analytique-réelle, telle que

$$r(0) = 0$$
, $d r(0) \neq 0$.

L'hyperplan tangent (réel) à M en 0 est alors

$$T_0(M) = \{ \xi \mid \langle d r(0), \xi \rangle = 0 \}.$$

L'hyperplan complexe tangent à M en 0 est

$$H_0(M) = T_0(M) \cap i T_0(M) = \{\xi \mid \langle \partial r(0), \xi \rangle = 0\}.$$

Soient $(z^1, ..., z^{n+1})$ les coordonnées canoniques dans $\mathbb{C}^{n+!}$; on note $z^{n+1} = w = u + \mathrm{i} v$. Les dérivées partielles de r sont notées

$$r_{z^{\alpha}} = \frac{\partial r}{\partial z^{\alpha}} \quad (1 \le \alpha \le n), \qquad r_{\overline{z^{\alpha}}} = \frac{\partial r}{\partial \overline{z^{\alpha}}} \quad (1 \le \alpha \le n),$$
 $r_{w} = \frac{\partial r}{\partial w}, \qquad r_{\overline{w}} = \frac{\partial r}{\partial \overline{w}}.$

Comme r est à valeurs réelles, on a $r_{z^{\alpha}} = \overline{r_{\overline{z^{\alpha}}}}$ et $r_w = \overline{r_{\overline{w}}}$.

Par un changement unitaire de coordonnées, on peut supposer que l'hyperplan tangent à M en 0 est

$$T_0(M) = \{ \xi \mid \text{Im } \xi^{n+1} = 0 \}.$$
 (2.2)

Ceci équivaut à

$$r_{z^{\alpha}}(0) = 0 \quad (\alpha = 1, ..., n), \qquad r_{w}(0) = -r_{\overline{w}}(0) \neq 0$$
 (2.3)

(la deuxième condition étant équivalente à $\frac{\partial r}{\partial u}(0) = 0$, $\frac{\partial r}{\partial v}(0) \neq 0$). On a dans ce cas

$$T_0(M) = \{(z, w) \in \mathbb{C}^{n+1} \mid \text{Im } w = v = 0\},\$$

 $H_0(M) = \{(z, w) \in \mathbb{C}^{n+1} \mid w = 0\}.$

Si M est définie au voisinage de 0 par (2.1) satisfaisant aux conditions (2.3), il résulte du théorème des fonctions implicites que M peut être définie au voisinage de 0 par

$$v = F\left(z, \overline{z}, u\right),\tag{2.4}$$

où F est une fonction analytique-réelle définie au voisinage de 0 dans $\mathbb{C}^n \times \mathbb{R}$, à valeurs réelles, vérifiant

$$F(0,0) = 0, \quad \frac{\partial F}{\partial z^j}(0,0) = 0, \quad \frac{\partial F}{\partial u}(0,0) = 0.$$
 (2.5)

Le développement de Taylor de F en 0 s'écrit

$$F(z, \overline{z}, u) = \sum_{\alpha, \beta, \gamma} a_{\alpha, \beta, \gamma} z^{\alpha} \overline{z}^{\beta} u^{\gamma}, \qquad (2.6)$$

où $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ et $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{N}^n$ sont des multi-indices, $\gamma \in \mathbb{N}, z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$. Les conditions (2.5) sont équivalentes à

$$a_{0,0,0} = 0$$
, $a_{\alpha,0,0} = 0$ si $|\alpha| = 1$, $a_{0,0,1} = 0$, (2.7)

οù

$$|\alpha| = \alpha_1 + \dots + \alpha_n.$$

Pour que F soit à valeurs réelles, il faut et il suffit que

$$a_{\alpha,\beta,\gamma} = \overline{a_{\beta,\alpha,\gamma}} \tag{2.8}$$

quels que soient α , β , γ .

2.2 Groupes de transformations formelles

2.2.1

Soit $h: \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$ une transformation biholomorphe de \mathbb{C}^{n+1} définie au voisinage de 0, telle que h(0)=0; on note h=(f,g), avec $f:\mathbb{C}^{n+1}\to\mathbb{C}^n$ et $g:\mathbb{C}^{n+1}\to\mathbb{C}$.

On suppose comme ci-dessus

$$T_0(M) = \{(z, w) \in \mathbb{C}^{n+1} \mid \text{Im } w = v = 0\}$$

et on note $h(M) = M^*$ l'hypersurface image de M par h. Soit $\begin{pmatrix} \zeta \\ \omega \end{pmatrix}$ $(\zeta \in \mathbb{C}^n, \omega \in \mathbb{C})$ un vecteur tangent en 0; son image par l'application tangente à h est

$$\begin{pmatrix} \frac{\partial f}{\partial z}(0) & \frac{\partial f}{\partial w}(0) \\ \frac{\partial g}{\partial z}(0) & \frac{\partial g}{\partial w}(0) \end{pmatrix} \begin{pmatrix} \zeta \\ \omega \end{pmatrix} = \begin{pmatrix} * \\ \frac{\partial g}{\partial z}(0)\zeta + \frac{\partial g}{\partial w}(0)\omega \end{pmatrix}.$$

Les vecteurs tangents à M^* en 0 sont les images des vecteurs tangents à M en 0.

L'hypersurface M^* a donc même hyperplan tangent complexe que M en 0 si

$$\frac{\partial g}{\partial z}(0,0) = 0; \tag{2.9}$$

elle a même hyperplan tangent réel $T_0M^* = T_0M$ que M si on a de plus

$$\frac{\partial g}{\partial w}(0,0) \in \mathbb{R}.\tag{2.10}$$

Si les deux conditions (2.9) et (2.10) sont vérifiées, l'hypersurface M^* peut être définie par l'équation

$$v^* = F^* \left(z^*, \overline{z}^*, u^* \right)$$

avec

$$z^* = f(z, w), \ w^* = g(z, w)$$
 (2.11)

et

$$v = F\left(z, \overline{z}, u\right).$$

On cherche à simplifier F^* par un choix convenable de la transformation (2.11). On considère d'abord le cas où F, F^* sont des séries formelles. La définition suivante définit un espace de séries formelles qui ont les propriétés de l'équation de M.

Définition 2.1. On désigne par \mathcal{F} l'espace vectoriel réel des séries formelles

$$F(z, \overline{z}, u) = \sum_{\alpha, \beta, \gamma} a_{\alpha, \beta, \gamma} z^{\alpha} \overline{z}^{\beta} u^{\gamma}$$

vérifiant les conditions

$$a_{\alpha,\beta,\gamma} = \overline{a_{\beta,\alpha,\gamma}}$$
 $(\alpha, \beta \in \mathbb{N}^n, \ \gamma \in \mathbb{N}),$
 $a_{\alpha,\beta,\gamma} = 0$ $\operatorname{si} |\alpha| + |\beta| + \gamma \leq 1.$

2.2.2

On définit ci-dessous un groupe \mathcal{G} de transformations formelles qui conservent les éléments de \mathcal{F} . La définition de [3] a été complétée de manière à assurer la conservation de l'hyperplan tangent réel (condition $b_{01} \in \mathbb{R}$) et l'inversibilité (condition (2.13)).

Définition 2.2. On désigne par G l'ensemble des transformations formelles h = (f, g), avec

$$f(z, w) = \sum_{\alpha \in \mathbb{N}^n, \ \lambda \in \mathbb{N}} a_{\alpha \lambda} z^{\alpha} w^{\lambda},$$
$$g(z, w) = \sum_{\alpha \in \mathbb{N}^n, \ \lambda \in \mathbb{N}} b_{\alpha \lambda} z^{\alpha} w^{\lambda},$$

 $où a_{\alpha\lambda} \in \mathbb{C}^n, b_{\alpha\lambda} \in \mathbb{C} \ v\'{e}rifiant$

$$a_{00} = 0,$$
 (2.12a)

$$b_{00} = 0, (2.12b)$$

$$b_{\alpha 0} = 0 \qquad \text{si } |\alpha| = 1, \tag{2.12c}$$

$$b_{01} \in \mathbb{R} \tag{2.12d}$$

et

$$b_{01} \det C \neq 0.$$
 (2.13)

Ici C désigne la « partie linéaire en z » de f, définie par

$$Cz = \sum_{|\alpha|=1} a_{\alpha 0} z^{\alpha}.$$

On munit \mathcal{G} de la loi de composition \circ des applications formelles (qui est définie parce que les éléments de \mathcal{G} sont « sans terme constant »).

Lemme 2.1. (\mathcal{G}, \circ) *est un groupe.*

La condition (2.13) assure l'inversibilité des éléments de \mathcal{G} .

2.2.3

Définition 2.3. Soit P un polynôme réel en z, \overline{z} , u. On dit que P est semi-homogène de poids ν si

$$P(tz, t\overline{z}, t^2u) = t^{\nu}P(z, \overline{z}, u)$$

pour tout t > 0.

Cette définition attribue à u le poids 2 et à $z,\,\overline{z}$ le poids 1. Un polynôme de poids ν s'écrit

$$P(z, \overline{z}, u) = \sum_{|a|+|\beta|+2\gamma=\nu} a_{\alpha\beta\gamma} z^{\alpha} \overline{z}^{\beta} u^{\gamma},$$

avec $a_{\alpha,\beta,\gamma} = \overline{a_{\beta,\alpha,\gamma}}$ quels que soient α, β, γ .

Une série formelle réelle $F\left(z,\overline{z},u\right)$ se décompose de manière unique sous la forme

$$F\left(z,\overline{z},u\right) = \sum_{\nu=0}^{\infty} F_{\nu}\left(z,\overline{z},u\right),\,$$

où F_{ν} est semi-homogène de poids ν .

Si $F \in \mathcal{F}$, on a $F_0 = 0$ car F est sans terme constant, et $F_1 = 0$ car F est sans terme linéaire en z, \overline{z} . La composante de poids 2 comprend le terme linéaire en u (qui est nul) et les termes homogènes de degré 2 en z, \overline{z} ; comme F_2 est réel, on a

$$F_{2}(z, \overline{z}, u) = Q(z) + \overline{Q(z)} + H(z, z),$$

où Q(z) est une forme quadratique complexe en z et H(z,z) une forme hermitienne.

Proposition 2.2. Soit $F \in \mathcal{F}$, avec

$$F_{2}(z, \overline{z}, u) = Q(z) + \overline{Q(z)} + H(z, z).$$

On considère la transformation

$$z^* = f(z, w) = z,$$

 $w^* = g(z, w) = w - 2iQ(z).$

Alors

$$v = F(z, \overline{z}, u)$$

équivaut à

$$v^* = F^* \left(z, \overline{z}, u^* \right)$$

avec

$$F_2^*(z,\overline{z},u^*) = H(z,z)$$
.

Démonstration. En effet, on a

$$u^* = u + 2\operatorname{Im} Q(z),$$

$$v^* = v - 2\operatorname{Re} Q(z).$$

La relation $v=F\left(z,\overline{z},u\right)$ équivaut donc à

$$v^* = \sum_{\nu=2}^{\infty} F_{\nu} (z, \overline{z}, u) - Q(z) - \overline{Q(z)}$$
$$= F^* (z, \overline{z}, u^*),$$

avec

$$F^*(z,\overline{z},u^*) = H(z,z) + \sum_{\nu=3}^{\infty} F_{\nu}(z,\overline{z},u^* - 2\operatorname{Im} Q(z)).$$

Comme chacun des $F_{\nu}(z, \overline{z}, u^* - 2 \operatorname{Im} Q(z))$ se décompose en polynômes semihomogènes de poids au moins égal à 3, on a

$$F_2^*(z,\overline{z},u^*) = H(z,z).$$

On vérifie facilement que la transformation utilisée dans cette proposition est un élément de \mathcal{G} .

2.2.4

On suppose désormais que l'équation de M s'écrit

$$v = H(z, z) + \sum_{\nu=3}^{\infty} F_{\nu}(z, \overline{z}, u),$$

avec H hermitienne. On suppose de plus que H est non dégénérée et on note $\langle \ , \ \rangle$ le produit scalaire hermitien associé à H. L'équation de M sera écrite

$$v = \langle z, z \rangle + F(z, \overline{z}, u), \qquad (2.14)$$

avec

$$F(z, \overline{z}, u) = \sum_{\nu=3}^{\infty} F_{\nu}(z, \overline{z}, u)$$

ne contenant que des termes de poids au moins égal à 3.

Soit h = (f, g) une transformation holomorphe formelle. On écrit

$$z^* = f(z, w) = \sum_{\nu=0}^{\infty} f_{\nu}(z, w),$$
$$w^* = g(z, w) = \sum_{\nu=0}^{\infty} g_{\nu}(z, w),$$

où f_{ν} , g_{ν} sont les composantes de poids ν de f, g (poids 1 pour z, poids 2 pour w). Si $h \in \mathcal{G}$, on a $f_0 = 0$, $g_0 = 0$; la condition (2.12c) s'écrit $g_1 = 0$. La composante f_1 est la partie linéaire en z de f et doit être inversible; la composante g_2 est

$$g_2(z, w) = b_{01}w + \phi(z),$$

avec $b_{01} \in \mathbb{R}$ non nul et ϕ homogène de degré 2. Les éléments (f,g) de \mathcal{G} s'écrivent donc

$$f(z, w) = Cz + \sum_{\nu=2}^{\infty} f_{\nu}(z, w),$$
 (2.15a)

$$g(z, w) = \rho w + \phi(z) + \sum_{\nu=2}^{\infty} g_{\nu}(z, w),$$
 (2.15b)

avec C linéaire inversible, ρ réel non nul et ϕ quadratique.

Définition 2.4. On désigne par \mathcal{G}_1 le groupe des transformations formelles $h = (f, g) \in \mathcal{G}$ qui transforment une relation

$$v = \langle z, z \rangle + \sum_{\nu=3}^{\infty} F_{\nu}(z, \overline{z}, u)$$

en une relation de la forme

$$v^* = \langle z^*, z^* \rangle + \sum_{\nu=3}^{\infty} F_{\nu}^* (z^*, \overline{z^*}, u^*).$$

Proposition 2.3. Les éléments de G_1 sont les transformations formelles

$$z^* = Cz + \sum_{\nu=2}^{\infty} f_{\nu}(z, w),$$
 (2.16a)

$$w^* = \rho w + \sum_{\nu=3}^{\infty} g_{\nu}(z, w)$$
 (2.16b)

telles que $\rho > 0$ et $\langle Cz, Cz \rangle \equiv \rho \langle z, z \rangle$.

Démonstration. La transformation h=(f,g) étant écrite sous la forme (2.15a)-(2.15b), on a

$$v^* - \langle z^*, z^* \rangle = \rho v + \operatorname{Im} \phi(z) + \operatorname{Im} \sum_{\nu=3}^{\infty} g_{\nu}(z, w) - \langle Cz + \sum_{\nu=2}^{\infty} f_{\nu}(z, w), Cz + \sum_{\nu=2}^{\infty} f_{\nu}(z, w) \rangle$$

$$= \rho \langle z, z \rangle + \rho \sum_{\nu=3}^{\infty} F_{\nu}(z, \overline{z}, u) + \operatorname{Im} \phi(z) + \operatorname{Im} \sum_{\nu=3}^{\infty} g_{\nu}(z, w)$$

$$- \langle Cz + \sum_{\nu=2}^{\infty} f_{\nu}(z, w), Cz + \sum_{\nu=2}^{\infty} f_{\nu}(z, w) \rangle.$$

Les termes de poids ≤ 2 du dernier membre sont

$$\rho < z, z > + \operatorname{Im} \phi(z) - < Cz, Cz >;$$

leur somme est nulle si et seulement si $\phi = 0$ et $\langle Cz, Cz \rangle \equiv \rho \langle z, z \rangle$. \square Soit h un élément de \mathcal{G}_1 , écrit sous la forme (2.16a)-(2.16b). Soit $h^0 = (f^0, g^0)$ la transformation définie par

$$f^{0}(z, w) = Cz, \quad g^{0}(z, w) = \rho w.$$

Alors $h^0 \in \mathcal{G}_1$ et $h(h^0)^{-1}$ est une transformation de la forme

$$z^* = z + \sum_{\nu=2}^{\infty} f_{\nu}(z, w), \quad w^* = w + \sum_{\nu=3}^{\infty} g_{\nu}(z, w).$$

Définition 2.5. On désigne par \mathcal{H} l'ensemble des transformations

$$z^* = Cz, \quad w^* = \rho w, \tag{2.17}$$

où C est linéaire et vérifie $\langle Cz, Cz \rangle \equiv \rho \langle z, z \rangle$, par \mathcal{V} l'espace vectoriel des couples (f, g) de séries formelles

$$f(z, w) = \sum_{\nu=2}^{\infty} f_{\nu}(z, w),$$
$$g(z, w) = \sum_{\nu=3}^{\infty} g_{\nu}(z, w)$$

 $(où f_{\nu}: \mathbb{C}^{n+1} \to \mathbb{C}^n \text{ et } g_{\nu}: \mathbb{C}^{n+1} \to \mathbb{C} \text{ sont polynomiales de poids } \nu) \text{ et par}$ $\widetilde{\mathcal{G}}_1$ l'ensemble des transformations

$$z^* = z + \sum_{\nu=2}^{\infty} f_{\nu}(z, w), \quad w^* = w + \sum_{\nu=3}^{\infty} g_{\nu}(z, w).$$
 (2.18)

On a immédiatement

Lemme 2.4. Tout élément de \mathcal{G}_1 est le produit d'un élément de $\widetilde{\mathcal{G}}_1$ et d'un élément de \mathcal{H} ; \mathcal{H} est un sous-groupe de \mathcal{G}_1 , $\widetilde{\mathcal{G}}_1$ un sous-groupe distingué de \mathcal{G}_1 et on a $\mathcal{G}_1/\widetilde{\mathcal{G}}_1 \simeq \mathcal{H}$.

2.2.5

Soit $(f,g) \in \mathcal{V}$. Les termes de plus bas poids de f et g s'écrivent

$$f_2(z, w) = q(z) + bw,$$

$$g_3(z, w) = a_3(z) + a_1(z)w,$$

$$g_4(z, w) = a_4(z) + a_2(z)w + a_0w^2,$$

où q est quadratique, $b \in \mathbb{C}^n$, $a_0 \in \mathbb{C}$ et où a_1, a_2, a_3, a_4 sont polynomiales homogènes du degré indiqué par l'indice.

Définition 2.6. On désigne par V_0 l'espace des séries formelles $h = (f, g) \in V$ qui vérifient

$$f_2(0, w) = 0$$
, $\operatorname{Re} \frac{\partial^2}{\partial w^2} g_4 = 0$. (2.19)

Cette condition équivaut à b = 0, Re $a_0 = 0$.

Un couple (f,g) de séries formelles appartient à \mathcal{V}_0 si et seulement si les séries formelles

$$f$$
, $\frac{\partial f}{\partial z^{\alpha}}$, $\frac{\partial f}{\partial w}$, g , $\frac{\partial g}{\partial z^{\alpha}}$, $\frac{\partial g}{\partial w}$, $\frac{\partial^2 g}{\partial z^{\alpha} \partial z^{\beta}}$, $\operatorname{Re} \frac{\partial^2 g}{\partial w^2}$

s'annulent en 0 (i.e. sont sans terme constants). Les éléments de \mathcal{V}_0 s'écrivent

$$f(z,w) = q(z) + \sum_{\nu=3}^{\infty} f_{\nu}(z,w),$$

$$g(z,w) = (a_3(z) + a_1(z)w) + (a_4(z) + a_2(z)w + a_0w^2) + \sum_{\nu=5}^{\infty} g_{\nu}(z,w),$$

où q est quadratique, Re $a_0 = 0$ et où a_1, a_2, a_3, a_4 sont polynomiales homogènes du degré indiqué par l'indice.

Lemme 2.5. Les transformations formelles

$$z^* = z + f(z, w),$$

$$w^* = w + g(z, w)$$

telles que $(f,g) \in \mathcal{V}_0$ forment un sous-groupe distingué \mathcal{G}_0 de $\widetilde{\mathcal{G}}_1$.

La bijection entre \mathcal{V}_0 et \mathcal{G}_0 définit alors une structure de groupe sur \mathcal{V}_0 . **Démonstration.** Soient (f,g) et (F,G) deux éléments de \mathcal{V} et soient u,U les transformations correspondantes :

$$z^* = z + f(z, w), \quad w^* = w + g(z, w),$$

 $z^{**} = z^* + F(z^*, w^*), \quad w^{**} = w^* + G(z^*, w^*).$

La transformation composée $U \circ u$ est donnée par

$$z^{**} = z + f(z, w) + F(z + f(z, w), w + g(z, w)),$$

$$w^{**} = w + g(z, w) + G(z + f(z, w), w + g(z, w))$$

et correspond donc au couple (ϕ, ψ) de séries formelles défini par

$$\phi(z, w) = f(z, w) + F(z + f(z, w), w + g(z, w)),$$

$$\psi(z, w) = g(z, w) + G(z + f(z, w), w + g(z, w)).$$

Les termes de plus bas poids de ces deux séries sont

$$\phi_{2}(z, w) = f_{2}(z, w) + F_{2}(z, w),$$

$$\psi_{3}(z, w) = g_{3}(z, w) + G_{3}(z, w),$$

$$\psi_{4}(z, w) = g_{4}(z, w) + G_{4}(z, w) + dA_{3}(z).f_{2}(z, w)$$

$$+A_{1}(f_{2}(z, w)) w + A_{1}(z)g_{3}(z, w),$$

 \sin

$$G_3(z, w) = A_3(z) + A_1(z)w.$$

En particulier,

$$\begin{split} \phi_2\left(0,w\right) &= f_2\left(0,w\right) + F_2\left(0,w\right),\\ \frac{\partial^2}{\partial w^2} \psi_4\left(z,w\right) &= \frac{\partial^2}{\partial w^2} g_4(z,w) + \frac{\partial^2}{\partial w^2} G_4(z,w). \end{split}$$

Autrement dit, l'application

$$\widetilde{\mathcal{G}}_1 \to \mathbb{C}^n \times \mathbb{R}$$

qui, à l'élément de $\widetilde{\mathcal{G}}_1$ défini par

$$z^* = z + f(z, w),$$

 $w^* = w + g(z, w).$

associe

$$\left(f_2\left(0,1\right),\operatorname{Re}\frac{\partial^2}{\partial w^2}g_4(0,0)\right) = \left(\frac{\partial f}{\partial w}\left(0,0\right),\operatorname{Re}\frac{\partial^2 g}{\partial w^2}\left(0,0\right)\right),\,$$

est un homomorphisme de groupes. Son noyau est \mathcal{G}_0 , qui est donc un sous-groupe distingué de $\widetilde{\mathcal{G}}_1$.

2.3 Image d'une hypersurface par une transformation formelle

Soit M une « hypersurface formelle » définie par la relation

$$\operatorname{Im} w = \langle z, z \rangle + F(z, \overline{z}, \operatorname{Re} w), \qquad (2.20)$$

où F est une série formelle

$$F(z,\overline{z},u) = \sum_{\nu=3}^{\infty} F_{\nu}(z,\overline{z},u).$$

Soit M^* définie par

$$\operatorname{Im} w^* = \langle z^*, z^* \rangle + F^* (z^*, \overline{z^*}, \operatorname{Re} w^*),$$
 (2.21)

avec

$$F^*\left(z,\overline{z},u\right) = \sum_{\nu=3}^{\infty} F_{\nu}^*\left(z,\overline{z},u\right).$$

Soit (f,g):

$$z^* = z + \sum_{\nu=2}^{\infty} f_{\nu}(z, w), \quad w^* = w + \sum_{\nu=3}^{\infty} g_{\nu}(z, w)$$

un élément de $\widetilde{\mathcal{G}}_1$. On désire écrire les conditions pour que (f,g) transforme la relation (2.20) en (2.21); on dira alors que (f,g) est une transformation formelle de M en M^* .

On doit donc avoir

$$\operatorname{Im} w = \langle z, z \rangle + 2\operatorname{Re}\left\langle z, \widetilde{f}\left(z, w\right)\right\rangle - \operatorname{Im}\widetilde{g}\left(z, w\right) + \left\langle \widetilde{f}\left(z, w\right), \widetilde{f}\left(z, w\right)\right\rangle + F^*\left(z + \widetilde{f}\left(z, w\right), \overline{z + \widetilde{f}\left(z, w\right)}, \operatorname{Re}\left(w + \widetilde{g}\left(z, w\right)\right)\right),$$

avec

$$\widetilde{f}(z,w) = f(z,w) - z = \sum_{\nu=2}^{\infty} f_{\nu}(z,w),$$
(2.22a)

$$\widetilde{g}(z,w) = g(z,w) - w = \sum_{\nu=3}^{\infty} g_{\nu}(z,w),$$
(2.22b)

sous la condition $\operatorname{Im} w = < z, z > +F.$ On obtient ainsi la condition

$$F(z,\overline{z},u) + \operatorname{Im}\widetilde{g}(z,w)$$

$$= \left\langle z,\widetilde{f}(z,w) \right\rangle + \left\langle \widetilde{f}(z,w),z \right\rangle + \left\langle \widetilde{f}(z,w),\widetilde{f}(z,w) \right\rangle$$

$$+ F^* \left(z + \widetilde{f}(z,w),\overline{z} + \overline{\widetilde{f}(z,w)},u + \operatorname{Re}\widetilde{g}(z,w) \right),$$

$$(2.23)$$

où w doit être remplacé par

$$u + i < z, z > + i \sum_{\nu=3}^{\infty} F_{\nu}(z, \overline{z}, u)$$
 (2.24)

dans tous les termes du premier et du second membre.

On décompose l'égalité (2.23) suivant les poids en (z, \overline{z}, u) . L'égalité des termes de poids 3 s'écrit

$$F_3(z, \overline{z}, u) + \text{Im } g_3(z, u + i < z, z >)$$

= $2 \text{Re} \langle z, f_2(z, u + i < z, z >) \rangle + F_3^*(z, \overline{z}, u)$.

L'égalité des termes de poids 4 donne

$$F_4(z, \overline{z}, u) + \operatorname{Im} g_4(z, u + i < z, z >)$$
+ {termes provenant de Im $g_3(z, w)$ }
= $2 \operatorname{Re} \langle z, f_3(z, u + i < z, z >) \rangle + F_4^*(z, \overline{z}, u)$
+ {termes provenant de $2 \operatorname{Re} \langle z, f_2(z, w) \rangle$ }
+ {termes provenant de $F_3^*(z^*, \overline{z^*}, \operatorname{Re} w^*)$ }.

Plus généralement, l'égalité des termes de poids μ dans (2.23) s'écrit

$$\begin{split} &F_{\mu}\left(z,\overline{z},u\right) + \operatorname{Im}g_{\mu}\left(z,u+\mathrm{i} < z,z>\right) \\ &+ \left\{\operatorname{termes \ provenant \ de \ Im}\,g_{\nu}(z,w) \qquad (\nu < \mu)\right\} \\ &= 2\operatorname{Re}\left\langle z,f_{\mu-1}\left(z,u+\mathrm{i} < z,z>\right)\right\rangle + F_{\mu}^{*}\left(z,\overline{z},u\right) \\ &+ \left\{\operatorname{termes \ provenant \ de \ }2\operatorname{Re}\left\langle z,f_{\nu-1}\left(z,w\right)\right\rangle \qquad (\nu < \mu)\right\} \\ &+ \left\{\operatorname{termes \ provenant \ de \ }\left\langle f_{\lambda}\left(z,w\right),f_{\nu}\left(z,w\right)\right\rangle \qquad (\lambda + \nu < \mu)\right\} \\ &+ \left\{\operatorname{termes \ provenant \ de \ }F_{\nu}^{*}\left(z^{*},\overline{z^{*}},\operatorname{Re}w^{*}\right) \qquad (\nu < \mu)\right\}. \end{split}$$

Cette relation s'écrit encore

$$2 \operatorname{Re} \langle z, f_{\mu-1} (z, u + i < z, z >) \rangle - \operatorname{Im} g_{\mu} (z, u + i < z, z >)$$

$$= F_{\mu} (z, \overline{z}, u) - F_{\mu}^{*} (z, \overline{z}, u) + A_{\mu} (z, \overline{z}, u), \qquad (2.25)$$

où $A_{\mu}\left(z,\overline{z},u\right)$ est la composante de poids μ de

$$\operatorname{Im} \sum_{\nu < \mu} g_{\nu}(z, w) - 2 \operatorname{Re} \sum_{\nu < \mu} \langle z, f_{\nu-1}(z, w) \rangle - \sum_{\lambda + \nu < \mu} \langle f_{\lambda}(z, w), f_{\nu}(z, w) \rangle$$

$$-\sum_{\nu<\mu} F_{\nu}^{*} \left(z + \sum_{j<\mu-2} f_{j}(z,w), \overline{z + \sum_{k<\mu-2} f_{k}(z,w)}, u + \operatorname{Re} \sum_{l<\mu-1} g_{l}(z,w) \right)$$

après la substitution

$$w = u + i < z, z > +i \sum_{\nu=3}^{\infty} F_{\nu}(z, \overline{z}, u).$$

La fonction A_{μ} est déterminée par $\{(f_{\nu-1}, g_{\nu}, F_{\nu}, F_{\nu}^*); \nu < \mu\}$.

Définition 2.7. Soit $(f,g) \in \mathcal{V}$ (définition 2.5); on définit L(f,g) par

$$L(f,g) = \operatorname{Re}(2\langle z, f \rangle + ig)|_{w=u+i\langle z, z \rangle}. \tag{2.26}$$

On désigne par L_0 la restriction de L à \mathcal{V}_0 .

Un élément (f,g) de $\mathcal V$ s'écrit

$$(f,g) = \sum_{\mu=3}^{\infty} (f_{\mu-1}, g_{\mu}),$$

où $f_{\nu}: \mathbb{C}^{n+1} \to \mathbb{C}^n$ et $g_{\nu}: \mathbb{C}^{n+1} \to \mathbb{C}$ sont polynomiales de poids ν ; $L(f_{\mu-1}, g_{\mu})$ est semi-homogène de poids μ en (z, \overline{z}, u) . La relation (2.26) définit ainsi une application linéaire

$$L: \mathcal{V} \to \mathcal{F}_3$$
.

où \mathcal{F}_3 est l'espace vectoriel des séries réelles en (z, \overline{z}, u)

$$F = \sum_{\mu=3}^{\infty} F_{\mu}$$

dont tous les termes sont de poids au moins égal à 3.

Avec ces définitions, le système d'équations (2.25) équivaut à

$$L(f_{\mu-1}, g_{\mu}) = F_{\mu}(z, \overline{z}, u) - F_{\mu}^{*}(z, \overline{z}, u) + A_{\mu}(z, \overline{z}, u).$$
 (2.27)

La résolution de l'équation (2.23) par rapport à (f,g) est ainsi ramenée à la détermination par récurrence de $(f_{\mu-1},g_{\mu})$ $(\mu \geq 3)$.

2.4 Contraction par rapport à la forme hermitienne h

On décompose un élément F de $\mathcal F$ en termes homogènes de bidegré (k,l) en $(z,\bar z)$

$$F = \sum_{k,l>0} F_{kl},$$

avec

$$F_{kl}(\lambda z, \mu \overline{z}, u) = \lambda^k \overline{\mu}^l F_{kl}(z, \overline{z}, u) \qquad (\lambda, \mu \in \mathbb{C}).$$

La composante F_{kl} de type (k, l) s'écrit

$$F_{kl} = \sum a_{\alpha_1 \dots \alpha_k \overline{\beta_1} \dots \overline{\beta_l}} z^{\alpha_1} \dots z^{\alpha_k} \overline{z^{\beta_1}} \dots \overline{z^{\beta_l}}, \qquad (2.28)$$

où les coefficients $a_{\alpha_1...\alpha_k\overline{\beta_1}...\overline{\beta_l}}$ sont des séries formelles en u, symétriques par rapport aux indices $(\alpha_1,...,\alpha_k)$ et $(\beta_1,...,\beta_l)$.

