
N◦ d’ordre : 10/2007-E/IN

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université des Sciences et de la Technologie Houari Boumediene (U.S.T.H.B)

Faculé d’Electronique et d’Informatique

Thesis

Presented in order to get the DOCTORAT d'Etat Diploma

In Computer Science

By

Hadda CHERROUN

Theme

Scheduling for High-Level Synthesis

Defended on 10 december 2007

Thesis committeeNadjib BADACHE Professor, University of Sciences and Technology
Houari Boumedienne, Algiers

ChairmanMohamed AHMEDNACER Professor, LISI/ENSMA, University of Sciences
and Technology Houari Boumedienne, Algiers

Thesis DiretorPaul FEAUTRIER Professor, LIP ENS Lyon, France Thesis AdvisorZaia ALIMAZIGHI Dr., University of Sciences and Technology
Houari Boumedienne, Algiers

ExaminerMouloud KOUDIL Dr., National Institute in Computer Science
(INI), Algiers

Examiner

AbstratSheduling is one of the important tasks in High-Level Synthesis (HLS). Sheduling a wholeprogram, espeially with loops, is hard as too many onstraints and objetives interat. Wepropose to organize sheduling in gradual ways. This thesis fouses on some steps of the de-signed sheduling approahes. An e�ient formalism to express resoure onstraints, using dis-equations, is presented. In the �rst part, we examine the problem of Resoure-ConstrainedSheduling (RCS) tasks whose resoure usage is desribed by reservation tables, while in theseond one, we adress the problem of RCS data-dependent tasks. For both problems, several al-gorithms are proposed. Our main algorithmi ontributions are: 1/ an exat branh-and-bound(BAB) algorithm, where eah evaluation is aelerated by variants of Floyd's and Dijkstra's al-gorithms, 2/ a new sheduling method based on graph oloring tehnique as a tool for a BABmeta-method, where eah evaluation is aelerated by maximal and greedy lique omputation.The evaluation and omparisons are done on piees of real-life appliations from the PerfetCluband the HLSynth95 benhmarks. The results demonstrate the suitability of these solutions forHLS sheduling.Keywords: Sheduling, resoure onstraints, reservation tables, dis-equations, branh-and-bound, Dijkstra, graph oloring, integer linear programming.RésuméL'ordonnanement est l'une des tâhes les plus importantes dans la synthèse de haut niveau.Vue l'importane des objetifs et des ontraintes qui interagissent, il est dur d'ordonnaner, unprogramme en entier, en partiulier lorsqu'il ontient des boules. Pour ela, nous proposonsd'hiérarhiser l'ordonnanement en niveaux graduels selon di�érentes approhes. Cette thèse seonentre sur quelques étapes de es approhes onçues. Un formalisme e�ae exprimant lesontraintes de ressoures en utilisant les dis-équations, est présenté. Dans une première partie,nous examinons le problème de l'Ordonnanement sous Contraintes de Ressoures (OCR) detâhes dont l'utilisation de ressoure est dérite via des tables de réservation, tandis que dansla seonde partie, nous abordons le problème d'OCR de tâhes dépendantes. Nos prinipalesontributions sont: 1/ un algorithme exat de type Branh-and-Bound (BAB) assoié à unevariante de l'algorithme de Dijkstra, 2/ une nouvelle méthode d'ordonnanement basée sur latehnique de oloriage de graphe et qui est résolue au moyen d' un BAB assoié à un algorithmede alul de lique (exate/gloutonne). Les algorithmes proposés ont été implémentés. Le jeudes programmes tests est pris d'appliations réelles du PerfetClub et HLSynth95 benhmarks.Les résultats prouvent que les deux méthodes onviennent aux outils HLS.Mots-lés: Ordonnanement, ontraintes de ressoures, tables de réservation, dis-equations,branh-and-bound, Dijkstra, oloriage de graphe, programmation linéaire en nombres entiers.

Aknowledgments
I would like to thank my thesis diretor, Professor Mohamed AHMED NACER, for his ultimatehelp and advies.I would like thank also my advisor, Professor Paul FEAUTRIER, giving me the opportunityof working on this thesis in his laboratory with the members of his team, for his support andhis diretions. This work ouldn't have been done without the advies of several other people.First, I would like to aknowledge Alain DARTE, CNRS researh sientist at LIP laboratoryENS Lyon, for his ultimate help and partiipation in the researh results.Speially, I would like to thank Dr. AliMazighi, Professor Nadjib BADACHE �rst for thefat that they made a di�erene in my student life and for have aepted to be member of mythesis ommittee. Dr. Mouloud KOUDIL is also thanked to have aepted to evaluate my thesis.Also, I would like to thank many of my friends met at the LIP laboratory whose ommentshelped me at the di�erent stages of this researh: Fabrie BARRY, Antoine SCHERRER, NiolasFOURNEL, Anne BOUILLARD and Eri THIERRY.A thesis is more than its tehnial ontributions, it is also a personal ahievement. For this,I would warmly thank my family and friends. First, my husband Mouloud who joined me in thisadventure. Thank you for your loving trust and your support. I would also like to thank myfamily: my mother for her loving and ultimate help and support, my brothers and sisters whoseenouragements throughout my studies have always been the greatest help.This is also a good opportunity to thank some of the people who really made a di�erene inmy student life. K. REGHI and B. CHATTA professors at Benammer Coll�ège and A. BENGUITat Hadj Aissa Lyée and most of my teahers at the USTHB university espeially N. BENSAOUand N. MADANI.Finally, my deepest gratitude goes to my lose friends Attika, Badra, Hayet, Malika, Mounira,and Zineb. Their friendship and love have helped me a lot and their aknowledgment annot beexpressed by words.

ii

To Allah
To MouloudTo my Mother

iii

Table of Contents
List of Figures viiiList of Tables ix1 Introdution 11.1 Synthesis and High-Level Synthesis . 21.1.1 Partitioning . 31.1.2 Sheduling . 31.1.3 Alloation -Binding- . 41.2 Objetives, Constraints & Peuliarities when Sheduling in HLS 41.2.1 Constraints . 41.2.1.1 Preedene/Control Constraints 41.2.1.2 Resoure Constraints -Sharing Resoures- 51.2.1.3 Time Constraints . 51.2.1.4 Speial Constraints . 51.2.2 Datapath Peuliarities . 51.2.3 Interation with Alloation . 61.3 Context . 61.4 Sheduling Problems Addressed . 81.5 Objetives . 91.6 Contributions . 91.7 Thesis' Overview . 102 State of the Art 112.1 Internal Representation and Constraints Formalisms 112.1.1 Internal Representation Formalisms 112.1.2 Constraints Formalisms . 122.2 Sheduling Strategies . 132.2.1 Basi Algorithms . 142.2.1.1 ASAP . 142.2.1.2 ALAP . 152.2.2 Critial Path Method . 152.2.3 List-sheduling . 152.2.4 Fore-Direted Sheduling (FDS) . 16iv

2.2.5 Path-Based Sheduling . 172.2.6 Exat Algorithms . 182.2.6.1 Integer Linear Programming 182.2.6.2 Constraint Programming Tehnique 202.2.7 Misellaneous Tehniques . 212.2.7.1 Simulated Annealing Based Algorithm 212.2.7.2 Geneti Algorithm . 222.3 High-Level Synthesis Tools . 222.3.1 GAUT . 232.3.2 SPARK . 232.3.3 Ugh . 252.3.4 MMAlpha . 262.4 Sheduling using Reservation Tables . 272.5 Hierarhial basis Sheduling Frameworks . 272.6 Conlusion . 283 General Sheduling Approahes 293.1 Syntol Projet . 293.1.1 Input Spei�ation: CRP Spei�ation Language 293.1.2 Target Arhiteture: the RTL Formalism 323.2 A Shedule the Main Tool to Get an FSMD 333.3 Stepwise Sheduling . 333.3.1 Two-step Approah . 343.3.2 Three-step Approah . 353.4 Compilation Flow . 373.5 CLooG : a Code Generator . 393.6 Conlusion . 43
Part I Reservation Tables Sheduling using Dis-equations

4 Formalism and a Greedy Solution 454.1 Introdution . 454.2 Task and Resoure Constraints Formalism . 454.2.1 Extrating Tasks with Reservation Tables 454.2.2 Notations . 464.2.3 Forbidden Distanes . 464.2.4 Example 1 . 474.3 Sheduling Problem Formulation . 48v

4.4 How To solve a System of Dis-equation? . 484.5 A Greedy Heuristi . 494.5.1 Algorithm . 494.5.2 Example 1, Continued . 504.5.3 Experiments . 514.6 Conlusion . 525 Integer Linear Programming Approah 535.1 General Introdution . 535.2 Integer Linear Programming Approahes . 555.2.1 Notations . 565.2.2 Standard 0/1 Enoding . 565.2.3 0/1 Simpli�ed Enoding . 565.2.4 Big-M Enoding . 575.2.5 Experiments . 585.3 Conlusion . 596 Branh-and-Bound-Based Longest-Path Computation Solution 606.1 General Introdution . 606.2 An Exat Branh-and-Bound Solution . 616.2.1 Finding the Loal Bound . 626.2.1.1 Floyd-based Algorithm . 636.2.1.2 Dijkstra-based Inremental Algorithm 646.2.2 Complexity . 666.2.3 Speeding up the BAB Algorithm . 666.2.3.1 Heuristi 1 . 686.2.3.2 Heuristi 2 . 686.2.3.3 Heuristi 3 . 686.2.3.4 Heuristi 4 . 696.2.4 Experiments . 696.3 Conlusion . 727 Comparative Study 737.1 Comparative Results and Disussion . 737.2 Conlusion . 76
Part II Resoure-Constrained Sheduling using Graph Coloring

8 Sheduling via Branh-and-Bound-Based Graph Coloring 788.1 Formalisms . 78vi

8.1.1 Task Model . 788.1.2 Data Dependenes and Resoure Constraints Formalism 798.2 Sheduling Problem Formulation . 808.3 How To Color a Graph? . 818.4 Branh-and-Bound-Based Graph Coloring Solution 838.4.1 Branhing Rule . 838.4.2 Evaluation -Bounding- Proedure . 838.4.3 Algorithm . 868.4.4 Complexity . 878.5 Integer Linear Program Solution . 878.6 Experimental Results and Disussion . 888.7 Conlusion . 889 General Conlusion and Future Diretions 909.1 Contribution . 909.2 Future Diretions . 91Glossary 94Bibliography 97A Graph Algorithms 105A.1 Depth-First Searh Algorithm and its Features 105A.2 Maximal-weight Paths . 107A.2.1 Relaxation Tehnique . 107A.2.2 Dijkstra's Algorithm . 108A.2.3 Bellman-Ford's Algorithm . 109A.2.4 Floyd-Warshall's Algorithm . 109A.2.5 Johnson's Algorithm . 110A.3 Roy-Warshall's Algorithm . 111B Benhmark Desription 114B.1 1995' High-Level Synthesis Design Repository 114B.2 PerfetClub Benhmarks . 114

vii

List of Figures
1.1 The Hierarhial Sheduling Views . 82.1 (a) Data Flow Graph (b) ASAP Shedule () ALAP Shedule 143.1 Pipeline System. 323.2 Target of HLS - RTL proessor- . 323.3 The Hierarhial Sheduling Views . 363.4 Design Flow of our HLS System. 373.5 Generated FSM for the Pipeline Program. 424.1 Forbidden Distane. 474.2 Binding for Example 1. 484.3 (a) Greedy Solution and (b) Optimal Solution. 515.1 Feasible Areas. 546.1 Pathologial Case ss21. 728.1 One unit-yle resoure simulation. 798.2 Binding for the Example. 828.3 The Graphs G, G′ and G′′. 84A.1 DFS Properties . 107

viii

List of Tables
4.1 Greedy Sheduling Results. 515.1 Sheduling Results with the Di�erent ILP Formulations. 596.1 Sheduling Results for the Various Tests on the BAB Algorithms. 706.2 Improvements on the BAB Algorithm with Lbest Set to the GS Shedule Lateny. 716.3 In�uene of the Binding Heuristi on Lateny and Resolution Time. 717.1 Comparative Results. 747.2 Comparative Results when the pi Vary. 747.3 Comparative Results with Arti�ial Data Dependanes. 757.4 Comparative Results when Splitting a few Maro-tasks. 758.1 Sheduling Results for the BAB with both Maximal and Greedy Clique BoundingAlgorithms and the ILP. 89A.1 Summary of Longest-Paths Algorithms. 112B.1 Features of Designs. 115B.2 Part of the PerfetClub Benhmarks Suite. 115

ix

Chapter 1IntrodutionIn this thesis, the resoure-onstrained sheduling problem in High-Level Synthesis -behavioralsynthesis- will be examined, and several algorithms are proposed. The aim of this researh is topropose and ompare some novel sheduling algorithms, as well from theoretial point of viewas experimental one. These algorithms are integrated in stepwise sheduling approahes.With the rise in the omplexity of Integrated Ciruits (IC's), their design proess has beomevery di�ult to manage without any automation or semi-automation. Thus the need of e�etiveand good CAD tools where we an have: shorter design yle, fewer errors, the ability to searhthe design spae, doumenting the design proess and availability of digital iruit tehnologyto more people. The hallenge of embedded system design is twofold: one must pak ompute-intensive algorithms in small platforms; furthermore, the design must be ompleted as fast aspossible, to meet the demands of a highly volatile market. In the long run, this will be possibleonly if omputer-aided design tools are developed far beyond their present status [24℄.An artifat suh as a ell phone or a digital TV set must behave aording to given spei�-ations; however, its hardware parts an only be built from a strutural desription. The goal ofHigh-Level Synthesis (HLS) is to onvert a behavioral spei�ation � for the whole or a part of theomplete appliation, to be performed on a dediated iruit � into a strutural desription, whileoptimizing several objetive funtions: performane, size, power onsumption among others.In the past two deades [34℄ there has been a lot of ativity going on in the area of High-Levelsynthesis and it is beoming an inreasingly popular researh topi. Currently, several ommer-ial [103, 78, 102℄ and aademi HLS [49, 77, 88, 71, 55, 37℄ tools exist but the design ommunitydon't integrate them into its design �ow, beause of many reasons: they lak interation betweenthem and the designers, they an support only limited arhitetures and the quality of the designthey generate is still often worse than that of manual design.Our ontribution fouses on the sheduling problem as it is one key proess in HLS. Our aimis to improve those tools by reusing some of methods and models that have been pioneered bythe ompiler ommunity. Among these powerful methods, operations researh tehniques havestrongly inreased the performanes of sheduling task.Sheduling is an important and primary task in HLS. However, sheduling operations un-der resoure onstraints to minimize the total duration is NP-omplete problem as too manyonstraints and objetives interat [104, 26℄. For e�iently sheduling programs, espeially withloops, �rst, we failitate the problem by this trik. We propose to organize the sheduling proessin stepwise ways.The purpose of these hierarhial deompositions is twofold: one an integrate exat methodsinto these hierarhial sheduling approahes, that ould identify ode fragments and shedule1

Chapter 1. Introdutionthem optimally suh that it ouldn't a�et a lot the whole sheduling quality; furthermore, itallows to avoid dealing with a too large system as is well known, applying linear programmingto large onstraint systems is not ost-e�etive.In what follow, we will present brie�y the area, the ontext and the objetives of this researh.After what, we report the main ontributions. We onlude by giving the outline of the thesis.1.1 Synthesis and High-Level SynthesisThe High-Level -arhitetural or behavioral- Synthesis (HLS) proess takes a behavioral spe-i�ation of a system and a set of onstraints and goals to be satis�ed, and �nds a struturethat implements the behavior while satisfying the goals and onstraints [34℄. These goals andonstraints an express several objetive funtions: performane, size, power onsumption. . .Some times alled �hardware ompilation�, the synthesis of iruits translates a sequentialprogram, into an integrated iruit (hardware). The aim of the synthesis tool is to obtain thephysial view of the iruit. This view an be represented by a netlist whih is a strutural viewin the logi-gates level. However, there are several lower-level tools - logi synthesis- whih allowthe translation to this strutural view: Synopsys [103℄, Cadene [22℄, Catapult [78℄, ISE Xilinxtools [113℄. Most of them start working on Register Transfer desription Level (RTL). Indeed,at the RTL level, the input desription is transformed in suh way that the register assignationand the funtional units assignation are �xed for eah yle of the system [34℄. We are interestedby the part of the HLS whih �lls the gap between system � behavioral� level and the RT levelby automatially generating an RTL realization from a behavioral desription.Generi High-Level Synthesis SystemA typial way of desribing behavior is to write a program in an ordinary omputer language orin a speial hardware desription language suh as VHDL [29℄ or Verilog [98℄.The �rst step in HLS is usually the ompilation of the behavioral desription into an internalrepresentation that is most suitable for HLS tasks. Most approahes use graph-based represen-tations that gather both data �ow and ontrol �ow implied by the spei�ation. These internalrepresentations are given di�erent names in di�erent synthesis systems (e.g. value trae, datadependeny graph [3℄, direted ayli graph, ontrol and data �ow graphs(CDFG) [49℄) butare simply di�erent adaptations of similar basi onepts. CDFG is the most popular and inmany systems, the ontrol �ow graph and the data �ow graph are integrated into one struture.Control dependenes are derived diretly from the expliit order given in the input program andfrom the ompiler's hoies of parsing the arithmeti/logi expressions. Data dependenes showthe essential ordering of operations.At this stage and like in the software ompilation, some important tasks and some optimiza-tions should be performed by the ompiler. They inlude variable disambiguation, taking areof the sope of variables, onverting omplex data strutures into simple types, type heking,expression simpli�ation, dead ode elimination, onstant propagation, ommon subexpressionelimination. . . .The seond step of the HLS, whih is the ore of transforming behavior into struture, inludesfour major tasks:
• Partitioning: deals with the division of the intermediate representation (i.e. the behavioraldesription or the design) into sub-representations in order to redue the problem size andexhibit more parallelism. 2

Chapter 1. Introdution
• Sheduling: partitions the intermediate representation into time steps, thereby generatinga �nite-state mahine model.
• Alloation: though losely intertwined with sheduling, involves partitioning the interme-diate representation with respet to spae (hardware resoures) whih is also known asspatial mapping.
• Control generation: One the shedule and alloation have been omputed, it is neessaryto synthesis a ontroller (hardwired or mirooded) that will drive alloated resoures asrequired by the shedule. Finally, the design has to be onverted into real hardware. Lowerlevel tools, suh as logi synthesis and layout synthesis, omplete the design.1.1.1 PartitioningSoftware programming languages have little support for desribing hardware e�iently. For ex-ample, to model hardware in C/C++, we need additional language features present in HardwareDesription Language (HDL) but not present in C/C++:
• Conurreny : hardware is inherently parallel, while C/C++ programs and the like areinherently sequential. The notion of proesses (Always bloks in Verilog HDL, Proess inVHDL), whih enapsulates programs that exeute onurrently, have to be introdued. Asystem will be desribed as a network of proesses.
• Signals : hardware proesses need to use signals (akin to wires or bu�ered hannels) toommuniate with one another.
• Reativity : hardware systems are in ontinuous interation with heir environment, i.e.they are reative. The notion of reativity is essential to desribing hardware systems atall levels of abstration.
• Data abstration : C/C++ supports data abstrations that are useful for software program-ming. However, for hardware, one needs arbitrary preision signed and unsigned integers,bit vetors and �xed point types.With suh a set of features added, an imperative language, like C/C++, an e�iently modelhardware/software systems. Thus the aim of partitioning is to transform the input desriptionsuh that it will be easily and e�iently desribed in HDL.1.1.2 ShedulingA Finite State Mahine with Datapath (FSMD) model is the most popular one whih is used todesribe digital systems at the RT level [44℄. It onsists of an FSM alled the ontrol unit anda datapath. The datapath onsists of the storage and funtional units neessary for the system.The FSM onsists of a set of states, a set of transitions between states, and a set of ations(involving the datapath) assoiated with eah transition.Sheduling, an important task in HLS, an be desribed as the proess of dividing the interme-diate representation into states and ontrol steps, in suh a way that an be diretly synthesizedinto an FSMD model. In other words, sheduling does a temporal mapping of the given rep-resentation. A behavioral desription and hene the intermediate representation onsists of asequene of operations to be performed by the synthesized hardware. The task of sheduling3

Chapter 1. Introdutionpartitions these operations into time steps suh that eah operation is exeuted in one time step.Eah time step orresponds to one state of the ontrolling FSM state mahine in the FSMDmodel.1.1.3 Alloation -Binding-The binding task assigns the funtional operations and memory aesses to available hardwareunits. A resoure suh as a funtional, storage, or interonnetion unit an be shared by di�erentoperations, data aesses, or data transfers if they are mutually exlusive. Binding onsists ofthree subtasks based on the unit type:
• Storage binding assigns variables to storage units. Storage units an be of many types,inluding registers, registers �les, and memory units. Two variables that are not alivesimultaneously in a given state an be assigned to the same register. Two variables thatare not aessed simultaneously in a given state an be assigned to the same port or aregister �le or memory.
• Funtional-unit binding assigns eah operation to a funtional unit. A funtional unit or apipeline stage an exeute only one operation per lok yle.
• Interonnetion binding assigns an interonnetion unit suh as a multiplexer, a wire or abus for eah data transfer among ports, funtional units, and storage units.1.2 Objetives, Constraints & Peuliarities when Sheduling inHLSSheduling, a entral task in HLS, involves determining the exeution order of operations ina behavioral desription. In other words, it is the proess of determining the assignment ofoperations to time slots (ontrol steps) of a synhronous system subjet to various onstraints.1.2.1 ConstraintsThe sheduling problem in HLS must take into aount di�erent and heterogeneous onstraints,whih de�ne requirements imposed on an implementation of a system. There are at least twokinds of onstraints. The �rst group, as in lassi sheduling problems, omprises onstraints thatan be dedued from a system behavioral desription, suh as preedene onstraints -datadependenes-, or onditions for operation exeution -ontrol dependenes-. The other group ofonstraints de�nes non-funtional requirements for possible implementations of the systemsuh as performane, ost, timing, power onsumption or memory requirements.1.2.1.1 Preedene/Control ConstraintsTwo types of dependenies exist between the operations from a program spei�ation. Data-�ow dependenies impose preedene (exeution order) between the operations. For example,operation o2 has to be exeuted after operation o1, if a result omputed by o1 is used by o2.Control-�ow dependenies arise when some portions of the spei�ation are exeuted ondition-ally. All data-�ow and ontrol-�ow dependenies have to be satis�ed to ensure a orret exeutionof the spei�ed behavior. 4

Chapter 1. Introdution1.2.1.2 Resoure Constraints -Sharing Resoures-Additional onstraints arise due to �nite hardware resoures. Resoure onstraints impose boundson a number of funtional units available for the task exeution. For example, a system imple-mentation may inorporate two adder iruits and, onsequently, not more than two additionsan be exeuted simultaneously.1.2.1.3 Time ConstraintsAnother set of restritions omes from the timing onstraints. In many ritial appliations e.g.airraft engine ontrol, omputer hardware has to reat to a reognition of a spei� event withina stritly presribed time interval.1.2.1.4 Speial ConstraintsThe resoure-onstrained sheduling an onsider resoures very broadly and therefore poweronsumption and area an also be de�ned as a resoure. In this thesis we don't expliitly addressthis kind of onstraints.1.2.2 Datapath PeuliaritiesAdditionally to this panoply of onstraints, sheduling in HLS an not be treated without atuallyonsidering realisti design models that would have speial resoures. Indeed the resoures usuallyhave some features like funtional units with varying delays and multi-funtional units. Theseissues are not expliitly addressed by our main ontribution so just to provide to the reader aglobal idea, we disuss them brie�y:
• Funtional units with varying delays: eah funtional unit will have a di�erent delayand therefore it assumes that an operation assigned to a ontrol step would take the sametime as another operation. This assumption would lead to a lok yle that is unusuallylengthened by the slowest unit in the design. The following three approahes are used tosolve this problem:� Pipelining: A funtional unit may have stages in it. This makes it possible to exeutetwo operations in the same funtional unit sine they operate in two di�erent stages.As known, pipelining is a simple tehnique to inrease parallelism.� Multi-yling: If the lok yle is shortened to allow fast operation, then the sloweroperation would take multiple loks and hene are alled multi-yle operations.However input lathes are needed in front of the multi-yle funtional units to holdits operands until its results are available. This would in turn inrease the size of theontrol logi. Multi-yle operations an be pipelined.� Chaining: Two or more operations ould be allowed to be performed sequentially ina single ontrol step (same lok yle). Sine the output of one funtional unit hasto be fed to another, they should be diretly onneted.
• Multi-funtional Units: it has been assumed that a funtional unit an perform only oneoperation but in pratie there are several ost e�etive multi-funtional units being used.For this purpose the sheduling algorithms ould be tehnology based so that it an explorethe library of omponents. For example, an operation in the ritial path ould be assignedfaster funtional units than those not in the ritial path. Also the sheduling algorithm5

Chapter 1. Introdutionould try to use the same multi-funtional unit for two data independant operations whihare in two di�erent steps.1.2.3 Interation with AlloationIn order to know whether two operations an be sheduled in the same ontrol step, one mustknow whether they use ommon resoures. Moreover, �nding the most e�ient shedule, for realhardware, requires knowing the delays for the di�erent operations, however those an only befound after that the details of the funtion units and their interonnetions are known. On theother hand, in order to make a good alloation, one must know what operations will be donein parallel, whih omes from the shedule. Therefore, sheduling and alloation are stronglyinterdependent tasks.In the literature, many senarios have been explored. The most straightforward approahto this problem is to set some limits on the resoures ost and then shedule, as it is done inmany systems. A more �exible approah is to iterate the whole proess hanging the resourelimits until a satisfatory design has been found. An exat approah, but an expensive one, isto develop the shedule and alloation simultaneously, as in system MAHA [88℄. Finally, thealloation an be done �rst, followed by sheduling as it is done in the BUD system [77℄.1.3 ContextThe shedulers we desribe in this thesis are part of our HLS tool, we urrently develop, whoseaim is HLS in the �eld of ompute-intensive embedded systems. The input spei�ation is avariant of C (inluding loops); the output is a hardware desription at the RT level. We use the�nite state mahine with a data path (FSMD) model to desribe the hardware at this level.Sheduling is the basi tool we use for hardware generation: a shedule is a preise desriptionof the operations to be exeuted at eah lok yle; thus deduing the FSMD from a sheduleis onsidered as a natural task.Earlier work starts by building the ontrol and data �ow graph (CDFG), whih is simply thesequential �ow diagram of the input desription. The nodes of the CDFG are the basi bloksof the original program. Most synthesis tools exploit only parallelism inside basi bloks; theFSMD is usually obtained by sheduling the tasks of eah basi blok of the CDFG independently.Some parallelism is exploited in loops, but mostly through loop unrolling. Our approah is quitedi�erent beause we �rst onstrut a FSMD from an equivalent parallel ode that exhibits theinherent parallelism in the input desription and takes into aount the imperfet loop nests.Afterwards, aording to the resoure onstraints, we exploit a part or all of this parallelism.Indeed, to extrat parallelism from the loops of the input desription, we use a shedulingstrategy previously used for automati loop parallelization [41℄. This tehnique whih has alreadyproved it e�ieny, assigns a symboli �date� to eah high-level statement of the programi.e., eah statement in the C program and allows us to rewrite the ode into a form with expliitparallelism. This tehnique will be detailed in Chapter 3. The result of this sheduling pass isthe de�nition of a sequene of fronts, i.e., a sequene of logial steps where eah step (a front) is agroup of maro-tasks to be exeuted in this logial step. From this result, we build a �rst oarseFSMD; oarse as the time is measured in logial steps instead of lok yle. Thus, eah stateontains a set of data independent maro-tasks and eah of them is omposed by a sequene ofelementary operations. However, this symboli sheduling tehnique is quite omplex and annottake into aount all the miro-operations (and the arhitetural resoures they need) that are6

Chapter 1. Introdutionimplied in the exeution of one maro-task. This fat lead us to design stepwise shedulingapproahes to shedule programs, with loops, down to RTL.Many fators and reasons let us to think that suh approahes an improve a lot the perfor-mane of the sheduling algorithm in term of ompromise quality of the shedule and its runtime.Indeed, let us notie that the appliation size, the diverse nature of onstraints, all peuliaritiesof the datapath - features of the resoures- and the requirements of a possible implementationan not be taken into aount into one pass to get an optimal or suboptimal shedule withoutexploding. In Chapter 3, we will explain in details the motivations that lead us to this hoie.Now, we must re�ne this shedule by �splitting this logial step into elementary steps suhthat resoure onstraints and all peuliarities of the datapath will be respeted�. Time will bemeasured in physial time i.e., lok yle of the target arhiteture. How to perform this? Inthis thesis, we have skethed and investigated two hierarhial sheduling approahes.1. Two-step Approah:After the previous symboli sheduling step, one natural possibility is to onsider, forsheduling under resoure onstraints, all the miro-operations of a front simultaneously.In other words, shedule them at the same time while onsidering resoure onstraints. Weall this last step simultaneous sheduling.2. Three-step Approah:Again for omplexity reasons one an alternatively onsider another possibility. Indeed,we onsider that, in our ontext, it will be good enough to deouple the problem in twosubproblems. This partitioning an be skethed as:
• After the symboli sheduling, we �rst shedule eah maro-task independently, takinginto aount all peuliarities of the data path. The shedule of eah maro-task willbe summarized with a reservation table1 that states whih resoures at whih yle(relative to the starting time of the maro-task) are used by this maro-task. We allthis seond step miro-sheduling.
• Due to our partiular onstrution, the maro-tasks, represented now by reservationtables, in a front are data independent but they may still interfere in their use ofresoures. The logial step must then be split into as few elementary steps as neessaryto satisfy detailed resoure onstraints. We all this third step �ne-grain sheduling.The strengths and weaknesses of eah solution, as a sheduling approah, are reported anddisussed. For instane, one ould emphasize that it would be better to onsider, the �rstapproah in whih the miro- and �ne-grain sheduling are performed at the same time. Eventhough, we have investigated both approahes, the last deoupling will be good enough. it isdi�ult to prevent the sheduler to introdue delays between miro-operations, and hene toimply more registers for holding temporary results. Our seond approah may be sub-optimal,but we believe that the possible improvements do not warrant the added omplexity.Figure 3.3 summarizes both sheduling deompositions. Dotted lines expresses the area ofour main ontributions as in this thesis we have foused on some levels of these designed gradualsheduling approahes by suggesting mainly two solutions to the resoure-onstrained shedulingproblems de�ned by the ��ne-grain� and the � simultaneous� sheduling steps. Before that, wepropose a new formalism for expressing resoure onstraints using dis-equations.1A reservation table is a matrix that shows the orresponding assignment between ontrol yles and resoureoupation. The rows of a reservation table orrespond to ontrol yles, the olumns to resoures.7

Chapter 1. Introdution
T

w
o−

st
ep

 a
pp

ro
ac

h

Fine−grain scheduling (3rd step)

Symbolic schedule

Input Description

T
hr

ee
−

st
ep

 a
pp

ro
ac

h

Reservation tables

Loop scheduling (1st step)

Micro−scheduling (2nd step)Simultaneous scheduling (2nd step)

Figure 1.1: The Hierarhial Sheduling Views1.4 Sheduling Problems AddressedSheduling takes many forms, suh as job-shop sheduling, prodution sheduling, multiproessorsheduling and so on. To be more preise when de�ning our sheduling problems, let us reallthat sheduling an be of several kinds:
• Stati sheduling: All information are available to the sheduling algorithm, whih runsbefore any real omputation starts. These algorithms are alled o�ine algorithms.
• Semi-stati sheduling: Information may be known at program startup, or at the beginningof eah time step, or at other well-de�ned points.
• Dynami sheduling: Information aren't known until mid-exeution as in real-time systems.These algorithms are alled online ones.In general, solving stati sheduling problems under resoure onstraints is NP-hard. Thisinvolves assigning the verties (tasks) of an ayli direted graph onto a set of resoures, suhthat the total time to proess all the tasks is minimized. The total time to proess all the tasksis usually referred to as the makespan or lateny.An additional objetive is often to ahieve a short lateny while minimizing the use of re-soures. Suh multi-objetive optimization problems involve omplex trade-o�s and ompro-mises, and good sheduling strategies are based on a detailed and deep understanding of thespei� problem domain.As de�ned in our ontext due to our partiular onstrution, at the �ne-grain sheduling step(resp. the simultaneous sheduling), all information about the maro-tasks (resp. operations) ina front are known before sheduling. Thus, we deal with stati and ayli resoure-onstrainedsheduling problems. They are stati as they are done at ompilation time and all informations8

Chapter 1. Introdutionare available, and ayli as eah front is a sequene of data/ontrol independant maro-taskswithout loop.Now, we summarize in these de�nitions both sheduling problems addressed in this thesis:De�nition 1. Fine-grain sheduling: is the proess of determining the optimal assignment ofmaro-tasks, de�ned by reservation tables, to time steps on a synhronous system, subjet toresoure onstraints.De�nition 2. Simultaneous sheduling: is the proess of determining the optimal assignmentof operations to time steps on a synhronous system, subjet to data dependenes and resoureonstraints.1.5 ObjetivesIn this thesis, the sheduling approahes, that we have designed and their orresponding teh-niques whih are developed to solve part of sheduling levels have multiple objetives:
• Exploit e�iently more parallelism in the whole program partiularly within nested loops;by e�iently partitioning the input desription and applying some tehniques that haveproven their e�ieny in automati parallelization;
• Deal with the onstraints into higher levels in the HLS design proess where a global viewis more lear than in lower levels;
• Formally and uniformly express onstraints (data dependene and resoure onstraints);
• Bring some guarantee on the quality of the omputed shedules;
• As the de�ned problems are NP-hard, try to integrate exat methods into hierarhialsheduling approahes, that ould identify ode fragments and shedule them optimally.Consequently deal with manageable ode size that don't reah these exat methods limits.1.6 ContributionsThis thesis presents some solutions to the resoure-onstrained sheduling problems for HLS.Indeed, for e�iently sheduling programs, espeially with loops, �rst, we make easy the problemby organizing the sheduling proess in stepwise ways. We propose two approahes: Two-stepand Three-step approahes.First, a formalism to aurately express resoure onstraints for omplex tasks represented asreservation tables is proposed. Indeed, the resoure onstraints are modeled by �dis-equations�and �nding an optimal shedule entails resolving a system of dis-equations. The proposed for-malism an be generalized to support problems of resoure-onstrained sheduling even whentasks are data-dependent.For both approahes, we have proposed some solutions to ertain sheduling steps. Indeed, forthe Three-step approah, we have foused on the �ne-grain sheduling step. We have proposedseveral solutions for sheduling maro-tasks -de�ned by reservation tables-: 1) a greedy heuristisimilar to list-sheduling and 2) two exat algorithms, the �rst one uses ILP tehniques whilethe seond one is based on a branh-and-bound meta-algorithm using a variant of Dijkstra'salgorithm and Floyd's algorithm whih ompute a maximal weight path.9

Chapter 1. IntrodutionWithin the Two-step sheduling approah, we have proposed some solutions to perform thesimultaneous sheduling step. First, we use � dis-equations� as mathematial way to expressuniformly both onstraints: resoure onstraints and data dependenes. Afterward, we proposea novel sheduling algorithm that �nds an optimal shedule by properly oloring the on�itgraph. In order to optimally oloring a graph and onversely to lassi graph oloring algorithms,we designed a new method so that oloring is done by means of a branh-and-bound that isaelerated by a lique omputation algorithm. The lique omputation is omputed exatly aswell as greedly.The greedy heuristi and the ILP based algorithms are used as yardstiks for measuring thee�ieny and robustness of our main algorithmi ontributions.1.7 Thesis' OverviewThe outline of the rest of the thesis is:
• In Chapter 2, we present some related work both for HLS onstrained sheduling in generaland for sheduling with reservation tables in partiular.
• We detail our general sheduling approahes in Chapter 3. Indeed, in this hapter we givea detailed overview of our HLS tool and we explain and disuss the reasons that have ledus to design suh hierarhial sheduling strategies. However, the rest of the thesis fousesjust on the �ne-grain and the simultaneous sheduling problems.
• In Part I, our problem of sheduling tasks de�ned by reservation tables is treated andmany solutions are proposed. First, the problem is formulated in Chapter 4, where wepresent, also, a simple greedy heuristi whih will be ompared with the proposed exatalgorithms. The �rst outome of this researh, presented in Chapter 6, is an exat branh-and-bound algorithm, where the evaluation of eah potential solution is aelerated thanksto variants of Floyd's and Dijkstra's algorithm. Chapter 5 presents several Integer LinearProgram formulations of the problem. In eah of these Chapters, we report at the end someexperimental results to highlight the bene�ts of eah solution. Lastly, in Chapter 7, weompare and analyze these experimental results and demonstrate the e�etiveness of theproposed methods. Furthermore, we give some guidelines for seleting the most e�etiveone aording to the ontext.
• The seond ontribution, desribed in Part II, is a solution to the simultaneous shedulingproblem. In this solution, the dis-equations -representing data dependenes and resoureonstraints- are modeled by an interferene graph and the sheduling problem is resolvedusing a novel graph oloring tehnique. Some experiments and results are reported;
• Finally, in Chapter 9, general onlusion is drawn as well as the questions to be addressedin future.
• Abbreviations and some de�nitions from digital systems and sheduling literature are givenin the Glossary (page 94). A bakground on some used elementary graph algorithms isprovided in Appendix A. Finally, Appendix B desribes the benhmarks kit that is usedto evaluate the performanes of the designed algorithms.

