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Abstra
tS
heduling is one of the important tasks in High-Level Synthesis (HLS). S
heduling a wholeprogram, espe
ially with loops, is hard as too many 
onstraints and obje
tives intera
t. Wepropose to organize s
heduling in gradual ways. This thesis fo
uses on some steps of the de-signed s
heduling approa
hes. An e�
ient formalism to express resour
e 
onstraints, using dis-equations, is presented. In the �rst part, we examine the problem of Resour
e-ConstrainedS
heduling (RCS) tasks whose resour
e usage is des
ribed by reservation tables, while in these
ond one, we adress the problem of RCS data-dependent tasks. For both problems, several al-gorithms are proposed. Our main algorithmi
 
ontributions are: 1/ an exa
t bran
h-and-bound(BAB) algorithm, where ea
h evaluation is a

elerated by variants of Floyd's and Dijkstra's al-gorithms, 2/ a new s
heduling method based on graph 
oloring te
hnique as a tool for a BABmeta-method, where ea
h evaluation is a

elerated by maximal and greedy 
lique 
omputation.The evaluation and 
omparisons are done on pie
es of real-life appli
ations from the Perfe
tCluband the HLSynth95 ben
hmarks. The results demonstrate the suitability of these solutions forHLS s
heduling.Keywords: S
heduling, resour
e 
onstraints, reservation tables, dis-equations, bran
h-and-bound, Dijkstra, graph 
oloring, integer linear programming.RésuméL'ordonnan
ement est l'une des tâ
hes les plus importantes dans la synthèse de haut niveau.Vue l'importan
e des obje
tifs et des 
ontraintes qui interagissent, il est dur d'ordonnan
er, unprogramme en entier, en parti
ulier lorsqu'il 
ontient des bou
les. Pour 
ela, nous proposonsd'hiérar
hiser l'ordonnan
ement en niveaux graduels selon di�érentes appro
hes. Cette thèse se
on
entre sur quelques étapes de 
es appro
hes 
onçues. Un formalisme e�
a
e exprimant les
ontraintes de ressour
es en utilisant les dis-équations, est présenté. Dans une première partie,nous examinons le problème de l'Ordonnan
ement sous Contraintes de Ressour
es (OCR) detâ
hes dont l'utilisation de ressour
e est dé
rite via des tables de réservation, tandis que dansla se
onde partie, nous abordons le problème d'OCR de tâ
hes dépendantes. Nos prin
ipales
ontributions sont: 1/ un algorithme exa
t de type Bran
h-and-Bound (BAB) asso
ié à unevariante de l'algorithme de Dijkstra, 2/ une nouvelle méthode d'ordonnan
ement basée sur late
hnique de 
oloriage de graphe et qui est résolue au moyen d' un BAB asso
ié à un algorithmede 
al
ul de 
lique (exa
te/gloutonne). Les algorithmes proposés ont été implémentés. Le jeudes programmes tests est pris d'appli
ations réelles du Perfe
tClub et HLSynth95 ben
hmarks.Les résultats prouvent que les deux méthodes 
onviennent aux outils HLS.Mots-
lés: Ordonnan
ement, 
ontraintes de ressour
es, tables de réservation, dis-equations,bran
h-and-bound, Dijkstra, 
oloriage de graphe, programmation linéaire en nombres entiers.
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Chapter 1Introdu
tionIn this thesis, the resour
e-
onstrained s
heduling problem in High-Level Synthesis -behavioralsynthesis- will be examined, and several algorithms are proposed. The aim of this resear
h is topropose and 
ompare some novel s
heduling algorithms, as well from theoreti
al point of viewas experimental one. These algorithms are integrated in stepwise s
heduling approa
hes.With the rise in the 
omplexity of Integrated Cir
uits (IC's), their design pro
ess has be
omevery di�
ult to manage without any automation or semi-automation. Thus the need of e�e
tiveand good CAD tools where we 
an have: shorter design 
y
le, fewer errors, the ability to sear
hthe design spa
e, do
umenting the design pro
ess and availability of digital 
ir
uit te
hnologyto more people. The 
hallenge of embedded system design is twofold: one must pa
k 
ompute-intensive algorithms in small platforms; furthermore, the design must be 
ompleted as fast aspossible, to meet the demands of a highly volatile market. In the long run, this will be possibleonly if 
omputer-aided design tools are developed far beyond their present status [24℄.An artifa
t su
h as a 
ell phone or a digital TV set must behave a

ording to given spe
i�-
ations; however, its hardware parts 
an only be built from a stru
tural des
ription. The goal ofHigh-Level Synthesis (HLS) is to 
onvert a behavioral spe
i�
ation � for the whole or a part of the
omplete appli
ation, to be performed on a dedi
ated 
ir
uit � into a stru
tural des
ription, whileoptimizing several obje
tive fun
tions: performan
e, size, power 
onsumption among others.In the past two de
ades [34℄ there has been a lot of a
tivity going on in the area of High-Levelsynthesis and it is be
oming an in
reasingly popular resear
h topi
. Currently, several 
ommer-
ial [103, 78, 102℄ and a
ademi
 HLS [49, 77, 88, 71, 55, 37℄ tools exist but the design 
ommunitydon't integrate them into its design �ow, be
ause of many reasons: they la
k intera
tion betweenthem and the designers, they 
an support only limited ar
hite
tures and the quality of the designthey generate is still often worse than that of manual design.Our 
ontribution fo
uses on the s
heduling problem as it is one key pro
ess in HLS. Our aimis to improve those tools by reusing some of methods and models that have been pioneered bythe 
ompiler 
ommunity. Among these powerful methods, operations resear
h te
hniques havestrongly in
reased the performan
es of s
heduling task.S
heduling is an important and primary task in HLS. However, s
heduling operations un-der resour
e 
onstraints to minimize the total duration is NP-
omplete problem as too many
onstraints and obje
tives intera
t [104, 26℄. For e�
iently s
heduling programs, espe
ially withloops, �rst, we fa
ilitate the problem by this tri
k. We propose to organize the s
heduling pro
essin stepwise ways.The purpose of these hierar
hi
al de
ompositions is twofold: one 
an integrate exa
t methodsinto these hierar
hi
al s
heduling approa
hes, that 
ould identify 
ode fragments and s
hedule1



Chapter 1. Introdu
tionthem optimally su
h that it 
ouldn't a�e
t a lot the whole s
heduling quality; furthermore, itallows to avoid dealing with a too large system as is well known, applying linear programmingto large 
onstraint systems is not 
ost-e�e
tive.In what follow, we will present brie�y the area, the 
ontext and the obje
tives of this resear
h.After what, we report the main 
ontributions. We 
on
lude by giving the outline of the thesis.1.1 Synthesis and High-Level SynthesisThe High-Level -ar
hite
tural or behavioral- Synthesis (HLS) pro
ess takes a behavioral spe
-i�
ation of a system and a set of 
onstraints and goals to be satis�ed, and �nds a stru
turethat implements the behavior while satisfying the goals and 
onstraints [34℄. These goals and
onstraints 
an express several obje
tive fun
tions: performan
e, size, power 
onsumption. . .Some times 
alled �hardware 
ompilation�, the synthesis of 
ir
uits translates a sequentialprogram, into an integrated 
ir
uit (hardware). The aim of the synthesis tool is to obtain thephysi
al view of the 
ir
uit. This view 
an be represented by a netlist whi
h is a stru
tural viewin the logi
-gates level. However, there are several lower-level tools - logi
 synthesis- whi
h allowthe translation to this stru
tural view: Synopsys [103℄, Caden
e [22℄, Catapult [78℄, ISE Xilinxtools [113℄. Most of them start working on Register Transfer des
ription Level (RTL). Indeed,at the RTL level, the input des
ription is transformed in su
h way that the register assignationand the fun
tional units assignation are �xed for ea
h 
y
le of the system [34℄. We are interestedby the part of the HLS whi
h �lls the gap between system � behavioral� level and the RT levelby automati
ally generating an RTL realization from a behavioral des
ription.Generi
 High-Level Synthesis SystemA typi
al way of des
ribing behavior is to write a program in an ordinary 
omputer language orin a spe
ial hardware des
ription language su
h as VHDL [29℄ or Verilog [98℄.The �rst step in HLS is usually the 
ompilation of the behavioral des
ription into an internalrepresentation that is most suitable for HLS tasks. Most approa
hes use graph-based represen-tations that gather both data �ow and 
ontrol �ow implied by the spe
i�
ation. These internalrepresentations are given di�erent names in di�erent synthesis systems (e.g. value tra
e, datadependen
y graph [3℄, dire
ted a
y
li
 graph, 
ontrol and data �ow graphs(CDFG) [49℄) butare simply di�erent adaptations of similar basi
 
on
epts. CDFG is the most popular and inmany systems, the 
ontrol �ow graph and the data �ow graph are integrated into one stru
ture.Control dependen
es are derived dire
tly from the expli
it order given in the input program andfrom the 
ompiler's 
hoi
es of parsing the arithmeti
/logi
 expressions. Data dependen
es showthe essential ordering of operations.At this stage and like in the software 
ompilation, some important tasks and some optimiza-tions should be performed by the 
ompiler. They in
lude variable disambiguation, taking 
areof the s
ope of variables, 
onverting 
omplex data stru
tures into simple types, type 
he
king,expression simpli�
ation, dead 
ode elimination, 
onstant propagation, 
ommon subexpressionelimination. . . .The se
ond step of the HLS, whi
h is the 
ore of transforming behavior into stru
ture, in
ludesfour major tasks:
• Partitioning: deals with the division of the intermediate representation (i.e. the behavioraldes
ription or the design) into sub-representations in order to redu
e the problem size andexhibit more parallelism. 2
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• S
heduling: partitions the intermediate representation into time steps, thereby generatinga �nite-state ma
hine model.
• Allo
ation: though 
losely intertwined with s
heduling, involves partitioning the interme-diate representation with respe
t to spa
e (hardware resour
es) whi
h is also known asspatial mapping.
• Control generation: On
e the s
hedule and allo
ation have been 
omputed, it is ne
essaryto synthesis a 
ontroller (hardwired or mi
ro
oded) that will drive allo
ated resour
es asrequired by the s
hedule. Finally, the design has to be 
onverted into real hardware. Lowerlevel tools, su
h as logi
 synthesis and layout synthesis, 
omplete the design.1.1.1 PartitioningSoftware programming languages have little support for des
ribing hardware e�
iently. For ex-ample, to model hardware in C/C++, we need additional language features present in HardwareDes
ription Language (HDL) but not present in C/C++:
• Con
urren
y : hardware is inherently parallel, while C/C++ programs and the like areinherently sequential. The notion of pro
esses (Always blo
ks in Verilog HDL, Pro
ess inVHDL), whi
h en
apsulates programs that exe
ute 
on
urrently, have to be introdu
ed. Asystem will be des
ribed as a network of pro
esses.
• Signals : hardware pro
esses need to use signals (akin to wires or bu�ered 
hannels) to
ommuni
ate with one another.
• Rea
tivity : hardware systems are in 
ontinuous intera
tion with heir environment, i.e.they are rea
tive. The notion of rea
tivity is essential to des
ribing hardware systems atall levels of abstra
tion.
• Data abstra
tion : C/C++ supports data abstra
tions that are useful for software program-ming. However, for hardware, one needs arbitrary pre
ision signed and unsigned integers,bit ve
tors and �xed point types.With su
h a set of features added, an imperative language, like C/C++, 
an e�
iently modelhardware/software systems. Thus the aim of partitioning is to transform the input des
riptionsu
h that it will be easily and e�
iently des
ribed in HDL.1.1.2 S
hedulingA Finite State Ma
hine with Datapath (FSMD) model is the most popular one whi
h is used todes
ribe digital systems at the RT level [44℄. It 
onsists of an FSM 
alled the 
ontrol unit anda datapath. The datapath 
onsists of the storage and fun
tional units ne
essary for the system.The FSM 
onsists of a set of states, a set of transitions between states, and a set of a
tions(involving the datapath) asso
iated with ea
h transition.S
heduling, an important task in HLS, 
an be des
ribed as the pro
ess of dividing the interme-diate representation into states and 
ontrol steps, in su
h a way that 
an be dire
tly synthesizedinto an FSMD model. In other words, s
heduling does a temporal mapping of the given rep-resentation. A behavioral des
ription and hen
e the intermediate representation 
onsists of asequen
e of operations to be performed by the synthesized hardware. The task of s
heduling3
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tionpartitions these operations into time steps su
h that ea
h operation is exe
uted in one time step.Ea
h time step 
orresponds to one state of the 
ontrolling FSM state ma
hine in the FSMDmodel.1.1.3 Allo
ation -Binding-The binding task assigns the fun
tional operations and memory a

esses to available hardwareunits. A resour
e su
h as a fun
tional, storage, or inter
onne
tion unit 
an be shared by di�erentoperations, data a

esses, or data transfers if they are mutually ex
lusive. Binding 
onsists ofthree subtasks based on the unit type:
• Storage binding assigns variables to storage units. Storage units 
an be of many types,in
luding registers, registers �les, and memory units. Two variables that are not alivesimultaneously in a given state 
an be assigned to the same register. Two variables thatare not a

essed simultaneously in a given state 
an be assigned to the same port or aregister �le or memory.
• Fun
tional-unit binding assigns ea
h operation to a fun
tional unit. A fun
tional unit or apipeline stage 
an exe
ute only one operation per 
lo
k 
y
le.
• Inter
onne
tion binding assigns an inter
onne
tion unit su
h as a multiplexer, a wire or abus for ea
h data transfer among ports, fun
tional units, and storage units.1.2 Obje
tives, Constraints & Pe
uliarities when S
heduling inHLSS
heduling, a 
entral task in HLS, involves determining the exe
ution order of operations ina behavioral des
ription. In other words, it is the pro
ess of determining the assignment ofoperations to time slots (
ontrol steps) of a syn
hronous system subje
t to various 
onstraints.1.2.1 ConstraintsThe s
heduling problem in HLS must take into a

ount di�erent and heterogeneous 
onstraints,whi
h de�ne requirements imposed on an implementation of a system. There are at least twokinds of 
onstraints. The �rst group, as in 
lassi
 s
heduling problems, 
omprises 
onstraints that
an be dedu
ed from a system behavioral des
ription, su
h as pre
eden
e 
onstraints -datadependen
es-, or 
onditions for operation exe
ution -
ontrol dependen
es-. The other group of
onstraints de�nes non-fun
tional requirements for possible implementations of the systemsu
h as performan
e, 
ost, timing, power 
onsumption or memory requirements.1.2.1.1 Pre
eden
e/Control ConstraintsTwo types of dependen
ies exist between the operations from a program spe
i�
ation. Data-�ow dependen
ies impose pre
eden
e (exe
ution order) between the operations. For example,operation o2 has to be exe
uted after operation o1, if a result 
omputed by o1 is used by o2.Control-�ow dependen
ies arise when some portions of the spe
i�
ation are exe
uted 
ondition-ally. All data-�ow and 
ontrol-�ow dependen
ies have to be satis�ed to ensure a 
orre
t exe
utionof the spe
i�ed behavior. 4
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tion1.2.1.2 Resour
e Constraints -Sharing Resour
es-Additional 
onstraints arise due to �nite hardware resour
es. Resour
e 
onstraints impose boundson a number of fun
tional units available for the task exe
ution. For example, a system imple-mentation may in
orporate two adder 
ir
uits and, 
onsequently, not more than two additions
an be exe
uted simultaneously.1.2.1.3 Time ConstraintsAnother set of restri
tions 
omes from the timing 
onstraints. In many 
riti
al appli
ations e.g.air
raft engine 
ontrol, 
omputer hardware has to rea
t to a re
ognition of a spe
i�
 event withina stri
tly pres
ribed time interval.1.2.1.4 Spe
ial ConstraintsThe resour
e-
onstrained s
heduling 
an 
onsider resour
es very broadly and therefore power
onsumption and area 
an also be de�ned as a resour
e. In this thesis we don't expli
itly addressthis kind of 
onstraints.1.2.2 Datapath Pe
uliaritiesAdditionally to this panoply of 
onstraints, s
heduling in HLS 
an not be treated without a
tually
onsidering realisti
 design models that would have spe
ial resour
es. Indeed the resour
es usuallyhave some features like fun
tional units with varying delays and multi-fun
tional units. Theseissues are not expli
itly addressed by our main 
ontribution so just to provide to the reader aglobal idea, we dis
uss them brie�y:
• Fun
tional units with varying delays: ea
h fun
tional unit will have a di�erent delayand therefore it assumes that an operation assigned to a 
ontrol step would take the sametime as another operation. This assumption would lead to a 
lo
k 
y
le that is unusuallylengthened by the slowest unit in the design. The following three approa
hes are used tosolve this problem:� Pipelining: A fun
tional unit may have stages in it. This makes it possible to exe
utetwo operations in the same fun
tional unit sin
e they operate in two di�erent stages.As known, pipelining is a simple te
hnique to in
rease parallelism.� Multi-
y
ling: If the 
lo
k 
y
le is shortened to allow fast operation, then the sloweroperation would take multiple 
lo
ks and hen
e are 
alled multi-
y
le operations.However input lat
hes are needed in front of the multi-
y
le fun
tional units to holdits operands until its results are available. This would in turn in
rease the size of the
ontrol logi
. Multi-
y
le operations 
an be pipelined.� Chaining: Two or more operations 
ould be allowed to be performed sequentially ina single 
ontrol step (same 
lo
k 
y
le). Sin
e the output of one fun
tional unit hasto be fed to another, they should be dire
tly 
onne
ted.
• Multi-fun
tional Units: it has been assumed that a fun
tional unit 
an perform only oneoperation but in pra
ti
e there are several 
ost e�e
tive multi-fun
tional units being used.For this purpose the s
heduling algorithms 
ould be te
hnology based so that it 
an explorethe library of 
omponents. For example, an operation in the 
riti
al path 
ould be assignedfaster fun
tional units than those not in the 
riti
al path. Also the s
heduling algorithm5
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ould try to use the same multi-fun
tional unit for two data independant operations whi
hare in two di�erent steps.1.2.3 Intera
tion with Allo
ationIn order to know whether two operations 
an be s
heduled in the same 
ontrol step, one mustknow whether they use 
ommon resour
es. Moreover, �nding the most e�
ient s
hedule, for realhardware, requires knowing the delays for the di�erent operations, however those 
an only befound after that the details of the fun
tion units and their inter
onne
tions are known. On theother hand, in order to make a good allo
ation, one must know what operations will be donein parallel, whi
h 
omes from the s
hedule. Therefore, s
heduling and allo
ation are stronglyinterdependent tasks.In the literature, many s
enarios have been explored. The most straightforward approa
hto this problem is to set some limits on the resour
es 
ost and then s
hedule, as it is done inmany systems. A more �exible approa
h is to iterate the whole pro
ess 
hanging the resour
elimits until a satisfa
tory design has been found. An exa
t approa
h, but an expensive one, isto develop the s
hedule and allo
ation simultaneously, as in system MAHA [88℄. Finally, theallo
ation 
an be done �rst, followed by s
heduling as it is done in the BUD system [77℄.1.3 ContextThe s
hedulers we des
ribe in this thesis are part of our HLS tool, we 
urrently develop, whoseaim is HLS in the �eld of 
ompute-intensive embedded systems. The input spe
i�
ation is avariant of C (in
luding loops); the output is a hardware des
ription at the RT level. We use the�nite state ma
hine with a data path (FSMD) model to des
ribe the hardware at this level.S
heduling is the basi
 tool we use for hardware generation: a s
hedule is a pre
ise des
riptionof the operations to be exe
uted at ea
h 
lo
k 
y
le; thus dedu
ing the FSMD from a s
heduleis 
onsidered as a natural task.Earlier work starts by building the 
ontrol and data �ow graph (CDFG), whi
h is simply thesequential �ow diagram of the input des
ription. The nodes of the CDFG are the basi
 blo
ksof the original program. Most synthesis tools exploit only parallelism inside basi
 blo
ks; theFSMD is usually obtained by s
heduling the tasks of ea
h basi
 blo
k of the CDFG independently.Some parallelism is exploited in loops, but mostly through loop unrolling. Our approa
h is quitedi�erent be
ause we �rst 
onstru
t a FSMD from an equivalent parallel 
ode that exhibits theinherent parallelism in the input des
ription and takes into a

ount the imperfe
t loop nests.Afterwards, a

ording to the resour
e 
onstraints, we exploit a part or all of this parallelism.Indeed, to extra
t parallelism from the loops of the input des
ription, we use a s
hedulingstrategy previously used for automati
 loop parallelization [41℄. This te
hnique whi
h has alreadyproved it e�
ien
y, assigns a symboli
 �date� to ea
h high-level statement of the programi.e., ea
h statement in the C program and allows us to rewrite the 
ode into a form with expli
itparallelism. This te
hnique will be detailed in Chapter 3. The result of this s
heduling pass isthe de�nition of a sequen
e of fronts, i.e., a sequen
e of logi
al steps where ea
h step (a front) is agroup of ma
ro-tasks to be exe
uted in this logi
al step. From this result, we build a �rst 
oarseFSMD; 
oarse as the time is measured in logi
al steps instead of 
lo
k 
y
le. Thus, ea
h state
ontains a set of data independent ma
ro-tasks and ea
h of them is 
omposed by a sequen
e ofelementary operations. However, this symboli
 s
heduling te
hnique is quite 
omplex and 
annottake into a

ount all the mi
ro-operations (and the ar
hite
tural resour
es they need) that are6
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tionimplied in the exe
ution of one ma
ro-task. This fa
t lead us to design stepwise s
hedulingapproa
hes to s
hedule programs, with loops, down to RTL.Many fa
tors and reasons let us to think that su
h approa
hes 
an improve a lot the perfor-man
e of the s
heduling algorithm in term of 
ompromise quality of the s
hedule and its runtime.Indeed, let us noti
e that the appli
ation size, the diverse nature of 
onstraints, all pe
uliaritiesof the datapath - features of the resour
es- and the requirements of a possible implementation
an not be taken into a

ount into one pass to get an optimal or suboptimal s
hedule withoutexploding. In Chapter 3, we will explain in details the motivations that lead us to this 
hoi
e.Now, we must re�ne this s
hedule by �splitting this logi
al step into elementary steps su
hthat resour
e 
onstraints and all pe
uliarities of the datapath will be respe
ted�. Time will bemeasured in physi
al time i.e., 
lo
k 
y
le of the target ar
hite
ture. How to perform this? Inthis thesis, we have sket
hed and investigated two hierar
hi
al s
heduling approa
hes.1. Two-step Approa
h:After the previous symboli
 s
heduling step, one natural possibility is to 
onsider, fors
heduling under resour
e 
onstraints, all the mi
ro-operations of a front simultaneously.In other words, s
hedule them at the same time while 
onsidering resour
e 
onstraints. We
all this last step simultaneous s
heduling.2. Three-step Approa
h:Again for 
omplexity reasons one 
an alternatively 
onsider another possibility. Indeed,we 
onsider that, in our 
ontext, it will be good enough to de
ouple the problem in twosubproblems. This partitioning 
an be sket
hed as:
• After the symboli
 s
heduling, we �rst s
hedule ea
h ma
ro-task independently, takinginto a

ount all pe
uliarities of the data path. The s
hedule of ea
h ma
ro-task willbe summarized with a reservation table1 that states whi
h resour
es at whi
h 
y
le(relative to the starting time of the ma
ro-task) are used by this ma
ro-task. We 
allthis se
ond step mi
ro-s
heduling.
• Due to our parti
ular 
onstru
tion, the ma
ro-tasks, represented now by reservationtables, in a front are data independent but they may still interfere in their use ofresour
es. The logi
al step must then be split into as few elementary steps as ne
essaryto satisfy detailed resour
e 
onstraints. We 
all this third step �ne-grain s
heduling.The strengths and weaknesses of ea
h solution, as a s
heduling approa
h, are reported anddis
ussed. For instan
e, one 
ould emphasize that it would be better to 
onsider, the �rstapproa
h in whi
h the mi
ro- and �ne-grain s
heduling are performed at the same time. Eventhough, we have investigated both approa
hes, the last de
oupling will be good enough. it isdi�
ult to prevent the s
heduler to introdu
e delays between mi
ro-operations, and hen
e toimply more registers for holding temporary results. Our se
ond approa
h may be sub-optimal,but we believe that the possible improvements do not warrant the added 
omplexity.Figure 3.3 summarizes both s
heduling de
ompositions. Dotted lines expresses the area ofour main 
ontributions as in this thesis we have fo
used on some levels of these designed graduals
heduling approa
hes by suggesting mainly two solutions to the resour
e-
onstrained s
hedulingproblems de�ned by the ��ne-grain� and the � simultaneous� s
heduling steps. Before that, wepropose a new formalism for expressing resour
e 
onstraints using dis-equations.1A reservation table is a matrix that shows the 
orresponding assignment between 
ontrol 
y
les and resour
eo

upation. The rows of a reservation table 
orrespond to 
ontrol 
y
les, the 
olumns to resour
es.7
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Figure 1.1: The Hierar
hi
al S
heduling Views1.4 S
heduling Problems AddressedS
heduling takes many forms, su
h as job-shop s
heduling, produ
tion s
heduling, multipro
essors
heduling and so on. To be more pre
ise when de�ning our s
heduling problems, let us re
allthat s
heduling 
an be of several kinds:
• Stati
 s
heduling: All information are available to the s
heduling algorithm, whi
h runsbefore any real 
omputation starts. These algorithms are 
alled o�ine algorithms.
• Semi-stati
 s
heduling: Information may be known at program startup, or at the beginningof ea
h time step, or at other well-de�ned points.
• Dynami
 s
heduling: Information aren't known until mid-exe
ution as in real-time systems.These algorithms are 
alled online ones.In general, solving stati
 s
heduling problems under resour
e 
onstraints is NP-hard. Thisinvolves assigning the verti
es (tasks) of an a
y
li
 dire
ted graph onto a set of resour
es, su
hthat the total time to pro
ess all the tasks is minimized. The total time to pro
ess all the tasksis usually referred to as the makespan or laten
y.An additional obje
tive is often to a
hieve a short laten
y while minimizing the use of re-sour
es. Su
h multi-obje
tive optimization problems involve 
omplex trade-o�s and 
ompro-mises, and good s
heduling strategies are based on a detailed and deep understanding of thespe
i�
 problem domain.As de�ned in our 
ontext due to our parti
ular 
onstru
tion, at the �ne-grain s
heduling step(resp. the simultaneous s
heduling), all information about the ma
ro-tasks (resp. operations) ina front are known before s
heduling. Thus, we deal with stati
 and a
y
li
 resour
e-
onstraineds
heduling problems. They are stati
 as they are done at 
ompilation time and all informations8
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tionare available, and a
y
li
 as ea
h front is a sequen
e of data/
ontrol independant ma
ro-taskswithout loop.Now, we summarize in these de�nitions both s
heduling problems addressed in this thesis:De�nition 1. Fine-grain s
heduling: is the pro
ess of determining the optimal assignment ofma
ro-tasks, de�ned by reservation tables, to time steps on a syn
hronous system, subje
t toresour
e 
onstraints.De�nition 2. Simultaneous s
heduling: is the pro
ess of determining the optimal assignmentof operations to time steps on a syn
hronous system, subje
t to data dependen
es and resour
e
onstraints.1.5 Obje
tivesIn this thesis, the s
heduling approa
hes, that we have designed and their 
orresponding te
h-niques whi
h are developed to solve part of s
heduling levels have multiple obje
tives:
• Exploit e�
iently more parallelism in the whole program parti
ularly within nested loops;by e�
iently partitioning the input des
ription and applying some te
hniques that haveproven their e�
ien
y in automati
 parallelization;
• Deal with the 
onstraints into higher levels in the HLS design pro
ess where a global viewis more 
lear than in lower levels;
• Formally and uniformly express 
onstraints (data dependen
e and resour
e 
onstraints);
• Bring some guarantee on the quality of the 
omputed s
hedules;
• As the de�ned problems are NP-hard, try to integrate exa
t methods into hierar
hi
als
heduling approa
hes, that 
ould identify 
ode fragments and s
hedule them optimally.Consequently deal with manageable 
ode size that don't rea
h these exa
t methods limits.1.6 ContributionsThis thesis presents some solutions to the resour
e-
onstrained s
heduling problems for HLS.Indeed, for e�
iently s
heduling programs, espe
ially with loops, �rst, we make easy the problemby organizing the s
heduling pro
ess in stepwise ways. We propose two approa
hes: Two-stepand Three-step approa
hes.First, a formalism to a

urately express resour
e 
onstraints for 
omplex tasks represented asreservation tables is proposed. Indeed, the resour
e 
onstraints are modeled by �dis-equations�and �nding an optimal s
hedule entails resolving a system of dis-equations. The proposed for-malism 
an be generalized to support problems of resour
e-
onstrained s
heduling even whentasks are data-dependent.For both approa
hes, we have proposed some solutions to 
ertain s
heduling steps. Indeed, forthe Three-step approa
h, we have fo
used on the �ne-grain s
heduling step. We have proposedseveral solutions for s
heduling ma
ro-tasks -de�ned by reservation tables-: 1) a greedy heuristi
similar to list-s
heduling and 2) two exa
t algorithms, the �rst one uses ILP te
hniques whilethe se
ond one is based on a bran
h-and-bound meta-algorithm using a variant of Dijkstra'salgorithm and Floyd's algorithm whi
h 
ompute a maximal weight path.9
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tionWithin the Two-step s
heduling approa
h, we have proposed some solutions to perform thesimultaneous s
heduling step. First, we use � dis-equations� as mathemati
al way to expressuniformly both 
onstraints: resour
e 
onstraints and data dependen
es. Afterward, we proposea novel s
heduling algorithm that �nds an optimal s
hedule by properly 
oloring the 
on�i
tgraph. In order to optimally 
oloring a graph and 
onversely to 
lassi
 graph 
oloring algorithms,we designed a new method so that 
oloring is done by means of a bran
h-and-bound that isa

elerated by a 
lique 
omputation algorithm. The 
lique 
omputation is 
omputed exa
tly aswell as greedly.The greedy heuristi
 and the ILP based algorithms are used as yardsti
ks for measuring thee�
ien
y and robustness of our main algorithmi
 
ontributions.1.7 Thesis' OverviewThe outline of the rest of the thesis is:
• In Chapter 2, we present some related work both for HLS 
onstrained s
heduling in generaland for s
heduling with reservation tables in parti
ular.
• We detail our general s
heduling approa
hes in Chapter 3. Indeed, in this 
hapter we givea detailed overview of our HLS tool and we explain and dis
uss the reasons that have ledus to design su
h hierar
hi
al s
heduling strategies. However, the rest of the thesis fo
usesjust on the �ne-grain and the simultaneous s
heduling problems.
• In Part I, our problem of s
heduling tasks de�ned by reservation tables is treated andmany solutions are proposed. First, the problem is formulated in Chapter 4, where wepresent, also, a simple greedy heuristi
 whi
h will be 
ompared with the proposed exa
talgorithms. The �rst out
ome of this resear
h, presented in Chapter 6, is an exa
t bran
h-and-bound algorithm, where the evaluation of ea
h potential solution is a

elerated thanksto variants of Floyd's and Dijkstra's algorithm. Chapter 5 presents several Integer LinearProgram formulations of the problem. In ea
h of these Chapters, we report at the end someexperimental results to highlight the bene�ts of ea
h solution. Lastly, in Chapter 7, we
ompare and analyze these experimental results and demonstrate the e�e
tiveness of theproposed methods. Furthermore, we give some guidelines for sele
ting the most e�e
tiveone a

ording to the 
ontext.
• The se
ond 
ontribution, des
ribed in Part II, is a solution to the simultaneous s
hedulingproblem. In this solution, the dis-equations -representing data dependen
es and resour
e
onstraints- are modeled by an interferen
e graph and the s
heduling problem is resolvedusing a novel graph 
oloring te
hnique. Some experiments and results are reported;
• Finally, in Chapter 9, general 
on
lusion is drawn as well as the questions to be addressedin future.
• Abbreviations and some de�nitions from digital systems and s
heduling literature are givenin the Glossary (page 94). A ba
kground on some used elementary graph algorithms isprovided in Appendix A. Finally, Appendix B des
ribes the ben
hmarks kit that is usedto evaluate the performan
es of the designed algorithms.