Soit \mathcal{F}_{kl} l'espace vectoriel des séries formelles de la forme (8.1). Si $V = \mathbb{C}^n$, on considère un élément $F \in \mathcal{F}_{kl}$ comme un polynôme réel de type (k,l) sur V à valeurs dans l'anneau $\mathbb{C}[[u]]$ des séries formelles en u:

$$F: V \to \mathbb{C}[[u]].$$

On note \overline{V} l'espace vectoriel conjugué de V, $\otimes_k V$ la puissance tensorielle d'ordre k de V, $\odot_k V$ la puissance tensorielle symétrique d'ordre k de V, $\otimes^k V = \otimes_k V^*$, $\odot^k V = \odot_k V^*$. L'espace \mathcal{F}_{kl} est naturellement isomorphe à l'espace des applications \mathbb{C} -linéaires

$$\widetilde{F}: (\odot_k V) \otimes (\odot_l \overline{V}) \to \mathbb{C}[[u]],$$

par la correspondance $F \leftrightarrow \widetilde{F},$ où

$$F(z) = \widetilde{F}(\underbrace{z \odot \cdots \odot z}_{k \text{ fois}} \otimes \underbrace{z \odot \cdots \odot z}_{l \text{ fois}}).$$

À \widetilde{F} , appelé forme polaire de F, on associe par la dualité du produit tensoriel et par la dualité du produit tensoriel symétrique un élément

$$\widehat{F} \in \mathbb{C}[[u]] \otimes (\odot^k V) \otimes (\odot^l \overline{V})$$
.

2.4.1

Soit $h: V \to \mathbb{R}$.

$$h(z) = \sum_{\alpha,\overline{\beta}} h_{\alpha\overline{\beta}} z^{\alpha} \overline{z^{\beta}}$$

une forme hermitienne non dégénérée sur $V=\mathbb{C}^n$. On désigne également par h le produit scalaire hermitien associé $h:V\times \overline{V}\to \mathbb{C}$,

$$h(z,t) = \sum_{\alpha,\overline{\beta}} h_{\alpha\overline{\beta}} z^{\alpha} \overline{t^{\beta}}.$$

Comme h est non dégénérée, elle définit un isomorphisme

$$\alpha: V \to \overline{V}^*$$
$$z \mapsto \alpha(z)$$

où $\alpha(z)$ est caractérisé par

$$\langle t, \alpha(z) \rangle = h(z, t) \qquad (t \in \overline{V})$$

(ici $\langle \ , \ \rangle$ désigne l'accouplement canonique entre un espace vectoriel et son dual). Le transposé de cet isomorphisme est l'isomorphisme conjugué

$$\overline{\alpha}: \overline{V} \to V^*$$
 $z \mapsto \overline{\alpha(z)}.$

On désigne par $\beta=a^{-1}:\overline V^*\to V$ et $\overline\beta=\overline a^{-1}:V^*\to \overline V$ les isomorphismes inverses, caractérisés par

$$\langle t, u \rangle = h(\beta(u), t) \qquad (t \in \overline{V}).$$

Si $\mathbf{e} = (e_1, \dots, e_n)$ est la base canonique de $V = \mathbb{C}^n$, (e^1, \dots, e^n) la base duale de V^* , $(\overline{e^1}, \dots, \overline{e^n})$ la base duale de \overline{V}^* , on a

$$\alpha\left(e_{i}\right) = \sum_{j} h_{i\bar{j}} \overline{e^{j}}.$$

Si $\left(h^{k\bar{l}}\right)$ est la matrice inverse de $\left(\overline{h_{i\bar{j}}}\right)=\left(h_{j\bar{i}}\right)$ (au sens $\sum_{j}h^{k\bar{j}}h_{i\bar{j}}=\delta_{i}^{k}$), on a

$$\beta\left(\overline{e^k}\right) = \sum_i h^{i\overline{k}} e_i. \tag{2.29}$$

Par les isomorphismes α , $\overline{\alpha}$ on transporte h en une application bilinéaire

$$\theta: V^* \times \overline{V}^* \to \mathbb{C},$$

définie par

$$\theta(u,v) = h\left(\beta(v), \overline{\beta}(u)\right) = \langle \overline{\beta}(u), v \rangle = \langle u, \beta(v) \rangle.$$

On définit ainsi une forme hermitienne θ sur V^* , dont la matrice dans la base (e^1, \ldots, e^n) de V^* est $(h^{k\bar{l}})$.

2.4.2

L'application θ se factorise en $\theta = \operatorname{tr}_h \circ \otimes$, où $\otimes : V^* \times \overline{V}^* \to V^* \otimes \overline{V}^*$ est l'application canonique du produit tensoriel. L'application

$$\operatorname{tr} = \operatorname{tr}_h : V^* \otimes \overline{V}^* \to \mathbb{C}$$

est appelée trace ou contraction par rapport à la forme hermitienne h. Pour $k, l \ge 1$, on définit

$$\operatorname{tr} = \operatorname{tr}_h : \mathbb{C}[[u]] \otimes (\otimes^k V) \otimes (\otimes^l \overline{V}) \to \mathbb{C}[[u]] \otimes (\otimes^{k-1} V) \otimes (\otimes^{l-1} \overline{V})$$

par

$$\operatorname{tr}\left(a\otimes f^{1}\otimes\cdots\otimes f^{k}\otimes g^{1}\otimes\cdots\otimes g^{l}\right)=\theta\left(f^{1},g^{1}\right)a\otimes f^{2}\otimes\cdots\otimes f^{k}\otimes g^{2}\otimes\cdots\otimes g^{l}.$$

Cette application se restreint en une application

$$\operatorname{tr} = \operatorname{tr}_h : \mathbb{C}[[u]] \otimes \left(\odot^k V \right) \otimes \left(\odot^l \overline{V} \right) \to \mathbb{C}[[u]] \otimes \left(\odot^{k-1} V \right) \otimes \left(\odot^{l-1} \overline{V} \right).$$

Par l'isomorphisme $F \leftrightarrow \widehat{F}$,

$$\mathcal{F}_{kl} \simeq \mathbb{C}[[u]] \otimes (\odot^k V) \otimes (\odot^l \overline{V}),$$

on en déduit l'application de contraction des polynômes par rapport à h:

$$\operatorname{tr} = \operatorname{tr}_h : \mathcal{F}_{kl} \to \mathcal{F}_{k-1,l-1}.$$

Si $F \in \mathcal{F}_{kl}$ s'écrit

$$F_{kl} = \sum a_{\alpha_1 \dots \alpha_k \overline{\beta_1} \dots \overline{\beta_l}} z^{\alpha_1} \dots z^{\alpha_k} \overline{z^{\beta_1}} \dots \overline{z^{\beta_l}},$$

où les coefficients $a_{\alpha_1...\alpha_k\overline{\beta_1}...\overline{\beta_l}}$ sont des séries formelles en u, symétriques par rapport aux indices $(\alpha_1,...,\alpha_k)$ et $(\beta_1,...,\beta_l)$, on a

$$\operatorname{tr} F = \sum b_{\alpha_1 \dots \alpha_{k-1} \overline{\beta_1} \dots \overline{\beta_{l-1}}} z^{\alpha_1} \dots z^{\alpha_{k-1}} \overline{z^{\beta_1}} \dots \overline{z^{\beta_{l-1}}},$$

avec

$$b_{\alpha_1\dots\alpha_{k-1}\overline{\beta_1}\dots\overline{\beta_{l-1}}} = \sum_{\alpha_k,\beta_l} h^{\alpha_k\overline{\beta_l}} a_{\alpha_1\dots\alpha_k\overline{\beta_1}\dots\overline{\beta_l}}.$$

2.4.3 Propriétés de la contraction

Proposition 2.6. Soit h une forme hermitienne sur $V = \mathbb{C}^n$ et soient $\operatorname{tr} : \mathcal{F}_{kl} \to \mathcal{F}_{k-1,l-1}$ les applications de contraction par rapport à h.

1.

$$\operatorname{tr} h = n = \dim V. \tag{2.30}$$

2. $Si F \in \mathcal{F}_{11}$,

$$\operatorname{tr}(hF) = \frac{n+2}{4}F + \frac{1}{4}(\operatorname{tr} F)h.$$
 (2.31)

3.

$$\operatorname{tr}\left(h^{2}\right) = \frac{n+1}{2}h,\tag{2.32}$$

$$\operatorname{tr}^{2}(h^{2}) = \frac{n(n+1)}{2}.$$
 (2.33)

4. Si $F \in \mathcal{F}_{22}$,

$$\operatorname{tr}(hF) = \frac{n+4}{9}F + \frac{4}{9}h\operatorname{tr}F.$$
 (2.34)

5.

$$\operatorname{tr}(h^3) = \frac{n+2}{3}h^2,$$
 (2.35)

$$\operatorname{tr}^{2}(h^{3}) = \frac{(n+1)(n+2)}{6}h,$$
 (2.36)

$$\operatorname{tr}^{3}(h^{3}) = \frac{n(n+1)(n+2)}{6}.$$
 (2.37)

6. Si $F \in \mathcal{F}_{10}$,

$$\operatorname{tr}(hF) = \frac{n+1}{2}F. \tag{2.38}$$

7.
$$Si \ F \in \mathcal{F}_{21}$$
, $tr(hF) = \frac{n+3}{6}F + \frac{1}{3}(tr F) h.$ (2.39)

8. Si $F \in \mathcal{F}_{10}$,

$$\operatorname{tr}\left(h^{2}F\right) = \frac{n+2}{3}hF,\tag{2.40}$$

$$\operatorname{tr}^{2}(h^{2}F) = \frac{(n+1)(n+2)}{6}F.$$
 (2.41)

Démonstration. L'isomorphisme $F \leftrightarrow \widehat{F}$ entre \mathcal{F}_{kl} et $\mathbb{C}[[u]] \otimes (\odot^k V) \otimes (\odot^l \overline{V})$ transforme le produit de polynômes en produit tensoriel et produit symétrique de tenseurs (dans $\odot^k V$ et $\odot^l \overline{V}$). Il suffit donc de démontrer les relations (2.30)-(6.18) transposées dans $(\odot^k V) \otimes (\odot^l \overline{V})$. On utilisera les bases (e^1, \ldots, e^n) de V^* et

$$(e_1^*, \ldots, e_n^*) = (\alpha(e_1), \ldots, \alpha(e_n))$$

de \overline{V}^* . On a

$$\operatorname{tr}(u \otimes \alpha(z)) = \theta(u, \alpha(z)) = \langle u, z \rangle$$

et

$$\operatorname{tr}\left(e^{i}\otimes e_{j}^{*}\right)=\delta_{j}^{i}$$

(i.e., les bases (e^1, \ldots, e^n) et (e_1^*, \ldots, e_n^*) sont duales par rapport à θ).

1. On a

$$\widehat{h} = \sum_{i,j} h_{i\overline{j}} e^i \otimes \overline{e^j} = \sum_{i,j} e^i \otimes e_j^*,$$

d'où

$$\operatorname{tr} \widehat{h} = \dim V.$$

2. On démontre la relation (6.9) pour \hat{h} et $\hat{F} \in V^* \otimes \overline{V}^*$. Comme la relation à démontrer est linéaire en F, il suffit de la démontrer pour

$$\widehat{F} = e^i \otimes e_j^*.$$

On a $\operatorname{tr} \widehat{F} = \delta_i^j$. D'autre part,

$$\widehat{h} \odot \widehat{F} = \sum_{k} \left(e^{k} \odot e^{i} \right) \otimes \left(e_{k}^{*} \odot e_{j}^{*} \right)$$

$$=\frac{1}{4}\sum_{k}\left(e^{ki}+e^{ik}\right)\otimes\left(e_{kj}^{*}+e_{jk}^{*}\right),$$

où on note $e^{ij}=e^i\otimes e^j$ et $e^*_{ij}=e^*_i\otimes e^*_j$. On en déduit

$$\operatorname{tr}\left(\widehat{h}\odot\widehat{F}\right) = \frac{n}{4}\widehat{F} + \frac{1}{4}\widehat{F} + \frac{1}{4}\widehat{F} + \frac{1}{4}\delta_i^j\widehat{h} = \frac{n+2}{4}\widehat{F} + \frac{1}{4}\left(\operatorname{tr}\widehat{F}\right)\widehat{h}.$$

- 3. De (6.9) et tr h = n, on déduit immédiatement tr (h^2) et tr² (h^2) .
- 4. On démontre la relation (6.9) pour \hat{h} et $\hat{F} \in \odot^2 V \otimes \odot_2 \overline{V}^*$. Comme $\odot_2 V$ est engendré par les éléments de la forme $x \odot x$, $x \in V$, on peut se limiter au cas où

$$\widehat{F} = (e^j \odot e^j) \otimes (e_k^* \odot e_k^*) = e^{jj} \otimes e_{kk}^*.$$

On a alors

$$\widehat{h} \odot \widehat{F} = \sum_{i} \left(e^{i} \odot e^{j} \odot e^{j} \right) \otimes \left(e_{i}^{*} \odot e_{k}^{*} \odot e_{k} \right)$$

$$= \frac{1}{9} \sum_{i} \left(e^{ijj} + e^{jij} + e^{jji} \right) \otimes \left(e_{ikk}^{*} + e_{kik}^{*} + e_{kki}^{*} \right).$$

On en déduit

$$\operatorname{tr}\left(\widehat{h} \odot \widehat{F}\right) = \frac{n}{9} e^{jj} \otimes e_{kk}^* + \frac{1}{9} e^{jj} \otimes e_{kk}^* + \frac{1}{9} e^{jj} \otimes e_{kk}^*$$

$$+ \frac{1}{9} e^{jj} \otimes e_{kk}^* + \frac{\delta_k^j}{9} \sum_i e^{ij} \otimes e_{ik}^* + \frac{\delta_k^j}{9} \sum_i e^{ij} \otimes e_{ki}^*$$

$$+ \frac{1}{9} e^{jj} \otimes e_{kk}^* + \frac{\delta_k^j}{9} \sum_i e^{ji} \otimes e_{ik}^* + \frac{\delta_k^j}{9} \sum_i e^{ji} \otimes e_{ki}^*$$

$$= \frac{n+4}{9} \widehat{F} + \frac{4}{9} \widehat{h} \odot \operatorname{tr} \widehat{F},$$

 $\operatorname{car} \operatorname{tr} \widehat{F} = \delta_k^j e^j \otimes e_k^*.$

- 5. On déduit (6.10)-(6.12) de (6.9) avec $F = h^2$.
- 6. Il suffit de montrer la relation (6.15) pour $\hat{F} = e^j$. On a alors

$$\widehat{h} \odot \widehat{F} = \sum_{i} (e^{i} \odot e^{j}) \otimes e_{i}^{*} = \frac{1}{2} \sum_{i} e^{ij} \otimes e_{i}^{*} + \frac{1}{2} \sum_{i} e^{ji} \otimes e_{i}^{*}$$

et

$$\operatorname{tr}\left(\widehat{h}\odot\widehat{F}\right) = \frac{n}{2}e^j + \frac{1}{2}e^j.$$

7. Il suffit de montrer la relation (6.16) pour \hat{h} et $\hat{F} = (e^j \odot e^k) \otimes e_l^*$. On a dans ce cas

$$\widehat{h} \odot \widehat{F} = \sum_{i} \left(e^{i} \odot e^{j} \odot e^{k} \right) \otimes \left(e_{i}^{*} \odot e_{l}^{*} \right)$$

$$= \frac{1}{12} \sum_{i} \left(e^{ijk} + e^{ikj} + e^{jik} + e^{jki} + e^{kij} + e^{kji} \right) \otimes \left(e_{il}^{*} + e_{li}^{*} \right),$$

d'où

$$\operatorname{tr}\left(\widehat{h} \odot \widehat{F}\right) = \frac{n}{12} e^{jk} \otimes e_l^* + \frac{1}{12} e^{jk} \otimes e_l^* + \frac{n}{12} e^{kj} \otimes e_l^* + \frac{1}{12} e^{kj} \otimes e_l^*$$

$$+ \frac{1}{12} e^{jk} \otimes e_l^* + \frac{\delta_l^j}{12} \sum_i e^{ik} \otimes e_i^* + \frac{1}{12} e^{kj} \otimes e_l^* + \frac{\delta_l^j}{12} \sum_i e^{ki} \otimes e_i^*$$

$$+ \frac{1}{12} e^{kj} \otimes e_l^* + \frac{\delta_l^k}{12} \sum_i e^{ij} \otimes e_i^* + \frac{1}{12} e^{jk} \otimes e_l^* + \frac{\delta_l^k}{12} \sum_i e^{ji} \otimes e_i^*$$

$$= \frac{n}{6} \widehat{F} + \frac{1}{2} \widehat{F} + \frac{1}{6} \left(\delta_l^i e^k + \delta_l^k e^j \right) \odot \widehat{h} = \frac{n+3}{6} \widehat{F} + \frac{1}{3} \left(\operatorname{tr} \widehat{F} \right) \odot \widehat{h}.$$

8. En remplaçant dans (6.16) F par hF ($F \in \mathcal{F}_{10}$) et en utilisant (6.15), on obtient (6.17); d'où (6.18) en appliquant à nouveau (6.15).

2.5 Formes normales

De la proposition précédente, on déduit les lemmes suivants :

Lemme 2.7. *On a*

$$\mathcal{F}_{22} = h\mathcal{F}_{11} \oplus \mathcal{N}_{22}$$

où

$$\mathcal{N}_{22} = \{ N \in \mathcal{F}_{22} \mid \operatorname{tr} N = 0 \} .$$

Tout élément $F \in \mathcal{F}_{22}$ s'écrit

$$F = hG + N, (2.42)$$

 $avec \operatorname{tr} N = 0 et$

$$G = \frac{4}{n+2} \operatorname{tr} F - \frac{2h}{(n+1)(n+2)} (\operatorname{tr})^2 F.$$
 (2.43)

Démonstration. Si $F \in \mathcal{F}_{22}$ admet l'écriture (6.7) avec tr N = 0, la relation (6.4) entraı̂ne

$$\operatorname{tr} F = \frac{n+2}{4}G + \frac{1}{4}(\operatorname{tr} G)h.$$

On en déduit

$$tr^{2} F = \frac{n+2}{4} tr G + \frac{n}{4} tr G = \frac{n+1}{2} tr G,$$

$$tr G = \frac{2}{n+1} tr^{2} F,$$

$$G = \frac{4}{n+2} tr F - \frac{1}{n+2} (tr G) h$$

$$= \frac{4}{n+2} tr F - \frac{2h}{(n+1)(n+2)} (tr)^{2} F,$$

ce qui montre l'unicité de la décomposition (6.7).

Inversement, si G est défini par (6.8), on a

$$\operatorname{tr}(hG) = \frac{n+2}{4}G + \frac{1}{4}(\operatorname{tr} G)h = \operatorname{tr} F.$$

Lemme 2.8. *On a*

$$\mathcal{F}_{32}=h^2\mathcal{F}_{10}\oplus\mathcal{N}_{32},$$

où

$$\mathcal{N}_{32} = \left\{ N \in \mathcal{F}_{32} \mid (\operatorname{tr})^2 N = 0 \right\}.$$

Tout élément $F \in \mathcal{F}_{32}$ s'écrit

$$F = h^2 G + N,$$

 $avec (tr)^2 N = 0 et$

$$G = \frac{6}{(n+1)(n+2)} (\operatorname{tr})^2 F.$$

Résulte directement de (6.18).

Lemme 2.9. On a

$$\mathcal{F}_{33} = h^3 \mathcal{F}_{00} \oplus \mathcal{N}_{33}$$

où

$$\mathcal{N}_{33} = \left\{ N \in \mathcal{F}_{33} \mid (\operatorname{tr})^3 N = 0 \right\}.$$

Tout élément $F \in \mathcal{F}_{33}$ s'écrit

$$F = h^3 G + N,$$

 $avec (tr)^3 N = 0 et$

$$G = \frac{6}{n(n+1)(n+2)} (tr)^3 F.$$

Résulte directement de (6.12).

Rappelons (définition 2.1) que tout série formelle $F \in \mathcal{F}$ s'écrit

$$F = \sum_{k,l \in \mathbb{N}} F_{kl},$$

avce $F_{kl} \in \mathcal{F}_{kl}$ et

$$F_{lk} = \overline{F_{kl}}$$
 $(k, l \in \mathbb{N})$.

Définition 2.8. On désigne par R le sous-espace de F, constitué par les séries formelles

$$F = \sum_{\min(k,l) \le 1} F_{kl} + hG_{11} + h^2 (G_{10} + G_{01}) + h^3 G_{00}$$

telles que $F_{lk} = \overline{F_{kl}}$, $G_{11} = \overline{G_{11}}$, $G_{10} = \overline{G_{01}}$, $G_{00} = \overline{G_{00}}$. On désigne par \mathcal{N} le sous-espace de \mathcal{F} , constitué par les séries formelles

$$N = \sum_{k,l \in \mathbb{N}} N_{kl}$$

telles que

$$N_{kl} = 0$$
 si min $(k, l) \le 1$, tr $N_{22} = 0$, $(\text{tr})^2 N_{32} = 0$, $(\text{tr})^3 N_{33} = 0$.

Des lemmes 2.7-2.9 et de tr $F_{kl}=\mathrm{tr}\,\overline{F_{lk}}=\mathrm{tr}\,F_{lk}$, on déduit immédiatement

Proposition 2.10. L'espace vectoriel \mathcal{F} des séries formelles est la somme directe

$$\mathcal{F} = \mathcal{R} \oplus \mathcal{N}$$
.

Définition 2.9. On désigne par $P: \mathcal{F} \longrightarrow \mathcal{R}$ la projection associée à la décomposition $\mathcal{F} = \mathcal{R} \oplus \mathcal{N}$. Pour $F = \sum_{k,l \in \mathbb{N}} F_{kl} \in \mathcal{F}$, on a

$$PF = \sum_{\min(k,l) \le 1} F_{kl} + G_{11}h + (G_{10} + G_{01})h^2 + G_{00}h^3, \qquad (2.44)$$

où

$$G_{11} = \frac{4}{n+2} \operatorname{tr}(F_{22}) - \frac{2h}{(n+1)(n+2)} (\operatorname{tr})^{2} (F_{22}),$$

$$G_{10} = \frac{6}{(n+1)(n+2)} (\operatorname{tr})^{2} F_{32},$$

$$G_{00} = \frac{6}{n(n+1)(n+2)} (\operatorname{tr})^{3} F_{33}.$$

On remarque que, si n = 1, on a

$$PF = \sum_{\min(k,l) \le 1} F_{kl} + F_{22} + F_{23} + F_{32} + F_{33}. \tag{2.45}$$

2.6 Noyau de l'opérateur L

Les équations (2.27) ramènent la détermination d'un biholomorphisme local (f,g) qui transforme une hypersurface réelle M en une hypersurface M^* à la résolution d'équations linéaires sur $(f_{\mu-1},g_{\mu})$ $(\mu \geq 3)$.

Rappelons que L est défini par

$$L(f,g) = \operatorname{Re}(2\langle z, f \rangle + ig)|_{w=u+i\langle z,z\rangle}.$$

Soit \mathcal{V}^{μ} l'espace vectoriel des applications polynomiales (f,g)

$$f: \mathbb{C}^{n+1} \to \mathbb{C}^n, \quad g: \mathbb{C}^{n+1} \to \mathbb{C},$$

où f(z, w) est polynomiale de poids $\mu - 1$ et g(z, w) est polynomiale de poids μ (poids 1 pour z, poids 2 pour w). Soit \mathcal{F}^{μ} l'espace des polynômes réels

de poids μ en z, \overline{z}, u (poids 1 pour z, \overline{z} , poids 2 pour u). Alors L est une application \mathbb{R} -linéaire

$$L: \mathcal{V} = \widehat{\bigoplus_{\mu \geq 3}} \mathcal{V}^{\mu} \longrightarrow \mathcal{F}_3 = \widehat{\bigoplus_{\mu \geq 3}} \mathcal{F}^{\mu}$$

telle que

$$L(\mathcal{V}^{\mu}) \subset \mathcal{F}^{\mu} \qquad (\mu \ge 3).$$
 (2.46)

On désigne par

$$L^{\mu}: \mathcal{V}^{\mu} \longrightarrow \mathcal{F}^{\mu} \qquad (\mu \ge 3)$$

la restriction de L à \mathcal{V}^{μ} . Pour déterminer le noyau et l'image de L, il suffit donc de déterminer le noyau et l'image des L^{μ} .

2.6.1

Lemme 2.11. *On a*

$$\ker L^3 = \{(2i\langle z, b_0\rangle z + b_0 w, 2i\langle z, b_0\rangle w) \mid b_0 \in \mathbb{C}^n\}.$$

Démonstration. Si $(f,g) \in \mathcal{V}^3$, on a

$$f(z, w) = b_2(z) + b_0 w,$$

 $g(z, w) = a_3(z) + a_1(z)w,$

où b_2, a_3, a_1 sont polynomiales homogènes du degré indiqué par leur indice. On a donc

$$2\langle z, f \rangle = 2\langle z, b_2 \rangle + 2\langle z, b_0 \rangle \overline{w}$$

et

$$L(f,g) = \operatorname{Re} (2 \langle z, b_2 \rangle + 2 \langle z, b_0 \rangle (u - i \langle z, z \rangle) + i a_3 + i a_1 (u + i \langle z, z \rangle))$$

$$= u \operatorname{Re} (2 \langle z, b_0 \rangle + i a_1(z))$$

$$+ \operatorname{Re} (2 \langle z, b_2 \rangle - \operatorname{Re} (2 i \langle z, b_0 \rangle) \langle z, z \rangle + i a_3 - a_1 \langle z, z \rangle).$$

La nullité du coefficient de u dans L(f,g) équivaut à

$$2\langle z, b_0 \rangle + i a_1(z) = 0.$$
 (2.47)

La nullité du terme indépendant de u implique $a_3 = 0$ et

$$2\langle b_2, z \rangle - \operatorname{Re}(2i\langle z, b_0 \rangle)\langle z, z \rangle - a_1(z)\langle z, z \rangle = 0.$$

Cette relation est équivalente à

$$2b_2 - 2i \langle z, b_0 \rangle z - a_1(z)z = 0$$

ou encore, compte tenu de (2.47), à

$$b_2(z) = 2i \langle z, b_0 \rangle z. \tag{2.48}$$

Les éléments (f, g) du noyau de L vérifient donc $a_3 = 0$, et les relations (2.47), (2.48), d'où

$$f(z, w) = 2 i \langle z, b_0 \rangle z + b_0 w,$$

$$g(z, w) = 2 i \langle z, b_0 \rangle w,$$

avec $b_0 \in \mathbb{C}^n$.

2.6.2

Lemme 2.12. *On a*

$$\ker L^4 = \mathbb{R}\left(zw, w^2\right).$$

Démonstration. Si $(f,g) \in \mathcal{V}^4$, on a

$$f(z, w) = b_3(z) + b_1(z)w,$$

$$g(z, w) = a_4(z) + a_2(z)w + a_0w^2,$$

où b_3, b_1, a_4, a_2 sont polynomiales homogènes du degré indiqué par leur indice. On a donc

$$2\langle z, f \rangle = 2\langle z, b_3 \rangle + 2\langle z, b_0 \rangle \overline{w}$$

et

$$L(f,g) = \operatorname{Re} (2 \langle z, b_3 \rangle + 2 \langle z, b_1 \rangle (u - i \langle z, z \rangle))$$

$$+ \operatorname{Re} (i a_4 + i a_2 (u + i \langle z, z \rangle) + i a_0 (u + i \langle z, z \rangle)^2)$$

$$= u^2 \operatorname{Re} (i a_0)$$

$$+ u \operatorname{Re} (2 \langle z, b_1 \rangle + i a_2(z) - 2a_0 \langle z, z \rangle)$$

$$+ \operatorname{Re} (2 \langle z, b_3 \rangle - 2i \langle z, b_1 \rangle \langle z, z \rangle + i a_4 - a_2 \langle z, z \rangle - i a_0 \langle z, z \rangle^2).$$

La nullité du coefficient $\operatorname{Re}(\mathrm{i}\,a_0) = -\operatorname{Im} a_0$ de u^2 équivaut à $a_0 \in \mathbb{R}$. Celle du coefficient de u équivaut à $a_2 = 0$ et

$$\langle z, b_1 \rangle + \langle b_1, z \rangle - 2a_0 \langle z, z \rangle = 0.$$
 (2.49)

Le terme indépendant de u est alors

$$\operatorname{Re}(2\langle z, b_3 \rangle - 2 i \langle z, b_1 \rangle \langle z, z \rangle + i a_4);$$

sa nullité équivaut à $b_3=0, a_4=0$ et

$$\langle z, b_1 \rangle - \langle b_1, z \rangle = 0. \tag{2.50}$$

De (2.49) et (2.50), on déduit $\langle z, b_1 \rangle - a_0 \langle z, z \rangle = 0$ et $b_1 = a_0 z$. En conclusion, on a $(f, g) \in \ker L^4$ si $f(z, w) = a_0 z w$, $g(z, w) = a_0 w^2$, $a_0 \in \mathbb{R}$.

2.6.3

Lemme 2.13. Pour $\mu \geq 5$, l'opérateur $L^{\mu}: \mathcal{V}^{\mu} \longrightarrow \mathcal{F}^{\mu}$ est injectif.

Démonstration. La démonstration est différente suivant que μ est pair ou impair.

