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Abstract

Scheduling is one of the important tasks in High-Level Synthesis (HLS). Scheduling a whole
program, especially with loops, is hard as too many constraints and objectives interact. We
propose to organize scheduling in gradual ways. This thesis focuses on some steps of the de-
signed scheduling approaches. An efficient formalism to express resource constraints, using dis-
equations, is presented. In the first part, we examine the problem of Resource-Constrained
Scheduling (RCS) tasks whose resource usage is described by reservation tables, while in the
second one, we adress the problem of RCS data-dependent tasks. For both problems, several al-
gorithms are proposed. Our main algorithmic contributions are: 1/ an exact branch-and-bound
(BAB) algorithm, where each evaluation is accelerated by variants of Floyd’s and Dijkstra’s al-
gorithms, 2/ a new scheduling method based on graph coloring technique as a tool for a BAB
meta-method, where each evaluation is accelerated by maximal and greedy clique computation.
The evaluation and comparisons are done on pieces of real-life applications from the PerfectClub
and the HLSynth95 benchmarks. The results demonstrate the suitability of these solutions for
HLS scheduling.

Keywords: Scheduling, resource constraints, reservation tables, dis-equations, branch-and-
bound, Dijkstra, graph coloring, integer linear programming.

Résumé

L’ordonnancement est 1'une des taches les plus importantes dans la synthése de haut niveau.
Vue importance des objectifs et des contraintes qui interagissent, il est dur d’ordonnancer, un
programme en entier, en particulier lorsqu’il contient des boucles. Pour cela, nous proposons
d’hiérarchiser 'ordonnancement en niveaux graduels selon différentes approches. Cette thése se
concentre sur quelques étapes de ces approches concues. Un formalisme efficace exprimant les
contraintes de ressources en utilisant les dis-équations, est présenté. Dans une premiére partie,
nous examinons le probléme de I’Ordonnancement sous Contraintes de Ressources (OCR) de
taches dont l'utilisation de ressource est décrite via des tables de réservation, tandis que dans
la seconde partie, nous abordons le probléeme d’OCR de taches dépendantes. Nos principales
contributions sont: 1/ un algorithme exact de type Branch-and-Bound (BAB) associé a une
variante de l’algorithme de Dijkstra, 2/ une nouvelle méthode d’ordonnancement basée sur la
technique de coloriage de graphe et qui est résolue au moyen d’ un BAB associé a un algorithme
de calcul de clique (exacte/gloutonne). Les algorithmes proposés ont été implémentés. Le jeu
des programmes tests est pris d’applications réelles du PerfectClub et HLSynth95 benchmarks.
Les résultats prouvent que les deux méthodes conviennent aux outils HLS.

Mots-clés: Ordonnancement, contraintes de ressources, tables de réservation, dis-equations,
branch-and-bound, Dijkstra, coloriage de graphe, programmation linéaire en nombres entiers.
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Chapter 1

Introduction

In this thesis, the resource-constrained scheduling problem in High-Level Synthesis -behavioral
synthesis- will be examined, and several algorithms are proposed. The aim of this research is to
propose and compare some novel scheduling algorithms, as well from theoretical point of view
as experimental one. These algorithms are integrated in stepwise scheduling approaches.

With the rise in the complexity of Integrated Circuits (IC’s), their design process has become
very difficult to manage without any automation or semi-automation. Thus the need of effective
and good CAD tools where we can have: shorter design cycle, fewer errors, the ability to search
the design space, documenting the design process and availability of digital circuit technology
to more people. The challenge of embedded system design is twofold: one must pack compute-
intensive algorithms in small platforms; furthermore, the design must be completed as fast as
possible, to meet the demands of a highly volatile market. In the long run, this will be possible
only if computer-aided design tools are developed far beyond their present status [24].

An artifact such as a cell phone or a digital TV set must behave according to given specifi-
cations; however, its hardware parts can only be built from a structural description. The goal of
High-Level Synthesis (HLS) is to convert a behavioral specification for the whole or a part of the
complete application, to be performed on a dedicated circuit — into a structural description, while
optimizing several objective functions: performance, size, power consumption among others.

In the past two decades [34] there has been a lot of activity going on in the area of High-Level
synthesis and it is becoming an increasingly popular research topic. Currently, several commer-
cial 103, 78, 102] and academic HLS [49, 77, 88, 71, 55, 37| tools exist but the design community
don’t integrate them into its design flow, because of many reasons: they lack interaction between
them and the designers, they can support only limited architectures and the quality of the design
they generate is still often worse than that of manual design.

Our contribution focuses on the scheduling problem as it is one key process in HLS. Our aim
is to improve those tools by reusing some of methods and models that have been pioneered by
the compiler community. Among these powerful methods, operations research techniques have
strongly increased the performances of scheduling task.

Scheduling is an important and primary task in HLS. However, scheduling operations un-
der resource constraints to minimize the total duration is NP-complete problem as too many
constraints and objectives interact [104, 26]. For efficiently scheduling programs, especially with
loops, first, we facilitate the problem by this trick. We propose to organize the scheduling process
in stepwise ways.

The purpose of these hierarchical decompositions is twofold: one can integrate exact methods
into these hierarchical scheduling approaches, that could identify code fragments and schedule
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them optimally such that it couldn’t affect a lot the whole scheduling quality; furthermore, it
allows to avoid dealing with a too large system as is well known, applying linear programming
to large constraint systems is not cost-effective.

In what follow, we will present briefly the area, the context and the objectives of this research.
After what, we report the main contributions. We conclude by giving the outline of the thesis.

1.1 Synthesis and High-Level Synthesis

The High-Level -architectural or behavioral- Synthesis (HLS) process takes a behavioral spec-
ification of a system and a set of constraints and goals to be satisfied, and finds a structure
that implements the behavior while satisfying the goals and constraints [34]. These goals and
constraints can express several objective functions: performance, size, power consumption. ..

Some times called “hardware compilation”, the synthesis of circuits translates a sequential
program, into an integrated circuit (hardware). The aim of the synthesis tool is to obtain the
physical view of the circuit. This view can be represented by a netlist which is a structural view
in the logic-gates level. However, there are several lower-level tools - logic synthesis- which allow
the translation to this structural view: Synopsys [103], Cadence |22|, Catapult |78], ISE Xilinx
tools [113]. Most of them start working on Register Transfer description Level (RTL). Indeed,
at the RTL level, the input description is transformed in such way that the register assignation
and the functional units assignation are fixed for each cycle of the system [34]. We are interested
by the part of the HLS which fills the gap between system “ behavioral” level and the RT level
by automatically generating an RTL realization from a behavioral description.

Generic High-Level Synthesis System

A typical way of describing behavior is to write a program in an ordinary computer language or
in a special hardware description language such as VHDL [29] or Verilog [98].

The first step in HLS is usually the compilation of the behavioral description into an internal
representation that is most suitable for HLS tasks. Most approaches use graph-based represen-
tations that gather both data flow and control flow implied by the specification. These internal
representations are given different names in different synthesis systems (e.g. walue trace, data
dependency graph [3|, directed acyclic graph, control and data flow graphs(CDFG) [49]) but
are simply different adaptations of similar basic concepts. CDFG is the most popular and in
many systems, the control flow graph and the data flow graph are integrated into one structure.
Control dependences are derived directly from the explicit order given in the input program and
from the compiler’s choices of parsing the arithmetic/logic expressions. Data dependences show
the essential ordering of operations.

At this stage and like in the software compilation, some important tasks and some optimiza-
tions should be performed by the compiler. They include variable disambiguation, taking care
of the scope of variables, converting complex data structures into simple types, type checking,
expression simplification, dead code elimination, constant propagation, common subexpression
elimination. . ..

The second step of the HLS, which is the core of transforming behavior into structure, includes
four major tasks:

e Partitioning: deals with the division of the intermediate representation (i.e. the behavioral
description or the design) into sub-representations in order to reduce the problem size and
exhibit more parallelism.
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e Scheduling: partitions the intermediate representation into time steps, thereby generating
a finite-state machine model.

e Allocation: though closely intertwined with scheduling, involves partitioning the interme-
diate representation with respect to space (hardware resources) which is also known as
spatial mapping.

e Control generation: Once the schedule and allocation have been computed, it is necessary
to synthesis a controller (hardwired or microcoded) that will drive allocated resources as
required by the schedule. Finally, the design has to be converted into real hardware. Lower
level tools, such as logic synthesis and layout synthesis, complete the design.

1.1.1 Partitioning

Software programming languages have little support for describing hardware efficiently. For ex-
ample, to model hardware in C/C-++, we need additional language features present in Hardware
Description Language (HDL) but not present in C/C++:

e Concurrency : hardware is inherently parallel, while C/C++ programs and the like are
inherently sequential. The notion of processes (Always blocks in Verilog HDL, Process in
VHDL), which encapsulates programs that execute concurrently, have to be introduced. A
system will be described as a network of processes.

e Signals : hardware processes need to use signals (akin to wires or buffered channels) to
communicate with one another.

e Reactivity : hardware systems are in continuous interaction with heir environment, i.e.
they are reactive. The notion of reactivity is essential to describing hardware systems at
all levels of abstraction.

e Data abstraction : C/C++ supports data abstractions that are useful for software program-
ming. However, for hardware, one needs arbitrary precision signed and unsigned integers,
bit vectors and fixed point types.

With such a set of features added, an imperative language, like C/C++, can efficiently model
hardware/software systems. Thus the aim of partitioning is to transform the input description
such that it will be easily and efficiently described in HDL.

1.1.2 Scheduling

A Finite State Machine with Datapath (FSMD) model is the most popular one which is used to
describe digital systems at the RT level [44]. It consists of an FSM called the control unit and
a datapath. The datapath consists of the storage and functional units necessary for the system.
The FSM consists of a set of states, a set of transitions between states, and a set of actions
(involving the datapath) associated with each transition.

Scheduling, an important task in HLS, can be described as the process of dividing the interme-
diate representation into states and control steps, in such a way that can be directly synthesized
into an FSMD model. In other words, scheduling does a temporal mapping of the given rep-
resentation. A behavioral description and hence the intermediate representation consists of a
sequence of operations to be performed by the synthesized hardware. The task of scheduling
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partitions these operations into time steps such that each operation is executed in one time step.
Each time step corresponds to one state of the controlling FSM state machine in the FSMD
model.

1.1.3 Allocation -Binding-

The binding task assigns the functional operations and memory accesses to available hardware
units. A resource such as a functional, storage, or interconnection unit can be shared by different
operations, data accesses, or data transfers if they are mutually exclusive. Binding consists of
three subtasks based on the unit type:

e Storage binding assigns variables to storage units. Storage units can be of many types,
including registers, registers files, and memory units. Two variables that are not alive
simultaneously in a given state can be assigned to the same register. Two variables that
are not accessed simultaneously in a given state can be assigned to the same port or a
register file or memory.

e Functional-unit binding assigns each operation to a functional unit. A functional unit or a
pipeline stage can execute only one operation per clock cycle.

e [nterconnection binding assigns an interconnection unit such as a multiplexer, a wire or a
bus for each data transfer among ports, functional units, and storage units.

1.2 Objectives, Constraints & Peculiarities when Scheduling in
HLS

Scheduling, a central task in HLS, involves determining the execution order of operations in
a behavioral description. In other words, it is the process of determining the assignment of
operations to time slots (control steps) of a synchronous system subject to various constraints.

1.2.1 Constraints

The scheduling problem in HLS must take into account different and heterogeneous constraints,
which define requirements imposed on an implementation of a system. There are at least two
kinds of constraints. The first group, as in classic scheduling problems, comprises constraints that
can be deduced from a system behavioral description, such as precedence constraints -data
dependences-, or conditions for operation execution -control dependences-. The other group of
constraints defines non-functional requirements for possible implementations of the system
such as performance, cost, timing, power consumption or memory requirements.

1.2.1.1 Precedence/Control Constraints

Two types of dependencies exist between the operations from a program specification. Data-
flow dependencies impose precedence (execution order) between the operations. For example,
operation oo has to be executed after operation o, if a result computed by o; is used by os.
Control-flow dependencies arise when some portions of the specification are executed condition-
ally. All data-flow and control-flow dependencies have to be satisfied to ensure a correct execution
of the specified behavior.
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1.2.1.2 Resource Constraints -Sharing Resources-

Additional constraints arise due to finite hardware resources. Resource constraints impose bounds
on a number of functional units available for the task execution. For example, a system imple-
mentation may incorporate two adder circuits and, consequently, not more than two additions
can be executed simultaneously.

1.2.1.3 Time Constraints

Another set of restrictions comes from the timing constraints. In many critical applications e.g.
aircraft engine control, computer hardware has to react to a recognition of a specific event within
a strictly prescribed time interval.

1.2.1.4 Special Constraints

The resource-constrained scheduling can consider resources very broadly and therefore power
consumption and area can also be defined as a resource. In this thesis we don’t explicitly address
this kind of constraints.