10



Chapter 2State of the ArtMu
h work has been done in the area of HLS. The three major HLS tasks �allo
ation, s
hedulingand binding� have been widely resear
hed in the last two de
ades. To get an exa
t survey onwhat has been done on s
heduling is a di�
ult task. This is due to the large number of targetimplementations and spe
i�
ity of 
ontexts. This 
hapter tries only to highlight some works re-lated to our 
ontributions. Indeed, in the following se
tion, some works related to several internalrepresentations used in HLS tools, are reported. This is followed by how 
onstraints are formal-ized to e�
iently 
arry out the s
heduling task. In Se
tion 2.2 some major sear
h te
hniquesinstrumented in s
heduling algorithms are exposed and dis
ussed. Some re
ent HLS tools aredes
ribed in Se
tion 2.3. During the des
ription we 
on
entrate on their s
heduling algorithms.In Se
tions 2.4 and 2.5 some spe
ial resear
hes are underlined: the usage of reservation table ins
heduling and the stepwise s
heduling approa
hes.2.1 Internal Representation and Constraints FormalismsThe behavioral des
ription and 
onstraints are the main inputs of the 
onstrained s
hedulingproblem. The formalism of the internal representation of the des
ription and the formalism usedto express the 
onstraints must be e�
iently designed to simplify the s
hedule 
omputation.2.1.1 Internal Representation FormalismsBefore all the a
tivities of an HLS system, the behavioral des
ription has to be represented intoan internal format. It is 
ommonly agreed that the intermediate design representation is 
loselylinked to the quality of the s
heduling results. The design of an internal representation is alsoimportant for the simpli�
ation of the engineering of the HLS te
hniques used to e�
iently 
arryout the HLS design a
tivities.The most popular internal representation of the input behavioral des
ription is the Controland Data Flow Graph CDFG [49℄. For this, most s
heduling te
hniques are graph-based models.In these models, basi
 tasks are gathered into a set of basi
 blo
ks linked by �ow-of-
ontrols.A �ow-of-
ontrol 
an be forward or ba
kward. A forward edge represents a move from a basi
blo
k to a su

essor blo
k, while a ba
kward edge represents a loop.However, there are some frameworks whi
h investigated more e�
ient internal representationsto get easily the HLS a
tivities spe
ially the s
heduling task [16, 60, 114℄.For instan
e, the intermediate representation used in the SPARK tool [55℄ 
onsists of basi
blo
ks en
apsulated in Hierar
hi
al Task Graphs (HTG) [50℄. It is an intermediate representation11



Chapter 2. State of the Artdesigned by the parallelization 
ommunity to ease the automation of transformations.An HTG is a dire
ted a
y
li
 graph that has three node types: single nodes (non-hierar
hi
alnodes), 
ompound nodes (nodes that have sub-nodes), and loop nodes. Operations that they areexe
uted 
on
urrently are aggregated together into single nodes 
alled statements. Statementsthat have no 
ontrol �ow between them are aggregated together into basi
 blo
ks. These latersare en
apsulated into 
ompound HTG nodes to form hierar
hi
al stru
tures su
h as if-then-elseblo
ks, swit
h-
ase blo
ks, loop nodes or a series of HTG nodes. Expressions are stored asabstra
t syntax trees [80℄ and ea
h operation expression is initially en
apsulated in a statementnode of its own.An important feature of HTG is that they are strongly 
onne
ted 
omponents i.e., for ea
h
ouple of nodes there are at least one path. Furthermore, ea
h 
omponent has a single entry anda single exit point. This property enables HTG to be used to en
apsulate 
omplex loops andirregular 
ode regions of 
ode, to regularize 
ode motion te
hniques and to redu
e the amountof pat
h-up 
ode.For 
ontrol-dominated systems, Bergamas
hi et al. developed a path-based representation [16℄.They extra
t from the CDFG a new representation where all possible paths are exhibited. Usingthis representation, they optimize the 
ontrol-step number by path (see Se
tion 2.2.5 for moredetails on path-based s
heduling).Huang et al. extended the path-based representation to a tree-based representation [60℄. Theyaimed at removing the restri
tion on the exe
ution order of operations before s
heduling imposedby the path-based representation. Instead of treating ea
h path individually as in path-basedrepresentation, all paths are kept in a tree.Re
ently, more symboli
 representation are used [94, 114℄, espe
ially when systems are 
ontroldominated. For instan
e, Radivojevi
 et al. [94℄ present an exa
t 
onditional resour
e sharinganalysis using a symboli
 representation formalism. Indeed, in this formulation, all of the s
hedul-ing 
onstraints (pre
eden
e, 
ontrol and resour
es ) are represented as boolean equations. AnOrdered Binary-De
ision Diagram (OBDD) 
orresponding to their interse
tion is built. Ea
hvariable in the OBDD des
ribes a parti
ular operation o

uring at a parti
ular time step, over a�nite set of time steps. A variable is true if the 
orresponding operation is s
heduled during the
orresponding time step in parti
ular solution. To allow 
ontrol-dependent s
heduling a set of'guard' variables is introdu
ed �true for one bran
h and false for the other�. Thus, every paththrough the CDFG is en
oded by a produ
t of 
orresponding guards. Their formalism allowsthe generation of a set of valid s
hedules via a 
ompressed representation based on the OBDDrepresentation.Yang et al. introdu
e another symboli
 representation based on automata representation [114℄.In this model, with a uniform formalism; both the design and 
onstraints (timing, resour
e,syn
hronization . . . ) are represented by a unique automaton based also on Binary De
isionDiagrams.Despite these attempts to �nd suitable internal representations, there is some agreementthat design representation is not a mature topi
. In our framework, we have avoided using theCDFG representation extra
ted from the sequential input des
ription. Indeed, we start our HLSa
tivities on an automati
 generated internal representation in whi
h we exhibit all inherentparallelism, we will return to this fa
t with more details in Chapter 3.2.1.2 Constraints FormalismsThe 
onstraints that a hardware system has to respe
t 
ome from di�erent domains: 
lassi
pre
eden
e/
ontrol 
onstraints, 
onstraints de�ning non-fun
tional requirements for possible im-12



Chapter 2. State of the Artplementations of the system su
h as performan
e, 
ost, timing, power 
onsumption, area ormemory requirements. The formalism used to express these various 
onstraints dire
tly a
tsupon the te
hnique used to 
ompute a s
hedule.Attempts have been made to de�ne these 
onstraints in a formal way using 
onstraint de-s
ription languages, su
h as the Design Constraints Des
ription Language DCDL [1℄. However,during the design pro
ess these 
onstraints are usually treated informally and most today's toolsdo not unify di�erent requirements in a single formalism.Re
ently, a more general formalism has been proposed by Ku
h
inski [68℄. He designed amodel for solving both s
heduling and resour
e assignment problems by using 
onstraint handlingmethods provided by the Constraint Programming paradigm CP. In this approa
h, a system ismodeled by a set of 
onstraints over variables. Ea
h variable 
ontains several integer values in itsdomain and therefore it is 
alled Finite Domain Variable (FDV). The FDV eventually 
an obtainan integer value that spe
i�es a solution. The 
onstraints are given as arithmeti
 expressions,equalities, inequalities and spe
ialized 
ombinatorial 
onstraints. They de�ne appli
ation's 
on-straints (i.e., operation pre
eden
e 
onstraints), resour
e 
onstraints, spe
ialized implementation
onstraints (e.g. pipelined resour
es) as well as general requirements su
h as performan
e or
ost. The model is solved using 
onstraint satisfa
tion/
onsisten
y te
hniques [14℄.In Chapter 4 we have tried to express all kind of resour
e 
onstraints by using dis-equations.In addition, in another 
ontribution we treat all 
onstraints uniformly and formally (see Chap-ter 8).2.2 S
heduling StrategiesS
heduling data-path operations into 
ontrol steps -time slots- is an important task. For obtain-ing an e�
ient design, a 
omplete strategy of s
heduling must 
onsider both timing and resour
es
onstraints as well as storage and inter
onne
tion 
osts. Furthermore, for a spe
i�
 systems italso must 
onsider power 
onsumption 
onstraints.As de�ned in the HLS design �ow, there are three dimensions along whi
h s
heduling algo-rithms may di�er:1. the obje
tive fun
tion and 
onstraints that algorithms 
onsider;2. the intera
tion between s
heduling and allo
ation;3. the resolution te
hnique that the s
heduling algorithm used.A

ording to this features many tentative taxonomy of s
heduling algorithms 
an be imagined.S
heduling algorithms 
an be broadly 
lassi�ed into time-
onstrained and resour
es-
onstraineds
heduling, based on the goal of the s
heduling problem as done by Govindarajan [52℄. Intime-
onstrained s
heduling �also 
alled as �xed-
ontrol-step approa
h� the fun
tional units(resour
es) number is minimized for a �xed number of 
ontrol steps. The video pro
essing andthe realtime appli
ations are the main area for su
h algorithms. While in resour
e-
onstraineds
heduling the 
ontrol-steps number is minimized for a given design 
ost (number of fun
tionaland storage units).�il
 [107℄ de�nes another taxonomy in whi
h he 
lassi�es su
h algorithms into transforma-tional or iterative/
onstru
tive algorithms.A transformational algorithms start with an initial s
hedule (e.g. maximally serial or max-imally parallel) and applies transformations to it in order to obtain other s
hedules. These13
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(a) (b) (c)Figure 2.1: (a) Data Flow Graph (b) ASAP S
hedule (
) ALAP S
hedulealgorithms di�er in how transformations are done, they 
an use exhaustive sear
h, bran
h-and-bound te
hnique or some heuristi
s. The other type of algorithms kind, the iterative/
onstru
tiveones, build up a s
hedule by adding operations one at a time till all the operations have beens
heduled. These algorithms di�er in how the next operation to be s
heduled is 
hosen and intowhi
h 
ontrol step it is put.Several te
hniques have been experimented then integrated in both a
ademi
 and 
ommer-
ial HLS systems, in the following survey of the 
onstrained s
heduling algorithms, we try to
lassify the s
heduling algorithms using the type of te
hnique that they use, starting fromthe most basi
 s
heduling te
hniques as list s
heduling and its variants [25, 32℄, to exa
t s
hedul-ing te
hniques from optimization area like integer linear programming [99℄ while reporting somemis
ellaneous te
hniques su
h as geneti
 [51℄ and simulated annealing te
hniques [92℄.First, let us give some 
ommon de�nitions. Let G = (V,A) be a data �ow graph, where V isthe set of operations to be s
heduled, and A is the set of dependen
es. Let n = |V | and m = |A|.Ea
h operation is labeled by oi, 1 ≤ i ≤ n. A pre
eden
e relation between operations oi and ojis denoted by oi ≺ oj, where oi is immediate prede
essor of oj . There are q types of resour
esavailable. A fun
tion unit of type r is denoted by Fr. A relation between operation oi and aresour
e Fr is denoted by oi ∈ Fr , if Fr 
an perform oi.2.2.1 Basi
 AlgorithmsIn what follows, we will brie�y des
ribe the prin
iple of some known s
heduling algorithms, whi
htake into a

ount only data dependen
es 
onstraints but no resour
e 
onstraints. The s
hedules
omputed by these te
hniques represent the earliest and the latest bounds within operationsin the DFG. Most 
onstrained-s
heduling algorithms that will be des
ribed later require thesebounds.2.2.1.1 ASAPA simple s
heme is to s
hedule operations �As Soon As Possible�. The ASAP algorithm startswith the highest nodes (that have no parents) in the DFG and assigns time steps in in
reasingorder as it pro
eeds downwards. It follows the simple rule that a su

essor node 
an be exe
uteonly after its parents has exe
uted. This algorithm 
learly gives the fastest s
hedule possible.In other words, it s
hedules in least number of 
ontrol steps but never takes into a

ount theresour
es 
onstraints. Figure-2.1( b) shows ASAP s
hedule for the DFG in Figure-2.1( a).14



Chapter 2. State of the Art2.2.1.2 ALAPThis approa
h is a re�nement of the ASAP s
heduling 
on
ept 
onditional postponement. Thepostponement o

urs whenever the operations 
on
urren
y is higher than the number of availablefun
tional units. The ALAP algorithm �As Late As Possible� works exa
tly in the same wayas ASAP algorithm ex
ept that it starts at the bottom of the DFG and pro
eeds upwards.This algorithm gives the slowest possible s
hedule for tasks. However, this doesn't ne
essarilyredu
e the number of fun
tional units used. Figure-2.1( 
) shows ASAP s
hedule for the DFGin �gure-2.1( a).The problem with ASAP and ALAP s
hedulers is that when there are limits on resour
eusage no priority is given to operations on 
riti
al paths. Hen
e, less 
riti
al operations 
an bes
heduled �rst and thus blo
k 
riti
al ones.2.2.2 Criti
al Path MethodThe minimum amount of 
y
les needed to s
hedule a basi
 blo
k 
orresponds to the maximumdepth of its data dependen
e graph. This longest-path is 
alled the 
riti
al path. The orderingof the operations in the 
riti
al path is implied by their data dependen
ies.Using ASAP and ALAP values, the 
riti
al path 
onsists of those operations that are mappedto the same 
y
le in the early as well as in the late s
heduling. The method takes three steps.First the 
riti
al path is 
omputed. The operations from this 
riti
al path are s
heduled. Theyrepresent a frame for adding the remaining operations. In the last step, the remaining operationsare inserted into the 
riti
al path. This is done for ea
h operation by testing the 
y
les betweenthe early and late dates with respe
t to data dependen
ies and resour
es 
on�i
ts. This maylengthen the s
hedule.The 
riti
al path method is not always able to 
reate an optimal s
hedule. This is due to thefa
t that subsequent subframes 
annot be merged together although this would be permitted bythe data dependen
ies and the resour
es use.2.2.3 List-s
hedulingContinuing along the s
ale of in
reasing 
omplexity, there are algorithms that use list-s
hedulingprin
iple. List based s
heduling is a generalization of the ASAP algorithm with the in
lusion ofresour
es 
onstraints. Due to both its simple prin
iple and low 
omplexity, it is the most usedapproa
h. Indeed, it is used in many old HLS systems [19, 74, 88℄ as well in re
ently developedones [37, 55℄.The algorithm builds a 
onstru
tive s
hedule, for ea
h step, the operations available to bes
heduled into that step are kept in a list - hen
e the name of list-s
heduling - whi
h is orderedby some priority fun
tion. Ea
h operation on the list is s
heduled if the resour
es it needs arestill free in that step; otherwise it is di�ered to the next step. S
heduling an operation to a
ontrol step makes other su

essor operations ready, whi
h will be added to the priority list.There are many priority fun
tions used. In the Sli
er system [19℄ the priority fun
tion is basedon in
reasing operation mobility [86℄. The mobility of an operation is de�ned as the di�eren
ebetween ASAP and ALAP values of an operation. This would ensure that operations with largemobility are di�ered to later 
ontrol steps be
ause the number of 
ontrol steps into whi
h they
ould be is large.Other systems like, ELF [48℄, use the operation urgen
y as priority fun
tion. The urgen
yof an operation is de�ned as the minimum number of 
ontrol steps from the bottom that thisoperation 
an be s
heduled before a timing 
onstraint is violated.15



Chapter 2. State of the ArtMore 
omplex priority fun
tions are developed, for instan
e, in the MAHA system [88℄, theyuse the information from the 
riti
al path. Indeed, the operations on 
riti
al paths are s
heduled�rst (and a resour
e binding is done) after what the other operations are s
heduled one at atime a

ording to the least mobility. This is the same approa
h as in the 
riti
al path method.Indeed, the 
riti
al path method is a list s
heduling method in whi
h the priority fun
tion relieson belonging to the 
riti
al path.The time and spa
e 
omplexity for this approa
h is slightly more be
ause several lists have tobe maintained dynami
ally. For this reason, Jain et al. [63℄ have designed a stati
 list s
heduling.This approa
h starts by 
reating a single large list before starting. It uses the ASAP and ALAPalgorithms to obtain the Least and the Greatest possible Control Step assignments (LCS andGCS) for ea
h operation. Then, the algorithm sorts all the operations in as
ending order usingthe GCS labels as the primary key then sorts ea
h operation set with the same GCS labels, indes
ending order with the LCS labels as the se
ondary key.As it 
an be seen, the list-s
heduler su

ess depends mainly on the priority fun
tion used.2.2.4 For
e-Dire
ted S
heduling (FDS)Based on probability distribution te
hnique, it is a very popular s
heduling heuristi
 [89℄. Itis originally designed for time-
onstrained s
heduling. Thus, the main goal is to redu
e thetotal number of resour
es used. This algorithm a
hieves its goal by uniformly distributing theoperations of the same type over the available 
ontrol steps. By balan
ing the 
on
urren
y ofoperations, it ensures that ea
h stru
tural unit has high utilization whi
h in turn de
reases thetotal number of units required.A simple outline of this algorithm :1. Determine time frame: this step 
onsists of determining the time frames [Si, Li] of ea
hoperation oi ∈ V , where Si and Li are obtained by the ASAP and ALAP algorithms. Let
piτ denote the probability that oi will be s
heduled into 
ontrol step τ ∈ [Si, Li]. A usefulheuristi
 is to assume a uniform probability distribution i.e., piτ = 1

1+Li−Si
;2. Create distribution graph: The next step is to 
reate a distribution graph, by adding theprobabilities of ea
h type of operation r for ea
h 
ontrol step τ . The resulting distributiongraphs indi
ate the 
on
urren
y of similar operation. P (r, τ) =

∑

oi∈Fr
piτ , where the sumis over all operations of a given type;3. For
e 
al
ulation: The �nal step is to 
al
ulate the for
e F asso
iated with everyfeasible step τ assignment of ea
h operation oi. It temporarily redu
es the operation's timeframe to the sele
ted step τ :

F(oi, τ) = P (r, τ) −
Li
∑

t=Si

pr,t

1 + Li − Siwhere r is the type of the operation oi. In other words, the for
e asso
iated with thetentative assignment of an operation oi to step τ is equal to the di�eren
e between thedistribution value in that step and the average of the distribution values for the stepsbounded by the operation's initial time frame. The for
es for all prede
essors and su

essors(indire
t for
es) of the 
urrent operation must be 
al
ulated. The total for
e is the sum ofthe dire
t and indire
t for
es. 16



Chapter 2. State of the Art4. S
hedule on
e all the for
es are 
al
ulated, the operation-
ontrol step pair with largestnegative for
e (or least positive for
e) is s
heduled. Then P and F values are updated andthe entire pro
ess is reitered until all operations are s
heduled.The 
omplexity of the FDS algorithm is O(c.n2) where c is the 
ontrol-steps number and nthe operations number.Later the authors generalized the approa
h [90℄ to treat many other problems. Among theseproblems: s
heduling under resour
e 
onstraints, minimizing storage and inter
onne
tion 
ost.Indeed, the for
e-dire
ted list s
heduling (FDLS) algorithm that they designed 
ombines the
hara
teristi
s and strengths of the list s
heduling algorithm where for
e is used as a priorityfun
tion. Another improvement has been done by Verhaegh et al. [105℄, they have 
hanged theFDS strategy by pruning one 
ontrol step from its mobility range and postponing the de
isionto a later stage.The for
e-dire
ted s
heduling algorithm never ba
ktra
ks on its de
isions and hen
e is 
las-si�ed under 
onstru
tive algorithms.2.2.5 Path-Based S
hedulingAnother 
ommonly used algorithm is the path-based s
heduling (PBS) designed by Camponaso [23℄and used in di�erent 
ontext by many HLS systems [16, 15℄. The PBS is a 
ontrol-�ow-basedalgorithm whi
h fo
uses on exploiting the 
ontrol dependen
ies among operations. It analyzesall paths in the CFG and s
hedules ea
h path independently, thus minimizing the number of
ontrol steps in ea
h path. Paths in the CFG arise from 
onditional operations and loops.The s
heduling is based on solving 
onstraints on the paths. These 
onstraints are generalrestri
tions on the s
hedule, and may be due to resour
es, delays, or any other 
ost measure.Note that the PBS algorithm is not 
on
erned about parallelism or 
haining. The only elementsin the algorithm formulation are the 
ontrol-�ow paths and the 
onstraints.Constraints are represented as intervals in the 
ontrol-�ow paths and the problem of �ndingthe minimum number of 
ontrol steps in ea
h path is the same as �nding the minimum numberof 
uts 
rossing all 
onstraint intervals in all paths whi
h is done using exa
t 
lique-
overingte
hniques. The minimum number of 
ontrol steps is obtained for ea
h path, not just the 
riti
alpath as in Data-�ow-based s
hedulers. Minimizing the number of 
ontrol steps per path maynot result in the overall minimum number of states.In this approa
h, 
onstraints formulation is 
ompletely general. In fa
t, it 
an model re-sour
e limitations, delay targets, or any other restri
tions that should 
ause two operations to bes
heduled in di�erent 
ontrol steps. These restri
tions are mapped onto the CFG as 
onstraintintervals and treated in exa
tly the same way by the s
heduler.Furthermore, the path-based approa
h 
an determine mutual ex
lusion (whether two oper-ations 
an share the same hardware resour
e) in a general way by looking at the 
ontrol pathsand at the a
tual 
onditions 
ontrolling the exe
ution of the operations.However, the PBS has some problems: Firstly, its 
omplexity is proportional to the number of
ontrol paths, whi
h 
an grow exponentially with the number of 
onditional operations and this
omplexity be
ame 
learly una

eptable for large designs. Se
ondly, �xing the exe
ution orderlimits parallelism; another limitation of PBS is that it does not 
hange the order of the operationsin a path. The 
onstraint intervals are 
reated for a �xed ordering of operations (usually thesame order as in the input language des
ription), whi
h the s
heduler is not allowed to 
hange. Inaddition, optimizing ea
h path independently may in
rease hardware; indeed, in order to optimizethe number of 
ontrol steps in ea
h path, path-based s
heduling (and subsequent allo
ation) may17
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reate a more 
omplex FSM and possibly more multiplexers and 
ontrol signals whi
hmay result in larger area.To avoid some of these disadvantages, Bergamas
hi et al. have designed an adaptative s
hedulingalgorithm in whi
h they 
ombine data-�ow and 
ontrol-�ow te
hniques by instrumenting thepath-based algorithm [17℄. Their improvements 
onsist in 1) reordering operations in the CFGin order to in
rease parallelism and maximize 
onstraint overlapping 2) redu
ing the number of
ontrol paths by 
ollapsing all 
onditional bran
hes when it is possible 3) If the number of pathsis still too large (after 
ollapsing), it applies a 
ontrol partitioning algorithm whi
h redu
es thenumber of paths by partitioning the CFG.All the above s
hemes are 
onstru
tive algorithms in the sense where the sele
tion and �xingof operations in the 
ontrol step o

urs one by one until all the operations are �xed. Due tola
k of a look-ahead s
heme and the la
k of 
ompromises between early and late de
isions, these
onstru
tive algorithms do not guarantee the solution quality. One 
an 
ope with this weaknessby iteratively res
heduling some of the operations in a given s
hedule. For example, Park andKyung [87℄ proposed an approa
h whi
h is based on the paradigm originally proposed for thegraph-bise
tion problem. In this near optimal approa
h, an initial s
hedule is obtained using anys
heduling algorithm. At ea
h iteration, a new s
hedule is obtained by res
heduling a sequen
eof operations that maximally redu
es the s
hedule 
ost. If no improvement is attainable, thepro
ess halts.2.2.6 Exa
t AlgorithmsPrevious algorithms are heuristi
 methods, to get a globally optimal solution one 
an rely on someexa
t sear
h te
hniques as Integer Linear Programming [99℄ or te
hniques based on 
onstraintprogramming paradigm [14℄.2.2.6.1 Integer Linear ProgrammingSome of the best known exa
t s
heduling te
hniques are based on Integer Linear Programming(ILP) models. A

ording to HLS system 
ontexts and the aimed obje
tives, many ILP formula-tions are proposed in the literature [72, 61, 47, 71, 27, 112, 65℄.In a �rst attempt, Lee et al. [72℄, in their ILPS system, using an ILP formulation, triedto �nd an optimal s
hedule via a bran
h-and-bound sear
h algorithm. This algorithm involvessome amount of ba
ktra
king. They aimed a time-
onstrained algorithm. First the algorithm
al
ulates the mobility range for ea
h operation Moboi
= {Stepj | Si ≤ j ≤ Li}, where Si and Liare the ASAP and ALAP values respe
tively.Let Cr be the 
ost of a resour
e of type r and Mr be an integer variable denoting the numberof resour
es of type r. Finally, let xiτ be 0/1 binary variable where xiτ = 1 if oi is s
heduled into
ontrol step τ ; otherwise, xiτ = 0. Assuming a one-
y
le propagation delay for ea
h operationand a non-pipelined exe
ution, the feasible s
heduling problem 
an be stated as follows:

18
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∑

oi∈Fr

xiτ ≤Mr 1 ≤ τ ≤ s, 1 ≤ r ≤ q; (2.1)
Li
∑

τ=Si

xiτ = 1 1 ≤ i ≤ n; (2.2)
(

Li
∑

τ=Si

τ ∗ xiτ −

Lj
∑

τ=Sj

τ ∗ xjτ ) ≤ −1 ∀oi ≺ oj . (2.3)The �rst 
onstraints state that any s
hedule should respe
t the resour
e 
onstraints i.e., nos
hedule should have a 
ontrol step 
ontaining more than Mr resour
es of type r. The se
ond
onstraints guarantee that ea
h operation oi is exe
uted on
e between Si and Li. The third
onstraint ensures that pre
eden
e 
onstraints of the data �ow graph are preserved. In thisformulation Mr are unknown and the whole number of 
ontrol steps Cstep is �xed. Thus, theonly obje
tive fun
tion is min
∑q

r=1 Cr ∗Mr.Another feasible s
heduling problem using ILP has been formulated by Hwang et al. [61℄.They aimed both resour
e and time 
onstrained algorithm.They use the same formulation as the above one but the obje
tive fun
tion that they de�nedis a 
ombination of time-
onstraint obje
tive fun
tion min
∑q

r=1 cr ∗Mr and resour
e-
onstraintobje
tive fun
tion min Cstep. This approa
h allows user to 
ontrol the resour
e-time trade-o�. The ILP approa
h has made HLS problems better understood be
ause the strength of ILPformalism is that it 
an express in a uniform way any kind of 
onstraints and system require-ments. Indeed more stru
tured and detailed, but more 
omplex, ILP-formulations are proposedby Gebotys et al. [47℄ and Zhang [117℄ in whi
h they resolved the 
ombined resour
e-
onstraineds
heduling and register allo
ation problem. However, the algorithm exe
ution time grows expo-nentially with the problem size represented by both the number of variables and the number ofinequalities.In pra
ti
e, the ILP approa
h is appli
able only to small problems. In addition, general ILPsmay be di�
ult to solve due to weekness of bounds and speed of the algorithm of resolution.Many fa
ts make a general ILP problem as an NP-
omplete one [104℄. In fa
t, the simpleformulation above in
reases rapidly, in term of number of unknown, with the number of 
ontrolsteps. Indeed for unit in
rease in the number of 
ontrol steps we will have n additional binaryvariables. Furthermore the usage of the pre
eden
e 
onstraints 2.3 entails dealing with large
oe�
ients �values of τ� whi
h generaly makes the ILP resolution pro
ess NP-
omplete in thebroad sense [58℄. Thus, optimal solutions 
an be found - albeit at the 
ost of high 
ompilationtimes. Nevertheless ILP-formulation 
an be tightened by more understanding the polyhedratheory [99℄. This 
an be done via many fa
ts:
• designing a stru
tured formulation;
• identifying of redundant serial 
onstraints;
• insertion of valid inequalities.These fa
ts are studied and integrated in SILP2 tool designed by Zhang [117℄. More improve-ments in exe
ution times has been observed but this 
omputation time remains high.2SILP: S
heduling and Allo
ation with Integer Linear Programming.19
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ently Kästner et al. [65℄ have investigated approximations based on relaxation of theintegrality 
onstraint prin
iple [83℄. Indeed for large input programs, they do the relaxation inhierar
hi
al way to guarantee the sub-optimality of the solution.2.2.6.2 Constraint Programming Te
hniqueA newer te
hnique than ILP, the Constraint Logi
 Programming (CLP) model o�ers exa
t me
h-anisms �
onstraints handling methods� to resolve general optimization problems [14℄.The CLP has already been applied in the hardware design automation area, in parti
ular inresour
es assignment and s
heduling as well as in veri�
ation and test.For instan
e, Ku
h
inski [68℄ designs a model for solving both s
heduling and resour
e as-signment problems by using 
onstraint handling methods provided by this paradigm. In thisapproa
h, a system is modeled by a set of �nite domain 
onstraints over variables. Finite do-main 
onstraints are used to spe
ify di�erent properties and restri
tions imposed on the spe
i�eddesign. The model is solved by using 
onstraint satisfa
tion/
onsisten
y te
hniques.First, Let us introdu
e what is a 
onstraint satisfa
tion problem (CSP) for �nite domain
onstraints and then present the formulation of the digital system modeling in terms of these
onstraints. A CSP is a 3-tuple S = (V,D,C) where:
V = {x1, x2, . . . , xn} is a �nite set of variables, also 
alled Finite Domain Variables (FDV),
D = {D1,D2, . . . ,Dn} is a �nite set of domains, and
C is a set of 
onstraints restri
ting the values that the variables 
an simultaneously take.For ea
h variable xi , a �nite set Di ∈ P(Z) of possible values 
onstitutes its domain, 
alled a�nite domain (FD). For example, the spe
i�
ation T :: {1..10} de�nes FDV T , whi
h 
an havevalues 1, 2, . . . and 10 while the spe
i�
ation R :: {23, 56} de�nes FDV R, whi
h 
an have a valueof either 23 or 56.A 
onstraint c(x1, x2, . . . , xn) ∈ C between variables of V is a subset of the 
artesian produ
t

D1×D2× . . .×Dn that spe
i�es whi
h values of the variables are 
ompatible with ea
h other. Inpra
ti
e, the 
onstraints are de�ned by equations, inequalities, global 
onstraints, or programs.For example, an inequality T1 + D1 ≤ T2 de�nes a 
onstraint on three FDVs T1, D1 and T2.Ea
h 
onstraint 
an be in one of three states: satis�ed, not satis�ed or in a state that 
annotyet determine whether the 
onstraint is satis�ed or not �don't know state�. If the 
onstraintis in the �don't know state� the 
onsisten
y enfor
ement for this 
onstraint 
an be applied. Aparti
ular program that implements a 
onsisten
y method is 
alled a propagator sin
e it prop-agates 
hanges in FDVs to domains of all FDVs, involved in a given 
onstraint, by narrowingtheir domains. Combinatorial 
onstraints are usually implemented using several propagators that
onsider di�erent aspe
ts of their 
onsisten
y. Baptiste [9℄ has involved the CLP by des
ribingand evaluating new resour
e 
onstraint propagation algorithms for several 
lasses of s
hedulingproblem.A solution s to a CSP S, denoted by S |= s, is an assignment to all variables V, su
hthat it satis�es all the 
onstraints. There usually exists many solutions that satisfy the de�ned
onstraints. They have di�erent qualities whi
h are de�ned by related 
ost fun
tions. In mostdesign problems, we are interested in optimal solutions that minimize or maximize this 
ostfun
tion. An optimal solution s to a CSP S is a solution S |= s that minimizes or maximizesa value v assigned to a sele
ted variable xi . The standard method to �nd a solution to aCSP is to systemati
ally assign FDVs with values from their domains. After ea
h assignmentthe 
onsisten
y of all 
onstraints that 
ontain 
hanged FDVs is 
arried out. The pro
ess �nisheswhen ea
h variable has a value. If during the assignment an empty domain for a FDV is dete
ted20



Chapter 2. State of the Artthe pro
ess fails and ba
ktra
king is initiated. This is usually implemented as a depth-�rst-sear
hmethod and the optimization uses some kind of bran
h-and-bound algorithm.In the 
ase of 
onstraint-driven s
heduling, the CLP provides a tool to model uniformly anykind of 
onstraints. First, all required FD variables have to be de�ned. Ku
h
inski, for ea
hoperation, oi, de�nes three FDVs, Ti , Di and Ri whi
h represent the operation start time, theoperation's delay and the resour
e used for its exe
ution, respe
tively. For instan
e the following
onstraints are modeled as:
• pre
eden
e 
onstraints: for ea
h oi ≺ oj: impose the 
onstraint Ti + Di ≤ Tj ;
• resour
e sharing: As Ri spe
i�es possible implementation resour
es for a given operation.The resour
e 
onstraint prohibits simultaneous use of resour
es and 
an be spe
i�ed usingdisjun
tive 
onstraints like:for ea
h oi and oj using the same resour
e: impose Ti+Di ≤ Tj∨Tj +Dj ≤ Ti∨Ri 6= RjIn this way, all kind of 
onstraints are modeled. S
heduling 
an try to optimize a given 
ostfun
tion su
h as the time steps number, resour
e 
ost, power 
onsumption, register/memoryusage or a 
ombination of these. The 
ost fun
tion is de�ned by FDV that is 
onstrained torepresent a given 
ost. For example, a 
ost fun
tion 
an be de�ned as:For ea
h oi: impose Ei = Ti + Di impose max (EndT ime, [E1, . . . , En]).Minimization of the domain variable EndT ime produ
es the shortest s
hedule satisfying givenresour
e 
onstraints. Optimal solutions are found using a method similar to a bran
h-and-boundalgorithm. This method intera
tively applies the depth-�rst-sear
h algorithm.As in the ILP te
hnique, for large problems the CLP requires usually a large amount of
omputation time to �nd the optimal solution sin
e the sear
h spa
e be
omes huge. Therefore,partial sear
h methods are proposed whi
h unlike depth-�rst-sear
h do not sear
h systemati
allythrough all possible solutions but ba
ktra
k earlier if 
ertain 
onditions are ful�lled.2.2.7 Mis
ellaneous Te
hniquesTo 
ope with the gap between the very expensive te
hniques in term of 
omputation time andthe graph-based methods whi
h are enable to give guarantees on the 
omputed s
hedule quality,some s
holars have proposed heuristi
s that use modern sear
h te
hniques su
h as simulatedannealing, tabu and geneti
 based algorithms.2.2.7.1 Simulated Annealing Based AlgorithmAnother type of transformational feasible s
heduler 
an use the simulated annealing te
hnique.Kirkpatri
k et al. [66℄ give some idea about how to instrument this te
hnique in optimization.Indeed, the simulated annealing te
hnique 
an be used for 
ombinatorial optimization problemsspe
i�ed by a �nite set of 
on�gurations and a 
ost fun
tion de�ned on all the 
on�gurations. Thealgorithm randomly generates a new 
on�guration whi
h is then a

epted or reje
ted a

ordingto a random a

eptan
e rule governed by the parameter analogous to temperature in the physi
alannealing pro
ess [92℄.For instan
e the algorithm of Badia et al. [7℄ starts on an initial 
on�guration obtained byapplying ASAP strategy. The Cost fun
tion evaluates how good a 
on�guration is. It is de�nedas:

Cost(X) = α Area(X) + β T ime(X)21



Chapter 2. State of the Artwhere Area(X) is the estimated total area of the used resour
es and T ime(X) is the totalexe
ution time 
orresponding to the given 
on�guration X. The tuning of the algorithm isperformed by taking di�erent values for α and β. For example, if α≪ β the algorithm is 
loserto resour
e-
onstrained s
heduler (sin
e solutions e�
ient in speed be
ome more important)while α≫ β makes the algorithm more time-
onstrained.At the beginning, a high temperature Tinitial is given in order to a

ept most new 
on�gura-tions even if they in
rease the 
ost. Given a 
on�guration X, a new 
on�guration Y is generatedeither by insertion or removal of a register, s
heduling an operation to next or previous 
on-trol step or by shrinking/expanding a 
ontrol step. Although simulated annealing is robust, itrequires long exe
ution time.2.2.7.2 Geneti
 AlgorithmGeneti
 algorithms, as optimization ones, have been early and widely used in HLS. Wehn andal. [82℄ and Heijligers et al. [57℄ have instrumented the geneti
 paradigm (GP) to resolve boths
heduling and allo
ation problems. Dhodhi et al. [35℄ use also the GP to resolve the 
ir
uit areaoptimization problem. Yang et al. in [115℄ use a geneti
 algorithm and draw Pareto diagramsfor s
heduling under power 
onstraints, the algorithm has been extended to address run-times
heduling on System-on-
hips (SoCs) [116℄.For instan
e, Heijligers et al. [57℄, given a data-�ow graph (pre
eden
e 
onstraints) and aresour
e 
onstraints, instrument a list-s
heduler into a geneti
 algorithm. Their idea is basedon the following fa
t: the advantage of a list s
heduler is that the s
hedules 
onstru
ted alwayssatisfy the pre
eden
e 
onstraints and the resour
e 
onstraints however, the disadvantage is thein�uen
e of the priority fun
tion on the quality of its results. To over
ome this disadvantage ageneti
 algorithm 
an be used to sear
h for a good priority fun
tion to dire
t a list s
heduler.Inside their geneti
 algorithm, the en
oding of a s
hedule 
onsists of a permutation of operationswhi
h 
an be used as a priority list for the list s
heduler. The 
ompletion time of the resultings
hedule is used to 
al
ulate the �tness -fun
tion used to distinguish between better and worseindividuals - of the individual.Initially a population with individuals is 
onstru
ted, ea
h 
ontaining a random permuta-tion. S
hedules are 
onstru
ted by de
oding permutations into priority list and applying a lists
heduling algorithm. The geneti
 algorithm sele
ts individuals for re-
ombination using sto
has-ti
 sampling with repla
ement. Using this strategy, �t individuals have higher probability to besele
ted than non-�t individuals. A lower bound of the 
ompletion time using the pre
eden
erelations and resour
es 
onstraints information is 
al
ulated using a predi
tion method. Thegeneti
 algorithm stops if it meets the lower time bound or if the number of iteration is 100.More spe
ial attentions have been paid to improve the quality of the population for more detailssee [57℄.Geneti
 algorithms are probabilisti
 sear
h algorithms, thus the 
omputed s
hedules are with-out guarantee that they rea
h the optimum.2.3 High-Level Synthesis ToolsThere are two types of HLS tool: data-�ow oriented tools and 
ontrol-�ow oriented ones. Thoughthe later tools are most general be
ause they are able to deal with data-�ows too.Most existing HLS tools are spe
ialized for a restri
ted 
lass of appli
ations. In the domainof signal pro
essing (DSP), numerous ar
hite
tural synthesis tools are des
ribed in a varietyof publi
ations. Among them, we quote MAHA [88℄, HAL [89℄, EASY [101℄, MIMOLA [75℄,22