1) Soit
$$\mu \geq 5$$
, $\mu = 2\nu + 1$ impair, $\nu \geq 2$. Soit $(f,g) \in \mathcal{V}^{\mu}$. On a

$$f(z,w) = b_{2\nu}(z) + b_{2\nu-2}(z)w + \dots + b_4(z)w^{\nu-2} + b_2(z)w^{\nu-1} + b_0w^{\nu},$$

$$g(z,w) = a_{2\nu+1}(z) + a_{2\nu-1}(z)w + \dots + a_3(z)w^{\nu-1} + a_1(z)w^{\nu}$$

et

$$\langle z, f \rangle = \langle z, b_{2\nu} \rangle + \langle z, b_{2\nu-2} \rangle \, \overline{w} + \dots + \langle z, b_4 \rangle \, \overline{w}^{\nu-2} + \langle z, b_2 \rangle \, \overline{w}^{\nu-1} + \langle z, b_0 \rangle \, \overline{w}^{\nu}.$$

Le coefficient de u^{ν} dans L(f,g) est

$$\operatorname{Re}\left(2\langle z,b_0\rangle+\mathrm{i}\,a_1(z)\right);$$

sa nullité équivaut à

$$2\langle z, b_0 \rangle + i a_1(z) = 0.$$
 (2.51)

Le coefficient de $u^{\nu-1}$ dans $L\left(f,g\right)$ est alors

Re
$$(2\langle z, b_2 \rangle - 2 i \nu \langle z, b_0 \rangle \langle z, z \rangle + i a_3(z) - \nu a_1(z) \langle z, z \rangle)$$
;

sa nullité entraı̂ne $a_3 = 0$ et

$$2 \langle b_2, z \rangle + i \nu \langle z, z \rangle (-2 \langle z, b_0 \rangle + i a_1(z)) = 0.$$
 (2.52)

Compte tenu de (2.51), cette relation est équivalente à

$$\langle b_2, z \rangle = 2 i \nu \langle z, b_0 \rangle \langle z, z \rangle$$

ou encore à

$$b_2(z) = 2 i \nu \langle z, b_0 \rangle z. \tag{2.53}$$

On a donc

$$f(z,w) = b_{2\nu}(z) + b_{2\nu-2}(z)w + \dots + b_4(z)w^{\nu-2} + b_2(z)w^{\nu-1} + b_0w^{\nu},$$

$$g(z,w) = a_{2\nu+1}(z) + a_{2\nu-1}(z)w + \dots + a_5(z)w^{\nu-2} + a_1(z)w^{\nu},$$

avec a_1 et b_2 liés à b_0 par (2.51) et (2.53). Le coefficient de $u^{\nu-2}$ dans L(f,g) est alors

$$\operatorname{Re}\left(2\langle z, b_{4}\rangle - 2\operatorname{i}(\nu - 1)\langle z, b_{2}\rangle\langle z, z\rangle - 2\binom{\nu}{2}\langle z, b_{0}\rangle\langle z, z\rangle^{2}\right) + \operatorname{Re}\left(\operatorname{i} a_{5} - \operatorname{i} a_{1}\binom{\nu}{2}\langle z, z\rangle^{2}\right) = \operatorname{Re}\left(2\langle z, b_{4}\rangle + \operatorname{i} a_{5} - 2\operatorname{i}(\nu - 1)\langle z, b_{2}\rangle\langle z, z\rangle\right).$$

Sa nullité implique, par décomposition suivant le type en z, $a_5 = 0$, $b_4 = 0$, $b_2 = 0$; on en déduit $b_0 = 0$ et $a_1 = 0$ par (2.51) et (2.53).

On a ainsi montré $b_{2j} = 0$ et $a_{2j+1} = 0$ $(0 \le j < 3)$. On démontre ensuite par récurrence $b_{2j} = 0$ et $a_{2j+1} = 0$ pour tout $j \le \nu$.

En effet, soit $k \geq 3$ tel que $b_{2j} = 0$ et $a_{2j+1} = 0$ pour tout j < k. Soit alors $(f,g) \in \mathcal{V}^{\mu}$,

$$f(z,w) = b_{2\nu}(z) + b_{2\nu-2}(z)w + \dots + b_{2k}(z)w^{\nu-k},$$

$$g(z,w) = a_{2\nu+1}(z) + a_{2\nu-1}(z)w + \dots + a_{2k+1}(z)w^{\nu-k}$$

tel que L(f,g) = 0. Le coefficient de $u^{\nu-k}$ dans L(f,g) est

$$\operatorname{Re}\left(2\left\langle z,b_{2k}\right\rangle + \mathrm{i}\,a_{2k+!}(z)\right),\,$$

et sa nullité entraîne $b_{2k} = 0$, $a_{2k+1} = 0$. Donc L(f,g) = 0 entraîne (f,g) = 0. 2) Soit $\mu = 2\nu$ est pair $(\nu \ge 3)$ et soit $(f,g) \in \mathcal{V}^{\mu}$. On a

$$f(z,w) = b_{2\nu-1}(z) + b_{2\nu-3}(z)w + \dots + b_1(z)w^{\nu-1},$$

$$g(z,w) = a_{2\nu}(z) + a_{2\nu-2}(z)w + \dots + a_2(z)w^{\nu-1} + a_0w^{\nu},$$

où les b_j, a_k sont polynomiales homogènes de degrés j, k, et

$$\langle z, f \rangle = \langle z, b_{2\nu-1} \rangle + \langle z, b_{2\nu-3} \rangle \, \overline{w} + \dots + \langle z, b_3 \rangle \, \overline{w}^{\nu-2} + \langle z, b_1 \rangle \, \overline{w}^{\nu-1}.$$

Le coefficient de u^{ν} dans L(f,g) est

$$\operatorname{Re}\left(\mathrm{i}\,a_{0}\right)$$
.

Si L(f,g) = 0, on a donc $a_0 \in \mathbb{R}$. Le coefficient de $u^{\nu-1}$ est alors

Re
$$(2\langle z, b_1\rangle + i a_2(z) - a_0\nu \langle z, z\rangle)$$
;

on en déduit $a_2 = 0$ et

$$\langle z, b_1 \rangle + \langle b_1, z \rangle - \nu a_0 \langle z, z \rangle = 0.$$
 (2.54)

On a donc

$$g(z,w) = a_{2\nu}(z) + a_{2\nu-2}(z)w + \dots + a_4(z)w^{\nu-2} + a_0w^{\nu}.$$

Le coefficient de $u^{\nu-2}$ dans L(f,g) est

$$\operatorname{Re}\left(2\langle z, b_{3}\rangle - 2\operatorname{i}(\nu - 1)\langle z, b_{1}\rangle\langle z, z\rangle + \operatorname{i} a_{4}(z) - \operatorname{i} a_{0}\binom{\nu}{2}\langle z, z\rangle^{2}\right)$$

$$= \operatorname{Re}\left(2\langle z, b_{3}\rangle - 2\operatorname{i}(\nu - 1)\langle z, b_{1}\rangle\langle z, z\rangle + \operatorname{i} a_{4}(z)\right)$$

puisque $a_0 \in \mathbb{R}$. Sa nullité entraı̂ne $a_4 = 0$, $b_3 = 0$ et

$$\langle z, b_1 \rangle - \langle b_1, z \rangle = 0.$$

Utilisant (2.54), on a alors

$$2\langle z, b_1 \rangle - \nu a_0 \langle z, z \rangle = 0$$

et $2b_1 = \nu a_0 z$.

D'où, si
$$L(f,g) = 0$$
,

$$f(z,w) = b_{2\nu-1}(z) + b_{2\nu-3}(z)w + \dots + b_5(z)w^{\nu-3} + \frac{\nu a_0}{2}zw^{\nu-1},$$

$$g(z,w) = a_{2\nu}(z) + a_{2\nu-2}(z)w + \dots + a_6(z)w^{\nu-3} + a_0w^{\nu}.$$

Le coefficient de $u^{\nu-3}$ est alors

$$\operatorname{Re}\left(2\langle z, b_5\rangle - a_0\nu \binom{\nu-1}{2}\langle z, z\rangle^3 + i a_6(z) + a_0\binom{\nu}{3}\langle z, z\rangle^3\right)$$
$$= \operatorname{Re}\left(2\langle z, b_5\rangle - a_0\frac{\nu(\nu-1)(\nu-2)}{3}\langle z, z\rangle^3 + i a_6(z)\right).$$

On en déduit $a_6=0,\,b_5=0,\,mais\,\,aussi,\,comme\,\,\nu\geq 3,\,{\rm Re}\,a_0=0\,\,et\,\,par\,\,conséquent$

$$a_0 = 0, \quad b_1 = 0.$$

On termine encore la démonstration par récurrence. Soit $k \geq 3$ tel que

$$a_{2j} = 0, \quad b_{2j+1} = 0 \quad (0 \le j < k);$$

on a donc

$$f(z,w) = b_{2\nu-1}(z) + b_{2\nu-3}(z)w + \dots + b_{2k+1}(z)w^{\nu-k},$$

$$g(z,w) = a_{2\nu}(z) + a_{2\nu-2}(z)w + \dots + a_{2k}(z)w^{\nu-k}.$$

Le coefficient de $u^{\nu-k}$ dans L(f,g) est

$$\operatorname{Re}\left(2\left\langle z,b_{2k+1}\right\rangle + \mathrm{i}\,a_{2k}(z)\right)$$

et sa nullité entraı̂ne $a_{2k}=0,\,b_{2k+1}=0.$ Donc $L\left(f,g\right)=0$ entraı̂ne $\left(f,g\right)=0.$

2.6.4

Proposition 2.14. Le noyau de $L: \mathcal{V} \to \mathcal{F}_3$ est

$$\{(2 i \langle z, b_0 \rangle z + b_0 w + a_0 z w, 2 i \langle z, b_0 \rangle w + a_0 w^2) \mid a_0 \in \mathbb{R}, b_0 \in \mathbb{C}^n \}.$$

La restriction $L_0: \mathcal{V}_0 \to \mathcal{F}_3$ de L à \mathcal{V}_0 est un opérateur injectif.

Démonstration. La première assertion résulte des lemmes 2.11-2.13. La seconde résulte de la définition de \mathcal{V}_0 , qui implique $a_0 = 0$ et $b_0 = 0$.

2.7 Image de L

Soit $F \in \mathcal{F}^{\mu}$ un polynôme réel de poids $\mu \geq 3$. Sa décomposition suivant les bidegrés en z, \overline{z} s'écrit

$$F = \sum_{k+l+2j=\mu} A_{kl} u^j = \sum_{j=0}^{[\mu/2]} \sum_{k+l=\mu-2j} F_{kl}$$

avec $F_{kl} = A_{kl}u^j$ et $A_{kl} = \overline{A_{lk}}$.

2.7.1

Soit

$$F = F_{30} + F_{03} + F_{21} + F_{12} + (A_{10} + A_{01}) u$$

un élément arbitraire de \mathcal{F}^3 . Alors PF = F et $\mathcal{R}^3 = \mathcal{F}^3$.

Lemme 2.15. L'image de L^3 est $\mathcal{R}^3 = \mathcal{F}^3$ et $L_0^3 = L^3|_{\mathcal{V}^3 \cap \mathcal{V}_0}$ est une bijection de $\mathcal{V}^3 \cap \mathcal{V}_0$ sur \mathcal{F}^3 .

Démonstration. D'après le lemme 2.11, $\mathcal{V}_0^3 = \mathcal{V}^3 \cap \mathcal{V}_0$ est un supplémentaire de ker L^3 ; l'image de L^3 est donc égale à $L(\mathcal{V}_0^3)$. Soit $(f,g) \in \mathcal{V}_0^3$,

$$f(z, w) = b_2(z),$$

 $g(z, w) = a_3(z) + a_1(z)w,$

avec les notations du lemme 2.11. On a alors

$$L(f,g) = \operatorname{Re} (2 \langle z, b_2 \rangle + i a_3 + i a_1 u - a_1 \langle z, z \rangle)$$

= $\operatorname{Re} (2 \langle z, b_2 \rangle + i a_3 - a_1 \langle z, z \rangle) + u \operatorname{Re} (i a_1).$

Soit

$$F = F_{30} + F_{03} + F_{21} + F_{12} + (A_{10} + A_{01}) u$$

un élément arbitraire de \mathcal{F}^3 . L'équation L(f,g)=F équivaut alors à

$$i a_1 = 2A_{10}, (2.55)$$

$$i a_3 = 2F_{30},$$
 (2.56)

$$2\langle b_2, z \rangle - a_1 \langle z, z \rangle = 2F_{21}. \tag{2.57}$$

Les coefficients de f et $g:a_3, a_1, b_2$ sont déterminés uniquement par ces équations quels que soient $F_{30}, F_{21}, F_{10} = A_{10}u$.

2.7.2

Le sous-espace \mathcal{F}^4 est l'ensemble des éléments de la forme

$$F = F_{40} + F_{04} + F_{31} + F_{13} + F_{22} + (A_{20} + A_{02} + A_{11}) u + A_{00} u^{2}.$$

Pour $F \in \mathcal{F}^4$, on a

$$PF = F_{40} + F_{04} + F_{31} + F_{13} + hG_{11} + (A_{20} + A_{02} + A_{11}) u + A_{00}u^{2},$$

avec

$$G_{11} = \frac{4}{n+2} \operatorname{tr} F_{22} - \frac{2h}{(n+1)(n+2)} (\operatorname{tr})^2 F_{22}.$$

Les éléments de \mathbb{R}^4 sont les F tels que $F_{22} = hG_{11}$.

Lemme 2.16. L'application L^4 est bijective de $\mathcal{V}^4 \cap \mathcal{V}_0$ sur $\mathcal{R}^4 = \mathcal{R} \cap \mathcal{F}^4$.

Démonstration. D'après le lemme 2.12, $\mathcal{V}_0^4 = \mathcal{V}^4 \cap \mathcal{V}_0$ est un supplémentaire de ker L^4 dans \mathcal{V}^4 ; l'image de L^4 est donc égale à $L(\mathcal{V}_0^4)$. Soit $(f,g) \in \mathcal{V}_0^4$,

$$f(z, w) = b_3(z) + b_1(z)w,$$

$$g(z, w) = a_4(z) + a_2(z)w + a_0w^2,$$

avec Re $a_0 = 0$.

On considère l'équation $L(f,g)=F, F\in\mathcal{F}^4$. Le coefficient de u^2 dans L(f,g) est $\mathrm{Re}(\mathrm{i}\,a_0)=-\mathrm{Im}\,a_0$; l'égalité des termes en u^2 s'écrit donc

$$-\operatorname{Im} a_0 = A_{00}.$$

Le coefficient de u dans L(f,g) est

$$\operatorname{Re}\left(2\left\langle z,b_{1}\right\rangle +\mathrm{i}\,a_{2}(z)-2a_{0}\left\langle z,z\right\rangle \right)=\operatorname{Re}\left(2\left\langle z,b_{1}\right\rangle +\mathrm{i}\,a_{2}(z)\right);$$

l'égalité des termes en u dans l'équation L(f,g) = F équivaut à

$$i a_2 = 2A_{20},$$

$$\langle z, b_1 \rangle + \langle b_1, z \rangle = A_{11}.$$

Le terme indépendant de u dans L(f,g) est

Re
$$(2\langle z, b_3 \rangle + 2 i \langle z, b_1 \rangle \langle z, z \rangle + i a_4(z) - a_2 \langle z, z \rangle - i a_0 \langle z, z \rangle^2)$$
;

l'égalité des termes indépendants de u dans l'équation équivaut à

$$\mathrm{i}\,a_4 = 2F_{40},$$

$$2\,\langle b_3, z \rangle - a_2 < z, z >= 2F_{31},$$

$$(\mathrm{i}\,\langle z, b_1 \rangle - \mathrm{i}\,\langle b_1, z \rangle - \mathrm{i}\,a_0 < z, z >) < z, z >= F_{22}.$$

La dernière condition implique $F \in \mathcal{R}^4$. Si $F \in \mathcal{R}^4$, on a $F_{22} = hG_{11}$ et les conditions sur (f,g) s'écrivent

$$-\operatorname{Im} a_{0} = A_{00},$$

$$\operatorname{i} a_{2} = 2A_{20},$$

$$\operatorname{i} a_{4} = 2F_{40},$$

$$2 \langle b_{3}, z \rangle - a_{2} < z, z \rangle = 2F_{31},$$

$$\langle z, b_{1} \rangle + \langle b_{1}, z \rangle = A_{11},$$

$$\operatorname{i} \langle z, b_{1} \rangle - \operatorname{i} \langle b_{1}, z \rangle - \operatorname{i} a_{0} < z, z \rangle = G_{11}.$$

Les trois premières ont des solutions uniques a_4, a_2, a_0 (avec Re $a_0 = 0$). La quatrième s'écrit

$$2 \langle b_3, z \rangle = 2F_{31} + a_2 \langle z, z \rangle$$

et a une solution unique b_3 . Des deux dernières, on déduit la relation équivalente

$$2 \langle b_1, z \rangle = A_{11} + i G_{11} - a_0 \langle z, z \rangle,$$

qui a toujours une solution unique b_1 .

2.7.3

Soit $\mu = 2\nu + 1$ impair, $\nu \ge 2$. Soit $F \in \mathcal{F}^{\mu}$; on a

$$F = \sum_{k+l=2\nu+1} F_{kl} + \sum_{k+l=2\nu-1} A_{kl} u^2 + \cdots + (A_{50} + A_{41} + A_{32} + A_{23} + A_{14} + A_{05}) u^{\nu-2} + (A_{30} + A_{21} + A_{12} + A_{03}) u^{\nu-1} + (A_{10} + A_{01}) u^{\nu}$$

et

$$PF = (F_{2\nu+1,0} + F_{2\nu,1} + F_{1,2\nu} + F_{0,2\nu+1}) + \cdots + (A_{2k+1,0} + A_{2k,1} + A_{1,2k} + A_{0,2k+1}) u^{\nu-k} + \cdots + (A_{50} + A_{41} + h^2 (B_{10} + B_{01}) + A_{14} + A_{05}) u^{\nu-2} + (A_{30} + A_{21} + A_{12} + A_{03}) u^{\nu-1} + (A_{10} + A_{01}) u^{\nu},$$

avec

$$B_{10} = \frac{6}{(n+1)(n+2)} (\text{tr})^2 A_{32}.$$

Les éléments de \mathcal{R}^{μ} sont les

$$F = (F_{2\nu+1,0} + F_{2\nu,1} + F_{1,2\nu} + F_{0,2\nu+1}) + \cdots + (A_{2\nu-2k+1,0} + A_{2\nu-2k,1} + A_{1,2\nu-2k} + A_{0,2\nu-2k+1}) u^k + \cdots + (A_{50} + A_{41} + h^2 (B_{10} + B_{10}) + A_{14} + A_{05}) u^{\nu-2} + (A_{30} + A_{21} + A_{12} + A_{03}) u^{\nu-1} + (A_{10} + A_{01}) u^{\nu}.$$
 (2.58)

Lemme 2.17. Soit $\mu = 2\nu + 1$ impair, $\nu \geq 2$. L'image de PL^{μ} est $\mathcal{R}^{\mu} = \mathcal{F}^{\mu} \cap \mathcal{R}$ et PL^{μ} est une bijection de \mathcal{V}^{μ} sur \mathcal{R}^{μ} .

Démonstration. Soit $(f,g) \in \mathcal{V}^{\mu}$:

$$f(z,w) = b_{2\nu}(z) + \dots + b_{2k}(z)w^{\nu-k} + \dots + b_4(z)w^{\nu-2} + b_2(z)w^{\nu-1} + b_0w^{\nu},$$

$$g(z,w) = a_{2\nu+1}(z) + \dots + a_{2k+1}(z)w^{\nu-k} + \dots + a_5(z)w^{\nu-2} + a_3(z)w^{\nu-1} + a_1(z)w^{\nu}$$

et soit F=L(f,g). Le coefficient de u^{ν} dans L(f,g)=F est

$$\operatorname{Re}(2\langle z, b_0 \rangle + i a_1) = A_{10} + A_{01},$$

avec

$$2\langle z, b_0 \rangle + i \, a_1 = 2A_{10}. \tag{2.59}$$

Le coefficient de $u^{\nu-1}$ dans L(f,g)=F est

Re
$$(2 \langle z, b_2 \rangle - 2 i \nu \langle z, b_0 \rangle \langle z, z \rangle + i a_3(z) - \nu a_1(z) \langle z, z \rangle)$$

= $A_{30} + A_{21} + A_{12} + A_{03}$,

avec

$$i a_3 = 2A_{30}, (2.60)$$

$$2\langle b_2, z \rangle + i \nu \langle z, z \rangle (-2\langle z, b_0 \rangle + i a_1(z)) = 2A_{21}.$$
 (2.61)

Le coefficient de $u^{\nu-2}$ dans L(f,g)=F est

$$\operatorname{Re}\left(2\langle z, b_{4}\rangle - 2\operatorname{i}(\nu - 1)\langle z, b_{2}\rangle\langle z.z\rangle - 2\binom{\nu}{2}\langle z, b_{0}\rangle\langle z, z\rangle^{2}\right)$$

$$+ \operatorname{Re}\left(\operatorname{i} a_{5} + \operatorname{i}(\nu - 1)a_{3}\langle z, z\rangle - \operatorname{i}\binom{\nu}{2}a_{1}\langle z, z\rangle^{2}\right)$$

$$= \operatorname{Re}\left(\operatorname{i} a_{5}\right) + \operatorname{Re}\left(2\langle z, b_{4}\rangle + \operatorname{i}(\nu - 1)a_{3}\langle z, z\rangle\right)$$

$$+ \operatorname{Re}\left(-2\operatorname{i}(\nu - 1)\langle z, b_{2}\rangle - \binom{\nu}{2}\left(2\langle z, b_{0}\rangle + \operatorname{i} a_{1}\rangle\langle z, z\rangle\right)\langle z, z\rangle,$$

d'où

$$i a_5 = 2A_{50}, (2.62)$$

$$2\langle b_4, z \rangle + i(\nu - 1) a_3 \langle z, z \rangle = 2A_{41},$$
 (2.63)

$$2 i (\nu - 1) \langle b_2, z \rangle \langle z, z \rangle - {\nu \choose 2} (2 \langle z, b_0 \rangle + i a_1) \langle z, z \rangle^2 = 2A_{32}.$$
 (2.64)

La projection PA_{32} est alors

$$PA_{32} = h^2 B_{10},$$

avec

$$B_{10} = \frac{6}{(n+1)(n+2)} (\text{tr})^2 A_{32}.$$

Appliquant

$$\operatorname{tr}(hG) = \frac{n+3}{6}G + \frac{1}{3}(\operatorname{tr}G)h$$

à $G = \langle b_2, z \rangle$, on a

$$\operatorname{tr}(\langle b_2, z \rangle \langle z, z \rangle) = \frac{n+3}{6} \langle b_2, z \rangle + \frac{1}{3} (\operatorname{tr} \langle b_2, z \rangle) h$$

et

$$\operatorname{tr}^{2}(\langle b_{2}, z \rangle \langle z, z \rangle) = \frac{n+3}{6} \operatorname{tr} \langle b_{2}, z \rangle + \frac{1}{3} \operatorname{tr} (\operatorname{tr} \langle b_{2}, z \rangle) h$$

$$= \frac{n+3}{6} \operatorname{tr} \langle b_2, z \rangle + \frac{n+1}{6} \operatorname{tr} \langle b_2, z \rangle$$
$$= \frac{n+2}{3} \operatorname{tr} \langle b_2, z \rangle.$$

La projection sur \mathcal{R} de $\langle b_2, z \rangle \langle z, z \rangle$ est donc

$$h^2 \frac{2}{n+1} \operatorname{tr} \langle b_2, z \rangle$$

et celle de A_{32} est h^2B_{10} , avec

$$2i(\nu - 1)\frac{2}{n+1}\operatorname{tr}\langle b_2, z \rangle - \binom{\nu}{2}(2\langle z, b_0 \rangle + i a_1) = 2B_{10}. \tag{2.65}$$

Soient A_{10} , A_{30} , A_{21} , A_{50} , A_{41} quelconques et $A_{32} = h^2 B_{10}$. Les équations (2.60) et (2.62) déterminent a_3 et a_5 ; l'équation (2.63) détermine alors b_4 . Les coefficients b_2 , b_0 et a_1 doivent vérifier

$$2\langle z, b_0 \rangle + i a_1 = 2A_{10}, \tag{2.66}$$

$$2\langle b_2, z \rangle + i \nu \langle z, z \rangle (-2\langle z, b_0 \rangle + i a_1(z)) = 2A_{21}, \tag{2.67}$$

$$2i(\nu - 1)\frac{2}{n+1}\operatorname{tr}\langle b_2, z \rangle - \binom{\nu}{2}(2\langle z, b_0 \rangle + i a_1) = 2B_{10}. \tag{2.68}$$

La deuxième relation entraîne

$$2\operatorname{tr}\langle b_2, z \rangle + i\nu \frac{n+1}{2} \left(-2\langle z, b_0 \rangle + i a_1(z) \right) = 2\operatorname{tr} A_{21}. \tag{2.69}$$

Le système d'équations (2.66)-(2.68)-(2.69) a une solution unique

$$(\operatorname{tr}\langle b_2, z \rangle, \langle z, b_0 \rangle, a_1),$$

qui détermine b_0 et a_1 ; $\langle b_2, z \rangle$ et b_2 sont alors déterminés par (2.67).

Soit $2 < k \le \nu$. Dans le coefficient de $u^{\nu-k}$ de L(f,g), les termes de type (2k+1,0) et (2k,1) sont

$$\frac{i}{2}a_{2k+1} = A_{2k+1,0}, \langle b_{2k}, z \rangle = A_{2k,1}.$$

Si $F \in \mathcal{R}^{\mu}$ est donné par (2.58), a_{2k+1} et b_{2k} sont donc uniquement déterminés par F.

On a ainsi montré que pour tout $F \in \mathcal{R}^{\mu}$, il existe une solution unique $(f,g) \in \mathcal{V}^{\mu}$ pour PL(f,g) = F. Donc PL^{μ} est une bijection de \mathcal{V}^{μ} sur \mathcal{R}^{μ} , et P induit une bijection de l'image de L^{μ} sur \mathcal{R}^{μ} .

2.7.4

Soit $\mu = 2\nu$ pair, $\nu \geq 3$. Soit $F \in \mathcal{F}^{\mu}$; on a

$$F = \sum_{i+j=2\nu} F_{ij} + \dots + \sum_{i+j=2k} A_{ij} u^{\nu-k} + \dots + (A_{60} + A_{51} + A_{42} + A_{33} + A_{24} + A_{15} + A_{06}) u^{\nu-3} + (A_{40} + A_{31} + A_{22} + A_{13} + A_{04}) u^{\nu-2} + (A_{20} + A_{11} + A_{02}) u^{\nu-1} + A_{00} u^{\nu}$$

et

$$PF = (F_{2\nu,0} + F_{2\nu-1,1} + F_{1,2\nu-1} + F_{0,2\nu}) + \cdots$$

$$+ (A_{2k,0} + A_{2k-1,1} + A_{1,2k-1} + A_{0,2k}) u^{\nu-k} + \cdots$$

$$+ (A_{60} + A_{51} + h^3 B_{00} + A_{15} + A_{06}) u^{\nu-3}$$

$$+ (A_{40} + A_{31} + h B_{11} + A_{13} + A_{04}) u^{\nu-2}$$

$$+ (A_{20} + A_{11} + A_{02}) u^{\nu-1} + A_{00} u^{\nu},$$

avec

$$B_{11} = \frac{4}{n+2} \operatorname{tr} (A_{22}) - \frac{2h}{(n+1)(n+2)} (\operatorname{tr})^2 (A_{22}),$$

$$B_{00} = \frac{6}{n(n+1)(n+2)} (\operatorname{tr})^3 A_{33}.$$

Les éléments de \mathcal{R}^{μ} sont les

$$F = (F_{2\nu,0} + F_{2\nu-1,1} + F_{1,2\nu-1} + F_{0,2\nu}) + \cdots + (A_{2k,0} + A_{2k-1,1} + A_{1,2k-1} + A_{0,2k}) u^{\nu-k} + \cdots + (A_{60} + A_{51} + h^3 B_{00} + A_{15} + A_{06}) u^{\nu-3} + (A_{40} + A_{31} + h B_{11} + A_{13} + A_{04}) u^{\nu-2} + (A_{20} + A_{11} + A_{02}) u^{\nu-1} + A_{00} u^{\nu}.$$
 (2.70)

Lemme 2.18. Soit $\mu = 2\nu$ pair, $\nu \geq 3$. L'image de PL^{μ} est $\mathcal{R}^{\mu} = \mathcal{F}^{\mu} \cap \mathcal{R}$ et PL^{μ} est une bijection de \mathcal{V}^{μ} sur \mathcal{R}^{μ} .

Démonstration. Soit $(f,g) \in \mathcal{V}^{\mu}$:

$$f(z,w) = b_{2\nu-1}(z) + \dots + b_{2k-1}(z)w^{\nu-k} + \dots$$

$$+ b_5(z)w^{\nu-3} + b_3(z)w^{\nu-2} + b_1(z)w^{\nu-1},$$

$$g(z,w) = a_{2\nu}(z) + \dots + a_{2k}(z)w^{\nu-k} + \dots$$

$$+ a_6(z)w^{\nu-3} + a_4(z)w^{\nu-2} + a_2(z)w^{\nu-1} + a_0w^{\nu}.$$

Le coefficient de u^{ν} dans L(f,g) = F est

$$\operatorname{Re}(i a_0) = A_{00}.$$
 (2.71)

Le coefficient de $u^{\nu-1}$ est

Re
$$(2\langle z, b_1 \rangle + i a_2 - a_0 \nu \langle z, z \rangle) = A_{20} + A_{11} + A_{02}$$
,

avec

$$i a_2 = 2A_{20}, (2.72)$$

$$\langle z, b_1 \rangle + \langle b_1, z \rangle - \nu \langle z, z \rangle \operatorname{Re} a_0 = A_{11}.$$
 (2.73)

Le coefficient de $u^{\nu-2}$ dans $L\left(f,g\right)$ est

$$\operatorname{Re}\left(2\left\langle z,b_{3}\right\rangle -2\operatorname{i}\left(\nu-1\right)\left\langle z,b_{1}\right\rangle \left\langle z,z\right\rangle +\operatorname{i}a_{4}-a_{2}(\nu-1)\left\langle z,z\right\rangle -\operatorname{i}a_{0}\binom{\nu}{2}\left\langle z,z\right\rangle ^{2}\right).$$

Il appartient à \mathcal{R} et s'écrit

$$A_{40} + A_{31} + hB_{11} + A_{13} + A_{04}$$

avec

$$i a_4 = 2A_{40}, (2.74)$$

$$2\langle b_3, z \rangle - a_2(\nu - 1)\langle z, z \rangle = 2A_{31},$$
 (2.75)

$$-2i(\nu-1)(\langle z, b_1 \rangle - \langle b_1, z \rangle) - \operatorname{Re}(i a_0) \binom{\nu}{2} \langle z, z \rangle = B_{11}. \tag{2.76}$$

Le coefficient de $u^{\nu-3}$ est

$$\operatorname{Re}\left(2\langle z, b_{5}\rangle - 2\operatorname{i}(\nu - 2)\langle z, b_{3}\rangle\langle z, z\rangle - 2\binom{\nu - 1}{2}\langle z, b_{1}\rangle\langle z, z\rangle^{2}\right) + \operatorname{Re}\left(\operatorname{i} a_{6} - a_{4}(\nu - 2)\langle z, z\rangle - \operatorname{i} a_{2}\binom{\nu - 1}{2}\langle z, z\rangle^{2} + a_{0}\binom{\nu}{3}\langle z, z\rangle^{3}\right).$$

Sa projection dans \mathcal{R} est

$$A_{60} + A_{51} + h^3 B_{00} + A_{15} + A_{06}$$

avec

$$i a_{6} = 2A_{60}, (2.77)$$

$$2 \langle b_{5}, z \rangle - a_{4}(\nu - 2) \langle z, z \rangle = 2A_{51}, (2.78)$$

$$-\binom{\nu - 1}{2} (\langle z, b_{1} \rangle + \langle b_{1}, z \rangle) \langle z, z \rangle^{2} + \binom{\nu}{3} \langle z, z \rangle^{3} \operatorname{Re} a_{0} = A_{33},$$

$$B_{00} = \frac{6}{n(n+1)(n+2)} (\operatorname{tr})^{3} A_{33}.$$

Si $B \in \mathcal{F}_{11}$, on a

$$\operatorname{tr}^{3}(h^{2}B) = \frac{(n+1)(n+2)}{6}\operatorname{tr} B.$$

Les deux relations précédentes sont alors équivalentes à

$$\binom{\nu}{3} \operatorname{Re} a_0 - \frac{1}{n} \operatorname{tr} (\langle z, b_1 \rangle + \langle b_1, z \rangle) = B_{00}. \tag{2.79}$$

Soit $F \in \mathcal{R}^{\mu}$, écrit sous la forme (2.70). Les équations (2.72), (2.74), (2.77) déterminent a_2 , a_4 , a_6 ; les équations (2.75) et (2.78) déterminent alors b_3 et b_5 . Les équations (2.71) et (2.76) déterminent Im a_0 et $\langle z, b_1 \rangle - \langle b_1, z \rangle$. Enfin, les coefficients a_0 et b_1 sont soumis aux conditions (2.73):

$$\langle z, b_1 \rangle + \langle b_1, z \rangle - \nu \langle z, z \rangle \operatorname{Re} a_0 = A_{11}$$

et (2.79). La condition (2.73) entraı̂ne

$$\operatorname{tr}(\langle z, b_1 \rangle + \langle b_1, z \rangle) - \nu n \operatorname{Re} a_0 = \operatorname{tr} A_{11}. \tag{2.80}$$

Le système (2.79)-(2.80) possède une solution unique

$$(\operatorname{Re} a_0, \operatorname{tr} (\langle z, b_1 \rangle + \langle b_1, z \rangle)).$$

De (2.73), on déduit $\langle z, b_1 \rangle + \langle b_1, z \rangle$. Les coefficients a_{2j} $(j \leq 3)$ et b_{2j+1} $(j \leq 2)$ d'une solution de PL(f,g) = F sont ainsi uniquement déterminés pour tout $F \in \mathcal{R}^{\mu}$.