1.2.2 Datapath Peculiarities

Additionally to this panoply of constraints, scheduling in HLLS can not be treated without actually
considering realistic design models that would have special resources. Indeed the resources usually
have some features like functional units with varying delays and multi-functional units. These
issues are not explicitly addressed by our main contribution so just to provide to the reader a
global idea, we discuss them briefly:

e Functional units with varying delays: each functional unit will have a different delay
and therefore it assumes that an operation assigned to a control step would take the same
time as another operation. This assumption would lead to a clock cycle that is unusually
lengthened by the slowest unit in the design. The following three approaches are used to
solve this problem:

— Pipelining: A functional unit may have stages in it. This makes it possible to execute
two operations in the same functional unit since they operate in two different stages.
As known, pipelining is a simple technique to increase parallelism.

— Multi-cycling: If the clock cycle is shortened to allow fast operation, then the slower
operation would take multiple clocks and hence are called multi-cycle operations.
However input latches are needed in front of the multi-cycle functional units to hold
its operands until its results are available. This would in turn increase the size of the
control logic. Multi-cycle operations can be pipelined.

— Chaining: Two or more operations could be allowed to be performed sequentially in
a single control step (same clock cycle). Since the output of one functional unit has
to be fed to another, they should be directly connected.

e Multi-functional Units: it has been assumed that a functional unit can perform only one
operation but in practice there are several cost effective multi-functional units being used.
For this purpose the scheduling algorithms could be technology based so that it can explore
the library of components. For example, an operation in the critical path could be assigned
faster functional units than those not in the critical path. Also the scheduling algorithm
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could try to use the same multi-functional unit for two data independant operations which
are in two different steps.

1.2.3 Interaction with Allocation

In order to know whether two operations can be scheduled in the same control step, one must
know whether they use common resources. Moreover, finding the most efficient schedule, for real
hardware, requires knowing the delays for the different operations, however those can only be
found after that the details of the function units and their interconnections are known. On the
other hand, in order to make a good allocation, one must know what operations will be done
in parallel, which comes from the schedule. Therefore, scheduling and allocation are strongly
interdependent tasks.

In the literature, many scenarios have been explored. The most straightforward approach
to this problem is to set some limits on the resources cost and then schedule, as it is done in
many systems. A more flexible approach is to iterate the whole process changing the resource
limits until a satisfactory design has been found. An exact approach, but an expensive one, is
to develop the schedule and allocation simultaneously, as in system MAHA [88]. Finally, the
allocation can be done first, followed by scheduling as it is done in the BUD system [77].

1.3 Context

The schedulers we describe in this thesis are part of our HLS tool, we currently develop, whose
aim is HLS in the field of compute-intensive embedded systems. The input specification is a
variant of C (including loops); the output is a hardware description at the RT level. We use the
finite state machine with a data path (FSMD) model to describe the hardware at this level.

Scheduling is the basic tool we use for hardware generation: a schedule is a precise description
of the operations to be executed at each clock cycle; thus deducing the FSMD from a schedule
is considered as a natural task.

Earlier work starts by building the control and data flow graph (CDFG), which is simply the
sequential flow diagram of the input description. The nodes of the CDFG are the basic blocks
of the original program. Most synthesis tools exploit only parallelism inside basic blocks; the
FSMD is usually obtained by scheduling the tasks of each basic block of the CDFG independently.
Some parallelism is exploited in loops, but mostly through loop unrolling. Our approach is quite
different because we first construct a FSMD from an equivalent parallel code that exhibits the
inherent parallelism in the input description and takes into account the imperfect loop nests.
Afterwards, according to the resource constraints, we exploit a part or all of this parallelism.

Indeed, to extract parallelism from the loops of the input description, we use a scheduling
strategy previously used for automatic loop parallelization [41]. This technique which has already
proved it efficiency, assigns a symbolic “date” to each high-level statement of the program
i.e., each statement in the C program and allows us to rewrite the code into a form with explicit
parallelism. This technique will be detailed in Chapter 3. The result of this scheduling pass is
the definition of a sequence of fronts, i.e., a sequence of logical steps where each step (a front) is a
group of macro-tasks to be executed in this logical step. From this result, we build a first coarse
FSMD:; coarse as the time is measured in logical steps instead of clock cycle. Thus, each state
contains a set of data independent macro-tasks and each of them is composed by a sequence of
elementary operations. However, this symbolic scheduling technique is quite complex and cannot
take into account all the micro-operations (and the architectural resources they need) that are
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implied in the execution of one macro-task. This fact lead us to design stepwise scheduling
approaches to schedule programs, with loops, down to RTL.

Many factors and reasons let us to think that such approaches can improve a lot the perfor-
mance of the scheduling algorithm in term of compromise quality of the schedule and its runtime.
Indeed, let us notice that the application size, the diverse nature of constraints, all peculiarities
of the datapath - features of the resources- and the requirements of a possible implementation
can not be taken into account into one pass to get an optimal or suboptimal schedule without
exploding. In Chapter 3, we will explain in details the motivations that lead us to this choice.

Now, we must refine this schedule by “splitting this logical step into elementary steps such
that resource constraints and all peculiarities of the datapath will be respected”. Time will be
measured in physical time i.e., clock cycle of the target architecture. How to perform this? In
this thesis, we have sketched and investigated two hierarchical scheduling approaches.

1. Two-step Approach:

After the previous symbolic scheduling step, one natural possibility is to consider, for
scheduling under resource constraints, all the micro-operations of a front simultaneously.
In other words, schedule them at the same time while considering resource constraints. We
call this last step simultaneous scheduling.

2. Three-step Approach:

Again for complexity reasons one can alternatively consider another possibility. Indeed,
we consider that, in our context, it will be good enough to decouple the problem in two
subproblems. This partitioning can be sketched as:

o After the symbolic scheduling, we first schedule each macro-task independently, taking
into account all peculiarities of the data path. The schedule of each macro-task will
be summarized with a reservation table' that states which resources at which cycle
(relative to the starting time of the macro-task) are used by this macro-task. We call
this second step micro-scheduling.

e Due to our particular construction, the macro-tasks, represented now by reservation
tables, in a front are data independent but they may still interfere in their use of
resources. The logical step must then be split into as few elementary steps as necessary
to satisfy detailed resource constraints. We call this third step fine-grain scheduling.

The strengths and weaknesses of each solution, as a scheduling approach, are reported and
discussed. For instance, one could emphasize that it would be better to consider, the first
approach in which the micro- and fine-grain scheduling are performed at the same time. Even
though, we have investigated both approaches, the last decoupling will be good enough. it is
difficult to prevent the scheduler to introduce delays between micro-operations, and hence to
imply more registers for holding temporary results. Our second approach may be sub-optimal,
but we believe that the possible improvements do not warrant the added complexity.

Figure 3.3 summarizes both scheduling decompositions. Dotted lines expresses the area of
our main contributions as in this thesis we have focused on some levels of these designed gradual
scheduling approaches by suggesting mainly two solutions to the resource-constrained scheduling
problems defined by the “fine-grain” and the “ simultaneous” scheduling steps. Before that, we
propose a new formalism for expressing resource constraints using dis-equations.

4

! A reservation table is a matrix that shows the corresponding assignment between control cycles and resource
occupation. The rows of a reservation table correspond to control cycles, the columns to resources.



Chapter 1. Introduction

Input Description

- '

-~
( Loop scheduling (1st step) j
= Symbolic schedule
: |
]
= 5
IS I
o /\ o
2 S
a g
P . a
R . \ Q
~ ._\Slmultaneous scheduling (2nd stepr) ( Micro—scheduling (2nd step) j o
............................................ - g
' =
; [
Reservation tables
R N
i Fine—grain scheduling (3rd step) !
N e et o
-

Figure 1.1: The Hierarchical Scheduling Views

1.4 Scheduling Problems Addressed

Scheduling takes many forms, such as job-shop scheduling, production scheduling, multiprocessor
scheduling and so on. To be more precise when defining our scheduling problems, let us recall
that scheduling can be of several kinds:

e Static scheduling: All information are available to the scheduling algorithm, which runs
before any real computation starts. These algorithms are called offline algorithms.

e Semi-static scheduling: Information may be known at program startup, or at the beginning
of each time step, or at other well-defined points.

e Dynamic scheduling: Information aren’t known until mid-execution as in real-time systems.
These algorithms are called online ones.

In general, solving static scheduling problems under resource constraints is NP-hard. This
involves assigning the vertices (tasks) of an acyclic directed graph onto a set of resources, such
that the total time to process all the tasks is minimized. The total time to process all the tasks
is usually referred to as the makespan or latency.

An additional objective is often to achieve a short latency while minimizing the use of re-
sources. Such multi-objective optimization problems involve complex trade-offs and compro-
mises, and good scheduling strategies are based on a detailed and deep understanding of the
specific problem domain.

As defined in our context due to our particular construction, at the fine-grain scheduling step
(resp. the simultaneous scheduling), all information about the macro-tasks (resp. operations) in
a front are known before scheduling. Thus, we deal with static and acyclic resource-constrained
scheduling problems. They are static as they are done at compilation time and all informations
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are available, and acyclic as each front is a sequence of data/control independant macro-tasks
without loop.
Now, we summarize in these definitions both scheduling problems addressed in this thesis:

Definition 1. Fine-grain scheduling: is the process of determining the optimal assignment of
macro-tasks, defined by reservation tables, to time steps on a synchronous system, subject to
resource constraints.

Definition 2. Simultaneous scheduling: is the process of determining the optimal assignment
of operations to time steps on a synchronous system, subject to data dependences and resource
constraints.

1.5 Objectives

In this thesis, the scheduling approaches, that we have designed and their corresponding tech-
niques which are developed to solve part of scheduling levels have multiple objectives:

e Exploit efficiently more parallelism in the whole program particularly within nested loops;
by efficiently partitioning the input description and applying some techniques that have
proven their efficiency in automatic parallelization;

e Deal with the constraints into higher levels in the HLS design process where a global view
is more clear than in lower levels;

e Formally and uniformly express constraints (data dependence and resource constraints);
e Bring some guarantee on the quality of the computed schedules;

e As the defined problems are N'P-hard, try to integrate exact methods into hierarchical
scheduling approaches, that could identify code fragments and schedule them optimally.
Consequently deal with manageable code size that don’t reach these exact methods limits.

1.6 Contributions

This thesis presents some solutions to the resource-constrained scheduling problems for HLS.
Indeed, for efficiently scheduling programs, especially with loops, first, we make easy the problem
by organizing the scheduling process in stepwise ways. We propose two approaches: Two-step
and Three-step approaches.

First, a formalism to accurately express resource constraints for complex tasks represented as
reservation tables is proposed. Indeed, the resource constraints are modeled by “dis-equations”
and finding an optimal schedule entails resolving a system of dis-equations. The proposed for-
malism can be generalized to support problems of resource-constrained scheduling even when
tasks are data-dependent.

For both approaches, we have proposed some solutions to certain scheduling steps. Indeed, for
the Three-step approach, we have focused on the fine-grain scheduling step. We have proposed
several solutions for scheduling macro-tasks -defined by reservation tables-: 1) a greedy heuristic
similar to list-scheduling and 2) two exact algorithms, the first one uses ILP techniques while
the second one is based on a branch-and-bound meta-algorithm using a variant of Dijkstra’s
algorithm and Floyd’s algorithm which compute a maximal weight path.
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Within the Two-step scheduling approach, we have proposed some solutions to perform the
simultaneous scheduling step. First, we use “
uniformly both constraints: resource constraints and data dependences. Afterward, we propose
a novel scheduling algorithm that finds an optimal schedule by properly coloring the conflict
graph. In order to optimally coloring a graph and conversely to classic graph coloring algorithms,
we designed a new method so that coloring is done by means of a branch-and-bound that is
accelerated by a clique computation algorithm. The clique computation is computed exactly as
well as greedly.

The greedy heuristic and the ILP based algorithms are used as yardsticks for measuring the

dis-equations” as mathematical way to express

efficiency and robustness of our main algorithmic contributions.

1.7 Thesis’ Overview

The outline of the rest of the thesis is:

e In Chapter 2, we present some related work both for HLS constrained scheduling in general
and for scheduling with reservation tables in particular.

o We detail our general scheduling approaches in Chapter 3. Indeed, in this chapter we give
a detailed overview of our HLS tool and we explain and discuss the reasons that have led
us to design such hierarchical scheduling strategies. However, the rest of the thesis focuses
just on the fine-grain and the simultaneous scheduling problems.

e In Part I, our problem of scheduling tasks defined by reservation tables is treated and
many solutions are proposed. First, the problem is formulated in Chapter 4, where we
present, also, a simple greedy heuristic which will be compared with the proposed exact
algorithms. The first outcome of this research, presented in Chapter 6, is an exact branch-
and-bound algorithm, where the evaluation of each potential solution is accelerated thanks
to variants of Floyd’s and Dijkstra’s algorithm. Chapter 5 presents several Integer Linear
Program formulations of the problem. In each of these Chapters, we report at the end some
experimental results to highlight the benefits of each solution. Lastly, in Chapter 7, we
compare and analyze these experimental results and demonstrate the effectiveness of the
proposed methods. Furthermore, we give some guidelines for selecting the most effective
one according to the context.

e The second contribution, described in Part II, is a solution to the simultaneous scheduling
problem. In this solution, the dis-equations -representing data dependences and resource
constraints- are modeled by an interference graph and the scheduling problem is resolved
using a novel graph coloring technique. Some experiments and results are reported;

e Finally, in Chapter 9, general conclusion is drawn as well as the questions to be addressed
in future.

e Abbreviations and some definitions from digital systems and scheduling literature are given
in the Glossary (page 94). A background on some used elementary graph algorithms is
provided in Appendix A. Finally, Appendix B describes the benchmarks kit that is used
to evaluate the performances of the designed algorithms.