10

Chapter 2State of the ArtMuh work has been done in the area of HLS. The three major HLS tasks �alloation, shedulingand binding� have been widely researhed in the last two deades. To get an exat survey onwhat has been done on sheduling is a di�ult task. This is due to the large number of targetimplementations and spei�ity of ontexts. This hapter tries only to highlight some works re-lated to our ontributions. Indeed, in the following setion, some works related to several internalrepresentations used in HLS tools, are reported. This is followed by how onstraints are formal-ized to e�iently arry out the sheduling task. In Setion 2.2 some major searh tehniquesinstrumented in sheduling algorithms are exposed and disussed. Some reent HLS tools aredesribed in Setion 2.3. During the desription we onentrate on their sheduling algorithms.In Setions 2.4 and 2.5 some speial researhes are underlined: the usage of reservation table insheduling and the stepwise sheduling approahes.2.1 Internal Representation and Constraints FormalismsThe behavioral desription and onstraints are the main inputs of the onstrained shedulingproblem. The formalism of the internal representation of the desription and the formalism usedto express the onstraints must be e�iently designed to simplify the shedule omputation.2.1.1 Internal Representation FormalismsBefore all the ativities of an HLS system, the behavioral desription has to be represented intoan internal format. It is ommonly agreed that the intermediate design representation is loselylinked to the quality of the sheduling results. The design of an internal representation is alsoimportant for the simpli�ation of the engineering of the HLS tehniques used to e�iently arryout the HLS design ativities.The most popular internal representation of the input behavioral desription is the Controland Data Flow Graph CDFG [49℄. For this, most sheduling tehniques are graph-based models.In these models, basi tasks are gathered into a set of basi bloks linked by �ow-of-ontrols.A �ow-of-ontrol an be forward or bakward. A forward edge represents a move from a basiblok to a suessor blok, while a bakward edge represents a loop.However, there are some frameworks whih investigated more e�ient internal representationsto get easily the HLS ativities speially the sheduling task [16, 60, 114℄.For instane, the intermediate representation used in the SPARK tool [55℄ onsists of basibloks enapsulated in Hierarhial Task Graphs (HTG) [50℄. It is an intermediate representation11

Chapter 2. State of the Artdesigned by the parallelization ommunity to ease the automation of transformations.An HTG is a direted ayli graph that has three node types: single nodes (non-hierarhialnodes), ompound nodes (nodes that have sub-nodes), and loop nodes. Operations that they areexeuted onurrently are aggregated together into single nodes alled statements. Statementsthat have no ontrol �ow between them are aggregated together into basi bloks. These latersare enapsulated into ompound HTG nodes to form hierarhial strutures suh as if-then-elsebloks, swith-ase bloks, loop nodes or a series of HTG nodes. Expressions are stored asabstrat syntax trees [80℄ and eah operation expression is initially enapsulated in a statementnode of its own.An important feature of HTG is that they are strongly onneted omponents i.e., for eahouple of nodes there are at least one path. Furthermore, eah omponent has a single entry anda single exit point. This property enables HTG to be used to enapsulate omplex loops andirregular ode regions of ode, to regularize ode motion tehniques and to redue the amountof path-up ode.For ontrol-dominated systems, Bergamashi et al. developed a path-based representation [16℄.They extrat from the CDFG a new representation where all possible paths are exhibited. Usingthis representation, they optimize the ontrol-step number by path (see Setion 2.2.5 for moredetails on path-based sheduling).Huang et al. extended the path-based representation to a tree-based representation [60℄. Theyaimed at removing the restrition on the exeution order of operations before sheduling imposedby the path-based representation. Instead of treating eah path individually as in path-basedrepresentation, all paths are kept in a tree.Reently, more symboli representation are used [94, 114℄, espeially when systems are ontroldominated. For instane, Radivojevi et al. [94℄ present an exat onditional resoure sharinganalysis using a symboli representation formalism. Indeed, in this formulation, all of the shedul-ing onstraints (preedene, ontrol and resoures) are represented as boolean equations. AnOrdered Binary-Deision Diagram (OBDD) orresponding to their intersetion is built. Eahvariable in the OBDD desribes a partiular operation ouring at a partiular time step, over a�nite set of time steps. A variable is true if the orresponding operation is sheduled during theorresponding time step in partiular solution. To allow ontrol-dependent sheduling a set of'guard' variables is introdued �true for one branh and false for the other�. Thus, every paththrough the CDFG is enoded by a produt of orresponding guards. Their formalism allowsthe generation of a set of valid shedules via a ompressed representation based on the OBDDrepresentation.Yang et al. introdue another symboli representation based on automata representation [114℄.In this model, with a uniform formalism; both the design and onstraints (timing, resoure,synhronization . . .) are represented by a unique automaton based also on Binary DeisionDiagrams.Despite these attempts to �nd suitable internal representations, there is some agreementthat design representation is not a mature topi. In our framework, we have avoided using theCDFG representation extrated from the sequential input desription. Indeed, we start our HLSativities on an automati generated internal representation in whih we exhibit all inherentparallelism, we will return to this fat with more details in Chapter 3.2.1.2 Constraints FormalismsThe onstraints that a hardware system has to respet ome from di�erent domains: lassipreedene/ontrol onstraints, onstraints de�ning non-funtional requirements for possible im-12

Chapter 2. State of the Artplementations of the system suh as performane, ost, timing, power onsumption, area ormemory requirements. The formalism used to express these various onstraints diretly atsupon the tehnique used to ompute a shedule.Attempts have been made to de�ne these onstraints in a formal way using onstraint de-sription languages, suh as the Design Constraints Desription Language DCDL [1℄. However,during the design proess these onstraints are usually treated informally and most today's toolsdo not unify di�erent requirements in a single formalism.Reently, a more general formalism has been proposed by Kuhinski [68℄. He designed amodel for solving both sheduling and resoure assignment problems by using onstraint handlingmethods provided by the Constraint Programming paradigm CP. In this approah, a system ismodeled by a set of onstraints over variables. Eah variable ontains several integer values in itsdomain and therefore it is alled Finite Domain Variable (FDV). The FDV eventually an obtainan integer value that spei�es a solution. The onstraints are given as arithmeti expressions,equalities, inequalities and speialized ombinatorial onstraints. They de�ne appliation's on-straints (i.e., operation preedene onstraints), resoure onstraints, speialized implementationonstraints (e.g. pipelined resoures) as well as general requirements suh as performane orost. The model is solved using onstraint satisfation/onsisteny tehniques [14℄.In Chapter 4 we have tried to express all kind of resoure onstraints by using dis-equations.In addition, in another ontribution we treat all onstraints uniformly and formally (see Chap-ter 8).2.2 Sheduling StrategiesSheduling data-path operations into ontrol steps -time slots- is an important task. For obtain-ing an e�ient design, a omplete strategy of sheduling must onsider both timing and resouresonstraints as well as storage and interonnetion osts. Furthermore, for a spei� systems italso must onsider power onsumption onstraints.As de�ned in the HLS design �ow, there are three dimensions along whih sheduling algo-rithms may di�er:1. the objetive funtion and onstraints that algorithms onsider;2. the interation between sheduling and alloation;3. the resolution tehnique that the sheduling algorithm used.Aording to this features many tentative taxonomy of sheduling algorithms an be imagined.Sheduling algorithms an be broadly lassi�ed into time-onstrained and resoures-onstrainedsheduling, based on the goal of the sheduling problem as done by Govindarajan [52℄. Intime-onstrained sheduling �also alled as �xed-ontrol-step approah� the funtional units(resoures) number is minimized for a �xed number of ontrol steps. The video proessing andthe realtime appliations are the main area for suh algorithms. While in resoure-onstrainedsheduling the ontrol-steps number is minimized for a given design ost (number of funtionaland storage units).�il [107℄ de�nes another taxonomy in whih he lassi�es suh algorithms into transforma-tional or iterative/onstrutive algorithms.A transformational algorithms start with an initial shedule (e.g. maximally serial or max-imally parallel) and applies transformations to it in order to obtain other shedules. These13

Chapter 2. State of the Art
<

+

<

+

+

*

<

+

+

*

+

*

*

*

* *

*

*

*

* *

*

*

*

* *

*

−

−

−

− −

−

(a) (b) (c)Figure 2.1: (a) Data Flow Graph (b) ASAP Shedule () ALAP Shedulealgorithms di�er in how transformations are done, they an use exhaustive searh, branh-and-bound tehnique or some heuristis. The other type of algorithms kind, the iterative/onstrutiveones, build up a shedule by adding operations one at a time till all the operations have beensheduled. These algorithms di�er in how the next operation to be sheduled is hosen and intowhih ontrol step it is put.Several tehniques have been experimented then integrated in both aademi and ommer-ial HLS systems, in the following survey of the onstrained sheduling algorithms, we try tolassify the sheduling algorithms using the type of tehnique that they use, starting fromthe most basi sheduling tehniques as list sheduling and its variants [25, 32℄, to exat shedul-ing tehniques from optimization area like integer linear programming [99℄ while reporting somemisellaneous tehniques suh as geneti [51℄ and simulated annealing tehniques [92℄.First, let us give some ommon de�nitions. Let G = (V,A) be a data �ow graph, where V isthe set of operations to be sheduled, and A is the set of dependenes. Let n = |V | and m = |A|.Eah operation is labeled by oi, 1 ≤ i ≤ n. A preedene relation between operations oi and ojis denoted by oi ≺ oj, where oi is immediate predeessor of oj . There are q types of resouresavailable. A funtion unit of type r is denoted by Fr. A relation between operation oi and aresoure Fr is denoted by oi ∈ Fr , if Fr an perform oi.2.2.1 Basi AlgorithmsIn what follows, we will brie�y desribe the priniple of some known sheduling algorithms, whihtake into aount only data dependenes onstraints but no resoure onstraints. The shedulesomputed by these tehniques represent the earliest and the latest bounds within operationsin the DFG. Most onstrained-sheduling algorithms that will be desribed later require thesebounds.2.2.1.1 ASAPA simple sheme is to shedule operations �As Soon As Possible�. The ASAP algorithm startswith the highest nodes (that have no parents) in the DFG and assigns time steps in inreasingorder as it proeeds downwards. It follows the simple rule that a suessor node an be exeuteonly after its parents has exeuted. This algorithm learly gives the fastest shedule possible.In other words, it shedules in least number of ontrol steps but never takes into aount theresoures onstraints. Figure-2.1(b) shows ASAP shedule for the DFG in Figure-2.1(a).14

Chapter 2. State of the Art2.2.1.2 ALAPThis approah is a re�nement of the ASAP sheduling onept onditional postponement. Thepostponement ours whenever the operations onurreny is higher than the number of availablefuntional units. The ALAP algorithm �As Late As Possible� works exatly in the same wayas ASAP algorithm exept that it starts at the bottom of the DFG and proeeds upwards.This algorithm gives the slowest possible shedule for tasks. However, this doesn't neessarilyredue the number of funtional units used. Figure-2.1() shows ASAP shedule for the DFGin �gure-2.1(a).The problem with ASAP and ALAP shedulers is that when there are limits on resoureusage no priority is given to operations on ritial paths. Hene, less ritial operations an besheduled �rst and thus blok ritial ones.2.2.2 Critial Path MethodThe minimum amount of yles needed to shedule a basi blok orresponds to the maximumdepth of its data dependene graph. This longest-path is alled the ritial path. The orderingof the operations in the ritial path is implied by their data dependenies.Using ASAP and ALAP values, the ritial path onsists of those operations that are mappedto the same yle in the early as well as in the late sheduling. The method takes three steps.First the ritial path is omputed. The operations from this ritial path are sheduled. Theyrepresent a frame for adding the remaining operations. In the last step, the remaining operationsare inserted into the ritial path. This is done for eah operation by testing the yles betweenthe early and late dates with respet to data dependenies and resoures on�its. This maylengthen the shedule.The ritial path method is not always able to reate an optimal shedule. This is due to thefat that subsequent subframes annot be merged together although this would be permitted bythe data dependenies and the resoures use.2.2.3 List-shedulingContinuing along the sale of inreasing omplexity, there are algorithms that use list-shedulingpriniple. List based sheduling is a generalization of the ASAP algorithm with the inlusion ofresoures onstraints. Due to both its simple priniple and low omplexity, it is the most usedapproah. Indeed, it is used in many old HLS systems [19, 74, 88℄ as well in reently developedones [37, 55℄.The algorithm builds a onstrutive shedule, for eah step, the operations available to besheduled into that step are kept in a list - hene the name of list-sheduling - whih is orderedby some priority funtion. Eah operation on the list is sheduled if the resoures it needs arestill free in that step; otherwise it is di�ered to the next step. Sheduling an operation to aontrol step makes other suessor operations ready, whih will be added to the priority list.There are many priority funtions used. In the Slier system [19℄ the priority funtion is basedon inreasing operation mobility [86℄. The mobility of an operation is de�ned as the di�erenebetween ASAP and ALAP values of an operation. This would ensure that operations with largemobility are di�ered to later ontrol steps beause the number of ontrol steps into whih theyould be is large.Other systems like, ELF [48℄, use the operation urgeny as priority funtion. The urgenyof an operation is de�ned as the minimum number of ontrol steps from the bottom that thisoperation an be sheduled before a timing onstraint is violated.15

Chapter 2. State of the ArtMore omplex priority funtions are developed, for instane, in the MAHA system [88℄, theyuse the information from the ritial path. Indeed, the operations on ritial paths are sheduled�rst (and a resoure binding is done) after what the other operations are sheduled one at atime aording to the least mobility. This is the same approah as in the ritial path method.Indeed, the ritial path method is a list sheduling method in whih the priority funtion relieson belonging to the ritial path.The time and spae omplexity for this approah is slightly more beause several lists have tobe maintained dynamially. For this reason, Jain et al. [63℄ have designed a stati list sheduling.This approah starts by reating a single large list before starting. It uses the ASAP and ALAPalgorithms to obtain the Least and the Greatest possible Control Step assignments (LCS andGCS) for eah operation. Then, the algorithm sorts all the operations in asending order usingthe GCS labels as the primary key then sorts eah operation set with the same GCS labels, indesending order with the LCS labels as the seondary key.As it an be seen, the list-sheduler suess depends mainly on the priority funtion used.2.2.4 Fore-Direted Sheduling (FDS)Based on probability distribution tehnique, it is a very popular sheduling heuristi [89℄. Itis originally designed for time-onstrained sheduling. Thus, the main goal is to redue thetotal number of resoures used. This algorithm ahieves its goal by uniformly distributing theoperations of the same type over the available ontrol steps. By balaning the onurreny ofoperations, it ensures that eah strutural unit has high utilization whih in turn dereases thetotal number of units required.A simple outline of this algorithm :1. Determine time frame: this step onsists of determining the time frames [Si, Li] of eahoperation oi ∈ V , where Si and Li are obtained by the ASAP and ALAP algorithms. Let
piτ denote the probability that oi will be sheduled into ontrol step τ ∈ [Si, Li]. A usefulheuristi is to assume a uniform probability distribution i.e., piτ = 1

1+Li−Si
;2. Create distribution graph: The next step is to reate a distribution graph, by adding theprobabilities of eah type of operation r for eah ontrol step τ . The resulting distributiongraphs indiate the onurreny of similar operation. P (r, τ) =

∑

oi∈Fr
piτ , where the sumis over all operations of a given type;3. Fore alulation: The �nal step is to alulate the fore F assoiated with everyfeasible step τ assignment of eah operation oi. It temporarily redues the operation's timeframe to the seleted step τ :

F(oi, τ) = P (r, τ) −
Li
∑

t=Si

pr,t

1 + Li − Siwhere r is the type of the operation oi. In other words, the fore assoiated with thetentative assignment of an operation oi to step τ is equal to the di�erene between thedistribution value in that step and the average of the distribution values for the stepsbounded by the operation's initial time frame. The fores for all predeessors and suessors(indiret fores) of the urrent operation must be alulated. The total fore is the sum ofthe diret and indiret fores. 16

Chapter 2. State of the Art4. Shedule one all the fores are alulated, the operation-ontrol step pair with largestnegative fore (or least positive fore) is sheduled. Then P and F values are updated andthe entire proess is reitered until all operations are sheduled.The omplexity of the FDS algorithm is O(c.n2) where c is the ontrol-steps number and nthe operations number.Later the authors generalized the approah [90℄ to treat many other problems. Among theseproblems: sheduling under resoure onstraints, minimizing storage and interonnetion ost.Indeed, the fore-direted list sheduling (FDLS) algorithm that they designed ombines theharateristis and strengths of the list sheduling algorithm where fore is used as a priorityfuntion. Another improvement has been done by Verhaegh et al. [105℄, they have hanged theFDS strategy by pruning one ontrol step from its mobility range and postponing the deisionto a later stage.The fore-direted sheduling algorithm never baktraks on its deisions and hene is las-si�ed under onstrutive algorithms.2.2.5 Path-Based ShedulingAnother ommonly used algorithm is the path-based sheduling (PBS) designed by Camponaso [23℄and used in di�erent ontext by many HLS systems [16, 15℄. The PBS is a ontrol-�ow-basedalgorithm whih fouses on exploiting the ontrol dependenies among operations. It analyzesall paths in the CFG and shedules eah path independently, thus minimizing the number ofontrol steps in eah path. Paths in the CFG arise from onditional operations and loops.The sheduling is based on solving onstraints on the paths. These onstraints are generalrestritions on the shedule, and may be due to resoures, delays, or any other ost measure.Note that the PBS algorithm is not onerned about parallelism or haining. The only elementsin the algorithm formulation are the ontrol-�ow paths and the onstraints.Constraints are represented as intervals in the ontrol-�ow paths and the problem of �ndingthe minimum number of ontrol steps in eah path is the same as �nding the minimum numberof uts rossing all onstraint intervals in all paths whih is done using exat lique-overingtehniques. The minimum number of ontrol steps is obtained for eah path, not just the ritialpath as in Data-�ow-based shedulers. Minimizing the number of ontrol steps per path maynot result in the overall minimum number of states.In this approah, onstraints formulation is ompletely general. In fat, it an model re-soure limitations, delay targets, or any other restritions that should ause two operations to besheduled in di�erent ontrol steps. These restritions are mapped onto the CFG as onstraintintervals and treated in exatly the same way by the sheduler.Furthermore, the path-based approah an determine mutual exlusion (whether two oper-ations an share the same hardware resoure) in a general way by looking at the ontrol pathsand at the atual onditions ontrolling the exeution of the operations.However, the PBS has some problems: Firstly, its omplexity is proportional to the number ofontrol paths, whih an grow exponentially with the number of onditional operations and thisomplexity beame learly unaeptable for large designs. Seondly, �xing the exeution orderlimits parallelism; another limitation of PBS is that it does not hange the order of the operationsin a path. The onstraint intervals are reated for a �xed ordering of operations (usually thesame order as in the input language desription), whih the sheduler is not allowed to hange. Inaddition, optimizing eah path independently may inrease hardware; indeed, in order to optimizethe number of ontrol steps in eah path, path-based sheduling (and subsequent alloation) may17

Chapter 2. State of the Arthave to reate a more omplex FSM and possibly more multiplexers and ontrol signals whihmay result in larger area.To avoid some of these disadvantages, Bergamashi et al. have designed an adaptative shedulingalgorithm in whih they ombine data-�ow and ontrol-�ow tehniques by instrumenting thepath-based algorithm [17℄. Their improvements onsist in 1) reordering operations in the CFGin order to inrease parallelism and maximize onstraint overlapping 2) reduing the number ofontrol paths by ollapsing all onditional branhes when it is possible 3) If the number of pathsis still too large (after ollapsing), it applies a ontrol partitioning algorithm whih redues thenumber of paths by partitioning the CFG.All the above shemes are onstrutive algorithms in the sense where the seletion and �xingof operations in the ontrol step ours one by one until all the operations are �xed. Due tolak of a look-ahead sheme and the lak of ompromises between early and late deisions, theseonstrutive algorithms do not guarantee the solution quality. One an ope with this weaknessby iteratively resheduling some of the operations in a given shedule. For example, Park andKyung [87℄ proposed an approah whih is based on the paradigm originally proposed for thegraph-bisetion problem. In this near optimal approah, an initial shedule is obtained using anysheduling algorithm. At eah iteration, a new shedule is obtained by resheduling a sequeneof operations that maximally redues the shedule ost. If no improvement is attainable, theproess halts.2.2.6 Exat AlgorithmsPrevious algorithms are heuristi methods, to get a globally optimal solution one an rely on someexat searh tehniques as Integer Linear Programming [99℄ or tehniques based on onstraintprogramming paradigm [14℄.2.2.6.1 Integer Linear ProgrammingSome of the best known exat sheduling tehniques are based on Integer Linear Programming(ILP) models. Aording to HLS system ontexts and the aimed objetives, many ILP formula-tions are proposed in the literature [72, 61, 47, 71, 27, 112, 65℄.In a �rst attempt, Lee et al. [72℄, in their ILPS system, using an ILP formulation, triedto �nd an optimal shedule via a branh-and-bound searh algorithm. This algorithm involvessome amount of baktraking. They aimed a time-onstrained algorithm. First the algorithmalulates the mobility range for eah operation Moboi
= {Stepj | Si ≤ j ≤ Li}, where Si and Liare the ASAP and ALAP values respetively.Let Cr be the ost of a resoure of type r and Mr be an integer variable denoting the numberof resoures of type r. Finally, let xiτ be 0/1 binary variable where xiτ = 1 if oi is sheduled intoontrol step τ ; otherwise, xiτ = 0. Assuming a one-yle propagation delay for eah operationand a non-pipelined exeution, the feasible sheduling problem an be stated as follows:

18

Chapter 2. State of the Art
∑

oi∈Fr

xiτ ≤Mr 1 ≤ τ ≤ s, 1 ≤ r ≤ q; (2.1)
Li
∑

τ=Si

xiτ = 1 1 ≤ i ≤ n; (2.2)
(

Li
∑

τ=Si

τ ∗ xiτ −

Lj
∑

τ=Sj

τ ∗ xjτ) ≤ −1 ∀oi ≺ oj . (2.3)The �rst onstraints state that any shedule should respet the resoure onstraints i.e., noshedule should have a ontrol step ontaining more than Mr resoures of type r. The seondonstraints guarantee that eah operation oi is exeuted one between Si and Li. The thirdonstraint ensures that preedene onstraints of the data �ow graph are preserved. In thisformulation Mr are unknown and the whole number of ontrol steps Cstep is �xed. Thus, theonly objetive funtion is min
∑q

r=1 Cr ∗Mr.Another feasible sheduling problem using ILP has been formulated by Hwang et al. [61℄.They aimed both resoure and time onstrained algorithm.They use the same formulation as the above one but the objetive funtion that they de�nedis a ombination of time-onstraint objetive funtion min
∑q

r=1 cr ∗Mr and resoure-onstraintobjetive funtion min Cstep. This approah allows user to ontrol the resoure-time trade-o�. The ILP approah has made HLS problems better understood beause the strength of ILPformalism is that it an express in a uniform way any kind of onstraints and system require-ments. Indeed more strutured and detailed, but more omplex, ILP-formulations are proposedby Gebotys et al. [47℄ and Zhang [117℄ in whih they resolved the ombined resoure-onstrainedsheduling and register alloation problem. However, the algorithm exeution time grows expo-nentially with the problem size represented by both the number of variables and the number ofinequalities.In pratie, the ILP approah is appliable only to small problems. In addition, general ILPsmay be di�ult to solve due to weekness of bounds and speed of the algorithm of resolution.Many fats make a general ILP problem as an NP-omplete one [104℄. In fat, the simpleformulation above inreases rapidly, in term of number of unknown, with the number of ontrolsteps. Indeed for unit inrease in the number of ontrol steps we will have n additional binaryvariables. Furthermore the usage of the preedene onstraints 2.3 entails dealing with largeoe�ients �values of τ� whih generaly makes the ILP resolution proess NP-omplete in thebroad sense [58℄. Thus, optimal solutions an be found - albeit at the ost of high ompilationtimes. Nevertheless ILP-formulation an be tightened by more understanding the polyhedratheory [99℄. This an be done via many fats:
• designing a strutured formulation;
• identifying of redundant serial onstraints;
• insertion of valid inequalities.These fats are studied and integrated in SILP2 tool designed by Zhang [117℄. More improve-ments in exeution times has been observed but this omputation time remains high.2SILP: Sheduling and Alloation with Integer Linear Programming.19

Chapter 2. State of the ArtReently Kästner et al. [65℄ have investigated approximations based on relaxation of theintegrality onstraint priniple [83℄. Indeed for large input programs, they do the relaxation inhierarhial way to guarantee the sub-optimality of the solution.2.2.6.2 Constraint Programming TehniqueA newer tehnique than ILP, the Constraint Logi Programming (CLP) model o�ers exat meh-anisms �onstraints handling methods� to resolve general optimization problems [14℄.The CLP has already been applied in the hardware design automation area, in partiular inresoures assignment and sheduling as well as in veri�ation and test.For instane, Kuhinski [68℄ designs a model for solving both sheduling and resoure as-signment problems by using onstraint handling methods provided by this paradigm. In thisapproah, a system is modeled by a set of �nite domain onstraints over variables. Finite do-main onstraints are used to speify di�erent properties and restritions imposed on the spei�eddesign. The model is solved by using onstraint satisfation/onsisteny tehniques.First, Let us introdue what is a onstraint satisfation problem (CSP) for �nite domainonstraints and then present the formulation of the digital system modeling in terms of theseonstraints. A CSP is a 3-tuple S = (V,D,C) where:
V = {x1, x2, . . . , xn} is a �nite set of variables, also alled Finite Domain Variables (FDV),
D = {D1,D2, . . . ,Dn} is a �nite set of domains, and
C is a set of onstraints restriting the values that the variables an simultaneously take.For eah variable xi , a �nite set Di ∈ P(Z) of possible values onstitutes its domain, alled a�nite domain (FD). For example, the spei�ation T :: {1..10} de�nes FDV T , whih an havevalues 1, 2, . . . and 10 while the spei�ation R :: {23, 56} de�nes FDV R, whih an have a valueof either 23 or 56.A onstraint c(x1, x2, . . . , xn) ∈ C between variables of V is a subset of the artesian produt

D1×D2× . . .×Dn that spei�es whih values of the variables are ompatible with eah other. Inpratie, the onstraints are de�ned by equations, inequalities, global onstraints, or programs.For example, an inequality T1 + D1 ≤ T2 de�nes a onstraint on three FDVs T1, D1 and T2.Eah onstraint an be in one of three states: satis�ed, not satis�ed or in a state that annotyet determine whether the onstraint is satis�ed or not �don't know state�. If the onstraintis in the �don't know state� the onsisteny enforement for this onstraint an be applied. Apartiular program that implements a onsisteny method is alled a propagator sine it prop-agates hanges in FDVs to domains of all FDVs, involved in a given onstraint, by narrowingtheir domains. Combinatorial onstraints are usually implemented using several propagators thatonsider di�erent aspets of their onsisteny. Baptiste [9℄ has involved the CLP by desribingand evaluating new resoure onstraint propagation algorithms for several lasses of shedulingproblem.A solution s to a CSP S, denoted by S |= s, is an assignment to all variables V, suhthat it satis�es all the onstraints. There usually exists many solutions that satisfy the de�nedonstraints. They have di�erent qualities whih are de�ned by related ost funtions. In mostdesign problems, we are interested in optimal solutions that minimize or maximize this ostfuntion. An optimal solution s to a CSP S is a solution S |= s that minimizes or maximizesa value v assigned to a seleted variable xi . The standard method to �nd a solution to aCSP is to systematially assign FDVs with values from their domains. After eah assignmentthe onsisteny of all onstraints that ontain hanged FDVs is arried out. The proess �nisheswhen eah variable has a value. If during the assignment an empty domain for a FDV is deteted20

Chapter 2. State of the Artthe proess fails and baktraking is initiated. This is usually implemented as a depth-�rst-searhmethod and the optimization uses some kind of branh-and-bound algorithm.In the ase of onstraint-driven sheduling, the CLP provides a tool to model uniformly anykind of onstraints. First, all required FD variables have to be de�ned. Kuhinski, for eahoperation, oi, de�nes three FDVs, Ti , Di and Ri whih represent the operation start time, theoperation's delay and the resoure used for its exeution, respetively. For instane the followingonstraints are modeled as:
• preedene onstraints: for eah oi ≺ oj: impose the onstraint Ti + Di ≤ Tj ;
• resoure sharing: As Ri spei�es possible implementation resoures for a given operation.The resoure onstraint prohibits simultaneous use of resoures and an be spei�ed usingdisjuntive onstraints like:for eah oi and oj using the same resoure: impose Ti+Di ≤ Tj∨Tj +Dj ≤ Ti∨Ri 6= RjIn this way, all kind of onstraints are modeled. Sheduling an try to optimize a given ostfuntion suh as the time steps number, resoure ost, power onsumption, register/memoryusage or a ombination of these. The ost funtion is de�ned by FDV that is onstrained torepresent a given ost. For example, a ost funtion an be de�ned as:For eah oi: impose Ei = Ti + Di impose max (EndT ime, [E1, . . . , En]).Minimization of the domain variable EndT ime produes the shortest shedule satisfying givenresoure onstraints. Optimal solutions are found using a method similar to a branh-and-boundalgorithm. This method interatively applies the depth-�rst-searh algorithm.As in the ILP tehnique, for large problems the CLP requires usually a large amount ofomputation time to �nd the optimal solution sine the searh spae beomes huge. Therefore,partial searh methods are proposed whih unlike depth-�rst-searh do not searh systematiallythrough all possible solutions but baktrak earlier if ertain onditions are ful�lled.2.2.7 Misellaneous TehniquesTo ope with the gap between the very expensive tehniques in term of omputation time andthe graph-based methods whih are enable to give guarantees on the omputed shedule quality,some sholars have proposed heuristis that use modern searh tehniques suh as simulatedannealing, tabu and geneti based algorithms.2.2.7.1 Simulated Annealing Based AlgorithmAnother type of transformational feasible sheduler an use the simulated annealing tehnique.Kirkpatrik et al. [66℄ give some idea about how to instrument this tehnique in optimization.Indeed, the simulated annealing tehnique an be used for ombinatorial optimization problemsspei�ed by a �nite set of on�gurations and a ost funtion de�ned on all the on�gurations. Thealgorithm randomly generates a new on�guration whih is then aepted or rejeted aordingto a random aeptane rule governed by the parameter analogous to temperature in the physialannealing proess [92℄.For instane the algorithm of Badia et al. [7℄ starts on an initial on�guration obtained byapplying ASAP strategy. The Cost funtion evaluates how good a on�guration is. It is de�nedas:

Cost(X) = α Area(X) + β T ime(X)21

Chapter 2. State of the Artwhere Area(X) is the estimated total area of the used resoures and T ime(X) is the totalexeution time orresponding to the given on�guration X. The tuning of the algorithm isperformed by taking di�erent values for α and β. For example, if α≪ β the algorithm is loserto resoure-onstrained sheduler (sine solutions e�ient in speed beome more important)while α≫ β makes the algorithm more time-onstrained.At the beginning, a high temperature Tinitial is given in order to aept most new on�gura-tions even if they inrease the ost. Given a on�guration X, a new on�guration Y is generatedeither by insertion or removal of a register, sheduling an operation to next or previous on-trol step or by shrinking/expanding a ontrol step. Although simulated annealing is robust, itrequires long exeution time.2.2.7.2 Geneti AlgorithmGeneti algorithms, as optimization ones, have been early and widely used in HLS. Wehn andal. [82℄ and Heijligers et al. [57℄ have instrumented the geneti paradigm (GP) to resolve bothsheduling and alloation problems. Dhodhi et al. [35℄ use also the GP to resolve the iruit areaoptimization problem. Yang et al. in [115℄ use a geneti algorithm and draw Pareto diagramsfor sheduling under power onstraints, the algorithm has been extended to address run-timesheduling on System-on-hips (SoCs) [116℄.For instane, Heijligers et al. [57℄, given a data-�ow graph (preedene onstraints) and aresoure onstraints, instrument a list-sheduler into a geneti algorithm. Their idea is basedon the following fat: the advantage of a list sheduler is that the shedules onstruted alwayssatisfy the preedene onstraints and the resoure onstraints however, the disadvantage is thein�uene of the priority funtion on the quality of its results. To overome this disadvantage ageneti algorithm an be used to searh for a good priority funtion to diret a list sheduler.Inside their geneti algorithm, the enoding of a shedule onsists of a permutation of operationswhih an be used as a priority list for the list sheduler. The ompletion time of the resultingshedule is used to alulate the �tness -funtion used to distinguish between better and worseindividuals - of the individual.Initially a population with individuals is onstruted, eah ontaining a random permuta-tion. Shedules are onstruted by deoding permutations into priority list and applying a listsheduling algorithm. The geneti algorithm selets individuals for re-ombination using stohas-ti sampling with replaement. Using this strategy, �t individuals have higher probability to beseleted than non-�t individuals. A lower bound of the ompletion time using the preedenerelations and resoures onstraints information is alulated using a predition method. Thegeneti algorithm stops if it meets the lower time bound or if the number of iteration is 100.More speial attentions have been paid to improve the quality of the population for more detailssee [57℄.Geneti algorithms are probabilisti searh algorithms, thus the omputed shedules are with-out guarantee that they reah the optimum.2.3 High-Level Synthesis ToolsThere are two types of HLS tool: data-�ow oriented tools and ontrol-�ow oriented ones. Thoughthe later tools are most general beause they are able to deal with data-�ows too.Most existing HLS tools are speialized for a restrited lass of appliations. In the domainof signal proessing (DSP), numerous arhitetural synthesis tools are desribed in a varietyof publiations. Among them, we quote MAHA [88℄, HAL [89℄, EASY [101℄, MIMOLA [75℄,22

Chapter 2. State of the ArtCADDY [56℄, OSYS [62℄ and Phideo [106℄. For more generi and �exible arhitetures, othertools are developed: Amial [67℄ and SPARK [55℄. For more speialized arhitetures, like systoliarhiteture we quote MMAlpha [97℄. In the �eld of ompute-intensive embedded systems, wequote LooPo [38℄ and Syntol3.Many tools are developed in general for purely data �ow designs, here, we just mention somereent ones while fousing on the struture of their shedulers.2.3.1 GAUTGAUT is a pipeline arhitetural synthesis tool dediated to signal proessing appliations de-veloped jointly by LESTER and LASTI laboratories at Lannion and Rennes universities respe-tively [74℄.GAUT generates a strutural and funtional VHDL desription of a dediated arhiteture.The designer provides as input: a behavioral desription of the iruit, a desription of thelibrary of operators, a maximal lateny and a yle frequeny. The library models must havebeen assigned with their physial harateristis. GAUT uses these harateristis to omputethe ost of the operator assignment. A generi library an be parametered by time and ost tobeome a tehnology driven library.In addition, GAUT may onsider synhronization onstraints; hene the sheduler takes intoaount the order in whih data are exhanged with the system and at what time this is possible.GAUT's sheduler is a list sheduling algorithm with mobility as a priority funtion whih alsodepends upon the availability of alloated operators. The operations are sheduled as soon as theoperator is available. The optimal assignment of a andidate operation on an available operatorresponds to the minimization of interonnetions between operators. The pipeline ontrol ofeah operator is managed by a omplementary priority on assignment. When an operator isalloated, but as yet not used, its use is primarily inferior to that of an operator already utilized.Furthermore, if a andidate operation has a positive mobility, then the sheduling is delayed.Finally, if an operator alloated from the beginning of the period is never used during the entireperiod, its alloation interval is delayed for one lok period.GAUT is also a user guided synthesis tool and it instruments memory optimization tehniquesbut it requires prede�ned timing harateristis and it uses Loop �attening.2.3.2 SPARKSPARK4 is an HLS researh tool developed at the university of California at Irvine. It takes abehavioral desription in ANSI-C as input and produes synthetizable RTL VHDL.Gupta et al. [55℄ use parallelizing ompiler tehnology, as we do, developed previously toenhane instrution-level parallelism and re-instrument it for HLS by inorporating ideas ofmutual exlusivity of operations, resoure sharing and hardware ost models.The intermediate representation used in SPARK onsists of basi bloks enapsulated inHierarhial Task Graphs (HTG). To exhibit more parallelism and allow �nding a good shedule,they use a tool transformations toolbox. The tehniques implemented are:
• ode motion (CM): Two ode motion tehniques are used: perolation sheduling and trail-blazing. Perolation Sheduling (PS) was developed as a tehnique to target ode to parallel3An HLS researh tool, urrently develop by CompSys, an INRIA projet, Frane, team at LIP laboratoryhttp://www.ens-lyon.fr/LIP/COMPSYS/4Available at http://www.es.ii.edu/~spark 23