Soit $3 < k \le \nu$. Dans le coefficient de $u^{\nu-k}$ de L(f,g), les termes de type (2k,0) et (2k-1,1) sont

$$\frac{i}{2}a_{2k} = A_{2k,0}, \langle b_{2k}, z \rangle = A_{2k-1,1}.$$

Si $F \in \mathcal{R}^{\mu}$ est donné par (2.58), a_{2k+1} et b_{2k} sont donc uniquement déterminés par F.

Finalement, pour tout $F \in \mathcal{R}^{\mu}$, l'équation PL(f,g) = F possède une solution unique $(f,g) \in \mathcal{V}^{\mu}$.

2.7.5

Rassemblant les résultats des lemmes 2.15, 2.16, 2.17, 2.18, on obtient

Proposition 2.19. L'application $PL_0 : \mathcal{V}_0 \to \mathcal{R}_3$ est un isomorphisme linéaire, et P induit un isomorphisme de l'image de L sur \mathcal{R}_3 .

2.8 Réduction formelle à la forme normale

Théorème 2.20. [3, Theorem 2.2] Soit M une hypersurface réelle d'équation

$$\operatorname{Im} w = \langle z, z \rangle + F(z, \overline{z}, \operatorname{Re} w),$$

où

$$F(z, \overline{z}, u) = \sum_{\nu=3}^{\infty} F_{\nu}(z, \overline{z}, u).$$

Il existe une tranformation formelle unique

$$z^* = z + f(z, w), w^* = w + g(z, w),$$

avec $(f,g) \in \mathcal{V}_0$, telle que l'équation de la transformée M^* de M soit

$$\operatorname{Im} w^* = \langle z^*, z^* \rangle + N\left(z, \overline{z}, \operatorname{Re} w\right)$$

avec $N \in \mathcal{N}$.

Démonstration. On a vu que la transformation associée à $(f,g) \in \mathcal{V}_0$ transforme l'hypersurface M, définie par

$$\operatorname{Im} w = \langle z, z \rangle + F(z, \overline{z}, \operatorname{Re} w),$$
$$F(z, \overline{z}, u) = \sum_{\nu=3}^{\infty} F_{\nu}(z, \overline{z}, u),$$

en M^* définie par

$$\operatorname{Im} w^* = \langle z^*, z^* \rangle + F^* \left(z^*, \overline{z^*}, \operatorname{Re} w^* \right),$$
$$F^* \left(z, \overline{z}, u \right) = \sum_{\nu=3}^{\infty} F_{\nu}^* \left(z, \overline{z}, u \right),$$

si et seulement si elle vérifie les relations

$$L(f_{\mu-1}, g_{\mu}) = F_{\mu}(z, \overline{z}, u) - F_{\mu}^{*}(z, \overline{z}, u) + A_{\mu}(z, \overline{z}, u) \qquad (\mu \ge 3), \quad (2.81)$$

où $A_{\mu}(z, \overline{z}, u)$ est la composante de poids μ de

$$\operatorname{Im} \sum_{\nu < \mu} g_{\nu}(z, w) - 2 \operatorname{Re} \sum_{\nu < \mu} \langle z, f_{\nu-1}(z, w) \rangle - \sum_{\lambda + \nu < \mu} \langle f_{\lambda}(z, w), f_{\nu}(z, w) \rangle$$
$$- \sum_{\nu < \mu} F_{\nu}^{*} \left(z + \sum_{j < \mu - 2} f_{j}(z, w), \overline{z + \sum_{k < \mu - 2} f_{k}(z, w)}, u + \operatorname{Re} \sum_{l < \mu - 1} g_{l}(z, w) \right)$$
(2.82)

après la substitution

$$w = u + i < z, z > + i \sum_{\nu=3}^{\infty} F_{\nu}(z, \overline{z}, u).$$
 (2.83)

Rappelons que la fonction A_{μ} est déterminée par $\{(f_{\nu-1}, g_{\nu}, F_{\nu}, F_{\nu}^*); \nu < \mu\}$. On souhaite déterminer $(f_{\mu-1}, g_{\mu})$ $(\mu \geq 3)$ vérifiant les équations (2.81) et $F^* \in \mathcal{N}$.

Pour $\mu = 3$, on a $A_3 = 0$. L'équation (2.81) correspondante s'écrit

$$L(f_2, g_3) = F_3 - F_3^*$$

et $F_3^* \in \mathcal{N}$ entraı̂ne

$$L\left(f_{2},g_{3}\right)=F_{3},$$

qui possède une solution unique $(f_2, g_3) \in \mathcal{V}_0^3$. On a

$$F_3^* = 0.$$

Soit $\mu > 3$. On suppose que pour tout $\nu < \mu$, il existe un unique couple $(f_{\nu-1},g_{\nu})\in \mathcal{V}_0^{\mu}$ tel que

$$L(f_{\nu-1}, g_{\nu}) = F_{\nu} - F_{\nu}^* + A_{\nu}$$

et $F_{\nu}^* \in \mathcal{N}$. L'équation

$$L(f_{\mu-1}, g_{\mu}) = F_{\mu} - F_{\mu}^* + A_{\mu}$$

et la condition $F_{\nu}^* \in \mathcal{N}$ entraı̂nent alors

$$L\left(f_{\mu-1}, g_{\mu}\right) = PF_{\mu} + PA_{\mu},$$

qui possè de une solution unique $(f_{\mu-1},g_{\mu})\in\mathcal{V}_0^{\mu}.$ On a

$$F_{\mu}^{*} = F_{\mu} + A_{\mu} - P(F_{\mu} + A_{\mu}).$$

On a ainsi montré l'existence et l'unicité de $(f,g) = \sum_{\mu=3}^{\infty} (f_{\mu-1}, g_{\mu})$ telle que $F^* \in \mathcal{N}$.

Définition 2.10. On dit que l'équation d'une hypersurface M est sous forme normale si elle s'écrit

$$\operatorname{Im} w = \langle z, z \rangle + N(z, \overline{z}, \operatorname{Re} w)$$

avec $N \in \mathcal{N}$.

3 Théorèmes d'existence

Les séries formelles utilisées pour chercher une forme normale d'une hypersurface analytique-réelle sont en fait des séries qui convergent vers des fonctions holomorphes. En plus de cela, on cherche une interprétation géométrique des conditions qui donnent lieu à une forme normale d'une hypersurface analytique réelle

 $\operatorname{tr} N_{22} = 0$, $(\operatorname{tr})^2 N_{32} = 0$, $(\operatorname{tr})^3 N_{33} = 0$.

Soient M une hypersurface analytique réelle et γ un arc analytique réel tracé sur M et qui est transverse à l'espace tangent complexe de M. De plus on se donne un repère de vecteurs linéairement indépendants, qui sont analytiques réels le long de courbe γ . Toutes ces données sont localement données au voisinage d'un point p de M.

Théorème 3.1. Il existe une application biholomorphe ϕ qui transforme M en une hypersurface réelle, qui a la forme suivante

$$v = \langle z, z \rangle + \sum_{\min(k,l) \ge 2} F_{kl} (z, \overline{z}, u), \quad o\dot{u}$$

(tr)² $F_{23} = 0.$ (3.1)

Géométriquement, il existe une unique courbe analytique Γ dans M qui passe par l'origine, et qui est tangente à un vecteur transversal à l'hyperplan tangent complexe à l'origine et qui est envoyée dans une u-courbe par l'application biholomorphe ϕ . De plus il existe une application biholomorphe ϕ_1 qui, avec la condition

$$(tr)^2 F_{23} = 0, (3.2)$$

vérifie les conditions

$$\operatorname{tr} F_{22} = 0, \ (\operatorname{tr})^3 F_{33} = 0.$$
 (3.3)

Pour l'application de ϕ on a :

Théorème 3.2. Soit M une hypersurface analytique réelle, dont la forme de Levi est non dégénérée à l'origine dans \mathbb{C}^{n+1} , définit par l'équation suivante

$$v = F(z, \overline{z}, u), F|_{0} = dF|_{0} = 0.$$
 (3.4)

Alors il existe une application gihoilomorphe ϕ telle que

$$\phi(M): v = \langle z, z \rangle + \sum_{\min(k,l) \ge 2} F_{kl}^*(z, \overline{z}, u), \qquad (3.5)$$

où

$$\operatorname{tr} F_{22}^* = 0, \ (\operatorname{tr})^2 F_{23}^* = 0, \ (\operatorname{tr})^3 F_{33}^* = 0.$$
 (3.6)

Dans le théorème d'existence donné par Chern et Moser on donne une démonstration qui comprend le théorème d'unicité donné par

Théorème 3.3. Soit M une hypersurface analytique réelle du théorème 3.2. Alors la normalisation $\phi = (f, g)$ dans $\mathbb{C}^n \times \mathbb{C}$ est uniquement déterminée par les valeurs

$$\frac{\partial f}{\partial z}\Big|_{0}, \frac{\partial f}{\partial w}\Big|_{0}, \operatorname{Re}\left(\frac{\partial g}{\partial z}\Big|_{0}\right), \operatorname{Re}\left(\frac{\partial f}{\partial z}\Big|_{0}\right).$$
 (3.7)

Les normalisations d'une hypersurface réelle M en une forme normale sont paramétrées par le groupe H de dimension finie données par

$$\begin{pmatrix}
\varrho & 0 & 0 \\
-Ca & C & 0 \\
-r - i \langle a, a \rangle & 2 i a^{\dagger} & 1
\end{pmatrix}.$$
(3.8)

Où

$$a^{\dagger} = \left(\overline{a^1}, ..., \overline{a^l}, -\overline{a^{l+1}}, -\overline{a^n}\right).$$
 (3.9)

La famille de normalisation de M va dépendre analytiquement des paramètres

$$C = \left(\frac{\partial f}{\partial z}\Big|_{0}\right), -Ca = \left(\frac{\partial f}{\partial w}\Big|_{0}\right), \varrho = \operatorname{Re}\left(\frac{\partial g}{\partial z}\Big|_{0}\right),$$

et $2\varrho r = \operatorname{Re}\left(\frac{\partial^{2} g}{\partial w^{2}}\Big|_{0}\right).$ (3.10)

On montrera qu'il existe une famille de formes normales telles que

$$v = \langle z, z \rangle + \sum_{\min(k,l) \ge 2} F_{kl}(z, \overline{z}, u) \text{ pour } \alpha = 0,$$

$$v = -\frac{1}{2\alpha} \left\{ 1 - 2\alpha \langle z, z \rangle \right\} + \sum_{\min(k,l) \ge 2} F_{kl}(z, \overline{z}, u) \text{ pour } \alpha \ne 0.$$
(3.11)

Où $\alpha \in \mathbb{R}$ et

$$\operatorname{tr} F_{22}(z, \overline{z}, u) = (\operatorname{tr})^{2} F_{23}(z, \overline{z}, u) = 0,$$

$$(\operatorname{tr})^{3} F_{33}(z, \overline{z}, u) = \beta (\operatorname{tr})^{4} (F_{22}(z, \overline{z}, u))^{2} \text{ pour certain } \beta \in \mathbb{R}.$$
(3.12)

Lemme 3.4. Soit g(z, w) une fonction holomorphe implicitement définie par les équations

$$g(z, w) - g(0, w) = -2i F(p(w), \overline{p}(w), w) +2i F\left(z + p(w), \overline{p}(w), w + \frac{1}{2} \{g(z, w) - g(0, w)\}\right),$$
(3.13)
$$où g(0, w) = i F(p(w), \overline{p}(w), w).$$

Soit ϕ L'application biholomorphe au voisinage de l'origine définie par

$$z = z^* + p(w^*),$$

$$w = w^* + g(z^*, w^*).$$
(3.14)

Alors l'application ϕ transforme l'hypersurface réelle M telle que $M' = \phi(M)$ est localement définie par une équation de la forme suivante

$$v^* = \langle z^*, z^* \rangle + \sum_{\min(k,l) \ge 2} F_{kl} \left(z^*, \overline{z}^*, u^* \right),$$

et la courbe Γ Dans M via l'équation

$$\Gamma : \begin{cases} z = p(\mu), \\ w = \mu + i F(p(\mu), \overline{p}(\mu), \mu), \end{cases}$$
(3.15)

et appliquée à la courbe, z=v=0. Où (3.15) est uniquement donnée avec la parametrisation μ .

La fonction holomorphe g(z, w) est bien définie à cause de la condition

$$F|_0 = F_z|_0 = F_{\overline{z}}|_0 = 0.$$

Qui implique

$$g|_{0} = \frac{\partial g}{\partial z}\Big|_{0} = \operatorname{Re}\left(\frac{\partial g}{\partial w}\Big|_{0}\right) = 0.$$

De plus (3.14) est bijective à l'origine. D'où l'application (3.14) est biholomorphe au voisinage de 0 pour toute fonction analytique p(u) telle que p(0) = 0.

On suppose que l'hypersurface qui resulte M' est défiinie par

$$v^* = F^* \left(z^*, \overline{z}^*, u^* \right).$$

Alors l'application (3.14) donne l'égalité suivante

$$F(z, \overline{z}, u) = F^*(z^*, \overline{z}^*, u^*) + \frac{1}{2i} \{g(z^*, u^* + i v^*) - \overline{g}(z^*, \overline{z}^*, u^* - i v^*)\},$$
où
$$z = z^* + p(u^* + i v^*).$$
(3.16)

$$z = z^* + p(u^* + i v^*),$$

$$\bar{z} = \bar{z}^* + \bar{p}(u^* - i v^*),$$

$$u = u^* + \frac{1}{2} \left\{ g(z^*, u^* + i v^*) + \bar{g}(z^*, \bar{z}^*, u^* - i v^*) \right\}.$$

Puisque F et F^* sont analytiques réelles, on peut considérer $z^*, \overline{z^*}, u^*$ comme variables indépendantes. D'où la condition de $F^*(z^*, \overline{z}^*, u^*) = v^* = 0$ est équivalente via l'équation (3.16) à l'équation suivante

$$g(z, u) - \bar{g}(0, u) = 2 i F\left(z + p(u), \bar{p}(u), u + \frac{1}{2} \{g(z, u) - \bar{g}(0, u)\}\right).$$
(3.17)

Pour z = 0 on a

$$g(z, u) - \bar{g}(0, u) = 2iF\left(p(u), \bar{p}(u), u + \frac{1}{2}\left\{g(0, u) - \bar{g}(0, u)\right\}\right).$$
 (3.18)

Ainsi on voit facilement que

$$g(z,u) + \bar{g}(0,u) = 0 \tag{3.19}$$

si et seulement si

$$g(0, u) = i F(p(u), \overline{p}(u), u).$$

On utilise (3.19), l'égalité (3.17) se réduit à

$$\begin{split} g\left(z,u\right) - g\left(0,u\right) &= -2\operatorname{i} F\left(p\left(u\right),\overline{p}\left(u\right),u\right) \\ + 2\operatorname{i} F\left(z + p\left(u\right),\overline{p}\left(u\right),w + \frac{1}{2}\left\{g\left(z,u\right) - g\left(0,u\right)\right\}\right). \end{split}$$

L'application (3.14) du lemme 3.4 est complètement déterminée par la fonction analytique p(u). De l'égalité (3.13), on obtient le développement de la fonction holomorphe g(z,w) comme série entière en z jusqu'à l'ordre 3 inclus comme suit.

On considère q définie implicitement par

$$g(z,w) - g(0,w) = -2i F(p(w), \overline{p}(w), w) +2i F\left(z + p(w), \overline{p}(w), w + \frac{1}{2} \left\{g(z,w) - g(0,w)\right\}\right),$$

$$g(0, w) = i F(p(w), \overline{p}(w), w).$$

Le développement de Taylor de F à l'ordre 3 (w fixé) donne

$$F(z+p(w),\bar{p}(w),w+u) = F(p(w),\bar{p}(w),w) + \sum_{\alpha} z^{\alpha} F_{\alpha} + u F'$$

$$+ \sum_{\alpha,\beta} z^{\alpha} z^{\beta} F_{\alpha\beta} + u \sum_{\alpha} z^{\alpha} F'_{\alpha} + u^{2} F''$$

$$+ \sum_{\alpha,\beta,\gamma} z^{\alpha} z^{\beta} z^{\gamma} F_{\alpha\beta\gamma} + u \sum_{\alpha,\beta} z^{\alpha} z^{\beta} F''_{\alpha\beta}$$

$$+ u^{2} \sum_{\alpha} z^{\alpha} F''_{\alpha} + u^{3} F''' + o \left(|(z,u)|^{3} \right). \tag{3.20}$$

Avec

$$F_{\alpha} = \frac{\partial F}{\partial z^{\alpha}} \left(p(w), \overline{p}(w), w \right), \quad F' = \frac{\partial F}{\partial u} \left(p(w), \overline{p}(w), w \right),$$

$$F_{\alpha\beta} = \frac{1}{2} \frac{\partial^{2} F}{\partial z^{\alpha} \partial z^{\beta}} \left(p(w), \overline{p}(w), w \right), \quad F'_{\alpha} = \frac{\partial^{2} F}{\partial z^{\alpha} \partial u} \left(p(w), \overline{p}(w), w \right),$$

$$F'' = \frac{1}{2} \frac{\partial^{2} F}{\partial u^{2}} \left(p(w), \overline{p}(w), w \right),$$

$$F_{\alpha\beta\gamma} = \frac{1}{6} \frac{\partial^{3} F}{\partial z^{\alpha} \partial z^{\beta} \partial z^{\gamma}} \left(p(w), \overline{p}(w), w \right), \quad F'_{\alpha\beta} = \frac{1}{2} \frac{\partial^{3} F}{\partial z^{\alpha} \partial z^{\beta} \partial u} \left(p(w), \overline{p}(w), w \right),$$

$$F''' = \frac{1}{2} \frac{\partial^{3} F}{\partial z^{\alpha} \partial u^{2}} \left(p(w), \overline{p}(w), w \right), \quad F''' = \frac{1}{6} \frac{\partial^{3} F}{\partial u^{3}} \left(p(w), \overline{p}(w), w \right). \quad (3.21)$$

Soit

$$g(z, w) - g(0, w) = G_1(z) + G_2(z) + G_3(z) + o(z^3).$$
 (3.22)

Le développement de g à l'ordre 3 (w fixé). En reportant (3.22) et (3.20) dans (3.13), on obtient

$$G_{1}(z) + G_{2}(z) + G_{3}(z) + o(z^{3})$$

$$= 2 i F\left(z + p(w), \bar{p}(w), w + \frac{1}{2} \{g(z, w) - g(0, w)\}\right)$$

$$- 2 i F(p(w), \bar{p}(w), w)$$

$$= 2 i \sum_{\alpha} z^{\alpha} F_{\alpha} + i (G_{1}(z) + G_{2}(z) + G_{3}(z)) F'$$

$$+ 2 i \sum_{\alpha,\beta} z^{\alpha} z^{\beta} F_{\alpha\beta} + i (G_{1}(z) + G_{2}(z)) \sum_{\alpha} z^{\alpha} F_{\alpha}'$$

$$+ \frac{i}{2} (G_{1}^{2}(z) + 2G_{1}(z)G_{2}(z)) F''$$

$$+ 2 i \sum_{\alpha,\beta,\gamma} z^{\alpha} z^{\beta} z^{\gamma} F_{\alpha\beta\gamma} + i G_{1}(z) \sum_{\alpha,\beta} z^{\alpha} z^{\beta} F_{\alpha\beta}'$$

$$+ \frac{i}{2} G_{1}^{2}(z) \sum_{\alpha} z^{\alpha} F_{\alpha}'' + \frac{i}{4} G_{1}^{3}(z) F''' + o (z^{3}).$$
(3.23)

L'identification des termes de degré 1, 2 et 3 dans les développents limités ci-dessus fournit

$$G_{1}(z) = 2 i \sum_{\alpha} z^{\alpha} F_{\alpha} + i G_{1}(z) F',$$

$$G_{2}(z) = i G_{2}(z) F' + 2 i \sum_{\alpha,\beta} z^{\alpha} z^{\beta} F_{\alpha\beta} + i G_{1}(z) \sum_{\alpha} z^{\alpha} F'_{\alpha}$$

$$+ \frac{i}{2} G_{1}^{2}(z) F'',$$

$$G_{3}(z) = i G_{3}(z) F' + i G_{2}(z) \sum_{\alpha} z^{\alpha} F'_{\alpha} + i G_{1}(z) G_{2}(z) F''$$

$$+ 2 i \sum_{\alpha,\beta,\gamma} z^{\alpha} z^{\beta} z^{\gamma} F_{\alpha\beta\gamma} + i G_{1}(z) \sum_{\alpha,\beta} z^{\alpha} z^{\beta} F'_{\alpha\beta}$$

$$+ \frac{i}{2} G_{1}^{2}(z) \sum_{\alpha} z^{\alpha} F''_{\alpha} + \frac{i}{4} G_{1}^{3}(z) F'''.$$

$$(3.24)$$

En définissant

$$F^{(1,0)} = \sum_{\alpha} z^{\alpha} F_{\alpha},$$

$$F^{(2,0)} = \sum_{\alpha,\beta} z^{\alpha} z^{\beta} F_{\alpha\beta}, \quad F^{(1,1)} = \sum_{\alpha} z^{\alpha} F'_{\alpha},$$

$$F^{(3,0)} = \sum_{\alpha,\beta,\gamma} z^{\alpha} z^{\beta} z^{\gamma} F_{\alpha\beta\gamma}, \quad F^{(2,1)} = \sum_{\alpha,\beta} z^{\alpha} z^{\beta} F'_{\alpha\beta}.$$

$$F^{(1,2)} = \sum_{\alpha} z^{\alpha} F''_{\alpha},$$

Les relations (3.24)-(3.26) s'écrivent

$$G_1(z) = 2 i F^{(1,0)} + i G_1(z) F',$$
 (3.27)

$$G_2(z) = i G_2(z) F' + 2 i F^{(2,0)} + i G_1(z) F^{(1,1)} + \frac{i}{2} G_1^2(z) F'',$$
 (3.28)

$$G_3(z) = i G_3(z) F' + i G_2(z) F^{(1,1)} + i G_1(z) G_2(z) F'' + 2 i F^{(3,0)} + i G_1(z) F^{(2,1)} + \frac{i}{2} G_1^2(z) F^{(1,2)} + \frac{i}{4} G_1^3(z) F'''.$$
(3.29)

On a finalement

$$G_{1}(z) = 2i (1 - i F')^{-1} F^{(1,0)},$$

$$G_{2}(z) = (1 - i F')^{-1} \left(2i F^{(2,0)} + i G_{1}(z) F^{(1,1)} + \frac{i}{2} G_{1}^{2}(z) F'' \right)$$

$$= 2i (1 - i F')^{-1} F^{(2,0)} - 2 (1 - i F')^{-2} F^{(1,0)} F^{(1,1)}$$

$$- 2i (1 - i F')^{-3} (F^{(1,0)})^{2} F'',$$

$$(3.31)$$

et

$$G_{3}(z) = (1 - i F')^{-1} \left(i G_{2}(z) F^{(1,1)} + i G_{1}(z) G_{2}(z) F'' + 2 i F^{(3,0)} + i G_{1}(z) F^{(2,1)} + \frac{i}{2} G_{1}^{2}(z) F^{(1,2)} + \frac{i}{4} G_{1}^{3}(z) F''' \right)$$

$$= 2 i (1 - i F')^{-1} F^{(3,0)} + i (1 - i F')^{-1} G_{1}(z) F^{(2,1)}$$

$$+ \frac{i}{2} (1 - i F')^{-1} G_{1}^{2}(z) F^{(1,2)} + (1 - i F')^{-1} i G_{2}(z) F^{(1,1)}$$

$$+ (1 - i F')^{-1} i G_{1}(z) G_{2}(z) F'' + (1 - i F')^{-1} \frac{i}{4} G_{1}^{3}(z) F''',$$

d'où

$$G_{3}(z) = 2i (1 - i F')^{-1} F^{(3,0)} - 2 (1 - i F')^{-2} F^{(1,0)} F^{(2,1)}$$

$$- 2i (1 - i F')^{-3} (F^{(1,0)})^{2} F^{(1,2)} - 2 (1 - i F')^{-2} F^{(2,0)} F^{(1,1)}$$

$$- 2i (1 - i F')^{-3} F^{(1,0)} (F^{(1,1)})^{2} + 2 (1 - i F')^{-4} (F^{(1,0)})^{2} F^{(1,1)} F''$$

$$- 4i (1 - i F')^{-3} F^{(1,0)} F^{(2,0)} F'' + 4 (1 - i F')^{-4} (F^{(1,0)})^{2} F^{(1,1)} F''$$

$$+ 4i (1 - i F')^{-5} (F^{(1,0)})^{3} (F'')^{2} + 2 (1 - i F')^{-4} (F^{(1,0)})^{3} F'''$$
 (3.33)

et

$$g(z, w) = i F(p(w), \overline{p}(w), w)$$

$$+2i(1-iF')^{-1} \left(F^{(1,0)} + F^{(2,0)} + F^{(3,0)}\right)$$

$$-2(1-iF')^{-2} \left(F^{(1,0)}F^{(1,1)} + F^{(1,0)}F^{(2,1)} + F^{(2,0)}F^{(1,1)}\right)$$

$$-2i(1-iF')^{-3} \left(\left(F^{(1,0)}\right)^{2}F'' + F^{(1,0)} \left(F^{(1,1)}\right)^{2}\right)$$

$$+2F^{(1,0)}F^{(2,0)}F'' + \left(F^{(1,0)}\right)^{2}F^{(1,2)}\right)$$

$$+2(1-iF')^{-4} \left(3\left(F^{(1,0)}\right)^{2}F^{(1,1)}F'' + \left(F^{(1,0)}\right)^{3}F'''\right)$$

$$+4i(1-iF')^{-5} \left(F^{(1,0)}\right)^{3} \left(F''\right)^{2} + o\left(z^{3}\right),$$

on utilise lelemme 3.4, on a la condition suivante sur l'hypersurface réelle M^\prime

$$v = o(z\overline{z})$$

Ainsi pour obtenir les termes jusqu'a l'ordre v^2 compris, il suffit de calculer les fonctions

$$F_{kl}^{*}(z,\overline{z},u)$$

de M' jusqu'au type $(k,l), k,l \leq 5$ compris. On obtient les développements de $p^{\alpha}(u+\mathrm{i}\,v)$ et $p^{\overline{\beta}}(u+\mathrm{i}\,v)$ comme series entières en v comme suit

$$p^{\alpha} (u + i v) = p^{\alpha} + p^{\alpha'} i v + p^{\alpha''} \cdot \frac{(i v)^2}{2} + o(v^3).$$
$$p^{\bar{\beta}} (u + i v) = p^{\bar{\beta}} + p^{\bar{\beta}'} i v + p^{\bar{\beta}''} \cdot \frac{(i v)^2}{2} + o(v^3).$$

On utilise ce développement, on développe la fonction holomorphe g(z, w) comme serie entière en z et v dans (3.10) comme suit

$$\begin{split} g(z,w) &= \sum_{k,l=0}^{\infty} g_k^{(l)} \left(z,u\right).\frac{\left(\mathrm{i}\,v\right)^l}{l!} \\ &= \mathrm{i}\,F\left(p\left(u\right),\overline{p}\left(u\right),u\right) + + g_0'\left(0,u\right)\mathrm{i}\,v + g_0''\left(0,u\right).\frac{\left(\mathrm{i}\,v\right)^2}{2} \\ &+ g_1\left(z,u\right) + g_1'\left(z,u\right)\mathrm{i}\,v + g_1''\left(z,u\right).\frac{\left(\mathrm{i}\,v\right)^2}{2} \\ &+ g_2\left(z,u\right) + g_2'\left(z,u\right)\mathrm{i}\,v + g_3\left(z,u\right) \\ &+ \mathrm{o}\left(z^4\right) + \mathrm{o}\left(z^3v\right) + \mathrm{o}\left(z^2v^2\right) + \mathrm{o}\left(zv^3\right) + \mathrm{o}\left(v^3\right). \\ &\mathrm{où}\,g_k^{(l)}\left(\mu z,u\right) = \mu^k g_k^{(l)}\left(z,u\right). \end{split}$$

$$g(z, w) = \sum_{k,l=0}^{\infty} g_k^{(l)}(z, u) \cdot \frac{(i v)^l}{l!}$$

$$= i F(p(u), \overline{p}(u), u) + +g'_0(0, u) i v + g''_0(0, u) \cdot \frac{(i v)^2}{2}$$

$$+ g_1(z, u) + g'_1(z, u) i v + g''_1(z, u) \cdot \frac{(i v)^2}{2}$$

$$+ g_2(z, u) + g'_2(z, u) i v + g_3(z, u)$$

$$+ o(z^4) + o(z^3 v) + o(z^2 v^2) + o(z v^3) + o(v^3)$$

où $g_{k}^{(l)}\left(\mu z,u\right)=\mu^{k}g_{k}^{(l)}\left(z,u\right)$ pour tout nombre complexe $\mu.$