10
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State of the Art

Much work has been done in the area of HLS. The three major HLS tasks allocation, scheduling
and binding have been widely researched in the last two decades. To get an exact survey on
what has been done on scheduling is a difficult task. This is due to the large number of target
implementations and specificity of contexts. This chapter tries only to highlight some works re-
lated to our contributions. Indeed, in the following section, some works related to several internal
representations used in HLS tools, are reported. This is followed by how constraints are formal-
ized to efficiently carry out the scheduling task. In Section 2.2 some major search techniques
instrumented in scheduling algorithms are exposed and discussed. Some recent HLS tools are
described in Section 2.3. During the description we concentrate on their scheduling algorithms.
In Sections 2.4 and 2.5 some special researches are underlined: the usage of reservation table in
scheduling and the stepwise scheduling approaches.

2.1 Internal Representation and Constraints Formalisms

The behavioral description and constraints are the main inputs of the constrained scheduling
problem. The formalism of the internal representation of the description and the formalism used
to express the constraints must be efficiently designed to simplify the schedule computation.

2.1.1 Internal Representation Formalisms

Before all the activities of an HLS system, the behavioral description has to be represented into
an internal format. It is commonly agreed that the intermediate design representation is closely
linked to the quality of the scheduling results. The design of an internal representation is also
important for the simplification of the engineering of the HLS techniques used to efficiently carry
out the HLS design activities.

The most popular internal representation of the input behavioral description is the Control
and Data Flow Graph CDFG [49]. For this, most scheduling techniques are graph-based models.
In these models, basic tasks are gathered into a set of basic blocks linked by flow-of-controls.
A flow-of-control can be forward or backward. A forward edge represents a move from a basic
block to a successor block, while a backward edge represents a loop.

However, there are some frameworks which investigated more efficient internal representations
to get easily the HLS activities specially the scheduling task |16, 60, 114].

For instance, the intermediate representation used in the SPARK tool [55] consists of basic
blocks encapsulated in Hierarchical Task Graphs (HTG) [50]. It is an intermediate representation

11
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designed by the parallelization community to ease the automation of transformations.

An HTG is a directed acyclic graph that has three node types: single nodes (non-hierarchical
nodes), compound nodes (nodes that have sub-nodes), and loop nodes. Operations that they are
executed concurrently are aggregated together into single nodes called statements. Statements
that have no control flow between them are aggregated together into basic blocks. These laters
are encapsulated into compound HTG nodes to form hierarchical structures such as if-then-else
blocks, switch-case blocks, loop nodes or a series of HT'G nodes. Expressions are stored as
abstract syntax trees [80] and each operation expression is initially encapsulated in a statement
node of its own.

An important feature of HT'G is that they are strongly connected components i.e., for each
couple of nodes there are at least one path. Furthermore, each component has a single entry and
a single exit point. This property enables HT'G to be used to encapsulate complex loops and
irregular code regions of code, to regularize code motion techniques and to reduce the amount
of patch-up code.

For control-dominated systems, Bergamaschi et al. developed a path-based representation |16].
They extract from the CDFG a new representation where all possible paths are exhibited. Using
this representation, they optimize the control-step number by path (see Section 2.2.5 for more
details on path-based scheduling).

Huang et al. extended the path-based representation to a tree-based representation [60]. They
aimed at removing the restriction on the execution order of operations before scheduling imposed
by the path-based representation. Instead of treating each path individually as in path-based
representation, all paths are kept in a tree.

Recently, more symbolic representation are used [94, 114|, especially when systems are control
dominated. For instance, Radivojevic et al. [94] present an exact conditional resource sharing
analysis using a symbolic representation formalism. Indeed, in this formulation, all of the schedul-
ing constraints (precedence, control and resources ) are represented as boolean equations. An
Ordered Binary-Decision Diagram (OBDD) corresponding to their intersection is built. Each
variable in the OBDD describes a particular operation occuring at a particular time step, over a
finite set of time steps. A variable is true if the corresponding operation is scheduled during the
corresponding time step in particular solution. To allow control-dependent scheduling a set of
'guard’ variables is introduced true for one branch and false for the other . Thus, every path
through the CDFG is encoded by a product of corresponding guards. Their formalism allows
the generation of a set of valid schedules via a compressed representation based on the OBDD
representation.

Yang et al. introduce another symbolic representation based on automata representation [114].
In this model, with a uniform formalism; both the design and constraints (timing, resource,
synchronization ...) are represented by a unique automaton based also on Binary Decision
Diagrams.

Despite these attempts to find suitable internal representations, there is some agreement
that design representation is not a mature topic. In our framework, we have avoided using the
CDFG representation extracted from the sequential input description. Indeed, we start our HLS
activities on an automatic generated internal representation in which we exhibit all inherent
parallelism, we will return to this fact with more details in Chapter 3.

2.1.2 Constraints Formalisms

The constraints that a hardware system has to respect come from different domains: classic
precedence/control constraints, constraints defining non-functional requirements for possible im-

12
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plementations of the system such as performance, cost, timing, power consumption, area or
memory requirements. The formalism used to express these various constraints directly acts
upon the technique used to compute a schedule.

Attempts have been made to define these constraints in a formal way using constraint de-
scription languages, such as the Design Constraints Description Language DCDL [1|. However,
during the design process these constraints are usually treated informally and most today’s tools
do not unify different requirements in a single formalism.

Recently, a more general formalism has been proposed by Kuchcinski [68|. He designed a
model for solving both scheduling and resource assignment problems by using constraint handling
methods provided by the Constraint Programming paradigm CP. In this approach, a system is
modeled by a set of constraints over variables. Each variable contains several integer values in its
domain and therefore it is called Finite Domain Variable (FDV). The FDV eventually can obtain
an integer value that specifies a solution. The constraints are given as arithmetic expressions,
equalities, inequalities and specialized combinatorial constraints. They define application’s con-
straints (i.e., operation precedence constraints), resource constraints, specialized implementation
constraints (e.g. pipelined resources) as well as general requirements such as performance or
cost. The model is solved using constraint satisfaction/consistency techniques |14].

In Chapter 4 we have tried to express all kind of resource constraints by using dis-equations.
In addition, in another contribution we treat all constraints uniformly and formally (see Chap-
ter 8).

2.2 Scheduling Strategies

Scheduling data-path operations into control steps -time slots- is an important task. For obtain-
ing an efficient design, a complete strategy of scheduling must consider both timing and resources
constraints as well as storage and interconnection costs. Furthermore, for a specific systems it
also must consider power consumption constraints.

As defined in the HLS design flow, there are three dimensions along which scheduling algo-
rithms may differ:

1. the objective function and constraints that algorithms consider;
2. the interaction between scheduling and allocation;

3. the resolution technique that the scheduling algorithm used.

According to this features many tentative taxonomy of scheduling algorithms can be imagined.
Scheduling algorithms can be broadly classified into time-constrained and resources-constrained
scheduling, based on the goal of the scheduling problem as done by Govindarajan [52|. In
time-constrained scheduling —also called as fixed-control-step approach— the functional units
(resources) number is minimized for a fixed number of control steps. The video processing and
the realtime applications are the main area for such algorithms. While in resource-constrained
scheduling the control-steps number is minimized for a given design cost (number of functional
and storage units).

Sile [107] defines another taxonomy in which he classifies such algorithms into transforma-
tional or iterative/constructive algorithms.

A transformational algorithms start with an initial schedule (e.g. maximally serial or max-
imally parallel) and applies transformations to it in order to obtain other schedules. These
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Figure 2.1: (a) Data Flow Graph (b) ASAP Schedule (c¢) ALAP Schedule

algorithms differ in how transformations are done, they can use erhaustive search, branch-and-
bound technique or some heuristics. The other type of algorithms kind, the iterative/constructive
ones, build up a schedule by adding operations one at a time till all the operations have been
scheduled. These algorithms differ in how the next operation to be scheduled is chosen and into
which control step it is put.

Several techniques have been experimented then integrated in both academic and commer-
cial HLS systems, in the following survey of the constrained scheduling algorithms, we try to
classify the scheduling algorithms using the type of technique that they use, starting from
the most basic scheduling techniques as list scheduling and its variants |25, 32|, to exact schedul-
ing techniques from optimization area like integer linear programming [99] while reporting some
miscellaneous techniques such as genetic |[51| and simulated annealing techniques [92].

First, let us give some common definitions. Let G = (V, A) be a data flow graph, where V' is
the set of operations to be scheduled, and A is the set of dependences. Let n = |V| and m = |A].
Each operation is labeled by 0;, 1 <4 < n. A precedence relation between operations o; and o;
is denoted by o; < 0;, where o; is immediate predecessor of 0;. There are ¢ types of resources
available. A function unit of type r is denoted by F,.. A relation between operation o; and a
resource F). is denoted by o; € F,. , if F}. can perform o;.

2.2.1 Basic Algorithms

In what follows, we will briefly describe the principle of some known scheduling algorithms, which
take into account only data dependences constraints but no resource constraints. The schedules
computed by these techniques represent the earliest and the latest bounds within operations
in the DFG. Most constrained-scheduling algorithms that will be described later require these
bounds.

2.2.1.1 ASAP

A simple scheme is to schedule operations “As Soon As Possible”. The ASAP algorithm starts
with the highest nodes (that have no parents) in the DFG and assigns time steps in increasing
order as it proceeds downwards. It follows the simple rule that a successor node can be execute
only after its parents has executed. This algorithm clearly gives the fastest schedule possible.
In other words, it schedules in least number of control steps but never takes into account the
resources constraints. Figure-2.1( b) shows ASAP schedule for the DFG in Figure-2.1( a).

14
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2.2.1.2 ALAP

This approach is a refinement of the ASAP scheduling concept conditional postponement. The
postponement occurs whenever the operations concurrency is higher than the number of available
functional units. The ALAP algorithm “As Late As Possible” works exactly in the same way
as ASAP algorithm except that it starts at the bottom of the DFG and proceeds upwards.
This algorithm gives the slowest possible schedule for tasks. However, this doesn’t necessarily
reduce the number of functional units used. Figure-2.1( ¢) shows ASAP schedule for the DFG
in figure-2.1( a).

The problem with ASAP and ALAP schedulers is that when there are limits on resource
usage no priority is given to operations on critical paths. Hence, less critical operations can be
scheduled first and thus block critical ones.

2.2.2 Critical Path Method

The minimum amount of cycles needed to schedule a basic block corresponds to the maximum
depth of its data dependence graph. This longest-path is called the critical path. The ordering
of the operations in the critical path is implied by their data dependencies.

Using ASAP and ALAP values, the critical path consists of those operations that are mapped
to the same cycle in the early as well as in the late scheduling. The method takes three steps.
First the critical path is computed. The operations from this critical path are scheduled. They
represent a frame for adding the remaining operations. In the last step, the remaining operations
are inserted into the critical path. This is done for each operation by testing the cycles between
the early and late dates with respect to data dependencies and resources conflicts. This may
lengthen the schedule.

The critical path method is not always able to create an optimal schedule. This is due to the
fact that subsequent subframes cannot be merged together although this would be permitted by
the data dependencies and the resources use.

2.2.3 List-scheduling

Continuing along the scale of increasing complexity, there are algorithms that use list-scheduling
principle. List based scheduling is a generalization of the ASAP algorithm with the inclusion of
resources constraints. Due to both its simple principle and low complexity, it is the most used
approach. Indeed, it is used in many old HLS systems [19, 74, 88| as well in recently developed
ones [37, 55].

The algorithm builds a constructive schedule, for each step, the operations available to be
scheduled into that step are kept in a /list - hence the name of list-scheduling - which is ordered
by some priority function. Each operation on the list is scheduled if the resources it needs are
still free in that step; otherwise it is differed to the next step. Scheduling an operation to a
control step makes other successor operations ready, which will be added to the priority list.

There are many priority functions used. In the Slicer system [19] the priority function is based
on increasing operation mobility [86]. The mobility of an operation is defined as the difference
between ASAP and ALAP values of an operation. This would ensure that operations with large
mobility are differed to later control steps because the number of control steps into which they
could be is large.

Other systems like, ELF [48], use the operation urgency as priority function. The urgency
of an operation is defined as the minimum number of control steps from the bottom that this
operation can be scheduled before a timing constraint is violated.
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More complex priority functions are developed, for instance, in the MAHA system [88], they
use the information from the critical path. Indeed, the operations on critical paths are scheduled
first (and a resource binding is done) after what the other operations are scheduled one at a
time according to the least mobility. This is the same approach as in the critical path method.
Indeed, the critical path method is a list scheduling method in which the priority function relies
on belonging to the critical path.

The time and space complexity for this approach is slightly more because several lists have to
be maintained dynamically. For this reason, Jain et al. |63| have designed a static list scheduling.
This approach starts by creating a single large list before starting. It uses the ASAP and ALAP
algorithms to obtain the Least and the Greatest possible Control Step assignments (LCS and
GCS) for each operation. Then, the algorithm sorts all the operations in ascending order using
the GCS labels as the primary key then sorts each operation set with the same GCS labels, in
descending order with the LCS labels as the secondary key.