Chapter 2. State of the Artarhitetures suh as VLIW and vetor proessors. It ompiles programs into parallel odeby systematially applying semanti preserving transformations. These transformationshave been proven to be omplete with respet to the set of all possible loal, dependeny-preserving transformations on program trees. However, to move an operation from a nodeA to node B, perolation requires a visit to eah node on every ontrol path from A to B.The inremental nature of these linear operation moves auses a ode explosion by unne-essarily dupliating operations and inserting opy operations. Trailblazing was proposedto irumvent these problems. Trailblazing is a ode motion tehnique that exploits thehierarhial struturing of the input desription's operations and global information in theHTG to make non-inremental operation moves without visiting every operation that isbypassed. At the lowest level, trailblazing is able to perform the same �ne-grained trans-formations as perolation. However, at higher levels, trailblazing is able to move operationsaross large bloks of ode.
• dynami renaming: As it is well known there are four types of data dependenies: �ow de-pendene(variable read after write), anti-dependene (write after read), output-dependene(write after write) and input-dependene (read after read). Only �ow dependenies are im-portant for the semanti preserving transformation sine the other ones express memoryreuse and an be disarded. Thus, non-�ow dependenies that prevent ode motion anoften be resolved by dynami renaming.
• ommon sub-expression elimination (CSE): this transformation attempts to detet repeat-ing subexpressions in a piee of ode, stores them in variables and reuses the variablewhenever the sub-expression ours subsequently.
• speulative ode motion: Operations may be moved out of onditionals and exeuted speu-latively, or operations before onditionals may be moved into subsequent onditional bloksand exeuted onditionally by reverse speulation, or an operation from after the ondi-tional blok may be dupliated up into preeding onditional branhes and exeuted ondi-tionally by onditional speulation. Operations an also be moved aross entire hierarhialbloks, suh as if-then-else bloks or loops.SPARK's sheduler is also a priority-based list sheduling heuristi: the inputs to this heuris-ti are the unsheduled HTGs of the design and the resoure onstraints list. Additionally,the designer may speify a list of allowed ode motions: speulation, onditional speulation,whether dynami variable renaming is allowed, and the ode motion tehnique (perolation ortrailblazing) for moving the operations.The heuristi starts by assigning a priority to eah operation in the input desription basedon the length of the dependeny hain of operations that depend on it. Sheduling is done onesheduling step at a time while traversing the basi bloks in the design's HTG. Within a basiblok, eah sheduling step orresponds to a statement HTG node. At eah sheduling step inthe basi blok, for eah resoure in the resoure list, a list of available operations is olleted.Available operations is a list of operations that an be sheduled on the given resoure atthe urrent sheduling step. Initially, all unsheduled operations that an be sheduled on theurrent resoure type are added to the available operations list. Subsequently, operations whosedata dependenies are not satis�ed and annot be satis�ed by dynami variable renaming, andoperations that annot be moved in the HTG to shedule them onto the urrent sheduling stepusing the allowed ode motions, are removed from the available list. The remaining operationsare assigned a ost based on the length of the dependeny hain leading up to the operation.24

Chapter 2. State of the ArtThe sheduling heuristi then piks the operation with the lowest ost from the availableoperations list. The trailblazing is then instruted to shedule this operation at the urrentsheduling step. This is repeated for all resoures in eah sheduling step in the HTG. Onethe hosen operation has been sheduled, the dynami CSE heuristi �nds and eliminates om-mon subexpressions in the operations in the available list, if the new position of the sheduledoperation permits.It is reported that in e�et, this sheduler improves the performanes of the �nal netlist andredues by up to 50% the total delay through the iruit. However, despite all these sophistiatedheuristis, no guarantee an be given on the quality of the omputed shedule. This is mainlydue to the list sheduling approah whih performs only loal hoies.The SPARK tool exploits the parallelism into and through basi bloks, but it doesn't onsiderthe inherent parallelism through perfetly or imperfetly nested loops while suh parallelism iswidely present in many high-throughput digital signal proessor appliations.2.3.3 UghUser Guided HLS (Ugh) is another HLS researh tool. It is a part of the Disydent projet5. Thisframework [6℄ is dediated to SoC platform based design for shared memory Multiple InstrutionsMultiple Data (MIMD) arhitetures.Ugh's designers introdued more interations between the tool and the user. They searh fora best solution in a spae of solutions obtained by repeating a list-sheduling heuristi.The �rst transformation done by Disydent aims at inreasing the performane: the applia-tion must be parallelized and/or pipelined. Indeed, the Disydent approah advoates the MIMDsolution using Kahn Proess Networks modeling [64℄.Ugh's inputs are a restrited C program, a Draft Data-Path (DDP) and a lok frequeny. Itprodues both a synthetizable VHDL RTL model and a yle aurate simulation model. Indeed,to guide the tool the designer must de�ne a DDP whih is a simpli�ed strutural desription of thetarget data-path whih respets oarsely the resoure onstraints. The DDP is a direted graphwhose nodes are funtional or memorization operators and whose ars indiate the authorizeddata�ow among the nodes. Eah C variable has an assoiated register in the DDP.The synthesis proess is split into 3 main steps: �rst, the oarse grain sheduling (CGS)is run, resulting in alloation and translation of C statements into RTL instrutions, then themapping is performed to get the physial data-path and temporal harateristis. Finally a �negrain sheduling (FGS) is run, resulting in the resheduling of the RTL instrutions taking asonstraints the annotated timing delays of the previous data-path:1. In CGS, oarse means that the operations are only partially ordered. The algorithm usedin CGS must hoose a DDP sub-graph for eah C statement and then oarsely orderthem. These hoies and this ordering are done by maximizing the intrinsi parallelismwhile trying to redue the data-path area. The degrees of freedom for reduing the areaare the minimization of the input numbers of the added multiplexers and the binding ofoperations of the same type. Its temporal onstraints are: multipliers need 2 yles, addersand subtraters need 1 yle, and all other funtional ells have negligible propagationtimes. This algorithm is a list sheduling algorithm [37℄. It produes a oarse �nite statemahine.5A Digital System Design Environment, an open soure framework developed at the university Pierre et MarieCurie, Paris, Frane. Available at http://www-asim.lip6.fr/reherhe/disydent/25

Chapter 2. State of the Art2. After mapping, plaing and routing, the generated iruit will probably not run at the ex-peted frequeny. The main reasons are that the FSM has been onstruted with estimatedoperator and onnetion delays. Furthermore, it is also possible that the iruit does notrun at all if it mixes short and long paths. This happens frequently in iruits having bothregisters and register �les.3. Afterwards, the user deides, if the synthesized yle didn't respets all onstraints, toperform the FGS by introduing some diretives and resume the proess (resheduling)until an aeptable solution is found. The FGS adapts the oarse FSM to the haraterizeddatapath to ensure that the iruit will run at the given frequeny. FGS extrats the registertransfer instrutions from the oarse FSM and then reshedules them taking into aountthe propagation delays, the setup and hold times of the ells and the intrinsi parallelismsupported by the data-path. This algorithm is one again based on list-sheduling.Ugh is dediated to ontrol oriented appliations, it allows multi-yle operations, operator hain-ing and multi-funtional operators. However, it requires very low-levels information given by theuser and it is highly dependent on a ommerial tool (Synopsys).Same as in SPARK tool, Ugh does not take into aount the parallelism in loop nests. It issatis�ed to exploit the parallelism in the innermost loop by its unrolling. Another problem, isthat no register optimization is performed.In addition, the proess (CGS - mapping - FGS) an take time to be resumed before anaeptable solution is found. Indeed the tool, in the resheduling pass, uses the eletrial hara-teristis of an old data-path to improve the features of the design; the new generated data-pathafter plaing and routing may need more yles, and thus the iruit is less e�ient and needother passes.2.3.4 MMAlphaMMAlpha [97℄ is another open soure researh tool developed at Irisa laboratory of Rennes,Frane6. It is dediated to highly pipelined aelerators appliations. This tool does not handleresoure onstraints. We quote it only beause it is an instane of tools whih e�iently handleparallelism in loops without unrolling them.Its kernel tehnology rely on polyhedral model to inrease the input performane by exploitingthe parallelism in loops. In the polyhedron model a loop nest is abstrated by the polyhedrondesribed by the loop indies during exeution of the loop. It an be used for any index-basedstruture : memory (arrays), ommuniations (aesses).MMAlpha uses systoli design methodology. Its input is a funtional spei�ation in Alphalanguage and its output is an RTL desription of systoli-like arhiteture in Alpha or VHDL.Alpha is a funtional language for expressing regular algorithms, synthesizing regular ar-hitetures or ompiling to sequential or parallel mahines from a high level spei�ation. Analgorithm is desribed by equations involving variables de�ned on multi-dimensional domains(whih are extrated from the polyhedral formulation). By suessive transformations (uni-formization, parallelization for instane), the desription is re�ned until it may be interpretedas an arhiteture. Then, this desription an be translated towards logi synthesis tools in or-der to generate a VLSI arhiteture. Alternatively, di�erent analysis (sheduling, lifetime, et.)may guide the transformations towards imperative loop ode for general purpose (sequential orparallel) proessors.6http://www.irisa.fr/osi/ALPHA/ 26

Chapter 2. State of the ArtHowever, MMAlpha by using the Alpha language and the systoli design methodology arenot widely aepted as these onepts are very di�erent from designer's habits.2.4 Sheduling using Reservation TablesThe reservation table were originally used in sheduling by Lam [69℄ in software pipelining whihis a sheduling tehnique for VLIW (Very Long Instrution Word) proessors.In our sheduling approah, we have instrumented this onept both for dereasing the om-plexity of the sheduling problem and for taking into aount both peuliarities of the datapath and speial resoure features, like pipelined units, bypassing, and other ommuniationonstraints.This onept is also instrumented by Ly et al. [73℄ but with another terminology; theyproposed the idea of � behavioral templates �. The term template was used in [96℄ to desribestrutural patterns to exploit regularity. Formally they de�ned a behavioral templates T , as aCDFG objet whih spei�es a set of tuples, (ni, oi), where ni is a CDFG node and oi is aninteger yle o�set. The semanti is that T imposes the onstraints:
schedule(ni) = schedule(T) + oi ∀(ni, oi) ∈ Twhere schedule(ni) and schedule(T) denotes the shedules for ni and T respetively.Extrating templates is done by pattern mathing on the CDFG nodes. A template loks anumber of operations into a relative shedule with respet to one another. This fat allows easly 1)handling time onstraints, 2) sequential operation modeling, 3) pre-haining of ertain operations,and 4) hierarhial sheduling. They organize CDFG nodes into super nodes (templates) andshedule them. Their hierarhial sheduler is based on a list-sheduling algorithm in whih taskpriorities are dedued from resoure-free ASAP and ALAP shedules.2.5 Hierarhial basis Sheduling FrameworksIn the literature most sheduling algorithms, designed for HLS, ompute a shedule into onepass. The sample of algorithms hosen and presented in this hapter are among them. Manyfators let us think that this approah is not the best one. It is due to the large number ofonstraints and objetives to be satis�ed. Indeed, the appliation size, the diverse nature ofonstraints, all peuliarities of the data path, the requirements of the possible implementationould not be taken into aount in one pass to get an optimal shedule without ombinatorialexplosion.In order to ope with these problems and redue them to manageable sizes one an proposestepwise sheduling algorithms. Suh approahes an be justi�ed by another reason. Indeed, inpratie and ontrary to a massive parallel system, embedded systems (known as very onstrainedsystems) do not always require the generation of an optimal solution if the solution obtained islose to an optimal one.In the HLS literature there are few frameworks that have used stepwise sheduling. Verhaeghet al. [106℄, for high-throughput appliations, has designed a HLS tool �PHIDEO� whih usesa two-stages sheduling algorithm. In fat, to exploit the parallelism through nested loops thatontain operations using multi-dimensional arrays, they introdue a model of multidimensionalperiodi operations. In this model, operations are exeuted repeatedly with several dimensionsof repetition, eah of whih orresponds to one loop. A spei� exeution of an operation an be27

Chapter 2. State of the Artidenti�ed by the orresponding values of the loop iterators. The time at whih suh an exeutiontakes plae is expliitly given in the model by means of the operation's period vetor, whoseomponents denote the time between two onseutive iterations in eah dimension of repetition,and its start time, whih denotes the time of the �rst exeution of the operation.In their multi-dimensional periodi sheduling problem, they have to determine the opera-tion's period vetors and start times and they have to assign the operations to resoures on whihthey are exeuted.Due to the high throughput, severe timing onstraints, and high memory requirements, it isof utmost importane to hoose the period vetors and start times suh that a highly parallelimplementation is obtained in whih the original loops are exeuted onurrently.They take into aount three sets of sheduling onstraints: 1) timing onstraints, whihbound the period vetors and start times of the operations, 2) resoure onstraints and 3) pree-dene onstraints, The sheduling objetive they onsider is to minimize the area oupied bythe hardware. In video appliations, area is not only determined by resoures, but also by thememories that are used. So, a tradeo� has to be made between resoures and memory.In the �rst stage, they designed an algorithm to assign periods suh that storage osts areminimized. To this end, they use a branh-and-bound approah based on linear programming andonstraint-generation tehniques and using an approximate ost funtion. For the seond stage,they use an iterative algorithm to assign start times to operations and to assign operationsto resoures based on graph oloring. For both stages, they use integer linear programmingtehniques. It is reported that this hierarhial sheduling approah has onsiderably reduedthe omplexity of the sheduling problem.2.6 ConlusionIn the literature, many HLS sheduling algorithms are developed. Most approahes belong tothe family of priority-list sheduling algorithms, di�erentiated by the way in whih task prioritiesare assigned, they an be su�ient for less onstraints embedded systems. At the moment, thesegraph-based methods are the only way to shedule large programs within an aeptable time.Nevertheless, they don't give any guarantee on the quality of the solution.On another hand, there are exat methods whih are generaly based on ILP tehniques. Byonstrution, they guarantee the optimality of the solution, but in pratie these tehniques areappliable only to small problems.To �ll the gap between these two approahes, we believe that the quality of the sheduleould be improved by integrating exat methods into hierarhial sheduling approahes, thatould identify ode fragments �with reasonable sizes� and shedule them.In addition, there are other reasons for whih the atual HLS sheduling algorithms arenot mature. Indeed, very quiet interest to exploit the parallelism in nested loops; despite thatmany embedded appliation, speially in high-throughput DSP and ompute-intensive embeddedsystems, ontain nested loops and multidimensional arrays, desribing repetitive exeutions ofoperations and repetitive prodution and onsumption of data.
28

Chapter 3General Sheduling ApproahesAs has been shown in the introdutory hapter, we have investigated on hierarhial shedulingapproahes. Many fators have in�uened these hoies. In this hapter, we give an overview ofour HLS tool and we explain both sheduling strategies that we have designed and disuss ourgeneral motivations to design suh stepwise shedulers.3.1 Syntol ProjetThe shedulers we desribe in this thesis are part of the Syntol tool. It is an HLS researhtool, that we urrently develop with the CompSys7 team at LIP laboratory8. Its aim is HLS inthe �eld of ompute-intensive embedded systems. The starting spei�ation is a variant of C,inluding loops, the output is a hardware desription at the RT level.3.1.1 Input Spei�ation: CRP Spei�ation LanguageDi�erent languages have been used as input to HLS. Hardware Desription Languages (HDL),suh as Verilog-HDL and VHDL, are the most ommonly used. However, designers often writesystem-level models using imperative programming languages, suh as C/C++, to estimate thesystem performane and verify the funtional orretness of the design. Using suh languageso�ers higher level of abstration, fast simulation as well as the possibility of leveraging a vastamount of legay ode and libraries, whih make easy the task of system modeling. In addition,imperative languages ontain many features whih are not present in adapt subsets of HDLsfor example data abstration, dynami use of memory. . . . However, the use of all or a subsetof an imperative language to desribe hardware is a less mature topi. Indeed, to easily mapinput desription to hardware we need some language features present in HDL but not presentin software languages. Conurreny is the most important one. For instane, it is allowed bymeans �Always bloks� in Verilog HDL and �Proess� in VHDL. Indeed, hardware is inherentlyparallel, while imperative programs are inherently sequential.Despite, the reent initiative SystemC [10℄ whih is an attempt to standardize the C/C++based language for both hardware and software, desribing hardware with the present status ofimperative languages, remains weak. Thus the notion of proesses whih enapsulate programsthat exeute onurrently, have to be introdued. This notion allows to desribe a system asa network of proesses. This is done at the partitioning step, whih is usually manually done7An INRIA projet, Frane, http://www.ens-lyon.fr/LIP/COMPSYS/8http://www.ens-lyon.fr/LIP/COMPSYS/ 29

Chapter 3. General Sheduling Approahesby the designer. By the way, in Syntol tool, we do the same. Indeed we use a speial modelCRP (Communiating Regular Proess) to desribe systems [41℄. This model is inspired fromthe Kahn Proess Network KPN model [64℄.CRP model has been designed mainly to allow the deomposition of large appliation intosmall modules. The aim of this formalism is to express parallelism in an easy way, allowing moremodularity and salability of sheduling and promising reuse and readability. These modules - infat proesses- ommuniate through hannels; the resulting system allows a visual representationand looks familiar to eletroni designers (see Figure 3.1. CRP is not a programming languagebut a spei�ation language. It an be seen as a variant of C augmented with �proess� and�hannel� onstrutors with the following semanti:ProessA proess is a sequential program whih an ommuniate with other proesses through hannels.With the exeption of hannels, all variables are loal to one and only one proess and are notvisible from other proesses. The ode of a proess an be written in any onvenient algorithmilanguage. We use C here, but other hoies are possible: Pasal, Fortran and others.The ode of a proess is regular, or has stati ontrol in the following sense:
• Statements are assignment statements and bounded loop statements. All variables areonsidered part of some array, salars being zero-dimensional arrays.
• Loops are of the arithmetis progression variety (exatly the for loops of Pasal), andthe loop upper and lower bounds are a�ne forms in numerial or symboli onstants andsurrounding loop ounters.
• The only method of address alulation is subsripting into arrays of arbitrary dimension.The subsripts must be a�ne forms in onstants and surrounding loop ounters.Some of these restritions are quite natural when one is designing ompute-intensive embed-ded systems with real time onstraints. It is di�ult, for instane, to predit the exeution timeof a while loop or of the traversal of a truly dynami data struture. In addition, other restri-tions an be lifted by preproessing (goto removal, indutive variable detetion, subsript-likepointer detetion, funtion inlining).The iteration vetor of a statement is a list of its surrounding loop ounters, from outsideinward. An iteration vetor for S annot take arbitrary values. It must belong to the iterationdomain of S, whih is obtained by stating that eah ounter is within the bounds of the orre-sponding loop. Under the assumption that the program is regular; iterations domains are sets ofintegral points inside polyhedron. Let DS be the iteration domain of statement S. An iterationof S or operation is written 〈S, x〉, x ∈ DS where x is the iteration vetor. The set of operationsof a proess P is the disjoint union:

EP =
⋃

S∈P

{〈S, x〉| x ∈ DS}and the set of operation of a proess system is ∪pEp. In what follow, we may simply write u ∈ Efor an arbitrary operation.
30

Chapter 3. General Sheduling ApproahesChannelsA hannel is an array of arbitrary dimension whih is used as a ommuniation medium fromone proess to another. Channels are unidiretional. One proess is delared as the writer to ahannel. Considered as an array, eah ell of the hannel must be written only one by its writer:this is the single assignment property. Writing to a hannel is non-bloking.A hannel may have any number of readers. Reading is not destrutive: a value remains in ahannel at least as long as some proess may have some use for it. If a proess reads a ell whihhas not yet been de�ned, it bloks until a de�nition happens.
W (A) denotes the set of operations that write into hannel A with subsript funtion ωA ,and R(A) denotes the set of operations that read from A with subsript funtion ρA . Clearly,

W (A) ⊆ E and R(A) ⊆ E. The set:
F (A) = {ωA(u)|u ∈W (A)}is the footprint of A. If the following onstraint:

G(A) = {ρA(u)|u ∈ R(A)} ⊆ F (A)is not satis�ed, it is lear that some proess will blok for ever when aessing a memory ell in
G(A)− F (A).An ExampleTo illustrate this model, let's see the following trivial example. It spei�es a system where theproess produer generates values whih are onsumed by the proess onsumer. We all thisillustrative system a Pipeline.int n;proess produer(outport int x[℄){ proess onsumer(inport int y[℄){int i; int i;int t; int z;lb1: t = 1; for(i=0; i<n; i++){for(i=0; i<n; i++){ R: z = y[i℄;K: t = (t + i) >> 1; }W: x[i℄ = t; }}} /* the glue ode */void main(){hannel int a[℄;lb2: n = 100;P: produer(a);Q: onsumer(a);}As we have mentioned above, Figure 3.1 whih diagrams this example, is well familiar toeletroni designers. 31

Chapter 3. General Sheduling Approahes
Processus Processus

PortText
t = 1;

Text

Producer Consumer

Port
Channel

for(i=0; i<n; i++){
int z;

int i;

for(i=0; i<n; i++){

}

t = (t + i) >> 1;

x[i] = t;
 z = y[i];

}

 Figure 3.1: Pipeline System.The new keywords proess, inport, outport and hannel are self-explanatory. Tehnially,they appear as new storage spei�ers in the C grammar. In the glue ode, one starts a proesswith the same syntax as for a funtion invoation. However, the proess all returns immediately.3.1.2 Target Arhiteture: the RTL FormalismIn order to de�ne our HLS tool we �rst de�ne the proessor model whih is used to express thetarget strutural desription of the behavioral input program. In fat, we use a desription atRegister Transfer Level [8℄ (RTL); the most popular and the most standardized model to desribeembedded systems [45℄. Suh model onsists of a ontroller -typially desribed by a �nite statemahine- and a Datapath.As shown in Figure 3.2, the model has two types of I/O ports: 1/data ports, whih are usedby the outside environment to send and reeive data to and from the model, 2/ontrol ports,whih are used by the outside environment to reeive the information about the status of thesystem and to send the information about the status of the environment
Inputs

Outputs

Ck

Status

signals

Control

signals

Controller
Finite State Machine

FSM

DP
Datapath

Control
Inputs (Start/Reset)

Figure 3.2: Target of HLS - RTL proessor-The datapath onsists of storage units suh as registers, register �les, memories, ombinatorialunits suh as ALUs, multipliers, shifters and omparators. These units and their I/O ports areonneted by wires and buses. The datapath takes the operand from storage units or input ports,performs the omputation in the ombinatorial units, and returns the results to storage units oroutput ports during eah state, whih is usually equal to one lok yle.The seletion of operands, operations, and the destination of the result are ontrolled by theontrol unit by setting proper values of the datapath ontrol signals. The datapath also indiates,32

Chapter 3. General Sheduling Approahesthrough the status signals, when a partiular value is stored in a partiular storage unit or whena partiular relation between two data values stored in the datapath is satis�ed.A ontroller onsists of a state register and next-state and output logi. Next-state logigenerates the value of the state register in the next step -typially the next lok yle- whileoutput logi generates the value of ontrol and external signals.3.2 A Shedule the Main Tool to Get an FSMDIn our HLS tool, we get the FSMD of a given appliation spei�ed as a system of ommuniatingproesses, by means of a valid shedule of its operations. In Contrast with earlier HLS systemswhere an FSMD is synthesized by sheduling the CDFG whih is simply the sequential �owdiagram of the input desription [45℄. Indeed, it is a quite di�erent way, as we regenerate anequivalent program whih exhibits more parallelism; So the �rst step of this onversion is theonstrution of a shedule, whih gives the epoh at whih eah operation/instrution in theprogram is exeuted. The problem of regenerating an equivalent program from a valid shedulehas been �rst studied by Irigoin [5℄ and a very e�ient solutions, with assoiated software, areavailable today.The main purpose of regenerating an equivalent ode is to extrat parallelism through theloops of the input desription. In fat, to perform this, we use a sheduling strategy previouslyused for automati loop parallelization [40, 41℄. This tehnique whih has already proved itse�ieny:
• assigns a logi �date� � so that the shedule is onsidered as just a way of speifying anexeution order � to eah statement in the C program. The result of this pass is thede�nition of a sequene a sequene of logial steps (fronts) where eah step is a group ofoperations to be exeuted in this logial step. Typially, a front is a pool of a few data-independent (i.e., parallel) loop iterations, eah iteration onsisting of several statements (ingeneral parallel too, but not neessarily). Classial loop parallelization algorithms [40, 32℄generate maximal parallelism expressed as parallel loops (i.e., large parallel fronts with noresoure onstraints); our algorithm is a variant that an generate -urrently, in a heuristiway- bounded fronts if limited parallelism is desired. This is a form of symboli loopunrolling or tiling. This tehnique will be detailed in the following setion.
• when a shedule is omputed, it allows us to rewrite the ode into a form -parallel ode-with expliit parallelism (see details in Setion 3.5). From this equivalent parallel ode onean build a �nite state mahine in whih the time is measured in logial steps.A short review of the generating method will be given below.3.3 Stepwise ShedulingIn the symboli sheduling, we take into aount all data dependenies. Other onstraints alsoan be treated suh as delays of the elementary operations. However, the delays of operationsare �rst approximation to the real delays as we onsider, for instane, that a multipliation takestwie the time of an addition. It is important to emphasize that in this �rst sheduling step, allthe operations in the nested loops are taken into aount.However, this symboli sheduling tehnique is quite omplex and annot take into aountall the miro-operations - and the arhitetural resoures they need- that are implied in theexeution of one high-level statement. For instane a C statement as:33

Chapter 3. General Sheduling ApproahesR: y = a[i+2℄ * tin the symboli sheduling tehnique is onsidered as an atomi statement so the shedule givesit one logial date. However in hardware R is onsidered as a maro-task beause it is omposedat least by a set of three atual elementary operations: 1) a subsript/address alulation, 2) onemultipliation and 3) an aess to the blok memory assigned to the array a if we assume thatit is mapped to a blok memory. So this is still a too oarse desription for hardware generationand we must provide separate miro-operations for subsript alulations, memory management,and funtional units use. Thus, for a given logial step, eah statement is a omplex sequene ofmiro-instrutions that we all miro-operations (for the sake of simpliity we use operations).Furthermore, into a statement, the operations may be linked by data dependenes onstraints.Due to this partiular onstrution, the maro-tasks in a front are data independent but theymay still interfere in their use of resoures. So, the front -logial step- must then be �split� intoas few elementary steps as neessary to satisfy resoure onstraints. In other words, we need atleast another step to shedule loally all operations of the maro-tasks belonging to the samelogial step to satisfy the resoure onstraints and data dependenies between the elementaryoperations of the same maro-task.So these onsiderations lead us to the idea of designing gradual approah tosheduling programs with loops down to RTL.Many fators and reasons let us to think that suh approah an improve a lot the performaneof the sheduling algorithm. First, let us notie that the appliation size, the diverse nature ofonstraints, peuliarities of the datapath - features of the resoures- and the requirements of thepossible implementation an not be taken into aount into one pass to get an optimal shedulewithout exploding.In addition, let us mentioned that our symboli sheduling tehnique is based on integer linearprograms. For a large appliation, �nding legal shedules entails solving large linear programs.Thus inluding the amount of all elementary operations at the �rst sheduling level, whih aim isextration of parallelism in loops, would greatly inrease its omplexity, and would not improvethe result signi�antly.Besides, even when it is possible to onsider all details of miro-operations in the symbolisheduling step, a tight paking of these miro-operations also has the desirable result of mini-mizing the number of intermediate values to be stored in registers and suh a property is hardto ensure with loop parallelization tehniques.Let us reall that from the result of the �rst sheduling step, we build an FSMD in whih timeis measured in logial steps. Eah state ontains a set of data independent high-level statements(maro-tasks) and eah of them is omposed by a sequene of operations. Now, we must re�nethis logial step to satisfy detailed resoure onstraints and taking into aount all peuliarities ofthe datapath. Time will be measured in physial time i.e., lok yle of the target arhiteture.How to perform this? In this thesis, we have skethed two hierarhial sheduling approahes.3.3.1 Two-step ApproahAfter the �rst sheduling step, one possibility is to onsider all the miro-instrutions of a frontand shedule them simultaneously while onsidering resoure onstraints. This is more naturalpossibility; if we hoose an exat method we reah an atual optimal solution.34

Chapter 3. General Sheduling Approahes3.3.2 Three-step ApproahHowever, again for omplexity reasons one an alternatively onsider another possibility. Indeedwe onsider that, in our ontext, it will be good enough to deouple the problem into twosubproblems. This partitioning an be skethed as:
• After the symboli sheduling, we �rst shedule eah maro-task independently, taking intoaount all peuliarities of the data path and resoures, like pipelined units, bypassing,and other ommuniation onstraints. The shedule of eah maro-task is summarized bya reservation table that states whih resoures at whih yle (relative to the starting timeof the maro-task) are used by this maro-task. We all this seond step miro-sheduling.
• Due this partiular onstrution, the maro-tasks in a front are data independent but theymay still interfere in their use of resoures. So we need a another sheduling step to satisfyresoure onstraints. We all this third step �ne-grain sheduling.Let us onsider the following fragment:for(i=0;;i++){Z: s[0℄ = 0;for(j=1;j<7;j++)M: s[j℄=s[j-1℄+e[i+j-1℄*w[j℄;W: o[i℄ = s[6℄;}This program represents the appliation of a six-taps FIR �lter to input e giving outputo. Dependene analysis and symboli sheduling show that this program has the followingausal shedule:

θ(Z, i) = 2i (3.1)
θ(M, i, j) = 2i + j (3.2)

θ(W, i) = 2i + 7 (3.3)For HLS, one has �rst to infer from these results exatly what happens at eah lok yle,i.e., to solve equations of the form θ(U,~i) = t, where t is a time variable. It is lear that theases t even and t odd are to be treated separately. The result is that for t even, one willexeute statement Z for i = t/2, statement M for t/2− 3 ≤ i ≤ t/2− 1 and j = t− 2i, andthat statement W is not exeuted. The step at logial time t is thus made of one instaneof statement Z and three instanes of statement M . A similar result holds when t is odd.The detailed timing of statement M depends on the amount of hardware we intend todevote to its exeution. For the sake of de�niteness, let us assume irular bu�ers for e ando, a register �le for s and a ROM for w, and a �oating point adder and multiplier, bothimplemented as three stage pipelines. It is easy to see that for eah instane of M , the valueof j is �xed (j = 2, 4, 6 for the even steps) hene the only address alulation is that ofe[i+j-1℄ whih an be simpli�ed by strength redution. A reservation table for an instaneof M is: step 1 2 3 4 5 6 7 8 9address xe bu�er xs �le x xROM xmult x � �add x � �35

Chapter 3. General Sheduling Approahes
T

w
o−

st
ep

 a
pp

ro
ac

h

Fine−grain scheduling (3rd step)

Symbolic schedule

Input Description

T
hr

ee
−

st
ep

 a
pp

ro
ac

h

Reservation tables

Loop scheduling (1st step)

Micro−scheduling (2nd step)Simultaneous scheduling (2nd step)

Figure 3.3: The Hierarhial Sheduling Viewswhere a ��� indiates that the orresponding pipelined operator is busy but may aeptfurther operands. This reservation table has been ompated as muh as possible. Firstly, inthis way M is exeuted as fast as possible; seondly, any other implementation would impliesadditional registers to hold intermediate results.We now have to shedule three opies of this table plus the simpler table for Z on theavailable hardware (�oating point and �xpoint operators, register �les, ROM) to onvertlogial time into physial time, and this is the entral point of this thesis. In the presentase, the problem is of small size (three independent tasks). However, it is easy to imaginebulkier examples: we may need more than six taps, or several �lters working in parallel fora multiband equalizer.As mentioned, one ould argue that it would be better to onsider, at the symboli shedulingstage, all the miro-operations generated by eah statement. This is of ourse true in theory. Inpratie, the size of the problem would inrease dramatially � by a fator of 7 in the preedingexample. Besides, it is di�ult to prevent the sheduler to introdue delays between miro-operations, and hene to imply more registers for holding temporary results. Our approahmay be sub-optimal, but we believe that the possible improvements do not warrant the addedomplexity.Though we have investigated both approahes, the last deoupling will be good enough. Ourfronts are indeed in general hosen suh that the number of operations they ontain o�er enoughparallelism to saturate the ritial resoures. So in the miro-sheduling step, maro-tasks aresheduled independently, but when assigning resoures, we try to distribute parallel resouresamong maro-tasks. In other words, after the �rst two steps, the direted ayli graph of miro-sheduled maro-tasks (tasks with reservation tables) should still ontain a su�ient degreeof parallelism. The �nal resoure onstraints are then taken into aount with the �ne-grainsheduler.Figure 3.3 summarizes both sheduling deompositions. Dotted lines expresses the area ofour main ontributions as in this thesis we have addressed only some parts of these sheduling36

Chapter 3. General Sheduling Approahes
.crp

Pre−processing

CLooG
 +

FSM extraction

FSM (1)

FSM (2)

Logic

synthesis

Placement/Routing

Ccrp
 +

Symbolic scheduler

.VHDL
RTL

FSMD

in gates

generation

FPGA image ASIC mask

Schedule Refining

VHDL

FSM (1): Time in logic steps FSM (2): Time in clock cycle

P
hy

si
c

ci
rc

ui
t

Resource constraints

Front−end Logic synthesisBack−endFigure 3.4: Design Flow of our HLS System.steps.3.4 Compilation FlowIn order to get good ideas about our sheduling approahes, let us desribe their usage in ourontext. Let us see the design �ow of our HLS framework whih is diagramed by Figure 3.4.A brief desription of all steps of this HLS system going from an input desription writtenin CRP to a physial view of the target iruit (whih will be desribed via an FPGA image orASIC mask) through an RTL desription is:
• In a pre-proessing step, by hand for the moment, eah statement of the program is split � ifneessary � until it �ts the target datapath in the number of simultaneous operations, mem-ory, and register aesses. For example, a high-level statement that reads three di�erentmemory loations while the target arhiteture an only perform two reads simultaneouslyis deomposed into intermediate operations. For exampleR: b = 3 * a[i+2℄ * a[j℄If the array a is mapped to a one-port memory or we an't have more than one multiplierin the iruit, this high-level statement should be split into two statements suh:37

Chapter 3. General Sheduling ApproahesR1: b1 = 3 * a[i+2℄R2: b = b1 * a[j℄This amount of node splitting we do before sheduling is learly one of the adjustableparameters of our methods, and it is lear that more investigations are needed in order to�nd the best deomposition, whih probably depends on details of the appliation and thearhiteture. This issue -how to do this splitting?- is learly a matter for researh howeverit isn't speially addressed in this thesis;
• After, the behavioral input desription is ompiled by the Crp ompiler whih does a syn-tati and semanti analysis, same as a lassial ompiler. In addition to this, It performsa data�ow analysis [39℄. Its aim is to exhibit all the dependenies between array and salarreferenes of the system. It extrats both kinds of dependenies data dependenes andommuniating dependenes;
• Using the results of this analysis, a �rst-level shedule - a multidimensional shedule- isomputed by modeling the problem as an integer linear program [41℄. This sheduler isa salable and modular version of a multidimensional sheduling algorithm [40℄. In thisthesis, we will ignore the explanation of suh onstrution.The output of this sheduling module is a sheduling funtion θ:

θ : E 7−→ Twhere E is the set of all operations9 of the program and T is a set of time values. Eahtime value is an integral vetor, totally ordered by lexiographi order. So that it gives foreah operation an unique exeution date. Indeed for eah statement S of the program, thefuntion θ(< S, x >) is an a�ne form of the iteration vetor x:
θ(< S, x >) = hS .x + kS (3.4)Where hS is the time vetor of S and kS is a salar.The multidimensional time notion an be easily ompared to the deomposition of a dateinto many dimensions (like year/month/day/hour. . .) where the �rst dimensions are themost signi�ants. For the ase of the Pipeline program of Setion 3.1.1, this shedulingalgorithm gives the following shedules:

θ(〈lb1, i〉) = 0, θ(〈lb2, i〉) = 0

θ(〈K, i〉) = 2i + 1, θ(〈W, i〉) = 2i + 2, θ(〈R, i〉) = 2i + 3.This solution means that both statements lb1 and lb2 start at time 0, after in a yli way,-at eah 3 onseutive lok tops- a sequential exeution of an instane of K, W and Rrespetively holds.
• Given this shedule, now we regenerate an e�ient parallel ode. With present day tools [93,11℄, it is quite easy to automatially do this and many ompetitive algorithms try to �nda ompromise between the ode e�ieny and its simpliity [5, 20, 93℄. In our framework9an operation is an instane of statement de�ned by the name of the statement and the iteration vetor38

Chapter 3. General Sheduling Approaheswe have used ClooG10 to generate suh ode. In Setion 3.5 we will explain in detail howthe hosen tool works.From this equivalent parallel ode, we build a �nite state mahine -ontrol automaton- inwhih the time is measured in logial steps. In this automaton, eah state exeutes a setof data and ontrol independent operations.
• Aording to the sheduling approah used, we re�ne the resulting FSM by splitting eahlogial step to guarantee that resoure onstraints and peuliarities of the data path arerespeted .
• Starting from the previous onstruted FSM, in the last step of the front-end part wegenerate an RTL desription written in synthesizable VHDL form aording to the standardIEEE 1076-1987 [2℄.Now, it remains to submit this RTL desription to any logi synthesis tool. In our ontextwe use the ISE Xilinx 6.x11 tool kit. This synthesis environment uses mainly: 1/ XST 12 for thesynthesis of gates and 2/ ModelSim to perform at several levels temporal simulations.3.5 CLooG: a Code GeneratorThe problem of automati ode generation is solved thanks to reasoning in the polyhedral model.This model is based on a linear-algebrai representation of programs13 Indeed, using this rep-resentation, the ode generation problem entails sanning the Z-polyhedron14, de�ned by theiteration domains, in the lexiographi order. In other words, it entails visiting eah integralpoint of a polyhedron in the lexiographi order.At �rst, the automati ode generation problem was solved by Anourt and Irigoin [5℄. Formore omplex situations, the best solution is the Quilleré et al.'s algorithm [93℄. Both methodsgenerate ode with loops. Boulet and Feautrier [20℄ proposed another solution in whih, theydiretly generate low level ode without loops.Let a program be represented by its Z-polyhedron -de�ned by the iteration domains- anda legal shedule. In our framework, we use the ClooG tool to generate the ontrol automaton.Indeed ClooG [11℄ gives an e�ient parallel ode with less ontrol. The heart of the generationproess is the Quilleré et al. algorithm. Their tehnique is simple and an be summarized inthree steps:
• It generates loop levels by projeting the polyhedra onto the orresponding dimension.
• Next, it splits the projetion into disjoint polyhedra and it sorts the resulting polyhedraaording to the lexiographi order.
• Lastly, it reursively generates loop nests that san eah projetion.10CLooG: for Chunky LOOp Generator. This soft is available at http://www.loog.org/.11http://support.xilinx.om/support/sw_manuels/xilinx6/12Xilinx Synthesis Tehnology13Also alled the polytope model, it beame very popular beause of its rih mathematial theory and itsintuitive geometri interpretation. Moreover it addresses a lass of odes with very regular ontrol that inludesa large range of real-life program parts [12, 100℄.14A onvex set of points in a lattie (also alled lattie-polyhedron), i.e., a set of points in a Z vetor spaebounded by a�ne inequalities [99℄. 39

Chapter 3. General Sheduling ApproahesIn order to fore sanning to respet some rules in addition to the lexiographial order,CLooG allows using some sattering funtions, suh as the sheduling funtions that we havepreviously omputed. Sattering is a shortut for sheduling and alloation funtions and the like.Indeed in order to exhibit parallelism, CLooG applies some transformations on the Z-polyhedronwhile respeting the sheduling funtions.To illustrate the behavior of this algorithm, we unroll it on the Pipeline example. Let usreall that for the ase of the Pipeline program, the multidimensional sheduling algorithm givesthe following shedules:
θ(〈lb1, i〉) = 0, θ(〈lb2, i〉) = 0

θ(〈K, i〉) = 2i + 1, θ(〈W, i〉) = 2i + 2, θ(〈R, i〉) = 2i + 3.These sheduling funtions an be represented by the following parameterized 5 polyhedra (itrepresents the CLooG input):Polyhedron lb1:
{

t = 0
i = 0Polyhedron lb2:

{

t = 0
i = 0Polyhedron K

{

t = 2i + 1
0 ≤ i ≤ n− 1Polyhedron W

{

t = 2i + 2
0 ≤ i ≤ n− 1Polyhedron R

{

t = 2i + 3
0 ≤ i ≤ n− 1

i

1 2 3 4 5

............