Les fonctions $g_k^{(l)}(z,u)$ dépendent analytiquement des fonctions p(u) et $\overline{p}(u)$, et polynomialement de leurs dérivées jusqu'à l'ordre l compris, tel que la somme des ordres de toutes les dérivées $g_k^{(l)}(z,u)$ est inférieur ou égal à l'entier l. En ordre inferieur, on obtient

$$g_{0}(0, u) = i F(p(u), \overline{p}(u), u) = o(u)$$

$$g'_{0}(0, u) = i F_{\alpha}p^{\alpha'} + i F_{\overline{\beta}}p^{\overline{\beta'}} + i F' = o(1).$$

$$\begin{split} g_0'\left(0,u\right) &= \mathrm{i}\, F_\alpha p^{\alpha''} + \mathrm{i}\, F_{\bar{\beta}} p^{\bar{\beta}''} + 2\, \mathrm{i}\, F_{\alpha\beta} p^{\alpha'} p^{\beta'} + 2\, \mathrm{i}\, F_{\alpha\beta} p^{\alpha'} p^{\bar{\beta}'} \\ &+ 2\, \mathrm{i}\, F_{\alpha}' p^{\alpha'} + 2\, \mathrm{i}\, F_{\bar{\beta}}' p^{\bar{\beta}'} + 2\, \mathrm{i}\, F'' \end{split}$$

et

$$\begin{split} g_1\left(z,u\right) &= 2\operatorname{i}\left(1-F'\right)^{-1}F_{\alpha}z^{\alpha} = \operatorname{o}\left(zu\right). \\ g_1'\left(z,u\right) &= 2\operatorname{i}\left(1-F'\right)^{-1}\left\{2F_{\alpha\beta}p^{\alpha}p^{\beta'} + F_{\alpha\beta}p^{\alpha'}p^{\bar{\beta}'} + F_{\alpha'}'p^{\alpha}\right\} \\ &- 2\operatorname{i}\left(1-F'\right)^{-1}\left\{F_{\alpha}'p^{\alpha'} + F_{\bar{\beta}}'p^{\bar{\beta}'} + 2F''\right\}F_{\alpha}z^{\alpha} \\ &= 4\operatorname{i}F_{\alpha\beta}\big|_0z^{\alpha}p^{\beta'} + 2\operatorname{i}F_{\alpha\bar{\beta}}\big|_0z^{\alpha}p^{\bar{\beta}'} + \operatorname{o}\left(zu\right). \\ g_2\left(z,u\right) &= 2\operatorname{i}\left(1-F'\right)^{-1}F_{\alpha\beta}z^{\alpha}z^{\beta} - 2\operatorname{i}\left(1-F'\right)^{-2}F_{\alpha}z^{\alpha}F_{\beta}'z^{\beta} \\ &- 2\operatorname{i}\left(1-F'\right)^{-3}\left(F_{\alpha}z^{\alpha}\right)^2F'' \\ &= 2\operatorname{i}F_{\alpha\beta}\big|_0z^{\alpha}z^{\beta} + \operatorname{o}\left(z^2u\right). \end{split}$$

L'hypersurface réelle M est définie par l'équation suivante

$$v = F\left(z + p(u + iv), \ \bar{z} + \bar{p}(u - iv), u + \frac{1}{2}\left\{g(z, u + iv) - \bar{g}(0, u - iv)\right\}\right)$$
$$-\frac{1}{2i}\left\{g(z, u + iv) - \bar{g}(0, u - iv)\right\}$$
(3.34)

On développe le second membre de l'équation (3.34) en termes d'ordre inferieur en v comme suit

$$F\left(z + p(u + iv), \ \bar{z} + \bar{p}(u - iv), u + \frac{1}{2} \{g(z, u + iv) - \bar{g}(0, u - iv)\}\right)$$

$$-\frac{1}{2i} \{g(z, u + iv) - \bar{g}(0, u - iv)\}$$

$$= A(z, \bar{z}, u) + vB(z, \bar{z}, u) + v^2C(z, \bar{z}, u) + o(v^3).$$

Donc on obtient

$$\begin{split} A\left(z,\overline{z},u\right) &= F\left(z+p\left(u\right),\overline{z}+\overline{p}\left(u\right),u+\operatorname{Re}g\left(z,u\right)\right)-\operatorname{Im}g\left(0,u\right),\\ B\left(z,\overline{z},u\right) &= \operatorname{i}F_{\alpha}\left(z+p\left(u\right),\overline{z}+\overline{p}\left(u\right),u+\operatorname{Re}g\left(z,u\right)\right)p^{\alpha'}(u)\\ &-\operatorname{i}F_{\overline{\beta}}\left(z+p\left(u\right),\overline{z}+\overline{p}\left(u\right),u+\operatorname{Re}g\left(z,u\right)\right)p^{\overline{\beta'}}(u)\\ &-F'\left(z+p\left(u\right),\overline{z}+\overline{p}\left(u\right),u+\operatorname{Re}g\left(z,u\right)\right)\operatorname{Im}g'\left(z,u\right)\\ &-\operatorname{Re}g'\left(z,u\right), \end{split}$$

$$C\left(z,\overline{z},u\right) &= F_{\alpha\beta}\left(z+p\left(u\right),\overline{z}+\overline{p}\left(u\right),u+\operatorname{Re}g\left(z,u\right)\right)p^{\alpha'}(u)p^{\beta'}(u)\\ &+F_{\alpha\overline{\beta}}\left(z+p\left(u\right),\overline{z}+\overline{p}\left(u\right),u+\operatorname{Re}g\left(z,u\right)\right)p^{\alpha'}(u)p^{\overline{\beta'}}(u)\\ &-F_{\overline{\alpha}\overline{\beta}}\left(z+p\left(u\right),\overline{z}+\overline{p}\left(u\right),u+\operatorname{Re}g\left(z,u\right)\right)p^{\alpha'}(u)p^{\overline{\beta'}}(u)\\ &-\operatorname{i}F_{\alpha'}'\left(z+p\left(u\right),\overline{z}+\overline{p}\left(u\right),u+\operatorname{Re}g\left(z,u\right)\right)p^{\alpha'}(u)\operatorname{Im}g'\left(z,u\right)\\ &+\operatorname{i}F_{\beta'}'\left(z+p\left(u\right),\overline{z}+\overline{p}\left(u\right),u+\operatorname{Re}g\left(z,u\right)\right)p^{\overline{\beta'}}(u)\operatorname{Im}g'\left(z,u\right) \end{split}$$

$$+ i F_{\bar{\beta}}'(z + p(u), \bar{z} + \bar{p}(u), u + \operatorname{Re} g(z, u)) p^{\bar{\beta}'}(u) \operatorname{Im} g'(z) + F''(z + p(u), \bar{z} + \bar{p}(u), u + \operatorname{Re} g(z, u)) (\operatorname{Im} g'(z, u))^{2}$$

$$- \frac{1}{2} F_{\alpha}(z + p(u), \bar{z} + \bar{p}(u), u + \operatorname{Re} g(z, u)) p^{\alpha''}(u)$$

$$- \frac{1}{2} F_{\bar{\beta}}(z + p(u), \bar{z} + \bar{p}(u), u + \operatorname{Re} g(z, u)) p^{\bar{\beta}''}(u)$$

$$- \frac{1}{2} F'(z + p(u), \bar{z} + \bar{p}(u), u + \operatorname{Re} g(z, u)) \operatorname{Re} g''(z, u)$$

$$+ \frac{1}{2} \operatorname{Im} g''(z, u).$$

Où

$$g'(z, u) = \left(\frac{\partial g}{\partial w}\right)(z, u),$$
$$g''(z, u) = \left(\frac{\partial^2 g}{\partial w^2}\right)(z, u).$$

On décompose $A(z, \bar{z}, u), B(z, \bar{z}, u)$ et $C(z, \bar{z}, u)$ comme suit

$$A(z, \overline{z}, u) = \sum_{\min(k,l) \ge 1} A_{kl}(z, \overline{z}, u),$$
$$B(z, \overline{z}, u) = \sum_{\min(k,l) \ge 1} B_{kl}(z, \overline{z}, u),$$

$$C(z, \overline{z}, u) = \sum_{\min(k,l) \ge 1} C_{kl}(z, \overline{z}, u).$$

Il est facile de voir que

 $1-A_{kl}(z,\overline{z},u)$ dépendent analytiquement des fonctions p(u) et $\overline{p}(u)$.

 $2-B_{kl}(z,\overline{z},u)$ dépendent analytiquement des fonctions p(u) et $\overline{p}(u)$, en plus linéairement des dérivées p'(u) et $\overline{p}'(u)$.

 $3-C_{kl}(z,\overline{z},u)$ dépendent analytiquement des fonctions p(u) et $\overline{p}(u)$, quadratiquement des dérivées p'(u) et $\overline{p}'(u)$ et linéairement des dérivées secondes p''(u) et $\overline{p}''(u)$ tel que la somme des ordres des dérivées de p(u) et $\overline{p}(u)$ dans chaque terme est inferieur ou égal à 2.

Lemme 3.5. (3.4): Les fonctions $C_{0t}(z, \overline{z}, u), t \in \mathbb{N}$, ne dépendent pas des dérivées p''(u) et $\overline{p}''(u)$.

Cette assertion est facile à verifier, on observe que les fonctions suivantes

$$C(z,\overline{z},u) \text{ et } -\frac{1}{2} \left(\frac{\partial^2 A}{\partial u^2} \right) (z,\overline{z},u)$$

dépendent de la même manière des dérivées p''(u) et $\overline{p}''(u)$, car

$$A(z,\overline{z},u+\mathrm{i}\,v) = A(z,\overline{z},u) + \mathrm{i}\,v\left(\frac{\partial A}{\partial u}\right)(z,\overline{z},u) - \frac{v^2}{2}\left(\frac{\partial^2 A}{\partial u^2}\right)(z,\overline{z},u) + \dots$$

De A(z,0,u)=0 de g(z,u) définie dans le lemme 3.4 avec $g(0,u)=i\,F(p(u),\overline{p}(u),u)$. Ainsi les identités suivantes

$$\left(\frac{\partial A}{\partial u}\right)(z,0,u) = \left(\frac{\partial^2 A}{\partial u^2}\right)(z,0,u) = \ldots = 0.$$

L'identité

$$\left(\frac{\partial^2 A}{\partial u^2}\right)(z,0,u) = 0,$$

donne la relation désirée entre les termes ayant p'' et \overline{p}'' et les termes n'ayant pas p'' et \overline{p}'' de sorte que nous verifions que la fonction C(z,0,u) est indépendente de la dérivée p'' et \overline{p}'' . ce qui prouve l'assertion du lemme 3.5.

On calcul explicitement le coté droit de l'équation (3.34) en ordre inférieur tel que

$$v = A_{11}(z, \overline{z}, u) + A_{22}(z, \overline{z}, u) + A_{12}(z, \overline{z}, u) + A_{13}(z, \overline{z}, u) + A_{23}(z, \overline{z}, u) + A_{21}(z, \overline{z}, u) + A_{31}(z, \overline{z}, u) + A_{32}(z, \overline{z}, u) + v \{B_{00}(z, \overline{z}, u) + B_{11}(z, \overline{z}, u) + B_{01}(z, \overline{z}, u) + B_{02}(z, \overline{z}, u) + B_{12}(z, \overline{z}, u) + B_{10}(z, \overline{z}, u) + B_{20}(z, \overline{z}, u) + B_{21}(z, \overline{z}, u)\} + v^{2} \{C_{00}(z, \overline{z}, u) + C_{01}(z, \overline{z}, u) + C_{10}(z, \overline{z}, u)\} + o(z^{1}\overline{z}^{4}) + o(z^{4}\overline{z}^{1}) + o(vz^{3}) + o(v\overline{z}^{3}) + o(v^{3}) + \sum_{\substack{\min(k,l) \geq 1 \\ k+l \geq 6}} o(z^{k}\overline{z}^{l}) + \sum_{\substack{k+l \geq 4}} o(z^{k}\overline{z}^{l}) + \sum_{\substack{k+l \geq 2}} o(v^{2}z^{k}\overline{z}^{l}).$$

Оù

$$A_{11}(z,\overline{z},u) = F_{\alpha\overline{\beta}}z^{\alpha}\overline{z}^{\beta} - i(1+F')^{-1}F_{\alpha}'z^{\alpha}F_{\overline{\beta}}\overline{z}^{\beta}$$

$$+ i(1-F')^{-1}F_{\alpha}z^{\alpha}F_{\overline{\beta}}'\overline{z}^{\beta} + 2(1+F')^{-1}(1-F')^{-1}F''F_{\alpha}z^{\alpha}F_{\overline{\beta}}\overline{z}^{\beta}$$

$$= \langle z,z \rangle + o(z\overline{z}u),$$

$$B_{00}(z,\overline{z},u) = i(1+F')^{-1}F_{\alpha}z^{\alpha'} - i(1-F')^{-1}F_{\overline{\beta}}z^{\overline{\beta}'} - (F')^{2}$$

$$= o(1),$$

$$B_{01}(z,\overline{z},u) = 2iF_{\alpha\overline{\beta}}p^{\alpha'}z^{\overline{\beta}} + 2F''F_{\overline{\alpha}}z^{\overline{\alpha}} + i(1+F')F_{\overline{\alpha}}z^{\overline{\alpha}} + iF'_{\alpha}p^{\alpha'}(1+F')F_{\overline{\alpha}}z^{\overline{\alpha}}$$

$$+2i\left(F_{\alpha}p^{\alpha'} + F'_{\overline{\beta}}p^{\overline{\beta}'}\right)F''(1+iF')^{-1}F_{\overline{\gamma}}z^{\overline{\gamma}}.$$

Alors on obtient

$$v = F_{11}^{*}(z, \overline{z}, u) + F_{22}^{*}(z, \overline{z}, u) + F_{12}^{*}(z, \overline{z}, u) + F_{13}^{*}(z, \overline{z}, u) + F_{13}^{*}(z, \overline{z}, u) + F_{21}^{*}(z, \overline{z}, u) + F_{31}^{*}(z, \overline{z}, u) + F_{32}^{*}(z, \overline{z}, u) + O(z\overline{z}^{4}) + O(z^{4}\overline{z}) + \sum_{\substack{\min(k,l) \geq 1 \\ k+l \geq 6}} O(z^{k}\overline{z}^{l}).$$

Οù

$$F_{11}^{*}(z,\overline{z},u) = (1 - B_{00})^{-1} A_{11}$$

$$F_{12}^{*}(z,\overline{z},u) = (1 - B_{00})^{-1} A_{12} + (1 - B_{00})^{-2} A_{11} B_{01}$$

$$F_{13}^{*}(z,\overline{z},u) = (1 - B_{00})^{-1} A_{12} + (1 - B_{00})^{-2} (A_{11}B_{02} + A_{12}B_{01}) + (1 - B_{00})^{-3} A_{11} B_{01}^{2}$$

$$F_{22}^{*}(z,\overline{z},u) = (1 - B_{00})^{-1} A_{22} + (1 - B_{00})^{-2} (A_{11}B_{11} + A_{12}B_{10} + A_{12}B_{01}) + (1 - B_{00})^{-3} (2A_{11}B_{01}B_{10} + A_{11}C_{00})$$

$$F_{23}^{*}(z,\overline{z},u) = (1 - B_{00})^{-1} A_{23} + (1 - B_{00})^{-2} (A_{11}B_{12} + A_{12}B_{11} + A_{21}B_{02} + A_{13}B_{10} + A_{22}B_{01}) + (1 - B_{00})^{-3} (2A_{11}B_{01}B_{11} + 2A_{11}B_{10}B_{02} + 2A_{12}B_{01}B_{10} + A_{21}B_{01}^{2} + A_{11}^{2}C_{01} + 2A_{11}B_{12}C_{10}) + 3 (1 - B_{00})^{-4} (A_{11}B_{02}^{2}B_{10} + A_{11}^{2}B_{01}C_{00}).$$

Du lemme 3.5, les fonctions F_{22}^* et F_{23}^* ne dépendent pas des dérivées p'' et \overline{p}'' , et la dépendence des coefficients dans F_{22}^* et F_{23}^* des dérivées p'(u) et $\overline{p}'(u)$ est de la forme

$$\frac{A_1(up,\bar{p},p',\bar{p}')}{(1-B_{00})^{-3}},$$
(3.35)

et

$$\frac{A_2(up,\bar{p},p',\bar{p}')}{(1-B_{00})^{-4}}. (3.36)$$

Où A_1 dépend analytiquement de p, \bar{p} et u et au plus quadratiquement de p', \bar{p}' et A_2 dépend analytiquement de p, \bar{p} et u et au plus cubicalement de p', \bar{p}' .

Soit M' l'hypersurface réelle obtenue dans le lemme 3.4 par l'application biholomorphique (3.14), qui est définie par l'équation suivante

$$v = \sum_{\min(k,l) \ge 1} F_{kl}^* \left(z, \overline{z}, u \right).$$

Alors il existe une unique fonction analytique f(z, u) telle que

$$F_{11}^{*}\left(z+f\left(z,u\right),\overline{z},u\right)=\sum_{k>1}F_{k1}^{*}\left(z,\overline{z},u\right)$$

et la fonction D(z, u) Satisfont la condition $f(0, u) = \frac{\partial f}{\partial z}(0, u)$. Ainsi f(z, u) dépend analytiquement de p, \bar{p} et u et rationnellement des dérivées p' et \bar{p}' .

On décompose f(z, u) comme suit

$$f(z,u) = \sum_{k>2} f_k(z,u).$$

Οù

$$f_k(\mu z, u) = \mu^k f_k(z, u)$$
, pour tout $\mu \in \mathbb{C}$.

Alors les fonctions $f_2(z, u)$ et $f_3(z, u)$ sont données par

$$A_{11} (f_2(z, u), \overline{z}, u) = A_{21} + (1 - B_{00})^{-1} A_{11} B_{10},$$

$$A_{11} (f_3(z, u), \overline{z}, u) = A_{31} + (1 - B_{00})^{-1} (A_{11} B_{20} + A_{21} B_{10}) + (1 - B_{00})^{-2} A_{11} B_{10}^2.$$

Où $f_2(z,u)$ et $f_3(z,u)$ ne dépendent pas des dérivées du second ordre p'' et \overline{p}''

Alors on obtient

$$\begin{array}{ll} v &= \sum_{\min(k,l) \geq 1} F_{kl}^{*}\left(z,\overline{z},u\right) \\ &= F_{11}^{*}\left(z,\overline{z},u\right) + F_{11}^{*}\left(z,\overline{f}\left(z,u\right),u\right) + F_{11}^{*}\left(f\left(z,u\right),\overline{z},u\right) + \sum_{\min(k,l) \geq 2} F_{kl}^{*}\left(z,\overline{z},u\right) \\ &= F_{11}^{*}\left(z+f\left(z,u\right),\overline{z}+\overline{f}\left(z,u\right),u\right) + \sum_{\min(k,l) \geq 2} G_{kl}\left(z,\overline{z},u\right). \end{array}$$

On note

$$G_{22}(z, \overline{z}, u) = F_{22}^{*}(z, \overline{z}, u) - F_{11}^{*}(f_{2}(z, u), \overline{f}_{2}(z, u), u),$$

$$G_{23}(z, \overline{z}, u) = F_{23}^{*}(z, \overline{z}, u) - F_{11}^{*}(f_{2}(z, u), \overline{f}_{3}(z, u), u).$$

Il est facile de voir que G_{22} et G_{23} dépendent de p, \bar{p}, u, p' et \bar{p}' de la même forme comme dans (3.35) et (3.35).

On prend une fonction analytique E(u) telle que

$$F_{11}^*\left(z,\overline{z},u\right) = \langle E(u)z,E(u)z\rangle \ \text{ et } E(0) = \mathrm{i}\,d_{n\times n}.$$

La fonction E(u) est déterminée par la relation suivante

$$E_{1}(u) = U(u) E(u). \tag{3.37}$$

Où $\langle U(u) z, U(u) z \rangle = \langle z, z \rangle$.

Alors l'application biholomorphe définie par l'équation suivante

$$z^{*} = E(u) \left\{ z + f\left(z, w\right) \right\},\,$$

$$w^* = w$$
.

Transforme M' en une hypersurface de la forme suivante

$$v = \langle z, z \rangle + \sum_{\min(k,l) \ge 2} H_{kl} (z, \overline{z}, u).$$
 (3.38)

Par la suite, on obtient une hypersurface réelle dans (3.38) par une application biholomorphe comme suit

$$z^* = U(w)E(w) \{z + f(z, w)\},\$$

 $w^* = w.$

Où la fonction holomorphe U(w) satisfait la condition (3.37). On utilise le développement

$$E(u) = E(w) - i v E'(w) + ...,$$

$$U(u) = U(w) - i v U'(w) +$$
(3.39)

On obtient

$$v = F_{11}^{*} \left(z + f(z, u), \overline{z} + \overline{f}(z, u), u \right) + \sum_{\min(k,l) \geq 2} G_{kl}(z, \overline{z}, u)$$

$$= \langle E(u) (z + f(z, u)), E(u) (z + f(z, u)) \rangle + \sum_{\min(k,l) \geq 2} G_{kl}(z, \overline{z}, u)$$

$$= \langle U(u)E(u) (z + f(z, u)), U(u)E(u) (z + f(z, u)) \rangle + \sum_{\min(k,l) \geq 2} G_{kl}(z, \overline{z}, u)$$

$$= \langle U(w)E(w) (z + f(z, w)), U(w)E(w) (z + f(z, w)) \rangle$$

$$- i v \langle U(w)E(w) (z + f(z, w)), U(w)E(w) (z + f(z, w)) \rangle$$

$$+ i v \langle U(w)E(w) (z + f(z, w)), U'(w)E(w) (z + f(z, w)) \rangle$$

$$- i v \langle \{E'(w) (z + f(z, w)) + E(w)f_4(z, w)\}, \{E'(w) (z + f(z, w)) + E(w)f_4(z, w)\} \rangle$$

$$+ i v \langle E(w) (z + f(z, w)), U(w)E(w) (z + f(z, w)) \rangle$$

$$+ o (z\overline{z}v^2) + \sum_{\min(k,l) \geq 2} G_{kl}(z, \overline{z}, u).$$

$$(3.40)$$

Οù

$$w = u + i v,$$

$$U'(u) = \frac{dU}{du}, E'(u) = \frac{dE}{du}(u),$$

$$f_u(z, w) = \left(\frac{\partial f}{\partial u}\right)(z, w).$$

Par l'introduction de la variable holomorphe $z^* = z + f(z, w)$, on obtient par l'équation (3.40)

$$v = \langle U(w)E(w)z^{*}, U(w)E(w)z^{*} \rangle + G_{22}(z^{*}, \overline{z^{*}}, u) - i \langle E(u)z^{*}, E(u)z^{*} \rangle \{U'(u)E(u)z^{*}, U(u)E(u)z^{*} \} - \langle U(u)E(u)z^{*}, U'(u)E(u)z^{*} \rangle - \langle U(u)E(u)z^{*}, U'(u)E(u)z^{*} \rangle - i \langle E(u)z^{*}, E(u)z^{*} \rangle \{\langle E'(u)E(u)z^{*}, E(u)z^{*} \rangle - \langle E(u)z^{*}, E'(u)z^{*} \rangle \} G_{23}^{*}(z^{*}, \overline{z^{*}}, u^{*}) + G_{32}^{*}(z^{*}, \overline{z^{*}}, u^{*}) + \sum_{\substack{\min(k,l) \geq 1 \\ k+l \geq 6}} G_{kl}^{*}(z^{*}, \overline{z^{*}}, u^{*}).$$

$$(3.41)$$

Οù

$$G_{23}^{*}(z,\overline{z},u) = G_{23}(z,\overline{z},u) + i F_{11}^{*}(z,\overline{z},u) F_{11}^{*}\left(z,\left(\frac{\partial f}{\partial u}\right)(z,u),u\right)$$

$$-\sum_{\beta} \left(\frac{\partial G_{22}}{\partial \overline{z^{\beta}}}\right)(z,\overline{z},u) \overline{f_{2}^{\beta}(z,u)}$$

$$= G_{23}(z,\overline{z},u) + i F_{11}^{*}(z,\overline{z},u) \left(\frac{\partial F_{12}^{*}}{\partial u}\right)(z,\overline{z},u)$$

$$-i F_{11}^{*}(z,\overline{z},u) \left(\frac{\partial F_{11}^{*}}{\partial u}\right) \left(z,\overline{f_{2}(zu)},u\right)$$

$$-\sum_{\beta} \left(\frac{\partial G_{22}}{\partial \overline{z^{\beta}}}\right)(z,\overline{z},u) \overline{f_{2}^{\beta}(z,u)}.$$

D'après l'application biholomorphe (3.39), on obtient

$$v = \langle z^*, z^* \rangle + H_{22}^* (z^*, \overline{z^*}, u^*) + H_{23} (z^*, \overline{z^*}, u^*) + H_{32} (z^*, \overline{z^*}, u^*) + \sum_{\substack{\min(k,l) \ge 1 \\ k+l \ge 6}} H_{kl} (z^*, \overline{z^*}, u^*).$$

Οù

$$H_{22}(z, \overline{z}, u) = G_{22} \left(U^{-1}(u) E^{-1}(u), \overline{U^{-1}(u) E^{-1}(u)}, u \right)$$

$$- i \langle z, z \rangle \left\{ \langle U'(u) U^{-1}(u) z, z \rangle - \langle z, U'(u) U^{-1}(u) z \rangle \right\}$$

$$- i \langle z, z \rangle \left\{ \langle E'(u) E^{-1}(u) U^{-1}(u) z, U^{-1}(u) z \rangle - \langle U^{-1}(u) z, E'(u) E^{-1}(u) U^{-1}(u) z \rangle \right\}.$$

Et la dépendence de $H_{23}(z, \overline{z}, u)$ en p'' et \overline{p}'' et comme suit

$$H_{23}(z,\overline{z},u) = -2\langle z,z\rangle^2 \langle p''(0),z\rangle + K\left(z,\overline{z},0;p'(0),\overline{p'(0)}\right).$$

on utilise l'identité suivante

$$(\operatorname{tr})^{2} \left\{ \langle z, z \rangle^{2} \langle p, z \rangle \right\} 2(n+1)(n+2) \langle p, z \rangle.$$

L'équation $(tr)^2 H_{23} = 0$ est une équation différentièlle du second ordre

$$A_1p'' + A_2\overline{p}'' = B.$$

Οù

1- A_1, A_2 sont des $n \times n$ matrices de fonctions et B est une fonction à valeur dans \mathbb{C}^n ,

- 2- $A_1 = i d_{n \times n} + o(u)$ et $A_2 = o(u)$,
- 3- A_1, A_2 et B dépendent analytiquement de p, \bar{p} ,
- 4- A_{1} , A_{2} dépendent au plus linéairement de p', \bar{p}' ,
- 5- B dépend au plus cubicalemùent de p', \bar{p}' .

Alors on obtient

$$p'' = Q(u, p, p', \bar{p}, \bar{p}')$$

$$= (A_1 - A_2 \bar{A}_1^{-1} \bar{A}_2)^{-1} (B - A_2 \bar{A}_1^{-1} \bar{B}).$$
(3.42)

Où la fonction Q dépend rationnellement des dérivées p', \bar{p}' .

Donc il existe une unique courbe analytique Γ dans M qui passe par l'origine et est tangente à un vecteur transversal à l'hyperplan tangent complexe à l'origine et qui est envoyée par l'application biholomorphique dans la u-courbe.

Etant donné que

$$\langle U(u)z, U(u)z \rangle = \langle z, z \rangle$$
.

On a les identités

$$\langle U'(u)U^{-1}(u)z, z \rangle = \langle z, zU'(u)U^{-1}(u) \rangle = 0,$$

$$\operatorname{tr}(U'(u)U^{-1}(u)) + \overline{\operatorname{tr}U'(u)U^{-1}(u)} = 0.$$

Donc l'équation $\operatorname{tr} H_{22} = 0$ est donnée par

$$\langle U'(u)U^{-1}(u)z, z \rangle + \frac{1}{2(n+2)} \langle z, z \rangle \operatorname{tr}(U'(u)U^{-1}(u))$$

$$= \frac{1}{2\operatorname{i}(n+2)} \operatorname{tr}\left(E^{-1}(u)z, \bar{E}^{-1}(u)z, u\right)$$

$$-\frac{1}{2} \left\{ \operatorname{tr}(E'(u)E^{-1}(u)) - \overline{\operatorname{tr}(E'(u)E^{-1}(u))} \right\}.$$
(3.43)

On utilise les identités suivantes

$$\operatorname{tr} \left\{ \left\langle z, z \right\rangle \left\langle Az, z \right\rangle \right\} = (n+2) \left\langle Az, z \right\rangle + \operatorname{tr} \left(A \right) \left\langle z, z \right\rangle,$$

$$(\operatorname{tr})^{2} \{ \langle z, z \rangle \langle Az, z \rangle \} = 2(n+1)\operatorname{tr}(A).$$

On obtient

$$\langle z, z \rangle \operatorname{tr}(U'(u)U^{-1}(u)) = \frac{1}{4\operatorname{i}(n+1)} (\operatorname{tr})^{2} G_{22} \left(E^{-1}(u) z, \overline{E^{-1}(u) z}, u \right) - \frac{1}{2} \left\{ \operatorname{tr}(E'(u)E^{-1}(u)) - \overline{\operatorname{tr}(E'(u)E^{-1}(u))} \right\}.$$

Ainsi l'équation (3.43) est une équation differentielle du premier ordre de U(u) comme suit

$$\langle U'(u)U^{-1}(u)z, z \rangle = \frac{1}{2 \operatorname{i}(n+2)} (\operatorname{tr}) G_{22} \left(E^{-1}(u) z, \overline{E^{-1}(u) z}, u \right)$$

$$- \frac{1}{8 \operatorname{i}(n+1)(n+2)} \langle z, z \rangle (\operatorname{tr})^{2} G_{22} \left(E^{-1}(u) z, \overline{E^{-1}(u) z}, u \right)$$

$$- \frac{1}{2} \left\{ \langle E'(u)E^{-1}(u)z, z \rangle - \langle z, E'(u)E^{-1}(u)z \rangle \right\}$$

$$- \frac{1}{4(n+2)} \langle z, z \rangle \left\{ \operatorname{tr}(E'(u)E^{-1}(u)) - \overline{\operatorname{tr}(E'(u)E^{-1}(u))} \right\}.$$

D'où en imposant $U(0) = E(0) = i d_{n \times n}$, il existe une unique application biholomorphe

$$z^* = U(w)E(w) \{z + f(z, w)\},$$
 (3.44)
 $w^* = w.$

Qui transforme M' en une hypersurface réelle de la forme suivante

$$v = \langle z, z \rangle + \sum_{\min(k,l) \ge 2} H_{kl}(z, \overline{z}, u).$$
 (3.45)

Οù

$$tr(H_{22}) = tr(H_{23}) = 0.$$

On considère les applications suivantes

$$\phi_{1}: \begin{cases} z = z^{*} + p(w^{*}) \\ w = w^{*} + g(z^{*}, w^{*}) \end{cases},$$

$$\phi_{2}: \begin{cases} z^{*} = E(w) (z + f(z, w)) \\ w^{*} = w \end{cases},$$

$$\phi_{3}: \begin{cases} z^{*} = (\operatorname{sign} \{q'(0)\} q'(w))^{\frac{1}{2}} uz \\ w^{*} = q(w) \end{cases}.$$

$$(3.46)$$

Où p(w), g(z, w), E(w), f(z, w) et q(w) sont des fonctions holomorphes qui satisfont

$$\overline{g(0,u)} = g(0,u), \qquad \overline{q(u)} = q(u),
p(0) = q(0) = 0, \quad \det q'(0) \neq 0, \det u \neq 0,
E(0) = i d_{n \times n}, \quad f(0,w) = f_z(0,w) = 0.$$

L'application

$$(\phi_1, \phi_2, \phi_3) \longmapsto \phi_3 \circ \phi_2 \circ \phi_1 \tag{3.47}$$

est bijective. Donc l'application biholomorphique ϕ , $\phi|_0=0$, a une unique décomposition

$$\phi = \phi_3 \circ \phi_2 \circ \phi_1.$$

De (3.47), toute application biholomorphique qui preserve (3.45) et la ucourbe est donnée par

$$z^* = (s i gn \{q'(0)\} q'(w))^{\frac{1}{2}} uz, w^* = q(w).$$
 (3.48)

Οù

$$q(\bar{w}) = \overline{q(w)}, q(0) = 0, q'(0) \neq 0,$$

$$U \in GL(n; \mathbb{C}), \langle Uz, Uz \rangle = \text{sign} \{q'(0)\} \langle z, z \rangle.$$

L'application (3.48) transforme l'hypersurface réelle définie par

$$\begin{array}{ll} v^{*} &= \langle z^{*}, z^{*} \rangle + H_{22}^{*}\left(z^{*}, \overline{z^{*}}, u^{*}\right) + H_{23}^{*}\left(z^{*}, \overline{z^{*}}, u^{*}\right) + H_{32}^{*}\left(z^{*}, \overline{z^{*}}, u^{*}\right) \\ &+ H_{33}^{*}\left(z^{*}, \overline{z^{*}}, u^{*}\right) + \operatorname{o}\left(z^{*4}\overline{z}^{*2}\right) + \operatorname{o}\left(z^{*2}\overline{z}^{*4}\right) + \sum_{\substack{\min(k,l) \geq 2\\k+l \geq 7}} H_{kl}^{*}\left(z^{*}, \overline{z^{*}}, u^{*}\right). \end{array}$$

En une hypersurface réelle de la forme

$$v = \langle z, z \rangle + H_{22}^* \left(Uz, \overline{Uz}, q(u) \right)$$

$$q' (|q'|)^{\frac{1}{2}} (w) \left\{ H_{23}^* \left(Uz, \overline{Uz}, q(u) \right) + H_{32}^* \left(Uz, \overline{Uz}, q(u) \right) \right\}$$

$$+kq'^2 H_{33}^* \left(Uz, \overline{Uz}, q(u) \right) + \left\{ \frac{1}{2} \left(\frac{q''}{q'} \right)^2 - \frac{q'''}{3q'} \right\} \langle z, z \rangle^3$$

$$+ o (z^4 \overline{z}^2) + o (z^2 \overline{z}^4)$$

$$= \langle z, z \rangle + H_{22} (z, \overline{z}, u) + H_{23} (z, \overline{z}, u) + H_{32} (z, \overline{z}, u)$$

$$+ H_{33} (z, \overline{z}, u) + o (z^4 \overline{z}^2) + o (z^2 \overline{z}^4) .$$

Donc on obtient

$$H_{22}(z, \overline{z}, u) \qquad q' H_{22}^{*}(Uz, \overline{Uz}, u) H_{23}(z, \overline{z}, u) \qquad q' (|q'|)^{\frac{1}{2}} H_{23}^{*}(Uz, \overline{Uz}, u) H_{33}(z, \overline{z}, u) \qquad kq'^{2} H_{33}^{*}(Uz, \overline{Uz}, q(u)) + \left\{ \frac{1}{2} \left(\frac{q''}{q'} \right)^{2} - \frac{q'''}{3q'} \right\} \langle z, z \rangle^{3}.$$
(3.49)

Montrer que tr $H_{22}^* = (\text{tr})^2 H_{23}^* = 0$ quand tr $H_{22} = (\text{tr})^2 H_{23} = 0$. on peut achever la condition $(\text{tr})^3 H_{33}^* = 0$ par une équation différentielle du troisième ordre comme suit

$$\frac{q'''}{3q'} - \frac{1}{2} \left(\frac{q''}{q'}\right)^2 = k(u). \tag{3.50}$$

Οù

$$k(u) = -\frac{1}{6n(n+1)(n+2)} (\text{tr})^3 H_{33}(z, \overline{z}, u).$$

L'équation différentielle!détermine un paramètre projectif sur la u-courbe. ce qui achève la preuve du théorème 35.