As it can be seen, the list-scheduler success depends mainly on the priority function used.

2.2.4 Force-Directed Scheduling (FDS)

Based on probability distribution technique, it is a very popular scheduling heuristic [89].
is originally designed for time-constrained scheduling. Thus, the main goal is to reduce the
total number of resources used. This algorithm achieves its goal by uniformly distributing the
operations of the same type over the available control steps. By balancing the concurrency of
operations, it ensures that each structural unit has high utilization which in turn decreases the
total number of units required.

A simple outline of this algorithm :

1. Determine time frame: this step consists of determining the time frames [S;, L;] of each
operation o; € V', where S; and L; are obtained by the ASAP and ALAP algorithms. Let
pir denote the probability that o; will be scheduled into control step 7 G [Si, L;]. A useful

heuristic is to assume a uniform probability distribution i.e., p;r = m
K3 K3

2. Create distribution graph: The next step is to create a distribution graph, by adding the
probabilities of each type of operation r for each control step 7. The resulting distribution
graphs indicate the concurrency of similar operation. P(r,7) = ZoieFr pir. where the sum
is over all operations of a given type;

3. Force calculation: The final step is to calculate the force F associated with every
feasible step 7 assignment of each operation o;. It temporarily reduces the operation’s time
frame to the selected step 7:

L;
Drt
Flojym)=P(r,7) — _
(0i,7) = P(r,7) t;l_‘_Li_Si

where 7 is the type of the operation o;. In other words, the force associated with the
tentative assignment of an operation o; to step 7 is equal to the difference between the
distribution value in that step and the average of the distribution values for the steps
bounded by the operation’s initial time frame. The forces for all predecessors and successors
(indirect forces) of the current operation must be calculated. The total force is the sum of
the direct and indirect forces.
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4. Schedule once all the forces are calculated, the operation-control step pair with largest
negative force (or least positive force) is scheduled. Then P and F values are updated and
the entire process is reitered until all operations are scheduled.

The complexity of the FDS algorithm is O(c.n?) where c is the control-steps number and n
the operations number.

Later the authors generalized the approach [90] to treat many other problems. Among these
problems: scheduling under resource constraints, minimizing storage and interconnection cost.
Indeed, the force-directed list scheduling (FDLS) algorithm that they designed combines the
characteristics and strengths of the list scheduling algorithm where force is used as a priority
function. Another improvement has been done by Verhaegh et al. [105], they have changed the
FDS strategy by pruning one control step from its mobility range and postponing the decision
to a later stage.

The force-directed scheduling algorithm never backtracks on its decisions and hence is clas-
sified under constructive algorithms.

2.2.5 Path-Based Scheduling

Another commonly used algorithm is the path-based scheduling (PBS) designed by Camponaso [23]
and used in different context by many HLS systems [16, 15]. The PBS is a control-flow-based
algorithm which focuses on exploiting the control dependencies among operations. It analyzes
all paths in the CFG and schedules each path independently, thus minimizing the number of
control steps in each path. Paths in the CFG arise from conditional operations and loops.

The scheduling is based on solving constraints on the paths. These constraints are general
restrictions on the schedule, and may be due to resources, delays, or any other cost measure.
Note that the PBS algorithm is not concerned about parallelism or chaining. The only elements
in the algorithm formulation are the control-flow paths and the constraints.

Constraints are represented as intervals in the control-flow paths and the problem of finding
the minimum number of control steps in each path is the same as finding the minimum number
of cuts crossing all constraint intervals in all paths which is done using exact clique-covering
techniques. The minimum number of control steps is obtained for each path, not just the critical
path as in Data-flow-based schedulers. Minimizing the number of control steps per path may
not result in the overall minimum number of states.

In this approach, constraints formulation is completely general. In fact, it can model re-
source limitations, delay targets, or any other restrictions that should cause two operations to be
scheduled in different control steps. These restrictions are mapped onto the CFG as constraint
intervals and treated in exactly the same way by the scheduler.

Furthermore, the path-based approach can determine mutual exclusion (whether two oper-
ations can share the same hardware resource) in a general way by looking at the control paths
and at the actual conditions controlling the execution of the operations.

However, the PBS has some problems: Firstly, its complexity is proportional to the number of
control paths, which can grow exponentially with the number of conditional operations and this
complexity became clearly unacceptable for large designs. Secondly, fixing the execution order
limits parallelism; another limitation of PBS is that it does not change the order of the operations
in a path. The constraint intervals are created for a fixed ordering of operations (usually the
same order as in the input language description), which the scheduler is not allowed to change. In
addition, optimizing each path independently may increase hardware; indeed, in order to optimize
the number of control steps in each path, path-based scheduling (and subsequent allocation) may
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have to create a more complex FSM and possibly more multiplexers and control signals which
may result in larger area.

To avoid some of these disadvantages, Bergamaschi et al. have designed an adaptative scheduling
algorithm in which they combine data-flow and control-flow techniques by instrumenting the
path-based algorithm [17]. Their improvements consist in 1) reordering operations in the CFG
in order to increase parallelism and maximize constraint overlapping 2) reducing the number of
control paths by collapsing all conditional branches when it is possible 3) If the number of paths
is still too large (after collapsing), it applies a control partitioning algorithm which reduces the
number of paths by partitioning the CFG.

All the above schemes are constructive algorithms in the sense where the selection and fixing
of operations in the control step occurs one by one until all the operations are fixed. Due to
lack of a look-ahead scheme and the lack of compromises between early and late decisions, these
constructive algorithms do not guarantee the solution quality. One can cope with this weakness
by iteratively rescheduling some of the operations in a given schedule. For example, Park and
Kyung [87] proposed an approach which is based on the paradigm originally proposed for the
graph-bisection problem. In this near optimal approach, an initial schedule is obtained using any
scheduling algorithm. At each iteration, a new schedule is obtained by rescheduling a sequence
of operations that maximally reduces the schedule cost. If no improvement is attainable, the
process halts.

2.2.6 Exact Algorithms

Previous algorithms are heuristic methods, to get a globally optimal solution one can rely on some
exact search techniques as Integer Linear Programming [99] or techniques based on constraint
programming paradigm [14].

2.2.6.1 Integer Linear Programming

Some of the best known exact scheduling techniques are based on Integer Linear Programming
(ILP) models. According to HLS system contexts and the aimed objectives, many ILP formula-
tions are proposed in the literature [72, 61, 47, 71, 27, 112, 65].

In a first attempt, Lee et al. |[72], in their ILPS system, using an ILP formulation, tried
to find an optimal schedule via a branch-and-bound search algorithm. This algorithm involves
some amount of backtracking. They aimed a time-constrained algorithm. First the algorithm
calculates the mobility range for each operation Mob,, = {Step;| S; < j < L;}, where S; and L;
are the ASAP and ALAP values respectively.

Let C,. be the cost of a resource of type r and M, be an integer variable denoting the number
of resources of type r. Finally, let z;; be 0/1 binary variable where x;; = 1 if 0; is scheduled into
control step 7; otherwise, x;; = 0. Assuming a one-cycle propagation delay for each operation
and a non-pipelined execution, the feasible scheduling problem can be stated as follows:
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Y wp <M, 1<r<s1<r<g (2.1)
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The first constraints state that any schedule should respect the resource constraints i.e., no
schedule should have a control step containing more than M, resources of type r. The second
constraints guarantee that each operation o; is executed once between S; and L;. The third
constraint ensures that precedence constraints of the data flow graph are preserved. In this
formulation M, are unknown and the whole number of control steps Clp is fixed. Thus, the
only objective function is min Y ¢_, Cy * M,.

Another feasible scheduling problem using ILP has been formulated by Hwang et al. [61].
They aimed both resource and time constrained algorithm.

They use the same formulation as the above one but the objective function that they defined
is a combination of time-constraint objective function min 23:1 ¢ * M, and resource-constraint
objective function min Clsip,. This approach allows user to control the resource-time trade-
off. The ILP approach has made HLS problems better understood because the strength of ILP
formalism is that it can express in a uniform way any kind of constraints and system require-
ments. Indeed more structured and detailed, but more complex, ILP-formulations are proposed
by Gebotys et al. [47| and Zhang [117] in which they resolved the combined resource-constrained
scheduling and register allocation problem. However, the algorithm execution time grows expo-
nentially with the problem size represented by both the number of variables and the number of
inequalities.

In practice, the ILP approach is applicable only to small problems. In addition, general ILPs
may be difficult to solve due to weekness of bounds and speed of the algorithm of resolution.
Many facts make a general ILP problem as an N'P-complete one [104]. In fact, the simple
formulation above increases rapidly, in term of number of unknown, with the number of control
steps. Indeed for unit increase in the number of control steps we will have n additional binary
variables. Furthermore the usage of the precedence constraints 2.3 entails dealing with large
coefficients values of 7 which generaly makes the ILP resolution process NP-complete in the
broad sense |58]. Thus, optimal solutions can be found - albeit at the cost of high compilation
times. Nevertheless ILP-formulation can be tightened by more understanding the polyhedra
theory [99]. This can be done via many facts:

e designing a structured formulation;
e identifying of redundant serial constraints;

e insertion of valid inequalities.

These facts are studied and integrated in SILP? tool designed by Zhang [117]. More improve-
ments in execution times has been observed but this computation time remains high.

2SILP: Scheduling and Allocation with Integer Linear Programming.
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Recently Késtner et al. [65] have investigated approximations based on relaxation of the
integrality constraint principle [83|. Indeed for large input programs, they do the relaxation in
hierarchical way to guarantee the sub-optimality of the solution.

2.2.6.2 Constraint Programming Technique

A newer technique than ILP, the Constraint Logic Programming (CLP) model offers exact mech-
anisms —constraints handling methods— to resolve general optimization problems |14].

The CLP has already been applied in the hardware design automation area, in particular in
resources assignment and scheduling as well as in verification and test.

For instance, Kuchcinski [68] designs a model for solving both scheduling and resource as-
signment problems by using constraint handling methods provided by this paradigm. In this
approach, a system is modeled by a set of finite domain constraints over variables. Finite do-
main constraints are used to specify different properties and restrictions imposed on the specified
design. The model is solved by using constraint satisfaction/consistency techniques.

First, Let us introduce what is a constraint satisfaction problem (CSP) for finite domain
constraints and then present the formulation of the digital system modeling in terms of these
constraints. A CSP is a 3-tuple S = (V, D, C) where:

V ={x1,x9,...,2,} is a finite set of variables, also called Finite Domain Variables (FDV),

D ={D;,Ds,...,D,} is a finite set of domains, and

C is a set of constraints restricting the values that the variables can simultaneously take.
For each variable x; , a finite set D; € P(Z) of possible values constitutes its domain, called a
finite domain (FD). For example, the specification T :: {1..10} defines FDV T, which can have
values 1,2, ... and 10 while the specification R :: {23,56} defines FDV R, which can have a value
of either 23 or 56.

A constraint ¢(z1, 2, ...,T,) € C between variables of V' is a subset of the cartesian product
D1 x Dy x...x D, that specifies which values of the variables are compatible with each other. In
practice, the constraints are defined by equations, inequalities, global constraints, or programs.
For example, an inequality 77 + D1 < T2 defines a constraint on three FDVs 11, D1 and T5.

Each constraint can be in one of three states: satisfied, not satisfied or in a state that cannot
yet determine whether the constraint is satisfied or not “don’t know state”. If the constraint
is in the “don’t know state” the consistency enforcement for this constraint can be applied. A
particular program that implements a consistency method is called a propagator since it prop-
agates changes in FDVs to domains of all FDVs, involved in a given constraint, by narrowing
their domains. Combinatorial constraints are usually implemented using several propagators that
consider different aspects of their consistency. Baptiste [9] has involved the CLP by describing
and evaluating new resource constraint propagation algorithms for several classes of scheduling
problem.

A solution s to a CSP S, denoted by S = s, is an assignment to all variables V, such
that it satisfies all the constraints. There usually exists many solutions that satisfy the defined
constraints. They have different qualities which are defined by related cost functions. In most
design problems, we are interested in optimal solutions that minimize or maximize this cost
function. An optimal solution s to a CSP S is a solution S |= s that minimizes or maximizes
a value v assigned to a selected variable x; . The standard method to find a solution to a
CSP is to systematically assign FDVs with values from their domains. After each assignment
the consistency of all constraints that contain changed FDVs is carried out. The process finishes
when each variable has a value. If during the assignment an empty domain for a FDV is detected
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the process fails and backtracking is initiated. This is usually implemented as a depth-first-search
method and the optimization uses some kind of branch-and-bound algorithm.

In the case of constraint-driven scheduling, the CLP provides a tool to model uniformly any
kind of constraints. First, all required FD variables have to be defined. Kuchcinski, for each
operation, o;, defines three FDVs, T; , D; and R; which represent the operation start time, the
operation’s delay and the resource used for its execution, respectively. For instance the following
constraints are modeled as:

e precedence constraints: for each o; < 0;: impose the constraint T; + D; < T} ;

e resource sharing: As R; specifies possible implementation resources for a given operation.
The resource constraint prohibits simultaneous use of resources and can be specified using
disjunctive constraints like:

for each o; and o; using the same resource: impose T;+D; <T;VT;+D; <T;VR; # R;

In this way, all kind of constraints are modeled. Scheduling can try to optimize a given cost
function such as the time steps number, resource cost, power consumption, register/memory
usage or a combination of these. The cost function is defined by FDV that is constrained to
represent a given cost. For example, a cost function can be defined as:

For each o;: impose E; =T;+ D; impose max (EndTime, [E1,...,Ey,]).