............

............

t

2

3

1

2n − 1 2n 2n + 1

n − 1

Integral point of polyhedron R Integral point of polyhedron Lb1/Lb2

Integral point of polyhedron WIntegral point of polyhedron KIn the ontext of n > 1, let us generate the ode whih san this 5 polyhedra:
• Firstly, we projet the 5 polyhedra on the �rst dimension t and we split them into disjointpolyhedra. Then, we sort these polyhedra so that the textual order of the loops, sanningthe �rst dimension, omplies with the lexiographi order. We get this �rst pseudo ode:for (t=0;t<=0;t++){Polyhedron lb1: {i = 0}Polyhedron lb2: {i = 0}}for (t=1;t<=1;t++){Polyhedron K: {i = 0}}for (t=3;t<=2n-1;t++){

40

Chapter 3. General Sheduling ApproahesPolyhedron W :
{i = (t− 2)/2}Polyhedron R:
{i = (t− 3)/2}Polyhedron K:
{i = (t− 1)/2}}for (t=2n;t<=2n;t++){Polyhedron W : {i = (t− 2)/2}}for (t=2n+1;t<=2n+1;t++){Polyhedron R: {i = (t− 3)/2}}

• We reurse on the resulting disjoint polyhedra: so we projet them on the next dimension
i and we separate them into disjoint polyhedra. Then we sort these polyhedra so thatthe textual order of the loops sanning the seond dimension omplies to the lexiographiorder.

• After the elimination of the loops with one iteration, the �nal ode whih san the 5polyhedron is:lb1(i = 0);lb2(i = 0) ;K(i = 0) ;W(i = 0) ;for (t=3;t<=2*n-1;t++) {if ((t-3)%2 == 0) {R(i = (t-3)/2) ;}if ((t-2)%2 == 0) {W(i = (t-2)/2) ;}if ((t-1)%2 == 0) {K(i = (t-1)/2) ;}}W(i = n-1) ;R(i = n-1) ;The unknown t expresses the time vetor. Conditional statements are generated to guarantee theintegrality of subsripts. To avoid suh omplex subsript funtions and guards, we an hangethis temporal basis thus, moving from a one dimension basis to two dimensions basis. Thus, weobtained the new omputed shedule:
θ(〈lb1, i〉) =

(

0
0

) , θ(〈lb2, i〉) =

(

0
0

)41

Chapter 3. General Sheduling Approahes

S1
lb1
lb2

S3

K

S3

S4

S5

S7

S7

S9

R

final

S6
R
K

t++

W

W

t <= n−1

t = 1

Figure 3.5: Generated FSM for the Pipeline Program.

42

Chapter 3. General Sheduling Approahes
θ(〈K, i〉) =

(

i
0

) , θ(〈W, i〉) =

(

i + 1
0

) , θ(〈R,x〉) =

(

i + 1
1

) .The generated ode beomes simpler:lb1 ;lb2 ;K(i = 0) ;for (t=1; t<=n-1; t++) {W(i = t-1) ;R(i = t-1) ;K(i = t) ;}W(i = n-1) ;R(i = n-1) ;As the above ode shows, GLooG don't onsider the body of the statements; it reognizes thestatement just by a label whih is automatially generated aording to the textual order of theapparition of their iteration domain in the GLooG input �le. In our framework we generatediretly from the ClooG internal representation the ontrol automaton while the body of state-ment is inserted from an external input �le. For example, the synthesized FSM for the pipelineprogram is diagramed by Figure 3.5.3.6 ConlusionHLS sheduling is a very onstrained task. Indeed, to get an aeptable shedule, that allowsexploiting enough parallelism inherent to the input desription, we have used some tehniqueswhih have been pioneered in automati loop parallelization. However, these tehniques are quiteomplex and an't take into aount all datapath peuliarities and detailed resoure onstraints.For this we have skethed some sheduling approahes, in whih sheduling is performed ingradual ways.In this hapter, we have explained our general stepwise sheduling approahes and how theyare inserted in our framework. Let us reall that, in this thesis, we have addressed only some partsof these sheduling approahes. Indeed, onsidering the three-step approah, in the following part(Part I), we fous on the third sheduling step problem: �how to shedule tasks whose resoureusage is desribed by reservation tables�. In addition, we propose some solutions to perform thelast sheduling step de�ned in the two-step approah in Part II.

43

Part IReservation Tables Sheduling usingDis-equations

44

Chapter 4Formalism and a Greedy SolutionThis Chapter is divided into two parts. In the �rst part, we will explain how tasks are representedby mean of reservation tables. Aording to this task model, a new formulation of resoureonstraints is developed. In this model, onstraints are represented using dis-equations. Then aformal de�nition of the sheduling problem is dedued.In the seond part, a greedy heuristi is proposed and some related experimental results arereported and ommented.4.1 IntrodutionLet us reall that in general, the HLS sheduling problem is an NP-Hard problem and espeiallywhen one wishes exploiting parallelism inherent in the input desription. For this main reason,among others, we have skethed the three-step sheduling approah. In what follow, we proposeto formalize the problem de�ned in the third sheduling step i.e. the �ne-grain shedulingproblem.4.2 Task and Resoure Constraints FormalismIn this setion, we explain what is our task model � basially a set of (possibly dependent) tasks,eah being a omplex sequene of elementary pre-sheduled operations � and how we representresoure onstraints for suh tasks.4.2.1 Extrating Tasks with Reservation TablesBasially, a maro-task is a statement in some high-level language (C in our ase). As shownin Setion 3.3 at the hardware generation level, eah maro-task must be split into simpleroperations like address alulations, memory aesses and arithmeti operations.Aording to the result of the seond sheduling step the elementary operations in eahmaro-task are mapped to resoures and pre-sheduled; indeed, independently the shedule ofeah maro-task is desribed by a reservation table that states whih resoures at whih yle areused by this maro-task, relative to its starting time. In other words, this pre-sheduling leadsto a reservation table in whih the start time of eah elementary operation is �xed, one and forall, relative to the start time of the maro-task. From now, eah statement an be viewed as amaro-task whose resoure usage is �xed. 45

Chapter 4. Formalism and a Greedy SolutionThe resoure assignation is done in a simple manner. Indeed, we hose the binding thatgreedily alloates all the available resoures to tasks, i.e., we assign the whole resoures to thefuntional operations of eah task. In other words, the binding rule assigns the available resouresto the ompeting tasks in a round-robin way.Without loop, the data dependenes between operations, into a maro-task, an be repre-sented by a direted ayli graph. Hene, for this step �miro-sheduling�, we use lassial taskgraph sheduling tehniques(Chap. 1 of [32℄). Here also, the problem is NP-hard, but there aresome heuristis whih give approximative solutions and whih an be guaranteed to ahieve atmost twie the optimal exeution time. In addition, the node splitting performed at the pre-proessing step insure that the size of a maro-task is relatively small hene in most of time themiro-sheduling heuristi reahes the optimal solution.Now, as maro-tasks are represented by reservation tables and they are data independent,getting a whole shedule entails just �xing the relative starting dates of maro-tasks, whilerespeting resoure onstraints and minimizing the total exeution time.4.2.2 NotationsWe denote by T the set of n maro-tasks, R the set of resoures, ti the starting date of themaro-task i, and pi ≥ 0 the lateny of task i (the unit is the lok yle), i.e., the di�erenebetween the ending time of the last elementary operation it ontains and the starting time ofthe �rst one. The reservation table of task i is thus of size pi × |R|. Let us see the followingmaro-task S. Assuming that we have one adder, one multiplier, and that the array a is mappedto one-port memory blok A. Assume also that a memory aess and the multiplier take 2 ylesand that both an be pipelined. One possible binding is diagramed by the following �gure:
S: y = a[i+2℄ * b

A + ∗
tS

Task S

pS

A reservation table for S.In what follows, we will use �task� (resp. �operation�) instead of �maro-task/high-levelstatement� (resp. �miro-instrution/miro-task�) for brevity.4.2.3 Forbidden DistanesTo get an optimal shedule we must express e�iently the onstraints of the sheduling. Resoureonstraints are the main ones.Consider a ouple of tasks i and j, with respetive starting dates ti and tj. In a legal shedule,if the tasks i and j are data independent, they an start at any dates exept those whih putthem into resoure on�it. So the intuitive idea is to express the resoure onstraints as a set offorbidden distanes (tj−ti). Let us explain, assume that a resoure r ∈ R is used at miro-step diin the reservation table of task i and at miro-step dj in the reservation table of task j. (A given46

Chapter 4. Formalism and a Greedy Solution
r

r
tj

di,j

Task i Task j

ti

ti + pi

tj + pjFigure 4.1: Forbidden Distane.resoure r an be used more than one in a given reservation table, so we should use a notationsuh as di,r,k, but we dropped the indies r and k for larity.) This means that in a shedulethe resoure r is used at time step ti + di by task i and at step tj + dj by task j. To satisfy theresoure onstraint for r it is neessary that:
ti + di 6= tj + dj, i.e., ti − tj 6= (di,j = dj − di). (4.1)Note that the values di and dj are problem inputs as the reservation tables are given,whereas ti and tj are unknowns. In fat, dis-equation (4.1) eliminates, from the solution spae of

ti and tj , only the forbidden distane di,j . In this way, all resoure onstraints for a pair of tasks
(i, j) an be expressed as dis-equations by a systemati examination of their respetive reserva-tion table. It follows that, for the set T of tasks in a logial state, all the resoure onstraintsan be obtained by de�ning for eah ouple of tasks (i, j) all the dis-equations expressing theresoure onstraints. Figure 4.1 illustrates the notion of forbidden distane.When there are more than one opy of eah resoure, this simple formulation of the onstraintsis no longer possible, unless we bind resoures to tasks a priori. As mentioned below, our bindingrule assigns the available resoures to the ompeting tasks in a round-robin way. We havedone some experiments that show that this heuristi has no great in�uene on the �nal lateny(§ 6.2.4).4.2.4 Example 1Consider the following exerpt from the PerfetClub Benhmark, The SPICE15 program, fromline 16 to 19. This example illustrates what a logial step may ontain after symboli sheduling.Task 1: GSPR = VALUE(LOCM+2)*AREATask 2: GEQ = VALUE(LOCT+2)Task 3: XCEQ = VALUE(LOCT+4)*OMEGATask 4: LOCY = LYNL+NODPLC(LOC+13)The four tasks are data independent. Assume that the available resoures are one adder, onemultiplier, and two memory bloks: Val (where the VALUE array is mapped) and Ndp (where theNODPLC array is mapped). Assume also that a memory aess and the multipliation take 2 ylesand that both an be pipelined. Salar variables like AREA or LOCY are assumed to be alloatedto registers, where they an be aessed in no time. Figure 4.2 diagrams one possible binding,where the label RM Val (resp. RM Ndp) means to read the memory blok Val (resp. Ndp).15SPICE is a widely used iruit simulation program developed at UC Berkeley.47

Chapter 4. Formalism and a Greedy Solution
+

+

+

*

+

*

+

Task 1 Task 2 Task 3 Task 4

RM

MdpVal

RM RM

Val

RM

Val

Figure 4.2: Binding for Example 1.For this example, the system of resoure onstraints is omposed of 9 onstraints de�ned asfollows:

t1 − t2 6= 0 t1 − t3 6= 0 t1 − t4 6= 0
t3 − t4 6= 0 t2 − t3 6= 0 t2 − t4 6= 0
t4 − t2 6= −2 t4 − t1 6= −2 t4 − t3 6= −2For instane, the onstraint t1 − t3 6= 0 expresses the fat that tasks 1 and 3 annot start at thesame time beause (among other reasons) both use the adder in their �rst step.4.3 Sheduling Problem FormulationNow, if there are no data dependenes between tasks, �nding a valid shedule for T entails solvingthe following system of dis-equations in integer values:

{

ti − tj 6= d k
i,j i, j ∈ T

ti ≥ 0
(4.2)For a given pair of tasks i and j, there an be several forbidden distanes di,j, hene the index k.The set of inequalities ti ≥ 0 is added into the system just to �x the origin of the shedule.In addition, as the goal is to get an optimal shedule (a shedule with minimal exeution timeor lateny) we must minimize the total time maxi(ti + pi).If neessary, dependenes between tasks an also be handled; they an be expressed as addi-tional inequalities of the form tj − ti ≥ δi,j. When, δi,j ≥ 0, suh a onstraint means that task jmust start at least δi,j steps after task i (a typial data dependene); when δi,j ≤ 0, it meansthat task i an start at most −δi,j steps after task j.4.4 How To solve a System of Dis-equation?First let us notie that, as de�ned, the problem of solving suh a system of dis-equations whileminimizing maxi ti, with ti ≥ 0, is an NP-Complete problem.Proof. The proof of this NP-ompleteness is straightforward; we laim that the graph oloringproblem is a partiular ase of the problem de�ned in (4.2). Indeed, if one takes all d k

ij equal to
0 and all pi are equal, then the solution, at the end, is to give i a di�erent olor than j. Now, thegraph oloring problem, in its general forms, is well known as anNP-Complete problem [110℄.Consequently, we are sure that �nding an optimal shedule an't be done in a polynomial time.Nevertheless, there are many methods for solving the system de�ned in (4.2):48

Chapter 4. Formalism and a Greedy Solution
• one an be satis�ed with a greedy heuristi suh as a list-sheduling algorithms [33℄. Inthese methods, we simulate an exeution by maintaining, at eah time, a list of ready tasks.This list is ordered aording to a given arbitrary order. In most ases, this order favorisesthe long tasks or tasks belonging to the ritial path. Then, we launh the �rst ready taskssuh that no resoure is deliberately left idle.
• onversely, if we need more auray, in other words, if we searh the optimality, there arealso many solutions from operation researh whih are based on:� Branh and bound (BAB) tehniques [59℄;� Integer Linear Programming tehniques [79, 99℄.� Sine there is an obvious bound for the ti (ti ≤ ∑

i pi), another solution an beemployed by using onstraint handling methods, provided by Constraint logi Pro-gramming (CP) paradigm [14℄. Indeed, CP uses the onept of onstraint solving ina spei� omputation domains. Generally these domains are �nite domains.Indeed, Integer Linear Programming and Constraint Logi Programming are two alternativeapproahes for solving ombinatorial optimization problems.Conerning the CP resolution, interval methods, whih are the main tehniques used bythe solvers of the onstraints, have shown their ability to loate and prove the existene ofan optimal solution in rigorous way, unfortunately, these methods are rather slow. Indeed, asolution an be found by instantiating all domain variables with values from their respetivedomains. Instantiating a variable may ause the exeution of onstraints and therefore failure.On baktraking, another value from the domains has to be hosen. These baktrakings mayslow down a lot the all proess.The situation is similar for the ILP tehniques. In fat, the theoretial omplexity of the ILPsolutions is exponential in the produt of the task number and the number of needed variablein the standard oding [25℄. However, we have tried in Chapter 5 to de�ne some eonomialodings and straightforward formulations.In the same way, a Branh-And-Bound-based method has an exponential time omplexity,but it an have a di�erent behavior in pratie. Indeed, Branh-And-Bound is a meta-methodof guidane in the spae of solutions. Its strategy of resolution depends strongly on the featuresof the problem to resolve. For this reason, we have developed a Branh-and-bound in Chapter 6.In the rest, we will develop and experiment a greedy heuristi whih will be used as yardstikfor measuring the e�ieny and robustness of the exat algorithms developed in both followinghapters.4.5 A Greedy HeuristiFirst let us onsider a lassial greedy heuristi, whih an be used for data-independent tasks.It is easy to adapt this heuristi to the ase where dependenes suh as tj − ti ≥ δi,j give rise toa direted ayli graph.4.5.1 AlgorithmWe use a lassial greedy-sheduling (GS) heuristi. Without any data dependenes, all the tasksare ready at time zero. Tasks are sheduled one after the other. At eah step, given a subset Tmof already-sheduled tasks, we hek whether the next task i an be sheduled at time 0, i.e.,49

Chapter 4. Formalism and a Greedy SolutionAlgorithm 1: Greedy Sheduling Algorithm.Data:- ListTasks,- Resoure reservation table for eah task i in ListTasks,- Forbidden distanes.beginforall i ∈ ListTasks, following the order in ListTasks doStartTime← 0;while not (isPossible(i, StartTime)) doStartTime← StartTime + 1;endShedule[i]← StartTime;endendif all forbidden distanes between i and all tasks in Tm are respeted. If not, the start time isinremented, and the proess is reiterated.Algorithm 1 onstruts a global reservation table. After eah sheduling step, this table isupdated. Thus, it is important to emphasize that this algorithm an be used before resourealloation, as for any lassial list-sheduling algorithm. Indeed, the isPossible proedurean use the information on the number of available resoures and takes into aount forbiddendistanes when there remains only one resoure to share. In fat, freedom to plae binding afteror before sheduling gives this heuristi an advantage.Our algorithm is a pseudo-polynomial heuristi, as its time omplexity is O(n|R|
∑

i pi),where n is the number of tasks.When the dependene onstraints tj − ti ≥ δi,j form an ayli graph, one an develop asimilar heuristi: onsider tasks aording to some topologial order of the graph and plae themin a greedy fashion as early as possible while respeting dependene and resoure onstraints.This is the standard list-sheduling approah [33, 25℄.It is important to note that the order in whih tasks are onsidered in the list in�uenesthe lateny of the shedule. In this �rst version of the algorithm, we did not take this fat intoaount. Muh work has been devoted to the onstrution of good priority rules, i.e., in thesearh for a good task ordering. Of ourse there are di�erent possible strategies to deide whihtasks are given priority in the (frequent) ase where there are more free tasks than availableresoures. But a key result due to Co�man is that any strategie deiding not to deliberately keepa resoure idle an be shown to ahieve good performane [32℄.4.5.2 Example 1, ContinuedLet us return to the example of Setion 4.2.4. An optimal solution (found for example by ourexat algorithm in Chapter 6) is t1 = 0, t2 = 3, t3 = 1, t4 = 2, it needs only 5 yles. The GSheuristi gives the solution t1 = 0, t2 = 1, t3 = 2, t4 = 3 with a lateny of 6 yles. Figure 4.3diagrams both solutions. The GS algorithm reahes the optimum only for the ordered list Task 1,Task 3, Task 4, Task 2. Note that, in the general ase, there may be no order in whih the optimalis reahed by the greedy sheduling. However, here a deviation of 1 yle from the optimum isaeptable, in partiular if one needs a fast ompilation.50

Chapter 4. Formalism and a Greedy Solution
+

* +

*

+

+

+

Task 2

Task 4

Task 1

6

0

(a)

Task 3

RM

Val

RM

Val
RM

Ndp

RM

Val

+

*

Task 1

+

*

Task 3

+

Task 2

+

+

Task 4

0

5

(b)

RM

Val
RM

Val

RM

Val

RM

Ndp

Figure 4.3: (a) Greedy Solution and (b) Optimal Solution.4.5.3 ExperimentsWe have implemented this heuristi and tested it on groups of independent tasks from real-lifeappliations. They onsist of 22 tests from the PerfetClub [18℄ and HLSynth95 [85℄ benhmarks.The PerfetClub benhmarks represent appliations in a number of areas of engineering andsienti� omputing and the HLSynth95 benhmarks, more spei�ally, represent a repository ofappliations in embedded systems (see Appendix B for more details on these benhmarks). Theruntime is omputed in user seonds on a 1.73 GHz Intel Pentium M running Linux. Results arereported in Table 4.1.The test programs are fairly small, they ontain between 3 and 9 data-independent (possiblyomplex) tasks, eah one ontaining between 1 and 15 operations. All kind of resoures areonsidered: sequential resoures like memory ports, and ombinatorial ones suh as adders,multipliers, omparators, and dividers. Also, more than one-yle delays resoures are taken intoaount. Misellaneous resoure features are onsidered, for example memories with two-ports,multipliers with two and three yles, pipelined resoures and so on.Test T µT Shedule lateny Deviationss1 4 15 6 1ss11 4 15 5 2ss12 4 17 6 2ss2 9 32 7 1ss3 7 27 10 3ss5 3 9 5 0ss6 8 12 4 0ja1 6 19 6 0ja2 6 82 23 0ja3 7 97 20 1rasm1 3 9 5 0wss3 5 11 4 0wss31 5 11 6 1wss32 5 11 4 0wo1 4 13 5 0wo2 7 9 4 1wss1 4 44 21 5wss11 4 44 19 3wss2 3 23 11 1wss12 4 44 17 4wmt22 4 31 13 0ss21 9 32 11 1Table 4.1: Greedy Sheduling Results.The �rst three olumns of Table 4.1 are the test names, the number n of tasks (olumn T),and the total number of miro-tasks (olumn µT) that ompose them. For suh instanes, this51

Chapter 4. Formalism and a Greedy Solutionheuristi is very fast; its runtime is less than the Linux lok resolution. So, we did not report itsruntime in the table, whih is about 0.0032s in average, a value obtained by timing one millionrepetitions of the algorithm.To evaluate the stability of the algorithm, we have repeated it on a sample of n2 randompermutations of the tasks. The �Deviation� olumn gives the di�erene between the best andthe worst shedule in suh sample.To get an idea about the quality of the omputed latenies and the behaviour of the GSheuristi, we need some information relative to the optimal solutions hene we delayed thisanalysis one we present our exat methods.4.6 ConlusionWe have presented a formalism, for high-level synthesis, to aurately express resoure onstraintsfor omplex tasks represented as reservation tables. The resoure onstraints are modeled bydis-equations and �nding an optimal shedule leads to resolving a system of dis-equations. Theproposed formalism an be generalized to support problems of resoure-onstrained shedulingeven when tasks are dependent.Beause our sheduling problem is NP-omplete, �rst, we have relied on heuristis. Themost natural idea is to use a greedy strategy: at eah time step, we try to shedule as manytasks as possible onto available resoures. Hene our GS heuristi. The results have shown thatthis heuristi is very fast and enough stable.

52

Chapter 5Integer Linear Programming ApproahSheduling theory was originated from operations researh thus, it is obvious to think about usingsome of its own tehniques to resolve the sheduling problems. Indeed, the best understood andwell known exat sheduling tehniques are based on ombinatorial optimization espeially onInteger Linear Programming. The HLS literature o�ers a very rih variety of ILP formulations.Due to our partiular kind of onstraints (expressed by means dis-equations), in this haptersome ILP formulations of the sheduling problem de�ned in Setion 4.3 are proposed. Thensome experiments are reported and ommented.The main aim of our ontribution isn't to bring some improvements in this �eld, as ILPformulations have been enough studied by many sholars [72, 61, 47, 27, 112, 65℄ but our ILPsheduling algorithm will be used as yardstik for measuring the e�ieny and robustness of oneof our branh-and-bound-based algorithms de�ned in the following hapters.5.1 General IntrodutionInteger and ombinatorial optimizations deal with problems of minimizing or maximizing a fun-tion of many variables subjet to inequalities and equalities onstraints when the values of someor all of the variables are restrited to be integral. The versatility of the ombinatorial optimiza-tion model stems from the fat that in many pratial problems, ativities and resoures, suhas mahines, airplanes, people and lok yles are indivisible.Beause of the robustness of the general model, it overs a rih variety of problems [53℄.An important and widespread area of appliations onerns the management and e�ient useof sare resoures to inrease produtivity. These appliations inlude �nane, marketing, pro-dution sheduling, distribution of goods and mahine sequening. They also inlude designproblems suh as ommuniation and transportation network design, VLSI-iruitry design andtesting, the design of automated prodution systems and design of the layout of iruits to mini-mize the area dediated to wires, design and analysis of data networks, solid-waste management,determination of ground states of spin-glasses and many other typial appliations: portfolioanalysis, high energy physis, x-ray rystallography and moleular biologyOn the other hand, there are many real-world problems where it is impossible to write downall of the onstraints in a mathematially "lean" way. Suh problems often arise in shedulingwhere there are a myriad of onstraints and other rules related to what onstitutes a "feasibleshedule". Furthermore, formulations based on ILP o�er the possibility of integrating onstraintsin a homogeneous problem desription and of solving them together.In what follow, we will just sketh the basis of Integer Linear Programming, whih are53

Chapter 5. Integer Linear Programming Approah
Objective function

Integer points

x1

x2

PFPI
Figure 5.1: Feasible Areas.essential for understanding of the presented ILP-formulations. For further information see [99℄or [83℄.Integer Linear Programming (ILP) is the following optimization problem:

min zIP = cT x

x ∈ PF ∩ Z
nwhere

PF = {x |Ax ≥ b, x ∈ R
n
+}, c ∈ R

n, b ∈ R
m, A ∈ R

m×n (5.1)The set PF is alled feasible region. We will assume that A ∈ Z
m×n and b ∈ Z

m holds. Theoptimal solution of an Integer Linear Program an be alulated by solving the following problem
min zIP = cT x

x ∈ PI ∩ Z
nwhere

PI = conv ({x | x ∈ PF ∩ Z
n}) (5.2)Here, conv denotes the onvex hull. For the two-dimensional ase, a representation of PF and PIare given in Figure 5.1.The integral points within PF denote the feasible solutions to the integer linear problem;depending on the objetive funtion, at least one of them represents an optimal solution. Thefeasible region de�ned by (5.1) onsists only of the integer points, whereas the feasible region PI,de�ned by (5.2), onsists of the onvex hull of these points.Let us reall that solution tehniques for ILP: solving ombinatorial optimization problemsan be a di�ult task. The di�ulty arises from the fat that unlike linear programming, forexample, whose feasible region is a onvex set, in ombinatorial problems, one must searh alattie of feasible points to �nd an optimal solution. Thus, unlike linear programming where,due to the onvexity of the problem, we an exploit the fat that any loal solution is a globaloptimum, integer programming problems have many loal optima and �nding a global optimumto the problem requires one to prove that a partiular solution dominates all feasible points byarguments other than the alulus-based derivative approahes of onvex programming.54

Chapter 5. Integer Linear Programming ApproahAt least, there are three di�erent approahes for solving integer programming problems, al-though they are frequently ombined into "hybrid" solution proedures in omputational pratie.They are:
• Enumerative tehniques: the simplest approah to solving a pure integer programmingproblem is to enumerate all �nitely many possibilities card(PI). However, due to the"ombinatorial explosion" resulting from the parameter "size", only the smallest instanesould be solved by suh an approah. The most ommonly used enumerative approah isthe branh and bound method.
• Relaxation and deomposition tehniques: Relaxing the integrality restrition is not theonly approah to relaxing the problem. An alternative approah to the solution of integerprogramming problems is to take a set of "ompliating" onstraints into the objetivefuntion (with �xed multipliers that are hanged iteratively). This approah is knownas Lagrangian relaxation. By removing the ompliating onstraints from the onstraintset, the resulting sub-problem is frequently onsiderably easier to solve. The latter is aneessity for the approah to work beause the subproblems must be solved repetitivelyuntil optimal values for the multipliers are found.
• Cutting planes approahes based on polyhedral ombinatoris: The underlying idea is to re-plae the onstraint set of an ILP problem by an alternative onvexi�ation of the feasiblepoints and extreme rays of the problem. H. Weyl (1935) established the fat that a onvexpolyhedron an alternatively be de�ned as the intersetion of �nitely many halfspaes oras the onvex hull plus the onial hull of some �nite number of vetors or points. Originalproblem formulation are in rational numbers, it implies the existene of a �nite system oflinear inequalities whose solution set oinides with the onvex hull of the integer points in

PF. Thus, if we an list the set of linear inequalities that ompletely de�ne the onvexi�-ation of PF, then we an solve the integer programming problem by linear programming.Gomory derived a "utting plane" algorithm for integer programming problems.The omplexity of these methods and many other fats make a general ILP problem a NP-omplete one [104℄; yet many large instanes of suh problems an be solved. This, however,requires the seletion of a strutured formulation and no ad-ho approah [27℄. More detailson how to formalize several kind of onstraints that an be used for sheduling problems aregiven by Gebotys et al. [47℄, Kästner et al. [65℄, and Zhang [117℄. We will adapt some of theseformulations to our problem.5.2 Integer Linear Programming ApproahesLet us reall that we have to resolve the following system of dis-equations in integer values:
{

ti − tj 6= d k
i,j i, j ∈ T

ti ≥ 0
(5.3)while minimizing the total lateny maxi(ti + pi).The reservation tables sheduling an easily be formalized as an Integer Linear Programmingproblem (ILP) using standard oding tehniques.We propose two ILP-formulations: one using a standard 0/1 enoding that we optimize forour problem, and the seond one using the �Big-M� trik. Before this, let us �x some notations.55

Chapter 5. Integer Linear Programming Approah5.2.1 NotationsWe use the following notations: xi,j is a binary variable assoiated with task i where xi,j = 1 ifand only if task i is sheduled at the jth lok yle. The indies j go from 0 to H, a maximal�horizon� for the shedule. We an easily have suh upper bound as the pi are inputs of theproblem. In fat, one an set H to ∑

i pi. The variable ti is the starting date of task i, R theset of available resoures, Rr the set of tasks that use the resoure r, and di,r the time step 16(relative to the beginning of the task) at whih the task i uses the resoure r.5.2.2 Standard 0/1 EnodingA standard way of expressing our sheduling problem is the following. Fix H, the maximalshedule H, to an upper bound for the optimal lateny. As explained, we an �x H to ∑

i pior, better, to the lateny of the solution found by the greedy heuristi GS. Then, minimize theshedule lateny L subjet to the following onstraints (in addition to the fat that all variablesare integers and the xi,j are 0/1 variables):
ti =

H−pi
∑

j=0

j ∗ xi,j ∀i ∈ [1 . . . n] (5.4)
0 ≤ ti ≤ L− pi ∀i ∈ [1 . . . n] (5.5)

H−pi
∑

j=0

xi,j = 1 ∀i ∈ [1 . . . n] (5.6)
∑

i∈Rr

xi,(t−di,r) ≤ 1 ∀r ∈ R, ∀t ∈ [0 . . . H] (5.7)The n equalities in (5.4) de�ne the starting dates ti as funtions of the xi,j binary variables. Theinequalities (5.5) express the lateny to be minimized. For eah task i, the equality (5.6) guar-antees that i is exeuted exatly one. Finally, the inequalities (5.7) express resoure onstraintsfor eah resoure r ∈ R. One the variables ti are available � through the onstraints (5.4) � thedependene onstraints (if any) are naturally expressed as inequalities tj − ti ≥ δi,j.This ILP formulation, like the previous greedy heuristi, an be used before resourealloation: we have only to replae the right-hand side of the inequalities (5.7) bythe number of available resoure of type r.5.2.3 0/1 Simpli�ed EnodingOne reason for an ILP solver to be slow for the previous standard 0/1 formulation is the preseneof the onstraints (5.4) whih have large oe�ients, espeially when the horizon H is large. Toe�iently solve the sheduling problem, it is important to use a more strutured formulation, anda mathematial analysis of the problem onstraints is needed to �nd suh strutured formulation.Let us reall that by onstrution, the tasks in T are data independant. Consequently, in suhontext, the variables ti are needed only to express the objetive funtion in the onstraints (5.5),and we an get rid of these variables as well as the onstraints (5.4) and (5.5) by the following16It is possible that, in the same task i, a resoure r is used in more than one miro-task. Again, for simpliity,we assume that eah task uses eah resoure at most one, but this may be easily generalized.56

Chapter 5. Integer Linear Programming Approahtrik. Instead of using the ILP solver as an optimization tool, we use it to test the feasibility ofthe following redued system:
H−pi
∑

j=0

xi,j = 1 ∀i ∈ [1 . . . n]

∑

i∈Rr

xi,(t−di,r) ≤ 1 ∀r ∈ R, ∀t ∈ [0 . . . H]If the problem is feasible, it means that there is a shedule of lateny H or less while, if theproblem is unfeasible, H is too small. One an adjust H by dereasing it from some upperbound until a feasible problem is found, or by binary searh on H. The smallest H for whihthere is a solution is the optimal lateny L. This multiplies the number of alls to the ILP solver,but eah all may be faster. In fat, one an argue that it would be better to do one all to theILP solver to resolve the problem de�ned by the 0/1 standard enoding rather than multiple allsto resolve the previous simpli�ed formulation. This seems of ourse true but in general solvingILP programs with integer variables is well known as more hard than ILP programs with binaryvariables [58℄. We will show this e�et in the experiments.Note that, if there are dependenes, we still need the onstraints (5.4) to express the depen-denes onstraints, unless we use the tehnique of Gebotys et al. [47℄, whih has the drawbakof greatly inreasing the number of onstraints.5.2.4 Big-M EnodingIf we use the standard 0/1 enoding, the number of binary variables is the produt of the numberof tasks and the number of yles needed for the whole shedule. However, one an use a moreeonomial enoding: the �Big-M� method. In this formulation we replae eah dis-equation bythe four inequalities:
ti − tj 6= dk

i,j ⇔

tj − ti + (1−Xi,j).M ≥ 1− dk
i,j

ti − tj + M.Xi,j ≥ dk
i,j + 1

0 ≤ Xi,j ≤ 1where M is a large number (larger than the sum of the pi, where pi is the lateny of task i).Unlike the usage of the Big-M as a penalization of some variables in lassi ILP problem herewe use this tehnique to penalize an inequality. Indeed, the arti�ial binary variables Xi,j and
M are used to ensure the disjuntion of the two �rst inequalities.In this formulation, the number of variables is equal to the sum of the number of dis-equationsand the number of tasks, whih is independent of the lateny of the shedule. However, theoe�ients in the inequalities (suh as M) are large.