Théorème 3.6. (3.6) : Soit M une hypersurface analytique réelle non dégénérée définie par l'équation

$$v = F(z, z, u) F|_0 = dF|_0 = 0.$$

Alors une application biholomorphique normalisante de M, $\phi = (f,g)$ dans $\mathbb{C}^n \times \mathbb{C}$ est uniquement déterminée par les valeurs $\frac{\partial f}{\partial z}\Big|_0$, $\frac{\partial f}{\partial w}\Big|_0$, $\operatorname{Re}\left(\frac{\partial g}{\partial w}\Big|_0\right)$, $\operatorname{Re}\left(\frac{\partial^2 g}{\partial w^2}\Big|_0\right)$.

Comme notée avant, une application biholomorphique ϕ qui satisfait $\phi|_0=0$ est uniquement décomposée en

$$\phi = \phi_3 \circ \phi_2 \circ \phi_1$$

Où ϕ_1, ϕ_2 et ϕ_3 sont des applications biholomorphiques de (3.47) satisfont

$$\phi_1|_0 = \phi_2|_0 = \phi_3|_0 = 0.$$

De plus

$$(\phi_1, \phi_2, \phi_3) \longmapsto \phi_3 \circ \phi_2 \circ \phi_1 \tag{3.51}$$

est bijective. L'unicité de ϕ_1, ϕ_2 et ϕ_3 aux valeurs près

$$\frac{\partial f}{\partial z}\Big|_{0}, \frac{\partial f}{\partial w}\Big|_{0}, \operatorname{Re}\left(\frac{\partial g}{\partial w}\Big|_{0}\right), \operatorname{Re}\left(\frac{\partial^{2} g}{\partial w^{2}}\Big|_{0}\right).$$

Assure l'unicité de l'application normalisante ϕ . l'unicité de chaque ϕ_1, ϕ_2 et ϕ_3 est vérifiée dans la preuve du théorème 31 uniquement grace à la détermination des fonctions p(w), E(w), q(w) par les valeurs initiales

On peut avoir les relations suivantes

$$(|q'(0)|)^{\frac{1}{2}}U = \frac{\partial f}{\partial z}\Big|_{0},$$

$$-(|q'(0)|)^{\frac{1}{2}}Up'(0) = \left(1 - i\frac{\partial F}{\partial u}\Big|_{0}\right)^{-1}\frac{\partial f}{\partial w}\Big|_{0},$$

$$q'(0) = \operatorname{Re}\left(\frac{\partial g}{\partial w}\Big|_{0}\right),$$

$$2q'(0)q''(0) = \operatorname{Re}\left\{\left(1 - i\frac{\partial F}{\partial u}\Big|_{0}\right)^{-2}\frac{\partial^{2}g}{\partial w^{2}}\Big|_{0}\right\}.$$

Pour le cas $dF|_{0}=0$ plutôt que $F_{z}|=F_{\bar{z}}|=0$, on a les relations simples

$$(|q'(0)|)^{\frac{1}{2}}U = \frac{\partial f}{\partial z}\Big|_{0},$$

$$-(|q'(0)|)^{\frac{1}{2}}Up'(0) = \frac{\partial f}{\partial w}\Big|_{0},$$

$$q'(0) = \operatorname{Re}\left(\frac{\partial g}{\partial w}\Big|_{0}\right),$$

$$2q'(0)q''(0) = \operatorname{Re}\left\{\frac{\partial^{2} g}{\partial w^{2}}\Big|_{0}\right\}.$$

Telles que les valeurs p'(0), E(0) = U, q'(0) et q''(0) sont uniquement déterminées par

$$\frac{\partial f}{\partial z}\Big|_{0}$$
, $\frac{\partial f}{\partial w}\Big|_{0}$, $\operatorname{Re}\left(\frac{\partial g}{\partial w}\Big|_{0}\right)$, $\operatorname{Re}\left(\frac{\partial^{2} g}{\partial w^{2}}\Big|_{0}\right)$.

Ce qui achève la démonstration du théorème 36

- dans le cas où n=1 c'est à dire $\dim M=3$ où l'hypersurface analytique réelle est donnée par

$$v = \langle z, z \rangle + \sum_{\min(k,l) > 2} F_{kl}(z, \bar{z}, u).$$

οù

$$(\text{tr}) F_{22} = (\text{tr})^2 F_{23} = (\text{tr})^3 F_{33}.$$

on a ${\cal F}_{22}={\cal F}_{23}={\cal F}_{33}=0$ si dimM=3 et la forme normale de M est donnée par

$$v = zz + C_{42}z^{4}\bar{z}^{2} + C_{24}z^{2}\bar{z}^{4} + \sum_{k+l \ge 7} C_{kl}z^{k}\bar{z}^{l}.$$
 (3.52)

4 Points ombilicaux

Théorème 4.7 : Soit M une hypersurface analytique réelle en forme normale telle que

$$v = \langle z, z \rangle + F_l(z, \bar{z}, u) + \sum_{k+l > 1} F_k(z, \bar{z}, u),$$

οù

$$F_k(z,\bar{z},u) \neq 0.$$

Soit N_{σ} une normalisation de M et ϕ_{σ} un automorphisme de l'hyperquadrique réelle avec les valeurs initiales $\sigma = (C, a, \varrho, r) \in H$. on suppose que l'hyperquadrique transformée $N_{\sigma}(M)$ est définie par

$$v = \langle z, z \rangle + F^*(z, \bar{z}, u).$$

Alors

$$N_{\sigma} = \phi_{\sigma} +_{X} (l+1), \qquad (4.1)$$

$$F^* = \varrho F_1 \left(C^{-1} z, \overline{C^{-1} z}, \varrho^{-1} u \right) + (l+1). \tag{4.2}$$

Avec

$$(l+1) = \sum_{k+2l' \ge l+1} \left(|z|^k |w|^{l'} \right),$$

$$_X(l+1) = ((l), ..., (l), (l+1)).$$

Preuve : Soit ϕ l'application fractionnelle

$$\phi = \phi_{\sigma} : \begin{cases} z^* = \frac{C(z - aw)}{1 + 2\langle z, a \rangle - w(r + \langle a, a \rangle)} \\ w^* = \frac{\varrho w}{1 + 2\langle z, a \rangle - w(r + \langle a, a \rangle)} \end{cases}.$$

Où les constantes $\sigma = (C, a, \varrho, r)$ satisfont

$$a \in \mathbb{C}^n$$
 $\varrho \neq 0$, $\varrho, r \in \mathbb{R}$ $C \in GL(n; \mathbb{C})$ $\langle Cz, Cz \rangle = \varrho \langle z, z \rangle$

L'application ϕ se décompose en

$$\phi = \varphi \circ \psi$$
.

Οù

$$\psi = \begin{cases} z^* &= \frac{z - aw}{1 + 2\langle z, a \rangle - \langle a, a \rangle w} \\ w^* &= \frac{w}{1 + 2\langle z, a \rangle - \langle a, a \rangle w} \end{cases},$$

et

$$\varphi = \begin{cases} z^* &= \frac{Cz}{1 - rw} \\ w^* &= \frac{\varrho w}{1 - rw} \end{cases}.$$

Alors ψ^{-1} et φ^{-1} sont données par

$$\psi^{-1} = \begin{cases} z = \frac{z^* + aw^*}{1 - 2\langle z^*, a \rangle - \langle a, a \rangle w^*} \\ w^* = \frac{1 - 2\langle z^*, a \rangle - \langle a, a \rangle w^*}{1 - 2\langle z^*, a \rangle - \langle a, a \rangle w^*} \end{cases},$$

et

$$\varphi^{-1} = \begin{cases} z = \frac{C^{-1}z^*}{1 + r\varrho^{-1}w^*} \\ w^* = \frac{\varrho^{-1}w^*}{1 + r\varrho^{-1}w^*} \end{cases}.$$

Ainsi $\phi_{\sigma}^{-1} = \psi^{-1} \circ \varphi^{-1}$, on obtient

$$\phi_{\sigma}^{-1} = \phi_{\sigma^{-1}} : \begin{cases} z = \frac{C^{-1} (z^* + \varrho^{-1} C a w^*)}{1 - 2 \langle z^*, \varrho^{-1} C a \rangle - w^* (-r \varrho^{-1} + \langle \varrho^{-1} C a, \varrho^{-1} C a \rangle)} \\ w = \frac{\varrho^{-1} w^*}{1 - 2 \langle z^*, \varrho^{-1} C a \rangle - w^* (-r \varrho^{-1} + \langle \varrho^{-1} C a, \varrho^{-1} C a \rangle)} \end{cases}$$

Οù

$$\sigma^{-1} = (C^{-1}, -\varrho^{-1}Ca, \varrho^{-1}, -r\varrho^{-1}) \in H.$$

Donc on a

$$v - \langle z, z \rangle = (v^* - \langle z^*, z^* \rangle) \varrho^{-1} (1 - \delta^*)^{-1} (1 - \bar{\delta}^*)^{-1}$$

οù

$$1 - \delta^* = 1 - 2\varrho^{-1} \langle z^*, Ca \rangle - \varrho^{-1} w^* \left(-r + \langle a, a \rangle \right).$$

Par l'application ϕ_{σ} qui se décompose $N_{\sigma}=E\circ\phi_{\sigma},$ on obtient que

$$v^* = \langle z^*, z^* \rangle + \varrho F_l \left(C^{-1} z^*, \overline{C^{-1} z^*}, \varrho^{-1} u^* \right) + \sum_{|i|+|J|+2k \ge l+1} \left(z^*, z^{*J}, u^{*k} \right)$$

$$= \langle z^*, z^* \rangle + \varrho F_l \left(C^{-1} z^*, \overline{C^{-1} z^*}, \varrho^{-1} u^* \right) + (l+1).$$

L'hypersurface qui résulte en forme normale

$$v = \langle z, z \rangle + \varrho F_l \left(C^{-1} z, \overline{C^{-1} z}, \varrho^{-1} u \right),$$

ce qui donne

$$F^*(z, \bar{z}, u) = \varrho F_l\left(C^{-1}z^*, \overline{C^{-1}z^*}, \varrho^{-1}u^*\right) + (l+1).$$

On utilise le théorème 37, la définition suivante aura le sens

Définition 4.1. 1- $Si \dim M = 3$, le point p est dit ombilical si

$$F_{42}(z,\bar{z},0) = F_{24}(z,\bar{z},0) = 0.$$

2- $Si \dim M \geq 5$, le point $p \in M$ et dit ombilical Si

$$F_{22}(z,\bar{z},0)=0.$$

Soit N_{σ} une normalisation de M et $\phi_{\sigma} = \varphi \circ \psi$ un automorphisme d'une hyperquadrique réelle.

On a une décomposition de N_{σ}

$$N_{\sigma} = \phi \circ E \circ \psi$$

où E est une normalisation de $\psi\left(M\right)$ avec la valeur initiale est l'identité. On vérifie que pour chaque $k\geq 3$

$$N_{\sigma} = \phi_{\sigma} +_{X} (k+1) \text{ ssi } E = +_{X} (k+1).$$

Théorème4.8 : Soit M une hypersurface analytique réelle de dimension 3 en forme normale. Soit N_{σ} une normalisation de M tel que $a \neq 0$ dans $\sigma = (C, a, \varrho, r)$. Alors la non-ombilicité à l'origine $0 \in M$ est équivalente à la condition suivante

$$N_{\sigma} = \phi_{\sigma} +_{X} (7) \text{ et } N_{\sigma} \neq \phi_{\sigma} +_{X} (8). \tag{4.3}$$

Pour la preuve, il suffit de montrer que la normalisation E dans $N_{\sigma} = \varphi \circ E \circ \psi$ satisfait

$$E = \phi_{\sigma} +_X (7)$$
 et $E \neq \phi_{\sigma} +_X (8)$,

si et seulement si, l'origine est non-ombilical.

On suppose que M est définie par

$$v = z\bar{z} + bz^4\bar{z}^2 + bz^2\bar{z}^4 + cz^5\bar{z}^2 + \bar{c}z^2\bar{z}^5 + dz^4\bar{z}^3 + \bar{d}z^3\bar{z}^4 + (8).$$

Où $b, c, d \in \mathbb{C}$.

Par l'application ψ , M est transformée jusqu'au 7-ème poids en une hypersurface réelle comme suit

$$v = z\bar{z} + bz^{4}\bar{z}^{2} + bz^{2}\bar{z}^{4} + (c + 4\bar{a})z^{5}\bar{z}^{2} + (\overline{c + 4\bar{a}})z^{2}\bar{z}^{5} + (d + 2)z^{4}\bar{z}^{3} + (\overline{d + 2})z^{3}\bar{z}^{4} + 4bauz^{3}\bar{z}^{2} + 4\bar{b}\bar{a}uz^{2}\bar{z}^{3} + 2b\bar{a}z^{4}\bar{z} + 2\bar{b}az\bar{z}^{4} + (8).$$

On utilise le théorème suivant :

Théorème 4.9 : Soit M une hypersurface analytique réelle dont la forme de Levi est non dégénérée définie par

$$v = F(z, \bar{z}, u), F|_{0} = dF|_{0} = 0.$$
 (4.4)

Si h = (f, g) est une application biholomorphique telle que

$$f(z, w) = C(z - aw) + f^*(z, w),$$

$$g(z, w) = \rho(w + rw^2) + g^*(z, w),$$

où les fonctions $f^*(z, w)$ et $g^*(z, w)$ satisfont la condition

$$f^*|_0 = df^*|_0 = g^*|_0 = dg^*|_0 = (g^*|_0) = 0,$$
 (4.5)

et si l'hypersurface réelle h(M) est définie par

$$v = F^*(z, \bar{z}, u) + (k+1), \tag{4.6}$$

où $v = F^*(z, \bar{z}, u)$ est en forme normale, alors il existe une normalisation de M, ϕ_{σ} avec les valeurs initiales $\sigma = (C, a, \varrho, r) \in H$ tel que

$$h = \phi_{\sigma} +_X (k+1).$$

On obtient la normalisation E jusqu'au poids 7

$$z^* = z + 2\overline{a}bz^4w - 2^2w^2 - \frac{1}{3}\overline{a}\overline{b}w^3 + (7),$$

$$w^* = w + \frac{2}{3}abzw^3 + (8),$$

et M est transformée jusqu'au poids 7 en une hypersurface réelle

$$v = z\bar{z} + bz^{4}\bar{z}^{2} + bz^{2}\bar{z}^{4} + (c + 2\bar{a})z^{5}\bar{z}^{2} + (\bar{c} + +2\bar{a})z^{2}\bar{z}^{5} + (d + \frac{2}{3})z^{4}\bar{z}^{3} + (d + \frac{2}{3})z^{3}\bar{z}^{4} + (8).$$

puisque $a \neq 0$, la normalisation E satisfait la condition (4.3) si et seulement si $b \neq 0$, ce qui achève la preuve.

Corollaire 4.10 : Soit M une hypersurface analytique réelle de dimension 3 avec un point non- ombilical $p \in M$, alors il existe une coordonnée normale dont le centre est $p \in M$ telle que

$$v = z\bar{z} + F_{42}(z, \bar{z}, u) + F_{24}(z, \bar{z}, u) + \sum_{@\min(k, l) \ge 2k + l \ge 7} F_{kl}(z, \bar{z}, u),$$

οù

$$F_{42}(z,\bar{z},0) = z^2 \overline{z^4}, \left\{ z^2 \left(\frac{\partial F_{42}}{\partial u} \right) (z,\bar{z},0) \right\} = 0, F_{43}(z,\bar{z},0) = 0.$$
 (4.7)

De plus, si deux hypersurfaces réelles en forme normale sont biholomorphiquement équivalentes au voisinage de l'origine, alors elles sont liées par une application comme suit

$$z^* = \pm z, w^* = w$$

la même est vraie si on remplace la condition (4.7) par la condition suivante

$$F_{24}(z,\bar{z},0) = z^2 \overline{z^4}, \left\{ z^2 \left(\frac{\partial F_{24}}{\partial u} \right) (z,\bar{z},0) \right\} = 0, F_{52}(z,\bar{z},0) = 0.$$

Preuve: Puisque le point p est non-ombilical, on prend une normalisation N_{σ} avec les valeurs initiales

$$\sigma = (1, a, 1, 0),$$

$$a = \frac{3}{2b}(\text{resp } a = -\frac{\overline{c}}{2b}),$$

où on suppose que

$$\begin{aligned} F_{42}|_{u=0} &= bz^4\bar{z}^2 \neq 0, \\ F_{52}|_{u=0} &= cz^5\bar{z}^2, \\ F_{43}|_{u=0} &= dz^4\bar{z}^3. \end{aligned}$$

Alors on obtient

$$F_{43}^*|_{u=0} = 0 \left(\text{Resp } F_{52}^*|_{u=0} \right).$$
 (4.8)

Noter que a=0 necessairement si $F_{43}|_{u=0}=0$ (resp. $F_{52}|_{u=0}=0$). Supposant que $F_{43}|_{u=0}=0$ (resp. $F_{52}|_{u=0}=0$). Alors on choisis la normalisation N_{σ} avec les valeurs initiales $\sigma=(\alpha,0,\alpha\overline{\alpha},0)$

$$z^* = \alpha z, w = \alpha \overline{\alpha} w.$$

οù

$$\alpha = \pm \left(\frac{b^6}{\overline{b}^2}\right)^{1/4}.$$

Alors on obtient

$$F_{42}^*(z,\bar{z},0) = z^2 \overline{z^4},$$

et que a=0 et $\alpha=\pm 1$ obligatoirement si

$$F_{43}|_{u=0} = 0 \text{ et } F_{24}|_{0} = z^{2}\overline{z^{4}}$$

$$\left(\text{Resp } F_{52}|_{u=0} = 0 \text{ et } F_{42}|_{0} = z^{2}\overline{z^{4}}\right).$$

Alors on execute une autre normalisation avec les valeurs initiales $\sigma = (1,0,1,r)$

$$z^* = \frac{z}{1 - rw}, \ w^* = \frac{w}{1 - rw},$$

sur une hypersurface réelle M jusqu'au poids 8 par l'équation suivante :

$$v = z\bar{z} + z^4\bar{z}^2 + z^2\bar{z}^4 + duz^4\bar{z}^2 + \overline{d}uz^2\bar{z}^4 + (|z|^7) + (9).$$

Alors M est transformée jusqu'au poids 8 en une hypersurface réelle comme suit :

$$v = z\bar{z} + z^4\bar{z}^2 + z^2\bar{z}^4 + (d - 4r)uz^4\bar{z}^2 + (\overline{d} - 4r)uz^2\bar{z}^4 + (|z|^7) + (9).$$

On prend

$$r = \left(\frac{d}{4}\right).$$

Qui donne

$$\left(\left.\frac{\partial F_{24}^*}{\partial u}\right|_0\right) = 0.$$

Ainsi il existe une coordonnée normale en un point ombilical dans M tel que

$$F_{42}(z,\bar{z},0) = z^2 \overline{z^4}, \left\{ z^2 \left(\frac{\partial F_{24}}{\partial u} \right) (z,\bar{z},0) \right\} = 0, F_{43}(z,\bar{z},0) = 0.$$

$$\left(\text{Resp } F_{24}(z,\bar{z},0) = z^2 \overline{z^4}, \left\{ z^2 \left(\frac{\partial F_{24}}{\partial u} \right) (z,\bar{z},0) \right\} = 0, F_{52}(z,\bar{z},0) = 0 \right).$$

Clairement, une normalisation N_{σ} entre ces coordonnées normales a des valeurs initiales telles que

$$\sigma = (\pm 1, 0, 1, 0)$$
.

Qui achève la preuve.

Lemme 4.11 : Soit M une hypersurface analytique réelle de dim ≥ 5 en forme normale, qui est définie jusqu'au poids 6 par l'équation suivante

$$\begin{array}{ll} v &= \langle z,z\rangle + A_{\alpha\beta\overline{\gamma}\overline{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} + uB_{\alpha\beta\overline{\gamma}\overline{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &+ C_{\alpha\beta\gamma\overline{\delta}\overline{\eta}}z^{\alpha}z^{\beta}z^{\gamma}z^{\bar{\eta}} + C_{\alpha\beta\overline{\gamma}\overline{\delta}\overline{\eta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}z^{\bar{\eta}} \\ &+ D_{\alpha\beta\gamma\delta\overline{\eta}\overline{c}}z^{\alpha}z^{\beta}z^{\gamma}z^{\delta}z^{\bar{\eta}}z^{\bar{c}} + (z^2\overline{z^4}) + (z^4\overline{z^2}) + (6) \end{array}$$

Οù

$$\begin{split} & \overline{A_{\alpha\beta\overline{\gamma}\overline{\delta}}} = A_{\gamma\delta\overline{\alpha}\overline{\beta}}, \overline{B_{\alpha\beta\overline{\gamma}\overline{\delta}}} = B_{\gamma\delta\overline{\alpha}\overline{\beta}}, \overline{C_{\alpha\beta\gamma\overline{\delta}\overline{\eta}}} = C_{\delta\eta\overline{\alpha}\overline{\beta}\overline{\gamma}}, \\ & D_{\alpha\beta\gamma\overline{\delta}\overline{\eta}\overline{\varsigma}} = D_{\delta\overline{\eta}\overline{\varsigma}\overline{\alpha}\overline{\beta}\overline{\gamma}}, A^{\alpha}_{\alpha\beta\cdot\overline{\delta}} = B^{\alpha}_{\alpha\beta\cdot\overline{\delta}} = 0, \\ & C^{\alpha\beta}_{\alpha\beta\cdot\overline{\eta}} = C^{\alpha\beta\gamma}_{\alpha\beta\gamma\dots} = 0, \end{split}$$

et les tous les indices barrés et non-barrés sont respectivement symétriques. Soit $N_{\sigma} = \varphi \circ E \circ \psi$ une normalisation avec les valeurs initiales $\sigma = (C, a, \varrho, r)$. Alors l'application normalisante E est donnée jusqu'au 6-ème poids comme suit

$$\begin{split} z^{*\alpha} &= z^{\alpha} + 2g^{\alpha \overline{\delta}} A_{\beta \gamma \overline{\delta \eta}} a^{\bar{\eta}} z^{\beta} z^{\gamma} w + 4^{\alpha \overline{\varsigma}} A_{\beta \gamma \overline{\eta \varsigma}} a^{\bar{\eta}} z^{\bar{\beta}} z^{\gamma} \\ & \langle z, a \rangle \, w + 2g^{\alpha \overline{\eta}} C_{\beta \gamma \delta \overline{\eta \varsigma}} z^{\beta} z^{\gamma} z^{\delta} a^{\overline{\varsigma}} w - 8^{\alpha \overline{\varsigma}} A_{\beta \gamma \overline{\eta \varsigma}} z^{\bar{\beta}} z^{\gamma} a^{\bar{\eta}} a^{\bar{\varsigma}} w \\ & + 2g^{\alpha \overline{\beta}} A_{\beta \gamma \overline{\delta \eta}} z^{\beta} z^{\gamma} a^{\gamma} a^{\bar{\eta}} w^{2} \\ & - \frac{3}{n+2} g^{\alpha \overline{\delta}} \left\{ C^{\eta}_{\eta \beta \gamma \delta} z^{\beta} a^{\gamma} + C^{\eta}_{\eta \beta \overline{\delta} \overline{\gamma}} z^{\beta} a^{\bar{\gamma}} \right\} w^{2} + (7), \\ w^{*} &= w - 4_{\alpha \beta \overline{\gamma} \overline{\delta}} z^{\alpha} z^{\beta} a^{\bar{\gamma}} a^{\bar{\delta}} w^{2} + (7). \end{split}$$

Preuve : Par l'application ψ de la décomposition $N_{\sigma} = \varphi \circ E \circ \psi$, M est transformée jusqu'au 6-ème poids en une hypersurface de la forme

$$v = \langle z, z \rangle + F_{02}(z, \bar{z}, u) + F_{20}(z, \bar{z}, u) F_{12}(z, \bar{z}, u) + F_{21}(z, \bar{z}, u) + F_{13}(z, \bar{z}, u) + F_{31}(z, \bar{z}, u) F_{22}(z, \bar{z}, u) + F_{23}(z, \bar{z}, u) + F_{32}(z, \bar{z}, u) + F_{33}(z, \bar{z}, u) (z^{2}\overline{z^{4}}) + (z^{4}\overline{z^{2}}) + (7).$$

Οù

$$\begin{array}{ll} F_{02}(z,\bar{z},u) &= 4u^2A_{\alpha\beta\bar{\gamma}\bar{\delta}}a^{\alpha}a^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}, \\ F_{12}(z,\bar{z},u) &= 2uA_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}a^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}, \\ F_{13}(z,\bar{z},u) &= -4\left\langle a,z\right\rangle A_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}a^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} + 4_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &+ 4\left\langle z,z\right\rangle A_{\alpha\beta\bar{\gamma}\bar{\delta}}a^{\alpha}a^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} + 2uC_{\alpha\beta\bar{\gamma}\bar{\delta}\bar{\eta}}z^{\alpha}a^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &+ 3uC_{\alpha\beta\bar{\gamma}\bar{\delta}}a^{\alpha}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} + 2uC_{\alpha\beta\bar{\gamma}\bar{\delta}\bar{\eta}}z^{\alpha}a^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &+ 3uC_{\alpha\beta\bar{\gamma}\bar{\delta}}a^{\alpha}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} + 4\left\langle a,z\right\rangle A_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}a^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &+ 3uC_{\alpha\beta\bar{\gamma}\bar{\delta}\bar{\eta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} + 4\left\langle a,z\right\rangle A_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}a^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &+ 4a_{\alpha}z\right\rangle A_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} + 4B_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &+ 3uC_{\alpha\beta\bar{\gamma}\bar{\delta}\bar{\eta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}z^{\bar{\eta}} + 3uC_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &+ 2\left\langle z,z\right\rangle A_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}z^{\bar{\eta}} - 2\left\langle a,z\right\rangle A_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &+ 2\left\langle z,z\right\rangle A_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &+ 4\left\langle z,a\right\rangle \left\langle a,z\right\rangle A_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} - 4\left\langle z,z\right\rangle \left\langle a,z\right\rangle A_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &- 4\left\langle a,z\right\rangle \left\langle z,z\right\rangle A_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} - 4\left\langle a,z\right\rangle^2 A_{\alpha\beta\bar{\gamma}\bar{\delta}}z^{\alpha}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}} \\ &- 2\left\langle a,z\right\rangle C_{\alpha\beta\bar{\gamma}\bar{\delta}\bar{\eta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}z^{\bar{\gamma}}z^{\bar{\delta}} + 2\left\langle z,a\right\rangle C_{\alpha\beta\bar{\gamma}\bar{\delta}\bar{\eta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}z^{\bar{\gamma}}. \end{array}$$

Ainsi M est en forme normale, $E = +_X(5)$ et la fonction p(u) satisfait

$$p(u) = \frac{1}{2}p''(0)u^2 + (6)$$

Théorème 4.12 : Soit M une hypersurface analytique réelle non-dégénérée dans une variété complexe et U un sous-ensemble ouvert de M formé des poits ombilicaux. Alors le sous-ensemble ouvert U est localement biholomorphique à une hyperquadrique réelle.

Pour la preuve, on distingue 2 cas:

Pour le cas n = 1, (\mathbb{C}^n) . on a $F_{22} = F_{23} = F_{33} = 0$.

On utilise la définition du point ombilical pour n = 1, en tous point de U, on a

$$F_{24} = F_{42} = 0.$$

On suppose qu'il exste un entier positif $k' \geq 7$ et des coordonnées normales en un point p de U tel que

$$v = z\overline{z} + \sum_{\min(k,l) \ge 2k+l=k'} F_{kl}(z, \overline{z}, u) + \sum_{\min(k,l) \ge 2k+l \ge k'+1} F_{kl}(z, \overline{z}, u), \quad (4.9)$$

οù

$$\sum_{\min(k,l) > 2k+l=k'} F_{kl}(z, \bar{z}, 0) \neq 0.$$

on utilise le lemme 3.13.