Minimization of the domain variable EndT"ime produces the shortest schedule satisfying given
resource constraints. Optimal solutions are found using a method similar to a branch-and-bound
algorithm. This method interactively applies the depth-first-search algorithm.

As in the ILP technique, for large problems the CLP requires usually a large amount of
computation time to find the optimal solution since the search space becomes huge. Therefore,
partial search methods are proposed which unlike depth-first-search do not search systematically
through all possible solutions but backtrack earlier if certain conditions are fulfilled.

2.2.7 Miscellaneous Techniques

To cope with the gap between the very expensive techniques in term of computation time and
the graph-based methods which are enable to give guarantees on the computed schedule quality,
some scholars have proposed heuristics that use modern search techniques such as simulated
annealing, tabu and genetic based algorithms.

2.2.7.1 Simulated Annealing Based Algorithm

Another type of transformational feasible scheduler can use the simulated annealing technique.
Kirkpatrick et al. [66] give some idea about how to instrument this technique in optimization.
Indeed, the simulated annealing technique can be used for combinatorial optimization problems
specified by a finite set of configurations and a cost function defined on all the configurations. The
algorithm randomly generates a new configuration which is then accepted or rejected according
to a random acceptance rule governed by the parameter analogous to temperature in the physical
annealing process [92].

For instance the algorithm of Badia et al. |7] starts on an initial configuration obtained by
applying ASAP strategy. The Cost function evaluates how good a configuration is. It is defined
as:

Cost(X) = a Area(X) + 8 Time(X)
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where Area(X) is the estimated total area of the used resources and Time(X) is the total
execution time corresponding to the given configuration X. The tuning of the algorithm is
performed by taking different values for a and . For example, if @ < 3 the algorithm is closer
to resource-constrained scheduler (since solutions efficient in speed become more important)
while a > [ makes the algorithm more time-constrained.

At the beginning, a high temperature T}, is given in order to accept most new configura-
tions even if they increase the cost. Given a configuration X, a new configuration Y is generated
either by insertion or removal of a register, scheduling an operation to next or previous con-
trol step or by shrinking/expanding a control step. Although simulated annealing is robust, it
requires long execution time.

2.2.7.2 Genetic Algorithm

Genetic algorithms, as optimization ones, have been early and widely used in HLS. Wehn and
al. [82] and Heijligers et al. [57] have instrumented the genetic paradigm (GP) to resolve both
scheduling and allocation problems. Dhodhi et al. [35] use also the GP to resolve the circuit area
optimization problem. Yang et al. in [115] use a genetic algorithm and draw Pareto diagrams
for scheduling under power constraints, the algorithm has been extended to address run-time
scheduling on System-on-chips (SoCs) [116].

For instance, Heijligers et al. [57], given a data-flow graph (precedence constraints) and a
resource constraints, instrument a list-scheduler into a genetic algorithm. Their idea is based
on the following fact: the advantage of a list scheduler is that the schedules constructed always
satisfy the precedence constraints and the resource constraints however, the disadvantage is the
influence of the priority function on the quality of its results. To overcome this disadvantage a
genetic algorithm can be used to search for a good priority function to direct a list scheduler.
Inside their genetic algorithm, the encoding of a schedule consists of a permutation of operations
which can be used as a priority list for the list scheduler. The completion time of the resulting
schedule is used to calculate the fitness -function used to distinguish between better and worse
individuals - of the individual.

Initially a population with individuals is constructed, each containing a random permuta-
tion. Schedules are constructed by decoding permutations into priority list and applying a list
scheduling algorithm. The genetic algorithm selects individuals for re-combination using stochas-
tic sampling with replacement. Using this strategy, fit individuals have higher probability to be
selected than non-fit individuals. A lower bound of the completion time using the precedence
relations and resources constraints information is calculated using a prediction method. The
genetic algorithm stops if it meets the lower time bound or if the number of iteration is 100.
More special attentions have been paid to improve the quality of the population for more details
see [57].

Genetic algorithms are probabilistic search algorithms, thus the computed schedules are with-
out guarantee that they reach the optimum.

2.3 High-Level Synthesis Tools

There are two types of HLS tool: data-flow oriented tools and control-flow oriented ones. Though
the later tools are most general because they are able to deal with data-flows too.

Most existing HLS tools are specialized for a restricted class of applications. In the domain
of signal processing (DSP), numerous architectural synthesis tools are described in a variety
of publications. Among them, we quote MAHA (88|, HAL [89], EASY [101], MIMOLA |75],
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CADDY [56], OSYS [62| and Phideo [106]. For more generic and flexible architectures, other
tools are developed: Amical [67] and SPARK [55]. For more specialized architectures, like systolic
architecture we quote MMAIlpha [97]. In the field of compute-intensive embedded systems, we
quote LooPo [38] and Syntol®.

Many tools are developed in general for purely data flow designs, here, we just mention some
recent ones while focusing on the structure of their schedulers.

2.3.1 GAUT

GAUT is a pipeline architectural synthesis tool dedicated to signal processing applications de-
veloped jointly by LESTER and LASTI laboratories at Lannion and Rennes universities respec-
tively [74].

GAUT generates a structural and functional VHDL description of a dedicated architecture.
The designer provides as input: a behavioral description of the circuit, a description of the
library of operators, a maximal latency and a cycle frequency. The library models must have
been assigned with their physical characteristics. GAUT uses these characteristics to compute
the cost of the operator assignment. A generic library can be parametered by time and cost to
become a technology driven library.

In addition, GAUT may consider synchronization constraints; hence the scheduler takes into
account the order in which data are exchanged with the system and at what time this is possible.

GAUT’s scheduler is a list scheduling algorithm with mobility as a priority function which also
depends upon the availability of allocated operators. The operations are scheduled as soon as the
operator is available. The optimal assignment of a candidate operation on an available operator
responds to the minimization of interconnections between operators. The pipeline control of
each operator is managed by a complementary priority on assignment. When an operator is
allocated, but as yet not used, its use is primarily inferior to that of an operator already utilized.
Furthermore, if a candidate operation has a positive mobility, then the scheduling is delayed.
Finally, if an operator allocated from the beginning of the period is never used during the entire
period, its allocation interval is delayed for one clock period.

GAUT is also a user guided synthesis tool and it instruments memory optimization techniques
but it requires predefined timing characteristics and it uses Loop flattening.

2.3.2 SPARK

SPARK* is an HLS research tool developed at the university of California at Irvine. It takes a
behavioral description in ANSI-C as input and produces synthetizable RTL. VHDL.

Gupta et al. [55] use parallelizing compiler technology, as we do, developed previously to
enhance instruction-level parallelism and re-instrument it for HLS by incorporating ideas of
mutual exclusivity of operations, resource sharing and hardware cost models.

The intermediate representation used in SPARK consists of basic blocks encapsulated in
Hierarchical Task Graphs (HTG). To exhibit more parallelism and allow finding a good schedule,
they use a tool transformations toolbox. The techniques implemented are:

e code motion (CM): Two code motion techniques are used: percolation scheduling and trail-
blazing. Percolation Scheduling (PS) was developed as a technique to target code to parallel

#An HLS research tool, currently develop by CompSys, an INRIA project, France, team at LIP laboratory
http://www.ens-1lyon.fr/LIP/COMPSYS/
* Available at http://www.cecs.ici.edu/ spark
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architectures such as VLIW and vector processors. It compiles programs into parallel code
by systematically applying semantic preserving transformations. These transformations
have been proven to be complete with respect to the set of all possible local, dependency-
preserving transformations on program trees. However, to move an operation from a node
A to node B, percolation requires a visit to each node on every control path from A to B.
The incremental nature of these linear operation moves causes a code explosion by unnec-
essarily duplicating operations and inserting copy operations. Trailblazing was proposed
to circumvent these problems. Trailblazing is a code motion technique that exploits the
hierarchical structuring of the input description’s operations and global information in the
HTG to make non-incremental operation moves without visiting every operation that is
bypassed. At the lowest level, trailblazing is able to perform the same fine-grained trans-
formations as percolation. However, at higher levels, trailblazing is able to move operations
across large blocks of code.

e dynamic renaming: As it is well known there are four types of data dependencies: flow de-
pendence(variable read after write), anti-dependence (write after read), output-dependence
(write after write) and input-dependence (read after read). Only flow dependencies are im-
portant for the semantic preserving transformation since the other ones express memory
reuse and can be discarded. Thus, non-flow dependencies that prevent code motion can
often be resolved by dynamic renaming.

e common sub-expression elimination (CSE): this transformation attempts to detect repeat-
ing subexpressions in a piece of code, stores them in variables and reuses the variable
whenever the sub-expression occurs subsequently.

e speculative code motion: Operations may be moved out of conditionals and executed specu-
latively, or operations before conditionals may be moved into subsequent conditional blocks
and executed conditionally by reverse speculation, or an operation from after the condi-
tional block may be duplicated up into preceding conditional branches and executed condi-
tionally by conditional speculation. Operations can also be moved across entire hierarchical
blocks, such as if-then-else blocks or loops.

SPARK’s scheduler is also a priority-based list scheduling heuristic: the inputs to this heuris-
tic are the unscheduled HTGs of the design and the resource constraints list. Additionally,
the designer may specify a list of allowed code motions: speculation, conditional speculation,
whether dynamic variable renaming is allowed, and the code motion technique (percolation or
trailblazing) for moving the operations.

The heuristic starts by assigning a priority to each operation in the input description based
on the length of the dependency chain of operations that depend on it. Scheduling is done one
scheduling step at a time while traversing the basic blocks in the design’s HT'G. Within a basic
block, each scheduling step corresponds to a statement HTG node. At each scheduling step in
the basic block, for each resource in the resource list, a list of available operations is collected.

Available operations is a list of operations that can be scheduled on the given resource at
the current scheduling step. Initially, all unscheduled operations that can be scheduled on the
current resource type are added to the available operations list. Subsequently, operations whose
data dependencies are not satisfied and cannot be satisfied by dynamic variable renaming, and
operations that cannot be moved in the HT'G to schedule them onto the current scheduling step
using the allowed code motions, are removed from the available list. The remaining operations
are assigned a cost based on the length of the dependency chain leading up to the operation.
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The scheduling heuristic then picks the operation with the lowest cost from the available
operations list. The trailblazing is then instructed to schedule this operation at the current
scheduling step. This is repeated for all resources in each scheduling step in the HT'G. Once
the chosen operation has been scheduled, the dynamic CSE heuristic finds and eliminates com-
mon subexpressions in the operations in the available list, if the new position of the scheduled
operation permits.

It is reported that in effect, this scheduler improves the performances of the final netlist and
reduces by up to 50% the total delay through the circuit. However, despite all these sophisticated
heuristics, no guarantee can be given on the quality of the computed schedule. This is mainly
due to the list scheduling approach which performs only local choices.

The SPARK tool exploits the parallelism into and through basic blocks, but it doesn’t consider
the inherent parallelism through perfectly or imperfectly nested loops while such parallelism is
widely present in many high-throughput digital signal processor applications.

2.3.3 Ugh

User Guided HLS (Ugh) is another HLS research tool. It is a part of the Disydent project®. This
framework [6] is dedicated to SoC platform based design for shared memory Multiple Instructions
Multiple Data (MIMD) architectures.

Ugh’s designers introduced more interactions between the tool and the user. They search for
a best solution in a space of solutions obtained by repeating a list-scheduling heuristic.

The first transformation done by Disydent aims at increasing the performance: the applica-
tion must be parallelized and/or pipelined. Indeed, the Disydent approach advocates the MIMD
solution using Kahn Process Networks modeling |64].

Ugh'’s inputs are a restricted C program, a Draft Data-Path (DDP) and a clock frequency. It
produces both a synthetizable VHDL RTL model and a cycle accurate simulation model. Indeed,
to guide the tool the designer must define a DDP which is a simplified structural description of the
target data-path which respects coarsely the resource constraints. The DDP is a directed graph
whose nodes are functional or memorization operators and whose arcs indicate the authorized
dataflow among the nodes. Each C variable has an associated register in the DDP.

The synthesis process is split into 3 main steps: first, the coarse grain scheduling (CGS)
is run, resulting in allocation and translation of C statements into RTL instructions, then the
mapping is performed to get the physical data-path and temporal characteristics. Finally a fine
grain scheduling (FGS) is run, resulting in the rescheduling of the RTL instructions taking as
constraints the annotated timing delays of the previous data-path:

1. In CGS, coarse means that the operations are only partially ordered. The algorithm used
in CGS must choose a DDP sub-graph for each C statement and then coarsely order
them. These choices and this ordering are done by maximizing the intrinsic parallelism
while trying to reduce the data-path area. The degrees of freedom for reducing the area
are the minimization of the input numbers of the added multiplexers and the binding of
operations of the same type. Its temporal constraints are: multipliers need 2 cycles, adders
and subtracters need 1 cycle, and all other functional cells have negligible propagation
times. This algorithm is a list scheduling algorithm [37|. It produces a coarse finite state
machine.