Chapter 2. State of the ArtCADDY [56℄, OSYS [62℄ and Phideo [106℄. For more generi
 and �exible ar
hite
tures, othertools are developed: Ami
al [67℄ and SPARK [55℄. For more spe
ialized ar
hite
tures, like systoli
ar
hite
ture we quote MMAlpha [97℄. In the �eld of 
ompute-intensive embedded systems, wequote LooPo [38℄ and Syntol3.Many tools are developed in general for purely data �ow designs, here, we just mention somere
ent ones while fo
using on the stru
ture of their s
hedulers.2.3.1 GAUTGAUT is a pipeline ar
hite
tural synthesis tool dedi
ated to signal pro
essing appli
ations de-veloped jointly by LESTER and LASTI laboratories at Lannion and Rennes universities respe
-tively [74℄.GAUT generates a stru
tural and fun
tional VHDL des
ription of a dedi
ated ar
hite
ture.The designer provides as input: a behavioral des
ription of the 
ir
uit, a des
ription of thelibrary of operators, a maximal laten
y and a 
y
le frequen
y. The library models must havebeen assigned with their physi
al 
hara
teristi
s. GAUT uses these 
hara
teristi
s to 
omputethe 
ost of the operator assignment. A generi
 library 
an be parametered by time and 
ost tobe
ome a te
hnology driven library.In addition, GAUT may 
onsider syn
hronization 
onstraints; hen
e the s
heduler takes intoa

ount the order in whi
h data are ex
hanged with the system and at what time this is possible.GAUT's s
heduler is a list s
heduling algorithm with mobility as a priority fun
tion whi
h alsodepends upon the availability of allo
ated operators. The operations are s
heduled as soon as theoperator is available. The optimal assignment of a 
andidate operation on an available operatorresponds to the minimization of inter
onne
tions between operators. The pipeline 
ontrol ofea
h operator is managed by a 
omplementary priority on assignment. When an operator isallo
ated, but as yet not used, its use is primarily inferior to that of an operator already utilized.Furthermore, if a 
andidate operation has a positive mobility, then the s
heduling is delayed.Finally, if an operator allo
ated from the beginning of the period is never used during the entireperiod, its allo
ation interval is delayed for one 
lo
k period.GAUT is also a user guided synthesis tool and it instruments memory optimization te
hniquesbut it requires prede�ned timing 
hara
teristi
s and it uses Loop �attening.2.3.2 SPARKSPARK4 is an HLS resear
h tool developed at the university of California at Irvine. It takes abehavioral des
ription in ANSI-C as input and produ
es synthetizable RTL VHDL.Gupta et al. [55℄ use parallelizing 
ompiler te
hnology, as we do, developed previously toenhan
e instru
tion-level parallelism and re-instrument it for HLS by in
orporating ideas ofmutual ex
lusivity of operations, resour
e sharing and hardware 
ost models.The intermediate representation used in SPARK 
onsists of basi
 blo
ks en
apsulated inHierar
hi
al Task Graphs (HTG). To exhibit more parallelism and allow �nding a good s
hedule,they use a tool transformations toolbox. The te
hniques implemented are:
• 
ode motion (CM): Two 
ode motion te
hniques are used: per
olation s
heduling and trail-blazing. Per
olation S
heduling (PS) was developed as a te
hnique to target 
ode to parallel3An HLS resear
h tool, 
urrently develop by CompSys, an INRIA proje
t, Fran
e, team at LIP laboratoryhttp://www.ens-lyon.fr/LIP/COMPSYS/4Available at http://www.
e
s.i
i.edu/~spark 23
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hite
tures su
h as VLIW and ve
tor pro
essors. It 
ompiles programs into parallel 
odeby systemati
ally applying semanti
 preserving transformations. These transformationshave been proven to be 
omplete with respe
t to the set of all possible lo
al, dependen
y-preserving transformations on program trees. However, to move an operation from a nodeA to node B, per
olation requires a visit to ea
h node on every 
ontrol path from A to B.The in
remental nature of these linear operation moves 
auses a 
ode explosion by unne
-essarily dupli
ating operations and inserting 
opy operations. Trailblazing was proposedto 
ir
umvent these problems. Trailblazing is a 
ode motion te
hnique that exploits thehierar
hi
al stru
turing of the input des
ription's operations and global information in theHTG to make non-in
remental operation moves without visiting every operation that isbypassed. At the lowest level, trailblazing is able to perform the same �ne-grained trans-formations as per
olation. However, at higher levels, trailblazing is able to move operationsa
ross large blo
ks of 
ode.
• dynami
 renaming: As it is well known there are four types of data dependen
ies: �ow de-penden
e(variable read after write), anti-dependen
e (write after read), output-dependen
e(write after write) and input-dependen
e (read after read). Only �ow dependen
ies are im-portant for the semanti
 preserving transformation sin
e the other ones express memoryreuse and 
an be dis
arded. Thus, non-�ow dependen
ies that prevent 
ode motion 
anoften be resolved by dynami
 renaming.
• 
ommon sub-expression elimination (CSE): this transformation attempts to dete
t repeat-ing subexpressions in a pie
e of 
ode, stores them in variables and reuses the variablewhenever the sub-expression o

urs subsequently.
• spe
ulative 
ode motion: Operations may be moved out of 
onditionals and exe
uted spe
u-latively, or operations before 
onditionals may be moved into subsequent 
onditional blo
ksand exe
uted 
onditionally by reverse spe
ulation, or an operation from after the 
ondi-tional blo
k may be dupli
ated up into pre
eding 
onditional bran
hes and exe
uted 
ondi-tionally by 
onditional spe
ulation. Operations 
an also be moved a
ross entire hierar
hi
alblo
ks, su
h as if-then-else blo
ks or loops.SPARK's s
heduler is also a priority-based list s
heduling heuristi
: the inputs to this heuris-ti
 are the uns
heduled HTGs of the design and the resour
e 
onstraints list. Additionally,the designer may spe
ify a list of allowed 
ode motions: spe
ulation, 
onditional spe
ulation,whether dynami
 variable renaming is allowed, and the 
ode motion te
hnique (per
olation ortrailblazing) for moving the operations.The heuristi
 starts by assigning a priority to ea
h operation in the input des
ription basedon the length of the dependen
y 
hain of operations that depend on it. S
heduling is done ones
heduling step at a time while traversing the basi
 blo
ks in the design's HTG. Within a basi
blo
k, ea
h s
heduling step 
orresponds to a statement HTG node. At ea
h s
heduling step inthe basi
 blo
k, for ea
h resour
e in the resour
e list, a list of available operations is 
olle
ted.Available operations is a list of operations that 
an be s
heduled on the given resour
e atthe 
urrent s
heduling step. Initially, all uns
heduled operations that 
an be s
heduled on the
urrent resour
e type are added to the available operations list. Subsequently, operations whosedata dependen
ies are not satis�ed and 
annot be satis�ed by dynami
 variable renaming, andoperations that 
annot be moved in the HTG to s
hedule them onto the 
urrent s
heduling stepusing the allowed 
ode motions, are removed from the available list. The remaining operationsare assigned a 
ost based on the length of the dependen
y 
hain leading up to the operation.24



Chapter 2. State of the ArtThe s
heduling heuristi
 then pi
ks the operation with the lowest 
ost from the availableoperations list. The trailblazing is then instru
ted to s
hedule this operation at the 
urrents
heduling step. This is repeated for all resour
es in ea
h s
heduling step in the HTG. On
ethe 
hosen operation has been s
heduled, the dynami
 CSE heuristi
 �nds and eliminates 
om-mon subexpressions in the operations in the available list, if the new position of the s
heduledoperation permits.It is reported that in e�e
t, this s
heduler improves the performan
es of the �nal netlist andredu
es by up to 50% the total delay through the 
ir
uit. However, despite all these sophisti
atedheuristi
s, no guarantee 
an be given on the quality of the 
omputed s
hedule. This is mainlydue to the list s
heduling approa
h whi
h performs only lo
al 
hoi
es.The SPARK tool exploits the parallelism into and through basi
 blo
ks, but it doesn't 
onsiderthe inherent parallelism through perfe
tly or imperfe
tly nested loops while su
h parallelism iswidely present in many high-throughput digital signal pro
essor appli
ations.2.3.3 UghUser Guided HLS (Ugh) is another HLS resear
h tool. It is a part of the Disydent proje
t5. Thisframework [6℄ is dedi
ated to SoC platform based design for shared memory Multiple Instru
tionsMultiple Data (MIMD) ar
hite
tures.Ugh's designers introdu
ed more intera
tions between the tool and the user. They sear
h fora best solution in a spa
e of solutions obtained by repeating a list-s
heduling heuristi
.The �rst transformation done by Disydent aims at in
reasing the performan
e: the appli
a-tion must be parallelized and/or pipelined. Indeed, the Disydent approa
h advo
ates the MIMDsolution using Kahn Pro
ess Networks modeling [64℄.Ugh's inputs are a restri
ted C program, a Draft Data-Path (DDP) and a 
lo
k frequen
y. Itprodu
es both a synthetizable VHDL RTL model and a 
y
le a

urate simulation model. Indeed,to guide the tool the designer must de�ne a DDP whi
h is a simpli�ed stru
tural des
ription of thetarget data-path whi
h respe
ts 
oarsely the resour
e 
onstraints. The DDP is a dire
ted graphwhose nodes are fun
tional or memorization operators and whose ar
s indi
ate the authorizeddata�ow among the nodes. Ea
h C variable has an asso
iated register in the DDP.The synthesis pro
ess is split into 3 main steps: �rst, the 
oarse grain s
heduling (CGS)is run, resulting in allo
ation and translation of C statements into RTL instru
tions, then themapping is performed to get the physi
al data-path and temporal 
hara
teristi
s. Finally a �negrain s
heduling (FGS) is run, resulting in the res
heduling of the RTL instru
tions taking as
onstraints the annotated timing delays of the previous data-path:1. In CGS, 
oarse means that the operations are only partially ordered. The algorithm usedin CGS must 
hoose a DDP sub-graph for ea
h C statement and then 
oarsely orderthem. These 
hoi
es and this ordering are done by maximizing the intrinsi
 parallelismwhile trying to redu
e the data-path area. The degrees of freedom for redu
ing the areaare the minimization of the input numbers of the added multiplexers and the binding ofoperations of the same type. Its temporal 
onstraints are: multipliers need 2 
y
les, addersand subtra
ters need 1 
y
le, and all other fun
tional 
ells have negligible propagationtimes. This algorithm is a list s
heduling algorithm [37℄. It produ
es a 
oarse �nite statema
hine.5A Digital System Design Environment, an open sour
e framework developed at the university Pierre et MarieCurie, Paris, Fran
e. Available at http://www-asim.lip6.fr/re
her
he/disydent/25



Chapter 2. State of the Art2. After mapping, pla
ing and routing, the generated 
ir
uit will probably not run at the ex-pe
ted frequen
y. The main reasons are that the FSM has been 
onstru
ted with estimatedoperator and 
onne
tion delays. Furthermore, it is also possible that the 
ir
uit does notrun at all if it mixes short and long paths. This happens frequently in 
ir
uits having bothregisters and register �les.3. Afterwards, the user de
ides, if the synthesized 
y
le didn't respe
ts all 
onstraints, toperform the FGS by introdu
ing some dire
tives and resume the pro
ess (res
heduling)until an a

eptable solution is found. The FGS adapts the 
oarse FSM to the 
hara
terizeddatapath to ensure that the 
ir
uit will run at the given frequen
y. FGS extra
ts the registertransfer instru
tions from the 
oarse FSM and then res
hedules them taking into a

ountthe propagation delays, the setup and hold times of the 
ells and the intrinsi
 parallelismsupported by the data-path. This algorithm is on
e again based on list-s
heduling.Ugh is dedi
ated to 
ontrol oriented appli
ations, it allows multi-
y
le operations, operator 
hain-ing and multi-fun
tional operators. However, it requires very low-levels information given by theuser and it is highly dependent on a 
ommer
ial tool (Synopsys).Same as in SPARK tool, Ugh does not take into a

ount the parallelism in loop nests. It issatis�ed to exploit the parallelism in the innermost loop by its unrolling. Another problem, isthat no register optimization is performed.In addition, the pro
ess (CGS - mapping - FGS) 
an take time to be resumed before ana

eptable solution is found. Indeed the tool, in the res
heduling pass, uses the ele
tri
al 
hara
-teristi
s of an old data-path to improve the features of the design; the new generated data-pathafter pla
ing and routing may need more 
y
les, and thus the 
ir
uit is less e�
ient and needother passes.2.3.4 MMAlphaMMAlpha [97℄ is another open sour
e resear
h tool developed at Irisa laboratory of Rennes,Fran
e6. It is dedi
ated to highly pipelined a

elerators appli
ations. This tool does not handleresour
e 
onstraints. We quote it only be
ause it is an instan
e of tools whi
h e�
iently handleparallelism in loops without unrolling them.Its kernel te
hnology rely on polyhedral model to in
rease the input performan
e by exploitingthe parallelism in loops. In the polyhedron model a loop nest is abstra
ted by the polyhedrondes
ribed by the loop indi
es during exe
ution of the loop. It 
an be used for any index-basedstru
ture : memory (arrays), 
ommuni
ations (a

esses).MMAlpha uses systoli
 design methodology. Its input is a fun
tional spe
i�
ation in Alphalanguage and its output is an RTL des
ription of systoli
-like ar
hite
ture in Alpha or VHDL.Alpha is a fun
tional language for expressing regular algorithms, synthesizing regular ar-
hite
tures or 
ompiling to sequential or parallel ma
hines from a high level spe
i�
ation. Analgorithm is des
ribed by equations involving variables de�ned on multi-dimensional domains(whi
h are extra
ted from the polyhedral formulation). By su

essive transformations (uni-formization, parallelization for instan
e), the des
ription is re�ned until it may be interpretedas an ar
hite
ture. Then, this des
ription 
an be translated towards logi
 synthesis tools in or-der to generate a VLSI ar
hite
ture. Alternatively, di�erent analysis (s
heduling, lifetime, et
.)may guide the transformations towards imperative loop 
ode for general purpose (sequential orparallel) pro
essors.6http://www.irisa.fr/
osi/ALPHA/ 26



Chapter 2. State of the ArtHowever, MMAlpha by using the Alpha language and the systoli
 design methodology arenot widely a

epted as these 
on
epts are very di�erent from designer's habits.2.4 S
heduling using Reservation TablesThe reservation table were originally used in s
heduling by Lam [69℄ in software pipelining whi
his a s
heduling te
hnique for VLIW (Very Long Instru
tion Word) pro
essors.In our s
heduling approa
h, we have instrumented this 
on
ept both for de
reasing the 
om-plexity of the s
heduling problem and for taking into a

ount both pe
uliarities of the datapath and spe
ial resour
e features, like pipelined units, bypassing, and other 
ommuni
ation
onstraints.This 
on
ept is also instrumented by Ly et al. [73℄ but with another terminology; theyproposed the idea of � behavioral templates �. The term template was used in [96℄ to des
ribestru
tural patterns to exploit regularity. Formally they de�ned a behavioral templates T , as aCDFG obje
t whi
h spe
i�es a set of tuples, (ni, oi), where ni is a CDFG node and oi is aninteger 
y
le o�set. The semanti
 is that T imposes the 
onstraints:
schedule(ni) = schedule(T ) + oi ∀(ni, oi) ∈ Twhere schedule(ni) and schedule(T ) denotes the s
hedules for ni and T respe
tively.Extra
ting templates is done by pattern mat
hing on the CDFG nodes. A template lo
ks anumber of operations into a relative s
hedule with respe
t to one another. This fa
t allows easly 1)handling time 
onstraints, 2) sequential operation modeling, 3) pre-
haining of 
ertain operations,and 4) hierar
hi
al s
heduling. They organize CDFG nodes into super nodes (templates) ands
hedule them. Their hierar
hi
al s
heduler is based on a list-s
heduling algorithm in whi
h taskpriorities are dedu
ed from resour
e-free ASAP and ALAP s
hedules.2.5 Hierar
hi
al basis S
heduling FrameworksIn the literature most s
heduling algorithms, designed for HLS, 
ompute a s
hedule into onepass. The sample of algorithms 
hosen and presented in this 
hapter are among them. Manyfa
tors let us think that this approa
h is not the best one. It is due to the large number of
onstraints and obje
tives to be satis�ed. Indeed, the appli
ation size, the diverse nature of
onstraints, all pe
uliarities of the data path, the requirements of the possible implementation
ould not be taken into a

ount in one pass to get an optimal s
hedule without 
ombinatorialexplosion.In order to 
ope with these problems and redu
e them to manageable sizes one 
an proposestepwise s
heduling algorithms. Su
h approa
hes 
an be justi�ed by another reason. Indeed, inpra
ti
e and 
ontrary to a massive parallel system, embedded systems (known as very 
onstrainedsystems) do not always require the generation of an optimal solution if the solution obtained is
lose to an optimal one.In the HLS literature there are few frameworks that have used stepwise s
heduling. Verhaeghet al. [106℄, for high-throughput appli
ations, has designed a HLS tool �PHIDEO� whi
h usesa two-stages s
heduling algorithm. In fa
t, to exploit the parallelism through nested loops that
ontain operations using multi-dimensional arrays, they introdu
e a model of multidimensionalperiodi
 operations. In this model, operations are exe
uted repeatedly with several dimensionsof repetition, ea
h of whi
h 
orresponds to one loop. A spe
i�
 exe
ution of an operation 
an be27
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orresponding values of the loop iterators. The time at whi
h su
h an exe
utiontakes pla
e is expli
itly given in the model by means of the operation's period ve
tor, whose
omponents denote the time between two 
onse
utive iterations in ea
h dimension of repetition,and its start time, whi
h denotes the time of the �rst exe
ution of the operation.In their multi-dimensional periodi
 s
heduling problem, they have to determine the opera-tion's period ve
tors and start times and they have to assign the operations to resour
es on whi
hthey are exe
uted.Due to the high throughput, severe timing 
onstraints, and high memory requirements, it isof utmost importan
e to 
hoose the period ve
tors and start times su
h that a highly parallelimplementation is obtained in whi
h the original loops are exe
uted 
on
urrently.They take into a

ount three sets of s
heduling 
onstraints: 1) timing 
onstraints, whi
hbound the period ve
tors and start times of the operations, 2) resour
e 
onstraints and 3) pre
e-den
e 
onstraints, The s
heduling obje
tive they 
onsider is to minimize the area o

upied bythe hardware. In video appli
ations, area is not only determined by resour
es, but also by thememories that are used. So, a tradeo� has to be made between resour
es and memory.In the �rst stage, they designed an algorithm to assign periods su
h that storage 
osts areminimized. To this end, they use a bran
h-and-bound approa
h based on linear programming and
onstraint-generation te
hniques and using an approximate 
ost fun
tion. For the se
ond stage,they use an iterative algorithm to assign start times to operations and to assign operationsto resour
es based on graph 
oloring. For both stages, they use integer linear programmingte
hniques. It is reported that this hierar
hi
al s
heduling approa
h has 
onsiderably redu
edthe 
omplexity of the s
heduling problem.2.6 Con
lusionIn the literature, many HLS s
heduling algorithms are developed. Most approa
hes belong tothe family of priority-list s
heduling algorithms, di�erentiated by the way in whi
h task prioritiesare assigned, they 
an be su�
ient for less 
onstraints embedded systems. At the moment, thesegraph-based methods are the only way to s
hedule large programs within an a

eptable time.Nevertheless, they don't give any guarantee on the quality of the solution.On another hand, there are exa
t methods whi
h are generaly based on ILP te
hniques. By
onstru
tion, they guarantee the optimality of the solution, but in pra
ti
e these te
hniques areappli
able only to small problems.To �ll the gap between these two approa
hes, we believe that the quality of the s
hedule
ould be improved by integrating exa
t methods into hierar
hi
al s
heduling approa
hes, that
ould identify 
ode fragments �with reasonable sizes� and s
hedule them.In addition, there are other reasons for whi
h the a
tual HLS s
heduling algorithms arenot mature. Indeed, very quiet interest to exploit the parallelism in nested loops; despite thatmany embedded appli
ation, spe
ially in high-throughput DSP and 
ompute-intensive embeddedsystems, 
ontain nested loops and multidimensional arrays, des
ribing repetitive exe
utions ofoperations and repetitive produ
tion and 
onsumption of data.
28



Chapter 3General S
heduling Approa
hesAs has been shown in the introdu
tory 
hapter, we have investigated on hierar
hi
al s
hedulingapproa
hes. Many fa
tors have in�uen
ed these 
hoi
es. In this 
hapter, we give an overview ofour HLS tool and we explain both s
heduling strategies that we have designed and dis
uss ourgeneral motivations to design su
h stepwise s
hedulers.3.1 Syntol Proje
tThe s
hedulers we des
ribe in this thesis are part of the Syntol tool. It is an HLS resear
htool, that we 
urrently develop with the CompSys7 team at LIP laboratory8. Its aim is HLS inthe �eld of 
ompute-intensive embedded systems. The starting spe
i�
ation is a variant of C,in
luding loops, the output is a hardware des
ription at the RT level.3.1.1 Input Spe
i�
ation: CRP Spe
i�
ation LanguageDi�erent languages have been used as input to HLS. Hardware Des
ription Languages (HDL),su
h as Verilog-HDL and VHDL, are the most 
ommonly used. However, designers often writesystem-level models using imperative programming languages, su
h as C/C++, to estimate thesystem performan
e and verify the fun
tional 
orre
tness of the design. Using su
h languageso�ers higher level of abstra
tion, fast simulation as well as the possibility of leveraging a vastamount of lega
y 
ode and libraries, whi
h make easy the task of system modeling. In addition,imperative languages 
ontain many features whi
h are not present in adapt subsets of HDLsfor example data abstra
tion, dynami
 use of memory. . . . However, the use of all or a subsetof an imperative language to des
ribe hardware is a less mature topi
. Indeed, to easily mapinput des
ription to hardware we need some language features present in HDL but not presentin software languages. Con
urren
y is the most important one. For instan
e, it is allowed bymeans �Always blo
ks� in Verilog HDL and �Pro
ess� in VHDL. Indeed, hardware is inherentlyparallel, while imperative programs are inherently sequential.Despite, the re
ent initiative SystemC [10℄ whi
h is an attempt to standardize the C/C++based language for both hardware and software, des
ribing hardware with the present status ofimperative languages, remains weak. Thus the notion of pro
esses whi
h en
apsulate programsthat exe
ute 
on
urrently, have to be introdu
ed. This notion allows to des
ribe a system asa network of pro
esses. This is done at the partitioning step, whi
h is usually manually done7An INRIA proje
t, Fran
e, http://www.ens-lyon.fr/LIP/COMPSYS/8http://www.ens-lyon.fr/LIP/COMPSYS/ 29
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heduling Approa
hesby the designer. By the way, in Syntol tool, we do the same. Indeed we use a spe
ial modelCRP (Communi
ating Regular Pro
ess) to des
ribe systems [41℄. This model is inspired fromthe Kahn Pro
ess Network KPN model [64℄.CRP model has been designed mainly to allow the de
omposition of large appli
ation intosmall modules. The aim of this formalism is to express parallelism in an easy way, allowing moremodularity and s
alability of s
heduling and promising reuse and readability. These modules - infa
t pro
esses- 
ommuni
ate through 
hannels; the resulting system allows a visual representationand looks familiar to ele
troni
 designers (see Figure 3.1. CRP is not a programming languagebut a spe
i�
ation language. It 
an be seen as a variant of C augmented with �pro
ess� and�
hannel� 
onstru
tors with the following semanti
:Pro
essA pro
ess is a sequential program whi
h 
an 
ommuni
ate with other pro
esses through 
hannels.With the ex
eption of 
hannels, all variables are lo
al to one and only one pro
ess and are notvisible from other pro
esses. The 
ode of a pro
ess 
an be written in any 
onvenient algorithmi
language. We use C here, but other 
hoi
es are possible: Pas
al, Fortran and others.The 
ode of a pro
ess is regular, or has stati
 
ontrol in the following sense:
• Statements are assignment statements and bounded loop statements. All variables are
onsidered part of some array, s
alars being zero-dimensional arrays.
• Loops are of the arithmeti
s progression variety (exa
tly the for loops of Pas
al), andthe loop upper and lower bounds are a�ne forms in numeri
al or symboli
 
onstants andsurrounding loop 
ounters.
• The only method of address 
al
ulation is subs
ripting into arrays of arbitrary dimension.The subs
ripts must be a�ne forms in 
onstants and surrounding loop 
ounters.Some of these restri
tions are quite natural when one is designing 
ompute-intensive embed-ded systems with real time 
onstraints. It is di�
ult, for instan
e, to predi
t the exe
ution timeof a while loop or of the traversal of a truly dynami
 data stru
ture. In addition, other restri
-tions 
an be lifted by prepro
essing (goto removal, indu
tive variable dete
tion, subs
ript-likepointer dete
tion, fun
tion inlining).The iteration ve
tor of a statement is a list of its surrounding loop 
ounters, from outsideinward. An iteration ve
tor for S 
annot take arbitrary values. It must belong to the iterationdomain of S, whi
h is obtained by stating that ea
h 
ounter is within the bounds of the 
orre-sponding loop. Under the assumption that the program is regular; iterations domains are sets ofintegral points inside polyhedron. Let DS be the iteration domain of statement S. An iterationof S or operation is written 〈S, x〉, x ∈ DS where x is the iteration ve
tor. The set of operationsof a pro
ess P is the disjoint union:

EP =
⋃

S∈P

{〈S, x〉| x ∈ DS}and the set of operation of a pro
ess system is ∪pEp. In what follow, we may simply write u ∈ Efor an arbitrary operation.
30
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heduling Approa
hesChannelsA 
hannel is an array of arbitrary dimension whi
h is used as a 
ommuni
ation medium fromone pro
ess to another. Channels are unidire
tional. One pro
ess is de
lared as the writer to a
hannel. Considered as an array, ea
h 
ell of the 
hannel must be written only on
e by its writer:this is the single assignment property. Writing to a 
hannel is non-blo
king.A 
hannel may have any number of readers. Reading is not destru
tive: a value remains in a
hannel at least as long as some pro
ess may have some use for it. If a pro
ess reads a 
ell whi
hhas not yet been de�ned, it blo
ks until a de�nition happens.
W (A) denotes the set of operations that write into 
hannel A with subs
ript fun
tion ωA ,and R(A) denotes the set of operations that read from A with subs
ript fun
tion ρA . Clearly,

W (A) ⊆ E and R(A) ⊆ E. The set:
F (A) = {ωA(u)|u ∈W (A)}is the footprint of A. If the following 
onstraint:

G(A) = {ρA(u)|u ∈ R(A)} ⊆ F (A)is not satis�ed, it is 
lear that some pro
ess will blo
k for ever when a

essing a memory 
ell in
G(A)− F (A).An ExampleTo illustrate this model, let's see the following trivial example. It spe
i�es a system where thepro
ess produ
er generates values whi
h are 
onsumed by the pro
ess 
onsumer. We 
all thisillustrative system a Pipeline.int n;pro
ess produ
er(outport int x[℄){ pro
ess 
onsumer(inport int y[℄){int i; int i;int t; int z;lb1: t = 1; for(i=0; i<n; i++){for(i=0; i<n; i++){ R: z = y[i℄;K: t = (t + i) >> 1; }W: x[i℄ = t; }}} /* the glue 
ode */void main(){
hannel int a[℄;lb2: n = 100;P: produ
er(a);Q: 
onsumer(a);}As we have mentioned above, Figure 3.1 whi
h diagrams this example, is well familiar toele
troni
 designers. 31
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for(i=0; i<n; i++){ 
int z;

int i;

for(i=0; i<n; i++){ 

}

t = (t + i) >> 1; 

x[i] = t;
   z = y[i]; 

}  

                                           Figure 3.1: Pipeline System.The new keywords pro
ess, inport, outport and 
hannel are self-explanatory. Te
hni
ally,they appear as new storage spe
i�ers in the C grammar. In the glue 
ode, one starts a pro
esswith the same syntax as for a fun
tion invo
ation. However, the pro
ess 
all returns immediately.3.1.2 Target Ar
hite
ture: the RTL FormalismIn order to de�ne our HLS tool we �rst de�ne the pro
essor model whi
h is used to express thetarget stru
tural des
ription of the behavioral input program. In fa
t, we use a des
ription atRegister Transfer Level [8℄ (RTL); the most popular and the most standardized model to des
ribeembedded systems [45℄. Su
h model 
onsists of a 
ontroller -typi
ally des
ribed by a �nite statema
hine- and a Datapath.As shown in Figure 3.2, the model has two types of I/O ports: 1/data ports, whi
h are usedby the outside environment to send and re
eive data to and from the model, 2/
ontrol ports,whi
h are used by the outside environment to re
eive the information about the status of thesystem and to send the information about the status of the environment
Inputs

Outputs

Ck

Status 

signals

Control

signals

Controller
Finite State Machine

FSM

DP
Datapath

Control
Inputs (Start/Reset)

Figure 3.2: Target of HLS - RTL pro
essor-The datapath 
onsists of storage units su
h as registers, register �les, memories, 
ombinatorialunits su
h as ALUs, multipliers, shifters and 
omparators. These units and their I/O ports are
onne
ted by wires and buses. The datapath takes the operand from storage units or input ports,performs the 
omputation in the 
ombinatorial units, and returns the results to storage units oroutput ports during ea
h state, whi
h is usually equal to one 
lo
k 
y
le.The sele
tion of operands, operations, and the destination of the result are 
ontrolled by the
ontrol unit by setting proper values of the datapath 
ontrol signals. The datapath also indi
ates,32
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heduling Approa
hesthrough the status signals, when a parti
ular value is stored in a parti
ular storage unit or whena parti
ular relation between two data values stored in the datapath is satis�ed.A 
ontroller 
onsists of a state register and next-state and output logi
. Next-state logi
generates the value of the state register in the next step -typi
ally the next 
lo
k 
y
le- whileoutput logi
 generates the value of 
ontrol and external signals.3.2 A S
hedule the Main Tool to Get an FSMDIn our HLS tool, we get the FSMD of a given appli
ation spe
i�ed as a system of 
ommuni
atingpro
esses, by means of a valid s
hedule of its operations. In Contrast with earlier HLS systemswhere an FSMD is synthesized by s
heduling the CDFG whi
h is simply the sequential �owdiagram of the input des
ription [45℄. Indeed, it is a quite di�erent way, as we regenerate anequivalent program whi
h exhibits more parallelism; So the �rst step of this 
onversion is the
onstru
tion of a s
hedule, whi
h gives the epo
h at whi
h ea
h operation/instru
tion in theprogram is exe
uted. The problem of regenerating an equivalent program from a valid s
hedulehas been �rst studied by Irigoin [5℄ and a very e�
ient solutions, with asso
iated software, areavailable today.The main purpose of regenerating an equivalent 
ode is to extra
t parallelism through theloops of the input des
ription. In fa
t, to perform this, we use a s
heduling strategy previouslyused for automati
 loop parallelization [40, 41℄. This te
hnique whi
h has already proved itse�
ien
y:
• assigns a logi
 �date� � so that the s
hedule is 
onsidered as just a way of spe
ifying anexe
ution order � to ea
h statement in the C program. The result of this pass is thede�nition of a sequen
e a sequen
e of logi
al steps (fronts) where ea
h step is a group ofoperations to be exe
uted in this logi
al step. Typi
ally, a front is a pool of a few data-independent (i.e., parallel) loop iterations, ea
h iteration 
onsisting of several statements (ingeneral parallel too, but not ne
essarily). Classi
al loop parallelization algorithms [40, 32℄generate maximal parallelism expressed as parallel loops (i.e., large parallel fronts with noresour
e 
onstraints); our algorithm is a variant that 
an generate -
urrently, in a heuristi
way- bounded fronts if limited parallelism is desired. This is a form of symboli
 loopunrolling or tiling. This te
hnique will be detailed in the following se
tion.
• when a s
hedule is 
omputed, it allows us to rewrite the 
ode into a form -parallel 
ode-with expli
it parallelism (see details in Se
tion 3.5). From this equivalent parallel 
ode one
an build a �nite state ma
hine in whi
h the time is measured in logi
al steps.A short review of the generating method will be given below.3.3 Stepwise S
hedulingIn the symboli
 s
heduling, we take into a

ount all data dependen
ies. Other 
onstraints also
an be treated su
h as delays of the elementary operations. However, the delays of operationsare �rst approximation to the real delays as we 
onsider, for instan
e, that a multipli
ation takestwi
e the time of an addition. It is important to emphasize that in this �rst s
heduling step, allthe operations in the nested loops are taken into a

ount.However, this symboli
 s
heduling te
hnique is quite 
omplex and 
annot take into a

ountall the mi
ro-operations - and the ar
hite
tural resour
es they need- that are implied in theexe
ution of one high-level statement. For instan
e a C statement as:33
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heduling Approa
hesR: y = a[i+2℄ * tin the symboli
 s
heduling te
hnique is 
onsidered as an atomi
 statement so the s
hedule givesit one logi
al date. However in hardware R is 
onsidered as a ma
ro-task be
ause it is 
omposedat least by a set of three a
tual elementary operations: 1) a subs
ript/address 
al
ulation, 2) onemultipli
ation and 3) an a

ess to the blo
k memory assigned to the array a if we assume thatit is mapped to a blo
k memory. So this is still a too 
oarse des
ription for hardware generationand we must provide separate mi
ro-operations for subs
ript 
al
ulations, memory management,and fun
tional units use. Thus, for a given logi
al step, ea
h statement is a 
omplex sequen
e ofmi
ro-instru
tions that we 
all mi
ro-operations (for the sake of simpli
ity we use operations).Furthermore, into a statement, the operations may be linked by data dependen
es 
onstraints.Due to this parti
ular 
onstru
tion, the ma
ro-tasks in a front are data independent but theymay still interfere in their use of resour
es. So, the front -logi
al step- must then be �split� intoas few elementary steps as ne
essary to satisfy resour
e 
onstraints. In other words, we need atleast another step to s
hedule lo
ally all operations of the ma
ro-tasks belonging to the samelogi
al step to satisfy the resour
e 
onstraints and data dependen
ies between the elementaryoperations of the same ma
ro-task.So these 
onsiderations lead us to the idea of designing gradual approa
h tos
heduling programs with loops down to RTL.Many fa
tors and reasons let us to think that su
h approa
h 
an improve a lot the performan
eof the s
heduling algorithm. First, let us noti
e that the appli
ation size, the diverse nature of
onstraints, pe
uliarities of the datapath - features of the resour
es- and the requirements of thepossible implementation 
an not be taken into a

ount into one pass to get an optimal s
hedulewithout exploding.In addition, let us mentioned that our symboli
 s
heduling te
hnique is based on integer linearprograms. For a large appli
ation, �nding legal s
hedules entails solving large linear programs.Thus in
luding the amount of all elementary operations at the �rst s
heduling level, whi
h aim isextra
tion of parallelism in loops, would greatly in
rease its 
omplexity, and would not improvethe result signi�
antly.Besides, even when it is possible to 
onsider all details of mi
ro-operations in the symboli
s
heduling step, a tight pa
king of these mi
ro-operations also has the desirable result of mini-mizing the number of intermediate values to be stored in registers and su
h a property is hardto ensure with loop parallelization te
hniques.Let us re
all that from the result of the �rst s
heduling step, we build an FSMD in whi
h timeis measured in logi
al steps. Ea
h state 
ontains a set of data independent high-level statements(ma
ro-tasks) and ea
h of them is 
omposed by a sequen
e of operations. Now, we must re�nethis logi
al step to satisfy detailed resour
e 
onstraints and taking into a

ount all pe
uliarities ofthe datapath. Time will be measured in physi
al time i.e., 
lo
k 
y
le of the target ar
hite
ture.How to perform this? In this thesis, we have sket
hed two hierar
hi
al s
heduling approa
hes.3.3.1 Two-step Approa
hAfter the �rst s
heduling step, one possibility is to 
onsider all the mi
ro-instru
tions of a frontand s
hedule them simultaneously while 
onsidering resour
e 
onstraints. This is more naturalpossibility; if we 
hoose an exa
t method we rea
h an a
tual optimal solution.34
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hes3.3.2 Three-step Approa
hHowever, again for 
omplexity reasons one 
an alternatively 
onsider another possibility. Indeedwe 
onsider that, in our 
ontext, it will be good enough to de
ouple the problem into twosubproblems. This partitioning 
an be sket
hed as:
• After the symboli
 s
heduling, we �rst s
hedule ea
h ma
ro-task independently, taking intoa

ount all pe
uliarities of the data path and resour
es, like pipelined units, bypassing,and other 
ommuni
ation 
onstraints. The s
hedule of ea
h ma
ro-task is summarized bya reservation table that states whi
h resour
es at whi
h 
y
le (relative to the starting timeof the ma
ro-task) are used by this ma
ro-task. We 
all this se
ond step mi
ro-s
heduling.
• Due this parti
ular 
onstru
tion, the ma
ro-tasks in a front are data independent but theymay still interfere in their use of resour
es. So we need a another s
heduling step to satisfyresour
e 
onstraints. We 
all this third step �ne-grain s
heduling.Let us 
onsider the following fragment:for(i=0;;i++){Z: s[0℄ = 0;for(j=1;j<7;j++)M: s[j℄=s[j-1℄+e[i+j-1℄*w[j℄;W: o[i℄ = s[6℄;}This program represents the appli
ation of a six-taps FIR �lter to input e giving outputo. Dependen
e analysis and symboli
 s
heduling show that this program has the following
ausal s
hedule:

θ(Z, i) = 2i (3.1)
θ(M, i, j) = 2i + j (3.2)