Lemme 4.13 : Soit k' un entier ≥ 7 . On suppose que M est une hypersurface réelle en forme normale telle que

$$v = z\bar{z} + \sum_{@\min(k,l) \ge 2k+l = k'} F_{kl}(z,\bar{z},u) + \sum_{@\min(k,l) \ge 2k+l \ge k'+1} F_{kl}(z,\bar{z},u),$$

οù

$$\sum_{\substack{\text{@}\min(k,l) \ge 2k+l \ge k'+1}} F_{kl}(z,\bar{z},0) \ne 0.$$

Alors il existe un vecteur $a \in \mathbb{C}^{\ltimes}$ et une normalisation de $M, N_{\sigma}, \sigma = (n \times n, a, 1, 0)$ telle que

$$F^*(z,\bar{z},u) = \sum_{\substack{\text{@}\min(k,l) \ge 2k+l = k'-1}} F^*_{kl}(z,\bar{z},u) + \sum_{\substack{\text{@}\min(k,l) \ge 2k+l \ge k'}} F^*_{kl}(z,\bar{z},u).$$

Où l'hypersurface réelle $N_{\sigma}(M)$ est définie par

$$v = \langle z, z \rangle + F^*(z, \bar{z}, u),$$

et

$$\sum_{@\min(k,l) \geq 2k+l=k'-1} F_{kl}^*(z,\bar{z},0) \neq 0.$$

Il existe une contradiction dans le choix de l'entier k. Donc M est définie par

$$v = z\overline{z}$$
.

Pour tout système ou coordonnées normales et tout $p \in U$. Pour le cas où $n \geq 2$, toujours par le lemme 3.12, il suffit de montrer que

$$F_{22} = F_{23} = F_{33} = 0.$$

Ainsi, puisque la forme est invariante sous la transformation le long de la u-courbe, on a

$$F_{22} = 0.$$

En toute coordonnée normale et pour tout point de U, on suppose qu'il existe un point $p \in U$ et une coordonnée normale en p tel que $F_{23} \neq 0$. Sans perdre la généralité on peut supposer que $F_{23}(z, \bar{z}, 0) \neq 0$ de sorte que

$$F_{23}(z,\bar{z},0) = C_{\alpha\beta\bar{\gamma}\bar{\delta}\bar{\eta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}z^{\bar{\eta}} \neq 0.$$

De la preuve du théorème 3.14.

Théorème 4.14 : Soit M une hypersurface réelle de dim ≥ 5 en forme normale définie par

$$v = \langle z, z \rangle + \sum_{\min(k,l) > 2} F_{kl}(z, \bar{z}, u). \tag{4.10}$$

On suppose que l'origine $0 \in M$ est ombilical.

Soit N_{σ} une normalisation telle que le paramètre a dans $\sigma = (C, a, \varrho, r)$ satisfait la condition

$$\sum_{\alpha} a^{\alpha} \left(\frac{\partial F_{22}}{\partial z^{\alpha}} \right) (z, \bar{z}, 0) \neq 0.$$
 (4.11)

Alors N_{σ} satisfait la condition

$$N_{\sigma} = \phi_{\sigma} +_{X} (5) \text{ et } N_{\sigma} \neq \phi_{\sigma} +_{X} (6),$$

inversement, s'il existe une normalisation N_{σ} satisfait la condition (4.11), alors l'origine est ombilical.

On obtient l'identité suivante pour tout $a \in \mathbb{C}^{\ltimes}$

$$\begin{array}{ll} F_{22}^*(z,\bar{z},u) &= 3uC_{\alpha\beta\overline{\gamma}\overline{\delta}\overline{\eta}}z^{\alpha}z^{\beta}a^{\gamma}z^{\bar{\delta}}a^{\bar{\eta}} + 3uC_{\alpha\beta\overline{\gamma}\overline{\delta}\overline{\eta}}z^{\beta}a^{\bar{\gamma}}z^{\bar{\delta}}a^{\bar{\eta}} \\ &\quad -\frac{12}{n+2}u\left\langle z,z\right\rangle \left\{C_{\delta\alpha\beta\overline{\gamma}}^{\delta}z^{\alpha}a^{\beta}z^{\overline{\gamma}} + C_{\delta\alpha\overline{\beta}\overline{\gamma}}^{\delta}z^{\alpha}z^{\bar{\beta}}a^{\bar{\gamma}}\right\} \\ &= 0 \end{array}$$

Donc on obtient

$$(n+2)\,C_{\alpha\beta\gamma\bar{\delta}\bar{\eta}} = h_{\alpha\bar{\delta}}C^{\varrho}_{\varrho\beta\gamma\bar{\eta}} + h_{\beta\bar{\delta}}C^{\varrho}_{\varrho\alpha\gamma\bar{\eta}} + h_{\alpha\bar{\eta}}C^{\varrho}_{\rho\beta\gamma\bar{\delta}} + h_{\alpha\bar{\eta}}C^{\varrho}_{\rho\alpha\gamma\bar{\delta}}.$$

On contracte la pair $(\gamma, \bar{\delta})$ donne

$$C^{\varrho}_{\rho\beta\gamma\overline{\eta}}=0,$$

qui donne

$$C_{\alpha\beta\overline{\gamma}\overline{\delta}\overline{\eta}} = 0.$$

Qui est une contradiction avec les hypothèses que

$$F_{23}(z,\bar{z},0) = C_{\alpha\beta\overline{\gamma}\overline{\delta}\overline{\eta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}z^{\bar{\eta}} \neq 0.$$

ainsi

$$F_{23} = F_{32} = 0$$
,

pour tout point de U.

On suppose qu'il existe un point $p\in U$ et une coordonnées normale telle que

$$F_{24} + F_{33} + F_{42} \neq 0.$$

Sans perte la généralité, on suppose

$$F_{24}(z,\bar{z},0) \neq 0$$
 ou $F_{33}(z,\bar{z},0) \neq 0$.

On a

$$\begin{array}{ll} F_{24}(z,\bar{z},0) &= A_{\alpha\beta\overline{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}z^{\overline{\eta}}z^{\overline{\sigma}}, \\ F_{33}(z,\bar{z},0) &= A_{\alpha\beta\overline{\gamma}\bar{\delta}}z^{\alpha}z^{\beta}z^{\bar{\gamma}}z^{\bar{\delta}}z^{\overline{\eta}}z^{\overline{\sigma}}. \end{array}$$

Ainsi

$$F_{32}^*(z,\bar{z},0) = 0.$$

On abouti à une contradiction avec les hypothèses

$$F_{24}(z, \bar{z}, 0) \neq 0$$
 ou $F_{33}(z, \bar{z}, 0) \neq 0$.

Donc $F_{24} = F_{42} = F_{33} = 0$. Pour toute coordonnée normale et pour tout point de U.

Du lemme 3.13, M est définie par

$$v = \langle z, z \rangle$$
.

Ce qui achève la preuve.

Ainsi on a construit une transformation holomorphe qui envoie M dans une forme normale et la preuve d'existence est réduite à des équations différentielles

ordinaires. Le choix des valeurs initiales pour $p'(0) \in \mathbb{C}^{\times}$, U(0), '(0) et ''(0) nous permet de satisfaire la condition de normalisation (2.9) de §2. En effet, ces $2n + n^2 + 1 + 1 = (n+1)^2 + 1$ Paramètres réels caractérisent précisément un élément du groupe d'isotropie H. Ainsi on a montrer

Théorème 4.15 :Si M est une variété analytique réelle. L'unique transformation formelle du théorème 2.2 qui envoie M dans une forme normale, et qui satisfait la condition de normalisation est donnée par des séries convergentes. i.e. définissent une application holomorphe.

Contraction des tenseurs symétriques

Guy Roos

5 Contraction de tenseurs

Tous les espaces vectoriels considérés sont des espaces vectoriels de dimension finie sur \mathbb{C} .

Si V est un espace vectoriel, on note V^* l'espace dual de V et

$$\langle \ , \ \rangle : V^* \times V \to \mathbb{C}$$

l'accouplement canonique de V et V^* .

5.1 Produit tensoriel

Soient V_1 , V_2 deux espaces vectoriels. Leur produit tensoriel $V_1 \otimes V_2$ est l'espace vectoriel, solution (unique à isomorphisme près) du « problème universel » :

Il existe une application bilinéaire $\otimes : V_1 \times V_2 \to V_1 \otimes V_2$ telle que toute application bilinéaire $\phi : V_1 \times V_2 \to W$ possède une factorisation unique $\phi = \widetilde{\phi} \circ \otimes$, où $\widetilde{\phi} : V_1 \otimes V_2 \to W$ est linéaire.

Si $v_1 \in V_1$, $v_2 \in V_2$, on note $v_1 \otimes v_2$ l'image de (v_1, v_2) par \otimes . Si (e_1, \ldots, e_n) , (f_1, \ldots, f_p) sont des bases de V_1 , V_2 , alors $(e_j \otimes f_k)_{\substack{1 \leq j \leq n \\ 1 \leq k \leq p}}$ est une base de $V_1 \otimes V_2$.

Plus généralement, si V_1, \ldots, V_p sont des espaces vectoriels, leur *produit tensoriel* $V_1 \otimes \cdots \otimes V_p$ est l'espace vectoriel, solution du « problème universel » :

Il existe une application multilinéaire $\otimes: V_1 \times \cdots \times V_p \to V_1 \otimes \cdots \otimes V_p$ telle que toute application multilinéaire $\phi: V_1 \times \cdots \times V_p \to W$ possède une factorisation unique $\phi = \widetilde{\phi} \circ \otimes$, où $\widetilde{\phi}: V_1 \otimes \cdots \otimes V_p \to W$ est linéaire.

Pour $v_i \in V_i$, on note encore $v_1 \otimes \cdots \otimes v_p$ l'image de (v_1, \ldots, v_p) par \otimes . Le produit tensoriel est « associatif », au sens que l'application linéaire

$$(V_1 \otimes V_2) \otimes V_3 \to V_1 \otimes V_2 \otimes V_3,$$

$$(v_1 \otimes v_2) \otimes v_3 \mapsto v_1 \otimes v_2 \otimes v_3 \qquad (v_i \in V_i)$$

est un isomorphisme. Il est « commutatif », au sens que l'application linéaire

$$V_1 \otimes V_2 \to V_2 \otimes V_1,$$

 $v_1 \otimes v_2 \mapsto v_2 \otimes v_1 \qquad (v_i \in V_i)$

est un isomorphisme. Les applications

$$\mathbb{C} \otimes V \to V \to V \otimes \mathbb{C}$$
$$1 \otimes v \mapsto v \mapsto v \otimes 1$$

sont également des isomorphismes.

Si V_1 , V_2 sont des espaces vectoriels, l'application

$$(V_1^* \otimes V_2^*) \times (V_1 \otimes V_2) \to \mathbb{C}$$
$$((f_1 \otimes f_2), (v_1 \otimes v_2)) \mapsto \langle f_1, v_1 \rangle \langle f_2, v_2 \rangle$$

est une dualité entre $V_1 \otimes V_2$ et $V_1^* \otimes V_2^*$, qui permet d'identifier $(V_1 \otimes V_2)^*$ et $V_1^* \otimes V_2^*$. Cette propriété s'étend au produit tensoriel de p espaces vectoriels V_1, \ldots, V_p .

Si V est un espace vectoriel et $k \in \mathbb{N},$ sa puissance tensorielle d'ordre k est

$$\otimes_k V = \begin{cases} \mathbb{C} & (k=0), \\ V & (k=1), \\ \underbrace{V \otimes \cdots \otimes V}_{k \text{ fois}} & (k>1). \end{cases}$$

On déduit de ce qui précède des isomorphismes naturels

$$(\otimes_k V) \otimes (\otimes_l V) \to \otimes_{k+l} V$$

et

$$(\otimes_k V)^* \to \otimes_k V^*.$$

On note

$$\otimes^k V = \otimes_k V^*.$$

5.2 Tenseurs

Soit V un espace vectoriel. Un tenseur de type (k, l) (k-covariant, l-contravariant) sur V est une application multilinéaire

$$T:V^k\times (V^*)^l\to \mathbb{C}$$

$$((u_1,\ldots,u_k),(f^1,\ldots,f^l)) \mapsto T(u_1,\ldots,u_k;f^1,\ldots,f^l).$$

Par la propriété universelle du produit tensoriel, T est associé à l'application

$$\widetilde{T}: (\otimes_k V) \otimes (\otimes^l V) \to \mathbb{C}$$
$$(u_1 \otimes \cdots \otimes u_k) \otimes (f^1 \otimes \cdots \otimes f^l) \mapsto T(u_1, \dots, u_k; f^1, \dots, f^l).$$

Par la propriété de dualité, on associe à \widetilde{T} l'élément \widehat{T} de $(\otimes^k V) \otimes (\otimes_l V)$ défini par

$$\langle (u_1 \otimes \cdots \otimes u_k) \otimes (f^1 \otimes \cdots \otimes f^l), \widehat{T} \rangle = T(u_1, \dots, u_k; f^1, \dots, f^l).$$

On associe également à T les applications linéaires

$$T_*: \otimes_k V \to \otimes_l V$$

définie par

$$\langle f^1 \otimes \cdots \otimes f^l, T_* (u_1 \otimes \cdots \otimes u_k) \rangle = T (u_1, \dots, u_k; f^1, \dots, f^l)$$

et

$$T^*: \otimes^l V \to \otimes^k V,$$

définie par

$$\langle T^* (f^1 \otimes \cdots \otimes f^l), u_1 \otimes \cdots \otimes u_k \rangle = T (u_1, \dots, u_k; f^1, \dots, f^l).$$

Les applications T_* et T^* sont duales l'une de l'autre et chacune d'elles détermine T. Si on désigne par $\mathcal{T}_l^k(V)$ l'espace vectoriel des tenseurs de type (k,l) sur V, on a des isomorphismes naturels

$$\mathcal{T}_{l}^{k}(V) \simeq \left((\otimes_{k} V) \otimes \left(\otimes^{l} V \right) \right)^{*} \simeq \left(\otimes^{k} V \right) \otimes (\otimes_{l} V)$$
$$\simeq \operatorname{H} om \left(\otimes_{k} V, \otimes_{l} V \right) \simeq \operatorname{H} om \left(\otimes^{l} V, \otimes^{k} V \right)$$

définis par les correspondances

$$T \leftrightarrow \widetilde{T} \leftrightarrow \widehat{T} \leftrightarrow T_* \leftrightarrow T^*$$

ci-dessus.

Si $\mathbf{e} = (e_1, \dots, e_n)$ est une base de V et si $\mathbf{e}^* = (e^1, \dots, e^n)$ est la base duale, les *coefficients de T dans* \mathbf{e} sont

$$T_{i_1\cdots i_k}^{j_1\cdots j_l} = T\left(e_{i_1},\ldots,e_{i_k};e^{j_1},\ldots,e^{j_l}\right) \qquad (1 \leq i_1,\ldots,i_k,j_1,\ldots,j_l \leq n).$$

Si

$$u_p = \sum_i u_p^i e_i, \quad f^q = \sum_j f_j^q e^j,$$

on a

$$T(u_1, \dots, u_k; f^1, \dots, f^l) = \sum_{i_1, \dots, i_k} T_{i_1 \dots i_k}^{j_1 \dots j_l} u_1^{i_1} \dots u_k^{i_k} f_{j_1}^1 \dots f_{j_l}^l.$$

Cette relation peut aussi s'écrire

$$\widehat{T} = \sum_{i_1 \cdots i_k} T^{j_1 \cdots j_l}_{i_1 \cdots i_k} e^{i_1} \otimes \cdots \otimes e^{i_k} \otimes e_{j_1} \otimes \cdots \otimes e_{j_l}.$$

5.3 Trace d'un endomorphisme

Soit T un tenseur de type (1,1) sur un espace vectoriel V:

$$T: V \times V^* \to \mathbb{C}.$$

On lui associe comme précédemment $\widehat{T} \in V^* \otimes V, T_* : V \to V, T^* : V^* \to V^*$. L'accouplement canonique

$$\langle \ , \ \rangle : V^* \times V \to \mathbb{C}$$

se factorise en

$$\langle , \rangle = \operatorname{t} r \circ \otimes, \tag{5.1}$$

avec $\otimes: V^* \times V \to V^* \otimes V$ et

$$\operatorname{t} r: V^* \otimes V \to \mathbb{C}.$$

La trace du tenseur T est par définition

$$trT = tr\left(\widehat{T}\right).$$

Soit $\mathbf{e} = (e_1, \dots, e_n)$ une base de V et soient (T_i^j) les coefficients de T dans cette base. Alors

$$\widehat{T} = \sum_{i,j} T_i^j e^i \otimes e_j.$$

Comme t $r(e^i \otimes e_j) = \langle e^i, e_j \rangle = \delta^i_j$, on a

$$\operatorname{t} rT = \operatorname{t} r\left(\widehat{T}\right) = \sum_{i} T_{i}^{i}.$$

Comme (T_i^j) est aussi la matrice de T_* dans la base \mathbf{e} , la trace du tenseur T est égale à la trace de T_* , au sens habituel de la trace des endomorphismes.

5.4 Contraction de tenseurs

Soit $k, l \in \mathbb{N}, k, l \ge 1$. Soit

$$\theta_1^1: (\otimes^k V) \otimes (\otimes_l V) \simeq V^* \otimes V \otimes (\otimes^{k-1} V) \otimes (\otimes_{l-1} V)$$
 (5.2)

l'isomorphisme défini par

$$\theta_1^1 \left(f^1 \otimes \cdots \otimes f^k \otimes u_1 \otimes \cdots \otimes u_l \right) = f^1 \otimes u_1 \otimes f^2 \otimes \cdots \otimes f^k \otimes u_2 \otimes \cdots \otimes u_l.$$

On considère

$$\operatorname{t} r \otimes \operatorname{i} d_{\left(\otimes^{k-1}V\right) \otimes \left(\otimes_{l-1}V\right)} :$$

$$V^* \otimes V \otimes \left(\otimes^{k-1}V\right) \otimes \left(\otimes_{l-1}V\right) \to \left(\otimes^{k-1}V\right) \otimes \left(\otimes_{l-1}V\right), \tag{5.3}$$

où tr est l'application (5.1) et on définit

$$\operatorname{t} r_1^1 : (\otimes^k V) \otimes (\otimes_l V) \to (\otimes^{k-1} V) \otimes (\otimes_{l-1} V)$$
 (5.4)

comme le composé

$$t r_1^1 = \left(t r \otimes i d_{\left(\otimes^{k-1} V \right) \otimes \left(\otimes_{l-1} V \right)} \right) \circ \theta_1^1$$
 (5.5)

de (5.3) et (5.2). En utilisant les isomorphismes naturels

$$\mathcal{T}_l^k(V) \simeq \left(\otimes^k V \right) \otimes \left(\otimes_l V \right),$$

$$\mathcal{T}_{l-1}^{k-1}(V) \simeq \left(\otimes^{k-1} V \right) \otimes \left(\otimes_{l-1} V \right),$$

on transpose l'application (5.4) en une application, également notée t r_1^1 ,

$$\operatorname{t} r_1^1: \mathcal{T}_l^k(V) \to \mathcal{T}_{l-1}^{k-1}(V).$$

Si T est un tenseur de type (k, l), le tenseur t r_1^1T est appelé contraction de T (par rapport à la première variable covariante et à la première variable contravariante).

Si $\mathbf{e} = (e_1, \dots, e_n)$ est une base de V et si $(T_{i_1 \cdots i_k}^{j_1 \cdots j_l})$ sont les *coefficients de* T dans \mathbf{e} , on a

$$\widehat{T} = \sum_{i_1 \cdots i_k} T^{j_1 \cdots j_l}_{i_1 \cdots i_k} e^{i_1} \otimes \cdots \otimes e^{i_k} \otimes e_{j_1} \otimes \cdots \otimes e_{j_l}$$

et

$$\operatorname{t} r_1^1 \widehat{T} = \sum_{i_1,\dots,i_k} T_{i_1,\dots,i_k}^{i_1,\dots,i_k} e^{i_2} \otimes \dots \otimes e^{i_k} \otimes e_{j_2} \otimes \dots \otimes e_{j_l}.$$

Les coefficients de $S = \operatorname{t} r_1^1 T$ dans **e** sont donc

$$S_{i_2\cdots i_k}^{j_2\cdots j_l} = \sum_i T_{ii_2\cdots i_k}^{ij_2\cdots j_l}.$$
 (5.6)

5.5 Contractions itérées

Dans ce paragraphe, on note $\theta = \theta_1^1$ et t $r = \operatorname{t} r_1^1$. Soit $k, l \in \mathbb{N}, k, l \geq r$. La contraction itérée

$$(\operatorname{t} r)^r : (\otimes^k V) \otimes (\otimes_l V) \to (\otimes^{k-r} V) \otimes (\otimes_{l-r} V)$$

est, par application des définitions, égale à

$$(\operatorname{t} r)^r = \left(\underbrace{\operatorname{t} r \otimes \cdots \otimes \operatorname{t} r}_{r \text{ fois}} \otimes \operatorname{i} d_{\left(\otimes^{k-1} V\right) \otimes \left(\otimes_{l-1} V\right)}\right) \circ \theta^r,$$

avec t $r: V^* \otimes V \to \mathbb{C}$ défini par (5.1) et

$$\theta^r: \left(\otimes^k V\right) \otimes \left(\otimes_l V\right) \simeq \underbrace{V^* \otimes V \otimes \cdots \otimes V^* \otimes V}_{r \text{ fois}} \otimes \left(\otimes^{k-r} V\right) \otimes \left(\otimes_{l-r} V\right)$$

$$f^{1} \otimes \cdots \otimes f^{k} \otimes u_{1} \otimes \cdots \otimes u_{l} \mapsto f^{1} \otimes u_{1} \otimes \cdots \otimes f^{r} \otimes u_{r} \otimes f^{r+1} \otimes \cdots \otimes f^{k} \otimes u_{r+1} \otimes \cdots \otimes u_{l}.$$

5.6 Divisibilité par \langle , \rangle

5.6.1 Tenseurs de type (1,1).

Soit $\delta = \langle , \rangle$ le « tenseur de Kronecker », i.e. tel que $\delta_* = \mathrm{i}\, d_V$; si (e_1,\ldots,e_n) est une base de V, on a $\widehat{\delta} = \sum e^i \otimes e_i$ et t $r\delta = n = \dim V$. On

en déduit

$$V^* \otimes V = \mathbb{C}\widehat{\delta} \oplus \ker \operatorname{t} r.$$

Si T est un tenseur de type (1,1), la décomposition de T est

$$T = \frac{\operatorname{t} rT}{n} \delta + \left(T - \frac{\operatorname{t} rT}{n} \delta \right).$$

5.6.2 Tenseurs de type (k, l).

Soient $k,l\geq 1$. Si $S\in \mathcal{T}^{k-1}_{l-1}(V)$, soit \widehat{S} l'élément correspondant de $\left(\otimes^{k-1}V\right)\otimes\left(\otimes_{l-1}V\right)$. Soit $T\in\mathcal{T}^k_l(V)$ défini par

$$\theta\left(\widehat{T}\right) = \delta \otimes \widehat{S};\tag{5.7}$$

on a alors

$$trT = nS$$
.

ce qui montre que t $r:\mathcal{T}^k_l(V)\to\mathcal{T}^{k-1}_{l-1}(V)$ est surjective et que

$$\mathcal{T}_l^k(V) = \delta \otimes \mathcal{T}_{l-1}^{k-1}(V) \oplus \ker \operatorname{t} r,$$

où on note $\delta \otimes \mathcal{T}_{l-1}^{k-1}(V)$ le sous-espace des tenseurs vérifiant (5.7) pour $S \in \mathcal{T}_{l-1}^{k-1}(V)$, autrement dit

$$T(u_1, ..., u_k; f^1, ..., f^l) = \langle u_1, f_1 \rangle S(u_2, ..., u_k; f^2, ..., f^l).$$

6 Contraction des tenseurs symétriques

6.1 Puissances tensorielles symétriques

Soit V un espace vectoriel complexe de dimension n. Pour $k \in \mathbb{N}, k > 0$, soit

$$T: V^k \to W$$

une application multilinéaire. L'application symétrisée de T est l'application S(T) définie par

$$S(T)\left(u_1,\ldots,u_k\right) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_k} T\left(u_{\sigma_1},\ldots,u_{\sigma_k}\right).$$

On a S(S(T)) = S(T); l'application T est symétrique si et seulement si S(T) = T.

En particulier, la symétrisée $S(\otimes_k)$ de l'application canonique

$$\otimes_k: V^k \to \otimes_k V$$

se factorise en

$$S(\otimes_k) = \operatorname{S} ym_k \circ \otimes_k;$$

de manière équivalente, l'application

$$Sym_k: \otimes_k V \to \otimes_k V$$

est définie par

$$Sym_k(u_1 \otimes \cdots \otimes u_k) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{\mathfrak{p}}} u_{\sigma_1} \otimes \cdots \otimes u_{\sigma_k}.$$

On a

$$Sym_k \circ Sym_k = Sym_k$$
.

Définition 6.1. L'image de Sym_k est appelée puissance tensorielle symétrique (d'ordre k) de V et est notée $\odot_k V$. Pour k=0, on convient que $\operatorname{Sym}_0=\operatorname{id}_{\mathbb C}$ et $\odot_0 V=\mathbb C$.

Soit $T:V^k\to W$ une application multilinéaire, S(T) sa symétrisée. Les applications linéaires associées $\widetilde{T}:\otimes_k V\to W$ et $\widetilde{S(T)}:\otimes_k V\to W$ sont alors liées par

$$\widetilde{S(T)} = \widetilde{T} \circ \operatorname{S} y m_k.$$

Une application multilinéaire $sym\acute{e}trique\ T:V^k\to W$ est donc caractérisée par

$$\widetilde{T} = \widetilde{T} \circ \operatorname{S} ym_k.$$

Les applications linéaires $\widetilde{T}: \otimes_k V \to W$ qui vérifient cette relation sont déterminées par leur restriction $\underline{T}: \odot_k V \to W$ à l'image du projecteur $\mathrm{S}\,ym_k$.

Soient $k, l \in \mathbb{N}$. Pour $u \in \bigcirc_k V$, $v \in \bigcirc_l V$, on définit

$$u \odot v = \operatorname{S} y m_{k+l} (u \otimes v)$$
.

Le produit ⊙ est étendu de manière naturelle à

$$\odot_* V = \bigoplus_{k \in \mathbb{N}} \odot_k V,$$

qui est alors une algèbre associative, appelée algèbre symétrique de V.

Si $u_1, \ldots, u_k \in V$, on a

$$u_1 \odot \cdots \odot u_k = \operatorname{S} ym_k (u_1 \otimes \cdots \otimes u_k)$$
.

On note $\bigcirc^k V$ l'espace $\bigcirc_k V^*$.

Si $u_1, ..., u_k \in V, f^1, ..., f^k \in V^*$, on a

$$\langle \operatorname{S} y m_k (u_1 \otimes \cdots \otimes u_k), f^1 \otimes \cdots \otimes f^k \rangle = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{\mathfrak{k}}} \langle u_{\sigma_1} \otimes \cdots \otimes u_{\sigma_k}, f^1 \otimes \cdots \otimes f^k \rangle$$

$$= \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{\mathfrak{k}}} \langle u_1 \otimes \cdots \otimes u_k, f^{\sigma^{-1}(1)} \otimes \cdots \otimes f^{\sigma^{-1}(k)} \rangle$$

$$= \langle u_1 \otimes \cdots \otimes u_k, \operatorname{S} y m_k (f^1 \otimes \cdots \otimes f^k) \rangle.$$

On en déduit, pour $u \in \otimes_k V$, $f \in \otimes^k V$,

$$\langle Sym_k u, f \rangle = \langle u, Sym_k f \rangle.$$

Si $\underline{T}: \odot_k V \to \mathbb{C}$ est une forme linéaire, soit $\widetilde{T}: \otimes_k V \to \mathbb{C}$ la forme linéaire telle que $\widetilde{T} = \widetilde{T} \circ \operatorname{S} ym_k$ dont la restriction à $\odot_k V$ est \underline{T} et soit $f = \widehat{T}$ l'élément associé de $\otimes^k V$. On a alors

$$Sym_k f = f,$$

c'est-à-dire $f \in \odot^k V$. Les espaces $\odot_k V$ et $\odot_k V^*$ sont ainsi en dualité.

On note $S^k(V)$ l'espace vectoriel des applications multilinéaires symétriques $T: V^k \to W$. On a ainsi décrit des isomorphismes naturels

$$S^k(V) \simeq (\odot_k V)^* \simeq \odot^k V$$

 $T \longleftrightarrow \underline{T} \longleftrightarrow \widetilde{T}.$

6.2 Tenseurs symétriques

Soit V un espace vectoriel de dimension finie sur \mathbb{C} . Un tenseur de type (k,l)

$$T: V^k \times (V^*)^l \to \mathbb{C}$$
$$((u_1, \dots, u_k), (f^1, \dots, f^l)) \mapsto T(u_1, \dots, u_k; f^1, \dots, f^l)$$

est dit symétrique si quelles que soient les permutations $\sigma \in \mathfrak{S}_{\mathfrak{k}}, \, \tau \in \mathfrak{S}_{\mathfrak{l}}$, on a

$$T\left(u_{\sigma_1},\ldots,u_{\sigma_k};f^{\tau_1},\ldots,f^{\tau_l}\right)=T\left(u_1,\ldots,u_k;f^1,\ldots,f^l\right).$$

Si $\mathbf{e} = (e_1, \dots, e_n)$ est une base de V et si $(T_{i_1 \cdots i_k}^{j_1 \cdots j_l})$ sont les *coefficients de T* dans \mathbf{e} , il est équivalent de dire que les coefficients $T_{i_1 \cdots i_k}^{j_1 \cdots j_l}$ sont invariants par permutations des indices (i_1, \dots, i_k) et (j_1, \dots, j_l) . L'application

$$\widetilde{T}: (\otimes_k V) \otimes (\otimes^l V) \to \mathbb{C}$$
$$(u_1 \otimes \cdots \otimes u_k) \otimes (f^1 \otimes \cdots \otimes f^l) \mapsto T(u_1, \dots, u_k; f^1, \dots, f^l)$$

associée à un tenseur symétrique T est déterminée par sa restriction

$$\underline{T}: (\odot_k V) \otimes (\odot^l V) \to \mathbb{C}.$$

Par les propriétés de dualité, on associe à \underline{T} l'élément \widehat{T} de $(\odot^k V) \otimes (\odot_l V)$ défini par

$$\langle (u_1 \odot \cdots \odot u_k) \otimes (f^1 \odot \cdots \odot f^l), \widehat{T} \rangle = T(u_1, \dots, u_k; f^1, \dots, f^l).$$

Si on désigne par $\mathcal{S}_l^k(V)$ l'espace vectoriel des tenseurs symétriques de type (k, l) sur V, on a des isomorphismes naturels

$$S_l^k(V) \simeq \left((\odot_k V) \otimes \left(\odot^l V \right) \right)^* \simeq \left(\odot^k V \right) \otimes (\odot_l V) \tag{6.1}$$

définis par les correspondances

$$T \leftrightarrow T \leftrightarrow \widehat{T}$$

ci-dessus.

6.2.1 Produit symétrique

Soient $T:V^k\times (V^*)^l\to \mathbb{C},\ T':V^{k'}\times (V^*)^{l'}\to \mathbb{C}$ deux tenseurs symétriques. Leur produit tensoriel

$$T \otimes T' : V^{k+k'} \times (V^*)^{l+l'} \to \mathbb{C}$$

$$(T \otimes T') \left((u_1, \dots, u_k, v_1, \dots, v_{k'}), \left(f^1, \dots, f^l, g^1, \dots, g^{l'} \right) \right)$$

$$= T \left(u_1, \dots, u_k; f^1, \dots, f^l \right) T' \left(v_1, \dots, v_{k'}; g^1, \dots, g^{l'} \right)$$

n'est en général pas symétrique.