57

Chapter 5. Integer Linear Programming ApproahCPLEX: an ILP SolverBefore reporting experimental results let us present the used ILP solver. There are many e�ientimplementations of ILP solvers available. For instane, we an �nd the GLPK17 and Lp-Solver 18solvers, both are open-soure softs. In aademi area we an quote PIP19 an e�ient ParametriInteger linear programming solver. . . . For more details on disrete tools, the reader an see HansMittelmann's webpage20.In our framework, the ILP problems are solved using the CPLEX21 tool [84℄. It is the mostused tool by both aademi and industrial ommunities. CPLEX is a powerful ommerial toolfor solving a general linear optimization problems and also some speial optimization problems:network �ow problems, quadrati programming problems, quadrati onstrained programmingproblems and mixed integer programming (MIP) problems. In MIP problems, variables arefurther restrited to take integer values. CPLEX solves MIP problems using a general branh &ut algorithm.The CPLEX kit o�ers three forms: 1/ an Interative Optimizer whih is an exeutableprogram that an interatively solve a problem given in ertain standard formats, 2/ a ConertTehnology whih is a set of JAVA, C++ and .NET lass libraries, and 3/ Callable Library whihis a C library. In our experiments we have use both interative Optimizer and the Callablelibrary.In addition, CPLEX allows many interation and ations before and during the resolvingproess: preproessing whih tries to simplify the problem, monitoring the iteration by givingsome log information and possibility to halt the resolution proess and to reover it after somehanges.5.2.5 ExperimentsWe have implemented these ILP methods on the same benhmarks desribed previously in Chap-ter 4. The results are presented in Table 5.1. The third olumn reports the lateny of the optimalshedule. The runtime for the original ILP formulation given by the onstraints (5.4) to (5.7)is reported in the olumns �0/1 Standard Enoding�, with the shedule horizon H �xed to anupper bound for the optimal lateny, either ∑

i pi or the lateny given by the greedy heuris-ti GS, whih redues the number of variables. The olumn �0/1 Simpli�ed Enoding� gives theruntimes when the lateny L and the variables ti are not expressed in the onstraints so theonstraints (5.4) and (5.5) are removed. The lateny is optimized by derementing H from thelateny obtained by the greedy heuristi GS, in our ase, GS heuristi gives solutions that arevery lose to optimal, so derementing H is more e�ient than a binary searh. The last olumngives the results for the Big-M method.These results show that the �rst 0/1 Standard Enoding method is the slowest. This is dueto the large number of unknowns. The Big-M method is faster for small problems, when thesolver time is dominated by the time to set up the onstraints. However, it gives running timesof the same order of magnitude as the seond 0/1 standard enoding method.For some paradoxial ases, inreasing the horizon (and hene the number of unknowns)atually redue the running time. This is probably due to the well-known fat that ILP solvers17A GNU Linear Programming solver. Available at http://www.gnu.org/software/glpk/18A GNU Linear Programming solver. Available at http://www.s.sunysb.edu/~algorith/files/linear-programming.shtml19Available at http://www.prism.uvsq.fr/~edb/bastools/piplib.html20Available at http://plato.asu.edu/benh.html.21http://www.ilog.om/ 58

Chapter 5. Integer Linear Programming ApproahTest µT Opt. Shed. ILP formulations
0/1 Standard Enoding 0/1 Simpli�ed Enoding Big-M

H set to P

pi H set by GS initial H set by GSss1 15 5 0.19s 0.13s 0.2s 0.06sss11 15 4 0.21s 0.14s 0.22s 0.08sss12 17 5 0.24s 0.22s 0.21s 0.07sss2 32 6 0.91s 0.95s 0.77s 0.27sss3 27 9 1.09s 0.67s 0.3s 2.6sss5 9 5 0.13s 0.29s 0.17s 0.09sss6 12 4 0.26s 0.13s 0.18s 0.1sja1 19 6 0.36s 0.14s 0.13s 0.07sja2 82 22 4' 42s 7,32s 1.83s 5.52sja3 97 19 2' 02s 3,47s 2.57s 6.2srasm1 9 5 0.1s 0.09s 0.15s 0.06swss3 11 4 0.21s 0.15s 0.18s 0.08swss31 11 6 0.26s 0.13s 0.19s 0.1swss32 11 4 0.24s 0.13s 0.16s 0.12swo1 13 5 0.18s 0.12s 0.14s 0.07swo2 9 4 0.21s 0.13s 0.16s 0.1swss1 44 17 1.3s 0.8s 1.26s 0.5swss11 44 16 1.1s 0.54s 0.75s 0.3swss2 23 9 0.25s 0.42s 0.62s 0.07swss12 44 16 1.13s 2.75s 0.83s 0,23swmt22 31 13 0.6s 0.33s 0.25s 0.12sss21 32 10 1' 34s 4.64s 0.48s 1' 57sTable 5.1: Sheduling Results with the Di�erent ILP Formulations.are sensitive to the variables and onstraints ordering. These variations are partiularly visiblefor small runtimes.The remaining version (0/1 Simpli�ed enoding) gives the best running times for omplexproblems, whih are the most important for pratial appliations.5.3 ConlusionWe have presented two strutured ILP formulations to resolve the reservation tables shedulingproblem: a standard 0/1 enoding that we have simpli�ed and an enoding using a Big-M trik.The �rst proposed enoding an be generalized to support problems of resoure-onstrainedsheduling even when tasks are dependent. Furthermore, this sheduling solution an be donebefore resoure assignation.The ILP-based sheduling optimization are NP-omplete. This is of ourse true in generalbut, in our ontext we have relied on two fats. Firstly, let us reall that by onstrution, wedeal with problems that size are relatively small (the size of a front). Seondly, the adopted ILPformulation uses only binary variables and it is well known that solving integer linear programswith just binary variables is easier than solving ILP programs with large integer ones [58℄.The experiments have shown that the runtimes for all formulations are su�iently aeptable,at least for our benhmarks, in ontrast to the high exponential theoreti omplexity of the ILP-based algorithms. But, the 0/1 Simpli�ed enoding version gives the best running times foromplex problems, whih are the most important for pratial appliations.
59

Chapter 6Branh-and-Bound-Based Longest-PathComputation SolutionThe resoure-onstrained sheduling formulation, presented in Chapter 4, will be used here todevelop another pratiable sheduling alternative to the ILP one. In this hapter, an exatalgorithm based on a branh-and-bound tehnique is developed as well as some tehniques whihare used to improve its runtime. Finally some experiments are reported and ommented.Despite the NP-ompleteness of the de�ned sheduling problem, we look forward reahingan algorithm with a better pratial temporal omplexity. Indeed, we rely on the features of thebranh-and-bound approah as a meta-method whih an be a more adjustable method than theinteger linear program tehniques.6.1 General IntrodutionBranh-and-Bound is a general algorithmi meta-method for �nding optimal solutions of variousoptimization problems, espeially in disrete and ombinatorial optimization. The method was�rst proposed by Land and Doig in 1960 for integer linear programming ontexts [70℄ and byMurty et al. in 1962 in an unpublished paper at Case Institute of Tehnology: "The TravelingSalesman Problem: Solution by a Method of Ranking Assignments" in the ontext of a ombi-natorial problem. The branh-and-bound approah is used for a number of NP-hard problems,suh as: knapsak problem, integer programming, nonlinear programming, traveling salesmanproblem, quadrati assignment problem, maximum satis�ability problem and sheduling prob-lems. . . .The essene of the branh-and-bound approah is the following observation: at any nodein the total enumeration tree of the solution spae, if one an show that the optimal solutionannot our in any of its desendents. Thus, there is no need to onsider those desendentnodes. Hene, one an "prune" the tree at that node. If we an prune enough branhes ofthe tree in this way, we may be able to redue it to a omputationally manageable size. Notethat, we are not ignoring those solutions in the leaves of the branhes that we have pruned, wehave left them out of onsideration after we have made sure that the optimal solution annotbe at any one of these nodes. Thus, the branh-and-bound approah is not just a heuristi, orapproximating, proedure, but it is an exat optimizing proedure. However, one an also useit as a basis of various heuristis. For example, one may wish to stop branhing when the gapbetween the upper and lower bounds beomes smaller than a ertain threshold.A branh-and-bound algorithm requires two tools: the Branh and the Bound proedures;60

Chapter 6. Branh-and-Bound-Based Longest-Path Computation Solutionhene its name. In the branh proedure, the solution spae is split into disjoint subsets (feasiblesubregions) so that no solution will be lost. The proedure is repeated reursively in all thesubregions and all produed subregions naturally form a tree struture, alled searh tree orbranh-and-bound-tree. Its nodes are the onstruted subregions. The bounding tool, is a fastway of �nding upper or lower bounds for the optimal solution within a feasible subregion.Now, how an we make sure that the optimal solution annot be at one of the desendents of apartiular node on the tree? It is always possible to �nd a feasible solution to a ombinatorial ordisrete optimization problem. If available, one an use some heuristis to obtain a "reasonablygood" solution. Let us all this solution the inumbent. Then at any node of the tree, if we anompute a "bound" on the best possible solution that an be expeted from any desendent ofthat node, we an ompare the "bound" with the objetive value of the inumbent. If what wehave on hand, the inumbent, is better than what we an ever expet from any solution resultingfrom that node then it is safe to stop branhing from that node. In other words, we an disardthat part of the tree from further onsideration.The e�ieny of the method depends ritially on many fats: 1/ the e�etiveness of thebranhing and bounding algorithms used; bad hoies ould lead to repeated branhing, withoutany pruning, until the sub-regions beome very small. In that ase the method would be reduedto an exhaustive enumeration of the domain, whih is often impratially large, 2/in addition,the e�ieny depends also on the good formulation of the objetive funtion and on how muhthe inumbent solution is tightened ompared to the optimal solution.This has been a brief introdution to the branh-and-bound approah. For a more detaileddisussion, the reader is referred to Chap. 9 and 10 of [81℄.It should be lear that, like dynami programming, we annot talk about a branh-and-boundalgorithm that an solve all disrete and ombinatorial optimization problems by a uniformmodel. There is no universal bounding algorithm that works for all problems. Indeed, branh-and-bound itself is just a meta-algorithm, whih an be delined in many di�erent diretions.Aording to the general purpose of this approah, in what follow, we design a sheduling algo-rithm with a speially designed branhing and bounding algorithms looking forward to a betteralternative to the ILP algorithms.6.2 An Exat Branh-and-Bound SolutionLet us reall that we have to resolve this system of dis-equations in integer values:
{

ti − tj 6= d k
i,j i, j ∈ T (6.1)while minimizing the total lateny maxi(ti + pi). We propose the following strategy, whihprogressively builds a searh tree of subproblems:

• At the root, we start with the empty system (for data-independent tasks);
• At eah node N of the tree struture, we deal with a new onstraint (dis-equation e ofthe given system). It is lear that the dis-equation e an be seen as the disjuntion of twoinequalities 22:22Note that our framework will work the same if instead of a forbidden distane (i.e., a single value) we expressa forbidden interval, e.g., when a resoure is used in both tasks for several onseutive yles.61

Chapter 6. Branh-and-Bound-Based Longest-Path Computation Solution
ti − tj 6= dk

ij ⇔

e1 : ti − tj ≤ dk
ij − 1or

e2 : ti − tj ≥ dk
ij + 1hene we perform a separation by introduing the inequality e1 (resp. e2) into the left hild(resp. right hild) of N .It is easy to prove that this branhing is legal. Indeed, the inequalities e1 and e2 form twodisjoint sets e1 ∩ e2 = ∅ and their union is e1 ∪ e2 = e, whih means that we are neitherlosing nor dupliating any solution in branhing.Eah leaf of the tree orresponds to a system of inequalities whose solutions are solutions tothe system of dis-equations (6.1). Conversely, any solution to the system (6.1) is solutionto the system de�ned at a leaf, for one and only one leaf.

• During the resolution proess, we maintain the lateny of the best shedule omputed sofar. At the beginning, we an set this value Lbest to ∑

i pi (whih is the lateny of thesequential exeution of the tasks). Lbest is the inumbent solution.
• At eah node N , we treat the system de�ned by the inequalities introdued by all nodesbelonging to the branh from the root to this node N . Exept for the leaves, a shedulefor this system is a partial shedule; it is not a shedule for the whole system (6.1) as itrespets only part of the onstraints. However, the lateny Lloal of an optimal shedule forthis partial system is a lower bound for the lateny of any shedule for the system de�nedat any leaf of the subtree below N . The pruning an our in both possible situations:1. If Lloal ≥ Lbest, the subtree below N is not onstruted as it will never lead to abetter omplete solution.2. The system may not be feasible; in this ase, the subtree below N is not onstrutedeither.
• At a leaf, we have exhausted all the onstraints, so we an now ompute an atual solution.If its lateny is better than Lbest, then Lbest is updated.
• The algorithm stops when all the branhes are explored; the whole spae of solutions hasbeen explored and Lbest is returned as the optimum solution.note It is important to note that this strategy an be applied even if, at the root the systemis not empty but ontains some other onstraints suh as data dependene between tasks of theform tj − ti ≥ δi,j (lassial preedene onstraints). Therefore, our branh-and-bound methodan deal with data-dependent tasks too even though we do not primarily need it in our ontext(by onstrution we get independent tasks when the symboli shedule is performed). noteThe ore of the algorithm is the evaluation and eventual pruning of a node. We now explainthis operation in details.6.2.1 Finding the Loal BoundWhen the �branh� operation is done (i.e., one e1 or e2 is seleted) at eah node of the treestruture, we have to examine and resolve a system of l inequalities, where l is the level of thenode. This system an be normalized as follows:

tj − ti ≥ wi,j (6.2)62

Chapter 6. Branh-and-Bound-Based Longest-Path Computation Solutionwhere wi,j ∈ Z is the maximal value of the right-hand sides of all inequalities of type tj − ti ≥ . . .introdued so far. The values wi,j are integers of arbitrary sign. This problem an be modeledby a weighted direted graph G = (V,E,w), with one vertex for eah i and an edge from i to jwith weight wi,j for eah inequality. Note that G may have yles. This model is known, in thesheduling literature, as a task graph [46℄.In this formalism, the key point is that an optimal shedule is obtained by omputing thesimple paths of maximal weight in G. Let us see why. First, note that if we sum the inequalities
tj− ti ≥ wi,j along a yle, we obtain an inequality of the form 0 ≥W , where W is the weight ofthe yle. Hene, if G has a yle of positive weight then the problem has no solution. Conversely,if G has only nonpositive yles, we an de�ne, for eah vertex i, the maximal weight ai of a pathleading to i (an empty path has weight 0). This is due to the fat that following a yle annotinrease the weight of a path, hene all maximal weight paths are simple and eah ai is �nite. Asthe maximal weight of a path leading to j is at least the weight of any path going �rst through i,we have aj ≥ ai + wi,j. Therefore, the ai are a solution of the problem. Furthermore, any non-dereasing objetive funtion of the ti (for example the lateny maxi(ti + pi)) is minimized by
ai. Indeed, for any solution ti, it is easy to see that ti is at least the weight of any path leadingto i (make an indution on the path length), thus ti ≥ ai. This formulation an be simpli�ed byintroduing an initial task, with an edge of weight 0 from it to all other tasks, and a terminaltask, with an edge of weight pi from any task i to the terminal task. The lateny is now givenby the maximal weight of a simple path from the initial to the terminal task.There are many algorithms for �nding paths of maximal23 weights in a graph [30℄. We oulduse the Bellman-Ford algorithm or Floyd's algorithm diretly at eah node of the BAB tree.Moreover, we an use the fastest Dijkstra's algorithm if all edge weights are nonpositive. Butwe an do better: we an redue the omplexity of the method by notiing that, at eah stageof the BAB algorithm, we add a new edge to a graph in whih some information on paths ofmaximal weights has already been omputed. What we need then is an inremental version ofmaximal-weight paths algorithm. In the following, aording to our ontext we propose twoalgorithms based respetively on Floyd's and Dijkstra's algorithm.6.2.1.1 Floyd-based AlgorithmFloyd's algorithm [42℄ omputes, with omplexity O(|V |3), the relation of aessibility in agraph G = (V,E,w) by omputing, for eah ouple of verties (i, j), the maximal weight ai,j ofa path from i to j. This algorithm assumes that G has no yle with positive weight (otherwisethere is a path with in�nite weight in the graph), but it an be modi�ed to also detet positiveyles, in whih ase the system, de�ned by (6.2), has no solution. Allison et al. [4℄ modi�edFloyd's algorithm to produe a dynami algorithm, but in their variant, at a given stage in thedynami algorithm, they introdue a new vertex plus a set of its ars -to and from it-. Aordingto our ontext, we need just an algorithm whih updates the maximal-weight paths matrix, whenadding at eah stage, just one new ar.To get this algorithm, let us reall that, at a node of the BAB proess, we have to omputethe maximal weight a′i,j of a path from i to j (for any i and j) in the graph G

′

= (V,E ∪{e}, w),where G = (V,E,w) is the graph at its parent node and the edge e = (x, y) with weight wx,y = w0represents the onstraint to be added to this node. In G, we have already omputed the maximalweight ai,j of a path from i to j for any i and j. It remains to onsider paths that go through e.23In the literature, these algorithms are often presented as �nding paths of minimal weight. This is the same,one just have to hange the weight signs. Our explanations are based on maximal weight paths.63

Chapter 6. Branh-and-Bound-Based Longest-Path Computation SolutionWe �rst need to hek that G′ has no yle of positive weight. If this is the ase, this meansthat there is a yle of positive weight that goes through the new edge e (from x to y) withweight w0 and then bak to x, in partiular through a path of maximal weight (in G), i.e., ofweight ay,x. Thus, G′ has a yle of positive weight if and only if w0 + ay,x > 0. Otherwise, thenew a′i,j an be easily obtained by the relation a
′

i,j = max{ai,j , ai,x + w0 + ay,j}. Note also thatwhen w0 ≤ ax,y, the new onstraint is atually redundant and no update is neessary.Our Floyd-based algorithm (Algorithm 2) follows this strategy. We get the dates ti =
maxj aj,i and an evaluation of Lloal as maxi ti, in O(|V |2) instead of O(|V |3). At the rootof the BAB proess, we set all a(i, j) to ∞, as the system is empty -no onstraint-.One an notie that this algorithm don't use the same priniple as in Floyd's original algo-rithm, we all it Floyd-based as it uses the same de�nition of the matrix and resolves the sameproblem.Algorithm 2: Floyd-based Inremental Algorithm.Data: G = (V, E, w), Floyd's matrix a for G, e = (x, y, w0) edge to addbeginif w0 + ay,x > 0 thenExit; /* Elimination, no solution below */endif w0 > ax,y then/* Update is needed */for i from 1 to n dofor j from 1 to n do

ai,j = max{ai,j, ai,x + w0 + ay,j} ;endendendend6.2.1.2 Dijkstra-based Inremental AlgorithmIn this algorithm, we only ompute the maximal weight ti of a path leading to eah vertex i,instead of all ai,j for any i and j. For that, we ould apply the Bellman-Ford algorithm withomplexity O(|V ||E|) but again, we an do better using the knowledge we have from the parentnode. We use an idea similar to Johnson's algorithm [30℄ to be able to use Dijkstra's algo-rithm [36℄, whih is the best known solution, by �nding an equivalent system of nonpositiveweights (reweighting).In Algorithm 3, we ompute the values t′i in the graph G
′

= (V,E∪{e}, w), de�ned as below.We assume that the ti for G are available from the parent node. Again, we need to solve twoproblems. First, we need to hek the feasibility of the problem, i.e., to hek that no positiveyle is reated when adding e. In a seond time, if the problem is feasible, we need to omputethe new solution t′i.Let us �rst explain the general mehanism we use in this algorithm to be able to use Dijkstra'salgorithm. When all edge weights w in a graph G = (V,E,w) are nonpositive, we an �nd a pathof maximal weight from a soure s to eah vertex i ∈ V by running Dijkstra's algorithm. If G hasa positive weight, we will �rst modify the edge weights w into nonpositive weights wr, thanks toa well-hosen reweighting funtion r (a funtion that assigns an integer ri to eah vertex i) suhthat wr
i,j = wi,j + rj − ri ≤ 0. It is easy to see that G = (V,E,w) has a yle of positive weightif and only if Gr = (V,E,wr) has a yle of positive weight beause the yle weights are not64

Chapter 6. Branh-and-Bound-Based Longest-Path Computation Solutionhanged by reweighting. Furthermore, the weight wr(P) in Gr of a path P from i to j is equalto w(P) + rj − ri.Using this reweighting mehanism, we get an inremental algorithm (Algorithm 3) faster thanAlgorithm 2, though more ompliated. Again, we �rst hek that the problem is feasible andthen, if it is, we ompute the new solution t′i.FeasibilityWe use the same argument as for the Floyd-based inremental algorithm. The graph G
′

=
(V,E ∪ {e}, w), where the weight of e is w0, has a yle of positive weight if and only if it has ayle of positive weight that goes through e, sine G = (V,E,w) has no yle of positive weight.As already mentioned, this is equivalent to the fat that w0 +ay,x > 0 where ay,x is the maximalweight of a path in G from y to x.To ompute ay,x, thanks to Dijkstra's algorithm. We proeed as follows: remember that weare given ti, for all i ∈ V , the maximal weight of a path in G leading to i. These values aresuh that, for eah edge (i, j) ∈ E, tj − ti ≥ wi,j, i.e., they satisfy the system of onstraintsfor G. Let us de�ne Gr with r = −t. We have wr

i,j = wi,j + rj − ri = wi,j − tj + ti ≤ 0. We antherefore ompute in Gr, using Dijkstra's algorithm, the maximal weight ar
y,z of a path from yto any reahable vertex z. We then obtain ay,z thanks to the relation:

ay,z = ar
y,z + ry − rz, i.e., ay,z = ar

y,z + tz − ty.We then onlude that the system of onstraints de�ned by G′ is feasible if and only if
w0 + ar

y,x + tx − ty ≤ 0 (pik z = x in the previous relation) or x is not reahable from y in G(i.e., ay,x = ar
y,x = −∞).New Solution t′iIf the problem is feasible, we still have to ompute t′i the maximal weight of a path leading to iin G

′ . We an do this by adding a �tive soure in V , i.e., a new vertex s in V and for eah i in Va new edge (s, i) of weight 0. We an then use Dijkstra's algorithm in G′ if G′ has nonpositiveweights. If not, we have to perform a reweighting. Unfortunately, this time, −t may not be anadequate reweighting funtion beause of the new edge e of weight w0, if tj − ti < w0. Howeverit is possible to �nd a reweighting funtion r thanks to the values ay,i we just omputed duringthe feasibility test. Indeed, hoose K suh that K ≤ ay,j − tj for all j reahable from y and, if xis not reahable, K ≤ −tx − w0. We laim that the funtion r de�ned by
ri =

{

−ay,i if i is reahable from y
−ti −K otherwiseis a valid reweighting, i.e., is suh that wi,j + rj − ri ≤ 0 for eah edge (i, j), inluding the newedge e = (x, y). (Note: for s, we let ts = 0. Then, for any vertex i in G, we have ti ≥ ts + ws,isine ti ≥ 0 and ws,i = 0. We also let rs = −ts −K as for any vertex not reahable from y.)Proof. Consider an edge (i, j) ∈ E ∪ {e}. Only three situations are possible: neither i nor j arereahable from y, both i and j are reahable from y, or j is reahable from y but not i.

• In the �rst ase, (i, j) 6= e and wr
i,j = wi,j − tj −K + ti + K = wi,j + ti − tj ≤ 0.

• In the seond ase, wr
i,j = wi,j − ay,j + ay,i ≤ 0 by de�nition of ay,i and ay,j as maximalpath weights from y to i and from y to j.65

Chapter 6. Branh-and-Bound-Based Longest-Path Computation Solution
• In the last ase, wr

i,j = wi,j−ay,j +ti+K. If (i, j) 6= e then wr
i,j ≤ −ay,j +K+tj, otherwise

wr
i,j = w0 + tx + K. In both ases, wr

i,j ≤ 0 by hoie of K.Therefore r is a valid reweighting.We an then ompute, using Dijkstra's algorithm, the maximal weight t′r of a path from sto any vertex i in the graph G′r and we �nally go bak to t′i with the relation t′i = t′ri − ri + rs.Note that, as in our Floyd-based inremental algorithm, we an add a preliminary test (ty ≥
tx + w0 in Algorithm 3) to minimize omputations when it is possible to determine that the newonstraint is redundant for the previously-omputed solution (ti)i∈V . However, the edge shouldbe nevertheless added to the graph as it may not be redundant for the onstraints themselves,but just for this partiular solution.6.2.2 ComplexityDijkstra's stati algorithm has a omplexity O(n2), for n = |V | verties and m = O(n2) edges.However, if one implements its priority queue with a spei� data struture like a binary heap(resp. Fibonai heap), the omplexity is redued to O((n + m) lg n) (resp. O(n lg n + m)).Algorithm 3, whose ore is Dijkstra's stati algorithm, has the same omplexity. Moreover,ompared to the Floyd-based inremental algorithm whih requires O(n2) memory, only O(n)memory is needed here. Thus, Algorithm 3 is faster and less memory onsuming. In addition,this algorithm an be speedup by replaing the seond all to Dijkstra's algorithm by one ofits dynami versions reently published (the most important are the ones of Ramalingam andReps [95℄ and Frigioni et al. [43℄). The �rst all to Dijkstra's algorithm an't be replaed by adynami version as the soure may hange at eah stage.In the worst ase, when no elimination has been done, we have to examine eah node of theBAB tree struture. Thus, 2m nodes, where m is the number of dis-equations. At eah node, weupdate Floyd's matrix in O(|V |2) (resp. we update the maximal weight ti, using Dijkstra-basedinremental algorithm in O(n lg n+m). Hene, the worst-ase omplexity of the BAB algorithmis O(|V |2.2m) (resp. O((n lg n + m).2m)). In fat, as an enumerative method, it is lear thatthe branh-and-bound method sans all or part of the solution spae. In general, this leads tosuh exponential theoretial omplexity. However, in pratie, as we will see in the experiments,many branhes are not explored and the algorithm is muh faster, exept for a few pathologialases.6.2.3 Speeding up the BAB AlgorithmAs disussed in the previous setion, the BAB algorithm omputational omplexity an be veryhigh. For this reason, we try to fous on some fats that ould redue the pratial omplexity ofthe designed algorithm. Let us reall that improving any BAB-based algorithm e�ieny leadsus to onsider some ritial fats, as:1. the hoie of the branhing and bounding algorithms so that prunings holds early;2. how muh the initial best solution (inumbent solution) is lose to the optimal solution;3. objetive funtion formulation. Nevertheless, in our ontext, it is di�ult to intervenesuessfully here. 66

Chapter 6. Branh-and-Bound-Based Longest-Path Computation SolutionAlgorithm 3: Dijkstra-based Inremental Algorithm.Data: ti, the maximal weight of a path leading to i in G = (V, E, w), e = (x, y, w0) edge to addResult: t′i, the maximal weight of a path leading to i in G
′

= (V, E ∪ {e}, w).beginif ty ≥ tx + w0 thenReturn {ti}i∈V ; /* add e but no update needed */else
ri = −ti for all i ∈ V ;
{ar

y,z}z∈V ← DIJKSTRA(Gr, y) ;
ay,z = ar

y,z + tz − ty for all z ∈ V ;if w0 + ay,x > 0 thenExit; /* Elimination, no solution below */endadd s in V , ts = 0, ∀i, add (s, i) in E, ws,i = 0;de�ne K suh that K ≤ ay,j− tj for all j with ay,j < +∞ and K ≤ −tx−w0 if ay,x = +∞;
ri = −ay,i for all i ∈ V reahable from y; ri = −ti −K otherwise;
{a′r

s,i}i∈V ← DIJKSTRA(G′r, s) ;Return {t′i = a′r
s,i − ri + rs}i∈V ;endendFirst, let us examine the seond possibility. Reall, that at the BAB proess initialization,we set the Lbest value to ∑

i pi. If one an have a better bound than ∑

i pi, it will avoid buildingsome subtrees until a better lower bound is found. The GS heuristi (see Setion 4.5) gives ashedule that seems quite lose to the optimum. Its quality is unfortunately without guarantee,but it an be used as the Lbest value initialization. See Setion 6.2.4 for an evaluation of thee�et of this initialization.It remains to intervene in the �rst possibility. Indeed, as mentioned earlier, our BAB al-gorithm uses two tests to avoid building a subtree. The �rst one heks the feasibility of theproblem, i.e., that no positive iruit is reated when adding a new onstraint (this is done bythe test w0 + ay,x > 0 in both the Floyd-based inremental algorithm and the Dijkstra-basedinremental algorithm as seen previously). The seond one intervenes when a high lower boundis found (Lloal ≥ Lbest). Thus, for improving the BAB runtime, we fous on these two fats.In the following, as we will talk both about undireted and direted graphs, we use thefollowing terminology to avoid ambiguities: we use edge and yle for undireted graphs, andar and iruit for direted ones.Let us now onsider a strategy that makes positive iruits appear as soon as possible. Wedid some experiments showing that the BAB runtime highly depends on the order in whihonstraints are examined. With some random permutations on the onstraints, we observe insome ase that the runtime derease by a fator of 20. For this reason, we designed severalheuristis whih arrange the onstraints to improve the BAB runtime. This reordering an bedone statially as well as dynamially:
• Statially, the onstraints are reordered before applying the BAB algorithm. At this level,we deal with dis-equations (i.e., edges) thus, it is di�ult to guess all existing paths, andtherefore all iruits. However, we an allow more time to reorder beause we do it onlyone, as a pre-proessing time.
• Dynamially, during the BAB algorithm oupled with the Floyd-based inremental algo-rithm, we try to get the more onvenient onstraint. Beause we have more information67

Chapter 6. Branh-and-Bound-Based Longest-Path Computation Solutionabout the graph features (Floyd's matrix), we an hoose the onstraint that redue the�nal explored tree size.We now desribe four reordering heuristis. The �rst three are stati and the fourth is dynami.6.2.3.1 Heuristi 1This heuristi, whih is based on probabilities, is a greedy one. Our goal is to try to keep thesubgraph de�ned by the onstraints as onneted as possible so that iruits (and maybe iruitsof positive weights) appear. This algorithm builds the list of onstraints by seleting onstraintssuessively as follows: at eah step, we maintain a list L of verties that are visited, the riterionof seletion favors the onstraint c : ti − tj 6= di,j aording to the following order: a) i and jbelong to L, b) either i or j belongs to L,) i and j are involved in as many not-yet-treatedonstraints as possible, d) wi,j is maximal.The �rst riterion guarantees that at least one iruit will appear soon during the BABproess. The seond and the third ones may promote an earlier appearane of iruits in thefollowing steps. The last one may inrease the lower bound in one of the BAB branh below.In the worst ase i.e., where G has no yle and eah vertex has no more than one neighbor,the omplexity of this heuristi is majored by O(n3). In fat, this worst ase onstrains thealgorithm to verify all the above riterions6.2.3.2 Heuristi 2In this heuristi, we model the problem by an undireted graph G = (V,E) whih is obtained byrepresenting eah dis-equation ti − tj 6= di,j by an edge (i, j). At start, edges are not weighted.We build a basis of yles of G using a standard spanning tree algorithm. A spanning treelassi�es edges in two ategories: tree edges and non-tree edges. Eah non-tree edge de�nes, withthe tree edges, a unique yle. For eah suh yle C = (v1, v2, ..., vp, v1), we ompute its weightin both diretions v1, v2 v1 and v1, vp v1, giving to the edge (vi, vi+1) the weight 1 + di,i+1or 1−di,i+1 depending whether the edge is traversed from vi+1 to vi or in the opposite diretion.If at least one of these yle weights is positive, the yle is hosen.These positive-weight yles are sorted in an inreasing order aording to their length (num-ber of edges). Then, the onstraint list is built as follows: the �rst onstraints are the onstraintsof the �rst yle, then we add the onstraints of the seond yle, exept those already treatedin the �rst one, et. The list is ompleted by the onstraints that do not belong to any of thesepositive-weight yles.This heuristi mainly uses a spanning tree algorithm and a sorting algorithm. A spanningtree of a given graph an be built thanks to the depth-�rst searh (DFS) algorithm. With agood implementation, DFS algorithm has a omplexity in O(n+m). Using a fast sort algorithm(suh quiksort or heapsort), the sort an be ahieved in O(q lg q), where q is the ardinal of thefound basi yles set. Thus, the omplexity of this heuristi is O((q lg q) + (n + m)).6.2.3.3 Heuristi 3Another possibility is to represent eah dis-equation by one of its two exlusive ars. Duringthe BAB algorithm eah dis-equation leads to two ars, one with weight di,j + 1, and the otherwith weight 1− di,j. We hoose to represent eah dis-equation by its nonnegative ar. Thus, inthe resulting direted graph, all eventual iruits are positive. Then, we do as in heuristi 2, weenumerate iruits. Here, the non-tree edges are lassi�ed into forward, aross, and bak ars,68

Chapter 6. Branh-and-Bound-Based Longest-Path Computation Solutiononly the bak ars are part of iruits. Hene, the onstraint list is built by the list of onstraintsomposing eah iruit followed by the remained onstraints.It an happen that both edges of a partiular dis-equation (those whose weight is 0, 1, or −1)are nonnegative. In this ase, the problem is to hoose one of them. For this, we delay dealingwith this kind of dis-equations after building the graph of all others onstraints. One the graphis built, for eah partiular dis-equation, we add the ar that may reate a iruit, if not wehoose arbitrarily one of them. The Roy-Warshall's algorithm, whih omputes the aessibilityrelation, is used for iruit detetion.Notie that this heuristi onsiders iruits that are exlusively omposed of nonnegativears, hene, some positive iruits are ignored.Similar to heuristi 2, this heuristi, whose ore is a spanning tree algorithm and a sortingalgorithm, has a omplexity in O((q lg q) + (n + m)).6.2.3.4 Heuristi 4As mentioned earlier, in a dynami reordering, one an look for the most useful onstraintsine we have a lot of information in Floyd's matrix. But a dynami heuristi is applied ateah node of the branh-and-bound tree, and hene may have an exponential additional ost inpathologial ases. For this reason, we use a very simple algorithm (Algorithm 4), whih has alinear omplexity in the worst ase and even a onstant time in most ases. We simply hoosethe �rst onstraint that allows pruning (i.e., a subtree below is not onstruted). If no suhonstraint exists, we selet the �rst one in the list.Algorithm 4: Dynami Reordering Algorithm.Data: ConstraintList, a: Floyd's matrix (of the parent node)Result: c onstraint to addbeginfor (c ≡ (tx − ty 6= d)) in ConstraintList doif (ax,y + d ≥ 0) and (ay,x − d ≥ 0) thenreturn(�Pruning�);elseif (ax,y + d ≥ 0) thenreturn(c, �Only left subtree�, onstraint ty − tx ≥ 1− d);elseif (ay,x − d ≥ 0) thenreturn(c, �Only right subtree�, onstraint tx − ty ≥ 1 + d);endendendendreturn(�rst onstraint in ConstraintList, �Construt the two subtrees�);endIn the worst ase, the omplexity of this heuristi is O(n).6.2.4 ExperimentsWe have implemented the BAB algorithm with both variants and heuristis of reordering on-straints on the same benhmarks. Results are reported in Table 6.1. The third olumn (nbC)69