® A Digital System Design Environment, an open source framework developed at the university Pierre et Marie
Curie, Paris, France. Available at http://www-asim.1lip6.fr/recherche/disydent/
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2. After mapping, placing and routing, the generated circuit will probably not run at the ex-
pected frequency. The main reasons are that the FSM has been constructed with estimated
operator and connection delays. Furthermore, it is also possible that the circuit does not
run at all if it mixes short and long paths. This happens frequently in circuits having both
registers and register files.

3. Afterwards, the user decides, if the synthesized cycle didn’t respects all constraints, to
perform the FGS by introducing some directives and resume the process (rescheduling)
until an acceptable solution is found. The FGS adapts the coarse FSM to the characterized
datapath to ensure that the circuit will run at the given frequency. FGS extracts the register
transfer instructions from the coarse FSM and then reschedules them taking into account
the propagation delays, the setup and hold times of the cells and the intrinsic parallelism
supported by the data-path. This algorithm is once again based on list-scheduling.

Ugh is dedicated to control oriented applications, it allows multi-cycle operations, operator chain-
ing and multi-functional operators. However, it requires very low-levels information given by the
user and it is highly dependent on a commercial tool (Synopsys).

Same as in SPARK tool, Ugh does not take into account the parallelism in loop nests. It is
satisfied to exploit the parallelism in the innermost loop by its unrolling. Another problem, is
that no register optimization is performed.

In addition, the process (CGS - mapping - FGS) can take time to be resumed before an
acceptable solution is found. Indeed the tool, in the rescheduling pass, uses the electrical charac-
teristics of an old data-path to improve the features of the design; the new generated data-path
after placing and routing may need more cycles, and thus the circuit is less efficient and need
other passes.

2.3.4 MMAlpha

MMAlpha [97] is another open source research tool developed at Irisa laboratory of Rennes,
France®. It is dedicated to highly pipelined accelerators applications. This tool does not handle
resource constraints. We quote it only because it is an instance of tools which efficiently handle
parallelism in loops without unrolling them.

Its kernel technology rely on polyhedral model to increase the input performance by exploiting
the parallelism in loops. In the polyhedron model a loop nest is abstracted by the polyhedron
described by the loop indices during execution of the loop. It can be used for any index-based
structure : memory (arrays), communications (accesses).

MMAIlpha uses systolic design methodology. Its input is a functional specification in Alpha
language and its output is an RTL description of systolic-like architecture in Alpha or VHDL.

Alpha is a functional language for expressing regular algorithms, synthesizing regular ar-
chitectures or compiling to sequential or parallel machines from a high level specification. An
algorithm is described by equations involving variables defined on multi-dimensional domains
(which are extracted from the polyhedral formulation). By successive transformations (uni-
formization, parallelization for instance), the description is refined until it may be interpreted
as an architecture. Then, this description can be translated towards logic synthesis tools in or-
der to generate a VLSI architecture. Alternatively, different analysis (scheduling, lifetime, etc.)
may guide the transformations towards imperative loop code for general purpose (sequential or
parallel) processors.

Shttp://www.irisa.fr/cosi/ALPHA/
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However, MMAIpha by using the Alpha language and the systolic design methodology are
not widely accepted as these concepts are very different from designer’s habits.

2.4 Scheduling using Reservation Tables

The reservation table were originally used in scheduling by Lam |69] in software pipelining which
is a scheduling technique for VLIW (Very Long Instruction Word) processors.

In our scheduling approach, we have instrumented this concept both for decreasing the com-
plexity of the scheduling problem and for taking into account both peculiarities of the data
path and special resource features, like pipelined units, bypassing, and other communication
constraints.

This concept is also instrumented by Ly et al. [73] but with another terminology; they
proposed the idea of “ behavioral templates ”. The term template was used in [96] to describe
structural patterns to exploit regularity. Formally they defined a behavioral templates T, as a
CDFG object which specifies a set of tuples, (n;,0;), where n; is a CDFG node and o; is an
integer cycle offset. The semantic is that T imposes the constraints:

schedule(n;) = schedule(T') + o; Y(ni,0;) €T

where schedule(n;) and schedule(T) denotes the schedules for n; and T respectively.
Extracting templates is done by pattern matching on the CDFG nodes. A template locks a
number of operations into a relative schedule with respect to one another. This fact allows easly 1)
handling time constraints, 2) sequential operation modeling, 3) pre-chaining of certain operations,
and 4) hierarchical scheduling. They organize CDFG nodes into super nodes (templates) and
schedule them. Their hierarchical scheduler is based on a list-scheduling algorithm in which task
priorities are deduced from resource-free ASAP and ALAP schedules.

2.5 Hierarchical basis Scheduling Frameworks

In the literature most scheduling algorithms, designed for HLS, compute a schedule into one
pass. The sample of algorithms chosen and presented in this chapter are among them. Many
factors let us think that this approach is not the best one. It is due to the large number of
constraints and objectives to be satisfied. Indeed, the application size, the diverse nature of
constraints, all peculiarities of the data path, the requirements of the possible implementation
could not be taken into account in one pass to get an optimal schedule without combinatorial
explosion.

In order to cope with these problems and reduce them to manageable sizes one can propose
stepwise scheduling algorithms. Such approaches can be justified by another reason. Indeed, in
practice and contrary to a massive parallel system, embedded systems (known as very constrained
systems) do not always require the generation of an optimal solution if the solution obtained is
close to an optimal one.

In the HLS literature there are few frameworks that have used stepwise scheduling. Verhaegh
et al. [106], for high-throughput applications, has designed a HLS tool -PHIDEO- which uses
a two-stages scheduling algorithm. In fact, to exploit the parallelism through nested loops that
contain operations using multi-dimensional arrays, they introduce a model of multidimensional
periodic operations. In this model, operations are executed repeatedly with several dimensions
of repetition, each of which corresponds to one loop. A specific execution of an operation can be
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identified by the corresponding values of the loop iterators. The time at which such an execution
takes place is explicitly given in the model by means of the operation’s period vector, whose
components denote the time between two consecutive iterations in each dimension of repetition,
and its start time, which denotes the time of the first execution of the operation.

In their multi-dimensional periodic scheduling problem, they have to determine the opera-
tion’s period vectors and start times and they have to assign the operations to resources on which
they are executed.

Due to the high throughput, severe timing constraints, and high memory requirements, it is
of utmost importance to choose the period vectors and start times such that a highly parallel
implementation is obtained in which the original loops are executed concurrently.

They take into account three sets of scheduling constraints: 1) timing constraints, which
bound the period vectors and start times of the operations, 2) resource constraints and 3) prece-
dence constraints, The scheduling objective they consider is to minimize the area occupied by
the hardware. In video applications, area is not only determined by resources, but also by the
memories that are used. So, a tradeoff has to be made between resources and memory.

In the first stage, they designed an algorithm to assign periods such that storage costs are
minimized. To this end, they use a branch-and-bound approach based on linear programming and
constraint-generation techniques and using an approximate cost function. For the second stage,
they use an iterative algorithm to assign start times to operations and to assign operations
to resources based on graph coloring. For both stages, they use integer linear programming
techniques. It is reported that this hierarchical scheduling approach has considerably reduced
the complexity of the scheduling problem.

2.6 Conclusion

In the literature, many HLS scheduling algorithms are developed. Most approaches belong to
the family of priority-list scheduling algorithms, differentiated by the way in which task priorities
are assigned, they can be sufficient for less constraints embedded systems. At the moment, these
graph-based methods are the only way to schedule large programs within an acceptable time.
Nevertheless, they don'’t give any guarantee on the quality of the solution.

On another hand, there are exact methods which are generaly based on ILP techniques. By
construction, they guarantee the optimality of the solution, but in practice these techniques are
applicable only to small problems.

To fill the gap between these two approaches, we believe that the quality of the schedule
could be improved by integrating exact methods into hierarchical scheduling approaches, that
could identify code fragments with reasonable sizes and schedule them.

In addition, there are other reasons for which the actual HLS scheduling algorithms are
not mature. Indeed, very quiet interest to exploit the parallelism in nested loops; despite that
many embedded application, specially in high-throughput DSP and compute-intensive embedded
systems, contain nested loops and multidimensional arrays, describing repetitive executions of
operations and repetitive production and consumption of data.
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(General Scheduling Approaches

As has been shown in the introductory chapter, we have investigated on hierarchical scheduling
approaches. Many factors have influenced these choices. In this chapter, we give an overview of
our HLS tool and we explain both scheduling strategies that we have designed and discuss our
general motivations to design such stepwise schedulers.

3.1 Syntol Project

The schedulers we describe in this thesis are part of the Syntol tool. It is an HLS research
tool, that we currently develop with the CompSys’ team at LIP laboratory®. Its aim is HLS in
the field of compute-intensive embedded systems. The starting specification is a variant of C,
including loops, the output is a hardware description at the RT level.

3.1.1 Input Specification: CRP Specification Language

Different languages have been used as input to HLS. Hardware Description Languages (HDL),
such as Verilog-HDL and VHDL, are the most commonly used. However, designers often write
system-level models using imperative programming languages, such as C/C++, to estimate the
system performance and verify the functional correctness of the design. Using such languages
offers higher level of abstraction, fast simulation as well as the possibility of leveraging a vast
amount of legacy code and libraries, which make easy the task of system modeling. In addition,
imperative languages contain many features which are not present in adapt subsets of HDLs
for example data abstraction, dynamic use of memory.... However, the use of all or a subset
of an imperative language to describe hardware is a less mature topic. Indeed, to easily map
input description to hardware we need some language features present in HDL but not present
in software languages. Concurrency is the most important one. For instance, it is allowed by
means “Always blocks” in Verilog HDL and “Process” in VHDL. Indeed, hardware is inherently
parallel, while imperative programs are inherently sequential.

Despite, the recent initiative SystemC [10] which is an attempt to standardize the C/C++
based language for both hardware and software, describing hardware with the present status of
imperative languages, remains weak. Thus the notion of processes which encapsulate programs
that execute concurrently, have to be introduced. This notion allows to describe a system as
a network of processes. This is done at the partitioning step, which is usually manually done

"An INRIA project, France, http://www.ens-1lyon.fr/LIP/COMPSYS/
*http://www.ens-1yon.fr/LIP/COMPSYS/

29



Chapter 3. General Scheduling Approaches

by the designer. By the way, in Syntol tool, we do the same. Indeed we use a special model
CRP (Communicating Regular Process) to describe systems [41]. This model is inspired from
the Kahn Process Network KPN model [64].

CRP model has been designed mainly to allow the decomposition of large application into
small modules. The aim of this formalism is to express parallelism in an easy way, allowing more
modularity and scalability of scheduling and promising reuse and readability. These modules - in
fact processes- communicate through channels; the resulting system allows a visual representation
and looks familiar to electronic designers (see Figure 3.1. CRP is not a programming language
but a specification language. It can be seen as a variant of C augmented with “process” and
“channel” constructors with the following semantic:

Process

A process is a sequential program which can communicate with other processes through channels.
With the exception of channels, all variables are local to one and only one process and are not
visible from other processes. The code of a process can be written in any convenient algorithmic
language. We use C here, but other choices are possible: Pascal, Fortran and others.

The code of a process is regular, or has static control in the following sense:

e Statements are assignment statements and bounded loop statements. All variables are
considered part of some array, scalars being zero-dimensional arrays.

e Loops are of the arithmetics progression variety (exactly the for loops of Pascal), and
the loop upper and lower bounds are affine forms in numerical or symbolic constants and
surrounding loop counters.

e The only method of address calculation is subscripting into arrays of arbitrary dimension.
The subscripts must be affine forms in constants and surrounding loop counters.

Some of these restrictions are quite natural when one is designing compute-intensive embed-
ded systems with real time constraints. It is difficult, for instance, to predict the execution time
of a while loop or of the traversal of a truly dynamic data structure. In addition, other restric-
tions can be lifted by preprocessing (goto removal, inductive variable detection, subscript-like
pointer detection, function inlining).

The iteration vector of a statement is a list of its surrounding loop counters, from outside
inward. An iteration vector for S cannot take arbitrary values. It must belong to the iteration
domain of S, which is obtained by stating that each counter is within the bounds of the corre-
sponding loop. Under the assumption that the program is regular; iterations domains are sets of
integral points inside polyhedron. Let Dg be the iteration domain of statement S. An iteration
of S or operation is written (S,x), x € Dg where x is the iteration vector. The set of operations
of a process P is the disjoint union:

Ep = | J{(S.2)| « € Ds}
SepP

and the set of operation of a process system is UpEp. In what follow, we may simply write u € F
for an arbitrary operation.
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Channels

A channel is an array of arbitrary dimension which is used as a communication medium from
one process to another. Channels are unidirectional. One process is declared as the writer to a
channel. Considered as an array, each cell of the channel must be written only once by its writer:
this is the single assignment property. Writing to a channel is non-blocking.

A channel may have any number of readers. Reading is not destructive: a value remains in a
channel at least as long as some process may have some use for it. If a process reads a cell which
has not yet been defined, it blocks until a definition happens.