θ(W, i) = 2i + 7 (3.3)For HLS, one has �rst to infer from these results exa
tly what happens at ea
h 
lo
k 
y
le,i.e., to solve equations of the form θ(U,~i) = t, where t is a time variable. It is 
lear that the
ases t even and t odd are to be treated separately. The result is that for t even, one willexe
ute statement Z for i = t/2, statement M for t/2− 3 ≤ i ≤ t/2− 1 and j = t− 2i, andthat statement W is not exe
uted. The step at logi
al time t is thus made of one instan
eof statement Z and three instan
es of statement M . A similar result holds when t is odd.The detailed timing of statement M depends on the amount of hardware we intend todevote to its exe
ution. For the sake of de�niteness, let us assume 
ir
ular bu�ers for e ando, a register �le for s and a ROM for w, and a �oating point adder and multiplier, bothimplemented as three stage pipelines. It is easy to see that for ea
h instan
e of M , the valueof j is �xed (j = 2, 4, 6 for the even steps) hen
e the only address 
al
ulation is that ofe[i+j-1℄ whi
h 
an be simpli�ed by strength redu
tion. A reservation table for an instan
eof M is: step 1 2 3 4 5 6 7 8 9address xe bu�er xs �le x xROM xmult x � �add x � �35
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Figure 3.3: The Hierar
hi
al S
heduling Viewswhere a ��� indi
ates that the 
orresponding pipelined operator is busy but may a

eptfurther operands. This reservation table has been 
ompa
ted as mu
h as possible. Firstly, inthis way M is exe
uted as fast as possible; se
ondly, any other implementation would impliesadditional registers to hold intermediate results.We now have to s
hedule three 
opies of this table plus the simpler table for Z on theavailable hardware (�oating point and �xpoint operators, register �les, ROM) to 
onvertlogi
al time into physi
al time, and this is the 
entral point of this thesis. In the present
ase, the problem is of small size (three independent tasks). However, it is easy to imaginebulkier examples: we may need more than six taps, or several �lters working in parallel fora multiband equalizer.As mentioned, one 
ould argue that it would be better to 
onsider, at the symboli
 s
hedulingstage, all the mi
ro-operations generated by ea
h statement. This is of 
ourse true in theory. Inpra
ti
e, the size of the problem would in
rease dramati
ally � by a fa
tor of 7 in the pre
edingexample. Besides, it is di�
ult to prevent the s
heduler to introdu
e delays between mi
ro-operations, and hen
e to imply more registers for holding temporary results. Our approa
hmay be sub-optimal, but we believe that the possible improvements do not warrant the added
omplexity.Though we have investigated both approa
hes, the last de
oupling will be good enough. Ourfronts are indeed in general 
hosen su
h that the number of operations they 
ontain o�er enoughparallelism to saturate the 
riti
al resour
es. So in the mi
ro-s
heduling step, ma
ro-tasks ares
heduled independently, but when assigning resour
es, we try to distribute parallel resour
esamong ma
ro-tasks. In other words, after the �rst two steps, the dire
ted a
y
li
 graph of mi
ro-s
heduled ma
ro-tasks (tasks with reservation tables) should still 
ontain a su�
ient degreeof parallelism. The �nal resour
e 
onstraints are then taken into a

ount with the �ne-grains
heduler.Figure 3.3 summarizes both s
heduling de
ompositions. Dotted lines expresses the area ofour main 
ontributions as in this thesis we have addressed only some parts of these s
heduling36
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heduling approa
hes, let us des
ribe their usage in our
ontext. Let us see the design �ow of our HLS framework whi
h is diagramed by Figure 3.4.A brief des
ription of all steps of this HLS system going from an input des
ription writtenin CRP to a physi
al view of the target 
ir
uit (whi
h will be des
ribed via an FPGA image orASIC mask) through an RTL des
ription is:
• In a pre-pro
essing step, by hand for the moment, ea
h statement of the program is split � ifne
essary � until it �ts the target datapath in the number of simultaneous operations, mem-ory, and register a

esses. For example, a high-level statement that reads three di�erentmemory lo
ations while the target ar
hite
ture 
an only perform two reads simultaneouslyis de
omposed into intermediate operations. For exampleR: b = 3 * a[i+2℄ * a[j℄If the array a is mapped to a one-port memory or we 
an't have more than one multiplierin the 
ir
uit, this high-level statement should be split into two statements su
h:37
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heduling Approa
hesR1: b1 = 3 * a[i+2℄R2: b = b1 * a[j℄This amount of node splitting we do before s
heduling is 
learly one of the adjustableparameters of our methods, and it is 
lear that more investigations are needed in order to�nd the best de
omposition, whi
h probably depends on details of the appli
ation and thear
hite
ture. This issue -how to do this splitting?- is 
learly a matter for resear
h howeverit isn't spe
ially addressed in this thesis;
• After, the behavioral input des
ription is 
ompiled by the C
rp 
ompiler whi
h does a syn-ta
ti
 and semanti
 analysis, same as a 
lassi
al 
ompiler. In addition to this, It performsa data�ow analysis [39℄. Its aim is to exhibit all the dependen
ies between array and s
alarreferen
es of the system. It extra
ts both kinds of dependen
ies data dependen
es and
ommuni
ating dependen
es;
• Using the results of this analysis, a �rst-level s
hedule - a multidimensional s
hedule- is
omputed by modeling the problem as an integer linear program [41℄. This s
heduler isa s
alable and modular version of a multidimensional s
heduling algorithm [40℄. In thisthesis, we will ignore the explanation of su
h 
onstru
tion.The output of this s
heduling module is a s
heduling fun
tion θ:

θ : E 7−→ Twhere E is the set of all operations9 of the program and T is a set of time values. Ea
htime value is an integral ve
tor, totally ordered by lexi
ographi
 order. So that it gives forea
h operation an unique exe
ution date. Indeed for ea
h statement S of the program, thefun
tion θ(< S, x >) is an a�ne form of the iteration ve
tor x:
θ(< S, x >) = hS .x + kS (3.4)Where hS is the time ve
tor of S and kS is a s
alar.The multidimensional time notion 
an be easily 
ompared to the de
omposition of a dateinto many dimensions (like year/month/day/hour. . . ) where the �rst dimensions are themost signi�
ants. For the 
ase of the Pipeline program of Se
tion 3.1.1, this s
hedulingalgorithm gives the following s
hedules:

θ(〈lb1, i〉) = 0, θ(〈lb2, i〉) = 0

θ(〈K, i〉) = 2i + 1, θ(〈W, i〉) = 2i + 2, θ(〈R, i〉) = 2i + 3.This solution means that both statements lb1 and lb2 start at time 0, after in a 
y
li
 way,-at ea
h 3 
onse
utive 
lo
k tops- a sequential exe
ution of an instan
e of K, W and Rrespe
tively holds.
• Given this s
hedule, now we regenerate an e�
ient parallel 
ode. With present day tools [93,11℄, it is quite easy to automati
ally do this and many 
ompetitive algorithms try to �nda 
ompromise between the 
ode e�
ien
y and its simpli
ity [5, 20, 93℄. In our framework9an operation is an instan
e of statement de�ned by the name of the statement and the iteration ve
tor38
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heswe have used ClooG10 to generate su
h 
ode. In Se
tion 3.5 we will explain in detail howthe 
hosen tool works.From this equivalent parallel 
ode, we build a �nite state ma
hine -
ontrol automaton- inwhi
h the time is measured in logi
al steps. In this automaton, ea
h state exe
utes a setof data and 
ontrol independent operations.
• A

ording to the s
heduling approa
h used, we re�ne the resulting FSM by splitting ea
hlogi
al step to guarantee that resour
e 
onstraints and pe
uliarities of the data path arerespe
ted .
• Starting from the previous 
onstru
ted FSM, in the last step of the front-end part wegenerate an RTL des
ription written in synthesizable VHDL form a

ording to the standardIEEE 1076-1987 [2℄.Now, it remains to submit this RTL des
ription to any logi
 synthesis tool. In our 
ontextwe use the ISE Xilinx 6.x11 tool kit. This synthesis environment uses mainly: 1/ XST 12 for thesynthesis of gates and 2/ ModelSim to perform at several levels temporal simulations.3.5 CLooG: a Code GeneratorThe problem of automati
 
ode generation is solved thanks to reasoning in the polyhedral model.This model is based on a linear-algebrai
 representation of programs13 Indeed, using this rep-resentation, the 
ode generation problem entails s
anning the Z-polyhedron14, de�ned by theiteration domains, in the lexi
ographi
 order. In other words, it entails visiting ea
h integralpoint of a polyhedron in the lexi
ographi
 order.At �rst, the automati
 
ode generation problem was solved by An
ourt and Irigoin [5℄. Formore 
omplex situations, the best solution is the Quilleré et al.'s algorithm [93℄. Both methodsgenerate 
ode with loops. Boulet and Feautrier [20℄ proposed another solution in whi
h, theydire
tly generate low level 
ode without loops.Let a program be represented by its Z-polyhedron -de�ned by the iteration domains- anda legal s
hedule. In our framework, we use the ClooG tool to generate the 
ontrol automaton.Indeed ClooG [11℄ gives an e�
ient parallel 
ode with less 
ontrol. The heart of the generationpro
ess is the Quilleré et al. algorithm. Their te
hnique is simple and 
an be summarized inthree steps:
• It generates loop levels by proje
ting the polyhedra onto the 
orresponding dimension.
• Next, it splits the proje
tion into disjoint polyhedra and it sorts the resulting polyhedraa

ording to the lexi
ographi
 order.
• Lastly, it re
ursively generates loop nests that s
an ea
h proje
tion.10CLooG: for Chunky LOOp Generator. This soft is available at http://www.
loog.org/.11http://support.xilinx.
om/support/sw_manuels/xilinx6/12Xilinx Synthesis Te
hnology13Also 
alled the polytope model, it be
ame very popular be
ause of its ri
h mathemati
al theory and itsintuitive geometri
 interpretation. Moreover it addresses a 
lass of 
odes with very regular 
ontrol that in
ludesa large range of real-life program parts [12, 100℄.14A 
onvex set of points in a latti
e (also 
alled latti
e-polyhedron), i.e., a set of points in a Z ve
tor spa
ebounded by a�ne inequalities [99℄. 39
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heduling Approa
hesIn order to for
e s
anning to respe
t some rules in addition to the lexi
ographi
al order,CLooG allows using some s
attering fun
tions, su
h as the s
heduling fun
tions that we havepreviously 
omputed. S
attering is a short
ut for s
heduling and allo
ation fun
tions and the like.Indeed in order to exhibit parallelism, CLooG applies some transformations on the Z-polyhedronwhile respe
ting the s
heduling fun
tions.To illustrate the behavior of this algorithm, we unroll it on the Pipeline example. Let usre
all that for the 
ase of the Pipeline program, the multidimensional s
heduling algorithm givesthe following s
hedules:
θ(〈lb1, i〉) = 0, θ(〈lb2, i〉) = 0

θ(〈K, i〉) = 2i + 1, θ(〈W, i〉) = 2i + 2, θ(〈R, i〉) = 2i + 3.These s
heduling fun
tions 
an be represented by the following parameterized 5 polyhedra (itrepresents the CLooG input):Polyhedron lb1:
{

t = 0
i = 0Polyhedron lb2:

{

t = 0
i = 0Polyhedron K

{

t = 2i + 1
0 ≤ i ≤ n− 1Polyhedron W

{

t = 2i + 2
0 ≤ i ≤ n− 1Polyhedron R

{

t = 2i + 3
0 ≤ i ≤ n− 1

i

1 2 3 4 5

............

............

............

t

2

3

1

2n − 1 2n 2n + 1

n − 1

Integral point of polyhedron R Integral point of polyhedron Lb1/Lb2

Integral point of polyhedron WIntegral point of polyhedron KIn the 
ontext of n > 1, let us generate the 
ode whi
h s
an this 5 polyhedra:
• Firstly, we proje
t the 5 polyhedra on the �rst dimension t and we split them into disjointpolyhedra. Then, we sort these polyhedra so that the textual order of the loops, s
anningthe �rst dimension, 
omplies with the lexi
ographi
 order. We get this �rst pseudo 
ode:for (t=0;t<=0;t++){Polyhedron lb1: {i = 0}Polyhedron lb2: {i = 0}}for (t=1;t<=1;t++){Polyhedron K: {i = 0}}for (t=3;t<=2n-1;t++){

40
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hesPolyhedron W :
{i = (t− 2)/2}Polyhedron R:
{i = (t− 3)/2}Polyhedron K:
{i = (t− 1)/2}}for (t=2n;t<=2n;t++){Polyhedron W : {i = (t− 2)/2}}for (t=2n+1;t<=2n+1;t++){Polyhedron R: {i = (t− 3)/2}}

• We re
urse on the resulting disjoint polyhedra: so we proje
t them on the next dimension
i and we separate them into disjoint polyhedra. Then we sort these polyhedra so thatthe textual order of the loops s
anning the se
ond dimension 
omplies to the lexi
ographi
order.

• After the elimination of the loops with one iteration, the �nal 
ode whi
h s
an the 5polyhedron is:lb1(i = 0);lb2(i = 0) ;K(i = 0) ;W(i = 0) ;for (t=3;t<=2*n-1;t++) {if ((t-3)%2 == 0) {R(i = (t-3)/2) ;}if ((t-2)%2 == 0) {W(i = (t-2)/2) ;}if ((t-1)%2 == 0) {K(i = (t-1)/2) ;}}W(i = n-1) ;R(i = n-1) ;The unknown t expresses the time ve
tor. Conditional statements are generated to guarantee theintegrality of subs
ripts. To avoid su
h 
omplex subs
ript fun
tions and guards, we 
an 
hangethis temporal basis thus, moving from a one dimension basis to two dimensions basis. Thus, weobtained the new 
omputed s
hedule:
θ(〈lb1, i〉) =

(

0
0

) , θ(〈lb2, i〉) =

(

0
0

)41
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θ(〈K, i〉) =

(

i
0

) , θ(〈W, i〉) =

(

i + 1
0

) , θ(〈R,x〉) =

(

i + 1
1

) .The generated 
ode be
omes simpler:lb1 ;lb2 ;K(i = 0) ;for (t=1; t<=n-1; t++) {W(i = t-1) ;R(i = t-1) ;K(i = t) ;}W(i = n-1) ;R(i = n-1) ;As the above 
ode shows, GLooG don't 
onsider the body of the statements; it re
ognizes thestatement just by a label whi
h is automati
ally generated a

ording to the textual order of theapparition of their iteration domain in the GLooG input �le. In our framework we generatedire
tly from the ClooG internal representation the 
ontrol automaton while the body of state-ment is inserted from an external input �le. For example, the synthesized FSM for the pipelineprogram is diagramed by Figure 3.5.3.6 Con
lusionHLS s
heduling is a very 
onstrained task. Indeed, to get an a

eptable s
hedule, that allowsexploiting enough parallelism inherent to the input des
ription, we have used some te
hniqueswhi
h have been pioneered in automati
 loop parallelization. However, these te
hniques are quite
omplex and 
an't take into a

ount all datapath pe
uliarities and detailed resour
e 
onstraints.For this we have sket
hed some s
heduling approa
hes, in whi
h s
heduling is performed ingradual ways.In this 
hapter, we have explained our general stepwise s
heduling approa
hes and how theyare inserted in our framework. Let us re
all that, in this thesis, we have addressed only some partsof these s
heduling approa
hes. Indeed, 
onsidering the three-step approa
h, in the following part(Part I), we fo
us on the third s
heduling step problem: �how to s
hedule tasks whose resour
eusage is des
ribed by reservation tables�. In addition, we propose some solutions to perform thelast s
heduling step de�ned in the two-step approa
h in Part II.
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Chapter 4Formalism and a Greedy SolutionThis Chapter is divided into two parts. In the �rst part, we will explain how tasks are representedby mean of reservation tables. A

ording to this task model, a new formulation of resour
e
onstraints is developed. In this model, 
onstraints are represented using dis-equations. Then aformal de�nition of the s
heduling problem is dedu
ed.In the se
ond part, a greedy heuristi
 is proposed and some related experimental results arereported and 
ommented.4.1 Introdu
tionLet us re
all that in general, the HLS s
heduling problem is an NP-Hard problem and espe
iallywhen one wishes exploiting parallelism inherent in the input des
ription. For this main reason,among others, we have sket
hed the three-step s
heduling approa
h. In what follow, we proposeto formalize the problem de�ned in the third s
heduling step i.e. the �ne-grain s
hedulingproblem.4.2 Task and Resour
e Constraints FormalismIn this se
tion, we explain what is our task model � basi
ally a set of (possibly dependent) tasks,ea
h being a 
omplex sequen
e of elementary pre-s
heduled operations � and how we representresour
e 
onstraints for su
h tasks.4.2.1 Extra
ting Tasks with Reservation TablesBasi
ally, a ma
ro-task is a statement in some high-level language (C in our 
ase). As shownin Se
tion 3.3 at the hardware generation level, ea
h ma
ro-task must be split into simpleroperations like address 
al
ulations, memory a

esses and arithmeti
 operations.A

ording to the result of the se
ond s
heduling step the elementary operations in ea
hma
ro-task are mapped to resour
es and pre-s
heduled; indeed, independently the s
hedule ofea
h ma
ro-task is des
ribed by a reservation table that states whi
h resour
es at whi
h 
y
le areused by this ma
ro-task, relative to its starting time. In other words, this pre-s
heduling leadsto a reservation table in whi
h the start time of ea
h elementary operation is �xed, on
e and forall, relative to the start time of the ma
ro-task. From now, ea
h statement 
an be viewed as ama
ro-task whose resour
e usage is �xed. 45



Chapter 4. Formalism and a Greedy SolutionThe resour
e assignation is done in a simple manner. Indeed, we 
hose the binding thatgreedily allo
ates all the available resour
es to tasks, i.e., we assign the whole resour
es to thefun
tional operations of ea
h task. In other words, the binding rule assigns the available resour
esto the 
ompeting tasks in a round-robin way.Without loop, the data dependen
es between operations, into a ma
ro-task, 
an be repre-sented by a dire
ted a
y
li
 graph. Hen
e, for this step �mi
ro-s
heduling�, we use 
lassi
al taskgraph s
heduling te
hniques(Chap. 1 of [32℄). Here also, the problem is NP-hard, but there aresome heuristi
s whi
h give approximative solutions and whi
h 
an be guaranteed to a
hieve atmost twi
e the optimal exe
ution time. In addition, the node splitting performed at the pre-pro
essing step insure that the size of a ma
ro-task is relatively small hen
e in most of time themi
ro-s
heduling heuristi
 rea
hes the optimal solution.Now, as ma
ro-tasks are represented by reservation tables and they are data independent,getting a whole s
hedule entails just �xing the relative starting dates of ma
ro-tasks, whilerespe
ting resour
e 
onstraints and minimizing the total exe
ution time.4.2.2 NotationsWe denote by T the set of n ma
ro-tasks, R the set of resour
es, ti the starting date of thema
ro-task i, and pi ≥ 0 the laten
y of task i (the unit is the 
lo
k 
y
le), i.e., the di�eren
ebetween the ending time of the last elementary operation it 
ontains and the starting time ofthe �rst one. The reservation table of task i is thus of size pi × |R|. Let us see the followingma
ro-task S. Assuming that we have one adder, one multiplier, and that the array a is mappedto one-port memory blo
k A. Assume also that a memory a

ess and the multiplier take 2 
y
lesand that both 
an be pipelined. One possible binding is diagramed by the following �gure:
S: y = a[i+2℄ * b

A + ∗
tS

Task S

pS

A reservation table for S.In what follows, we will use �task� (resp. �operation� ) instead of �ma
ro-task/high-levelstatement� (resp. �mi
ro-instru
tion/mi
ro-task�) for brevity.4.2.3 Forbidden Distan
esTo get an optimal s
hedule we must express e�
iently the 
onstraints of the s
heduling. Resour
e
onstraints are the main ones.Consider a 
ouple of tasks i and j, with respe
tive starting dates ti and tj. In a legal s
hedule,if the tasks i and j are data independent, they 
an start at any dates ex
ept those whi
h putthem into resour
e 
on�i
t. So the intuitive idea is to express the resour
e 
onstraints as a set offorbidden distan
es (tj−ti). Let us explain, assume that a resour
e r ∈ R is used at mi
ro-step diin the reservation table of task i and at mi
ro-step dj in the reservation table of task j. (A given46
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r

r
tj

di,j

Task i Task j

ti

ti + pi

tj + pjFigure 4.1: Forbidden Distan
e.resour
e r 
an be used more than on
e in a given reservation table, so we should use a notationsu
h as di,r,k, but we dropped the indi
es r and k for 
larity.) This means that in a s
hedulethe resour
e r is used at time step ti + di by task i and at step tj + dj by task j. To satisfy theresour
e 
onstraint for r it is ne
essary that:
ti + di 6= tj + dj, i.e., ti − tj 6= (di,j = dj − di). (4.1)Note that the values di and dj are problem inputs as the reservation tables are given,whereas ti and tj are unknowns. In fa
t, dis-equation ( 4.1) eliminates, from the solution spa
e of

ti and tj , only the forbidden distan
e di,j . In this way, all resour
e 
onstraints for a pair of tasks
(i, j) 
an be expressed as dis-equations by a systemati
 examination of their respe
tive reserva-tion table. It follows that, for the set T of tasks in a logi
al state, all the resour
e 
onstraints
an be obtained by de�ning for ea
h 
ouple of tasks (i, j) all the dis-equations expressing theresour
e 
onstraints. Figure 4.1 illustrates the notion of forbidden distan
e.When there are more than one 
opy of ea
h resour
e, this simple formulation of the 
onstraintsis no longer possible, unless we bind resour
es to tasks a priori. As mentioned below, our bindingrule assigns the available resour
es to the 
ompeting tasks in a round-robin way. We havedone some experiments that show that this heuristi
 has no great in�uen
e on the �nal laten
y(§ 6.2.4).4.2.4 Example 1Consider the following ex
erpt from the Perfe
tClub Ben
hmark, The SPICE15 program, fromline 16 to 19. This example illustrates what a logi
al step may 
ontain after symboli
 s
heduling.Task 1: GSPR = VALUE(LOCM+2)*AREATask 2: GEQ = VALUE(LOCT+2)Task 3: XCEQ = VALUE(LOCT+4)*OMEGATask 4: LOCY = LYNL+NODPLC(LOC+13)The four tasks are data independent. Assume that the available resour
es are one adder, onemultiplier, and two memory blo
ks: Val (where the VALUE array is mapped) and Ndp (where theNODPLC array is mapped). Assume also that a memory a

ess and the multipli
ation take 2 
y
lesand that both 
an be pipelined. S
alar variables like AREA or LOCY are assumed to be allo
atedto registers, where they 
an be a

essed in no time. Figure 4.2 diagrams one possible binding,where the label RM Val (resp. RM Ndp) means to read the memory blo
k Val (resp. Ndp).15SPICE is a widely used 
ir
uit simulation program developed at UC Berkeley.47
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Figure 4.2: Binding for Example 1.For this example, the system of resour
e 
onstraints is 
omposed of 9 
onstraints de�ned asfollows:






t1 − t2 6= 0 t1 − t3 6= 0 t1 − t4 6= 0
t3 − t4 6= 0 t2 − t3 6= 0 t2 − t4 6= 0
t4 − t2 6= −2 t4 − t1 6= −2 t4 − t3 6= −2For instan
e, the 
onstraint t1 − t3 6= 0 expresses the fa
t that tasks 1 and 3 
annot start at thesame time be
ause (among other reasons) both use the adder in their �rst step.4.3 S
heduling Problem FormulationNow, if there are no data dependen
es between tasks, �nding a valid s
hedule for T entails solvingthe following system of dis-equations in integer values:

{

ti − tj 6= d k
i,j i, j ∈ T

ti ≥ 0
(4.2)For a given pair of tasks i and j, there 
an be several forbidden distan
es di,j, hen
e the index k.The set of inequalities ti ≥ 0 is added into the system just to �x the origin of the s
hedule.In addition, as the goal is to get an optimal s
hedule (a s
hedule with minimal exe
ution timeor laten
y) we must minimize the total time maxi(ti + pi).If ne
essary, dependen
es between tasks 
an also be handled; they 
an be expressed as addi-tional inequalities of the form tj − ti ≥ δi,j. When, δi,j ≥ 0, su
h a 
onstraint means that task jmust start at least δi,j steps after task i (a typi
al data dependen
e); when δi,j ≤ 0, it meansthat task i 
an start at most −δi,j steps after task j.4.4 How To solve a System of Dis-equation?First let us noti
e that, as de�ned, the problem of solving su
h a system of dis-equations whileminimizing maxi ti, with ti ≥ 0, is an NP-Complete problem.Proof. The proof of this NP-
ompleteness is straightforward; we 
laim that the graph 
oloringproblem is a parti
ular 
ase of the problem de�ned in (4.2). Indeed, if one takes all d k

ij equal to
0 and all pi are equal, then the solution, at the end, is to give i a di�erent 
olor than j. Now, thegraph 
oloring problem, in its general forms, is well known as anNP-Complete problem [110℄.Consequently, we are sure that �nding an optimal s
hedule 
an't be done in a polynomial time.Nevertheless, there are many methods for solving the system de�ned in (4.2):48
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• one 
an be satis�ed with a greedy heuristi
 su
h as a list-s
heduling algorithms [33℄. Inthese methods, we simulate an exe
ution by maintaining, at ea
h time, a list of ready tasks.This list is ordered a

ording to a given arbitrary order. In most 
ases, this order favorisesthe long tasks or tasks belonging to the 
riti
al path. Then, we laun
h the �rst ready taskssu
h that no resour
e is deliberately left idle.
• 
onversely, if we need more a

ura
y, in other words, if we sear
h the optimality, there arealso many solutions from operation resear
h whi
h are based on:� Bran
h and bound (BAB) te
hniques [59℄;� Integer Linear Programming te
hniques [79, 99℄.� Sin
e there is an obvious bound for the ti (ti ≤ ∑

i pi), another solution 
an beemployed by using 
onstraint handling methods, provided by Constraint logi
 Pro-gramming (CP) paradigm [14℄. Indeed, CP uses the 
on
ept of 
onstraint solving ina spe
i�
 
omputation domains. Generally these domains are �nite domains.Indeed, Integer Linear Programming and Constraint Logi
 Programming are two alternativeapproa
hes for solving 
ombinatorial optimization problems.Con
erning the CP resolution, interval methods, whi
h are the main te
hniques used bythe solvers of the 
onstraints, have shown their ability to lo
ate and prove the existen
e ofan optimal solution in rigorous way, unfortunately, these methods are rather slow. Indeed, asolution 
an be found by instantiating all domain variables with values from their respe
tivedomains. Instantiating a variable may 
ause the exe
ution of 
onstraints and therefore failure.On ba
ktra
king, another value from the domains has to be 
hosen. These ba
ktra
kings mayslow down a lot the all pro
ess.The situation is similar for the ILP te
hniques. In fa
t, the theoreti
al 
omplexity of the ILPsolutions is exponential in the produ
t of the task number and the number of needed variablein the standard 
oding [25℄. However, we have tried in Chapter 5 to de�ne some e
onomi
al
odings and straightforward formulations.In the same way, a Bran
h-And-Bound-based method has an exponential time 
omplexity,but it 
an have a di�erent behavior in pra
ti
e. Indeed, Bran
h-And-Bound is a meta-methodof guidan
e in the spa
e of solutions. Its strategy of resolution depends strongly on the featuresof the problem to resolve. For this reason, we have developed a Bran
h-and-bound in Chapter 6.In the rest, we will develop and experiment a greedy heuristi
 whi
h will be used as yardsti
kfor measuring the e�
ien
y and robustness of the exa
t algorithms developed in both following
hapters.4.5 A Greedy Heuristi
First let us 
onsider a 
lassi
al greedy heuristi
, whi
h 
an be used for data-independent tasks.It is easy to adapt this heuristi
 to the 
ase where dependen
es su
h as tj − ti ≥ δi,j give rise toa dire
ted a
y
li
 graph.4.5.1 AlgorithmWe use a 
lassi
al greedy-s
heduling (GS) heuristi
. Without any data dependen
es, all the tasksare ready at time zero. Tasks are s
heduled one after the other. At ea
h step, given a subset Tmof already-s
heduled tasks, we 
he
k whether the next task i 
an be s
heduled at time 0, i.e.,49



Chapter 4. Formalism and a Greedy SolutionAlgorithm 1: Greedy S
heduling Algorithm.Data:- ListTasks,- Resour
e reservation table for ea
h task i in ListTasks,- Forbidden distan
es.beginforall i ∈ ListTasks, following the order in ListTasks doStartTime← 0;while not (isPossible(i, StartTime)) doStartTime← StartTime + 1;endS
hedule[i]← StartTime;endendif all forbidden distan
es between i and all tasks in Tm are respe
ted. If not, the start time isin
remented, and the pro
ess is reiterated.Algorithm 1 
onstru
ts a global reservation table. After ea
h s
heduling step, this table isupdated. Thus, it is important to emphasize that this algorithm 
an be used before resour
eallo
ation, as for any 
lassi
al list-s
heduling algorithm. Indeed, the isPossible pro
edure
an use the information on the number of available resour
es and takes into a

ount forbiddendistan
es when there remains only one resour
e to share. In fa
t, freedom to pla
e binding afteror before s
heduling gives this heuristi
 an advantage.Our algorithm is a pseudo-polynomial heuristi
, as its time 
omplexity is O(n|R|
∑

i pi),where n is the number of tasks.When the dependen
e 
onstraints tj − ti ≥ δi,j form an a
y
li
 graph, one 
an develop asimilar heuristi
: 
onsider tasks a

ording to some topologi
al order of the graph and pla
e themin a greedy fashion as early as possible while respe
ting dependen
e and resour
e 
onstraints.This is the standard list-s
heduling approa
h [33, 25℄.It is important to note that the order in whi
h tasks are 
onsidered in the list in�uen
esthe laten
y of the s
hedule. In this �rst version of the algorithm, we did not take this fa
t intoa

ount. Mu
h work has been devoted to the 
onstru
tion of good priority rules, i.e., in thesear
h for a good task ordering. Of 
ourse there are di�erent possible strategies to de
ide whi
htasks are given priority in the (frequent) 
ase where there are more free tasks than availableresour
es. But a key result due to Co�man is that any strategie de
iding not to deliberately keepa resour
e idle 
an be shown to a
hieve good performan
e [32℄.4.5.2 Example 1, ContinuedLet us return to the example of Se
tion 4.2.4. An optimal solution (found for example by ourexa
t algorithm in Chapter 6) is t1 = 0, t2 = 3, t3 = 1, t4 = 2, it needs only 5 
y
les. The GSheuristi
 gives the solution t1 = 0, t2 = 1, t3 = 2, t4 = 3 with a laten
y of 6 
y
les. Figure 4.3diagrams both solutions. The GS algorithm rea
hes the optimum only for the ordered list Task 1,Task 3, Task 4, Task 2. Note that, in the general 
ase, there may be no order in whi
h the optimalis rea
hed by the greedy s
heduling. However, here a deviation of 1 
y
le from the optimum isa

eptable, in parti
ular if one needs a fast 
ompilation.50
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Figure 4.3: (a) Greedy Solution and (b) Optimal Solution.4.5.3 ExperimentsWe have implemented this heuristi
 and tested it on groups of independent tasks from real-lifeappli
ations. They 
onsist of 22 tests from the Perfe
tClub [18℄ and HLSynth95 [85℄ ben
hmarks.The Perfe
tClub ben
hmarks represent appli
ations in a number of areas of engineering ands
ienti�
 
omputing and the HLSynth95 ben
hmarks, more spe
i�
ally, represent a repository ofappli
ations in embedded systems (see Appendix B for more details on these ben
hmarks). Theruntime is 
omputed in user se
onds on a 1.73 GHz Intel Pentium M running Linux. Results arereported in Table 4.1.The test programs are fairly small, they 
ontain between 3 and 9 data-independent (possibly
omplex) tasks, ea
h one 
ontaining between 1 and 15 operations. All kind of resour
es are
onsidered: sequential resour
es like memory ports, and 
ombinatorial ones su
h as adders,multipliers, 
omparators, and dividers. Also, more than one-
y
le delays resour
es are taken intoa

ount. Mis
ellaneous resour
e features are 
onsidered, for example memories with two-ports,multipliers with two and three 
y
les, pipelined resour
es and so on.Test T µT S
hedule laten
y Deviation
ss1 4 15 6 1
ss11 4 15 5 2
ss12 4 17 6 2
ss2 9 32 7 1
ss3 7 27 10 3
ss5 3 9 5 0
ss6 8 12 4 0ja
1 6 19 6 0ja
2 6 82 23 0ja
3 7 97 20 1rasm1 3 9 5 0wss3 5 11 4 0wss31 5 11 6 1wss32 5 11 4 0wo
1 4 13 5 0wo
2 7 9 4 1wss1 4 44 21 5wss11 4 44 19 3wss2 3 23 11 1wss12 4 44 17 4wmt22 4 31 13 0
ss21 9 32 11 1Table 4.1: Greedy S
heduling Results.The �rst three 
olumns of Table 4.1 are the test names, the number n of tasks (
olumn T),and the total number of mi
ro-tasks (
olumn µT) that 
ompose them. For su
h instan
es, this51



Chapter 4. Formalism and a Greedy Solutionheuristi
 is very fast; its runtime is less than the Linux 
lo
k resolution. So, we did not report itsruntime in the table, whi
h is about 0.0032s in average, a value obtained by timing one millionrepetitions of the algorithm.To evaluate the stability of the algorithm, we have repeated it on a sample of n2 randompermutations of the tasks. The �Deviation� 
olumn gives the di�eren
e between the best andthe worst s
hedule in su
h sample.To get an idea about the quality of the 
omputed laten
ies and the behaviour of the GSheuristi
, we need some information relative to the optimal solutions hen
e we delayed thisanalysis on
e we present our exa
t methods.4.6 Con
lusionWe have presented a formalism, for high-level synthesis, to a

urately express resour
e 
onstraintsfor 
omplex tasks represented as reservation tables. The resour
e 
onstraints are modeled bydis-equations and �nding an optimal s
hedule leads to resolving a system of dis-equations. Theproposed formalism 
an be generalized to support problems of resour
e-
onstrained s
hedulingeven when tasks are dependent.Be
ause our s
heduling problem is NP-
omplete, �rst, we have relied on heuristi
s. Themost natural idea is to use a greedy strategy: at ea
h time step, we try to s
hedule as manytasks as possible onto available resour
es. Hen
e our GS heuristi
. The results have shown thatthis heuristi
 is very fast and enough stable.