Chapter 6. Branh-and-Bound-Based Longest-Path Computation Solutiongives the size of the system of onstraints (number of dis-equations), the fourth olumn (Opt.)gives the lateny of an optimal shedule, the �fth and the seventh olumns (Floyd, Dijk) givethe sheduling runtime, without reordering onstraints, respetively by the Floyd-based inre-mental algorithm and the Dijkstra-based inremental algorithm. The e�et of the reorderingheuristis are presented in the remaining olumns. As the Dijkstra-based inremental proedureis better than the Floyd-based inremental algorithm, we give only the runtimes obtained withthe heuristis applied to the �rst one (olumns Dijk+H1, Dijk+H2, and Dijk+H3 for heuristi 1,heuristi 2, and heuristi 3), exept for the dynami reordering heuristi (olumn Floyd+H4),whih an be applied only to the Floyd-based inremental algorithm (as it needs Floyd's matrix).Test T nbC Opt. Floyd Floyd+H4 Dijk Dijk+H1 Dijk+H2 Dijk+H3ss1 4 9 5 0.11 s 0.09 s < 0,01 s 0.04 s 0.04 s 0.05 sss11 4 6 4 0.07 s 0.06 s 0.04 s < 0,01 s 0.04 s 0.04 sss12 4 9 5 0.06 s 0.06 s 0.06 s 0.04 s 0.04 s 0.06 sss2 9 23 6 30.37 s 26.59 s 5.01 s 9.23 s 0.90 s 2.74 sss3 7 36 9 41.26 s 17.55 s 3.42 s 2.97 s 2.4 s 5.67 sss5 3 7 5 0.05 s 0.05 s 0.05 s 0.03 s 0.04 s 0.04 sss6 8 7 4 1.04 s 1.00 s 0.14 s 0.11 s 0.11 s 0.14 sja1 6 7 6 0.32 s 0.28 s 0.07 s 0.05 s 0.04 s 0.04 sja2 6 75 22 54.56 s 35.67 s 9.76 s 18.23 s 10.70 s 1' 10 sja3 7 85 19 1' 3 s 49.29 s 8.5 s 7.42 s 9.04 s 2' 41 srasm1 3 1 5 0.01 s 0.01 s 0.03 s 0.03 s 0.03 s 0.03 swss3 5 7 4 0.1 s 0.10 s < 0,01 s 0.04 s < 0,01 s 0.05 swss31 5 12 6 0.9 s 0.87 s 0.25 s 0.14 s 0.1 s 0.16 swss32 5 6 4 0.11 s 0.10 s 0.05 s 0.03 s 0.04 s 0.05 swo1 4 5 5 0.05 s 0.04 s 0.04 s 0.02 s < 0,01 s 0.04 swo2 7 10 4 1.90 s 1.82 s 0.2 s 0.26 s 0.13 s 0.26 swss1 4 54 17 1.79 s 1.37 s 0.46 s 0.46 s 0.43 s 1.13 swss11 4 49 16 2.07 s 1.39 s 0.46 s 0.32 s 0.62 s 0.99 swss2 3 9 9 0.05 s 0.05 s 0.04 s 0.02 s 0.04 s 0.03 swss12 4 49 16 2.27 s 1.45 s 0.48 s 0.24 s 0.75 s 1.47 swmt22 4 24 13 0.56 s 0.52 s 0.19 s 0.23 s 0.1 s 0.34 sss21 9 44 10 3h 25' s 1h 20' s 15' 50 s 8' 22 s 2' 43 s 13' 16 sTable 6.1: Sheduling Results for the Various Tests on the BAB Algorithms.The analysis of the BAB algorithm runtimes shows that they are su�iently aeptable inontrast to its high exponential theoreti omplexity (exept for one pathologial ase, pro-gram ss21, presented hereafter). In addition, the results on�rm the fat that the BAB algo-rithm, using the Dijkstra-based inremental proedure, is faster than the Floyd-based inrementalproedure.Conerning the reordering heuristis, the results show that heuristi 1 and heuristi 2 doimprove the runtime. But it is di�ult to hoose one among them beause there are someompromises; when one improves runtime for part of the ases, it inreases the runtime forthe other ones. Heuristi 3 has the worst runtime; this result an be explained by the fatthat only positive iruits omposed exlusively of positive ars are taken into aount whilesome positive iruits, whih are omposed by a mixture of positive and negative edges, are nottaken into aount. The dynami heuristi (heuristi 4) improves the runtime too, however theBAB algorithm oupled with the Dijkstra-based inremental version is slightly better than thisimprovement. For the pathologial ase, the onstraints reordering heuristi 2 gives the bestruntime.Table 6.2 presents the results for the BAB algorithms and heuristis when we initialize Lbest,the best global lower bound during the BAB proess, to the lateny of the shedule obtainedby the GS heuristi. For eah algorithm, the results give the perentage of improvement due tothis better initialization. Only signi�ative improvements (more than 5%) are given. The results70

Chapter 6. Branh-and-Bound-Based Longest-Path Computation SolutionTest Branh-and-boundFloyd Floyd+H4 Dijk Dijk+H1 Dijk+H2 Dijk+H3ss1 � � � � � �ss11 38 % 32 % � 10 % 11 % �ss12 23 % 22 % 15 % 13 % 8 % 16 %ss2 5 % 5 % 16 % 22 % 16 % �ss3 7 % 11 % � � � �ss5 7 % � 9 % 16 % � �ss6 � � � � � �ja1 14 % 12 % � � 18 % 15 %ja2 � � � � � �ja3 � � � 27 % � 12 %rasm1 � � � � � �wss3 32 % 34 % 23 % 36 % 20 % 23 %wss31 18 % 18 % 40 % 12 % 23 % 14 %wss32 23 % 22 % 12 % 13 % 14 % 11 %wo1 12 % 8 % � � 5 % 6 %wo2 6 % 6 % � 9 % 10 % �wss1 � � � � � �wss11 10 % 7 % � � 50 % 5 %wss2 7 % 15 % � � 18 % �wss12 16 % 12 % � � 5 % 22 %wmt22 � � � 7 % � �ss21 � � � � � �Table 6.2: Improvements on the BAB Algorithm with Lbest Set to the GS Shedule Lateny.learly depend on the appliation.Conerning the in�uene of our binding heuristi on the lateny and the resolution time,when there are more than one opy of eah resoure, we have done some experiments. Indeed, onthe same example with same resoures, we have generated several bindings. Results are reportedin Table 6.3. In the �rst bath of tests (�rst four tests), we have only hanged resoure bindings,while in the seond bath, we have ut the tasks in smaller and smaller piees. Results show thathanging the bindings have no in�uene on the lateny, and a small in�uene on the shedulingtime. On the other hand, hanging the tasks granularity has a small in�uene on the lateny,with large variations on the sheduling time.Test wss_1 wss_2 wss_3 wss_4 wss_5 wss_6 wss_7 wss_8 wss_9 wss_10T 4 4 4 4 5 6 7 8 9 10nbC 48 50 51 50 75 64 67 64 60 64Lateny 16 16 16 16 15 14 14 14 15 14Time 0,74s 0,7s 0,78s 0,7s 3,1s 1.3s 7s 1,2s 3,7s 1,3sTable 6.3: In�uene of the Binding Heuristi on Lateny and Resolution Time.Pathologial ase The pathologial ase we enountered (program ss21) has only 9 tasks(but 32 miro-tasks). These independent tasks are taken from the SPICE program (from line 765to line 773) of the PerfetClub benhmarks. What happens in this test is that all loal lowerbounds are lose to the optimum, so no early elimination is possible, and this auses the totalsan of the solution spae. The problem is typial of the di�ulties one may enounter whensheduling parallel loops. The ode is the following:Task 1: GDPR=VALUE(LOCM+4)*AREATask 2: GSPR=VALUE(LOCM+5)*AREATask 3: GM=VALUE(LOCT+5)Task 4: GDS=VALUE(LOCT+6)Task 5: GGS=VALUE(LOCT+7) 71

Chapter 6. Branh-and-Bound-Based Longest-Path Computation SolutionTask 6: XGS=VALUE(LOCT+9)*OMEGATask 7: GGD=VALUE(LOCT+8)Task 8: XGD=VALUE(LOCT+11)*OMEGATask 9: LOCY=LYNL+NODPLC(LOC+20)Assume that we have one adder, one multiplier, a memory blok VAL (where the VALUE array ismapped) and a memory blok Mdp (where the NODPLC array is mapped) with one port. Assumealso that memory aess takes 2 yles and is pipelined, while all the other resoures take oneyle. Figure 6.1 diagrams the reservation table for the tasks � type (a) for tasks 3, 4, 5, and 7,type (b) for tasks 1, 2, 6, and 8, and type () for task 9 � and the optimal shedule, omputedby the BAB sheduler, whose lateny is 10. It orresponds to t1 = 0, t2 = 1, t3 = 2, t4 = 3,
t5 = 4, t6 = 5, t7 = 8, t8 = 6, t9 = 7. It is never obtained by the GS heuristi in a sample of n2permutations.

+

+

+

Type (a)

Type (b)

Type (c)

*

+

RM

Val

RM

Val

RM

Ndp

+

*

+

*

+

+

+

+

*

+

*

+

+

+

Optimal Schedule

2

3

4

5

6

7

8

1

9

10

0
RM

Val
RM

Val
RM

Val
RM

Val
RM

Val
RM

Val
RM

Val
RM

Ndp
RM

ValFigure 6.1: Pathologial Case ss21.6.3 ConlusionWe have designed a new exat resoure-onstrained sheduling method in whih ILP is replaedby longest-path alulations as tools for a branh-and-bound meta-algorithm. The longest-pathomputations are aelerated by variants of Floyd's or Dijkstra's algorithms. We have alsodesigned four onstraints ordering heuristis that we employed to perform prunings, as soon aspossible, in the BAB proess. Thus, improving the runtime of the algorithm.This method is ontextually designed to shedule data-independent tasks. However, it anbe easily generalized to support problems of resoure-onstrained sheduling even when tasks aredependent.Sheduling results show that, in e�et, the BAB algorithm has an aeptable runtime at leaston our benhmarks. Though it was observed that it an be vulnerable to some rare pathologialases. The use of the onstraints ordering heuristis have really improved the runtime of theBAB algorithm; the results have shown that, in most ases, they give better runtime than theoriginal solution. 72

Chapter 7Comparative StudyIn the previous hapters, we have presented some solutions to the resoure-onstrained shedulingproblem presented in Setion 4.3 in whih tasks are represented by reservation tables and theresoure onstraints are modeled by dis-equations. These solutions onsist on a greedy heuristiand two exat algorithms. The �rst uses ILP tehniques and the seond is based on the branh-and-bound meta-algorithm.In this hapter, we report and omment some omparative results. The aim of this om-parisons is to demonstrate the e�etiveness of the proposed methods. We make some additionaltests to analyze in more detail the parameters that in�uene their runtime and thus we give someguidelines for seleting the most e�etive one aording to the ontext.7.1 Comparative Results and DisussionTo ompare the three methods, the GS heuristi, the BAB sheduler, and the ILP sheduler, wehave hosen the best performanes of eah one. Comparative results are reported in Table 7.1.For the BAB algorithm, we have reported its runtime using the Dijkstra-based algorithm, ou-pled with the reordering heuristi 2, while setting the initial value of Lbest to the GS shedulelateny (olumn Dijk+H2). For the ILP tehniques, we have seleted the method whih usesthe 0/1 simpli�ed enoding. For the GS heuristi, we have only presented its deviations fromthe optimum. Indeed, knowing that the GS heuristi is sensitive to the order of the task list,we ran the algorithm on a sample of permutation of tasks. The size of this sample is the squareof the number of tasks, and the permutation are random. The maximum deviation (DevMaxolumn) presents the di�erene between the worst shedule in the sample and the optimum asgiven by the BAB algorithm. The DevMin olumn presents the deviation of the best shedule,in the sample of permutations, from the optimum.The results show that, despite its simpliity, the GS heuristi has a good behavior, at leastfor these examples: even the lateny of the worst shedule (in the sample) is not very far fromthe optimum. The result in the DevMin olumn demonstrates that the best shedule is very loseto the optimum. Hene one an �nd a good shedule by applying only GS to a small sampleof permutations. At least for our benhmarks, the BAB algorithm is often faster than the ILPtehnique. However, there are exeptions. Hene, both methods an be useful for pratialappliations. We made some additional tests to analyze in more detail the parameters thatin�uene their runtimes.As a rule of thumb, ILP works well whenever the task durations (the pi) are small andespeially when they are all equal to 1. But if one multiplies the duration and resoure oupation73

Chapter 7. Comparative StudyTest T µT Greedy sheduling ILP Branh-and-BoundDevMax DevMin ILP (0/1) nbC Dijk+H2ss1 4 15 2 1 0.2 s 9 0.04 sss11 4 15 2 0 0.22 s 6 < 0,01 sss12 4 17 3 1 0.21 s 9 0.04 sss2 9 32 2 1 0.77 s 23 0.75 sss3 7 27 3 0 0.3 s 36 2.36 sss5 3 9 0 0 0.17 s 7 0.04 sss6 8 12 0 0 0.18 s 7 0.11 sja1 6 19 0 0 0.13 s 7 0.03 sja2 6 82 1 1 2.83 s 75 10.70 sja3 7 97 1 0 2.57 s 85 9.0 srasm1 3 9 0 0 0.15 s 1 0.03 swss3 5 11 0 0 0.18 s 7 < 0,01 swss31 5 11 1 0 0.19 s 12 0.09 swss32 5 11 0 0 0.16 s 6 < 0,01 swo1 4 13 0 0 0.14 s 5 0.03 swo2 7 9 1 0 0.16 s 10 0.12 swss1 4 44 5 0 1.26 s 54 0.43 swss11 4 44 4 1 0.75 s 49 0.30 swss2 3 23 1 0 0.62 s 9 < 0,01 swss12 4 44 5 1 0.83 s 49 0.71 swmt22 4 31 0 0 0.25 s 24 0.1 sss21 9 32 2 1 0.48 s 44 2' 43 sTable 7.1: Comparative Results.of eah miro-task by a onstant fator f (whih means the orresponding resoure is non-pipelined and is used during f steps), the omplexity of the ILP problem inreases dramatially,both in terms of the number of unknowns and of the size of the oe�ients beause the shedulehorizon H inreases. In ontrast, the BAB algorithm is not partiularly sensitive to the involvednumbers size but more to the dis-equations number. If eah miro-task uses a resoure during fsteps, we an desribe the orresponding resoure onstraint by a dis-equation expressing aforbidden interval of length f (i.e., the two orresponding inequalities ti − tj ≤ di,j − f or
ti − tj ≥ di,j + f). This extension does not inrease the BAB algorithm omplexity.Test P

pi ILP BABss3 original 27 0.3 s 2.36 sss3 (2) 47 0.69 s 0.38 sss3 (3) 67 0.9 s 0.38 sss3 (4) 87 1.18 s 0.43 sss3 (5) 107 1.45 s 0.38 sss3 (6) 127 1.76 s 0.39 sss3 (7) 147 2.06 s 0.3 sss3 (8) 167 2.43 s 0.38 sss3 (9) 187 2.82 s 0.39 sss3 (10) 207 3.29 s 0.40 sTable 7.2: Comparative Results when the pi Vary.To demonstrate this e�et, we generated variants of the program test ss3 for whih the ILPapproah was faster than the BAB algorithm. These variants onsists in dupliating the taskstwie, four times, et. The results are given in Table 7.2.Conerning data dependenes, integrating them in the BAB algorithm is almost for free aswe just have to plug them as onstraints at the root node of the BAB tree. For the ILP approahhowever, we annot use the 0/1 simpli�ed formulation anymore as we need the onstraints (5.4)to express the dependenes. So, in general it takes more time than without dependenes. Thise�et is demonstrated in Tables 7.3 and 7.4. To get the results of Table 7.3, we add a few74

Chapter 7. Comparative Studyarti�ial (i.e., they are not in the initial program) data dependenes between the tasks. The ILPapproah gets slower as we have to use the 0/1 standard enoding, while the BAB algorithmgets usually faster. Indeed, at eah node of the BAB proess, more edges need to be traversed(so this should be more ostly), but the solution spae gets smaller (some task orders are nowimpossible) and also some subtrees are not searhed anymore beause their new Lloal is nowlarger than the urrent best evaluation Lbest.Test nb Dep. ILP BABWithout dep. With dep. Without dep. With dep.ss2 3 0.77 s 0.8 s 0.75 s 0.74 sss3 5 0.3 s 0.86 s 2.36 s 0.18 sss5 3 0.17 s 0.33 s 0.04 s < 0,01 sss6 6 0.18 s 0.38 s 0.11 s 0.02 sja1 5 0.13 s 0.26 s 0.03 s < 0,01 sja2 5 2.83 s 3.18 s 10.70 s 0.67 sja3 4 2.57 s 4.02 s 9.0 s 0.85 swss1 4 1.26 s 2.12s 0.43 s 0.07 swss11 4 0.75 s 1.14 s 0.62 s 0.09 swss12 4 0.83 s 1.44 s 0.71 s 0.06 srasm1 2 0.15 s 0.36 s 0.03 s < 0,01 sss21 5 0.48 s 1.03 s 2' 43 s 1.59 sTable 7.3: Comparative Results with Arti�ial Data Dependanes.One an argue that this omparison is not fair as we should ompare with original programsontaining atual data dependenes. To get suh programs, we onsider some of our benhmarksand we deompose a few maro-tasks into 2 or 3 data-dependent sub-tasks. The results are givenin Table 7.4. The ILP approah still slows down a bit, but now the BAB algorithm slows downtoo although it remains in general faster than the ILP algorithm for these examples. The reasonof this slow-down is that by splitting a task T into two sub-tasks T1 and T2, we sometimesinrease the number of dis-equations. Indeed, if T is is involved with another maro-task Uwith two dis-equations ombined into one beause they have the same forbidden distane, wemay now have two di�erent dis-equations to onsider: one involving T1 and U and the otherinvolving T2 and U . Table 7.4 gives, in addition to the runtimes, the number of orrespondingdis-equations. To summarize this study, the BAB algorithm seems to be more suitable when thenumber of dis-equations is small and when the ILP solver may take too muh time beause datadependenes need to be expressed, for a large shedule horizon H.Test T nb Dep. old nbC new nbC ILP BABWithout dep. With dep. Without dep. With dep.ss2 12 3 23 26 0.77 s 0.90 s 0.75 s 0.47 sss3 11 5 36 36 0.3 s 0.98 s 2.39 s 0.71 sss5 5 2 7 8 0.17 s 0.32 s 0.04 s < 0,01 sss6 10 2 7 10 0.18 s 0.36 s 0.11 s 0.12 sja1 8 2 7 9 0.13 s 0.28 s 0.03 s 0.14 sja2 9 3 75 93 2.83 s 3.28 s 10.70 s 1' 16 sja3 10 4 85 107 2.57 s 4.02 s 9.0 s 11.03 swss12 7 3 49 71 0.83 s 2.26 s 0.71 s 1.68 sss21 12 3 44 49 0.48 s 1.21 s 2' 43 s 3' 34 sTable 7.4: Comparative Results when Splitting a few Maro-tasks.
75

Chapter 7. Comparative Study7.2 ConlusionIn this �rst part of the thesis, we presented a formalism, for HLS sheduling, to aurately expressresoure onstraints for omplex tasks represented as reservation tables. The resoure onstraintsare modeled by dis-equations and �nding an optimal shedule entails resolving a system of dis-equations. The proposed formalism an be applied to problems of resoure-onstrained shedulingwhere tasks may be linked by data dependenes.We have proposed some solutions for sheduling suh tasks: a greedy heuristi and two exatalgorithms. The �rst use ILP tehnique and the seond is based on the branh-and-bound meta-algorithm. Sheduling results show that, in e�et, the greedy heuristi has a suitable behavior.Similarly, the BAB algorithm has an aeptable runtime but an be vulnerable to some rarepathologial ases. For improving the runtime of the BAB algorithm, we have designed fouronstraints ordering heuristis. The results have shown that, in most ases, they give betterruntime than the original solution. Compared to the ILP tehnique, the BAB algorithm hasshown better behavior when tasks exeution times are large.

76

Part IIResoure-Constrained Sheduling usingGraph Coloring

77

Chapter 8Sheduling viaBranh-and-Bound-Based GraphColoringIn the �rst part of this thesis, we have developed some sheduling solutions that are integratedin a three-step sheduling approah (§ 3.3.2). However, one an emphasize that the partitioninginto steps 2 and 3 in the three-step sheduling approah seems arti�ial. In other words, one anask: �is it a good methodology to �rst "miro-shedule" eah maro-task independently and then,shedule them together ?�. For this reason, in this hapter, we try alternatively to formalize theproblem so that the steps 2 and 3 are performed in a uni�ed way. Using this formalism, we designa novel exat sheduling algorithm in whih an optimal shedule is omputed by properly oloringthe graph that represents both resoure onstraints and data dependenies. Some ommentedexperienes illustrate the e�etiveness and the e�ieny of this sheduler.8.1 Formalisms8.1.1 Task ModelConversely to the model task of the �rst part, where a task was a sequene of miro-tasks(elementary operations), here, we onsider diretly all the elementary operations of the maro-tasks. So a task i is an elementary operation suh as an addition, a multipliation, a shift. . . .We assume that this elementary operation is already mapped on the available resoure. Herealso, a simple binding is used: eah funtional operation is mapped to the �rst free resoure,resoures are alloated on a yli way. In what follow, for the sake of simpliity, we use taskinstead of elementary operation or miro-task.We denote by T the set of tasks whih represents the set of the DFG (Data Flow Graph)nodes, R the set of resoures, ti the starting date of the task i, eah task lateny is assumedto be one �unit� (the unit is the lok yle). As will be seen in what follows, this assumptionallows us using easily a graph oloring model.However, this hypothesis should not prelude the multi-yle and/or pipelined funtionalunits use. In fat, we allow suh resoure features by the following triks. When a task ismapped to a multi-yling resoure whih delay is more than one yle, there are two possiblesenarios: 78

Chapter 8. Sheduling via Branh-and-Bound-Based Graph Coloring1. the resoure an be pipelined: here, we add supplementary operations nop ��titiousoperation as they do not use real resoure� to T ;2. the resoure doesn't allow pipelining: we add supplementary operations nop to T buthere they are not �titious as they do use the resoure.In both situations, some �false data dependenes� have to be added to the DFG in order topreserve the data-�ow dependenes onstraints.Let us illustrate these triks by means an example in whih a funtional operation multis mapped to a three-yle multiplier, as desribed in Figure 8.1 (a). If the multiplier an bepipelined then we add two nop tasks to T , we add also two data dependenes as in Figure 8.1 (b)and all suessors of mult, in the original DFG, beome suessors of the last nop operation. Ifthe multiplier is a simple resoure, i.e., it an't be pipelined, similar additions are performed butnow the nop operations are bounded to the multiplier resoure i.e., they are assumed using themultiplier (see Figure 8.1 ().This simulation validity imposes us to guarantee that eah nop operation will be exatlysheduled 1 yle after its diret predeessor node. We will see that it is possible to perform.
Mult Mult

M
ul

t

(a) Three−cycle multiplier (b) Pipelined multiplier (c) Non−pipelined multiplier

nop

nop Mult
nop

Mult
nop

Figure 8.1: One unit-yle resoure simulation.8.1.2 Data Dependenes and Resoure Constraints FormalismFinding legal and optimal shedules for T entails more preision into the way of expressingresoure onstraints and data dependenes between its tasks. In the following, we will expressuniformly both kinds of onstraints, using dis-equations. Here, by dis-equation we mean �anegation of equation where the seond member is null�, onversely to what we have de�ned inthe �rst part, where it is the most general de�nition, �a dis-equation is a negation of equation�).Let i and j be two tasks and ti and tj their respetive starting dates. First, in a validshedule, i and j an start at any date exept those whih put them into a resoure on�it ordata dependene on�it. Indeed, if a resoure r is used by both i and j, then ti and tj have totake di�erent values. Thus, the intuitive idea is to express resoure onstraint by:
ti − tj 6= 0.79

Chapter 8. Sheduling via Branh-and-Bound-Based Graph ColoringSimilarly, a data dependene onstraint between i and j an also be expressed with a dis-equation. Indeed, when the task j depends on the task i it implies that the task j must beexeuted after the task i. This an be expressed by the onstraint tj − ti ≥ 1 or more generalby tj − ti ≥ δi,j (lassial preedene onstraints). Here again, ti and tj have to take di�erentvalues, thus yielding the inequality tj − ti ≥ 1 as tj − ti 6= 0. It should be noted that solutionsfor tj − ti ≥ 1 are inluded in the set of solutions of tj − ti 6= 0. Thus, replaing tj − ti ≥ 1inequality by the dis-equation tj − ti 6= 0 represents a relaxation that we have to ompensatewhen a solution is found to guarantee the shedule validity. We will return to this fat later.It follows that, for the set T of tasks, 1) all the resoure onstraints an be expressed byde�ning for eah ouple of tasks (i, j) the dis-equation expressing the resoure onstraint, if iand j share the same resoure, 2) all the data dependenes are expressed by de�ning for eahouple of tasks (i, j) the dis-equation expressing the data dependene onstraint if i and j arelinked by a data dependene.8.2 Sheduling Problem FormulationUsing this formalism, �nding a shedule for T entails solving the following system of dis-equationson integer values:
{

ti − tj 6= 0 i, j ∈ T ∧ ((i, j share a resoure) ∨ (i, j are linked by a data dependene)) (8.1)then hoosing one solution, among the set of solutions, whih respets preedene onstraints.Indeed, the previous relaxation, in whih we have replaed tj − ti ≥ 1 by tj − ti 6= 0, have to beveri�ed.First, let us mention that this system is usually feasible; it has at least one solution, thesolution orresponding to the sequential exeution order.In addition, these dis-equations an be represented by an undireted graph G = (V,E),where an edge between two tasks i and j means that i and j annot be sheduled at the sametime. G is easily built by merging both graphs Gr and Gd, where Gr represents the interferenegraph (or on�it graph); there is an edge between i and j if they share a same resoure and
Gd represents the graph obtained by performing a transitive losure on the DFG and replaingall direted edges by undireted ones. The transitive losure operation guarantees that all datadependenes, impliit and expliit ones, will be expressed by an edge. Indeed, the edges in theDFG express only expliit data dependenes, hene impliit data dependenes, expressed by anypath i j, have to be expressed by dis-equation tj − ti 6= 0. Transforming all direted edges in
Gd by undireted ones, here also, is a relaxation whih must be ompensated when a solution isfound to guarantee that the omputed shedule is valid. We will return to this fat later.Let us mention that G an have any struture. We denote by n(G) the ardinal of V whihrepresents the task number (i.e., the ardinal of the set T) and m the number of distint dis-equations. As formalized, it is easy to see, that �nding a shedule for these tasks entails properlyoloring24 the graph G, then establishing an order on olors whih respets the preedeneonstraints.Further, for getting an optimal shedule, we have to minimize the olors number needed forproperly oloring G. Thus, �nding the hromati number 25 χ(G) of G.24In graph theory, let us reall that �graph oloring� is an assignment of �olors� to ertain objets in a graphsubjet to ertain onstraints. Here, we use its simplest form whih is a way of oloring the verties of a graphsuh that no two adjaent verties share the same olor, alled a �vertex oloring�.25The hromati number χ(G) of G is the smallest number of olors needed to properly olor G.80

Chapter 8. Sheduling via Branh-and-Bound-Based Graph Coloring8.3 How To Color a Graph?First, let us mention that there are several pratial problems that are modeled by graph oloring.Although graph oloring takes its name from the map-oloring appliation, it enjoys severaltheoretial hallenges. Beside the lassial types of problems, the problem of oloring a graph hasfound a number of appliations espeially register alloation in ompilers, sheduling, frequenyassignment in mobile radios and pattern mathing.Speially, graph oloring and its generalizations are useful tools in modeling a wide variety ofsheduling and assignment problems, suh as preoloring extension, list oloring, multioloring,minimum sum oloring. . . . More details on these appliations in sheduling are given by Marxin [76℄.Unfortunately, optimally oloring a graph i.e., determining its hromati number is an NP-Complete problem (Chap 5 of [110℄). Nevertheless, there are many methods for oloring a graph
G, or solving the system de�ned in (8.1):
• one an be satis�ed with greedy oloring heuristis where oloring is done vertex by vertex,the order of the vertex oloring an be established statially as well as dynamially;
• We an also use meta-heuristis suh as simulated annealing, Tabu searh, and geneti-based algorithms;
• for optimality, some solutions from operations researh are availables, they an be basedon:� Coloring using a Branh-And-Bound meta-method;� Integer Linear Programming tehniques [99℄.� Sine there is an obvious bound for the χ(G) (χ(G) ≤ n), we an also use �nitedomain onstraint satisfation programming [14℄.As disussed earlier, Integer Linear Programming and Constraint Logi Programming arethe main alternative approahes used to solve ombinatorial optimization problems. They haveshown their ability to loate and prove the existene of an optimal solution in rigorous ways.Unfortunately, these methods are rather slow.Similarly, the Branh-And-Bound method has an exponential theoretial omplexity, butonversely, it an have a better behavior in pratie if it is well instrumented. Indeed, Branh-And-Bound is a meta-method of guidane in the spae of solutions, its resolution strategy dependsstrongly on the problem features to resolve. Hene, in what follows we will design an exatoloring graph by mean of Branh-And-Bound tehnique.ExampleLet us onsider the same example seen in Setion 4.2.4Task 1: GSPR = VALUE(LOCM+2)*AREATask 2: GEQ = VALUE(LOCT+2)Task 3: XCEQ = VALUE(LOCT+4)*OMEGATask 4: LOCY = LYNL+NODPLC(LOC+13)With the same assumptions: the available resoures are one adder, one multiplier, and twomemory bloks: Val (where the VALUE array is mapped) and Ndp (where the NODPLC array is81

Chapter 8. Sheduling via Branh-and-Bound-Based Graph Coloringmapped). Assume also that both memory aess and multipliation take two yles and thatboth an be pipelined. Salar variables like AREA or LOCY are assumed to be alloated to registers,where they an be aessed in no time.Figure 8.2 diagrams the DFG of the maro-tasks with one possible binding, where the labelRM Val (resp. RM Ndp) means to read the memory blok Val (resp. Ndp). Here we hose thebinding that greedily alloates all the available resoures to tasks, i.e., we assign all the resouresto the funtional operations of eah task. Let us note that the �titious operations nop areadded to satisfy the 2-yle resoures (multiplier and memory bloks). Operations 1 to 17 arethe elementaries tasks.
+

nop

Val
RM

LOCT 2

GEQ

+

*

nop

nop

Val
RM

LOCM 2

GSPR

AREA

*

+

nop

nop

+

nop

nop

Val
RM

+

*

nop

nop

Val
RM
Val
RM

nop

+

++

Val
RM

+

Val
RM
Ndp
RM2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Macro−Task 2 Macro−Task 3 Macro−Task 4Macro−Task 1

OMEGALOC

XCEQ

LOCT 4

XCEQ

OMEGALOCT 4

XCEQ

2

LOCY

44 LYNLLOC 4

Figure 8.2: Binding for the Example.For this example, the resoure onstraints system is omposed of 15 onstraints de�ned as follows:

t1 − t6 6= 0 t1 − t9 6= 0 t1 − t14 6= 0 t1 − t17 6= 0 t2 − t7 6= 0
t2 − t10 6= 0 t4 − t12 6= 0 t6 − t9 6= 0 t6 − t14 6= 0 t6 − t17 6= 0
t7 − t10 6= 0 t9 − t14 6= 0 t9 − t17 6= 0 t14 − t17 6= 0For instane, the onstraint t1 − t6 6= 0 expresses the fat that the operation 1 and 6 annotstart at the same time beause, among other reasons, both use the adder. This system ofonstraints is used to build the on�it graph Gr.Expliit data dependene onstraints are extrated from the DFG. For example the datadependene between the operation 5 and 4 de�ned by the inequality t5 − t4 ≥ 1 will be replaedby the onstraint t5−t4 6= 0 and so on. We obtain the following system of diret data dependenesonstraints, whih is used as a basis to onstrut the data dependenes graph Gd:

t5 − t4 6= 0 t4 − t3 6= 0 t3 − t2 6= 0 t2 − t1 6= 0 t8 − t7 6= 0
t7 − t6 6= 0 t13 − t12 6= 0 t12 − t11 6= 0 t11 − t10 6= 0 t10 − t9 6= 0
t17 − t16 6= 0 t16 − t15 6= 0 t15 − t14 6= 0

82

Chapter 8. Sheduling via Branh-and-Bound-Based Graph Coloring8.4 Branh-and-Bound-Based Graph Coloring SolutionLet us reall that Branh-And-Bound is an impliit enumerative meta-method whih searhes, inthe solution spae, a solution aording to an objetive funtion. Its resolution strategy dependsstrongly on the feature of the objetive funtion and the quality of the lower and upper boundsused for pruning.Let G = (V,E) be the graph whih formalizes the dis-equation system given by (8.1). Let
n(G) = |V | be the number of tasks and m = |E|, the number of dis-equations.In our ontext, let us reall that we onsider only valid olorings (shedulable ones) of G. Aoloring is valid if we an get an order on olors suh that no preedene onstraint is violated.Indeed, the preedene onstraints an be violated due to the previous relaxations, in whih wehave replaed tj − ti ≥ 1 by tj − ti 6= 0 and replaed an ar by an edge in Gd. In other words, aoloring is valid if we an build a valid shedule from this oloring.Before explaining our algorithm strategy, �rst let us explain how the branhing is done, whihlower bound is used and how it is evaluated.8.4.1 Branhing RuleThe branhing rule used here is inspired from the idea of Béla Bollobàs (Chap. 5 of [13℄) foroloring any graph26. The idea is based on oloring a graph G by reduing the problem tooloring two other graphs derived from G. Let u and v be nonadjaent verties of a graph G.Let G′ be obtained from G by joining u and v, and let G′′ be obtained from G by identifying(merging) u and v. Thus, in G′′ there is a new vertex (uv) instead of u and v whih is joined toverties adjaent to at least one of u and v (see Fig. 8.3).These operations are even more natural if we start with G′: then G is obtained by uttingthe edge (u, v), and G is obtained from G′′ by exploding the vertex (uv).This separation guarantees that we are not losing any solution. Indeed, let us note thatolorings of G′ and olorings of G′′ are disjoint sets, beause olorings of G′ give u and v di�erentolors and olorings of G′′ give them the same olor. In addition, the olorings of G in whih uand v get distint olors are in 1-to-1 orrespondene with the olorings of G′. Indeed, c : V →
{1, 2, . . . , k} is a oloring of G with c(u) 6= c(v) i� c is a oloring of G′. Similarly, the oloringsof G in whih u and v get the same olor are in 1-to-1 orrespondene with the olorings of G′′.In partiular, if for a natural number x and a graph H, we denote pH(x)27 for the number ofolorings of a graph H with x olors, then

pG(x) = p
G

′ (x) + p
G

′′ (x).By de�nition χ(G) is the least natural number k for whih pG(x) ≥ 1. Thus, these remarksimply that χ(G) an be de�ned as:
χ(G) = min{χ(G′), χ(G′′)} (8.2)8.4.2 Evaluation -Bounding- ProedureMany upper and lower bounds for the hromati number are proposed in the literature [13, 111℄.First, let us onsider the upper bounds. Most upper bounds ome from algorithms that produe26This Divide-to-Conquer tehnique is originally designed to get some information about the number of oloringsof a graph with a given set of olors.27Called the hromati polynomial. 83

Chapter 8. Sheduling via Branh-and-Bound-Based Graph Coloring

uv

G′′

Merging (u,v)
v

G′

u

Joining (u,v)
uv

G′′

u

v

G

Figure 8.3: The Graphs G, G′ and G′′.olorings. For example assigning distint olors to the verties yields χ(G) ≤ n. This oloringuses nothing about the struture of G; we an do better by oloring the verties in some order.For example, a greedy oloring relative to a vertex ordering v1, . . . , vn of V an be obtained byoloring verties in the order v1, . . . , vn, assigning to vi the smallest-indexed olor not alreadyused on its lower-indexed neighbors. Eah vertex has at most ∆(G) neighbors, so the greedyoloring annot be fored to use more than ∆(G)+1, this is the worst upper bound that a greedyoloring ould produe (χ(G) ≤ ∆(G) + 1) olors.Welsh-Powell [109℄ proposed another greedy oloring, in whih they apply the previous greedyoloring to the verties in non-inreasing order of degree d1 ≥ . . . ≥ dn, when we olor the ithvertex vi, it has at most min{di, i− 1} earlier neighbors, so at most this many olors appear onits neighbors. Hene, the olor we assign to vi is at most 1 + min{di, i− 1}. This holds for eahvertex. So, we obtain an upper bound; we maximize over i to obtain the upper bound on themaximum olor used: χ(G) ≤ 1 + maxi min{di, i− 1}.For our oloring algorithm (see below) the most important bounds for the hromati numberused are the lower ones. Let us quote that for any graph G, we have:
• the most known lower bound:

χ(G) ≥ ω(G), (8.3)where ω(G) is the lique number: the size of the largest set of pairwise adjaent vertiesin G (maximal lique).
• and a seond lower bound:

χ(G) ≥ n/α(G), (8.4)where α(G) is the independene number: the ardinal of the largest set of verties in V sothat no two verties are adjaent (maximal size of an independent set).84

Chapter 8. Sheduling via Branh-and-Bound-Based Graph ColoringThe �rst bound holds beause verties of a lique require distint olors. The seond boundholds beause in a proper oloring the set of verties of eah olor is an independent set and thushas at most α(G) verties. Both upper bounds are exat when G is a omplete graph. However,for ertain graphs inequalities (8.3) and (8.4) may be very weak; it an happens that ω(G) anbe muh smaller than χ(G). But aording to our ontext, we rely on the partiularity of thebuilt graphs (not very large and high probably may be very onneted).Unfortunately again, in general both maximal lique problem and maximal independent setproblem are NP-Hard [110℄, although good approximation algorithms an be found in [58℄.However, a lique omputation, as a lower bound to the lique number, an be obtained byseveral methods:
• one an be satis�ed with a greedy lique heuristi. For example, that whih we use, build alique C progressively as follows: we start with the vertex whih has the maximal degree,then we add, as long as there is, the vertex with a maximal degree and whih is adjaentto all verties in C. Thus, we obtain in a polynomial time a lower bound suh that:

χ(G) ≥ ω(G) ≥ |C|.
• for optimality, one an use Integer Linear Program formulation. Indeed, knowing thatomputing the lique number entails omputing the independene number for Ḡ, the om-plementary graph, sine the maximal lique problem is omplementary to the maximalindependent set problem. This fat allows us to use the following natural ILP formulationof the Independant Set problem (IS):IP2:

max
∑n

i=1 xisubjet to: xi + xj ≤ 1 for every edge (i, j) in Ḡ
0 ≤ xi ≤ 1 (i = 1, . . . , n)where xi are binary variables, xi = 1 if the vertex i belongs to the maximal independentset of Ḡ.One an argue that omputing an exat lique may be very expensive, as it uses ILP formu-lation, this is true in general, but let us mention that this last formulation is known as binaryinteger program IP228 or 2-SAT29 whih has some powerful properties than a general IP problem.Indeed, it turns out that solutions of this IP2 problem always have denominators not greaterthan 2, whih guarantees that in the proess of an integer resolution, no number explosion willbe our. In addition, this property guarantees that all basi solutions of linear relaxation ofthis 2-SAT are integer multiples of 1/2 (Chap. 3 of [58℄).This property follows from the following statement: the determinants of all nonseparablesubmatries of the 2-SAT linear programing problem have absolute value of at most 2. A matrixis nonseparable if there is no partition of the olumns and rows to two subsets (or more) C1, C2and R1, R2 suh that all nonzero entries in every row and olumn appear only in the submatriesde�ned by sets C1XR1, C2XR2.Proof. Let A denote the onstraint matrix of this 2-SAT integer program. Thus, A has at mostnon-zero entries in every row . Let's do it by indution on the size of the submatrix. Sine theentries of A are from {−1, 0, 1}, the laim holds for 1X1 submatries. Assume that it holds for28Integer Programming with two variables per inequality.292-satis�ability boolean formula on variables x1, . . . , xn where the objetive is to �nd an assignment satisfyingall lauses suh that Pn

i=1
xi is maximized. 85

Chapter 8. Sheduling via Branh-and-Bound-Based Graph Coloringany (m − 1)X(m − 1) submatrix and we show that the laim holds for any mXm submatrix.Let Aij denotes the submatrix obtained by deleting the i'th row and the j'th olumn from
A. Without loss of generality, we assume that the two non-zero elements in row i of A are inolumns i and i + 1 (modulo m). Due to the nonseparability of the matrix, this an be ahievedby appropriate row and olumn interhanges, thus:

det(A) = A[1, 1].det(A11)− (−1)mA[m, 1].det(Am1)The absolute values of A11 and Am1 determinants are equal to 1, sine both are triangularmatries with nonzero diagonal elements. Therefore, the A determinant absolute value is atmost 2.8.4.3 AlgorithmAording to these Branh and Bound proedures, we have designed a BAB algorithm whihprogressively builds a tree of subproblems as follows:
• At the root, we start with the original graph G, whih is obtained by expressing bothresoure onstraints and data dependenies between tasks of T ;
• At eah tree struture node N , we get two nonadjaent verties and we branh using theprevious branhing rule.
• During the resolution proess, we maintain Lbest, the the best shedule lateny omputedso far whih orresponds to the number of olors needed by a valid oloring of G. At thebeginning, we an set Lbest to one of the χ(G) upper bounds, previously seen; thus set to

1 + maxi min{di, i− 1} or ∆(G) + 1.
• At eah node N , we treat GN , the graph obtained by the branh operation. Exept forthe leaves, we ompute lique number (or a greedy lique whih is a lower bound to thelique number) Lloal of GN . As seen above Lloal is a lower bound of χ(GN) and so of

G. If Lloal ≥ Lbest the subtree below N is not onstruted as it will not lead to a betteromplete solution.
• A leaf is reahed if there is no nonadjaent verties in the obtained graph Gl, whih meansthat the graph is omplete. It is well known that for suh omplete graph we have χ(Gl) =

∆(Gl) + 1 = ω(Gl) = |V l|. So now we have an atual solution. We hek if this oloring isvalid; so no preedene onstraints is violated, then if it is better than Lbest then Lbest isupdated.
• The algorithm stops when all branhes are explored; Thus, whole solution spae has beenexplored and Lbest is returned as the optimum solution whih satis�ed the objetive fun-tion.It is easy to prove that this algorithm terminates. Indeed, when we branh, there are twopossible situations. In the �rst one, we merge two verties so we derease the vertex numberof the graph, no more than (n − 1) merges are possible for a given G. In the seond situation,we onnet two verties, at most k = (n2/2 −m) additions are allowed, where k is the numberof pairs of verties not onneted in G; it represents the number of edges to be added to G forbeing a omplete graph. Thus, the algorithm terminates and the depth of the BAB tree is atmost max (k, n − 1); these values orrespond to the length of the extremal branhes.86

Chapter 8. Sheduling via Branh-and-Bound-Based Graph ColoringIn this algorithm variant, we wait until a solution is found (reahing a leaf) for heking theomputed oloring validity, thus the shedule validity. Another possibility an be onsidered asthis test an be dynamially performed. Indeed, a oloring an't be valid if a ontration of twononadjaent verties, i and j auses a reation of a yle in the original DFG (whih expresses thepreedene onstraints). For this reason, we an guard a ontration by a test in whih we hekif no path, in the DFG, join between i and j (in both diretions so both paths i j and j iare onsidered). This fat entails maintaining a Roy-Warshall's matrix30 after eah ontration.This solution an improve onsiderably the algorithm runtime by performing soon the prunings.In ontrast, it may slow down the algorithm as maintaining a Roy-Warshall's matrix requires q2,where q is the ardinal of the graph vertex set de�ned at eah level of the BAB tree.In addition, when a oloring is omputed, other onditions have to be veri�ed. In fat, theone unit-yle resoure simulations, whih are performed at the beginning in order to allow multi-yle resoure use, have to be veri�ed. Thus, an optimal shedule will be rejeted if it does notverify that eah nop operation is exatly sheduled 1 yle after its diret predeessor node.Further, let us also mention that for this algorithm version, the hoie of the ouple ofnonadjaent verties is random, or rather it is greedy; i.e., we get the �rst two nonadjaentverties. One an speed up the algorithm runtime by getting the most adequate two nonadjaentverties to perform the branhing.8.4.4 ComplexityIt is di�ult to give the atual omplexity of any BAB algorithm exept perhaps for the worstases, where no elimination are done. Speially, for our algorithm when it is oupled with themaximal lique omputation algorithm whih is based on an integer linear program. For thisreason, here, we just try to bring some information whih an give an idea on the omplexity ofthe designed algorithm.First, let us notie that any branh length from the root to a leaf is variable and has a valuein the interval [min(n − 1, k),max(n − 1, k)] , where k = (n2/2 −m) is the number of pairs ofverties non onneted in G. As explained above, these values orrespond to the length of theextremal branhes of the BAB tree. Indeed, not more than (n−1) merges are possible for a givengraph to beome omplete and not more than k = (n2/2 −m) joinings are allowed in a givengraph to beome omplete. The interval [min(n−1, k),max(n−1, k)] is inluded in [n−1, n2/2)].On the other hand, the variant of the greedy lique heuristi, whih we use, is a pseudo-polynomial heuristi, as its time omplexity is O(n∆(G)), where for ∆(G) is the degree of G.8.5 Integer Linear Program SolutionTo ompare with the previous BAB approah, we design another exat algorithm based on aninteger linear program. Indeed, as seen in Chapter 5, our sheduling problem an be formalizedby mean of standard oding tehniques.We use the following notations: xi,j is a binary variable assoiated with task i where xi,j = 1if and only if task i is sheduled at the jth lok yle. The indies j go from 0 to H, a maximal�horizon� for the shedule. The variable ti is the starting date of task i, R the set of availableresoures, Rr the set of tasks that use the resoure r, and di,r the time step 31 (relative to the30A Roy-Warshall's matrix is a boolean matrix whih reports the aessibility relation [108℄; an entry
(i, j) = True in this matrix, if there is a path from i to j in G.31It is possible that, in the same task i, a resoure r is used in more than one miro-task. Again, for simpliity,we assume that eah task uses eah resoure at most one, but this may be easily generalized.87

Chapter 8. Sheduling via Branh-and-Bound-Based Graph Coloringbeginning of the task) at whih task i uses resoure r.Let us reall that a standard way of expressing our sheduling problem is the following. Fix
H, the maximal shedule horizon, to an upper bound for the optimal lateny. For example, �x
H to card(T), whih orrespond to the sequential exeution order lateny. Then, minimize theshedule lateny L subjet to the following onstraints (in addition to the fat that all variablesare integers and the xi,j are 0/1 variables):

ti =

H−pi
∑

j=0

j ∗ xi,j ∀i ∈ [1 . . . n] (8.5)
0 ≤ ti ≤ L− pi ∀i ∈ [1 . . . n] (8.6)

H−pi
∑

j=0

xi,j = 1 ∀i ∈ [1 . . . n] (8.7)
∑

i∈Rr

xi,t ≤ 1 ∀r ∈ R, ∀t ∈ [0 . . . H] (8.8)
tj − ti ≥ 1 ∀ edge (i, j) ∈ DFG (8.9)The n equalities in (8.5) de�ne the starting dates ti as funtions of the xi,j binary vari-ables. The inequalities (8.6) express the lateny to be minimized. For eah task i, the equal-ity (8.7) guarantees that i is exeuted exatly one. Finally, the inequalities (8.8) express resoureonstraints for eah resoure r ∈ R. One the variables ti are available � through the on-straints (8.5), the dependene onstraints are naturally expressed through the onstraints (8.9).These last inequalities an also be replaed by general preedene onstraints: tj − ti ≥ δi,j.8.6 Experimental Results and DisussionWe implemented the algorithms presented previously, in our framework, on the same benhmarksand on the same mahine. We also implemented the BAB algorithm with both lique omputationvariants (maximal lique and greedy lique). Results are reported in Table 8.1. In these �rstexperiments, only 12 test programs, among those used previously, are treated.In the �rst two olumns of Table 8.1, we report the name of the test and the number ofinluded tasks. The third olumn represents the hromati number; so the optimal shedule. Foreah evaluation proedure variant, we report the runtime of the BAB algorithm and the numberof nodes (Nb nodes) atually onstruted by the BAB algorithm. The Eighth olumn representsthe ILP tehnique runtimes.Experimental results show that, in e�et, our exat branh-and-bound approah has an a-eptable runtime despite its theoretial omplexity. However, the results show that the versionof the BAB using the greedy lique algorithm is more faster than the one using the maximallique omputation. This is due to the large number of ILP solver alls, this number an bequanti�ed by the orresponding �Nb nodes� olumn.Conerning omparison, exept for few ases, the results show that our BAB algorithm hasa better behavior than the ILP tehnique.8.7 ConlusionGiven a set of tasks linked by some data dependenes, under resoure onstraints, we formalize theproblem that �nding an optimal shedule lead us to properly olor their on�it graph. Indeed,88

Chapter 8. Sheduling via Branh-and-Bound-Based Graph ColoringTest nbT Optimum Branh-and-boundMaximal Clique (IP2-Pip) Greedy Clique ILP formulationTime Nb nodes Time Nb nodesss1 15 5 3,54 s 343 1.09 s 2200 0.9 sss11 15 4 0.40 s 42 0.02 s 88 0.6 sss12 17 10 5. s 5870 1.14 s 1505 0.83 sss5 9 4 5.39 s 233 0.2 s 49 0.28 sss6 12 4 1 s 13 0.07 s 35 0.32 swss3 11 5 1.32 s 104 0.05 s 360 0,51 swss32 11 4 1.63 s 235 0.07 s 482 0,4 swo1 13 5 0.08 s 8 0.01 s 73 0,62 swo2 9 4 0.03 s 4 0.02 s 44 0,27 srasm1 9 5 0.90 s 19 0.03 s 22 0.24 srasm2 7 4 0.15 s 2 0.01 s 6 0.15 sja1 19 6 1' 08 s 1025 1.98 s 1678 2.1 sTable 8.1: Sheduling Results for the BAB with both Maximal and Greedy Clique BoundingAlgorithms and the ILP.we have aurately and uniformly expressed both resoure onstraints and data dependenesusing dis-equations.Conversely to lassi graph oloring algorithms, we design an exat algorithm in whih theoloring is done by means a branh-and-bound meta method [28℄. Eah evaluation is aeleratedby either maximal or greedy lique omputation.Results show that, in e�et, our exat branh-and-bound approah has an aeptable runtimedespite its theoretial omplexity. However, the BAB version in whih it is oupled with thegreedy lique algorithm is faster than the one using a maximal lique omputation.Furthermore, the e�etiveness of this algorithm is also proven by some omparative experi-ments. We ompare the designed algorithm to a lassial ILP solution. In fat, exept for fewases, the results show that our BAB algorithm has a better behavior than the ILP tehnique.Besides, the results show that this simple designed algorithm variant, in our ontext instru-mented to ompute an optimal shedule, deserves more attention as it an be used as a solutionto many graph oloring problems in others ontexts. Indeed, there are several interesting real-life appliations that are modeled by graph oloring. In fat using a fast implementation andmany others triks: getting the most adequate two nonadjaent verties to perform the branh-ing or improving the greedy lique omputation heuristi may onsiderably redue the algorithmruntimes.

89

Chapter 9General Conlusion and FutureDiretionsSheduling is one key proess in HLS. Under resoure onstraints, sheduling operations whileminimize the total duration is an NP-omplete problem sine too many onstraints and obje-tives interat. These onsiderations lead to the idea of designing gradual approahes to sheduleprograms espeially with loops.Indeed, in order to e�iently exhibit and exploit parallelism we use a symboli shedulingalgorithm. This produes a sequene of logial steps, eah of whih ontains a pool of maro-tasks(with no loops), where eah maro-task is a omplex sequene of elementary operations. Despitethat many hardware onstraints an be roughly taken into aount by this sheduling pass, itremains that this symboli sheduling tehnique is quite omplex and annot take into aountall the operations and the arhitetural resoures they need. Thus, we need at least another stepto shedule loally all operations of the maro-tasks belonging to the same logial step to satisfythe resoure onstraints and data dependenies between the elementary operations of the samemaro-task. In this work, we have investigated many possibilities.9.1 ContributionIn a �rst one and for omplexity reasons, we have again divided the problem into two subproblems:1/ mapping and sheduling eah maro-task independently taking into aount all peuliaritiesof the target arhiteture. This produes a reservation table for eah maro-task. 2/ re�ningeah logial step by sheduling all its maro-tasks, now represented by the reservation tables,while respeting resoure onstraints.In another possibility, we have simultaneously sheduled all operations of the maro-taskswhile satisfying both resoure onstraints and data dependenies between the elementary oper-ations of the same maro-task.In this thesis and for both approahes, we have proposed some solutions to ertain shedulingsteps. Indeed, for the three-step approah, we have foused on the third sheduling step problem:�sheduling tasks whose resoure usage is desribed by reservation tables�. First, we have pre-sented a formalism that aurately expresses resoure onstraints for omplex tasks representedby reservation tables. The resoure onstraints are modeled by dis-equations and �nding anoptimal shedule lead us to resolve a system of dis-equations. In a seond time, we have pro-posed some solutions for sheduling suh problem: a greedy heuristi and two exat algorithms.The �rst uses ILP tehniques and the seond is based on the branh-and-bound meta-algorithm.90

Chapter 9. General Conlusion and Future DiretionsThe last one represents our main algorithmi ontribution. It onsists on a new exat resoure-onstrained sheduling method in whih lassi ILP is replaed by longest-path alulations astools for a branh-and-bound meta-algorithm. The longest-path omputations are aeleratedby either variant of Floyd's or Dijkstra's algorithms. In order to improve this algorithm runtime,we have also designed four onstraints ordering heuristis that we employed to perform prunings,as soon as possible, in the BAB proess. Most of them are based on graph yle detetion.Sheduling results show that, in e�et, the greedy heuristi has a suitable behavior, at leaston our benhmarks. On the other hand, the BAB algorithm has an aeptable runtime but anbe vulnerable to some rare pathologial ases. Conerning the onstraints ordering heuristis, theresults show that, in most ases, they give better runtime than the original solution. Comparedto the ILP tehnique, the BAB algorithm show better behavior when tasks exeution times arelarge.Contextually, the BAB method is designed to shedule data-independent tasks. However,it an be easily generalized to support problems of resoure-onstrained sheduling even whentasks are dependent. Quite paradoxially, we saw that the ase of independent tasks is the mostdi�ult one for our branh-and-bound formulation; adding dependenes is easy and redues thesize of the solution spae.Furthermore, in the last hapter we have proposed some solutions to perform the last shedul-ing step �the simultaneous sheduling� de�ned in the two-step approah. Similar as in the �rstpart, we use �dis-equations�, as mathematial way to express uniformly both onstraints: resoureonstraints and data dependenes. Consequently, to �nd an optimal shedule, this formalism ledus to properly oloring the obtained on�it graph. In order to optimally olor this graph andonversely to lassi graph oloring algorithms, we design a new method so that oloring is doneby means of a branh-and-bound that is aelerated by lique omputation algorithms. Thelique omputation an be aomplished exatly as well as greedily.Illustrated by means of some pratial benhmarks, the e�etiveness and e�ieny of themethod are good. However, the algorithm version whih is oupled with the greedy liquealgorithm, is faster than the one using a maximal lique omputation. Moreover, the e�etivenessof this algorithm is also proven by some omparative experiments. Indeed, we have omparedthe designed algorithm to a lassial ILP solution. In fat, exept for few ases, the results showthat our BAB algorithm has a better behavior than the ILP tehnique.Finally, let us argue why we opt for exat solutions to resolve the de�ned sheduling problems.Indeed, this hoie interest is twofold. Firstly, it is true that embedded systems designers toleratemuh longer ompilation times than high-performane programmers. A design is the result ofmany iterations in whih di�erent arhitetural options are evaluated. It is likely that sheduling,even when using omplex tehniques like BAB or ILP, takes negligible time omparing withextensive simulation or plae-and-route synthesis. GS is well suited for the initial exploration. Inthe �nal phases, when one must meet strit performane onstraints, the use of an optimal methodlike the BAB or the ILP algorithms may be warranted. Seondly, we believe that integratingexat methods into hierarhial sheduling approahes, that ould identify ode fragments (sowith manageable size) and shedule them optimally ouldn't a�et a lot the whole shedulingruntime.9.2 Future DiretionsModeling sheduling problems and designing their orrespondent algorithms is known as a labo-rious task, espeially for onstrained systems suh as the embedded ones. In this thesis, we have91

Chapter 9. General Conlusion and Future Diretionsmainly tried to get some exat methods but we believe that the performanes of these algorithmsan be improved. We have thought about to many ideas whih will be exploited. Currently, weinvestigate some ones and left for future work some others.Conerning the greedy algorithm, it might be interesting to design a priori task reorderingheuristis, using ideas similar to those we applied to the BAB algorithm.The situation is similar for both Branh-and-Bound-based algorithms, many improvementsan be envisaged as Branh-and-Bound itself is a meta-algorithm, whih an be on�gured inmany di�erent diretions aording to the ontext.About the �rst Branh-and-Bound AlgorithmIn fat, the Branh-and-Bound oupled with the Dijkstra's algorithm variant, we have hosen,is the most obvious. One may onsider variants, in whih the lower bound �omputation of thelongest paths� is not omputed for all the nodes, or in whih the order of elaboration of thenodes is best-�rst instead of depth-�rst.In addition, we have used an inremental version of the longest-paths omputation, whose oreis Dijkstra's stati algorithm. This algorithm is faster and less memory onsuming omparingwith some others. However, as we have already mentioned, that it an be sped up by replaingthe seond all to Dijkstra's algorithm by one of its dynami versions reently published.About the Graph Coloring AlgorithmOn the other hand, experimental results about the designed branh-and-bound-based grapholoring algorithm, although they have to be proven by more larger graphs, lead us to take moreattention about this graph oloring kernel algorithm whih is instrumented to ompute a shedulein our ontext. Indeed, �graph oloring� and its generalizations are useful tools in modeling awide variety of sheduling and assignment problems and many interesting pratial problems.Hene, we have thought about many triks whih are able to improve this method performanes�speially its runtime�.First, let us reall that, for ertain graphs, both hosen hromati number lower bounds,(χ(G) ≥ n/α(G) and χ(G) ≥ ω(G)) may be very weak; it an happens that ω(G) an bemuh smaller than χ(G). In suh ase, one an searh, in the wide graphs' literature, for morebetter lower bounds by analyzing deeply and extrating the real nature and features of the builtgraphs in our ontext. In fat, we urrently explore another lower bound whih is surely idealfor our oloring strategy. Indeed, Grötshel, Lovász, and Shrijver proved [54℄, thanks to their�sandwih theorem�, that we an ompute in polynomial time a real number that is �sandwihed"between these hard-to-ompute integers (ω(G) and χ(G)). They all this lower bound the �thetafuntion�:
ω(G) ≤ θ(G) ≤ χ(G).Additional improvements an be envisaged before the branhing proedure i.e., when gettingthe pair of nonadjaent verties. In the urrent version, we get greedly, in a polynomial time, the�rst pair that respets the ondition. One an use an algorithm whih hooses the most adequateouple of nonadjaent verties suh that it will improve soon the lower bounds along a branh.Indeed, we are urrently trying to get an inremental version of a greedy lique omputationalgorithm that will be linked to the algorithm whih hooses the pair of nonadjaent verties.The aim is to reah a omplexity of O(1) instead of the urrently pseudo-polynomial one. Thepriniple of this algorithm is desribed as follows:92

Chapter 9. General Conlusion and Future Diretions
• At the root of the BAB tree struture, we get a greedy lique of G using the urrent statigreedy lique omputation algorithm. Let C be this lique.
• At eah node, during the hoie of the nonadjaent verties, �rst, we try to examine thegreedy lique verties so that the hoosen vertex pair ontents, if it is possible, one vertexamong the lique verties. Let (c1, c2) be the hosen pair of verties.
• Suessively, at eah step, C is inreased, of ourse if it is possible, by one vertex. Theandidate vertex is hosen among the set c1, c2 i.e., among the ouple of the two nonadjaentverties. This hoie riterion may at least guarantee that the suessive joining operationswill early inrease the size of C. Indeed, after the nonadjaent verties hoie two situationsare possible. 1/ c1 or c2 belongs to C, and suessive joinings will inrease soon the size of

C, 2/ neither c1 nor c2 belongs to C, and we know that C is an independent omponentof G, then if its size is greater than n/2 thus it is the exat lique number else we an tryto onstrut another greedy lique.Further future work onsists in omparing the designed oloring tehnique with some otherexat tehniques [21, 91℄ espeially those designed for resolving VLSI CAD problem [31℄.In the interest of fast prototyping, all our algorithms are implemented in the programminglanguage of the MuPAD omputer algebra system, whih is interpretive. Despite the suitableresults, a C or Fortran implementation would ertainly improve more the runtime of the designedalgorithms.

93

GlossaryASAP: �As Soon As Possible� a sheduling tehnique. It shedules operations taking intoaount only the data dependenes onstraints.ALAP: �As Late As Possible� a sheduling tehnique.AFAP: �As Fast As Possible� a sheduling tehnique.Arhitetural synthesis: see Behavioral synthesis.BAB: Branh-And-Bound tehnique is a general algorithmi meta-method for �nding optimalsolutions of various optimization problems, espeially in disrete and ombinatorial op-timization.Behavioral synthesis: the proess whih takes a program �behavioral spei�ation� of a systemto be performed on a dediated iruit � and �nds a strutural desription �desriptionof a iruit� that implements this behavior.Binding: assignment of operations, memory aesses, and interonnetions from the behavioraldesign desription to hardware units for optimal area and performane.CAD: �Computed-Aided Design�.Chaining: the sheduling of two data-dependent operations in the same ontrol-step.Clique: For an undireted graph G, a lique represents a set of pairwise adjaent verties in G.DFS: �Deepth-First Searh�.Dis-equation: negation of equation.DSP: �Digital Signal Proessing�.FPGA: �Field Programmable Gates Array� a programmable iruit.FSM: �Finite-State mahine� a design model for representing ontrollers that assigns booleanonstants to output signals in every lok yle.FSMD: �Finite-State Mahine with Datapath� is a model for representing ontrol-dominatedand data-dominated designs that augments FSM model with variables and expressionsthat speify onditions and ations in eah state.ILP : �Integer Linear Programming (Program)�.Lateny: It represents the needed runtime for a iruit between the the �rst data reeption andthe last data emission.Logi synthesis: synthesis of a strutural view, desribed via memory elements and booleanexpressions, into logi gates.RTL: �Register Transfer Level� a desription level where the register assignments are done.Multi-yling : a sheduling tehnique in whih a �omplex� operation is sheduled in multiplelok yles. This ehnique allows slower funtional units use within faster loks.Netlist A list, by name, of eah signal and eah symbol omponent and pin logially onnetedto the signal (or net). A netlist an be generated automatially by a Computer-AidedDesign system.Resoures-onstrained Sheduling: sheduling operations while respeting a given resoureonstraints set. 94

GlossaryRetiming : is the tehnique of moving the strutural loation of registers in a iruit to improveits performane, area, and/or power harateristis in suh a way that preserves itsfuntional behavior at its outputs.Sheduling : partitioning the design behavior into time ontrol steps.Set Independent: �SI� for a graph G = (V,E), a set independent represents a vertex set from
V , so that no two verties are adjaent.SoC : �System On a Chip�.Sub-optimal solution: near optimal solution.Time-onstrained Sheduling : assignment of operations into ontrol steps, given a �xedexeution time.Verilog: a hardware desription language (IEEE Standard 1364-2005).VHDL: a hardware desription language (IEE Std 1076-1987) used by designers to desribedesign behavior and struture at various abstration levels.

95

GlossaryPersonal Bibliography
Journal artiles

• Hadda Cherroun, Alain Darte and Paul Feautrier. Reservation Table Sheduling: Branh-and-bound based Optimization vs. Integer Linear Programming Tehniques. RAIRO-OR,41(4): 427�454, Deember 2007.Conferene artiles
• Hadda Cherroun and Paul Feautrier. An Exat Resoure Constrained-Sheduler usingGraph Coloring Tehnique. In AICCSA'07: Proeedings of the 5th ACS/IEEE Interna-tional Conferene on Computer Systems and Appliations, pages 554�561. IEEE ComputerSoiety. Amman, Jordan, May 2007. Note: Best paper award.
• Hadda Cherroun, Alain Darte and Paul Feautrier. Reservation Table Sheduling: a Branh-and-bound Based Optimization vs. Integer Linear Programming Tehniques. In Colloquesur l'Optimisation et les Systèmes d'Information (COSI'06), Algiers, Algeria, June 2006.
• Hadda Cherroun, Alain Darte and Paul Feautrier. Sheduling under Resoure Constraintsusing Dis-equations. In DATE '06: Proeedings of the onferene on Design, automationand test in Europe, pages 1067�1072, Munih, Germany, Marh 2006.
• H. Cherroun and B. Ziani Retour sur expériene: un premier pas vers l'introdutiondes TIC dans l'enseignement à l'université de Laghouat. In CEMAFORAD'O2, CongrèsEuro-méditéranéen sur l'approfondissement sur la formation à distane. Bejaia, Algérie,Novembre 2005.
• H. Cherroun, P. Feautrier and A. Naer. Coneption des paralleliseurs automatiques:Sti, un nouveau test de dépendane de données. In ISPS'01: Proeedings of the FifthInternational Symposium on Programming Systems, pages 152�162, Algiers, Algeria, May2001. Internal Reports
• Hadda Cherroun, Alain Darte and Paul Feautrier. Sheduling with Resoure Constraintsusing Dis-equations. Tehnial Report 2005-40, LIP, ENS-Lyon, September 2005.

96

Bibliography[1℄ DCDL 2000. Quik referene guide for the Design Constraints Desription Language(DCDL). version 0.3.7, http://www.vhdl.org/dwg/.[2℄ R. Airiau, J.-M. Bergé, V. Olive, and J. Rouillard. VHDL: langage, modélisation, synthèse.Presses polytehnique et universitaire romandes, 1990.[3℄ Jonathan Allen. Computer Arhiteture for Digital Signal Proessing. In Proeedings ofthe IEEE, 73, 5, pages 852�873, May 1985.[4℄ L. Allison, T. I. Dix, and C. N. Yee. Shortest path and losure algorithms for bandedmatries. Inf. Pro. Lett., 40:317�322, De. 1991.[5℄ C. Anourt and F. Irigoin. Sanning polyhedra with DO loops. In 3rd ACM SIGPLANSymposium on Priniples and Pratie of Parallel Programming, pages 39�50, june 1991.[6℄ I. Auge, F. Petrot, F. Donnet, and P. Gomez. Platform-based design from parallel Cspei�ations. IEEE Transations on CAD of Integrated Ciruits and Systems, 24(12):1811� 1826, De. 2005.[7℄ R. M. Badia, J. Cortadella, and E. Ayguadé. Computer-Aided Synthesis of Data-Path byUsing a Simulated Annealing Based Approah. In Pro. 9th LASTED Int'l Sympo. AppliedInformatis, pages 326�229, 1992.[8℄ Brian Bailey and Dan Gajski. RTL Semanti and Methodology. In Proeedings of theInternational Symposium on System Synthesis, pages 69�74. ACM Press, 2001.[9℄ Philippe Baptiste. A Theoretial and Experimental Study of Resoure Constraint Propaga-tion. PhD thesis, University of Compiègne, 1998.[10℄ Karen Bartleson. A New Standard for System-Level Design. Synopsis, In., 1999.[11℄ C. Bastoul. E�ient ode generation for automati parallelization and optimization. InISPDC'03 IEEE International Symposium on Parallel and Distributed Computing, pages23�30, Ljubjana, Otober 2003.[12℄ C. Bastoul, A. Cohen, A. Girbal, S. Sharma, and O. Temam. Putting Polyhedral LoopTransformations to Work. In LCPC'16 International Workshop on Languages and Com-pilers for Parallel Computers, LNCS 2958, pages 209�225, College Station, otober 2003.[13℄ Béla Bollobas. Modern Graph Theory. Springer, 1996.[14℄ F. Benhamou and A. Colmerauer. Constraint Logi Programming, Seleted Researh. MITPress, 1993. 97

Bibliography[15℄ Reinaldo A. Bergamashi, R. Camposano, and M. Payer. Sheduling under resoure on-straints and module assignment. INTEGRATION, the VLSI Journal, 12:1�19, De 1991.[16℄ Reinaldo A. Bergamashi, Raul Camposano, and Mihael Payer. Area and performaneoptimizations in path-based sheduling. In EURO-DAC '91: Proeedings of the onfereneon European design automation, pages 304�310, Los Alamitos, CA, USA, 1991. IEEEComputer Soiety Press.[17℄ Reinaldo A. Bergamashi, Salil Raje, and Louise Trevillyan. Control-�ow versus data-�ow-based sheduling: ombining both approahes in an adaptive sheduling system. IEEETrans. Very Large Sale Integr. Syst., 5(1):82�100, 1997.[18℄ M. Berry, D. Chen, P. Koss, D. Kuk, S. Lo, Y. Pang, L. Pointer, R. Rolo�,A. Sameh, E. Clementi, S. Chin, D. Sheider, G. Fox, P. Messina, D. Walker, C. Hsiung,J. Shwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson, R. Goodrum, and J. Martin.The PERFECT Club benhmarks: E�etive performane evaluation of superomputers.The International Journal of Superomputer Appliations, 3(3):5�40, 1989.[19℄ Pangrle B.M and Gajski D.D. Slier: A state synthesizer for intelligent silion ompilation.In Pro. IEEE Int. Conf. Computer Design: VLSI un Computers and Proessors., 1987.[20℄ Pierre Boulet and Paul Feautrier. Sanning polyhedra without do-loops. In Proeedings ofthe 1998 International Conferene on Parallel Arhitetures and Compilation Tehniques,page 4. IEEE Computer Soiety, Otober 1998.[21℄ Daniel Brélaz. New methods to olor verties of a graph. Commun. ACM, 22(4):251�256,1979.[22℄ Cadene Design System, In. Cadene Kits.http://www.adene.om/, site visited on 04/08/2006.[23℄ Raul Camposano. Path-based sheduling for synthesis. In IEEE Trans. Computer-AidedDesign, vol. 10, pages 85�93, Jan 1991.[24℄ Raul Camposano. Behavioral synthesis. In 33rd Design Automation Conferenes, 1996.[25℄ J. Carlier and P. Chrétienne. Problèmes d'ordonnanement: modélisation, omplexité etalgorithmes. Masson, 1988.[26℄ En-Shou Chang and Daniel D.Gajski. A onnetion-oriented binding model for bindingalgorithms. Tehnial report, Center for Embedded Computer Systems, University of Cal-ifornia,Irvine, 1996.[27℄ Samit Chaudhuri and Robert Walker. ILP-Based sheduling with time and resoure on-straints in high level synthesis. In Pro. of VLSI Design'94 (India), pages 17�25, 1994.[28℄ Hadda Cherroun and Paul Feautrier. An exat resoure onstrained-sheduler using grapholoring tehnique. In AICCSA'07: Proeedings of the 5th ACS/IEEE International Con-ferene on Computer Systems and Appliations, pages 554�561. IEEE Computer Soiety,May 2007. Note: Best paper award.[29℄ David R. Coelho. VHDL: a all for standards. In DAC '88: Proeedings of the 25thACM/IEEE onferene on Design automation, pages 40�47, Los Alamitos, CA, USA, 1988.IEEE Computer Soiety Press. 98

Bibliography[30℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdution to Algo-rithms. The MIT Press and MGraw-Hill Book Company, 1989.[31℄ Olivier Coudert. Exat oloring of real-life graphs is easy. In Design Automation Confer-ene, pages 121�126, 1997.[32℄ Alain Darte, Yves Robert, and Frédéri Vivien. Sheduling and Automati Parallelization.Birkhauser Boston, 2000.[33℄ David Landskov and Sott Davidson and Brue Shriver and Patrik W. Mallett. LoalMiroode Compation Tehniques. ACM Comput. Surv., 12(3):261�294, 1980.[34℄ Giovani De Miheli. Synthesis and Optimization of Digital Ciruits. MGraw-Hill, 1994.[35℄ M. Dhodhi, F. Hielsher, R. Storer, and J. Bhasker. Datapath synthesis using a problem-spae geneti algorithm. In IEEE Trans. on CAD, volume 14, pages 934�944, Aug. 1995.[36℄ E.W. Dijkstra. A note on two problems in onnexion with graphs. Numerishe Monthly,91(6):333�352, 1959.[37℄ François Donnet. Synthèse de haut niveau ontr�lée par l'utilisateur. PhD thesis, UniversitéParis VI, January 2004.[38℄ Nils Ellmenreih, Peter Faber, Martin Griebl, Robert Günz, Harald Keimer, WolfgangMeisl, Sabine Wetzel, Christian Wieninger, and Alexander Wüst. LooPo - Loop Paral-lelization in the Polytope Model.[39℄ Paul Feautrier. Data�ow Analysis of Array and Salar Referenes. International Journalof Parallel Programming, 20(1):23�53, 1991.[40℄ Paul Feautrier. Some e�ient solutions to the a�ne sheduling problem. part II: Multi-dimensional time. International Journal of Parallel Programming, 21(6):389�420, 1992.[41℄ Paul Feautrier. Salable and modular sheduling. In Springer Verlag, editor, In Andy D.Pimentel and Stamatis Vassiliadis, editors, Computer Systems: Arhitetures, Modelingand Simulation (SAMOS 2004), volume LNCS 3133, pages 433�442, July 2004.[42℄ Robert W. Floyd. Algorithm 97 (Shortest Paths). Communiation of the ACM, 5(6):345,1962.[43℄ Daniele Frigioni, Alberto Marhetti-Spaamela, and Umberto Nanni. Inremental Algo-rithms for the Single-Soure Shortest Path Problem. In Proeedings of the 14th Confereneon Foundations of Software Tehnology and Theoretial Computer Siene, pages 113�124,London, UK, 1994. Springer-Verlag.[44℄ D. D. Gajski and L. Ramahandran. Introdution to High-Level Synthesis. IEEE Designand Test of Computers, 11(4):44�54, 1994.[45℄ Daniel D. Gajski. Priniple of Digital Design. Prentie Hall International Edition, 1997.[46℄ M. R. Garey and D. S. Johnson. Computers and Intratability: A Guide to the Theory ofNP-Completeness. W.H. Freeman and Co., 1979.99