W(A) denotes the set of operations that write into channel A with subscript function w4 ,
and R(A) denotes the set of operations that read from A with subscript function py . Clearly,
W(A) C E and R(A) C E. The set:

F(A) = {wa(u)lu € W(A)}
is the footprint of A. If the following constraint:
G(A) = {pa(u)lu € R(A)} C F(A)
is not satisfied, it is clear that some process will block for ever when accessing a memory cell in
G(A) — F(A).
An Example

To illustrate this model, let’s see the following trivial example. It specifies a system where the
process producer generates values which are consumed by the process consumer. We call this
illustrative system a Pipeline.

int n;
process producer (outport int x[]){ process consumer (inport int y[]){
int 1i; int i;
int t; int z;
1bl: t = 1; for(i=0; i<n; i++){
for(i=0; i<m; i++){ R: z = yl[il;
K: t = (t + i) > 1; }
W: x[i]l = t; }
}
}

/* the glue code */

void main(){
channel int al];

1b2: n = 100;

P: producer(a) ;
Q: consumer (a) ;
}

As we have mentioned above, Figure 3.1 which diagrams this example, is well familiar to
electronic designers.
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Figure 3.1: Pipeline System.

The new keywords process, inport, outport and channel are self-explanatory. Technically,
they appear as new storage specifiers in the C grammar. In the glue code, one starts a process
with the same syntax as for a function invocation. However, the process call returns immediately.

3.1.2 Target Architecture: the RTL Formalism

In order to define our HLS tool we first define the processor model which is used to express the
target structural description of the behavioral input program. In fact, we use a description at
Register Transfer Level |8] (RTL); the most popular and the most standardized model to describe
embedded systems [45]. Such model consists of a controller -typically described by a finite state
machine- and a Datapath.

As shown in Figure 3.2, the model has two types of I/O ports: 1/data ports, which are used
by the outside environment to send and receive data to and from the model, 2/control ports,
which are used by the outside environment to receive the information about the status of the
system and to send the information about the status of the environment

Control
Inputs Ck  Inputs (Start/Reset)
\

) Control

signals
Datapath Controller
DP Finite State Machine
FSM

Status

J signals N\

Outputs

Figure 3.2: Target of HLS - RTL processor-

The datapath consists of storage units such as registers, register files, memories, combinatorial
units such as ALUs, multipliers, shifters and comparators. These units and their I/O ports are
connected by wires and buses. The datapath takes the operand from storage units or input ports,
performs the computation in the combinatorial units, and returns the results to storage units or
output ports during each state, which is usually equal to one clock cycle.

The selection of operands, operations, and the destination of the result are controlled by the
control unit by setting proper values of the datapath control signals. The datapath also indicates,
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through the status signals, when a particular value is stored in a particular storage unit or when
a particular relation between two data values stored in the datapath is satisfied.

A controller consists of a state register and next-state and output logic. Next-state logic
generates the value of the state register in the next step -typically the next clock cycle- while
output logic generates the value of control and external signals.

3.2 A Schedule the Main Tool to Get an FSMD

In our HLS tool, we get the FSMD of a given application specified as a system of communicating
processes, by means of a valid schedule of its operations. In Contrast with earlier HLS systems
where an FSMD is synthesized by scheduling the CDFG which is simply the sequential flow
diagram of the input description [45]. Indeed, it is a quite different way, as we regenerate an
equivalent program which exhibits more parallelism; So the first step of this conversion is the
construction of a schedule, which gives the epoch at which each operation/instruction in the
program is executed. The problem of regenerating an equivalent program from a valid schedule
has been first studied by Irigoin |5] and a very efficient solutions, with associated software, are
available today.

The main purpose of regenerating an equivalent code is to extract parallelism through the
loops of the input description. In fact, to perform this, we use a scheduling strategy previously
used for automatic loop parallelization [40, 41]. This technique which has already proved its
efficiency:

e assigns a logic “date” — so that the schedule is considered as just a way of specifying an
execution order  to each statement in the C program. The result of this pass is the
definition of a sequence a sequence of logical steps (fronts) where each step is a group of
operations to be executed in this logical step. Typically, a front is a pool of a few data-
independent (i.e., parallel) loop iterations, each iteration consisting of several statements (in
general parallel too, but not necessarily). Classical loop parallelization algorithms [40, 32]
generate maximal parallelism expressed as parallel loops (i.e., large parallel fronts with no
resource constraints); our algorithm is a variant that can generate -currently, in a heuristic
way- bounded fronts if limited parallelism is desired. This is a form of symbolic loop
unrolling or tiling. This technique will be detailed in the following section.

e when a schedule is computed, it allows us to rewrite the code into a form -parallel code-
with explicit parallelism (see details in Section 3.5). From this equivalent parallel code one
can build a finite state machine in which the time is measured in logical steps.

A short review of the generating method will be given below.

3.3 Stepwise Scheduling

In the symbolic scheduling, we take into account all data dependencies. Other constraints also
can be treated such as delays of the elementary operations. However, the delays of operations
are first approximation to the real delays as we consider, for instance, that a multiplication takes
twice the time of an addition. It is important to emphasize that in this first scheduling step, all
the operations in the nested loops are taken into account.

However, this symbolic scheduling technique is quite complex and cannot take into account
all the micro-operations - and the architectural resources they need- that are implied in the
execution of one high-level statement. For instance a C statement as:
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R: y = ali+2] * t

in the symbolic scheduling technique is considered as an atomic statement so the schedule gives
it one logical date. However in hardware R is considered as a macro-task because it is composed
at least by a set of three actual elementary operations: 1) a subscript/address calculation, 2) one
multiplication and 3) an access to the block memory assigned to the array a if we assume that
it is mapped to a block memory. So this is still a too coarse description for hardware generation
and we must provide separate micro-operations for subscript calculations, memory management,
and functional units use. Thus, for a given logical step, each statement is a complex sequence of
micro-instructions that we call micro-operations (for the sake of simplicity we use operations).
Furthermore, into a statement, the operations may be linked by data dependences constraints.

Due to this particular construction, the macro-tasks in a front are data independent but they
may still interfere in their use of resources. So, the front -logical step- must then be “split” into
as few elementary steps as necessary to satisfy resource constraints. In other words, we need at
least another step to schedule locally all operations of the macro-tasks belonging to the same
logical step to satisfy the resource constraints and data dependencies between the elementary
operations of the same macro-task.

So these considerations lead us to the idea of designing gradual approach to
scheduling programs with loops down to RTL.

Many factors and reasons let us to think that such approach can improve a lot the performance
of the scheduling algorithm. First, let us notice that the application size, the diverse nature of
constraints, peculiarities of the datapath - features of the resources- and the requirements of the
possible implementation can not be taken into account into one pass to get an optimal schedule
without exploding.

In addition, let us mentioned that our symbolic scheduling technique is based on integer linear
programs. For a large application, finding legal schedules entails solving large linear programs.
Thus including the amount of all elementary operations at the first scheduling level, which aim is
extraction of parallelism in loops, would greatly increase its complexity, and would not improve
the result significantly.

Besides, even when it is possible to consider all details of micro-operations in the symbolic
scheduling step, a tight packing of these micro-operations also has the desirable result of mini-
mizing the number of intermediate values to be stored in registers and such a property is hard
to ensure with loop parallelization techniques.

Let us recall that from the result of the first scheduling step, we build an FSMD in which time
is measured in logical steps. Each state contains a set of data independent high-level statements
(macro-tasks) and each of them is composed by a sequence of operations. Now, we must refine
this logical step to satisfy detailed resource constraints and taking into account all peculiarities of
the datapath. Time will be measured in physical time i.e., clock cycle of the target architecture.
How to perform this? In this thesis, we have sketched two hierarchical scheduling approaches.

3.3.1 Two-step Approach

After the first scheduling step, one possibility is to consider all the micro-instructions of a front
and schedule them simultaneously while considering resource constraints. This is more natural
possibility; if we choose an exact method we reach an actual optimal solution.
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3.3.2 Three-step Approach

However, again for complexity reasons one can alternatively consider another possibility. Indeed
we consider that, in our context, it will be good enough to decouple the problem into two
subproblems. This partitioning can be sketched as:

e After the symbolic scheduling, we first schedule each macro-task independently, taking into
account all peculiarities of the data path and resources, like pipelined units, bypassing,
and other communication constraints. The schedule of each macro-task is summarized by
a reservation table that states which resources at which cycle (relative to the starting time
of the macro-task) are used by this macro-task. We call this second step micro-scheduling.

e Due this particular construction, the macro-tasks in a front are data independent but they
may still interfere in their use of resources. So we need a another scheduling step to satisfy
resource constraints. We call this third step fine-grain scheduling.

Let us consider the following fragment:

for(i=0;;i++){
Z: s[0] = 0;
for(j=1;j<7;j++)
M:  s[jl=s[j-1l+eli+j-11*w[j];
W: o[i] = s[6];
}

This program represents the application of a six-taps FIR filter to input e giving output
o. Dependence analysis and symbolic scheduling show that this program has the following
causal schedule:

0(2,i) = 2i (3.1)
O(M.i,j) = 2i+j
OW,i) = 2i+7

For HLS, one has first to infer from these results exactly what happens at each clock cycle,
i.e., to solve equations of the form 0(U,7) = t, where t is a time variable. It is clear that the
cases t even and t odd are to be treated separately. The result is that for ¢ even, one will
execute statement Z for ¢ = ¢/2, statement M for /2 -3 <i<t/2—1and j =t — 2i, and
that statement W is not executed. The step at logical time ¢ is thus made of one instance
of statement Z and three instances of statement M. A similar result holds when ¢ is odd.

The detailed timing of statement M depends on the amount of hardware we intend to
devote to its execution. For the sake of definiteness, let us assume circular buffers for e and
o, a register file for s and a ROM for w, and a floating point adder and multiplier, both
implemented as three stage pipelines. It is easy to see that for each instance of M, the value
of j is fixed (j = 2,4,6 for the even steps) hence the only address calculation is that of
e[i+j-1] which can be simplified by strength reduction. A reservation table for an instance
of M is:

step 1123|456 7]8]9
address | x
e buffer X
s file X X
ROM x
mult X

add X
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where a indicates that the corresponding pipelined operator is busy but may accept

further operands. This reservation table has been compacted as much as possible. Firstly, in
this way M is executed as fast as possible; secondly, any other implementation would implies
additional registers to hold intermediate results.

We now have to schedule three copies of this table plus the simpler table for Z on the
available hardware (floating point and fixpoint operators, register files; ROM) to convert
logical time into physical time, and this is the central point of this thesis. In the present
case, the problem is of small size (three independent tasks). However, it is easy to imagine
bulkier examples: we may need more than six taps, or several filters working in parallel for
a multiband equalizer.

As mentioned, one could argue that it would be better to consider, at the symbolic scheduling
stage, all the micro-operations generated by each statement. This is of course true in theory. In
practice, the size of the problem would increase dramatically — by a factor of 7 in the preceding
example. Besides, it is difficult to prevent the scheduler to introduce delays between micro-
operations, and hence to imply more registers for holding temporary results. Our approach
may be sub-optimal, but we believe that the possible improvements do not warrant the added
complexity.

Though we have investigated both approaches, the last decoupling will be good enough. Our
fronts are indeed in general chosen such that the number of operations they contain offer enough
parallelism to saturate the critical resources. So in the micro-scheduling step, macro-tasks are
scheduled independently, but when assigning resources, we try to distribute parallel resources
among macro-tasks. In other words, after the first two steps, the directed acyclic graph of micro-
scheduled macro-tasks (tasks with reservation tables) should still contain a sufficient degree
of parallelism. The final resource constraints are then taken into account with the fine-grain
scheduler.

Figure 3.3 summarizes both scheduling decompositions. Dotted lines expresses the area of
our main contributions as in this thesis we have addressed only some parts of these scheduling
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steps.

3.4 Compilation Flow

In order to get good ideas about our scheduling approaches, let us describe their usage in our
context. Let us see the design flow of our HLS framework which is diagramed by Figure 3.4.

A brief description of all steps of this HLS system going from an input description written
in CRP to a physical view of the target circuit (which will be described via an FPGA image or
ASIC mask) through an RTL description is:

e In a pre-processing step, by hand for the moment, each statement of the program is split —if
necessary until it fits the target datapath in the number of simultaneous operations, mem-
ory, and register accesses. For example, a high-level statement that reads three different
memory locations while the target architecture can only perform two reads simultaneously
is decomposed into intermediate operations. For example

R: b =3 *x al[i+2] * al[j]

If the array a is mapped to a one-port memory or we can’t have more than one multiplier
in the circuit, this high-level statement should be split into two statements such:
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R1: bl
R2: b

3 *x al[i+2]
b1l * alj]

This amount of node splitting we do before scheduling is clearly one of the adjustable
parameters of our methods, and it is clear that more investigations are needed in order to
find the best decomposition, which probably depends on details of the application and the
architecture. This issue -how to do this splitting?- is clearly a matter for research however
it isn’t specially addressed in this thesis;

e After, the behavioral input description is compiled by the Cerp compiler which does a syn-
tactic and semantic analysis, same as a classical compiler. In addition to this, It performs
a dataflow analysis [39]. Its aim is to exhibit all the dependencies between array and scalar
references of the system. It extracts both kinds of dependencies data dependences and
communicating dependences;

e Using the results of this analysis, a first-level schedule - a multidimensional schedule- is
computed by modeling the problem as an integer linear program [41]|. This scheduler is
a scalable and modular version of a multidimensional scheduling algorithm [40]. In this
thesis, we will ignore the explanation of such construction.