52



Chapter 5Integer Linear Programming Approa
hS
heduling theory was originated from operations resear
h thus, it is obvious to think about usingsome of its own te
hniques to resolve the s
heduling problems. Indeed, the best understood andwell known exa
t s
heduling te
hniques are based on 
ombinatorial optimization espe
ially onInteger Linear Programming. The HLS literature o�ers a very ri
h variety of ILP formulations.Due to our parti
ular kind of 
onstraints (expressed by means dis-equations), in this 
haptersome ILP formulations of the s
heduling problem de�ned in Se
tion 4.3 are proposed. Thensome experiments are reported and 
ommented.The main aim of our 
ontribution isn't to bring some improvements in this �eld, as ILPformulations have been enough studied by many s
holars [72, 61, 47, 27, 112, 65℄ but our ILPs
heduling algorithm will be used as yardsti
k for measuring the e�
ien
y and robustness of oneof our bran
h-and-bound-based algorithms de�ned in the following 
hapters.5.1 General Introdu
tionInteger and 
ombinatorial optimizations deal with problems of minimizing or maximizing a fun
-tion of many variables subje
t to inequalities and equalities 
onstraints when the values of someor all of the variables are restri
ted to be integral. The versatility of the 
ombinatorial optimiza-tion model stems from the fa
t that in many pra
ti
al problems, a
tivities and resour
es, su
has ma
hines, airplanes, people and 
lo
k 
y
les are indivisible.Be
ause of the robustness of the general model, it 
overs a ri
h variety of problems [53℄.An important and widespread area of appli
ations 
on
erns the management and e�
ient useof s
ar
e resour
es to in
rease produ
tivity. These appli
ations in
lude �nan
e, marketing, pro-du
tion s
heduling, distribution of goods and ma
hine sequen
ing. They also in
lude designproblems su
h as 
ommuni
ation and transportation network design, VLSI-
ir
uitry design andtesting, the design of automated produ
tion systems and design of the layout of 
ir
uits to mini-mize the area dedi
ated to wires, design and analysis of data networks, solid-waste management,determination of ground states of spin-glasses and many other typi
al appli
ations: portfolioanalysis, high energy physi
s, x-ray 
rystallography and mole
ular biology . . . .On the other hand, there are many real-world problems where it is impossible to write downall of the 
onstraints in a mathemati
ally "
lean" way. Su
h problems often arise in s
hedulingwhere there are a myriad of 
onstraints and other rules related to what 
onstitutes a "feasibles
hedule". Furthermore, formulations based on ILP o�er the possibility of integrating 
onstraintsin a homogeneous problem des
ription and of solving them together.In what follow, we will just sket
h the basi
s of Integer Linear Programming, whi
h are53
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h
Objective function

Integer points

x1

x2

PFPI
Figure 5.1: Feasible Areas.essential for understanding of the presented ILP-formulations. For further information see [99℄or [83℄.Integer Linear Programming (ILP) is the following optimization problem:

min zIP = cT x

x ∈ PF ∩ Z
nwhere

PF = {x |Ax ≥ b, x ∈ R
n
+}, c ∈ R

n, b ∈ R
m, A ∈ R

m×n (5.1)The set PF is 
alled feasible region. We will assume that A ∈ Z
m×n and b ∈ Z

m holds. Theoptimal solution of an Integer Linear Program 
an be 
al
ulated by solving the following problem
min zIP = cT x

x ∈ PI ∩ Z
nwhere

PI = conv ({x | x ∈ PF ∩ Z
n}) (5.2)Here, conv denotes the 
onvex hull. For the two-dimensional 
ase, a representation of PF and PIare given in Figure 5.1.The integral points within PF denote the feasible solutions to the integer linear problem;depending on the obje
tive fun
tion, at least one of them represents an optimal solution. Thefeasible region de�ned by (5.1) 
onsists only of the integer points, whereas the feasible region PI,de�ned by (5.2), 
onsists of the 
onvex hull of these points.Let us re
all that solution te
hniques for ILP: solving 
ombinatorial optimization problems
an be a di�
ult task. The di�
ulty arises from the fa
t that unlike linear programming, forexample, whose feasible region is a 
onvex set, in 
ombinatorial problems, one must sear
h alatti
e of feasible points to �nd an optimal solution. Thus, unlike linear programming where,due to the 
onvexity of the problem, we 
an exploit the fa
t that any lo
al solution is a globaloptimum, integer programming problems have many lo
al optima and �nding a global optimumto the problem requires one to prove that a parti
ular solution dominates all feasible points byarguments other than the 
al
ulus-based derivative approa
hes of 
onvex programming.54



Chapter 5. Integer Linear Programming Approa
hAt least, there are three di�erent approa
hes for solving integer programming problems, al-though they are frequently 
ombined into "hybrid" solution pro
edures in 
omputational pra
ti
e.They are:
• Enumerative te
hniques: the simplest approa
h to solving a pure integer programmingproblem is to enumerate all �nitely many possibilities card(PI). However, due to the"
ombinatorial explosion" resulting from the parameter "size", only the smallest instan
es
ould be solved by su
h an approa
h. The most 
ommonly used enumerative approa
h isthe bran
h and bound method.
• Relaxation and de
omposition te
hniques: Relaxing the integrality restri
tion is not theonly approa
h to relaxing the problem. An alternative approa
h to the solution of integerprogramming problems is to take a set of "
ompli
ating" 
onstraints into the obje
tivefun
tion (with �xed multipliers that are 
hanged iteratively). This approa
h is knownas Lagrangian relaxation. By removing the 
ompli
ating 
onstraints from the 
onstraintset, the resulting sub-problem is frequently 
onsiderably easier to solve. The latter is ane
essity for the approa
h to work be
ause the subproblems must be solved repetitivelyuntil optimal values for the multipliers are found.
• Cutting planes approa
hes based on polyhedral 
ombinatori
s: The underlying idea is to re-pla
e the 
onstraint set of an ILP problem by an alternative 
onvexi�
ation of the feasiblepoints and extreme rays of the problem. H. Weyl (1935) established the fa
t that a 
onvexpolyhedron 
an alternatively be de�ned as the interse
tion of �nitely many halfspa
es oras the 
onvex hull plus the 
oni
al hull of some �nite number of ve
tors or points. Originalproblem formulation are in rational numbers, it implies the existen
e of a �nite system oflinear inequalities whose solution set 
oin
ides with the 
onvex hull of the integer points in

PF. Thus, if we 
an list the set of linear inequalities that 
ompletely de�ne the 
onvexi�-
ation of PF, then we 
an solve the integer programming problem by linear programming.Gomory derived a "
utting plane" algorithm for integer programming problems.The 
omplexity of these methods and many other fa
ts make a general ILP problem a NP-
omplete one [104℄; yet many large instan
es of su
h problems 
an be solved. This, however,requires the sele
tion of a stru
tured formulation and no ad-ho
 approa
h [27℄. More detailson how to formalize several kind of 
onstraints that 
an be used for s
heduling problems aregiven by Gebotys et al. [47℄, Kästner et al. [65℄, and Zhang [117℄. We will adapt some of theseformulations to our problem.5.2 Integer Linear Programming Approa
hesLet us re
all that we have to resolve the following system of dis-equations in integer values:
{

ti − tj 6= d k
i,j i, j ∈ T

ti ≥ 0
(5.3)while minimizing the total laten
y maxi(ti + pi).The reservation tables s
heduling 
an easily be formalized as an Integer Linear Programmingproblem (ILP) using standard 
oding te
hniques.We propose two ILP-formulations: one using a standard 0/1 en
oding that we optimize forour problem, and the se
ond one using the �Big-M� tri
k. Before this, let us �x some notations.55



Chapter 5. Integer Linear Programming Approa
h5.2.1 NotationsWe use the following notations: xi,j is a binary variable asso
iated with task i where xi,j = 1 ifand only if task i is s
heduled at the jth 
lo
k 
y
le. The indi
es j go from 0 to H, a maximal�horizon� for the s
hedule. We 
an easily have su
h upper bound as the pi are inputs of theproblem. In fa
t, one 
an set H to ∑

i pi. The variable ti is the starting date of task i, R theset of available resour
es, Rr the set of tasks that use the resour
e r, and di,r the time step 16(relative to the beginning of the task) at whi
h the task i uses the resour
e r.5.2.2 Standard 0/1 En
odingA standard way of expressing our s
heduling problem is the following. Fix H, the maximals
hedule H, to an upper bound for the optimal laten
y. As explained, we 
an �x H to ∑

i pior, better, to the laten
y of the solution found by the greedy heuristi
 GS. Then, minimize thes
hedule laten
y L subje
t to the following 
onstraints (in addition to the fa
t that all variablesare integers and the xi,j are 0/1 variables):
ti =

H−pi
∑

j=0

j ∗ xi,j ∀i ∈ [1 . . . n] (5.4)
0 ≤ ti ≤ L− pi ∀i ∈ [1 . . . n] (5.5)

H−pi
∑

j=0

xi,j = 1 ∀i ∈ [1 . . . n] (5.6)
∑

i∈Rr

xi,(t−di,r) ≤ 1 ∀r ∈ R, ∀t ∈ [0 . . . H] (5.7)The n equalities in (5.4) de�ne the starting dates ti as fun
tions of the xi,j binary variables. Theinequalities (5.5) express the laten
y to be minimized. For ea
h task i, the equality (5.6) guar-antees that i is exe
uted exa
tly on
e. Finally, the inequalities (5.7) express resour
e 
onstraintsfor ea
h resour
e r ∈ R. On
e the variables ti are available � through the 
onstraints (5.4) � thedependen
e 
onstraints (if any) are naturally expressed as inequalities tj − ti ≥ δi,j.This ILP formulation, like the previous greedy heuristi
, 
an be used before resour
eallo
ation: we have only to repla
e the right-hand side of the inequalities (5.7) bythe number of available resour
e of type r.5.2.3 0/1 Simpli�ed En
odingOne reason for an ILP solver to be slow for the previous standard 0/1 formulation is the presen
eof the 
onstraints (5.4) whi
h have large 
oe�
ients, espe
ially when the horizon H is large. Toe�
iently solve the s
heduling problem, it is important to use a more stru
tured formulation, anda mathemati
al analysis of the problem 
onstraints is needed to �nd su
h stru
tured formulation.Let us re
all that by 
onstru
tion, the tasks in T are data independant. Consequently, in su
h
ontext, the variables ti are needed only to express the obje
tive fun
tion in the 
onstraints (5.5),and we 
an get rid of these variables as well as the 
onstraints (5.4) and (5.5) by the following16It is possible that, in the same task i, a resour
e r is used in more than one mi
ro-task. Again, for simpli
ity,we assume that ea
h task uses ea
h resour
e at most on
e, but this may be easily generalized.56



Chapter 5. Integer Linear Programming Approa
htri
k. Instead of using the ILP solver as an optimization tool, we use it to test the feasibility ofthe following redu
ed system:
H−pi
∑

j=0

xi,j = 1 ∀i ∈ [1 . . . n]

∑

i∈Rr

xi,(t−di,r) ≤ 1 ∀r ∈ R, ∀t ∈ [0 . . . H]If the problem is feasible, it means that there is a s
hedule of laten
y H or less while, if theproblem is unfeasible, H is too small. One 
an adjust H by de
reasing it from some upperbound until a feasible problem is found, or by binary sear
h on H. The smallest H for whi
hthere is a solution is the optimal laten
y L. This multiplies the number of 
alls to the ILP solver,but ea
h 
all may be faster. In fa
t, one 
an argue that it would be better to do one 
all to theILP solver to resolve the problem de�ned by the 0/1 standard en
oding rather than multiple 
allsto resolve the previous simpli�ed formulation. This seems of 
ourse true but in general solvingILP programs with integer variables is well known as more hard than ILP programs with binaryvariables [58℄. We will show this e�e
t in the experiments.Note that, if there are dependen
es, we still need the 
onstraints (5.4) to express the depen-den
es 
onstraints, unless we use the te
hnique of Gebotys et al. [47℄, whi
h has the drawba
kof greatly in
reasing the number of 
onstraints.5.2.4 Big-M En
odingIf we use the standard 0/1 en
oding, the number of binary variables is the produ
t of the numberof tasks and the number of 
y
les needed for the whole s
hedule. However, one 
an use a moree
onomi
al en
oding: the �Big-M� method. In this formulation we repla
e ea
h dis-equation bythe four inequalities:
ti − tj 6= dk

i,j ⇔







tj − ti + (1−Xi,j).M ≥ 1− dk
i,j

ti − tj + M.Xi,j ≥ dk
i,j + 1

0 ≤ Xi,j ≤ 1where M is a large number (larger than the sum of the pi, where pi is the laten
y of task i).Unlike the usage of the Big-M as a penalization of some variables in 
lassi
 ILP problem herewe use this te
hnique to penalize an inequality. Indeed, the arti�
ial binary variables Xi,j and
M are used to ensure the disjun
tion of the two �rst inequalities.In this formulation, the number of variables is equal to the sum of the number of dis-equationsand the number of tasks, whi
h is independent of the laten
y of the s
hedule. However, the
oe�
ients in the inequalities (su
h as M) are large.

57



Chapter 5. Integer Linear Programming Approa
hCPLEX: an ILP SolverBefore reporting experimental results let us present the used ILP solver. There are many e�
ientimplementations of ILP solvers available. For instan
e, we 
an �nd the GLPK17 and Lp-Solver 18solvers, both are open-sour
e softs. In a
ademi
 area we 
an quote PIP19 an e�
ient Parametri
Integer linear programming solver. . . . For more details on dis
rete tools, the reader 
an see HansMittelmann's webpage20.In our framework, the ILP problems are solved using the CPLEX21 tool [84℄. It is the mostused tool by both a
ademi
 and industrial 
ommunities. CPLEX is a powerful 
ommer
ial toolfor solving a general linear optimization problems and also some spe
ial optimization problems:network �ow problems, quadrati
 programming problems, quadrati
 
onstrained programmingproblems and mixed integer programming (MIP) problems. In MIP problems, variables arefurther restri
ted to take integer values. CPLEX solves MIP problems using a general bran
h &
ut algorithm.The CPLEX kit o�ers three forms: 1/ an Intera
tive Optimizer whi
h is an exe
utableprogram that 
an intera
tively solve a problem given in 
ertain standard formats, 2/ a Con
ertTe
hnology whi
h is a set of JAVA, C++ and .NET 
lass libraries, and 3/ Callable Library whi
his a C library. In our experiments we have use both intera
tive Optimizer and the Callablelibrary.In addition, CPLEX allows many intera
tion and a
tions before and during the resolvingpro
ess: prepro
essing whi
h tries to simplify the problem, monitoring the iteration by givingsome log information and possibility to halt the resolution pro
ess and to re
over it after some
hanges.5.2.5 ExperimentsWe have implemented these ILP methods on the same ben
hmarks des
ribed previously in Chap-ter 4. The results are presented in Table 5.1. The third 
olumn reports the laten
y of the optimals
hedule. The runtime for the original ILP formulation given by the 
onstraints (5.4) to (5.7)is reported in the 
olumns �0/1 Standard En
oding�, with the s
hedule horizon H �xed to anupper bound for the optimal laten
y, either ∑

i pi or the laten
y given by the greedy heuris-ti
 GS, whi
h redu
es the number of variables. The 
olumn �0/1 Simpli�ed En
oding� gives theruntimes when the laten
y L and the variables ti are not expressed in the 
onstraints so the
onstraints (5.4) and (5.5) are removed. The laten
y is optimized by de
rementing H from thelaten
y obtained by the greedy heuristi
 GS, in our 
ase, GS heuristi
 gives solutions that arevery 
lose to optimal, so de
rementing H is more e�
ient than a binary sear
h. The last 
olumngives the results for the Big-M method.These results show that the �rst 0/1 Standard En
oding method is the slowest. This is dueto the large number of unknowns. The Big-M method is faster for small problems, when thesolver time is dominated by the time to set up the 
onstraints. However, it gives running timesof the same order of magnitude as the se
ond 0/1 standard en
oding method.For some paradoxi
al 
ases, in
reasing the horizon (and hen
e the number of unknowns)a
tually redu
e the running time. This is probably due to the well-known fa
t that ILP solvers17A GNU Linear Programming solver. Available at http://www.gnu.org/software/glpk/18A GNU Linear Programming solver. Available at http://www.
s.sunysb.edu/~algorith/files/linear-programming.shtml19Available at http://www.prism.uvsq.fr/~
edb/bastools/piplib.html20Available at http://plato.asu.edu/ben
h.html.21http://www.ilog.
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Chapter 5. Integer Linear Programming Approa
hTest µT Opt. S
hed. ILP formulations
0/1 Standard En
oding 0/1 Simpli�ed En
oding Big-M

H set to P

pi H set by GS initial H set by GS
ss1 15 5 0.19s 0.13s 0.2s 0.06s
ss11 15 4 0.21s 0.14s 0.22s 0.08s
ss12 17 5 0.24s 0.22s 0.21s 0.07s
ss2 32 6 0.91s 0.95s 0.77s 0.27s
ss3 27 9 1.09s 0.67s 0.3s 2.6s
ss5 9 5 0.13s 0.29s 0.17s 0.09s
ss6 12 4 0.26s 0.13s 0.18s 0.1sja
1 19 6 0.36s 0.14s 0.13s 0.07sja
2 82 22 4' 42s 7,32s 1.83s 5.52sja
3 97 19 2' 02s 3,47s 2.57s 6.2srasm1 9 5 0.1s 0.09s 0.15s 0.06swss3 11 4 0.21s 0.15s 0.18s 0.08swss31 11 6 0.26s 0.13s 0.19s 0.1swss32 11 4 0.24s 0.13s 0.16s 0.12swo
1 13 5 0.18s 0.12s 0.14s 0.07swo
2 9 4 0.21s 0.13s 0.16s 0.1swss1 44 17 1.3s 0.8s 1.26s 0.5swss11 44 16 1.1s 0.54s 0.75s 0.3swss2 23 9 0.25s 0.42s 0.62s 0.07swss12 44 16 1.13s 2.75s 0.83s 0,23swmt22 31 13 0.6s 0.33s 0.25s 0.12s
ss21 32 10 1' 34s 4.64s 0.48s 1' 57sTable 5.1: S
heduling Results with the Di�erent ILP Formulations.are sensitive to the variables and 
onstraints ordering. These variations are parti
ularly visiblefor small runtimes.The remaining version (0/1 Simpli�ed en
oding) gives the best running times for 
omplexproblems, whi
h are the most important for pra
ti
al appli
ations.5.3 Con
lusionWe have presented two stru
tured ILP formulations to resolve the reservation tables s
hedulingproblem: a standard 0/1 en
oding that we have simpli�ed and an en
oding using a Big-M tri
k.The �rst proposed en
oding 
an be generalized to support problems of resour
e-
onstraineds
heduling even when tasks are dependent. Furthermore, this s
heduling solution 
an be donebefore resour
e assignation.The ILP-based s
heduling optimization are NP-
omplete. This is of 
ourse true in generalbut, in our 
ontext we have relied on two fa
ts. Firstly, let us re
all that by 
onstru
tion, wedeal with problems that size are relatively small (the size of a front). Se
ondly, the adopted ILPformulation uses only binary variables and it is well known that solving integer linear programswith just binary variables is easier than solving ILP programs with large integer ones [58℄.The experiments have shown that the runtimes for all formulations are su�
iently a

eptable,at least for our ben
hmarks, in 
ontrast to the high exponential theoreti
 
omplexity of the ILP-based algorithms. But, the 0/1 Simpli�ed en
oding version gives the best running times for
omplex problems, whi
h are the most important for pra
ti
al appli
ations.
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Chapter 6Bran
h-and-Bound-Based Longest-PathComputation SolutionThe resour
e-
onstrained s
heduling formulation, presented in Chapter 4, will be used here todevelop another pra
ti
able s
heduling alternative to the ILP one. In this 
hapter, an exa
talgorithm based on a bran
h-and-bound te
hnique is developed as well as some te
hniques whi
hare used to improve its runtime. Finally some experiments are reported and 
ommented.Despite the NP-
ompleteness of the de�ned s
heduling problem, we look forward rea
hingan algorithm with a better pra
ti
al temporal 
omplexity. Indeed, we rely on the features of thebran
h-and-bound approa
h as a meta-method whi
h 
an be a more adjustable method than theinteger linear program te
hniques.6.1 General Introdu
tionBran
h-and-Bound is a general algorithmi
 meta-method for �nding optimal solutions of variousoptimization problems, espe
ially in dis
rete and 
ombinatorial optimization. The method was�rst proposed by Land and Doig in 1960 for integer linear programming 
ontexts [70℄ and byMurty et al. in 1962 in an unpublished paper at Case Institute of Te
hnology: "The TravelingSalesman Problem: Solution by a Method of Ranking Assignments" in the 
ontext of a 
ombi-natorial problem. The bran
h-and-bound approa
h is used for a number of NP-hard problems,su
h as: knapsa
k problem, integer programming, nonlinear programming, traveling salesmanproblem, quadrati
 assignment problem, maximum satis�ability problem and s
heduling prob-lems. . . .The essen
e of the bran
h-and-bound approa
h is the following observation: at any nodein the total enumeration tree of the solution spa
e, if one 
an show that the optimal solution
annot o

ur in any of its des
endents. Thus, there is no need to 
onsider those des
endentnodes. Hen
e, one 
an "prune" the tree at that node. If we 
an prune enough bran
hes ofthe tree in this way, we may be able to redu
e it to a 
omputationally manageable size. Notethat, we are not ignoring those solutions in the leaves of the bran
hes that we have pruned, wehave left them out of 
onsideration after we have made sure that the optimal solution 
annotbe at any one of these nodes. Thus, the bran
h-and-bound approa
h is not just a heuristi
, orapproximating, pro
edure, but it is an exa
t optimizing pro
edure. However, one 
an also useit as a basis of various heuristi
s. For example, one may wish to stop bran
hing when the gapbetween the upper and lower bounds be
omes smaller than a 
ertain threshold.A bran
h-and-bound algorithm requires two tools: the Bran
h and the Bound pro
edures;60



Chapter 6. Bran
h-and-Bound-Based Longest-Path Computation Solutionhen
e its name. In the bran
h pro
edure, the solution spa
e is split into disjoint subsets (feasiblesubregions) so that no solution will be lost. The pro
edure is repeated re
ursively in all thesubregions and all produ
ed subregions naturally form a tree stru
ture, 
alled sear
h tree orbran
h-and-bound-tree. Its nodes are the 
onstru
ted subregions. The bounding tool, is a fastway of �nding upper or lower bounds for the optimal solution within a feasible subregion.Now, how 
an we make sure that the optimal solution 
annot be at one of the des
endents of aparti
ular node on the tree? It is always possible to �nd a feasible solution to a 
ombinatorial ordis
rete optimization problem. If available, one 
an use some heuristi
s to obtain a "reasonablygood" solution. Let us 
all this solution the in
umbent. Then at any node of the tree, if we 
an
ompute a "bound" on the best possible solution that 
an be expe
ted from any des
endent ofthat node, we 
an 
ompare the "bound" with the obje
tive value of the in
umbent. If what wehave on hand, the in
umbent, is better than what we 
an ever expe
t from any solution resultingfrom that node then it is safe to stop bran
hing from that node. In other words, we 
an dis
ardthat part of the tree from further 
onsideration.The e�
ien
y of the method depends 
riti
ally on many fa
ts: 1/ the e�e
tiveness of thebran
hing and bounding algorithms used; bad 
hoi
es 
ould lead to repeated bran
hing, withoutany pruning, until the sub-regions be
ome very small. In that 
ase the method would be redu
edto an exhaustive enumeration of the domain, whi
h is often impra
ti
ally large, 2/in addition,the e�
ien
y depends also on the good formulation of the obje
tive fun
tion and on how mu
hthe in
umbent solution is tightened 
ompared to the optimal solution.This has been a brief introdu
tion to the bran
h-and-bound approa
h. For a more detaileddis
ussion, the reader is referred to Chap. 9 and 10 of [81℄.It should be 
lear that, like dynami
 programming, we 
annot talk about a bran
h-and-boundalgorithm that 
an solve all dis
rete and 
ombinatorial optimization problems by a uniformmodel. There is no universal bounding algorithm that works for all problems. Indeed, bran
h-and-bound itself is just a meta-algorithm, whi
h 
an be de
lined in many di�erent dire
tions.A

ording to the general purpose of this approa
h, in what follow, we design a s
heduling algo-rithm with a spe
ially designed bran
hing and bounding algorithms looking forward to a betteralternative to the ILP algorithms.6.2 An Exa
t Bran
h-and-Bound SolutionLet us re
all that we have to resolve this system of dis-equations in integer values:
{

ti − tj 6= d k
i,j i, j ∈ T (6.1)while minimizing the total laten
y maxi(ti + pi). We propose the following strategy, whi
hprogressively builds a sear
h tree of subproblems:

• At the root, we start with the empty system (for data-independent tasks);
• At ea
h node N of the tree stru
ture, we deal with a new 
onstraint (dis-equation e ofthe given system). It is 
lear that the dis-equation e 
an be seen as the disjun
tion of twoinequalities 22:22Note that our framework will work the same if instead of a forbidden distan
e (i.e., a single value) we expressa forbidden interval, e.g., when a resour
e is used in both tasks for several 
onse
utive 
y
les.61
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ti − tj 6= dk

ij ⇔







e1 : ti − tj ≤ dk
ij − 1or

e2 : ti − tj ≥ dk
ij + 1hen
e we perform a separation by introdu
ing the inequality e1 (resp. e2) into the left 
hild(resp. right 
hild) of N .It is easy to prove that this bran
hing is legal. Indeed, the inequalities e1 and e2 form twodisjoint sets e1 ∩ e2 = ∅ and their union is e1 ∪ e2 = e, whi
h means that we are neitherlosing nor dupli
ating any solution in bran
hing.Ea
h leaf of the tree 
orresponds to a system of inequalities whose solutions are solutions tothe system of dis-equations (6.1). Conversely, any solution to the system (6.1) is solutionto the system de�ned at a leaf, for one and only one leaf.

• During the resolution pro
ess, we maintain the laten
y of the best s
hedule 
omputed sofar. At the beginning, we 
an set this value Lbest to ∑

i pi (whi
h is the laten
y of thesequential exe
ution of the tasks). Lbest is the in
umbent solution.
• At ea
h node N , we treat the system de�ned by the inequalities introdu
ed by all nodesbelonging to the bran
h from the root to this node N . Ex
ept for the leaves, a s
hedulefor this system is a partial s
hedule; it is not a s
hedule for the whole system (6.1) as itrespe
ts only part of the 
onstraints. However, the laten
y Llo
al of an optimal s
hedule forthis partial system is a lower bound for the laten
y of any s
hedule for the system de�nedat any leaf of the subtree below N . The pruning 
an o

ur in both possible situations:1. If Llo
al ≥ Lbest, the subtree below N is not 
onstru
ted as it will never lead to abetter 
omplete solution.2. The system may not be feasible; in this 
ase, the subtree below N is not 
onstru
tedeither.
• At a leaf, we have exhausted all the 
onstraints, so we 
an now 
ompute an a
tual solution.If its laten
y is better than Lbest, then Lbest is updated.
• The algorithm stops when all the bran
hes are explored; the whole spa
e of solutions hasbeen explored and Lbest is returned as the optimum solution.note It is important to note that this strategy 
an be applied even if, at the root the systemis not empty but 
ontains some other 
onstraints su
h as data dependen
e between tasks of theform tj − ti ≥ δi,j (
lassi
al pre
eden
e 
onstraints). Therefore, our bran
h-and-bound method
an deal with data-dependent tasks too even though we do not primarily need it in our 
ontext(by 
onstru
tion we get independent tasks when the symboli
 s
hedule is performed). noteThe 
ore of the algorithm is the evaluation and eventual pruning of a node. We now explainthis operation in details.6.2.1 Finding the Lo
al BoundWhen the �bran
h� operation is done (i.e., on
e e1 or e2 is sele
ted) at ea
h node of the treestru
ture, we have to examine and resolve a system of l inequalities, where l is the level of thenode. This system 
an be normalized as follows:

tj − ti ≥ wi,j (6.2)62



Chapter 6. Bran
h-and-Bound-Based Longest-Path Computation Solutionwhere wi,j ∈ Z is the maximal value of the right-hand sides of all inequalities of type tj − ti ≥ . . .introdu
ed so far. The values wi,j are integers of arbitrary sign. This problem 
an be modeledby a weighted dire
ted graph G = (V,E,w), with one vertex for ea
h i and an edge from i to jwith weight wi,j for ea
h inequality. Note that G may have 
y
les. This model is known, in thes
heduling literature, as a task graph [46℄.In this formalism, the key point is that an optimal s
hedule is obtained by 
omputing thesimple paths of maximal weight in G. Let us see why. First, note that if we sum the inequalities
tj− ti ≥ wi,j along a 
y
le, we obtain an inequality of the form 0 ≥W , where W is the weight ofthe 
y
le. Hen
e, if G has a 
y
le of positive weight then the problem has no solution. Conversely,if G has only nonpositive 
y
les, we 
an de�ne, for ea
h vertex i, the maximal weight ai of a pathleading to i (an empty path has weight 0). This is due to the fa
t that following a 
y
le 
annotin
rease the weight of a path, hen
e all maximal weight paths are simple and ea
h ai is �nite. Asthe maximal weight of a path leading to j is at least the weight of any path going �rst through i,we have aj ≥ ai + wi,j. Therefore, the ai are a solution of the problem. Furthermore, any non-de
reasing obje
tive fun
tion of the ti (for example the laten
y maxi(ti + pi)) is minimized by
ai. Indeed, for any solution ti, it is easy to see that ti is at least the weight of any path leadingto i (make an indu
tion on the path length), thus ti ≥ ai. This formulation 
an be simpli�ed byintrodu
ing an initial task, with an edge of weight 0 from it to all other tasks, and a terminaltask, with an edge of weight pi from any task i to the terminal task. The laten
y is now givenby the maximal weight of a simple path from the initial to the terminal task.There are many algorithms for �nding paths of maximal23 weights in a graph [30℄. We 
oulduse the Bellman-Ford algorithm or Floyd's algorithm dire
tly at ea
h node of the BAB tree.Moreover, we 
an use the fastest Dijkstra's algorithm if all edge weights are nonpositive. Butwe 
an do better: we 
an redu
e the 
omplexity of the method by noti
ing that, at ea
h stageof the BAB algorithm, we add a new edge to a graph in whi
h some information on paths ofmaximal weights has already been 
omputed. What we need then is an in
remental version ofmaximal-weight paths algorithm. In the following, a

ording to our 
ontext we propose twoalgorithms based respe
tively on Floyd's and Dijkstra's algorithm.6.2.1.1 Floyd-based AlgorithmFloyd's algorithm [42℄ 
omputes, with 
omplexity O(|V |3), the relation of a

essibility in agraph G = (V,E,w) by 
omputing, for ea
h 
ouple of verti
es (i, j), the maximal weight ai,j ofa path from i to j. This algorithm assumes that G has no 
y
le with positive weight (otherwisethere is a path with in�nite weight in the graph), but it 
an be modi�ed to also dete
t positive
y
les, in whi
h 
ase the system, de�ned by (6.2), has no solution. Allison et al. [4℄ modi�edFloyd's algorithm to produ
e a dynami
 algorithm, but in their variant, at a given stage in thedynami
 algorithm, they introdu
e a new vertex plus a set of its ar
s -to and from it-. A

ordingto our 
ontext, we need just an algorithm whi
h updates the maximal-weight paths matrix, whenadding at ea
h stage, just one new ar
.To get this algorithm, let us re
all that, at a node of the BAB pro
ess, we have to 
omputethe maximal weight a′i,j of a path from i to j (for any i and j) in the graph G

′

= (V,E ∪{e}, w),where G = (V,E,w) is the graph at its parent node and the edge e = (x, y) with weight wx,y = w0represents the 
onstraint to be added to this node. In G, we have already 
omputed the maximalweight ai,j of a path from i to j for any i and j. It remains to 
onsider paths that go through e.23In the literature, these algorithms are often presented as �nding paths of minimal weight. This is the same,one just have to 
hange the weight signs. Our explanations are based on maximal weight paths.63
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h-and-Bound-Based Longest-Path Computation SolutionWe �rst need to 
he
k that G′ has no 
y
le of positive weight. If this is the 
ase, this meansthat there is a 
y
le of positive weight that goes through the new edge e (from x to y) withweight w0 and then ba
k to x, in parti
ular through a path of maximal weight (in G), i.e., ofweight ay,x. Thus, G′ has a 
y
le of positive weight if and only if w0 + ay,x > 0. Otherwise, thenew a′i,j 
an be easily obtained by the relation a
′

i,j = max{ai,j , ai,x + w0 + ay,j}. Note also thatwhen w0 ≤ ax,y, the new 
onstraint is a
tually redundant and no update is ne
essary.Our Floyd-based algorithm (Algorithm 2) follows this strategy. We get the dates ti =
maxj aj,i and an evaluation of Llo
al as maxi ti, in O(|V |2) instead of O(|V |3). At the rootof the BAB pro
ess, we set all a(i, j) to ∞, as the system is empty -no 
onstraint-.One 
an noti
e that this algorithm don't use the same prin
iple as in Floyd's original algo-rithm, we 
all it Floyd-based as it uses the same de�nition of the matrix and resolves the sameproblem.Algorithm 2: Floyd-based In
remental Algorithm.Data: G = (V, E, w), Floyd's matrix a for G, e = (x, y, w0) edge to addbeginif w0 + ay,x > 0 thenExit; /* Elimination, no solution below */endif w0 > ax,y then/* Update is needed */for i from 1 to n dofor j from 1 to n do

ai,j = max{ai,j, ai,x + w0 + ay,j} ;endendendend6.2.1.2 Dijkstra-based In
remental AlgorithmIn this algorithm, we only 
ompute the maximal weight ti of a path leading to ea
h vertex i,instead of all ai,j for any i and j. For that, we 
ould apply the Bellman-Ford algorithm with
omplexity O(|V ||E|) but again, we 
an do better using the knowledge we have from the parentnode. We use an idea similar to Johnson's algorithm [30℄ to be able to use Dijkstra's algo-rithm [36℄, whi
h is the best known solution, by �nding an equivalent system of nonpositiveweights (reweighting).In Algorithm 3, we 
ompute the values t′i in the graph G
′

= (V,E∪{e}, w), de�ned as below.We assume that the ti for G are available from the parent node. Again, we need to solve twoproblems. First, we need to 
he
k the feasibility of the problem, i.e., to 
he
k that no positive
y
le is 
reated when adding e. In a se
ond time, if the problem is feasible, we need to 
omputethe new solution t′i.Let us �rst explain the general me
hanism we use in this algorithm to be able to use Dijkstra'salgorithm. When all edge weights w in a graph G = (V,E,w) are nonpositive, we 
an �nd a pathof maximal weight from a sour
e s to ea
h vertex i ∈ V by running Dijkstra's algorithm. If G hasa positive weight, we will �rst modify the edge weights w into nonpositive weights wr, thanks toa well-
hosen reweighting fun
tion r (a fun
tion that assigns an integer ri to ea
h vertex i) su
hthat wr
i,j = wi,j + rj − ri ≤ 0. It is easy to see that G = (V,E,w) has a 
y
le of positive weightif and only if Gr = (V,E,wr) has a 
y
le of positive weight be
ause the 
y
le weights are not64
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hanged by reweighting. Furthermore, the weight wr(P ) in Gr of a path P from i to j is equalto w(P ) + rj − ri.Using this reweighting me
hanism, we get an in
remental algorithm (Algorithm 3) faster thanAlgorithm 2, though more 
ompli
ated. Again, we �rst 
he
k that the problem is feasible andthen, if it is, we 
ompute the new solution t′i.FeasibilityWe use the same argument as for the Floyd-based in
remental algorithm. The graph G
′

=
(V,E ∪ {e}, w), where the weight of e is w0, has a 
y
le of positive weight if and only if it has a
y
le of positive weight that goes through e, sin
e G = (V,E,w) has no 
y
le of positive weight.As already mentioned, this is equivalent to the fa
t that w0 +ay,x > 0 where ay,x is the maximalweight of a path in G from y to x.To 
ompute ay,x, thanks to Dijkstra's algorithm. We pro
eed as follows: remember that weare given ti, for all i ∈ V , the maximal weight of a path in G leading to i. These values aresu
h that, for ea
h edge (i, j) ∈ E, tj − ti ≥ wi,j, i.e., they satisfy the system of 
onstraintsfor G. Let us de�ne Gr with r = −t. We have wr

i,j = wi,j + rj − ri = wi,j − tj + ti ≤ 0. We 
antherefore 
ompute in Gr, using Dijkstra's algorithm, the maximal weight ar
y,z of a path from yto any rea
hable vertex z. We then obtain ay,z thanks to the relation:

ay,z = ar
y,z + ry − rz, i.e., ay,z = ar

y,z + tz − ty.We then 
on
lude that the system of 
onstraints de�ned by G′ is feasible if and only if
w0 + ar

y,x + tx − ty ≤ 0 (pi
k z = x in the previous relation) or x is not rea
hable from y in G(i.e., ay,x = ar
y,x = −∞).New Solution t′iIf the problem is feasible, we still have to 
ompute t′i the maximal weight of a path leading to iin G

′ . We 
an do this by adding a �
tive sour
e in V , i.e., a new vertex s in V and for ea
h i in Va new edge (s, i) of weight 0. We 
an then use Dijkstra's algorithm in G′ if G′ has nonpositiveweights. If not, we have to perform a reweighting. Unfortunately, this time, −t may not be anadequate reweighting fun
tion be
ause of the new edge e of weight w0, if tj − ti < w0. Howeverit is possible to �nd a reweighting fun
tion r thanks to the values ay,i we just 
omputed duringthe feasibility test. Indeed, 
hoose K su
h that K ≤ ay,j − tj for all j rea
hable from y and, if xis not rea
hable, K ≤ −tx − w0. We 
laim that the fun
tion r de�ned by
ri =

{

−ay,i if i is rea
hable from y
−ti −K otherwiseis a valid reweighting, i.e., is su
h that wi,j + rj − ri ≤ 0 for ea
h edge (i, j), in
luding the newedge e = (x, y). (Note: for s, we let ts = 0. Then, for any vertex i in G, we have ti ≥ ts + ws,isin
e ti ≥ 0 and ws,i = 0. We also let rs = −ts −K as for any vertex not rea
hable from y.)Proof. Consider an edge (i, j) ∈ E ∪ {e}. Only three situations are possible: neither i nor j arerea
hable from y, both i and j are rea
hable from y, or j is rea
hable from y but not i.