Si $T: V^k \times (V^*)^l \to \mathbb{C}$ est un tenseur de type (k, l), on définit son (double) symétrisé S(T) par

$$S(T)\left(\left(u_{1},\ldots,u_{k}\right),\left(f^{1},\ldots,f^{l}\right)\right) = \frac{1}{k!l!}\sum_{\sigma\in\mathfrak{S}_{\mathtt{F}},\tau\in\mathfrak{S}_{\mathtt{I}}}T\left(u_{\sigma_{1}},\ldots,u_{\sigma_{k}};f^{\tau_{1}},\ldots,f^{\tau_{l}}\right).$$

Le tenseur T est symétrique ssi S(T) = T.

Si $T: V^k \times (V^*)^l \to \mathbb{C}, T': V^{k'} \times (V^*)^{l'} \to \mathbb{C}$ sont deux tenseurs symétriques, leur produit tensoriel symétrique est défini par

$$T \odot T' = S(T \otimes T')$$
.

Si

$$\widetilde{T} \in \left(\odot^k V \right) \otimes \left(\odot_l V \right), \ \widetilde{T'} \in \left(\odot^{k'} V \right) \otimes \left(\odot_{l'} V \right), \ \widetilde{T \odot T'} \in \left(\odot^{k+k'} V \right) \otimes \left(\odot_{l+l'} V \right)$$

sont les éléments associés par les isomorphismes (6.1), on a

$$\widetilde{T \odot T'} = \widetilde{T} \odot \widetilde{T'},$$

où le produit symétrique de $u \otimes f \in (\odot^k V) \otimes (\odot_l V)$ et $v \otimes g \in (\odot^{k'} V) \otimes (\odot_{l'} V)$ est défini comme

$$(u\otimes f)\odot (v\otimes g)=(u\odot v)\otimes (f\odot g)\,.$$

6.3 Contraction des tenseurs symétriques

L'application t $r = t r_1^1$

$$\operatorname{t} r: (\otimes^k V) \otimes (\otimes_l V) \to (\otimes^{k-1} V) \otimes (\otimes_{l-1} V)$$

définie par (5.5) vérifie

$$\operatorname{tr}\left(\left(\odot^{k}V\right)\otimes\left(\odot_{l}V\right)\right)\subset\left(\odot^{k-1}V\right)\otimes\left(\odot_{l-1}V\right)$$

et se restreint par conséquent en une application

$$\operatorname{t} r: (\odot^{k} V) \otimes (\odot_{l} V) \to (\odot^{k-1} V) \otimes (\odot_{l-1} V).$$
 (6.2)

Utilisant l'isomorphisme (6.1), on en déduit, pour $k, l \geq 1$, l'opération de contraction des tenseurs symétriques

$$tr: \mathcal{S}_l^k(V) \to \mathcal{S}_{l-1}^{k-1}(V) \tag{6.3}$$

et, pour $k, l \geq r$, ses itérées

$$(\operatorname{tr})^r: \mathcal{S}_l^k(V) \to \mathcal{S}_{l-r}^{k-r}(V).$$

(Par abus de langage, l'application (6.2) sera également appelée contraction des tenseurs symétriques).

On a évidemment $\mathcal{S}^1_1(V)=\mathcal{T}^1_1(V)$. Rappelons que le tenseur de Kronecker $\delta=\langle\ ,\ \rangle\in\mathcal{S}^1_1(V)$ vérifie

$$\widehat{\delta} = \sum e^i \otimes e_i$$

dans toute base (e_1, \ldots, e_n) de V, et que l'on a

$$t r \delta = n = \dim V.$$

Lemme 6.1. Soit $T \in \mathcal{S}_1^1(V)$. On a alors

$$\operatorname{tr}\left(\delta \odot T\right) = \frac{n+2}{4}T + \frac{1}{4}\left(\operatorname{tr}T\right)\delta. \tag{6.4}$$

Démonstration. On démontre la relation correspondante pour $\widehat{\delta}$ et

$$\widehat{T} \in V^* \otimes V$$
.

Soit (e_1, \ldots, e_n) une base de V. Comme la relation à démontrer est linéaire en T, il suffit de la démontrer pour

$$\widehat{T} = e^i \otimes e_j.$$

On a $\operatorname{tr} \widehat{T} = \delta_i^j.$ D'autre part,

$$\widehat{\delta} \odot \widehat{T} = \sum_{k} (e^{k} \odot e^{i}) \otimes (e_{k} \odot e_{j})$$

$$= \frac{1}{4} \sum_{k} (e^{ki} + e^{ik}) \otimes (e_{kj} + e_{jk}),$$

où on note $e^{ij}=e^i\otimes e^j$ et $e_{ij}=e_i\otimes e_j.$ On en déduit

$$\operatorname{tr}\left(\widehat{\delta}\odot\widehat{T}\right) = \frac{n}{4}\widehat{T} + \frac{1}{4}\widehat{T} + \frac{1}{4}\widehat{T} + \frac{1}{4}\delta_{i}^{j}\widehat{\delta} = \frac{n+2}{4}\widehat{T} + \frac{1}{4}\left(\operatorname{tr}\widehat{T}\right)\widehat{\delta}.$$

Corollaire 6.2.

$$\operatorname{tr}(\delta \odot \delta) = \frac{n+1}{2}\delta,$$
 (6.5)

$$\operatorname{tr}^{2}\left(\delta \odot \delta\right) = \frac{n\left(n+1\right)}{2}.\tag{6.6}$$

Proposition 6.3. Tout tenseur symétrique F de type (2,2) s'écrit d'une manière unique

$$F = \delta \odot G + N, \tag{6.7}$$

 $avec \operatorname{tr} N = 0 et$

$$G = \frac{4}{n+2} \operatorname{tr} F - \frac{2\delta}{(n+1)(n+2)} (\operatorname{tr})^2 F.$$
 (6.8)

Démonstration. Si F admet l'écriture (6.7) avec tr N=0, le lemme 6.1 donne

$$\operatorname{tr} F = \frac{n+2}{4}G + \frac{1}{4}(\operatorname{tr} G)\delta.$$

On en déduit

$$tr^{2} F = \frac{n+2}{4} tr G + \frac{n}{4} tr G = \frac{n+1}{2} tr G,$$

$$tr G = \frac{2}{n+1} tr^{2} F,$$

$$G = \frac{4}{n+2} tr F - \frac{1}{n+2} (tr G) \delta$$

$$= \frac{4}{n+2} tr F - \frac{2\delta}{(n+1)(n+2)} (tr)^{2} F,$$

ce qui montre l'unicité de la décomposition (6.7).

Inversement, si G est défini par (6.8), on a

$$\operatorname{tr}(\delta \odot G) = \frac{n+2}{4}G + \frac{1}{4}(\operatorname{tr} G)\delta = \operatorname{tr} F.$$

Lemme 6.4. Soit $T \in \mathcal{S}_2^2(V)$. On a alors

$$\operatorname{tr}\left(\delta \odot T\right) = \frac{n+4}{9}T + \frac{4}{9}\delta \odot \operatorname{tr} T. \tag{6.9}$$

Démonstration. On démontre la relation (6.9) pour $\hat{\delta}$ et $\hat{T} \in \odot^2 V \otimes \odot_2 V$. Comme $\odot_2 V$ est engendré par les éléments de la forme $x \odot x$, $x \in V$, on peut se limiter au cas où

$$\widehat{T} = (e^j \odot e^j) \otimes (e_k \odot e_k) = e^{jj} \otimes e_{kk}.$$

On a alors

$$\widehat{\delta} \odot \widehat{T} = \sum_{i} (e^{i} \odot e^{j} \odot e^{j}) \otimes (e_{i} \odot e_{k} \odot e_{k})$$

$$= \frac{1}{9} \sum_{i} (e^{ijj} + e^{jij} + e^{jji}) \otimes (e_{ikk} + e_{kik} + e_{kki}).$$

On en déduit

$$\operatorname{tr}\left(\widehat{\delta} \odot \widehat{T}\right) = \frac{n}{9}e^{jj} \otimes e_{kk} + \frac{1}{9}e^{jj} \otimes e_{kk} + \frac{1}{9}e^{jj} \otimes e_{kk}$$

$$+ \frac{1}{9}e^{jj} \otimes e_{kk} + \frac{\delta_k^j}{9} \sum_i e^{ij} \otimes e_{ik} + \frac{\delta_k^j}{9} \sum_i e^{ij} \otimes e_{ki}$$

$$+ \frac{1}{9}e^{jj} \otimes e_{kk} + \frac{\delta_k^j}{9} \sum_i e^{ji} \otimes e_{ik} + \frac{\delta_k^j}{9} \sum_i e^{ji} \otimes e_{ki}$$

$$= \frac{n+4}{9}\widehat{T} + \frac{4}{9}\widehat{\delta} \odot \operatorname{tr} \widehat{T},$$

$$\operatorname{car} \operatorname{tr} \widehat{T} = \delta_k^j e^j \otimes e_k.$$

Corollaire 6.5.

$$\operatorname{tr}(\delta \odot \delta \odot \delta) = \frac{n+2}{3} \delta \odot \delta,$$
 (6.10)

$$\operatorname{tr}^{2}\left(\delta \odot \delta \odot \delta\right) = \frac{\left(n+1\right)\left(n+2\right)}{6}\delta,\tag{6.11}$$

$$\operatorname{tr}^{3}\left(\delta \odot \delta \odot \delta\right) = \frac{n(n+1)(n+2)}{6}.$$
(6.12)

Démonstration. Appliquant le lemme 6.4 et le corollaire 6.2, on a

$$\operatorname{tr}(\delta \odot \delta \odot \delta) = \frac{n+4}{9}\delta \odot \delta + \frac{4}{9}\delta \odot \operatorname{tr}(\delta \odot \delta)$$
$$= \frac{n+4}{9}\delta \odot \delta + \frac{4}{9}\delta \odot \frac{n+1}{2}\delta$$

$$=\frac{n+2}{3}\delta\odot\delta,$$

d'où la relation (6.10). Les relations (6.11)-(6.12) résultent alors du corollaire 6.2. \Box

Proposition 6.6. Tout tenseur symétrique de type (3,3) s'écrit

$$F = G\delta \odot \delta \odot \delta + N, \tag{6.13}$$

 $avec (tr)^3 N = 0 et$

$$G = \frac{6}{n(n+1)(n+2)} (\text{tr})^3 F.$$
 (6.14)

Ceci résulte directement de la relation (6.12).

Lemme 6.7. Soit $T \in \mathcal{S}_0^1(V)$. On a alors

$$\operatorname{tr}\left(\delta \odot T\right) = \frac{n+1}{2}T. \tag{6.15}$$

Démonstration. Il suffit de montrer la relation pour

$$\widehat{\delta} = \sum e^i \otimes e_i$$

et $\widehat{T} = e^j$. On a alors

$$\widehat{\delta} \odot \widehat{T} = \sum_{i} (e^{i} \odot e^{j}) \otimes e_{i} = \frac{1}{2} \sum_{i} e^{ij} \otimes e_{i} + \frac{1}{2} \sum_{i} e^{ji} \otimes e_{i}$$

et

$$\operatorname{tr}\left(\widehat{\delta}\odot\widehat{T}\right) = \frac{n}{2}e^{j} + \frac{1}{2}e^{j}.$$

Lemme 6.8. Soit $T \in \mathcal{S}_1^2(V)$. On a alors

$$\operatorname{tr}(\delta \odot T) = \frac{n+3}{6}T + \frac{1}{3}(\operatorname{tr} T) \odot \delta. \tag{6.16}$$

Démonstration. Il suffit de montrer la relation (6.16) pour $\hat{\delta}$ et $\hat{T} = (e^j \odot e^k) \otimes e_l$. On a dans ce cas

$$\widehat{\delta} \odot \widehat{T} = \sum_{i} (e^{i} \odot e^{j} \odot e^{k}) \otimes (e_{i} \odot e_{l})$$

$$= \frac{1}{12} \sum_{i} (e^{ijk} + e^{ikj} + e^{jik} + e^{jki} + e^{kij} + e^{kji}) \otimes (e_{il} + e_{li}),$$

d'où

$$\operatorname{tr}\left(\widehat{\delta} \odot \widehat{T}\right) = \frac{n}{12} e^{jk} \otimes e_l + \frac{1}{12} e^{jk} \otimes e_l + \frac{n}{12} e^{kj} \otimes e_l + \frac{1}{12} e^{kj} \otimes e_l$$

$$+ \frac{1}{12} e^{jk} \otimes e_l + \frac{\delta_l^j}{12} \sum_i e^{ik} \otimes e_i + \frac{1}{12} e^{kj} \otimes e_l + \frac{\delta_l^j}{12} \sum_i e^{ki} \otimes e_i$$

$$+ \frac{1}{12} e^{kj} \otimes e_l + \frac{\delta_l^k}{12} \sum_i e^{ij} \otimes e_i + \frac{1}{12} e^{jk} \otimes e_l + \frac{\delta_l^k}{12} \sum_i e^{ji} \otimes e_i$$

$$= \frac{n}{6} \widehat{T} + \frac{1}{2} \widehat{T} + \frac{1}{6} \left(\delta_l^i e^k + \delta_l^k e^j \right) \odot \widehat{\delta} = \frac{n+3}{6} \widehat{T} + \frac{1}{3} \left(\operatorname{tr} \widehat{T} \right) \odot \widehat{\delta}.$$

Corollaire 6.9. Soit $T \in \mathcal{S}_0^1(V)$. On a alors

$$\operatorname{tr}(\delta \odot \delta \odot T) = \frac{n+2}{3} \delta \odot T,$$
 (6.17)

$$\operatorname{tr}^{2}\left(\delta \odot \delta \odot T\right) = \frac{\left(n+1\right)\left(n+2\right)}{6}T. \tag{6.18}$$

On applique le lemme précédent à $U = \delta \odot T$, puis le lemme 6.7, d'où

$$\operatorname{t} r \left(\delta \odot \delta \odot T \right) = \frac{n+3}{6} \delta \odot T + \frac{1}{3} \left(\operatorname{t} r \left(\delta \odot T \right) \right) \odot \delta = \frac{n+2}{3} \delta \odot T$$

et

$$\operatorname{tr}^2(\delta \odot \delta \odot T) = \frac{(n+1)(n+2)}{6}T.$$

Ce corollaire entraîne immédiatement

Proposition 6.10. Tout tenseur symétrique F de type (3,2) s'écrit de manière unique

$$F = \delta \odot \delta \odot G + N, \tag{6.19}$$

 $avec (tr)^2 N = 0 et$

$$G = \frac{6}{(n+1)(n+2)} (\text{tr})^2 F.$$
 (6.20)

7 Contraction de polynômes réels par rapport à une forme hermitienne

7.1 Polynômes réels sur un espace vectoriel complexe

Soit V un espace vectoriel complexe de dimension finie n. On désigne par \overline{V} l'espace vectoriel conjugué (i.e., muni du produit $\lambda \cdot v = \overline{\lambda}v$).

Un polynôme réel de type (k, l) est une application

$$P:V\to\mathbb{C}$$

telle qu'il existe une forme \mathbb{C} -multilinéaire symétrique (sur V^k et \overline{V}^l respectivement)

$$p: V^k \times \overline{V}^l \to \mathbb{C}$$

vérifiant

$$P(z) = p\left(\underbrace{z, \dots, z}_{k \text{ fois}}; \underbrace{z, \dots, z}_{l \text{ fois}}\right).$$

La forme p est unique et appelée forme polaire du polynôme P; on a

$$p(u_1, \dots, u_k; v_1, \dots, v_l) = \frac{1}{k! l!} \partial_{u_1} \cdots \partial_{u_k} \overline{\partial}_{v_1} \cdots \overline{\partial}_{v_l} P.$$

On donne le même nom de forme polaire au tenseur symétrique associé à p

$$\widehat{P} \in (\odot^k V) \otimes (\odot^l \overline{V})$$

défini par

$$\langle (u_1 \odot \cdots \odot u_k) \otimes (v_1 \odot \cdots \odot v_l), \widehat{P} \rangle = p(u_1, \ldots, u_k; v_1, \ldots, v_l).$$

Si

$$q:V^k\times \overline{V}^l\to \mathbb{C}$$

est une forme multilinéaire (non nécessairement symétrique), l'application

$$P:V\to\mathbb{C}$$

définie par

$$P(z) = q\left(\underbrace{z, \dots, z}_{k \text{ fois}}; \underbrace{z, \dots, z}_{l \text{ fois}}\right)$$

est un polynôme réel de type (k,l), dont la forme polaire p est la symétrisée de q :

$$p(u_1, \dots, u_k; v_1, \dots, v_k) = \frac{1}{k! l!} \sum_{\sigma \in \mathfrak{S}_t, \tau \in \mathfrak{S}_1} q(u_{\sigma_1}, \dots, u_{\sigma_k}; v_{\tau_1}, \dots, v_{\tau_l}).$$

Les éléments associés $\widehat{P} \in (\odot^k V) \otimes (\odot^l \overline{V})$ et $\widehat{q} \in (\otimes^k V) \otimes (\otimes^l \overline{V})$ sont liés par

 $\widehat{P} = (S y m_k \otimes S y m_l) \widehat{q}.$

Si P_1, P_2 sont deux polynômes réels de types respectifs (k_1, l_1) et (k_2, l_2) , leur produit $P = P_1 P_2$ est un polynôme de type $(k, l) = (k_1 + k_2, l_1 + l_2)$. Si

$$\widehat{P} \in \left(\odot^{k} V \right) \otimes \left(\odot^{l} \overline{V} \right), \ \widehat{P}_{1} \in \left(\odot^{k_{1}} V \right) \otimes \left(\odot^{l_{1}} \overline{V} \right), \ \widehat{P}_{2} \in \left(\odot^{k_{2}} V \right) \otimes \left(\odot^{l_{2}} \overline{V} \right)$$

sont leurs formes polaires respectives, on a

$$\widehat{P} = (Sym_k \otimes Sym_l) \left(\widehat{P_1} \otimes \widehat{P_2}\right) = \widehat{P_1} \odot \widehat{P_2}.$$

Soit (e_1, \ldots, e_n) une base de V, qui est également une base de \overline{V} . On note (e^1, \ldots, e^n) la base duale dans V; la base duale dans \overline{V} est alors $(\overline{e^1}, \ldots, \overline{e^n})$. Dans ces bases, le tenseur \widehat{P} s'écrit

$$\widehat{P} = \sum_{i_1, \dots, i_k; j_1, \dots, j_l} p_{i_1 \cdots i_k \overline{j_1} \dots \overline{j_l}} e^{i_1} \otimes \dots \otimes e^{i_k} \otimes \overline{e^{j_1}} \otimes \dots \otimes \overline{e^{j_l}},$$

où les coefficients $p_{i_1\cdots i_k\overline{j_1}\cdots\overline{j_l}}$ sont symétriques par rapport aux indices (i_1,\ldots,i_k) et (j_1,\ldots,j_l) . La valeur du polynôme P correspondant en $z=\sum_i z^i e_i \in V$ est

$$P(z) = \sum_{i_1, \dots, i_k; j_1, \dots, j_l} p_{i_1 \dots i_k \overline{j_1} \dots \overline{j_l}} z^{i_1} \dots z^{i_k} \overline{z^{j_1}} \dots \overline{z^{j_l}}.$$

7.2 Contraction par rapport à une forme hermitienne non dégénérée

7.2.1

Soit

$$h:V\times\overline{V}\to\mathbb{C}$$

une forme hermitienne non dégénérée sur V. Cette forme hermitienne définit alors un isomorphisme

$$\alpha: V \to \overline{V}^*$$

 $z \mapsto \alpha(z)$

où $\alpha(z)$ est caractérisé par

$$\langle t, \alpha(z) \rangle = h(z, t) \qquad (t \in \overline{V}).$$

On désigne par $\beta = a^{-1} : \overline{V}^* \to V$ l'isomorphisme inverse.

Si $\mathbf{e} = (e_1, \dots, e_n)$ est une base de V et si $(h_{i\bar{j}})$ est la matrice de h dans cette base, on a

$$\alpha\left(e_{i}\right) = \sum_{j} h_{i\overline{j}} \overline{e^{j}}.$$

Si $\left(h^{k\bar{l}}\right)$ est la matrice inverse de $\left(\overline{h_{i\bar{j}}}\right)=\left(h_{j\bar{i}}\right)$ (au sens $\sum_{j}h^{k\bar{j}}h_{i\bar{j}}=\delta_{i}^{k}$), on a

$$\beta\left(\overline{e^k}\right) = \sum_i h^{i\overline{k}} e_i. \tag{7.1}$$

7.2.2

On déduit de β un isomorphisme

$$B = i d_{\otimes_k V^*} \otimes (\beta \otimes \cdots \otimes \beta) : (\otimes_k V^*) \otimes (\otimes_l \overline{V}^*) \to (\otimes_k V^*) \otimes (\otimes_l V),$$

qui commute avec les opérations de symétrisation $Sym_k \otimes Sym_l$ et se restreint par conséquent en un isomorphisme, également noté B,

$$B = \mathrm{i} \, d_{\odot_k V^*} \otimes (\beta \odot \cdots \odot \beta) : (\odot_k V^*) \otimes \left(\odot_l \overline{V}^* \right) \to (\odot_k V^*) \otimes (\odot_l V) .$$

Si $\hat{h} \in V^* \otimes \overline{V}^*$ est associé à h, $B(\hat{h})$ est égal au tenseur de Kronecker :

$$B\left(\widehat{h}\right) = \delta.$$

Définition 7.1. Soient $k, l \geq 1$. Soit F un polynôme de type (k, l) et soit $\widehat{F} = U \in (\odot^k V) \otimes (\odot^l \overline{V})$ sa forme polaire. La contraction de U par rapport à la forme hermitienne h est

$$\operatorname{tr}_h U \in (\odot^{k-1} V) \otimes (\odot^{l-1} \overline{V})$$

défini par

$$B(\operatorname{tr}_h U) = \operatorname{tr} B(U).$$

La contraction de F par rapport à la forme hermitienne h est le polynôme $G=\operatorname{tr}_h F$ de type (k-1,l-1) tel que

$$\widehat{G} = \operatorname{tr}_h U$$
.

Si

$$F(z) = \sum_{i_1, \dots, i_k; j_1, \dots, j_l} a_{i_1 \dots i_k \overline{j_1} \dots \overline{j_l}} z^{i_1} \dots z^{i_k} \overline{z^{j_1}} \dots \overline{z^{j_l}},$$

où les coefficients $a_{i_1\cdots i_k\overline{j_1}\cdots\overline{j_l}}$ sont symétriques par rapport aux indices (i_1,\ldots,i_k) et (j_1,\ldots,j_l) , on a

$$\widehat{F} = \sum_{i_1, \dots, i_k; j_1, \dots, j_l} a_{i_1 \cdots i_k \overline{j_1} \dots \overline{j_l}} e^{i_1} \otimes \dots \otimes e^{i_k} \otimes \overline{e^{j_1}} \otimes \dots \otimes \overline{e^{j_l}}.$$

Utilisant (7.1), on a

$$B\left(\widehat{F}\right) = \sum_{i_1,\dots,i_k:j_1,\dots,j_l} a_{i_1\cdots i_k\overline{j_1}\dots\overline{j_l}} e^{i_1} \otimes \cdots \otimes e^{i_k} \otimes \sum_i h^{i\overline{j_1}} e_i \otimes \beta \overline{e^{j_2}} \otimes \cdots \otimes \beta \overline{e^{j_l}}$$

et

$$\operatorname{t} r B\left(\widehat{F}\right) = \sum_{i_1, \dots, i_k; j_1, \dots, j_l} h^{i_1 \overline{j_1}} a_{i_1 \cdots i_k \overline{j_1} \dots \overline{j_l}} e^{i_2} \otimes \cdots \otimes e^{i_k} \otimes \beta \overline{e^{j_2}} \otimes \cdots \otimes \beta \overline{e^{j_l}}.$$

On en déduit

$$t r_h \widehat{F} = \sum_{i_1, \dots, i_k; j_1, \dots, j_l} h^{i_1 \overline{j_1}} a_{i_1 \dots i_k \overline{j_1} \dots \overline{j_l}} e^{i_2} \otimes \dots \otimes e^{i_k} \otimes \overline{e^{j_2}} \otimes \dots \otimes \overline{e^{j_l}}$$

et

$$(\operatorname{t} r_h F)(z) = \sum_{i_1, \dots, i_k; j_1, \dots, j_l} h^{i_1 \overline{j_1}} a_{i_1 \dots i_k \overline{j_1} \dots \overline{j_l}} z^{i_2} \dots z^{i_k} \overline{z^{j_2}} \dots \overline{z^{j_l}}.$$
 (7.2)

La relation (7.2) est la définition de la contraction utilisée dans l'article de Chern-Moser [3].

7.3 Applications

Soit \mathcal{F}_{kl} l'espace vectoriel des polynômes réels de type (k,l) sur V. Soit h une forme hermitienne sur V. L'isomorphisme $F \mapsto B\left(\widehat{F}\right)$ entre \mathcal{F}_{kl} et $(\odot_k V^*) \otimes (\odot_l V)$ transforme h en δ , le produit de polynômes en produit symétrique de tenseurs, et la contraction par rapport à h en contraction des tenseurs symétriques. Les propositions 6.3, 6.10, 6.6 se traduisent donc immédiatement (en notant t $r = t r_h$ et $\langle z, z \rangle = h(z, z)$) en :

Proposition 7.1. On a

$$\mathcal{F}_{22} = \mathcal{F}_{11} \langle z, z \rangle \oplus \mathcal{N}_{22},$$

 $o\grave{u}$

$$\mathcal{N}_{22} = \{ N \in \mathcal{F}_{22} \mid \operatorname{tr} N = 0 \} .$$

Tout élément $F \in \mathcal{F}_{22}$ s'écrit

$$F = G \langle z, z \rangle + N,$$

 $avec \operatorname{tr} N = 0 et$

$$G = \frac{4}{n+2} \operatorname{tr} F - \frac{2\langle z, z \rangle}{(n+1)(n+2)} (\operatorname{tr})^2 F.$$

Proposition 7.2. On a

$$\mathcal{F}_{32} = \mathcal{F}_{10} \left\langle z, z \right\rangle^2 \oplus \mathcal{N}_{32},$$

où

$$\mathcal{N}_{32} = \left\{ N \in \mathcal{F}_{32} \mid (\operatorname{tr})^2 N = 0 \right\}.$$

Tout élément $F \in \mathcal{F}_{32}$ s'écrit

$$F = G \langle z, z \rangle^2 + N,$$

 $avec (tr)^2 N = 0 et$

$$G = \frac{6}{(n+1)(n+2)} (\text{tr})^2 F.$$

Proposition 7.3. On a

$$\mathcal{F}_{33} = \mathcal{F}_{00} \left\langle z, z \right\rangle^3 \oplus \mathcal{N}_{33},$$

où

$$\mathcal{N}_{33} = \left\{ N \in \mathcal{F}_{33} \mid (\operatorname{tr})^3 N = 0 \right\}.$$

Tout élément $F \in \mathcal{F}_{33}$ s'écrit

$$F = G \left\langle z, z \right\rangle^3 + N,$$

 $avec (tr)^3 N = 0 et$

$$G = \frac{6}{n(n+1)(n+2)} (tr)^3 F.$$

8 Contraction de séries formelles

On décompose un élément F de $\mathcal F$ en termes homogènes de bidegré (k,l) en $(z,\bar z)$

$$F = \sum_{k,l>0} F_{kl},$$

avec

$$F_{kl}(\lambda z, \mu \overline{z}, u) = \lambda^k \overline{\mu}^l F_{kl}(z, \overline{z}, u) \qquad (\lambda, \mu \in \mathbb{C}).$$

La composante F_{kl} de type (k, l) s'écrit

$$F_{kl} = \sum a_{\alpha_1 \dots \alpha_k \overline{\beta_1} \dots \overline{\beta_l}} z^{\alpha_1} \dots z^{\alpha_k} \overline{z^{\beta_1}} \dots \overline{z^{\beta_l}}, \tag{8.1}$$

où les coefficients $a_{\alpha_1...\alpha_k\overline{\beta_1}...\overline{\beta_l}}$ sont des séries formelles en u, symétriques par rapport aux indices $(\alpha_1,...,\alpha_k)$ et $(\beta_1,...,\beta_l)$.

Des trois lemmes précédents, on déduit

Proposition 8.1. L'espace vectoriel \mathcal{F} des séries formelles est la somme directe

$$\mathcal{F} = \mathcal{R} \oplus \mathcal{N}$$

de

$$\mathcal{R} = \bigoplus_{\min(k,l) \leq 1} \mathcal{F}_{kl} \oplus \mathcal{F}_{11} \langle z, z \rangle \oplus \mathcal{F}_{10} \langle z, z \rangle^2 + \mathcal{F}_{00} \langle z, z \rangle^3$$

de

$$\mathcal{N} = \{ N \in \mathcal{F} \mid N_{kl} = 0 \text{ si } \min(k, l) \le 1, \text{ tr } N_{22} = 0,$$

$$(\operatorname{tr})^2 N_{32} = 0, (\operatorname{tr})^3 N_{33} = 0 \}.$$

Définition 8.1. On désigne par $P: \mathcal{F} \longrightarrow \mathcal{R}$ la projection associée à la décomposition $\mathcal{F} = \mathcal{R} \oplus \mathcal{N}$. Pour $F \in \mathcal{F}$, on a

$$PF = \sum_{\min(k,l) \le 1} F_{kl} + G_{11} \langle z, z \rangle + (G_{10} + G_{01}) \langle z, z \rangle^2 + G_{00} \langle z, z \rangle^3, \quad (8.2)$$

où

$$G_{11} = \frac{4}{n+2} \operatorname{tr}(F_{22}) - \frac{2 \langle z, z \rangle}{(n+1)(n+2)} (\operatorname{tr})^2 (F_{22}),$$

$$G_{10} = \frac{6}{(n+1)(n+2)} (\operatorname{tr})^2 F_{32},$$

$$G_{00} = \frac{6}{n(n+1)(n+2)} (\operatorname{tr})^3 F_{33}.$$

Références

- [1] M.S. Baouendi, P.Ebenfelt, L.P. Rothschild, Local Geometric Properties of Real Submanifolds in Complex Spaces, *Bull. AMS (New Series)* **37**(3) (2000), 309-336.
- [2] E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. Ann. Math. Pura Appl., (4) 11 (1932) 17-90 (ou Euvres II, 2, 1231-1304); II, Ann. Scuola Norm. Sup. Pisa, (2) 1 (1932) 333-354 (ou Euvres III, 2, 1217-1238).
- [3] S.S. Chern, J.K. Moser, Real Hypersurfaces in Complex Manifolds, *Acta Math.* **133** (1975), 219-271.
- [4] Won K. Park, Normal forms of real hypersurfaces with nondegenerate Levi forms, arXiv:math.CV/9902034 v1, 4 Feb 1999.
- [5] Won K. Park, *Umbilic points and real hyperquadrics*, arXiv:math.CV/9902035 v1, 4 Feb 1999.
- [6] Guy. Roos, Contraction des tenseurs symtriques, (25 Avril 2004).