Bibliography[47℄ Catherine H. Gebotys and Mohamed Elmasry. Simultaneous Sheduling and Alloationfor Cost Constrained Optimal Arhitetural Synthesis. In 28th Annual ACM/IEEE DesignAutomation Conferene (DAC'91), pages 2�7, San Franiso, CA, USA, 1991.[48℄ E.F. Girzy. Appliability of a Subset of ADA as an Algorithmi Hardware DesriptionLanguage for Graph-Based Hardware Compilation.[49℄ E.F. Girzy and d.P. Knight. An ADA to Standard Cell Hardware Compiler Based onGraph Grammars and Sheduling. In Pro. of the IEEE International Conferene onComputer Design (ICCD), pages 726�731, Otober 1984.[50℄ Milind Girkar and Constantine D. Polyhronopoulos. The hierarhial task graph as auniversal intermediate representation. Int. J. Parallel Program., 22(5):519�551, 1994.[51℄ D.E. Goldberg. Geneti Algorithm in Searh, Optimization and Mahine Learning.Addison-Wesley, Reading, MA., 1989.[52℄ Sriram Gorindarajan. Sheduling algorithms for high-level Synthesis, Marh 1995. "Meth-ods and algorithms for system design" notes of ourse, Faulty of Eletrial EngineeringMekelweg Delft, The Netherlands.[53℄ Martin Grötshel. Disrete Mathematis in Manufaturing. In Robert E. O'Malley, editor,ICIAM 1991: Proeedings of the Seond International Conferene on Industrial and AppliedMathematis, pages 119�145. SIAM, 1991.[54℄ Martin Grötshel, László Lovász, and Alexander Shrijver. Geometri Algorithms andCombinatorial Optimization. Springer-Verlag, 1988.[55℄ Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alex Niolau. SPARK: A High-Level Syn-thesis Framework For Applying Parallelizing Compiler Transformations. In VLSID'03:Proeedings of the 16th International Conferene on VLSI Design (VLSI'03), page 461.IEEE Computer Soiety, 2003.[56℄ P. Gutberlet, J. Müller, H. Krämer, and W. Rosenstiel. Automati module alloation inhigh level synthesis. In European Design Automation Conferene EURODAC`92, Hamburg,1992, pages 328�333, 1992.[57℄ M. J. M. Heijligers, L. J. M. Cluitmans, and J. A. G. Jess. High-level synthesis shedulingand alloation using geneti algorithms. In ASP-DAC '95: Proeedings of the 1995 onfer-ene on Asia Pai� design automation (CD-ROM), page 11, New York, NY, USA, 1995.ACM Press.[58℄ Dorit S. Hohbaum, editor. Approximation algorithms for NP-hard problems. PWS Pub-lishing Co., Boston, MA, USA, 1997.[59℄ Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms. Computer SienePress, 1978.[60℄ S. H. Huang, Y. L. Jeang, C. T. Hwang, Y. C. Hsu, and J. F. Wang. A tree-based shedulingalgorithm for ontrol-dominated iruits. In DAC '93: Proeedings of the 30th internationalonferene on Design automation, pages 578�582, New York, NY, USA, 1993. ACM Press.100

Bibliography[61℄ C.T. Hwang, T.H. Lee, and Y. C. Hsu. A formal approah to the sheduling problem inhigh level synthesis. IEEE Transations on CAD, April 1991.[62℄ Benzakki J. and M. Israel. OSYS : A High-Level Synthesis Tool of VLSI and HW/SWCoDesign. In Seond IFIP International Workshop on Hardware/Software Codesign(Codes/CASHE'93), Innsbruk-Igls, Austria , pages 24�27, May 1993.[63℄ Rajiv Jain, Ashutosh Mujumdar, Alok Sharma, and Hueymin Wang. Empirial evaluationof some high-level synthesis sheduling heuristis. In DAC '91: Proeedings of the 28thonferene on ACM/IEEE design automation, pages 686�689, New York, NY, USA, 1991.ACM Press.[64℄ Gilles Kahn. The Semantis of a Simple Language for Parallel Programming. In IFIPCongress, pages 471�475, 1974.[65℄ Daniel Kästner and Mar Langenbah. Integer Linear Programming vs. Graph-BasedMethods in Code Generation. Tehnial Report A/01/98, Universität des Saarlandes,February 1998.[66℄ S. Kirkpatrik, C. D. Gelatt Jr., and M. P. Vehi. Optimization by Simulated Annealing.Siene, 220(4598):671�680, May 1983.[67℄ P. Kission, H. Ding, and A. A. Jerraya. Strutured Design Methodology For High-LevelDesign. In In Pro. of 31st Design Automation Conferene , June 1994.[68℄ Krzysztof Kuhinski. Constraints-Driven Sheduling and Resoure Assignment. ACMTrans. Des. Autom. Eletron. Syst., 8(3):355�383, 2003.[69℄ Monia Lam. Software Pipelining: An E�etive Sheduling Tehnique for VLIW Mahines.In Pro. SIGPLAN Conf. Programming Language Design and Implementation, pages 318�328� June 1988.[70℄ A. H. Land and A. G. Doig. An Automati Method of Solving Disrete ProgrammingProblems. Eonometria, 28(3):497�520, Jul 1960.[71℄ B. Landwehr, P. Marwedel, and R. Doemer. OSCAR: Optimum Simultaneous Sheduling,Alloation and Resoure Binding Based on Integer Programming. In European DesignAutomation Conferene, 1994.[72℄ J. Lee, Y. Hsu, and Y. Lin. A new Integer Linear Programming Formulation for theSheduling Problem in Data-Path Synthesis. In Pro. of Int. Conf. on Computer-AidedDesign, pages 20�23, 1989.[73℄ Tai Ly, David Knapp, Ron Miller, and Don MaMillen. Sheduling using behavioral tem-plates. In DAC'95: Proeedings of the 32nd ACM/IEEE Conferene on Design Automation,pages 101�106, New York, NY, USA, 1995. ACM Press.[74℄ E. Martin, O. Stentieys, H. Dubois, and J.L. Philippe. GAUT : An Arhitetural SynthesisTool for Dediated Signal Proessors. In EURO-DAC'93, Hambourg, Germany, pages 20�24, Sep. 1993.[75℄ P. Marwedel. Mathing System and Component Behaviour in the MIMOLA SynthesisTools, 1990. 101

Bibliography[76℄ Dániel Marx. Graph Coloring Problems and their Appliations in Sheduling. PeriodiaPolytehnia Ser. El. Eng., 48(1-2):5�10, 2004.[77℄ M. MFarland. Using bottom-up design tehniques in the synthesis of hardware fromabstrat behavioral desriptions. In Proeedings of the ACM/IEEE 23rd Design AutomationConferene, pages 474�480, 1986.[78℄ Mentor. Graphis Catapult.http://www.mentor.om/produts/-based_design/atapult__synthesis.[79℄ M. Minoux. Programmation mathématique: théorie et algorithmes. Dunod, Paris, 1983.[80℄ Steven S. Muhnik. Advaned Compiler Design Implementation. Morgan Kaufmann Pub-lishers, San Franiso, CA, 1997.[81℄ K.G. Murty. Operations Researh: Deterministi Optimization Models. Prentie-Hall, 1995.[82℄ M. Held N. Wehn and M. Glesner. A novel sheduling/alloation approah for data-path synthesis based on geneti paradigms. In Pro. TC10/W10.5 Workshop Logi andArhitetural Synthesis, pages 47�56, 1990.[83℄ G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. J. Wiley, NewYork, 1988.[84℄ CPLEX Optimization . Using the CPLEX Callable Library, 1995.[85℄ Preeti R. Panda and Nikil D. Dutt. 1995 High-Level Synthesis Design Repository. In ISSS'95: Proeedings of the 8th International Symposium on System Synthesis, pages 170�174,New York, NY, USA, 1995. ACM Press.[86℄ B. M. Pangrle and D. D. Gajski. Design Tools for Intelligent Silion Compilation. IEEETransations on Computer-Aided Design, 6(6):1098�1112, November 1987.[87℄ In-Cheol Park and Chong-Min Kyung. Fast and near optimal sheduling in automatidata path synthesis. In DAC '91: Proeedings of the 28th onferene on ACM/IEEEdesign automation, pages 680�685, New York, NY, USA, 1991. ACM Press.[88℄ Alie C. Parker, Jorge T. Pizarro, and Mith Mlinar. MAHA: a program for datapath syn-thesis. In DAC '86: Proeedings of the 23rd ACM/IEEE onferene on Design automation,pages 461�466, Pisataway, NJ, USA, 1986. IEEE Press.[89℄ Pierre G. Paulin and John P. Knight. Fore-direted sheduling in automati data pathsynthesis. In 24th ACM/IEEE DAC, 1987.[90℄ Pierre G. Paulin and John P. Knight. Algorithms for High-Level Synthesis. IEEE Des.Test, 6(6):18�31, 1989.[91℄ Jürgen Peemöller. A Corretion to Brelaz's Modi�ation of Brown's Coloring Algorithm.Commun. ACM, 26(8):595�597, 1983.[92℄ Van Laarhoven P.M.J and Aart E.H.L. Simulated Annealing: Theory and Appliation.Group, Dordreht, Kluwer Aademi, 1987.102

Bibliography[93℄ F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of e�ient nested loops from poly-hedra. International Journal of Parallel Programming, 28(5):469�498, Otober 2000.[94℄ Ivan Radivojevi and Forrest Brewer. A New Symboli Tehnique for Control-DependentSheduling. IEEE Transations on Computer-Aided Design of Integrated Ciruits and Sys-tems, 15(1):45�57, January 1996.[95℄ G. Ramalingam and T. Reps. An inremental algorithm for a generalization of the shortest-path problem. Journal of Algorithms, 1992.[96℄ D. S. Rao and F. J. Kurdahi. Partitioning by regularity extration. InDAC '92: Proeedingsof the 29th ACM/IEEE onferene on Design automation, pages 235�238, Los Alamitos,CA, USA, 1992. IEEE Computer Soiety Press.[97℄ Tangy Risset. Contribution à la ompilation de nids de boules sur siliium. Habilitationà diriger des reherhes, Université de Rennes 1, Otobre 2000.[98℄ Samir Palnitkar. Verilog HDL : A Guide to Digital Design and Synthesis. Prentie Hall,1998.[99℄ Alexander Shrijver. Theory of Linear and Integer Programming. John Wiley & Sons, In.,1986.[100℄ Zhiyu Shen, Zhiyuan Li, and Pen-Chung Yew. An Empirial Study of Fortran Programs forParallelizing Compilers. IEEE Transations on Parallel and Distributed Systems, 1(3):356�364, 1990.[101℄ L. Stok and R. Van Den Born. EASY : Multiproessor Arhiteture Optimization, 1988.[102℄ Synopsys. In. Behavioral SystemC Compiler. http://www.synopsys.om/produts/b.[103℄ Synopsys. In. CoCentri SystemC Compiler.http://www.synopsys.om/produts/oentri.[104℄ I.D. Ullman. NP-omplete Sheduling Problems. Journal Comput. System Si., 10(10):384�393, 1975.[105℄ W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. H. M. Korst, J. L. van Meerbergen,and A. van der Werf. Improved Fore-direted Sheduling in High-Throughput DigitalSignal Proessing. In IEEE Trans. Computer-Aided Design, volume 14, pages 945�960,Aug. 1995.[106℄ W. G. J. Verhaegh, E. H. L. Aarts, P. C. N. Van Gorp, and P. E. R. Lippens. A Two-Stage Solution Approah to Multidimensional Periodi Sheduling. IEEE Transations onComputer-Aided Design, 20(10):1185�1199, Otober 2001.[107℄ Jurij �il. Sheduling strategies in high-level synthesis. Informatia (Slovenia), 18(1), 1994.[108℄ S. Warshall. A theorem on boolean matries. JACM, 9(1):11�21, 1962.[109℄ D. Welsh and M . Powell. An upper bound for the hromati number of a graph and itsappliations to timetabling problems. Comput. J., 10:85�86, 1967.[110℄ Douglas B. West. Introdution to Graph Theory. Prentie Hall, 1996.103

Bibliography[111℄ Douglas B. West. Introdution to Graph Theory, Seond Edition. Prentie Hall, 1996.[112℄ T.C. Wilson, N. Mukherjee, M.K. Garg, and D. K. Banerji. An ILP Solution for Opti-mum Sheduling, Module and Register Alloation, and Operation Binding in DatapathSynthesis. VLSI Design, 1995.[113℄ Xilinx In. http://www.xilinx.om, visited on 26/03/2006.[114℄ Jerry Chih-Yuan Yang, Giovanni De Miheli, and Maurizio Damiani. Sheduling andControl Generation with Environmental Constraints Based on Automata Representations.In IEEE Trans. Computer-Aided Design of Integrated Ciruits and Systems, pages 166�183,Feb. 1996.[115℄ Peng Yang and Franky Catthoor. Pareto-optimization-based run-time task shedulingfor embedded systems. In CODES+ISSS'03: Proeedings of the 1st IEEE/ACM/IFIPInternational Conferene on Hardware/Software Codesign and System Synthesis (ISSS'03),pages 120�125. ACM Press, 2003.[116℄ Peng Yang, Chun Wong, Paul Marhal, Franky Catthoor, Dirk Desmet, Diederik Verkest,and Rudy Lauwereins. Energy-Aware Runtime Sheduling for Embedded-MultiproessorSoCs. IEEE Des. Test, 18(5):46�58, 2001.[117℄ L. Zhang. SILP: Sheduling and Alloating with Integer Linear Programming . PhD thesis,Tehnishe Fakultät der Universität des Saarlandes, 1996.

104

Appendix AGraph AlgorithmsThe most algorithms designed in this thesis are based on graph elementary algorithms. For sakeof larifying their priniple and their omplexity, we have dressed this appendix. Indeed, in thisappendix we reall some fundamental graph algorithms and theirs omplexities are detailed ifneessary.Given a graph G = (V,E), where V is a set of n verties and E the set of m edges. Inwhat follow, as we will talk about both undireted and direted graphs, we use the followingterminology: we use edge and yle for undireted graphs, and ar and iruit for direted graph.A.1 Depth-First Searh Algorithm and its FeaturesDepth-First Searh (DFS) algorithm is one of the simplest algorithms for searhing a graph andthe arhetype for many important graph algorithms.The strategy followed by depth-�rst searh is, as its name implies, to searh �deeper� inthe graph whenever possible. In depth-�rst searh, edges are explored out of the most reentlydisovered vertex v that still has unexplored edges leaving it. When all edges have been explored,the searh �baktraks� to explore edges leaving the vertex from whih v was disovered. Thisproess ontinues until we have disovered all the verties that are reahable from the originalsoure vertex. If any undisovered verties remain, then one of them is seleted as a new soureand the searh is repeated until all verties are disovered.Depth-�rst searh provides many information about the struture of a graph and has manyinteresting features, we an quote:1. Depth-�rst searh builds a sub graph of predeessors Gπ = (V,Eπ), where : Eπ =
{(π(v), v) : v ∈ V and π(v) 6= NIL}. Gπ forms a depth-�rst forest. In the aseof an undireted (resp. direted) graph, the edges (resp. ars) of Eπ are alled tree edges(tree ars).2. Besides reating a depth-�rst forest, depth-�rst searh also �time-stamps� eah vertex. Eahvertex v has two time-stamps: the �rst time-stamp d[v] reords when v is �rst disovered(and grayed), and the seond time-stamp f [v] reords when the searh �nished examiningall the adjaeny list and blakens v. Thus, a vertex v is a proper desendent of a vertex uin the depth-�rst forest of a given direted/undireted graph i� d[u] < d[v] < f [v] < f [u].3. Another interesting property of depth-�rst searh is that the searh an be used to lassifythe edges of the input graph G. We an de�ne four edge types in terms of the depth-�rstforest Gπ produed by a depth-�rst searh on G.105

Appendix A. Graph AlgorithmsAlgorithm 5: Depth-First Searh Algorithmbeginforeah vertex u ∈ V [G] do
color[u]← White;
π[u]← NULL;end

time← 0;foreah vertex u ∈ V [G] doif color[u] = White thenPP-Visit (u);endendendPP-Visit(u)begin
color[u]← Gray;
d[u]← time + 1 ;foreah vertex v ∈ Adj[v] doif color[u] = White then

π[u]← u;endend
color[u] = Blak;
f [u]← time + 1 ;end
• Tree edges : are edges in the depth-�rst forest Gπ. Edge (u, v) is a tree edge if vwas �rst disovered by exploring edge (u, v).
• Bak edges (R) are those edges (u, v) onneting a vertex u to an anestor v in thedepth-�rst tree Gpi. Self-loops, whih may our in direted graphs, are onsideredto be bak edges.
• Forward edges (T) are those non-tree edges (u, v) onneting a vertex u to a de-sendant v in a depth-�rst tree.
• Cross edges (A) are all other edges. They an go between verties in the samedepth-�rst tree, as long as one vertex is not an anestor of the other, or they an gobetween verties in di�erent depth-�rst trees.It should be mentioned that in the ase of undireted graphs, we an distinguished onlytwo kinds of edges: edges belonging to the depth-�rst forest and those whih don't belongto it. Let us see Figure. A.1: (a) represents the steps of the DFS, where eah vertex uis labeled by its d[u]/d[f], and (b) represents the depth-�rst forest (bold arrows) and thelassi�ation of ars.The omplexity of Algorithm 5 is in O(n + m). This algorithm an serve to enumerate abasis of yles and paths of G. In addition, in the ase of graph without yles, one an establishthe topologial sort by exploiting the values of f . Furthermore, the DFS allows a yle detetionand it an be used to enumerate the strongly onneted omponents of a graph106

Appendix A. Graph Algorithms
z

y

S

w

x

t

uvA

R

R

T

T

T

T

(b)

x

y

w v u

tSz

4/5 7/8 12/13 14/15

11/161/102/93/6

(a) Figure A.1: DFS PropertiesA.2 Maximal-weight PathsIn the problem of �nding paths of maximal weights 32 (for brevity we use longest-paths) in agraph [30℄ we are given a direted graph G = (V,E,w), where V is a set of n verties and E a setof ars with a weight funtion w : E → Z whih a�ets eah ar (i, j) by a real value �weight�
w(i, j) . The weight of path P = [v0, v1, . . . , vk) is the sum of the weights of its onstituent edges:
w(P) =

∑k
i=1 w(vi−1, vi). We de�ne the path of maximal weight from u to v by:

∆(u, v) =

{

maxp w(p) : u
p
 v if there are paths from u to v

+∞ elseIn the literature, we an distinguished two kinds of algorithms resolving this problem aord-ing to what we onsider: 1/ searhing paths of maximal weight from a given vertex s �alledsoure� to all the others, the problem is alled �Single-soure longest-paths problem� or 2/ searh-ing paths of maximal weights from u to v for every pair of verties u and v, the problem is alled�All-pairs longest-paths problem�.A.2.1 Relaxation TehniqueFirst, let us explain the relaxation tehnique that is used in both algorithms, desribed in whatfollow, whih �nds paths of maximal weight from a given soure s to all the others.In this tehnique, for eah vertex v ∈ V , we maintain an attribute d[v], whih is an upperbound on the weight of a longest-path from soure s to v. We all d[v] the �estimate of the pathof maximal weight �. We initialize the estimate paths of maximal weight by d[v] = −∞ for eah
v. We de�ne π(v) the predeessor of vertex v for whih d[v] has been updated for the last time.RELAX (u, v,w)if d[v] < d[u] then

d[v]← d[u] + w(u, v);
π(v)← u;end32In the literature, these algorithms are often presented as �nding paths of minimal weight. This is the same,one just have to hange the weight signs. Our explanations are based on maximal-weight paths.107

Appendix A. Graph AlgorithmsAlgorithm 7: Dijkstra's AlgorithmdébutInitialize-soure(G, s);
S ← ∅;
Q← V ;while Q 6= ∅ do

u← Extrat-Max(Q);
S ← ∪ {u};foreah v ∈ Adj[u] doRELAX(u, v,w)endend�nThe proess of relaxing an ar (u, v,w) onsists of testing whether we an improve the �pathof maximal weight estimate� of v, going through u and, if so, updating d[u] and π(v).A.2.2 Dijkstra's AlgorithmDijkstra's algorithm resolves the �Single-soure longest-paths problem� on a weighted graphwhose all edge weights are nonpositive (w(u, v) ≤ 0). Dijkstra's algorithm maintains a set S ofverties whose longest-paths from the soure s have already been determined suh that for eahvertex v ∈ S we have d[u] = ∆(u, v). At eah step, the algorithm selets a vertex u ∈ V − Swhose d[u] is maximal �whih is done by Extrat-Max primitive�, adds u to S, and relaxes alledges leaving u.In Algorithm 7, the data-struture of Q represents a max-priority queue, whih ontainsverties in V − S, keyed by their d values. If the priority queue is implemented with a simplearray then the Extrat-Max proedure will be exeuted in O(n). In Dijkstra's algorithm theWhile loop is repeated n times. In the whole exeution, the For loop is repeated |E| timesi.e. m times, the number of ars, thus for eah iteration, it takes O(1). Consequently, the totalruntime of the algorithm is O(n2 + m) ≡ O(n2)33.However, when the graph is dense �|E| is lose to |V |2�, it is more advised to implement themax-priority queue by a binary heap34. With suh implementation, the proedure Extrat-Maxwill be in O(lg n) and eventual assignation d[v]← d[u]+w(u, v) will be realized by the primitiveInrease-key (Q, v, d[u] + w(u, v)) in O(lgn), in whih ase the omplexity of the algorithm 7beames O((n + m). lg n).However, the most suitable data struture for speeding up this algorithm is the Fibonai-heap [30℄. With this data struture, the amortized ost of eah all to Extrat-Max primitive35 in O(lg n), and eah of the |E| alls to the Inrease-key takes only an amortized time in

O(1). Consequently, Dijkstra's algorithm an be exeuted in O(n. lg n + m).33In what follow, often the O(|E|) is majored by O(n2)34A (binary) heap data struture is an array objet that an be viewed as a nearly omplete binary searh treewhih has speial basi primitives suh : Inrease-key (Q, v, k) that inrease the key of a node v in O(lgn) whilepreserving the queue order.35The amortized ost is the required time to perform a sequene of data-struture operations is averaged overall the operations performed. Amortized analysis di�ers from average-ase analysis in that probability is notinvolved; an amortized analysis guarantees the average performane is an of eah operation in the worst ase.108

Appendix A. Graph AlgorithmsAlgorithm 8: Bellman-Ford's Algorithm.beginInitialize-soure(G, s);for i← 1 to |V | − 1 doforeah ar (u, v) ∈ E doRELAX(u, v,w);endendforeah ar (u, v) ∈ E doif d[v] < d[u] + w(u, v) thenreturn FALSE ;endendreturn TRUE ;endA.2.3 Bellman-Ford's AlgorithmThe Bellman-Ford's algorithm solves the single-soure longest-paths in the general; i.e. the asewhere edge weights are arbitrary. Given a weighted, direted G = (V,E,w) with a soure s, theBellman-Ford's algorithm returns a boolean value indiating whether or not there is a positive-weight yle, that is reahable from the soure. If there is suh a yle, the algorithm indiatesthat no solution exists. If there is no suh yle, the algorithm produes the longest-paths fromthe soure s to eah vertex v ∈ V and their weights. Bellman-Ford's algorithm �Algorithm 8�runs in O(n3) time.In the longest-paths problem, one wishes to �nd for eah pair of verties u, v ∈ V , thelongest-path from u to v, where the weight of a path is the sum of the weights of its onstituentedges. We typially want the output in tabular form: the entry in u's row and v's olumn shouldbe the weight of a longest path from u to v.One an solve the all-pairs longest-paths problem by running a single-soure longest-pathsalgorithm |V | times, one for eah vertex as the soure. If all edge-weights are nonpositivethe n alls to Dijkstra's algorithm, aording to its implementation needs O(n3) with an array,
(n2 + nm) lg n) with a binary heap, or O(n2 lg n + nm)) with a Fibonai heap. But in generalase, the n alls to the Bellman-Ford's algorithm gives results in O(n4).In the literature, there are some solutions whih do better. In this short appendix, we reportthe two well known algorithms to �nd all-pairs longest-paths: Floyd-Warshall's algorithm andJohnson's algorithm.A.2.4 Floyd-Warshall's AlgorithmFloyd-Warshall's algorithm, assume that there are no positive-weight yles. This algorithmuses a dynami-programming formulation to resolve the all-pairs longest-paths problem. Beforeproeeding, let us brie�y reap the steps for developing any dynami-programming algorithm,indeed one has to : 1/ haraterize the struture of an optimal solution, 2/ reursively de�nethe value of an optimal solution, 3/ ompute the value of an optimal solution in a bottom-upfashion.Indeed, Floyd and Warshall start by haraterizing the struture of an optimal solution.Assume that the graph is represented by an adjaeny matrix W = (wij).109

Appendix A. Graph Algorithms
p_1 p_2

i

k

jAll intermediate verties of p are in {1, 2, . . . , k}

All intermediate verties of p2 are in {1, 2, . . . , k − 1}All intermediate verties of p1 are in {1, 2, . . . , k − 1}

The algorithm is based on the following observation. Let V = {1, 2, . . . , n} be the set of allverties of G, for eah k ∈ V , onsider the subset {1, 2, . . . , k}. Let p be the longest-path fromverties i to j. p is an elementary path as there are nonpositive yles in G.The algorithm uses the relationship between the path p and all longest paths from i to jwhose omponents verties are in the set {1, 2, . . . , k− 1}: (1) If k is not an intermediate vertexin the path p, so all intermediate verties of p are in {1, 2, . . . , k−1}, thus the longest-paths from
i to j whose intermediates verties are in {1, 2, . . . , k−1} is also a longest path from i to j whoseintermediates verties are in {1, 2, . . . , k}. (2) If k is an intermediate vertex in p then we ut thepath into two sub-paths: p : i

p1

 k
p2

 j, as shown in Figure. A.2.4. The path p1 (resp. p2) is alongest-path from i to k (resp. from k to j whose intermediate verties are in {1, 2, . . . , k − 1}.Indeed, k isn't an intermediate vertex in both paths p1 and p2. This is indues diretly from thefat that the sub-paths of a longest-path are them self longest-path.Given a graph where all yles are negative or null, Floyd-Warshall's algorithm, based onthe dynami programming priniple desribed above, de�nes a
(k)
ij as the longest-path from i to

j whose intermediates verties are belonged to {1, 2, . . . , k}. When k = 0, a
(k)
ij = wij , thus thereursive de�nition of the longest path is:

a
(k)
ij =

{

wij if k = 0

max{a
(k−1)
ij , a

(k−1)
ik + a

(k−1)
kj } if k > 0.Floyd-Warshall's algorithm �Algorithm 9� runs in (n3) time and its spae requirement isabout n2. In this algorithm, the supersript k in a(k) is added only to indiate the number ofthe iteration. When implementing this algorithm, it does not appear.A.2.5 Johnson's AlgorithmJohnson's algorithm �Algorithm 10� resolves the all-pairs longest-paths problem in O(n2lgn +

m.n). For sparse graphs, it is asymptotially better than the Floyd-Warshall's algorithm whihis in O(n3). The algorithm either returns a matrix of longest-path weights for all pairs of vertiesor reports that the input graph ontains at least one positive-weight yle. Johnson's algorithmuses, as subroutines, both Dijkstra's algorithm and the Bellman-Ford's algorithm, whih aredesribed previously.Johnson's algorithm uses the tehnique of reweighting, whih works as follows. If all edge-weights w in G are non positives, we an �nd longest paths between all pairs of verties by runningDijkstra's algorithm one from eah vertex. If G has positive-weight edges but no positive-weightyles 110

Appendix A. Graph AlgorithmsAlgorithm 9: Floyd-Warshall's Algorithmbeginfor i from 1 to n dofor j from 1 to n do
aij ← wij;end

aii ← 0 ;endfor k from 1 to n dofor i from 1 to n dofor j from 1 to n do
a

(k)
ij ← max{a

(k−1)
ij , a

(k−1)
ik + a

(k−1)
kj } ;endendendendThis tehnique de�nes a new reweighting funtion wr whih satis�es two proprieties: (1)For eah ouple of verties i, j ∈ V , if we knew the longest-paths for G = (V,E,wr) �usingthe reweighting funtion wr�, it will be easy to �nd the longest-paths from i to j by using thefuntion w, we talk about �longest-path onservation�, (2) for eah pair (i, j), the new weight

wr(i, j) is positive or null.To get the new reweighting funtion wr, we de�ne the funtion h : V → R whih assoiatea real value to eah vertex. Indeed, for eah edge (u, v) ∈ E, we de�ne a new weight wr(i, j) =
w(u, v) + h(v)− h(u).In Algorithm 10, Bellman-Ford's algorithm is used to hek whether a positive-weight yle,in whih ase no solution exists. In the opposite ase, the longest-paths from the �titious soure
s to eah vertex v ∈ V , ∆(s, v) will serve to de�ne the reweighting funtion h.Table A.1 summarizes, for eah algorithm, desribed above, their respetive omplexity andthe features of the graph for whih they are most suitable.A.3 Roy-Warshall's AlgorithmRoy-Warshall's algorithm omputes, for a direted graph G = (V,E), the reahability rela-tionship between all-pairs of verties; it returns, for eah pair of verties i, j, a boolean valueindiating whether or not there is a path from i to j. Roy-Warshall's algorithm follows thedynami programming priniples same as in Floyd-Warhall's algorithm36. Indeed, we de�ne
Acc

(k)
ij the boolean value whih attests that j is reahable from i by a path whose intermediatesverties are in the set {1, 2, . . . , k}. Thus, we de�ne reursively Accij as:

Acc
(k)
ij =

TRUE If an edge from i to j exists and k = 0
FALSE If no edge from i to j and k = 0

Acc
(k−1)
ij or (Acc

(k−1)
ik and Acc

(k−1)
kj) if k > 0.36Historially, the Floyd-Warhall's algorithm is inspired from the priniple of the Roy-Warshall's algorithm byperforming the following substitutions : �or = max� and �and = +�111

Appendix A. Graph AlgorithmsAlgorithm 10: Johnson's algorithmbeginBuild G′, Where V [G′] = V [G] ∪ {s} and
E[G′] = E[G] ∪ {(s, v); v ∈ V [G]};if Bellman-Ford (G′, w, s) = False then� G ontains positive-weights yles�endforeah vertex v ∈ V [G′] do

h(v)← −∆(s, v)/* Where ∆(s, v) is omputed by Bellman-Ford's Algorithm */endforeah edge (u, v) ∈ E[G′] do
wr(u, v)← w(u, v) + h(v) − h(u)endforeah vertex u ∈ V [G] do
∆r(u, v)← Dijkstra(G,wr, u);foreah vertex v ∈ V [G] do

au,v ← −∆r(u, v) + h(u) − h(v)endendReturn D ;endAlgorithm Problem Graph proper-ties Time Complexity Spae Com-plexityDijkstra Single-sourelongest-paths Edge weightsmust bepositive Using an array Binary heap Fibonai heap(Sparse graph) O(n)

O(n2) O((n + m) lg n) O(n lg n + m)Bellman-Ford // any graph O(n3 O(n)Floyd-Warshall All-pairslongest-paths no positive-weight yles O(n3) O(n2)Johnson // Sparse graph O(n2 lg n + n.m) O(n)Table A.1: Summary of Longest-Paths Algorithms.Same as Floyd-Warhall's algorithm, Roy-Warshall's algorithm �Algorithm 11� runs in n3time and requires n2 memory spae.

112

Appendix A. Graph Algorithms

Algorithm 11: Roy-Warshall's Algorithmbeginfor eah pair (i, j) ∈ (V XV)E doif edge (i, j) then
Accij ← TRUE;else
Accij ← FALSE;endendfor k from 1 to n dofor i from 1 to n dofor j from 1 to n do

Accij ← Accij or (Accik and Acckj) ;endendendend

113

Appendix BBenhmark DesriptionIn order to measure the real performanes of our algorithms, we have tested them on some testprograms get from real-life appliations. These onsist of ode fragments from the Perfet-Club [18℄ and HLSynth95 [85℄ benhmarks. The PerfetClub benhmarks represent appliationsin a number of areas of engineering and sienti� omputing and the HLSynth95 benhmarks,more spei�ally, represent a repository of appliations in embedded systems.B.1 1995' High-Level Synthesis Design RepositoryHLSynth95 represents a set of designs that an serve as examples for High-Level Synthesissystems. Indeed, it ontains many appliations and modules widely used in embedded systems.The designs vary in omplexity from simple behavioral �nite state mahines to more omplexdesigns suh as miroproessors, �oating point units, image proessing appliations,The designs are in C or VHDL languages. All of these designs are available from the designrepository at U.C Irvine university (anonymous ftp://is.ui.edu/pub/hlsynth). Mainly, we haveseleted the designs desribed at the behavioral level. Table B.1 summarizes some of the impor-tant aspets related to the funtionality of these designs, suh as typial ontrol features present,style of desription and major data types used. The number of lines of ode is mentioned to givea rough idea of the design's size.B.2 PerfetClub BenhmarksThe PerfetClub �For �PERFormane Evaluation for Cost-e�etive Transformations�� suite isa set of thirteen programs that total well over 50, 000 lines of soure ode [18℄. They representappliation in a number of area of engineering and sienti� omputing, and in many ases theyrepresent odes that are urrently used by a number of omputational researh and developmentgroups. This repository has been originally developed in order to measure performanes ofparallel arhitetures and superomputers.Our benhmark are simple kernels rather than full-�edged appliations, whih are muhmore omplex. However, the added omplexity is a problem for symboli sheduling. Indeed,the PerfetClub benhmarks are hosen as they ontain sienti� appliations whih ontainmore parallelism through nested loops. These appliations are the most aimed by our generalsheduling strategies. Table B.2 reports some features of a part of these designs.114

Appendix B. Benhmark Desription
Design Name Design Desription Design Level Control fea-tures Data types Lines of CodeFP_Adder Floating Point Adder AlgorithmiBehavior Nested IfsFor loopsPro/Fun Bit Vetor In-teger Enum 640FP_Mult Floating Point Multi-plier AlgorithmiBehavior Nested IfsFor loopsPro/Fun Bit Vetor In-teger Enum 425FP_Divider Floating Point Divider AlgorithmiBehavior For loops CaseStmt Bit Vetor In-teger Enum 410Barode Barode Reader AlgorithmiBehavior Nested Loops Bit Vetor In-teger 110Adaptive Chip Adaptive Interpo-lation AlgorithmiBehavior Fun CallsNested Loops Multi Dimen-sional Integerarrays 810Memory (7 models) Image Proessing Ap-pliations AlgorithmiBehavior Fun NestedLoops 2-DimensionalFloat arrays 140Beamformer Filter Vetor Prod-ut/Summation Nested ForLoops (4levels) 3-DimensionalInteger arrays 100Jaobian Robot Motion Compu-tation AlgorithmiBehavior For Loops 2-DimensionalDouble Integerarrays 450FFT Fast Fourier Transform AlgorithmiBehavior Nested WhileLoops Array of BitVetor 145Table B.1: Features of Designs.

Program Appliation Control Features Lines of CodeADM Air Pollution Nested Ifs, For loops 6 142SPICE Ciruit Simulation For loops 18 304OCEAN Computational FluidDynamis Nested Ifs, For loops 4215SPEC77 Weather Simulation Nested Ifs, For loops 3880MDG Liquid Water Simula-tion For loops 1231Table B.2: Part of the PerfetClub Benhmarks Suite.
115