• In the �rst 
ase, (i, j) 6= e and wr
i,j = wi,j − tj −K + ti + K = wi,j + ti − tj ≤ 0.

• In the se
ond 
ase, wr
i,j = wi,j − ay,j + ay,i ≤ 0 by de�nition of ay,i and ay,j as maximalpath weights from y to i and from y to j.65
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• In the last 
ase, wr

i,j = wi,j−ay,j +ti+K. If (i, j) 6= e then wr
i,j ≤ −ay,j +K+tj, otherwise

wr
i,j = w0 + tx + K. In both 
ases, wr

i,j ≤ 0 by 
hoi
e of K.Therefore r is a valid reweighting.We 
an then 
ompute, using Dijkstra's algorithm, the maximal weight t′r of a path from sto any vertex i in the graph G′r and we �nally go ba
k to t′i with the relation t′i = t′ri − ri + rs.Note that, as in our Floyd-based in
remental algorithm, we 
an add a preliminary test (ty ≥
tx + w0 in Algorithm 3) to minimize 
omputations when it is possible to determine that the new
onstraint is redundant for the previously-
omputed solution (ti)i∈V . However, the edge shouldbe nevertheless added to the graph as it may not be redundant for the 
onstraints themselves,but just for this parti
ular solution.6.2.2 ComplexityDijkstra's stati
 algorithm has a 
omplexity O(n2), for n = |V | verti
es and m = O(n2) edges.However, if one implements its priority queue with a spe
i�
 data stru
ture like a binary heap(resp. Fibona

i heap), the 
omplexity is redu
ed to O((n + m) lg n) (resp. O(n lg n + m)).Algorithm 3, whose 
ore is Dijkstra's stati
 algorithm, has the same 
omplexity. Moreover,
ompared to the Floyd-based in
remental algorithm whi
h requires O(n2) memory, only O(n)memory is needed here. Thus, Algorithm 3 is faster and less memory 
onsuming. In addition,this algorithm 
an be speedup by repla
ing the se
ond 
all to Dijkstra's algorithm by one ofits dynami
 versions re
ently published (the most important are the ones of Ramalingam andReps [95℄ and Frigioni et al. [43℄). The �rst 
all to Dijkstra's algorithm 
an't be repla
ed by adynami
 version as the sour
e may 
hange at ea
h stage.In the worst 
ase, when no elimination has been done, we have to examine ea
h node of theBAB tree stru
ture. Thus, 2m nodes, where m is the number of dis-equations. At ea
h node, weupdate Floyd's matrix in O(|V |2) (resp. we update the maximal weight ti, using Dijkstra-basedin
remental algorithm in O(n lg n+m). Hen
e, the worst-
ase 
omplexity of the BAB algorithmis O(|V |2.2m) (resp. O((n lg n + m).2m)). In fa
t, as an enumerative method, it is 
lear thatthe bran
h-and-bound method s
ans all or part of the solution spa
e. In general, this leads tosu
h exponential theoreti
al 
omplexity. However, in pra
ti
e, as we will see in the experiments,many bran
hes are not explored and the algorithm is mu
h faster, ex
ept for a few pathologi
al
ases.6.2.3 Speeding up the BAB AlgorithmAs dis
ussed in the previous se
tion, the BAB algorithm 
omputational 
omplexity 
an be veryhigh. For this reason, we try to fo
us on some fa
ts that 
ould redu
e the pra
ti
al 
omplexity ofthe designed algorithm. Let us re
all that improving any BAB-based algorithm e�
ien
y leadsus to 
onsider some 
riti
al fa
ts, as:1. the 
hoi
e of the bran
hing and bounding algorithms so that prunings holds early;2. how mu
h the initial best solution (in
umbent solution) is 
lose to the optimal solution;3. obje
tive fun
tion formulation. Nevertheless, in our 
ontext, it is di�
ult to intervenesu

essfully here. 66
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remental Algorithm.Data: ti, the maximal weight of a path leading to i in G = (V, E, w), e = (x, y, w0) edge to addResult: t′i, the maximal weight of a path leading to i in G
′

= (V, E ∪ {e}, w).beginif ty ≥ tx + w0 thenReturn {ti}i∈V ; /* add e but no update needed */else
ri = −ti for all i ∈ V ;
{ar

y,z}z∈V ← DIJKSTRA(Gr, y) ;
ay,z = ar

y,z + tz − ty for all z ∈ V ;if w0 + ay,x > 0 thenExit; /* Elimination, no solution below */endadd s in V , ts = 0, ∀i, add (s, i) in E, ws,i = 0;de�ne K su
h that K ≤ ay,j− tj for all j with ay,j < +∞ and K ≤ −tx−w0 if ay,x = +∞;
ri = −ay,i for all i ∈ V rea
hable from y; ri = −ti −K otherwise;
{a′r

s,i}i∈V ← DIJKSTRA(G′r, s) ;Return {t′i = a′r
s,i − ri + rs}i∈V ;endendFirst, let us examine the se
ond possibility. Re
all, that at the BAB pro
ess initialization,we set the Lbest value to ∑

i pi. If one 
an have a better bound than ∑

i pi, it will avoid buildingsome subtrees until a better lower bound is found. The GS heuristi
 (see Se
tion 4.5) gives as
hedule that seems quite 
lose to the optimum. Its quality is unfortunately without guarantee,but it 
an be used as the Lbest value initialization. See Se
tion 6.2.4 for an evaluation of thee�e
t of this initialization.It remains to intervene in the �rst possibility. Indeed, as mentioned earlier, our BAB al-gorithm uses two tests to avoid building a subtree. The �rst one 
he
ks the feasibility of theproblem, i.e., that no positive 
ir
uit is 
reated when adding a new 
onstraint (this is done bythe test w0 + ay,x > 0 in both the Floyd-based in
remental algorithm and the Dijkstra-basedin
remental algorithm as seen previously). The se
ond one intervenes when a high lower boundis found (Llo
al ≥ Lbest). Thus, for improving the BAB runtime, we fo
us on these two fa
ts.In the following, as we will talk both about undire
ted and dire
ted graphs, we use thefollowing terminology to avoid ambiguities: we use edge and 
y
le for undire
ted graphs, andar
 and 
ir
uit for dire
ted ones.Let us now 
onsider a strategy that makes positive 
ir
uits appear as soon as possible. Wedid some experiments showing that the BAB runtime highly depends on the order in whi
h
onstraints are examined. With some random permutations on the 
onstraints, we observe insome 
ase that the runtime de
rease by a fa
tor of 20. For this reason, we designed severalheuristi
s whi
h arrange the 
onstraints to improve the BAB runtime. This reordering 
an bedone stati
ally as well as dynami
ally:
• Stati
ally, the 
onstraints are reordered before applying the BAB algorithm. At this level,we deal with dis-equations (i.e., edges) thus, it is di�
ult to guess all existing paths, andtherefore all 
ir
uits. However, we 
an allow more time to reorder be
ause we do it onlyon
e, as a pre-pro
essing time.
• Dynami
ally, during the BAB algorithm 
oupled with the Floyd-based in
remental algo-rithm, we try to get the more 
onvenient 
onstraint. Be
ause we have more information67
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an 
hoose the 
onstraint that redu
e the�nal explored tree size.We now des
ribe four reordering heuristi
s. The �rst three are stati
 and the fourth is dynami
.6.2.3.1 Heuristi
 1This heuristi
, whi
h is based on probabilities, is a greedy one. Our goal is to try to keep thesubgraph de�ned by the 
onstraints as 
onne
ted as possible so that 
ir
uits (and maybe 
ir
uitsof positive weights) appear. This algorithm builds the list of 
onstraints by sele
ting 
onstraintssu

essively as follows: at ea
h step, we maintain a list L of verti
es that are visited, the 
riterionof sele
tion favors the 
onstraint c : ti − tj 6= di,j a

ording to the following order: a) i and jbelong to L, b) either i or j belongs to L, 
) i and j are involved in as many not-yet-treated
onstraints as possible, d) wi,j is maximal.The �rst 
riterion guarantees that at least one 
ir
uit will appear soon during the BABpro
ess. The se
ond and the third ones may promote an earlier appearan
e of 
ir
uits in thefollowing steps. The last one may in
rease the lower bound in one of the BAB bran
h below.In the worst 
ase i.e., where G has no 
y
le and ea
h vertex has no more than one neighbor,the 
omplexity of this heuristi
 is majored by O(n3). In fa
t, this worst 
ase 
onstrains thealgorithm to verify all the above 
riterions6.2.3.2 Heuristi
 2In this heuristi
, we model the problem by an undire
ted graph G = (V,E) whi
h is obtained byrepresenting ea
h dis-equation ti − tj 6= di,j by an edge (i, j). At start, edges are not weighted.We build a basis of 
y
les of G using a standard spanning tree algorithm. A spanning tree
lassi�es edges in two 
ategories: tree edges and non-tree edges. Ea
h non-tree edge de�nes, withthe tree edges, a unique 
y
le. For ea
h su
h 
y
le C = (v1, v2, ..., vp, v1), we 
ompute its weightin both dire
tions v1, v2  v1 and v1, vp  v1, giving to the edge (vi, vi+1) the weight 1 + di,i+1or 1−di,i+1 depending whether the edge is traversed from vi+1 to vi or in the opposite dire
tion.If at least one of these 
y
le weights is positive, the 
y
le is 
hosen.These positive-weight 
y
les are sorted in an in
reasing order a

ording to their length (num-ber of edges). Then, the 
onstraint list is built as follows: the �rst 
onstraints are the 
onstraintsof the �rst 
y
le, then we add the 
onstraints of the se
ond 
y
le, ex
ept those already treatedin the �rst one, et
. The list is 
ompleted by the 
onstraints that do not belong to any of thesepositive-weight 
y
les.This heuristi
 mainly uses a spanning tree algorithm and a sorting algorithm. A spanningtree of a given graph 
an be built thanks to the depth-�rst sear
h (DFS) algorithm. With agood implementation, DFS algorithm has a 
omplexity in O(n+m). Using a fast sort algorithm(su
h qui
ksort or heapsort), the sort 
an be a
hieved in O(q lg q), where q is the 
ardinal of thefound basi
 
y
les set. Thus, the 
omplexity of this heuristi
 is O((q lg q) + (n + m)).6.2.3.3 Heuristi
 3Another possibility is to represent ea
h dis-equation by one of its two ex
lusive ar
s. Duringthe BAB algorithm ea
h dis-equation leads to two ar
s, one with weight di,j + 1, and the otherwith weight 1− di,j. We 
hoose to represent ea
h dis-equation by its nonnegative ar
. Thus, inthe resulting dire
ted graph, all eventual 
ir
uits are positive. Then, we do as in heuristi
 2, weenumerate 
ir
uits. Here, the non-tree edges are 
lassi�ed into forward, a
ross, and ba
k ar
s,68
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k ar
s are part of 
ir
uits. Hen
e, the 
onstraint list is built by the list of 
onstraints
omposing ea
h 
ir
uit followed by the remained 
onstraints.It 
an happen that both edges of a parti
ular dis-equation (those whose weight is 0, 1, or −1)are nonnegative. In this 
ase, the problem is to 
hoose one of them. For this, we delay dealingwith this kind of dis-equations after building the graph of all others 
onstraints. On
e the graphis built, for ea
h parti
ular dis-equation, we add the ar
 that may 
reate a 
ir
uit, if not we
hoose arbitrarily one of them. The Roy-Warshall's algorithm, whi
h 
omputes the a

essibilityrelation, is used for 
ir
uit dete
tion.Noti
e that this heuristi
 
onsiders 
ir
uits that are ex
lusively 
omposed of nonnegativear
s, hen
e, some positive 
ir
uits are ignored.Similar to heuristi
 2, this heuristi
, whose 
ore is a spanning tree algorithm and a sortingalgorithm, has a 
omplexity in O((q lg q) + (n + m)).6.2.3.4 Heuristi
 4As mentioned earlier, in a dynami
 reordering, one 
an look for the most useful 
onstraintsin
e we have a lot of information in Floyd's matrix. But a dynami
 heuristi
 is applied atea
h node of the bran
h-and-bound tree, and hen
e may have an exponential additional 
ost inpathologi
al 
ases. For this reason, we use a very simple algorithm (Algorithm 4), whi
h has alinear 
omplexity in the worst 
ase and even a 
onstant time in most 
ases. We simply 
hoosethe �rst 
onstraint that allows pruning (i.e., a subtree below is not 
onstru
ted). If no su
h
onstraint exists, we sele
t the �rst one in the list.Algorithm 4: Dynami
 Reordering Algorithm.Data: ConstraintList, a: Floyd's matrix (of the parent node)Result: c 
onstraint to addbeginfor (c ≡ (tx − ty 6= d)) in ConstraintList doif (ax,y + d ≥ 0) and (ay,x − d ≥ 0) thenreturn(�Pruning�);elseif (ax,y + d ≥ 0) thenreturn(c, �Only left subtree�, 
onstraint ty − tx ≥ 1− d);elseif (ay,x − d ≥ 0) thenreturn(c, �Only right subtree�, 
onstraint tx − ty ≥ 1 + d);endendendendreturn(�rst 
onstraint in ConstraintList, �Constru
t the two subtrees�);endIn the worst 
ase, the 
omplexity of this heuristi
 is O(n).6.2.4 ExperimentsWe have implemented the BAB algorithm with both variants and heuristi
s of reordering 
on-straints on the same ben
hmarks. Results are reported in Table 6.1. The third 
olumn (nbC)69
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onstraints (number of dis-equations), the fourth 
olumn (Opt.)gives the laten
y of an optimal s
hedule, the �fth and the seventh 
olumns (Floyd, Dijk) givethe s
heduling runtime, without reordering 
onstraints, respe
tively by the Floyd-based in
re-mental algorithm and the Dijkstra-based in
remental algorithm. The e�e
t of the reorderingheuristi
s are presented in the remaining 
olumns. As the Dijkstra-based in
remental pro
edureis better than the Floyd-based in
remental algorithm, we give only the runtimes obtained withthe heuristi
s applied to the �rst one (
olumns Dijk+H1, Dijk+H2, and Dijk+H3 for heuristi
 1,heuristi
 2, and heuristi
 3), ex
ept for the dynami
 reordering heuristi
 (
olumn Floyd+H4),whi
h 
an be applied only to the Floyd-based in
remental algorithm (as it needs Floyd's matrix).Test T nbC Opt. Floyd Floyd+H4 Dijk Dijk+H1 Dijk+H2 Dijk+H3
ss1 4 9 5 0.11 s 0.09 s < 0,01 s 0.04 s 0.04 s 0.05 s
ss11 4 6 4 0.07 s 0.06 s 0.04 s < 0,01 s 0.04 s 0.04 s
ss12 4 9 5 0.06 s 0.06 s 0.06 s 0.04 s 0.04 s 0.06 s
ss2 9 23 6 30.37 s 26.59 s 5.01 s 9.23 s 0.90 s 2.74 s
ss3 7 36 9 41.26 s 17.55 s 3.42 s 2.97 s 2.4 s 5.67 s
ss5 3 7 5 0.05 s 0.05 s 0.05 s 0.03 s 0.04 s 0.04 s
ss6 8 7 4 1.04 s 1.00 s 0.14 s 0.11 s 0.11 s 0.14 sja
1 6 7 6 0.32 s 0.28 s 0.07 s 0.05 s 0.04 s 0.04 sja
2 6 75 22 54.56 s 35.67 s 9.76 s 18.23 s 10.70 s 1' 10 sja
3 7 85 19 1' 3 s 49.29 s 8.5 s 7.42 s 9.04 s 2' 41 srasm1 3 1 5 0.01 s 0.01 s 0.03 s 0.03 s 0.03 s 0.03 swss3 5 7 4 0.1 s 0.10 s < 0,01 s 0.04 s < 0,01 s 0.05 swss31 5 12 6 0.9 s 0.87 s 0.25 s 0.14 s 0.1 s 0.16 swss32 5 6 4 0.11 s 0.10 s 0.05 s 0.03 s 0.04 s 0.05 swo
1 4 5 5 0.05 s 0.04 s 0.04 s 0.02 s < 0,01 s 0.04 swo
2 7 10 4 1.90 s 1.82 s 0.2 s 0.26 s 0.13 s 0.26 swss1 4 54 17 1.79 s 1.37 s 0.46 s 0.46 s 0.43 s 1.13 swss11 4 49 16 2.07 s 1.39 s 0.46 s 0.32 s 0.62 s 0.99 swss2 3 9 9 0.05 s 0.05 s 0.04 s 0.02 s 0.04 s 0.03 swss12 4 49 16 2.27 s 1.45 s 0.48 s 0.24 s 0.75 s 1.47 swmt22 4 24 13 0.56 s 0.52 s 0.19 s 0.23 s 0.1 s 0.34 s
ss21 9 44 10 3h 25' s 1h 20' s 15' 50 s 8' 22 s 2' 43 s 13' 16 sTable 6.1: S
heduling Results for the Various Tests on the BAB Algorithms.The analysis of the BAB algorithm runtimes shows that they are su�
iently a

eptable in
ontrast to its high exponential theoreti
 
omplexity (ex
ept for one pathologi
al 
ase, pro-gram 
ss21, presented hereafter). In addition, the results 
on�rm the fa
t that the BAB algo-rithm, using the Dijkstra-based in
remental pro
edure, is faster than the Floyd-based in
rementalpro
edure.Con
erning the reordering heuristi
s, the results show that heuristi
 1 and heuristi
 2 doimprove the runtime. But it is di�
ult to 
hoose one among them be
ause there are some
ompromises; when one improves runtime for part of the 
ases, it in
reases the runtime forthe other ones. Heuristi
 3 has the worst runtime; this result 
an be explained by the fa
tthat only positive 
ir
uits 
omposed ex
lusively of positive ar
s are taken into a

ount whilesome positive 
ir
uits, whi
h are 
omposed by a mixture of positive and negative edges, are nottaken into a

ount. The dynami
 heuristi
 (heuristi
 4) improves the runtime too, however theBAB algorithm 
oupled with the Dijkstra-based in
remental version is slightly better than thisimprovement. For the pathologi
al 
ase, the 
onstraints reordering heuristi
 2 gives the bestruntime.Table 6.2 presents the results for the BAB algorithms and heuristi
s when we initialize Lbest,the best global lower bound during the BAB pro
ess, to the laten
y of the s
hedule obtainedby the GS heuristi
. For ea
h algorithm, the results give the per
entage of improvement due tothis better initialization. Only signi�
ative improvements (more than 5%) are given. The results70
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h-and-boundFloyd Floyd+H4 Dijk Dijk+H1 Dijk+H2 Dijk+H3
ss1 � � � � � �
ss11 38 % 32 % � 10 % 11 % �
ss12 23 % 22 % 15 % 13 % 8 % 16 %
ss2 5 % 5 % 16 % 22 % 16 % �
ss3 7 % 11 % � � � �
ss5 7 % � 9 % 16 % � �
ss6 � � � � � �ja
1 14 % 12 % � � 18 % 15 %ja
2 � � � � � �ja
3 � � � 27 % � 12 %rasm1 � � � � � �wss3 32 % 34 % 23 % 36 % 20 % 23 %wss31 18 % 18 % 40 % 12 % 23 % 14 %wss32 23 % 22 % 12 % 13 % 14 % 11 %wo
1 12 % 8 % � � 5 % 6 %wo
2 6 % 6 % � 9 % 10 % �wss1 � � � � � �wss11 10 % 7 % � � 50 % 5 %wss2 7 % 15 % � � 18 % �wss12 16 % 12 % � � 5 % 22 %wmt22 � � � 7 % � �
ss21 � � � � � �Table 6.2: Improvements on the BAB Algorithm with Lbest Set to the GS S
hedule Laten
y.
learly depend on the appli
ation.Con
erning the in�uen
e of our binding heuristi
 on the laten
y and the resolution time,when there are more than one 
opy of ea
h resour
e, we have done some experiments. Indeed, onthe same example with same resour
es, we have generated several bindings. Results are reportedin Table 6.3. In the �rst bat
h of tests (�rst four tests), we have only 
hanged resour
e bindings,while in the se
ond bat
h, we have 
ut the tasks in smaller and smaller pie
es. Results show that
hanging the bindings have no in�uen
e on the laten
y, and a small in�uen
e on the s
hedulingtime. On the other hand, 
hanging the tasks granularity has a small in�uen
e on the laten
y,with large variations on the s
heduling time.Test wss_1 wss_2 wss_3 wss_4 wss_5 wss_6 wss_7 wss_8 wss_9 wss_10T 4 4 4 4 5 6 7 8 9 10nbC 48 50 51 50 75 64 67 64 60 64Laten
y 16 16 16 16 15 14 14 14 15 14Time 0,74s 0,7s 0,78s 0,7s 3,1s 1.3s 7s 1,2s 3,7s 1,3sTable 6.3: In�uen
e of the Binding Heuristi
 on Laten
y and Resolution Time.Pathologi
al 
ase The pathologi
al 
ase we en
ountered (program 
ss21 ) has only 9 tasks(but 32 mi
ro-tasks). These independent tasks are taken from the SPICE program (from line 765to line 773) of the Perfe
tClub ben
hmarks. What happens in this test is that all lo
al lowerbounds are 
lose to the optimum, so no early elimination is possible, and this 
auses the totals
an of the solution spa
e. The problem is typi
al of the di�
ulties one may en
ounter whens
heduling parallel loops. The 
ode is the following:Task 1: GDPR=VALUE(LOCM+4)*AREATask 2: GSPR=VALUE(LOCM+5)*AREATask 3: GM=VALUE(LOCT+5)Task 4: GDS=VALUE(LOCT+6)Task 5: GGS=VALUE(LOCT+7) 71
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h-and-Bound-Based Longest-Path Computation SolutionTask 6: XGS=VALUE(LOCT+9)*OMEGATask 7: GGD=VALUE(LOCT+8)Task 8: XGD=VALUE(LOCT+11)*OMEGATask 9: LOCY=LYNL+NODPLC(LOC+20)Assume that we have one adder, one multiplier, a memory blo
k VAL (where the VALUE array ismapped) and a memory blo
k Mdp (where the NODPLC array is mapped) with one port. Assumealso that memory a

ess takes 2 
y
les and is pipelined, while all the other resour
es take one
y
le. Figure 6.1 diagrams the reservation table for the tasks � type (a) for tasks 3, 4, 5, and 7,type (b) for tasks 1, 2, 6, and 8, and type (
) for task 9 � and the optimal s
hedule, 
omputedby the BAB s
heduler, whose laten
y is 10. It 
orresponds to t1 = 0, t2 = 1, t3 = 2, t4 = 3,
t5 = 4, t6 = 5, t7 = 8, t8 = 6, t9 = 7. It is never obtained by the GS heuristi
 in a sample of n2permutations.
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al Case 
ss21.6.3 Con
lusionWe have designed a new exa
t resour
e-
onstrained s
heduling method in whi
h ILP is repla
edby longest-path 
al
ulations as tools for a bran
h-and-bound meta-algorithm. The longest-path
omputations are a

elerated by variants of Floyd's or Dijkstra's algorithms. We have alsodesigned four 
onstraints ordering heuristi
s that we employed to perform prunings, as soon aspossible, in the BAB pro
ess. Thus, improving the runtime of the algorithm.This method is 
ontextually designed to s
hedule data-independent tasks. However, it 
anbe easily generalized to support problems of resour
e-
onstrained s
heduling even when tasks aredependent.S
heduling results show that, in e�e
t, the BAB algorithm has an a

eptable runtime at leaston our ben
hmarks. Though it was observed that it 
an be vulnerable to some rare pathologi
al
ases. The use of the 
onstraints ordering heuristi
s have really improved the runtime of theBAB algorithm; the results have shown that, in most 
ases, they give better runtime than theoriginal solution. 72



Chapter 7Comparative StudyIn the previous 
hapters, we have presented some solutions to the resour
e-
onstrained s
hedulingproblem presented in Se
tion 4.3 in whi
h tasks are represented by reservation tables and theresour
e 
onstraints are modeled by dis-equations. These solutions 
onsist on a greedy heuristi
and two exa
t algorithms. The �rst uses ILP te
hniques and the se
ond is based on the bran
h-and-bound meta-algorithm.In this 
hapter, we report and 
omment some 
omparative results. The aim of this 
om-parisons is to demonstrate the e�e
tiveness of the proposed methods. We make some additionaltests to analyze in more detail the parameters that in�uen
e their runtime and thus we give someguidelines for sele
ting the most e�e
tive one a

ording to the 
ontext.7.1 Comparative Results and Dis
ussionTo 
ompare the three methods, the GS heuristi
, the BAB s
heduler, and the ILP s
heduler, wehave 
hosen the best performan
es of ea
h one. Comparative results are reported in Table 7.1.For the BAB algorithm, we have reported its runtime using the Dijkstra-based algorithm, 
ou-pled with the reordering heuristi
 2, while setting the initial value of Lbest to the GS s
hedulelaten
y (
olumn Dijk+H2). For the ILP te
hniques, we have sele
ted the method whi
h usesthe 0/1 simpli�ed en
oding. For the GS heuristi
, we have only presented its deviations fromthe optimum. Indeed, knowing that the GS heuristi
 is sensitive to the order of the task list,we ran the algorithm on a sample of permutation of tasks. The size of this sample is the squareof the number of tasks, and the permutation are random. The maximum deviation (DevMax
olumn) presents the di�eren
e between the worst s
hedule in the sample and the optimum asgiven by the BAB algorithm. The DevMin 
olumn presents the deviation of the best s
hedule,in the sample of permutations, from the optimum.The results show that, despite its simpli
ity, the GS heuristi
 has a good behavior, at leastfor these examples: even the laten
y of the worst s
hedule (in the sample) is not very far fromthe optimum. The result in the DevMin 
olumn demonstrates that the best s
hedule is very 
loseto the optimum. Hen
e one 
an �nd a good s
hedule by applying only GS to a small sampleof permutations. At least for our ben
hmarks, the BAB algorithm is often faster than the ILPte
hnique. However, there are ex
eptions. Hen
e, both methods 
an be useful for pra
ti
alappli
ations. We made some additional tests to analyze in more detail the parameters thatin�uen
e their runtimes.As a rule of thumb, ILP works well whenever the task durations (the pi) are small andespe
ially when they are all equal to 1. But if one multiplies the duration and resour
e o

upation73



Chapter 7. Comparative StudyTest T µT Greedy s
heduling ILP Bran
h-and-BoundDevMax DevMin ILP (0/1) nbC Dijk+H2
ss1 4 15 2 1 0.2 s 9 0.04 s
ss11 4 15 2 0 0.22 s 6 < 0,01 s
ss12 4 17 3 1 0.21 s 9 0.04 s
ss2 9 32 2 1 0.77 s 23 0.75 s
ss3 7 27 3 0 0.3 s 36 2.36 s
ss5 3 9 0 0 0.17 s 7 0.04 s
ss6 8 12 0 0 0.18 s 7 0.11 sja
1 6 19 0 0 0.13 s 7 0.03 sja
2 6 82 1 1 2.83 s 75 10.70 sja
3 7 97 1 0 2.57 s 85 9.0 srasm1 3 9 0 0 0.15 s 1 0.03 swss3 5 11 0 0 0.18 s 7 < 0,01 swss31 5 11 1 0 0.19 s 12 0.09 swss32 5 11 0 0 0.16 s 6 < 0,01 swo
1 4 13 0 0 0.14 s 5 0.03 swo
2 7 9 1 0 0.16 s 10 0.12 swss1 4 44 5 0 1.26 s 54 0.43 swss11 4 44 4 1 0.75 s 49 0.30 swss2 3 23 1 0 0.62 s 9 < 0,01 swss12 4 44 5 1 0.83 s 49 0.71 swmt22 4 31 0 0 0.25 s 24 0.1 s
ss21 9 32 2 1 0.48 s 44 2' 43 sTable 7.1: Comparative Results.of ea
h mi
ro-task by a 
onstant fa
tor f (whi
h means the 
orresponding resour
e is non-pipelined and is used during f steps), the 
omplexity of the ILP problem in
reases dramati
ally,both in terms of the number of unknowns and of the size of the 
oe�
ients be
ause the s
hedulehorizon H in
reases. In 
ontrast, the BAB algorithm is not parti
ularly sensitive to the involvednumbers size but more to the dis-equations number. If ea
h mi
ro-task uses a resour
e during fsteps, we 
an des
ribe the 
orresponding resour
e 
onstraint by a dis-equation expressing aforbidden interval of length f (i.e., the two 
orresponding inequalities ti − tj ≤ di,j − f or
ti − tj ≥ di,j + f). This extension does not in
rease the BAB algorithm 
omplexity.Test P

pi ILP BAB
ss3 original 27 0.3 s 2.36 s
ss3 (2) 47 0.69 s 0.38 s
ss3 (3) 67 0.9 s 0.38 s
ss3 (4) 87 1.18 s 0.43 s
ss3 (5) 107 1.45 s 0.38 s
ss3 (6) 127 1.76 s 0.39 s
ss3 (7) 147 2.06 s 0.3 s
ss3 (8) 167 2.43 s 0.38 s
ss3 (9) 187 2.82 s 0.39 s
ss3 (10) 207 3.29 s 0.40 sTable 7.2: Comparative Results when the pi Vary.To demonstrate this e�e
t, we generated variants of the program test 
ss3 for whi
h the ILPapproa
h was faster than the BAB algorithm. These variants 
onsists in dupli
ating the taskstwi
e, four times, et
. The results are given in Table 7.2.Con
erning data dependen
es, integrating them in the BAB algorithm is almost for free aswe just have to plug them as 
onstraints at the root node of the BAB tree. For the ILP approa
hhowever, we 
annot use the 0/1 simpli�ed formulation anymore as we need the 
onstraints (5.4)to express the dependen
es. So, in general it takes more time than without dependen
es. Thise�e
t is demonstrated in Tables 7.3 and 7.4. To get the results of Table 7.3, we add a few74



Chapter 7. Comparative Studyarti�
ial (i.e., they are not in the initial program) data dependen
es between the tasks. The ILPapproa
h gets slower as we have to use the 0/1 standard en
oding, while the BAB algorithmgets usually faster. Indeed, at ea
h node of the BAB pro
ess, more edges need to be traversed(so this should be more 
ostly), but the solution spa
e gets smaller (some task orders are nowimpossible) and also some subtrees are not sear
hed anymore be
ause their new Llo
al is nowlarger than the 
urrent best evaluation Lbest.Test nb Dep. ILP BABWithout dep. With dep. Without dep. With dep.
ss2 3 0.77 s 0.8 s 0.75 s 0.74 s
ss3 5 0.3 s 0.86 s 2.36 s 0.18 s
ss5 3 0.17 s 0.33 s 0.04 s < 0,01 s
ss6 6 0.18 s 0.38 s 0.11 s 0.02 sja
1 5 0.13 s 0.26 s 0.03 s < 0,01 sja
2 5 2.83 s 3.18 s 10.70 s 0.67 sja
3 4 2.57 s 4.02 s 9.0 s 0.85 swss1 4 1.26 s 2.12s 0.43 s 0.07 swss11 4 0.75 s 1.14 s 0.62 s 0.09 swss12 4 0.83 s 1.44 s 0.71 s 0.06 srasm1 2 0.15 s 0.36 s 0.03 s < 0,01 s
ss21 5 0.48 s 1.03 s 2' 43 s 1.59 sTable 7.3: Comparative Results with Arti�
ial Data Dependan
es.One 
an argue that this 
omparison is not fair as we should 
ompare with original programs
ontaining a
tual data dependen
es. To get su
h programs, we 
onsider some of our ben
hmarksand we de
ompose a few ma
ro-tasks into 2 or 3 data-dependent sub-tasks. The results are givenin Table 7.4. The ILP approa
h still slows down a bit, but now the BAB algorithm slows downtoo although it remains in general faster than the ILP algorithm for these examples. The reasonof this slow-down is that by splitting a task T into two sub-tasks T1 and T2, we sometimesin
rease the number of dis-equations. Indeed, if T is is involved with another ma
ro-task Uwith two dis-equations 
ombined into one be
ause they have the same forbidden distan
e, wemay now have two di�erent dis-equations to 
onsider: one involving T1 and U and the otherinvolving T2 and U . Table 7.4 gives, in addition to the runtimes, the number of 
orrespondingdis-equations. To summarize this study, the BAB algorithm seems to be more suitable when thenumber of dis-equations is small and when the ILP solver may take too mu
h time be
ause datadependen
es need to be expressed, for a large s
hedule horizon H.Test T nb Dep. old nbC new nbC ILP BABWithout dep. With dep. Without dep. With dep.
ss2 12 3 23 26 0.77 s 0.90 s 0.75 s 0.47 s
ss3 11 5 36 36 0.3 s 0.98 s 2.39 s 0.71 s
ss5 5 2 7 8 0.17 s 0.32 s 0.04 s < 0,01 s
ss6 10 2 7 10 0.18 s 0.36 s 0.11 s 0.12 sja
1 8 2 7 9 0.13 s 0.28 s 0.03 s 0.14 sja
2 9 3 75 93 2.83 s 3.28 s 10.70 s 1' 16 sja
3 10 4 85 107 2.57 s 4.02 s 9.0 s 11.03 swss12 7 3 49 71 0.83 s 2.26 s 0.71 s 1.68 s
ss21 12 3 44 49 0.48 s 1.21 s 2' 43 s 3' 34 sTable 7.4: Comparative Results when Splitting a few Ma
ro-tasks.
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Chapter 7. Comparative Study7.2 Con
lusionIn this �rst part of the thesis, we presented a formalism, for HLS s
heduling, to a

urately expressresour
e 
onstraints for 
omplex tasks represented as reservation tables. The resour
e 
onstraintsare modeled by dis-equations and �nding an optimal s
hedule entails resolving a system of dis-equations. The proposed formalism 
an be applied to problems of resour
e-
onstrained s
hedulingwhere tasks may be linked by data dependen
es.We have proposed some solutions for s
heduling su
h tasks: a greedy heuristi
 and two exa
talgorithms. The �rst use ILP te
hnique and the se
ond is based on the bran
h-and-bound meta-algorithm. S
heduling results show that, in e�e
t, the greedy heuristi
 has a suitable behavior.Similarly, the BAB algorithm has an a

eptable runtime but 
an be vulnerable to some rarepathologi
al 
ases. For improving the runtime of the BAB algorithm, we have designed four
onstraints ordering heuristi
s. The results have shown that, in most 
ases, they give betterruntime than the original solution. Compared to the ILP te
hnique, the BAB algorithm hasshown better behavior when tasks exe
ution times are large.
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Part IIResour
e-Constrained S
heduling usingGraph Coloring
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Chapter 8S
heduling viaBran
h-and-Bound-Based GraphColoringIn the �rst part of this thesis, we have developed some s
heduling solutions that are integratedin a three-step s
heduling approa
h (§ 3.3.2). However, one 
an emphasize that the partitioninginto steps 2 and 3 in the three-step s
heduling approa
h seems arti�
ial. In other words, one 
anask: �is it a good methodology to �rst "mi
ro-s
hedule" ea
h ma
ro-task independently and then,s
hedule them together ?�. For this reason, in this 
hapter, we try alternatively to formalize theproblem so that the steps 2 and 3 are performed in a uni�ed way. Using this formalism, we designa novel exa
t s
heduling algorithm in whi
h an optimal s
hedule is 
omputed by properly 
oloringthe graph that represents both resour
e 
onstraints and data dependen
ies. Some 
ommentedexperien
es illustrate the e�e
tiveness and the e�
ien
y of this s
heduler.8.1 Formalisms8.1.1 Task ModelConversely to the model task of the �rst part, where a task was a sequen
e of mi
ro-tasks(elementary operations), here, we 
onsider dire
tly all the elementary operations of the ma
ro-tasks. So a task i is an elementary operation su
h as an addition, a multipli
ation, a shift. . . .We assume that this elementary operation is already mapped on the available resour
e. Herealso, a simple binding is used: ea
h fun
tional operation is mapped to the �rst free resour
e,resour
es are allo
ated on a 
y
li
 way. In what follow, for the sake of simpli
ity, we use taskinstead of elementary operation or mi
ro-task.We denote by T the set of tasks whi
h represents the set of the DFG (Data Flow Graph)nodes, R the set of resour
es, ti the starting date of the task i, ea
h task laten
y is assumedto be one �unit� (the unit is the 
lo
k 
y
le). As will be seen in what follows, this assumptionallows us using easily a graph 
oloring model.However, this hypothesis should not pre
lude the multi-
y
le and/or pipelined fun
tionalunits use. In fa
t, we allow su
h resour
e features by the following tri
ks. When a task ismapped to a multi-
y
ling resour
e whi
h delay is more than one 
y
le, there are two possibles
enarios: 78



Chapter 8. S
heduling via Bran
h-and-Bound-Based Graph Coloring1. the resour
e 
an be pipelined: here, we add supplementary operations nop ��
titiousoperation as they do not use real resour
e� to T ;2. the resour
e doesn't allow pipelining: we add supplementary operations nop to T buthere they are not �
titious as they do use the resour
e.In both situations, some �false data dependen
es� have to be added to the DFG in order topreserve the data-�ow dependen
es 
onstraints.Let us illustrate these tri
ks by means an example in whi
h a fun
tional operation multis mapped to a three-
y
le multiplier, as des
ribed in Figure 8.1 (a). If the multiplier 
an bepipelined then we add two nop tasks to T , we add also two data dependen
es as in Figure 8.1 (b)and all su

essors of mult, in the original DFG, be
ome su

essors of the last nop operation. Ifthe multiplier is a simple resour
e, i.e., it 
an't be pipelined, similar additions are performed butnow the nop operations are bounded to the multiplier resour
e i.e., they are assumed using themultiplier (see Figure 8.1 (
).This simulation validity imposes us to guarantee that ea
h nop operation will be exa
tlys
heduled 1 
y
le after its dire
t prede
essor node. We will see that it is possible to perform.
Mult Mult

M
ul

t

(a) Three−cycle multiplier (b) Pipelined multiplier (c) Non−pipelined multiplier

nop

nop Mult
nop

Mult
nop

Figure 8.1: One unit-
y
le resour
e simulation.8.1.2 Data Dependen
es and Resour
e Constraints FormalismFinding legal and optimal s
hedules for T entails more pre
ision into the way of expressingresour
e 
onstraints and data dependen
es between its tasks. In the following, we will expressuniformly both kinds of 
onstraints, using dis-equations. Here, by dis-equation we mean �anegation of equation where the se
ond member is null�, 
onversely to what we have de�ned inthe �rst part, where it is the most general de�nition, �a dis-equation is a negation of equation�).Let i and j be two tasks and ti and tj their respe
tive starting dates. First, in a valids
hedule, i and j 
an start at any date ex
ept those whi
h put them into a resour
e 
on�i
t ordata dependen
e 
on�i
t. Indeed, if a resour
e r is used by both i and j, then ti and tj have totake di�erent values. Thus, the intuitive idea is to express resour
e 
onstraint by:
ti − tj 6= 0.79



Chapter 8. S
heduling via Bran
h-and-Bound-Based Graph ColoringSimilarly, a data dependen
e 
onstraint between i and j 
an also be expressed with a dis-equation. Indeed, when the task j depends on the task i it implies that the task j must beexe
uted after the task i. This 
an be expressed by the 
onstraint tj − ti ≥ 1 or more generalby tj − ti ≥ δi,j (
lassi
al pre
eden
e 
onstraints). Here again, ti and tj have to take di�erentvalues, thus yielding the inequality tj − ti ≥ 1 as tj − ti 6= 0. It should be noted that solutionsfor tj − ti ≥ 1 are in
luded in the set of solutions of tj − ti 6= 0. Thus, repla
ing tj − ti ≥ 1inequality by the dis-equation tj − ti 6= 0 represents a relaxation that we have to 
ompensatewhen a solution is found to guarantee the s
hedule validity. We will return to this fa
t later.It follows that, for the set T of tasks, 1) all the resour
e 
onstraints 
an be expressed byde�ning for ea
h 
ouple of tasks (i, j) the dis-equation expressing the resour
e 
onstraint, if iand j share the same resour
e, 2) all the data dependen
es are expressed by de�ning for ea
h
ouple of tasks (i, j) the dis-equation expressing the data dependen
e 
onstraint if i and j arelinked by a data dependen
e.8.2 S
heduling Problem FormulationUsing this formalism, �nding a s
hedule for T entails solving the following system of dis-equationson integer values:
{

ti − tj 6= 0 i, j ∈ T ∧ ((i, j share a resour
e) ∨ (i, j are linked by a data dependen
e)) (8.1)then 
hoosing one solution, among the set of solutions, whi
h respe
ts pre
eden
e 
onstraints.Indeed, the previous relaxation, in whi
h we have repla
ed tj − ti ≥ 1 by tj − ti 6= 0, have to beveri�ed.First, let us mention that this system is usually feasible; it has at least one solution, thesolution 
orresponding to the sequential exe
ution order.In addition, these dis-equations 
an be represented by an undire
ted graph G = (V,E),where an edge between two tasks i and j means that i and j 
annot be s
heduled at the sametime. G is easily built by merging both graphs Gr and Gd, where Gr represents the interferen
egraph (or 
on�i
t graph); there is an edge between i and j if they share a same resour
e and
Gd represents the graph obtained by performing a transitive 
losure on the DFG and repla
ingall dire
ted edges by undire
ted ones. The transitive 
losure operation guarantees that all datadependen
es, impli
it and expli
it ones, will be expressed by an edge. Indeed, the edges in theDFG express only expli
it data dependen
es, hen
e impli
it data dependen
es, expressed by anypath i j, have to be expressed by dis-equation tj − ti 6= 0. Transforming all dire
ted edges in
Gd by undire
ted ones, here also, is a relaxation whi
h must be 
ompensated when a solution isfound to guarantee that the 
omputed s
hedule is valid. We will return to this fa
t later.Let us mention that G 
an have any stru
ture. We denote by n(G) the 
ardinal of V whi
hrepresents the task number (i.e., the 
ardinal of the set T ) and m the number of distin
t dis-equations. As formalized, it is easy to see, that �nding a s
hedule for these tasks entails properly
oloring24 the graph G, then establishing an order on 
olors whi
h respe
ts the pre
eden
e
onstraints.Further, for getting an optimal s
hedule, we have to minimize the 
olors number needed forproperly 
oloring G. Thus, �nding the 
hromati
 number 25 χ(G) of G.24In graph theory, let us re
all that �graph 
oloring� is an assignment of �
olors� to 
ertain obje
ts in a graphsubje
t to 
ertain 
onstraints. Here, we use its simplest form whi
h is a way of 
oloring the verti
es of a graphsu
h that no two adja
ent verti
es share the same 
olor, 
alled a �vertex 
oloring�.25The 
hromati
 number χ(G) of G is the smallest number of 
olors needed to properly 
olor G.80



Chapter 8. S
heduling via Bran
h-and-Bound-Based Graph Coloring8.3 How To Color a Graph?First, let us mention that there are several pra
ti
al problems that are modeled by graph 
oloring.Although graph 
oloring takes its name from the map-
oloring appli
ation, it enjoys severaltheoreti
al 
hallenges. Beside the 
lassi
al types of problems, the problem of 
oloring a graph hasfound a number of appli
ations espe
ially register allo
ation in 
ompilers, s
heduling, frequen
yassignment in mobile radios and pattern mat
hing.Spe
ially, graph 
oloring and its generalizations are useful tools in modeling a wide variety ofs
heduling and assignment problems, su
h as pre
oloring extension, list 
oloring, multi
oloring,minimum sum 
oloring. . . . More details on these appli
ations in s
heduling are given by Marxin [76℄.Unfortunately, optimally 
oloring a graph i.e., determining its 
hromati
 number is an NP-Complete problem (Chap 5 of [110℄). Nevertheless, there are many methods for 
oloring a graph
G, or solving the system de�ned in (8.1):
• one 
an be satis�ed with greedy 
oloring heuristi
s where 
oloring is done vertex by vertex,the order of the vertex 
oloring 
an be established stati
ally as well as dynami
ally;
• We 
an also use meta-heuristi
s su
h as simulated annealing, Tabu sear
h, and geneti
-based algorithms;
• for optimality, some solutions from operations resear
h are availables, they 
an be basedon:� Coloring using a Bran
h-And-Bound meta-method;� Integer Linear Programming te
hniques [99℄.� Sin
e there is an obvious bound for the χ(G) (χ(G) ≤ n), we 
an also use �nitedomain 
onstraint satisfa
tion programming [14℄.As dis
ussed earlier, Integer Linear Programming and Constraint Logi
 Programming arethe main alternative approa
hes used to solve 
ombinatorial optimization problems. They haveshown their ability to lo
ate and prove the existen
e of an optimal solution in rigorous ways.Unfortunately, these methods are rather slow.Similarly, the Bran
h-And-Bound method has an exponential theoreti
al 
omplexity, but
onversely, it 
an have a better behavior in pra
ti
e if it is well instrumented. Indeed, Bran
h-And-Bound is a meta-method of guidan
e in the spa
e of solutions, its resolution strategy dependsstrongly on the problem features to resolve. Hen
e, in what follows we will design an exa
t
oloring graph by mean of Bran
h-And-Bound te
hnique.ExampleLet us 
onsider the same example seen in Se
tion 4.2.4Task 1: GSPR = VALUE(LOCM+2)*AREATask 2: GEQ = VALUE(LOCT+2)Task 3: XCEQ = VALUE(LOCT+4)*OMEGATask 4: LOCY = LYNL+NODPLC(LOC+13)With the same assumptions: the available resour
es are one adder, one multiplier, and twomemory blo
ks: Val (where the VALUE array is mapped) and Ndp (where the NODPLC array is81



Chapter 8. S
heduling via Bran
h-and-Bound-Based Graph Coloringmapped). Assume also that both memory a

ess and multipli
ation take two 
y
les and thatboth 
an be pipelined. S
alar variables like AREA or LOCY are assumed to be allo
ated to registers,where they 
an be a

essed in no time.Figure 8.2 diagrams the DFG of the ma
ro-tasks with one possible binding, where the labelRM Val (resp. RM Ndp) means to read the memory blo
k Val (resp. Ndp). Here we 
hose thebinding that greedily allo
ates all the available resour
es to tasks, i.e., we assign all the resour
esto the fun
tional operations of ea
h task. Let us note that the �
titious operations nop areadded to satisfy the 2-
y
le resour
es (multiplier and memory blo
ks). Operations 1 to 17 arethe elementaries tasks.
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Figure 8.2: Binding for the Example.For this example, the resour
e 
onstraints system is 
omposed of 15 
onstraints de�ned as follows:






t1 − t6 6= 0 t1 − t9 6= 0 t1 − t14 6= 0 t1 − t17 6= 0 t2 − t7 6= 0
t2 − t10 6= 0 t4 − t12 6= 0 t6 − t9 6= 0 t6 − t14 6= 0 t6 − t17 6= 0
t7 − t10 6= 0 t9 − t14 6= 0 t9 − t17 6= 0 t14 − t17 6= 0For instan
e, the 
onstraint t1 − t6 6= 0 expresses the fa
t that the operation 1 and 6 
annotstart at the same time be
ause, among other reasons, both use the adder. This system of
onstraints is used to build the 
on�i
t graph Gr.Expli
it data dependen
e 
onstraints are extra
ted from the DFG. For example the datadependen
e between the operation 5 and 4 de�ned by the inequality t5 − t4 ≥ 1 will be repla
edby the 
onstraint t5−t4 6= 0 and so on. We obtain the following system of dire
t data dependen
es
onstraints, whi
h is used as a basis to 
onstru
t the data dependen
es graph Gd:







t5 − t4 6= 0 t4 − t3 6= 0 t3 − t2 6= 0 t2 − t1 6= 0 t8 − t7 6= 0
t7 − t6 6= 0 t13 − t12 6= 0 t12 − t11 6= 0 t11 − t10 6= 0 t10 − t9 6= 0
t17 − t16 6= 0 t16 − t15 6= 0 t15 − t14 6= 0
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Chapter 8. S
heduling via Bran
h-and-Bound-Based Graph Coloring8.4 Bran
h-and-Bound-Based Graph Coloring SolutionLet us re
all that Bran
h-And-Bound is an impli
it enumerative meta-method whi
h sear
hes, inthe solution spa
e, a solution a

ording to an obje
tive fun
tion. Its resolution strategy dependsstrongly on the feature of the obje
tive fun
tion and the quality of the lower and upper boundsused for pruning.Let G = (V,E) be the graph whi
h formalizes the dis-equation system given by (8.1). Let
n(G) = |V | be the number of tasks and m = |E|, the number of dis-equations.In our 
ontext, let us re
all that we 
onsider only valid 
olorings (s
hedulable ones) of G. A
oloring is valid if we 
an get an order on 
olors su
h that no pre
eden
e 
onstraint is violated.Indeed, the pre
eden
e 
onstraints 
an be violated due to the previous relaxations, in whi
h wehave repla
ed tj − ti ≥ 1 by tj − ti 6= 0 and repla
ed an ar
 by an edge in Gd. In other words, a
oloring is valid if we 
an build a valid s
hedule from this 
oloring.Before explaining our algorithm strategy, �rst let us explain how the bran
hing is done, whi
hlower bound is used and how it is evaluated.8.4.1 Bran
hing RuleThe bran
hing rule used here is inspired from the idea of Béla Bollobàs (Chap. 5 of [13℄) for
oloring any graph26. The idea is based on 
oloring a graph G by redu
ing the problem to
oloring two other graphs derived from G. Let u and v be nonadja
ent verti
es of a graph G.Let G′ be obtained from G by joining u and v, and let G′′ be obtained from G by identifying(merging) u and v. Thus, in G′′ there is a new vertex (uv) instead of u and v whi
h is joined toverti
es adja
ent to at least one of u and v (see Fig. 8.3).These operations are even more natural if we start with G′: then G is obtained by 
uttingthe edge (u, v), and G is obtained from G′′ by exploding the vertex (uv).This separation guarantees that we are not losing any solution. Indeed, let us note that
olorings of G′ and 
olorings of G′′ are disjoint sets, be
ause 
olorings of G′ give u and v di�erent
olors and 
olorings of G′′ give them the same 
olor. In addition, the 
olorings of G in whi
h uand v get distin
t 
olors are in 1-to-1 
orresponden
e with the 
olorings of G′. Indeed, c : V →
{1, 2, . . . , k} is a 
oloring of G with c(u) 6= c(v) i� c is a 
oloring of G′. Similarly, the 
oloringsof G in whi
h u and v get the same 
olor are in 1-to-1 
orresponden
e with the 
olorings of G′′.In parti
ular, if for a natural number x and a graph H, we denote pH(x)27 for the number of
olorings of a graph H with x 
olors, then

pG(x) = p
G

′ (x) + p
G

′′ (x).By de�nition χ(G) is the least natural number k for whi
h pG(x) ≥ 1. Thus, these remarksimply that χ(G) 
an be de�ned as:
χ(G) = min{χ(G′), χ(G′′)} (8.2)8.4.2 Evaluation -Bounding- Pro
edureMany upper and lower bounds for the 
hromati
 number are proposed in the literature [13, 111℄.First, let us 
onsider the upper bounds. Most upper bounds 
ome from algorithms that produ
e26This Divide-to-Conquer te
hnique is originally designed to get some information about the number of 
oloringsof a graph with a given set of 
olors.27Called the 
hromati
 polynomial. 83
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Figure 8.3: The Graphs G, G′ and G′′.
olorings. For example assigning distin
t 
olors to the verti
es yields χ(G) ≤ n. This 
oloringuses nothing about the stru
ture of G; we 
an do better by 
oloring the verti
es in some order.For example, a greedy 
oloring relative to a vertex ordering v1, . . . , vn of V 
an be obtained by
oloring verti
es in the order v1, . . . , vn, assigning to vi the smallest-indexed 
olor not alreadyused on its lower-indexed neighbors. Ea
h vertex has at most ∆(G) neighbors, so the greedy
oloring 
annot be for
ed to use more than ∆(G)+1, this is the worst upper bound that a greedy
oloring 
ould produ
e (χ(G) ≤ ∆(G) + 1) 
olors.Welsh-Powell [109℄ proposed another greedy 
oloring, in whi
h they apply the previous greedy
oloring to the verti
es in non-in
reasing order of degree d1 ≥ . . . ≥ dn, when we 
olor the ithvertex vi, it has at most min{di, i− 1} earlier neighbors, so at most this many 
olors appear onits neighbors. Hen
e, the 
olor we assign to vi is at most 1 + min{di, i− 1}. This holds for ea
hvertex. So, we obtain an upper bound; we maximize over i to obtain the upper bound on themaximum 
olor used: χ(G) ≤ 1 + maxi min{di, i− 1}.For our 
oloring algorithm (see below) the most important bounds for the 
hromati
 numberused are the lower ones. Let us quote that for any graph G, we have:
• the most known lower bound:

χ(G) ≥ ω(G), (8.3)where ω(G) is the 
lique number: the size of the largest set of pairwise adja
ent verti
esin G (maximal 
lique).
• and a se
ond lower bound:

χ(G) ≥ n/α(G), (8.4)where α(G) is the independen
e number: the 
ardinal of the largest set of verti
es in V sothat no two verti
es are adja
ent (maximal size of an independent set ).84



Chapter 8. S
heduling via Bran
h-and-Bound-Based Graph ColoringThe �rst bound holds be
ause verti
es of a 
lique require distin
t 
olors. The se
ond boundholds be
ause in a proper 
oloring the set of verti
es of ea
h 
olor is an independent set and thushas at most α(G) verti
es. Both upper bounds are exa
t when G is a 
omplete graph. However,for 
ertain graphs inequalities (8.3) and (8.4) may be very weak; it 
an happens that ω(G) 
anbe mu
h smaller than χ(G). But a

ording to our 
ontext, we rely on the parti
ularity of thebuilt graphs (not very large and high probably may be very 
onne
ted).Unfortunately again, in general both maximal 
lique problem and maximal independent setproblem are NP-Hard [110℄, although good approximation algorithms 
an be found in [58℄.However, a 
lique 
omputation, as a lower bound to the 
lique number, 
an be obtained byseveral methods:
• one 
an be satis�ed with a greedy 
lique heuristi
. For example, that whi
h we use, build a
lique C progressively as follows: we start with the vertex whi
h has the maximal degree,then we add, as long as there is, the vertex with a maximal degree and whi
h is adja
entto all verti
es in C. Thus, we obtain in a polynomial time a lower bound su
h that:

χ(G) ≥ ω(G) ≥ |C|.
• for optimality, one 
an use Integer Linear Program formulation. Indeed, knowing that
omputing the 
lique number entails 
omputing the independen
e number for Ḡ, the 
om-plementary graph, sin
e the maximal 
lique problem is 
omplementary to the maximalindependent set problem. This fa
t allows us to use the following natural ILP formulationof the Independant Set problem (IS):IP2: 





max
∑n

i=1 xisubje
t to: xi + xj ≤ 1 for every edge (i, j) in Ḡ
0 ≤ xi ≤ 1 (i = 1, . . . , n)where xi are binary variables, xi = 1 if the vertex i belongs to the maximal independentset of Ḡ.One 
an argue that 
omputing an exa
t 
lique may be very expensive, as it uses ILP formu-lation, this is true in general, but let us mention that this last formulation is known as binaryinteger program IP228 or 2-SAT29 whi
h has some powerful properties than a general IP problem.Indeed, it turns out that solutions of this IP2 problem always have denominators not greaterthan 2, whi
h guarantees that in the pro
ess of an integer resolution, no number explosion willbe o

ur. In addition, this property guarantees that all basi
 solutions of linear relaxation ofthis 2-SAT are integer multiples of 1/2 (Chap. 3 of [58℄).This property follows from the following statement: the determinants of all nonseparablesubmatri
es of the 2-SAT linear programing problem have absolute value of at most 2. A matrixis nonseparable if there is no partition of the 
olumns and rows to two subsets (or more) C1, C2and R1, R2 su
h that all nonzero entries in every row and 
olumn appear only in the submatri
esde�ned by sets C1XR1, C2XR2.Proof. Let A denote the 
onstraint matrix of this 2-SAT integer program. Thus, A has at mostnon-zero entries in every row . Let's do it by indu
tion on the size of the submatrix. Sin
e theentries of A are from {−1, 0, 1}, the 
laim holds for 1X1 submatri
es. Assume that it holds for28Integer Programming with two variables per inequality.292-satis�ability boolean formula on variables x1, . . . , xn where the obje
tive is to �nd an assignment satisfyingall 
lauses su
h that Pn

i=1
xi is maximized. 85
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h-and-Bound-Based Graph Coloringany (m − 1)X(m − 1) submatrix and we show that the 
laim holds for any mXm submatrix.Let Aij denotes the submatrix obtained by deleting the i'th row and the j'th 
olumn from
A. Without loss of generality, we assume that the two non-zero elements in row i of A are in
olumns i and i + 1 (modulo m). Due to the nonseparability of the matrix, this 
an be a
hievedby appropriate row and 
olumn inter
hanges, thus:

det(A) = A[1, 1].det(A11)− (−1)mA[m, 1].det(Am1)The absolute values of A11 and Am1 determinants are equal to 1, sin
e both are triangularmatri
es with nonzero diagonal elements. Therefore, the A determinant absolute value is atmost 2.8.4.3 AlgorithmA

ording to these Bran
h and Bound pro
edures, we have designed a BAB algorithm whi
hprogressively builds a tree of subproblems as follows:
• At the root, we start with the original graph G, whi
h is obtained by expressing bothresour
e 
onstraints and data dependen
ies between tasks of T ;
• At ea
h tree stru
ture node N , we get two nonadja
ent verti
es and we bran
h using theprevious bran
hing rule.
• During the resolution pro
ess, we maintain Lbest, the the best s
hedule laten
y 
omputedso far whi
h 
orresponds to the number of 
olors needed by a valid 
oloring of G. At thebeginning, we 
an set Lbest to one of the χ(G) upper bounds, previously seen; thus set to

1 + maxi min{di, i− 1} or ∆(G) + 1.
• At ea
h node N , we treat GN , the graph obtained by the bran
h operation. Ex
ept forthe leaves, we 
ompute 
lique number (or a greedy 
lique whi
h is a lower bound to the
lique number) Llo
al of GN . As seen above Llo
al is a lower bound of χ(GN ) and so of

G. If Llo
al ≥ Lbest the subtree below N is not 
onstru
ted as it will not lead to a better
omplete solution.
• A leaf is rea
hed if there is no nonadja
ent verti
es in the obtained graph Gl, whi
h meansthat the graph is 
omplete. It is well known that for su
h 
omplete graph we have χ(Gl) =

∆(Gl) + 1 = ω(Gl) = |V l|. So now we have an a
tual solution. We 
he
k if this 
oloring isvalid; so no pre
eden
e 
onstraints is violated, then if it is better than Lbest then Lbest isupdated.
• The algorithm stops when all bran
hes are explored; Thus, whole solution spa
e has beenexplored and Lbest is returned as the optimum solution whi
h satis�ed the obje
tive fun
-tion.It is easy to prove that this algorithm terminates. Indeed, when we bran
h, there are twopossible situations. In the �rst one, we merge two verti
es so we de
rease the vertex numberof the graph, no more than (n − 1) merges are possible for a given G. In the se
ond situation,we 
onne
t two verti
es, at most k = (n2/2 −m) additions are allowed, where k is the numberof pairs of verti
es not 
onne
ted in G; it represents the number of edges to be added to G forbeing a 
omplete graph. Thus, the algorithm terminates and the depth of the BAB tree is atmost max (k, n − 1); these values 
orrespond to the length of the extremal bran
hes.86
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h-and-Bound-Based Graph ColoringIn this algorithm variant, we wait until a solution is found (rea
hing a leaf) for 
he
king the
omputed 
oloring validity, thus the s
hedule validity. Another possibility 
an be 
onsidered asthis test 
an be dynami
ally performed. Indeed, a 
oloring 
an't be valid if a 
ontra
tion of twononadja
ent verti
es, i and j 
auses a 
reation of a 
y
le in the original DFG (whi
h expresses thepre
eden
e 
onstraints). For this reason, we 
an guard a 
ontra
tion by a test in whi
h we 
he
kif no path, in the DFG, join between i and j (in both dire
tions so both paths i j and j  iare 
onsidered). This fa
t entails maintaining a Roy-Warshall's matrix30 after ea
h 
ontra
tion.This solution 
an improve 
onsiderably the algorithm runtime by performing soon the prunings.In 
ontrast, it may slow down the algorithm as maintaining a Roy-Warshall's matrix requires q2,where q is the 
ardinal of the graph vertex set de�ned at ea
h level of the BAB tree.In addition, when a 
oloring is 
omputed, other 
onditions have to be veri�ed. In fa
t, theone unit-
y
le resour
e simulations, whi
h are performed at the beginning in order to allow multi-
y
le resour
e use, have to be veri�ed. Thus, an optimal s
hedule will be reje
ted if it does notverify that ea
h nop operation is exa
tly s
heduled 1 
y
le after its dire
t prede
essor node.Further, let us also mention that for this algorithm version, the 
hoi
e of the 
ouple ofnonadja
ent verti
es is random, or rather it is greedy; i.e., we get the �rst two nonadja
entverti
es. One 
an speed up the algorithm runtime by getting the most adequate two nonadja
entverti
es to perform the bran
hing.8.4.4 ComplexityIt is di�
ult to give the a
tual 
omplexity of any BAB algorithm ex
ept perhaps for the worst
ases, where no elimination are done. Spe
ially, for our algorithm when it is 
oupled with themaximal 
lique 
omputation algorithm whi
h is based on an integer linear program. For thisreason, here, we just try to bring some information whi
h 
an give an idea on the 
omplexity ofthe designed algorithm.First, let us noti
e that any bran
h length from the root to a leaf is variable and has a valuein the interval [min(n − 1, k),max(n − 1, k)] , where k = (n2/2 −m) is the number of pairs ofverti
es non 
onne
ted in G. As explained above, these values 
orrespond to the length of theextremal bran
hes of the BAB tree. Indeed, not more than (n−1) merges are possible for a givengraph to be
ome 
omplete and not more than k = (n2/2 −m) joinings are allowed in a givengraph to be
ome 
omplete. The interval [min(n−1, k),max(n−1, k)] is in
luded in [n−1, n2/2)].On the other hand, the variant of the greedy 
lique heuristi
, whi
h we use, is a pseudo-polynomial heuristi
, as its time 
omplexity is O(n∆(G)), where for ∆(G) is the degree of G.8.5 Integer Linear Program SolutionTo 
ompare with the previous BAB approa
h, we design another exa
t algorithm based on aninteger linear program. Indeed, as seen in Chapter 5, our s
heduling problem 
an be formalizedby mean of standard 
oding te
hniques.We use the following notations: xi,j is a binary variable asso
iated with task i where xi,j = 1if and only if task i is s
heduled at the jth 
lo
k 
y
le. The indi
es j go from 0 to H, a maximal�horizon� for the s
hedule. The variable ti is the starting date of task i, R the set of availableresour
es, Rr the set of tasks that use the resour
e r, and di,r the time step 31 (relative to the30A Roy-Warshall's matrix is a boolean matrix whi
h reports the a

essibility relation [108℄; an entry
(i, j) = True in this matrix, if there is a path from i to j in G.31It is possible that, in the same task i, a resour
e r is used in more than one mi
ro-task. Again, for simpli
ity,we assume that ea
h task uses ea
h resour
e at most on
e, but this may be easily generalized.87
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h-and-Bound-Based Graph Coloringbeginning of the task) at whi
h task i uses resour
e r.Let us re
all that a standard way of expressing our s
heduling problem is the following. Fix
H, the maximal s
hedule horizon, to an upper bound for the optimal laten
y. For example, �x
H to card(T ), whi
h 
orrespond to the sequential exe
ution order laten
y. Then, minimize thes
hedule laten
y L subje
t to the following 
onstraints (in addition to the fa
t that all variablesare integers and the xi,j are 0/1 variables):

ti =

H−pi
∑

j=0

j ∗ xi,j ∀i ∈ [1 . . . n] (8.5)
0 ≤ ti ≤ L− pi ∀i ∈ [1 . . . n] (8.6)

H−pi
∑

j=0

xi,j = 1 ∀i ∈ [1 . . . n] (8.7)
∑

i∈Rr

xi,t ≤ 1 ∀r ∈ R, ∀t ∈ [0 . . . H] (8.8)
tj − ti ≥ 1 ∀ edge (i, j) ∈ DFG (8.9)The n equalities in (8.5) de�ne the starting dates ti as fun
tions of the xi,j binary vari-ables. The inequalities (8.6) express the laten
y to be minimized. For ea
h task i, the equal-ity (8.7) guarantees that i is exe
uted exa
tly on
e. Finally, the inequalities (8.8) express resour
e
onstraints for ea
h resour
e r ∈ R. On
e the variables ti are available � through the 
on-straints (8.5), the dependen
e 
onstraints are naturally expressed through the 
onstraints (8.9).These last inequalities 
an also be repla
ed by general pre
eden
e 
onstraints: tj − ti ≥ δi,j.8.6 Experimental Results and Dis
ussionWe implemented the algorithms presented previously, in our framework, on the same ben
hmarksand on the same ma
hine. We also implemented the BAB algorithm with both 
lique 
omputationvariants (maximal 
lique and greedy 
lique). Results are reported in Table 8.1. In these �rstexperiments, only 12 test programs, among those used previously, are treated.In the �rst two 
olumns of Table 8.1, we report the name of the test and the number ofin
luded tasks. The third 
olumn represents the 
hromati
 number; so the optimal s
hedule. Forea
h evaluation pro
edure variant, we report the runtime of the BAB algorithm and the numberof nodes (Nb nodes) a
tually 
onstru
ted by the BAB algorithm. The Eighth 
olumn representsthe ILP te
hnique runtimes.Experimental results show that, in e�e
t, our exa
t bran
h-and-bound approa
h has an a
-
eptable runtime despite its theoreti
al 
omplexity. However, the results show that the versionof the BAB using the greedy 
lique algorithm is more faster than the one using the maximal
lique 
omputation. This is due to the large number of ILP solver 
alls, this number 
an bequanti�ed by the 
orresponding �Nb nodes� 
olumn.Con
erning 
omparison, ex
ept for few 
ases, the results show that our BAB algorithm hasa better behavior than the ILP te
hnique.8.7 Con
lusionGiven a set of tasks linked by some data dependen
es, under resour
e 
onstraints, we formalize theproblem that �nding an optimal s
hedule lead us to properly 
olor their 
on�i
t graph. Indeed,88
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heduling via Bran
h-and-Bound-Based Graph ColoringTest nbT Optimum Bran
h-and-boundMaximal Clique (IP2-Pip) Greedy Clique ILP formulationTime Nb nodes Time Nb nodes
ss1 15 5 3,54 s 343 1.09 s 2200 0.9 s
ss11 15 4 0.40 s 42 0.02 s 88 0.6 s
ss12 17 10 5. s 5870 1.14 s 1505 0.83 s
ss5 9 4 5.39 s 233 0.2 s 49 0.28 s
ss6 12 4 1 s 13 0.07 s 35 0.32 swss3 11 5 1.32 s 104 0.05 s 360 0,51 swss32 11 4 1.63 s 235 0.07 s 482 0,4 swo
1 13 5 0.08 s 8 0.01 s 73 0,62 swo
2 9 4 0.03 s 4 0.02 s 44 0,27 srasm1 9 5 0.90 s 19 0.03 s 22 0.24 srasm2 7 4 0.15 s 2 0.01 s 6 0.15 sja
1 19 6 1' 08 s 1025 1.98 s 1678 2.1 sTable 8.1: S
heduling Results for the BAB with both Maximal and Greedy Clique BoundingAlgorithms and the ILP.we have a

urately and uniformly expressed both resour
e 
onstraints and data dependen
esusing dis-equations.Conversely to 
lassi
 graph 
oloring algorithms, we design an exa
t algorithm in whi
h the
oloring is done by means a bran
h-and-bound meta method [28℄. Ea
h evaluation is a

eleratedby either maximal or greedy 
lique 
omputation.Results show that, in e�e
t, our exa
t bran
h-and-bound approa
h has an a

eptable runtimedespite its theoreti
al 
omplexity. However, the BAB version in whi
h it is 
oupled with thegreedy 
lique algorithm is faster than the one using a maximal 
lique 
omputation.Furthermore, the e�e
tiveness of this algorithm is also proven by some 
omparative experi-ments. We 
ompare the designed algorithm to a 
lassi
al ILP solution. In fa
t, ex
ept for few
ases, the results show that our BAB algorithm has a better behavior than the ILP te
hnique.Besides, the results show that this simple designed algorithm variant, in our 
ontext instru-mented to 
ompute an optimal s
hedule, deserves more attention as it 
an be used as a solutionto many graph 
oloring problems in others 
ontexts. Indeed, there are several interesting real-life appli
ations that are modeled by graph 
oloring. In fa
t using a fast implementation andmany others tri
ks: getting the most adequate two nonadja
ent verti
es to perform the bran
h-ing or improving the greedy 
lique 
omputation heuristi
 may 
onsiderably redu
e the algorithmruntimes.
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Chapter 9General Con
lusion and FutureDire
tionsS
heduling is one key pro
ess in HLS. Under resour
e 
onstraints, s
heduling operations whileminimize the total duration is an NP-
omplete problem sin
e too many 
onstraints and obje
-tives intera
t. These 
onsiderations lead to the idea of designing gradual approa
hes to s
heduleprograms espe
ially with loops.Indeed, in order to e�
iently exhibit and exploit parallelism we use a symboli
 s
hedulingalgorithm. This produ
es a sequen
e of logi
al steps, ea
h of whi
h 
ontains a pool of ma
ro-tasks(with no loops), where ea
h ma
ro-task is a 
omplex sequen
e of elementary operations. Despitethat many hardware 
onstraints 
an be roughly taken into a

ount by this s
heduling pass, itremains that this symboli
 s
heduling te
hnique is quite 
omplex and 
annot take into a

ountall the operations and the ar
hite
tural resour
es they need. Thus, we need at least another stepto s
hedule lo
ally all operations of the ma
ro-tasks belonging to the same logi
al step to satisfythe resour
e 
onstraints and data dependen
ies between the elementary operations of the samema
ro-task. In this work, we have investigated many possibilities.9.1 ContributionIn a �rst one and for 
omplexity reasons, we have again divided the problem into two subproblems:1/ mapping and s
heduling ea
h ma
ro-task independently taking into a

ount all pe
uliaritiesof the target ar
hite
ture. This produ
es a reservation table for ea
h ma
ro-task. 2/ re�ningea
h logi
al step by s
heduling all its ma
ro-tasks, now represented by the reservation tables,while respe
ting resour
e 
onstraints.In another possibility, we have simultaneously s
heduled all operations of the ma
ro-taskswhile satisfying both resour
e 
onstraints and data dependen
ies between the elementary oper-ations of the same ma
ro-task.In this thesis and for both approa
hes, we have proposed some solutions to 
ertain s
hedulingsteps. Indeed, for the three-step approa
h, we have fo
used on the third s
heduling step problem:�s
heduling tasks whose resour
e usage is des
ribed by reservation tables�. First, we have pre-sented a formalism that a

urately expresses resour
e 
onstraints for 
omplex tasks representedby reservation tables. The resour
e 
onstraints are modeled by dis-equations and �nding anoptimal s
hedule lead us to resolve a system of dis-equations. In a se
ond time, we have pro-posed some solutions for s
heduling su
h problem: a greedy heuristi
 and two exa
t algorithms.The �rst uses ILP te
hniques and the se
ond is based on the bran
h-and-bound meta-algorithm.90



Chapter 9. General Con
lusion and Future Dire
tionsThe last one represents our main algorithmi
 
ontribution. It 
onsists on a new exa
t resour
e-
onstrained s
heduling method in whi
h 
lassi
 ILP is repla
ed by longest-path 
al
ulations astools for a bran
h-and-bound meta-algorithm. The longest-path 
omputations are a

eleratedby either variant of Floyd's or Dijkstra's algorithms. In order to improve this algorithm runtime,we have also designed four 
onstraints ordering heuristi
s that we employed to perform prunings,as soon as possible, in the BAB pro
ess. Most of them are based on graph 
y
le dete
tion.S
heduling results show that, in e�e
t, the greedy heuristi
 has a suitable behavior, at leaston our ben
hmarks. On the other hand, the BAB algorithm has an a

eptable runtime but 
anbe vulnerable to some rare pathologi
al 
ases. Con
erning the 
onstraints ordering heuristi
s, theresults show that, in most 
ases, they give better runtime than the original solution. Comparedto the ILP te
hnique, the BAB algorithm show better behavior when tasks exe
ution times arelarge.Contextually, the BAB method is designed to s
hedule data-independent tasks. However,it 
an be easily generalized to support problems of resour
e-
onstrained s
heduling even whentasks are dependent. Quite paradoxi
ally, we saw that the 
ase of independent tasks is the mostdi�
ult one for our bran
h-and-bound formulation; adding dependen
es is easy and redu
es thesize of the solution spa
e.Furthermore, in the last 
hapter we have proposed some solutions to perform the last s
hedul-ing step �the simultaneous s
heduling� de�ned in the two-step approa
h. Similar as in the �rstpart, we use �dis-equations�, as mathemati
al way to express uniformly both 
onstraints: resour
e
onstraints and data dependen
es. Consequently, to �nd an optimal s
hedule, this formalism ledus to properly 
oloring the obtained 
on�i
t graph. In order to optimally 
olor this graph and
onversely to 
lassi
 graph 
oloring algorithms, we design a new method so that 
oloring is doneby means of a bran
h-and-bound that is a

elerated by 
lique 
omputation algorithms. The
lique 
omputation 
an be a

omplished exa
tly as well as greedily.Illustrated by means of some pra
ti
al ben
hmarks, the e�e
tiveness and e�
ien
y of themethod are good. However, the algorithm version whi
h is 
oupled with the greedy 
liquealgorithm, is faster than the one using a maximal 
lique 
omputation. Moreover, the e�e
tivenessof this algorithm is also proven by some 
omparative experiments. Indeed, we have 
omparedthe designed algorithm to a 
lassi
al ILP solution. In fa
t, ex
ept for few 
ases, the results showthat our BAB algorithm has a better behavior than the ILP te
hnique.Finally, let us argue why we opt for exa
t solutions to resolve the de�ned s
heduling problems.Indeed, this 
hoi
e interest is twofold. Firstly, it is true that embedded systems designers toleratemu
h longer 
ompilation times than high-performan
e programmers. A design is the result ofmany iterations in whi
h di�erent ar
hite
tural options are evaluated. It is likely that s
heduling,even when using 
omplex te
hniques like BAB or ILP, takes negligible time 
omparing withextensive simulation or pla
e-and-route synthesis. GS is well suited for the initial exploration. Inthe �nal phases, when one must meet stri
t performan
e 
onstraints, the use of an optimal methodlike the BAB or the ILP algorithms may be warranted. Se
ondly, we believe that integratingexa
t methods into hierar
hi
al s
heduling approa
hes, that 
ould identify 
ode fragments (sowith manageable size) and s
hedule them optimally 
ouldn't a�e
t a lot the whole s
hedulingruntime.9.2 Future Dire
tionsModeling s
heduling problems and designing their 
orrespondent algorithms is known as a labo-rious task, espe
ially for 
onstrained systems su
h as the embedded ones. In this thesis, we have91



Chapter 9. General Con
lusion and Future Dire
tionsmainly tried to get some exa
t methods but we believe that the performan
es of these algorithms
an be improved. We have thought about to many ideas whi
h will be exploited. Currently, weinvestigate some ones and left for future work some others.Con
erning the greedy algorithm, it might be interesting to design a priori task reorderingheuristi
s, using ideas similar to those we applied to the BAB algorithm.The situation is similar for both Bran
h-and-Bound-based algorithms, many improvements
an be envisaged as Bran
h-and-Bound itself is a meta-algorithm, whi
h 
an be 
on�gured inmany di�erent dire
tions a

ording to the 
ontext.About the �rst Bran
h-and-Bound AlgorithmIn fa
t, the Bran
h-and-Bound 
oupled with the Dijkstra's algorithm variant, we have 
hosen,is the most obvious. One may 
onsider variants, in whi
h the lower bound �
omputation of thelongest paths� is not 
omputed for all the nodes, or in whi
h the order of elaboration of thenodes is best-�rst instead of depth-�rst.In addition, we have used an in
remental version of the longest-paths 
omputation, whose 
oreis Dijkstra's stati
 algorithm. This algorithm is faster and less memory 
onsuming 
omparingwith some others. However, as we have already mentioned, that it 
an be sped up by repla
ingthe se
ond 
all to Dijkstra's algorithm by one of its dynami
 versions re
ently published.About the Graph Coloring AlgorithmOn the other hand, experimental results about the designed bran
h-and-bound-based graph
oloring algorithm, although they have to be proven by more larger graphs, lead us to take moreattention about this graph 
oloring kernel algorithm whi
h is instrumented to 
ompute a s
hedulein our 
ontext. Indeed, �graph 
oloring� and its generalizations are useful tools in modeling awide variety of s
heduling and assignment problems and many interesting pra
ti
al problems.Hen
e, we have thought about many tri
ks whi
h are able to improve this method performan
es�spe
ially its runtime�.First, let us re
all that, for 
ertain graphs, both 
hosen 
hromati
 number lower bounds,(χ(G) ≥ n/α(G) and χ(G) ≥ ω(G) ) may be very weak; it 
an happens that ω(G) 
an bemu
h smaller than χ(G). In su
h 
ase, one 
an sear
h, in the wide graphs' literature, for morebetter lower bounds by analyzing deeply and extra
ting the real nature and features of the builtgraphs in our 
ontext. In fa
t, we 
urrently explore another lower bound whi
h is surely idealfor our 
oloring strategy. Indeed, Gröts
hel, Lovász, and S
hrijver proved [54℄, thanks to their�sandwi
h theorem�, that we 
an 
ompute in polynomial time a real number that is �sandwi
hed"between these hard-to-
ompute integers (ω(G) and χ(G)). They 
all this lower bound the �thetafun
tion�:
ω(G) ≤ θ(G) ≤ χ(G).Additional improvements 
an be envisaged before the bran
hing pro
edure i.e., when gettingthe pair of nonadja
ent verti
es. In the 
urrent version, we get greedly, in a polynomial time, the�rst pair that respe
ts the 
ondition. One 
an use an algorithm whi
h 
hooses the most adequate
ouple of nonadja
ent verti
es su
h that it will improve soon the lower bounds along a bran
h.Indeed, we are 
urrently trying to get an in
remental version of a greedy 
lique 
omputationalgorithm that will be linked to the algorithm whi
h 
hooses the pair of nonadja
ent verti
es.The aim is to rea
h a 
omplexity of O(1) instead of the 
urrently pseudo-polynomial one. Theprin
iple of this algorithm is des
ribed as follows:92
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tions
• At the root of the BAB tree stru
ture, we get a greedy 
lique of G using the 
urrent stati
greedy 
lique 
omputation algorithm. Let C be this 
lique.
• At ea
h node, during the 
hoi
e of the nonadja
ent verti
es, �rst, we try to examine thegreedy 
lique verti
es so that the 
hoosen vertex pair 
ontents, if it is possible, one vertexamong the 
lique verti
es. Let (c1, c2) be the 
hosen pair of verti
es.
• Su

essively, at ea
h step, C is in
reased, of 
ourse if it is possible, by one vertex. The
andidate vertex is 
hosen among the set c1, c2 i.e., among the 
ouple of the two nonadja
entverti
es. This 
hoi
e 
riterion may at least guarantee that the su

essive joining operationswill early in
rease the size of C. Indeed, after the nonadja
ent verti
es 
hoi
e two situationsare possible. 1/ c1 or c2 belongs to C, and su

essive joinings will in
rease soon the size of

C, 2/ neither c1 nor c2 belongs to C, and we know that C is an independent 
omponentof G, then if its size is greater than n/2 thus it is the exa
t 
lique number else we 
an tryto 
onstru
t another greedy 
lique.Further future work 
onsists in 
omparing the designed 
oloring te
hnique with some otherexa
t te
hniques [21, 91℄ espe
ially those designed for resolving VLSI CAD problem [31℄.In the interest of fast prototyping, all our algorithms are implemented in the programminglanguage of the MuPAD 
omputer algebra system, whi
h is interpretive. Despite the suitableresults, a C or Fortran implementation would 
ertainly improve more the runtime of the designedalgorithms.

93



GlossaryASAP: �As Soon As Possible� a s
heduling te
hnique. It s
hedules operations taking intoa

ount only the data dependen
es 
onstraints.ALAP: �As Late As Possible� a s
heduling te
hnique.AFAP: �As Fast As Possible� a s
heduling te
hnique.Ar
hite
tural synthesis: see Behavioral synthesis.BAB: Bran
h-And-Bound te
hnique is a general algorithmi
 meta-method for �nding optimalsolutions of various optimization problems, espe
ially in dis
rete and 
ombinatorial op-timization.Behavioral synthesis: the pro
ess whi
h takes a program �behavioral spe
i�
ation� of a systemto be performed on a dedi
ated 
ir
uit � and �nds a stru
tural des
ription �des
riptionof a 
ir
uit� that implements this behavior.Binding: assignment of operations, memory a

esses, and inter
onne
tions from the behavioraldesign des
ription to hardware units for optimal area and performan
e.CAD: �Computed-Aided Design�.Chaining: the s
heduling of two data-dependent operations in the same 
ontrol-step.Clique: For an undire
ted graph G, a 
lique represents a set of pairwise adja
ent verti
es in G.DFS: �Deepth-First Sear
h�.Dis-equation: negation of equation.DSP: �Digital Signal Pro
essing�.FPGA: �Field Programmable Gates Array� a programmable 
ir
uit.FSM: �Finite-State ma
hine� a design model for representing 
ontrollers that assigns boolean
onstants to output signals in every 
lo
k 
y
le.FSMD: �Finite-State Ma
hine with Datapath� is a model for representing 
ontrol-dominatedand data-dominated designs that augments FSM model with variables and expressionsthat spe
ify 
onditions and a
tions in ea
h state.ILP : �Integer Linear Programming (Program)�.Laten
y: It represents the needed runtime for a 
ir
uit between the the �rst data re
eption andthe last data emission.Logi
 synthesis: synthesis of a stru
tural view, des
ribed via memory elements and booleanexpressions, into logi
 gates.RTL: �Register Transfer Level� a des
ription level where the register assignments are done.Multi-
y
ling : a s
heduling te
hnique in whi
h a �
omplex� operation is s
heduled in multiple
lo
k 
y
les. This e
hnique allows slower fun
tional units use within faster 
lo
ks.Netlist A list, by name, of ea
h signal and ea
h symbol 
omponent and pin logi
ally 
onne
tedto the signal (or net). A netlist 
an be generated automati
ally by a Computer-AidedDesign system.Resour
es-
onstrained S
heduling: s
heduling operations while respe
ting a given resour
e
onstraints set. 94



GlossaryRetiming : is the te
hnique of moving the stru
tural lo
ation of registers in a 
ir
uit to improveits performan
e, area, and/or power 
hara
teristi
s in su
h a way that preserves itsfun
tional behavior at its outputs.S
heduling : partitioning the design behavior into time 
ontrol steps.Set Independent: �SI� for a graph G = (V,E), a set independent represents a vertex set from
V , so that no two verti
es are adja
ent.SoC : �System On a Chip�.Sub-optimal solution: near optimal solution.Time-
onstrained S
heduling : assignment of operations into 
ontrol steps, given a �xedexe
ution time.Verilog: a hardware des
ription language (IEEE Standard 1364-2005).VHDL: a hardware des
ription language (IEE Std 1076-1987) used by designers to des
ribedesign behavior and stru
ture at various abstra
tion levels.
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Appendix AGraph AlgorithmsThe most algorithms designed in this thesis are based on graph elementary algorithms. For sakeof 
larifying their prin
iple and their 
omplexity, we have dressed this appendix. Indeed, in thisappendix we re
all some fundamental graph algorithms and theirs 
omplexities are detailed ifne
essary.Given a graph G = (V,E), where V is a set of n verti
es and E the set of m edges. Inwhat follow, as we will talk about both undire
ted and dire
ted graphs, we use the followingterminology: we use edge and 
y
le for undire
ted graphs, and ar
 and 
ir
uit for dire
ted graph.A.1 Depth-First Sear
h Algorithm and its FeaturesDepth-First Sear
h (DFS) algorithm is one of the simplest algorithms for sear
hing a graph andthe ar
hetype for many important graph algorithms.The strategy followed by depth-�rst sear
h is, as its name implies, to sear
h �deeper� inthe graph whenever possible. In depth-�rst sear
h, edges are explored out of the most re
entlydis
overed vertex v that still has unexplored edges leaving it. When all edges have been explored,the sear
h �ba
ktra
ks� to explore edges leaving the vertex from whi
h v was dis
overed. Thispro
ess 
ontinues until we have dis
overed all the verti
es that are rea
hable from the originalsour
e vertex. If any undis
overed verti
es remain, then one of them is sele
ted as a new sour
eand the sear
h is repeated until all verti
es are dis
overed.Depth-�rst sear
h provides many information about the stru
ture of a graph and has manyinteresting features, we 
an quote:1. Depth-�rst sear
h builds a sub graph of prede
essors Gπ = (V,Eπ), where : Eπ =
{(π(v), v) : v ∈ V and π(v) 6= NIL}. Gπ forms a depth-�rst forest. In the 
aseof an undire
ted (resp. dire
ted) graph, the edges (resp. ar
s) of Eπ are 
alled tree edges(tree ar
s).2. Besides 
reating a depth-�rst forest, depth-�rst sear
h also �time-stamps� ea
h vertex. Ea
hvertex v has two time-stamps: the �rst time-stamp d[v] re
ords when v is �rst dis
overed(and grayed), and the se
ond time-stamp f [v] re
ords when the sear
h �nished examiningall the adja
en
y list and bla
kens v. Thus, a vertex v is a proper des
endent of a vertex uin the depth-�rst forest of a given dire
ted/undire
ted graph i� d[u] < d[v] < f [v] < f [u].3. Another interesting property of depth-�rst sear
h is that the sear
h 
an be used to 
lassifythe edges of the input graph G. We 
an de�ne four edge types in terms of the depth-�rstforest Gπ produ
ed by a depth-�rst sear
h on G.105



Appendix A. Graph AlgorithmsAlgorithm 5: Depth-First Sear
h Algorithmbeginforea
h vertex u ∈ V [G] do
color[u]← White;
π[u]← NULL;end

time← 0;forea
h vertex u ∈ V [G] doif color[u] = White thenPP-Visit (u);endendendPP-Visit(u)begin
color[u]← Gray;
d[u]← time + 1 ;forea
h vertex v ∈ Adj[v] doif color[u] = White then

π[u]← u;endend
color[u] = Bla
k;
f [u]← time + 1 ;end
• Tree edges : are edges in the depth-�rst forest Gπ. Edge (u, v) is a tree edge if vwas �rst dis
overed by exploring edge (u, v).
• Ba
k edges (R) are those edges (u, v) 
onne
ting a vertex u to an an
estor v in thedepth-�rst tree Gpi. Self-loops, whi
h may o

ur in dire
ted graphs, are 
onsideredto be ba
k edges.
• Forward edges (T) are those non-tree edges (u, v) 
onne
ting a vertex u to a de-s
endant v in a depth-�rst tree.
• Cross edges (A) are all other edges. They 
an go between verti
es in the samedepth-�rst tree, as long as one vertex is not an an
estor of the other, or they 
an gobetween verti
es in di�erent depth-�rst trees.It should be mentioned that in the 
ase of undire
ted graphs, we 
an distinguished onlytwo kinds of edges: edges belonging to the depth-�rst forest and those whi
h don't belongto it. Let us see Figure. A.1: (a) represents the steps of the DFS, where ea
h vertex uis labeled by its d[u]/d[f ], and (b) represents the depth-�rst forest (bold arrows) and the
lassi�
ation of ar
s.The 
omplexity of Algorithm 5 is in O(n + m). This algorithm 
an serve to enumerate abasis of 
y
les and paths of G. In addition, in the 
ase of graph without 
y
les, one 
an establishthe topologi
al sort by exploiting the values of f . Furthermore, the DFS allows a 
y
le dete
tionand it 
an be used to enumerate the strongly 
onne
ted 
omponents of a graph . . . .106



Appendix A. Graph Algorithms
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(a) Figure A.1: DFS PropertiesA.2 Maximal-weight PathsIn the problem of �nding paths of maximal weights 32 (for brevity we use longest-paths) in agraph [30℄ we are given a dire
ted graph G = (V,E,w), where V is a set of n verti
es and E a setof ar
s with a weight fun
tion w : E → Z whi
h a�e
ts ea
h ar
 (i, j) by a real value �weight�
w(i, j) . The weight of path P = [v0, v1, . . . , vk) is the sum of the weights of its 
onstituent edges:
w(P ) =

∑k
i=1 w(vi−1, vi). We de�ne the path of maximal weight from u to v by:

∆(u, v) =

{

maxp w(p) : u
p
 v if there are paths from u to v

+∞ elseIn the literature, we 
an distinguished two kinds of algorithms resolving this problem a

ord-ing to what we 
onsider: 1/ sear
hing paths of maximal weight from a given vertex s �
alledsour
e� to all the others, the problem is 
alled �Single-sour
e longest-paths problem� or 2/ sear
h-ing paths of maximal weights from u to v for every pair of verti
es u and v, the problem is 
alled�All-pairs longest-paths problem�.A.2.1 Relaxation Te
hniqueFirst, let us explain the relaxation te
hnique that is used in both algorithms, des
ribed in whatfollow, whi
h �nds paths of maximal weight from a given sour
e s to all the others.In this te
hnique, for ea
h vertex v ∈ V , we maintain an attribute d[v], whi
h is an upperbound on the weight of a longest-path from sour
e s to v. We 
all d[v] the �estimate of the pathof maximal weight �. We initialize the estimate paths of maximal weight by d[v] = −∞ for ea
h
v. We de�ne π(v) the prede
essor of vertex v for whi
h d[v] has been updated for the last time.RELAX (u, v,w)if d[v] < d[u] then

d[v]← d[u] + w(u, v);
π(v)← u;end32In the literature, these algorithms are often presented as �nding paths of minimal weight. This is the same,one just have to 
hange the weight signs. Our explanations are based on maximal-weight paths.107



Appendix A. Graph AlgorithmsAlgorithm 7: Dijkstra's AlgorithmdébutInitialize-sour
e(G, s);
S ← ∅;
Q← V ;while Q 6= ∅ do

u← Extra
t-Max(Q);
S ← ∪ {u};forea
h v ∈ Adj[u] doRELAX(u, v,w)endend�nThe pro
ess of relaxing an ar
 (u, v,w) 
onsists of testing whether we 
an improve the �pathof maximal weight estimate� of v, going through u and, if so, updating d[u] and π(v).A.2.2 Dijkstra's AlgorithmDijkstra's algorithm resolves the �Single-sour
e longest-paths problem� on a weighted graphwhose all edge weights are nonpositive (w(u, v) ≤ 0). Dijkstra's algorithm maintains a set S ofverti
es whose longest-paths from the sour
e s have already been determined su
h that for ea
hvertex v ∈ S we have d[u] = ∆(u, v). At ea
h step, the algorithm sele
ts a vertex u ∈ V − Swhose d[u] is maximal �whi
h is done by Extra
t-Max primitive�, adds u to S, and relaxes alledges leaving u.In Algorithm 7, the data-stru
ture of Q represents a max-priority queue, whi
h 
ontainsverti
es in V − S, keyed by their d values. If the priority queue is implemented with a simplearray then the Extra
t-Max pro
edure will be exe
uted in O(n). In Dijkstra's algorithm theWhile loop is repeated n times. In the whole exe
ution, the For loop is repeated |E| timesi.e. m times, the number of ar
s, thus for ea
h iteration, it takes O(1). Consequently, the totalruntime of the algorithm is O(n2 + m) ≡ O(n2)33.However, when the graph is dense �|E| is 
lose to |V |2�, it is more advised to implement themax-priority queue by a binary heap34. With su
h implementation, the pro
edure Extra
t-Maxwill be in O(lg n) and eventual assignation d[v]← d[u]+w(u, v) will be realized by the primitiveIn
rease-key (Q, v, d[u] + w(u, v)) in O(lgn), in whi
h 
ase the 
omplexity of the algorithm 7be
ames O((n + m). lg n).However, the most suitable data stru
ture for speeding up this algorithm is the Fibona

i-heap [30℄. With this data stru
ture, the amortized 
ost of ea
h 
all to Extra
t-Max primitive35 in O(lg n), and ea
h of the |E| 
alls to the In
rease-key takes only an amortized time in

O(1). Consequently, Dijkstra's algorithm 
an be exe
uted in O(n. lg n + m).33In what follow, often the O(|E|) is majored by O(n2)34A (binary) heap data stru
ture is an array obje
t that 
an be viewed as a nearly 
omplete binary sear
h treewhi
h has spe
ial basi
 primitives su
h : In
rease-key (Q, v, k) that in
rease the key of a node v in O(lgn) whilepreserving the queue order.35The amortized 
ost is the required time to perform a sequen
e of data-stru
ture operations is averaged overall the operations performed. Amortized analysis di�ers from average-
ase analysis in that probability is notinvolved; an amortized analysis guarantees the average performan
e is an of ea
h operation in the worst 
ase.108



Appendix A. Graph AlgorithmsAlgorithm 8: Bellman-Ford's Algorithm.beginInitialize-sour
e(G, s);for i← 1 to |V | − 1 doforea
h ar
 (u, v) ∈ E doRELAX(u, v,w);endendforea
h ar
 (u, v) ∈ E doif d[v] < d[u] + w(u, v) thenreturn FALSE ;endendreturn TRUE ;endA.2.3 Bellman-Ford's AlgorithmThe Bellman-Ford's algorithm solves the single-sour
e longest-paths in the general; i.e. the 
asewhere edge weights are arbitrary. Given a weighted, dire
ted G = (V,E,w) with a sour
e s, theBellman-Ford's algorithm returns a boolean value indi
ating whether or not there is a positive-weight 
y
le, that is rea
hable from the sour
e. If there is su
h a 
y
le, the algorithm indi
atesthat no solution exists. If there is no su
h 
y
le, the algorithm produ
es the longest-paths fromthe sour
e s to ea
h vertex v ∈ V and their weights. Bellman-Ford's algorithm �Algorithm 8�runs in O(n3) time.In the longest-paths problem, one wishes to �nd for ea
h pair of verti
es u, v ∈ V , thelongest-path from u to v, where the weight of a path is the sum of the weights of its 
onstituentedges. We typi
ally want the output in tabular form: the entry in u's row and v's 
olumn shouldbe the weight of a longest path from u to v.One 
an solve the all-pairs longest-paths problem by running a single-sour
e longest-pathsalgorithm |V | times, on
e for ea
h vertex as the sour
e. If all edge-weights are nonpositivethe n 
alls to Dijkstra's algorithm, a

ording to its implementation needs O(n3) with an array,
(n2 + nm) lg n) with a binary heap, or O(n2 lg n + nm)) with a Fibona

i heap. But in general
ase, the n 
alls to the Bellman-Ford's algorithm gives results in O(n4).In the literature, there are some solutions whi
h do better. In this short appendix, we reportthe two well known algorithms to �nd all-pairs longest-paths: Floyd-Warshall's algorithm andJohnson's algorithm.A.2.4 Floyd-Warshall's AlgorithmFloyd-Warshall's algorithm, assume that there are no positive-weight 
y
les. This algorithmuses a dynami
-programming formulation to resolve the all-pairs longest-paths problem. Beforepro
eeding, let us brie�y re
ap the steps for developing any dynami
-programming algorithm,indeed one has to : 1/ 
hara
terize the stru
ture of an optimal solution, 2/ re
ursively de�nethe value of an optimal solution, 3/ 
ompute the value of an optimal solution in a bottom-upfashion.Indeed, Floyd and Warshall start by 
hara
terizing the stru
ture of an optimal solution.Assume that the graph is represented by an adja
en
y matrix W = (wij).109



Appendix A. Graph Algorithms
$p_1$ $p_2$

i

k

jAll intermediate verti
es of p are in {1, 2, . . . , k}

All intermediate verti
es of p2 are in {1, 2, . . . , k − 1}All intermediate verti
es of p1 are in {1, 2, . . . , k − 1}

The algorithm is based on the following observation. Let V = {1, 2, . . . , n} be the set of allverti
es of G, for ea
h k ∈ V , 
onsider the subset {1, 2, . . . , k}. Let p be the longest-path fromverti
es i to j. p is an elementary path as there are nonpositive 
y
les in G.The algorithm uses the relationship between the path p and all longest paths from i to jwhose 
omponents verti
es are in the set {1, 2, . . . , k− 1}: (1) If k is not an intermediate vertexin the path p, so all intermediate verti
es of p are in {1, 2, . . . , k−1}, thus the longest-paths from
i to j whose intermediates verti
es are in {1, 2, . . . , k−1} is also a longest path from i to j whoseintermediates verti
es are in {1, 2, . . . , k}. (2) If k is an intermediate vertex in p then we 
ut thepath into two sub-paths: p : i

p1

 k
p2

 j, as shown in Figure. A.2.4. The path p1 (resp. p2) is alongest-path from i to k (resp. from k to j whose intermediate verti
es are in {1, 2, . . . , k − 1}.Indeed, k isn't an intermediate vertex in both paths p1 and p2. This is indu
es dire
tly from thefa
t that the sub-paths of a longest-path are them self longest-path.Given a graph where all 
y
les are negative or null, Floyd-Warshall's algorithm, based onthe dynami
 programming prin
iple des
ribed above, de�nes a
(k)
ij as the longest-path from i to

j whose intermediates verti
es are belonged to {1, 2, . . . , k}. When k = 0, a
(k)
ij = wij , thus there
ursive de�nition of the longest path is:

a
(k)
ij =

{

wij if k = 0

max{a
(k−1)
ij , a

(k−1)
ik + a

(k−1)
kj } if k > 0.Floyd-Warshall's algorithm �Algorithm 9� runs in (n3) time and its spa
e requirement isabout n2. In this algorithm, the supers
ript k in a(k) is added only to indi
ate the number ofthe iteration. When implementing this algorithm, it does not appear.A.2.5 Johnson's AlgorithmJohnson's algorithm �Algorithm 10� resolves the all-pairs longest-paths problem in O(n2lgn +

m.n). For sparse graphs, it is asymptoti
ally better than the Floyd-Warshall's algorithm whi
his in O(n3). The algorithm either returns a matrix of longest-path weights for all pairs of verti
esor reports that the input graph 
ontains at least one positive-weight 
y
le. Johnson's algorithmuses, as subroutines, both Dijkstra's algorithm and the Bellman-Ford's algorithm, whi
h aredes
ribed previously.Johnson's algorithm uses the te
hnique of reweighting, whi
h works as follows. If all edge-weights w in G are non positives, we 
an �nd longest paths between all pairs of verti
es by runningDijkstra's algorithm one from ea
h vertex. If G has positive-weight edges but no positive-weight
y
les 110



Appendix A. Graph AlgorithmsAlgorithm 9: Floyd-Warshall's Algorithmbeginfor i from 1 to n dofor j from 1 to n do
aij ← wij;end

aii ← 0 ;endfor k from 1 to n dofor i from 1 to n dofor j from 1 to n do
a

(k)
ij ← max{a

(k−1)
ij , a

(k−1)
ik + a

(k−1)
kj } ;endendendendThis te
hnique de�nes a new reweighting fun
tion wr whi
h satis�es two proprieties: (1)For ea
h 
ouple of verti
es i, j ∈ V , if we knew the longest-paths for G = (V,E,wr) �usingthe reweighting fun
tion wr�, it will be easy to �nd the longest-paths from i to j by using thefun
tion w, we talk about �longest-path 
onservation�, (2) for ea
h pair (i, j), the new weight

wr(i, j) is positive or null.To get the new reweighting fun
tion wr, we de�ne the fun
tion h : V → R whi
h asso
iatea real value to ea
h vertex. Indeed, for ea
h edge (u, v) ∈ E, we de�ne a new weight wr(i, j) =
w(u, v) + h(v)− h(u).In Algorithm 10, Bellman-Ford's algorithm is used to 
he
k whether a positive-weight 
y
le,in whi
h 
ase no solution exists. In the opposite 
ase, the longest-paths from the �
titious sour
e
s to ea
h vertex v ∈ V , ∆(s, v) will serve to de�ne the reweighting fun
tion h.Table A.1 summarizes, for ea
h algorithm, des
ribed above, their respe
tive 
omplexity andthe features of the graph for whi
h they are most suitable.A.3 Roy-Warshall's AlgorithmRoy-Warshall's algorithm 
omputes, for a dire
ted graph G = (V,E), the rea
hability rela-tionship between all-pairs of verti
es; it returns, for ea
h pair of verti
es i, j, a boolean valueindi
ating whether or not there is a path from i to j. Roy-Warshall's algorithm follows thedynami
 programming prin
iples same as in Floyd-War
hall's algorithm36. Indeed, we de�ne
Acc

(k)
ij the boolean value whi
h attests that j is rea
hable from i by a path whose intermediatesverti
es are in the set {1, 2, . . . , k}. Thus, we de�ne re
ursively Accij as:

Acc
(k)
ij =











TRUE If an edge from i to j exists and k = 0
FALSE If no edge from i to j and k = 0

Acc
(k−1)
ij or (Acc

(k−1)
ik and Acc

(k−1)
kj ) if k > 0.36Histori
ally, the Floyd-War
hall's algorithm is inspired from the prin
iple of the Roy-Warshall's algorithm byperforming the following substitutions : �or = max� and �and = +�111



Appendix A. Graph AlgorithmsAlgorithm 10: Johnson's algorithmbeginBuild G′, Where V [G′] = V [G] ∪ {s} and
E[G′] = E[G] ∪ {(s, v); v ∈ V [G]};if Bellman-Ford (G′, w, s) = False then� G 
ontains positive-weights 
y
les�endforea
h vertex v ∈ V [G′] do

h(v)← −∆(s, v)/* Where ∆(s, v) is 
omputed by Bellman-Ford's Algorithm */endforea
h edge (u, v) ∈ E[G′] do
wr(u, v)← w(u, v) + h(v) − h(u)endforea
h vertex u ∈ V [G] do
∆r(u, v)← Dijkstra(G,wr, u);forea
h vertex v ∈ V [G] do

au,v ← −∆r(u, v) + h(u) − h(v)endendReturn D ;endAlgorithm Problem Graph proper-ties Time Complexity Spa
e Com-plexityDijkstra Single-sour
elongest-paths Edge weightsmust bepositive Using an array Binary heap Fibona

i heap(Sparse graph) O(n)

O(n2) O((n + m) lg n) O(n lg n + m)Bellman-Ford // any graph O(n3 O(n)Floyd-Warshall All-pairslongest-paths no positive-weight 
y
les O(n3) O(n2)Johnson // Sparse graph O(n2 lg n + n.m) O(n)Table A.1: Summary of Longest-Paths Algorithms.Same as Floyd-War
hall's algorithm, Roy-Warshall's algorithm �Algorithm 11� runs in n3time and requires n2 memory spa
e.
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Appendix A. Graph Algorithms

Algorithm 11: Roy-Warshall's Algorithmbeginfor ea
h pair (i, j) ∈ (V XV )E doif edge (i, j) then
Accij ← TRUE;else
Accij ← FALSE;endendfor k from 1 to n dofor i from 1 to n dofor j from 1 to n do

Accij ← Accij or (Accik and Acckj) ;endendendend
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Appendix BBen
hmark Des
riptionIn order to measure the real performan
es of our algorithms, we have tested them on some testprograms get from real-life appli
ations. These 
onsist of 
ode fragments from the Perfe
t-Club [18℄ and HLSynth95 [85℄ ben
hmarks. The Perfe
tClub ben
hmarks represent appli
ationsin a number of areas of engineering and s
ienti�
 
omputing and the HLSynth95 ben
hmarks,more spe
i�
ally, represent a repository of appli
ations in embedded systems.B.1 1995' High-Level Synthesis Design RepositoryHLSynth95 represents a set of designs that 
an serve as examples for High-Level Synthesissystems. Indeed, it 
ontains many appli
ations and modules widely used in embedded systems.The designs vary in 
omplexity from simple behavioral �nite state ma
hines to more 
omplexdesigns su
h as mi
ropro
essors, �oating point units, image pro
essing appli
ations, . . . .The designs are in C or VHDL languages. All of these designs are available from the designrepository at U.C Irvine university (anonymous ftp://i
s.u
i.edu/pub/hlsynth). Mainly, we havesele
ted the designs des
ribed at the behavioral level. Table B.1 summarizes some of the impor-tant aspe
ts related to the fun
tionality of these designs, su
h as typi
al 
ontrol features present,style of des
ription and major data types used. The number of lines of 
ode is mentioned to givea rough idea of the design's size.B.2 Perfe
tClub Ben
hmarksThe Perfe
tClub �For �PERForman
e Evaluation for Cost-e�e
tive Transformations�� suite isa set of thirteen programs that total well over 50, 000 lines of sour
e 
ode [18℄. They representappli
ation in a number of area of engineering and s
ienti�
 
omputing, and in many 
ases theyrepresent 
odes that are 
urrently used by a number of 
omputational resear
h and developmentgroups. This repository has been originally developed in order to measure performan
es ofparallel ar
hite
tures and super
omputers.Our ben
hmark are simple kernels rather than full-�edged appli
ations, whi
h are mu
hmore 
omplex. However, the added 
omplexity is a problem for symboli
 s
heduling. Indeed,the Perfe
tClub ben
hmarks are 
hosen as they 
ontain s
ienti�
 appli
ations whi
h 
ontainmore parallelism through nested loops. These appli
ations are the most aimed by our generals
heduling strategies. Table B.2 reports some features of a part of these designs.114



Appendix B. Ben
hmark Des
ription
Design Name Design Des
ription Design Level Control fea-tures Data types Lines of CodeFP_Adder Floating Point Adder Algorithmi
Behavior Nested IfsFor loopsPro
/Fun
 Bit Ve
tor In-teger Enum 640FP_Mult Floating Point Multi-plier Algorithmi
Behavior Nested IfsFor loopsPro
/Fun
 Bit Ve
tor In-teger Enum 425FP_Divider Floating Point Divider Algorithmi
Behavior For loops CaseStmt Bit Ve
tor In-teger Enum 410Bar
ode Bar
ode Reader Algorithmi
Behavior Nested Loops Bit Ve
tor In-teger 110Adaptive Chip Adaptive Interpo-lation Algorithmi
Behavior Fun
 CallsNested Loops Multi Dimen-sional Integerarrays 810Memory (7 models) Image Pro
essing Ap-pli
ations Algorithmi
Behavior Fun
 NestedLoops 2-DimensionalFloat arrays 140Beamformer Filter Ve
tor Prod-u
t/Summation Nested ForLoops (4levels) 3-DimensionalInteger arrays 100Ja
obian Robot Motion Compu-tation Algorithmi
Behavior For Loops 2-DimensionalDouble Integerarrays 450FFT Fast Fourier Transform Algorithmi
Behavior Nested WhileLoops Array of BitVe
tor 145Table B.1: Features of Designs.

Program Appli
ation Control Features Lines of CodeADM Air Pollution Nested Ifs, For loops 6 142SPICE Cir
uit Simulation For loops 18 304OCEAN Computational FluidDynami
s Nested Ifs, For loops 4215SPEC77 Weather Simulation Nested Ifs, For loops 3880MDG Liquid Water Simula-tion For loops 1231Table B.2: Part of the Perfe
tClub Ben
hmarks Suite.
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