The output of this scheduling module is a scheduling function 6:

0:FE+—T

where E is the set of all operations? of the program and T is a set of time values. Each
time value is an integral vector, totally ordered by lexicographic order. So that it gives for
each operation an unique execution date. Indeed for each statement S of the program, the
function §(< S,z >) is an affine form of the iteration vector x:

(< S,x >)=hg.x+ks (3.4)

Where hg is the time vector of S and kg is a scalar.

The multidimensional time notion can be easily compared to the decomposition of a date
into many dimensions (like year/month/day/hour...) where the first dimensions are the
most significants. For the case of the Pipeline program of Section 3.1.1, this scheduling
algorithm gives the following schedules:

B((Ib1,4)) = 0, 0((1b2,4)) = 0
O((K, i) =2i+1,  O(W,i))=2i+2  O((R,i)) =2 +3.

This solution means that both statements [b1 and [b2 start at time 0, after in a cyclic way,
-at each 3 consecutive clock tops- a sequential execution of an instance of K, W and R
respectively holds.

e Given this schedule, now we regenerate an efficient parallel code. With present day tools |93,
11], it is quite easy to automatically do this and many competitive algorithms try to find
a compromise between the code efficiency and its simplicity |5, 20, 93|. In our framework

9an operation is an instance of statement defined by the name of the statement and the iteration vector
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we have used ClooG'? to generate such code. In Section 3.5 we will explain in detail how
the chosen tool works.

From this equivalent parallel code, we build a finite state machine -control automaton- in
which the time is measured in logical steps. In this automaton, each state executes a set
of data and control independent operations.

e According to the scheduling approach used, we refine the resulting FSM by splitting each
logical step to guarantee that resource constraints and peculiarities of the data path are
respected .

e Starting from the previous constructed FSM, in the last step of the front-end part we
generate an RTL description written in synthesizable VHDL form according to the standard
IEEE 1076-1987 |2|.

Now, it remains to submit this RTL description to any logic synthesis tool. In our context
we use the ISE Xilinx 6.x!! tool kit. This synthesis environment uses mainly: 1/ XST'2 for the
synthesis of gates and 2/ ModelSim to perform at several levels temporal simulations.

3.5 CLooG: a Code Generator

The problem of automatic code generation is solved thanks to reasoning in the polyhedral model.
This model is based on a linear-algebraic representation of programs'® Indeed, using this rep-
resentation, the code generation problem entails scanning the Z-polyhedron'®, defined by the
iteration domains, in the lexicographic order. In other words, it entails visiting each integral
point of a polyhedron in the lexicographic order.

At first, the automatic code generation problem was solved by Ancourt and Irigoin [5]. For
more complex situations, the best solution is the Quilleré et al.’s algorithm [93]. Both methods
generate code with loops. Boulet and Feautrier [20] proposed another solution in which, they
directly generate low level code without loops.

Let a program be represented by its Z-polyhedron -defined by the iteration domains- and
a legal schedule. In our framework, we use the ClooG tool to generate the control automaton.
Indeed ClooG |[11] gives an efficient parallel code with less control. The heart of the generation
process is the Quilleré et al. algorithm. Their technique is simple and can be summarized in
three steps:

e It generates loop levels by projecting the polyhedra onto the corresponding dimension.

e Next, it splits the projection into disjoint polyhedra and it sorts the resulting polyhedra
according to the lexicographic order.

e Lastly, it recursively generates loop nests that scan each projection.

19 CLooG: for Chunky LOOp Generator. This soft is available at http://www.cloog.org/.

""http://support.xilinx.com /support/sw_manuels/xilinx6,/

12Xilinx Synthesis Technology

13 Also called the polytope model, it became very popular because of its rich mathematical theory and its
intuitive geometric interpretation. Moreover it addresses a class of codes with very regular control that includes
a large range of real-life program parts [12, 100].

A convex set of points in a lattice (also called lattice-polyhedron), i.e., a set of points in a Z vector space
bounded by affine inequalities [99].
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In order to force scanning to respect some rules in addition to the lexicographical order,
CLooG allows using some scattering functions, such as the scheduling functions that we have
previously computed. Scattering is a shortcut for scheduling and allocation functions and the like.
Indeed in order to exhibit parallelism, CLooG applies some transformations on the Z-polyhedron
while respecting the scheduling functions.

To illustrate the behavior of this algorithm, we unroll it on the Pipeline example. Let us
recall that for the case of the Pipeline program, the multidimensional scheduling algorithm gives
the following schedules:

B((Ib1,4)) = 0, 0((1b2,4)) = 0
0K, =2i+1,  O(W,i))=2i+2  O(R,i)) = 2i + 3.

These scheduling functions can be represented by the following parameterized 5 polyhedra (it
represents the CLooG input):

Polyhedron [b1:
t=0 )
1=0 not4 (o
Polyhedron [b2:
t - O a L] o
1=0
Polyhedron K
t=2i+1
0<i<n-—1 3
Polyhedron W ;
t=20+2 N i
0<i<n-1 T o e i
Polyhedron R I«
t=2i+3
0<i<n-1

to

t

| | |
T T T
2 3 4 5 2n — 1 2n 2n + 1

O Integral point of polyhedron K ® Integral point of polyhedron W

Integral point of polyhedron R O Integral point of polyhedron Lbl1/Lb2

In the context of n > 1, let us generate the code which scan this 5 polyhedra:

e Firstly, we project the 5 polyhedra on the first dimension ¢ and we split them into disjoint
polyhedra. Then, we sort these polyhedra so that the textual order of the loops, scanning
the first dimension, complies with the lexicographic order. We get this first pseudo code:

for (t=0;t<=0;t++){

Polyhedron [b1: {i = 0}
Polyhedron [b2: {i = 0}

}

for (t=1;t<=1;t++){
Polyhedron K: {i =0}

}

for (t=3;t<=2n-1;t++){
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Polyhedron W:
li=(-2)2)
Polyhedron R:
{i=(t-3)/2}
Polyhedron K:
{i=(-1)/2}
}
for (t=2n;t<=2n;t++){
Polyhedron W: {i = (t — 2)/2}
}
for (t=2n+1;t<=2n+1;t++){
Polyhedron R: {i = (t — 3)/2}
}

e We recurse on the resulting disjoint polyhedra: so we project them on the next dimension
1 and we separate them into disjoint polyhedra. Then we sort these polyhedra so that
the textual order of the loops scanning the second dimension complies to the lexicographic
order.

e After the elimination of the loops with one iteration, the final code which scan the 5
polyhedron is:

1b1(i = 0);

1b2(i = 0) ;

K(i=0) ;

W(i = 0) ;

for (t=3;t<=2#n-1;t++) {

if ((£-3)%2 == 0) {
R(1 = (t-3)/2) ;

}

if ((t-2)%2 == 0) {
W@iE = (8-2)/2) ;

}

if ((t-1)%2 == 0) {
K(i = (t-1)/2) ;

}
}
W(i = n-1) ;
R(i = n-1) ;

The unknown ¢ expresses the time vector. Conditional statements are generated to guarantee the
integrality of subscripts. To avoid such complex subscript functions and guards, we can change
this temporal basis thus, moving from a one dimension basis to two dimensions basis. Thus, we
obtained the new computed schedule:

o((Ib1, 7)) = < 8 )  O((102,3)) = < : )
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Figure 3.5: Generated FSM for the Pipeline Program.
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s = (o ) oovan = (4 ) eran = (7).

The generated code becomes simpler:

1bl ;

1b2 ;

K(i=0) ;

for (t=1; t<=n-1; t++) {
Wi = t-1) ;
R(i = t-1) ;
K(i=1t) ;

}

W(i = n-1) ;

R(i = n-1) ;

As the above code shows, GLooG don’t consider the body of the statements; it recognizes the
statement just by a label which is automatically generated according to the textual order of the
apparition of their iteration domain in the GLooG input file. In our framework we generate
directly from the ClooG internal representation the control automaton while the body of state-
ment is inserted from an external input file. For example, the synthesized FSM for the pipeline
program is diagramed by Figure 3.5.

3.6 Conclusion

HLS scheduling is a very constrained task. Indeed, to get an acceptable schedule, that allows
exploiting enough parallelism inherent to the input description, we have used some techniques
which have been pioneered in automatic loop parallelization. However, these techniques are quite
complex and can’t take into account all datapath peculiarities and detailed resource constraints.
For this we have sketched some scheduling approaches, in which scheduling is performed in
gradual ways.

In this chapter, we have explained our general stepwise scheduling approaches and how they
are inserted in our framework. Let us recall that, in this thesis, we have addressed only some parts
of these scheduling approaches. Indeed, considering the three-step approach, in the following part
(Part T), we focus on the third scheduling step problem: “how to schedule tasks whose resource
usage is described by reservation tables”. In addition, we propose some solutions to perform the
last scheduling step defined in the two-step approach in Part II.
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Reservation Tables Scheduling using
Dis-equations
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Chapter 4

Formalism and a Greedy Solution

This Chapter is divided into two parts. In the first part, we will explain how tasks are represented
by mean of reservation tables. According to this task model, a new formulation of resource
constraints is developed. In this model, constraints are represented using dis-equations. Then a
formal definition of the scheduling problem is deduced.

In the second part, a greedy heuristic is proposed and some related experimental results are
reported and commented.

4.1 Introduction

Let us recall that in general, the HLS scheduling problem is an NP-Hard problem and especially
when one wishes exploiting parallelism inherent in the input description. For this main reason,
among others, we have sketched the three-step scheduling approach. In what follow, we propose
to formalize the problem defined in the third scheduling step i.e. the fine-grain scheduling
problem.

4.2 Task and Resource Constraints Formalism

In this section, we explain what is our task model basically a set of (possibly dependent) tasks,
each being a complex sequence of elementary pre-scheduled operations — and how we represent
resource constraints for such tasks.

4.2.1 Extracting Tasks with Reservation Tables

Basically, a macro-task is a statement in some high-level language (C in our case). As shown
in Section 3.3 at the hardware generation level, each macro-task must be split into simpler
operations like address calculations, memory accesses and arithmetic operations.

According to the result of the second scheduling step the elementary operations in each
macro-task are mapped to resources and pre-scheduled; indeed, independently the schedule of
each macro-task is described by a reservation table that states which resources at which cycle are
used by this macro-task, relative to its starting time. In other words, this pre-scheduling leads
to a reservation table in which the start time of each elementary operation is fixed, once and for
all, relative to the start time of the macro-task. From now, each statement can be viewed as a
macro-task whose resource usage is fixed.
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The resource assignation is done in a simple manner. Indeed, we chose the binding that
greedily allocates all the available resources to tasks, i.e., we assign the whole resources to the
functional operations of each task. In other words, the binding rule assigns the available resources
to the competing tasks in a round-robin way.

Without loop, the data dependences between operations, into a macro-task, can be repre-
sented by a directed acyclic graph. Hence, for this step —micro-scheduling—, we use classical task
graph scheduling techniques(Chap. 1 of [32]). Here also, the problem is N'P-hard, but there are
some heuristics which give approximative solutions and which can be guaranteed to achieve at
most twice the optimal execution time. In addition, the node splitting performed at the pre-
processing step insure that the size of a macro-task is relatively small hence in most of time the
micro-scheduling heuristic reaches the optimal solution.

Now, as macro-tasks are represented by reservation tables and they are data independent,
getting a whole schedule entails just fixing the relative starting dates of macro-tasks, while
respecting resource constraints and minimizing the total execution time.

4.2.2 Notations

We denote by T the set of n macro-tasks, R the set of resources, t; the starting date of the
macro-task ¢, and p; > 0 the latency of task i (the unit is the clock cycle), i.e., the difference
between the ending time of the last elementary operation it contains and the starting time of
the first one. The reservation table of task i is thus of size p; x |R|. Let us see the following
macro-task S. Assuming that we have one adder, one multiplier, and that the array a is mapped
to one-port memory block A. Assume also that a memory access and the multiplier take 2 cycles
and that both can be pipelined. One possible binding is diagramed by the following figure:

ts 1

S: y = ali+2] * b

Task S
A reservation table for S.

In what follows, we will use “task” (resp. “operation” ) instead of “macro-task/high-level
statement” (resp. “micro-instruction/micro-task”) for brevity.

4.2.3 Forbidden Distances

To get an optimal schedule we must express efficiently the constraints of the scheduling. Resource
constraints are the main ones.

Consider a couple of tasks ¢ and j, with respective starting dates ¢; and ¢;. In a legal schedule,
if the tasks ¢ and j are data independent, they can start at any dates except those which put
them into resource conflict. So the intuitive idea is to express the resource constraints as a set of
forbidden distances (t; —t;). Let us explain, assume that a resource r € R is used at micro-step d;
in the reservation table of task 7 and at micro-step d; in the reservation table of task j. (A given
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ti + pi

lj +pj

Figure 4.1: Forbidden Distance.

resource r can be used more than once in a given reservation table, so we should use a notation
such as d; ., but we dropped the indices  and k for clarity.) This means that in a schedule
the resource r is used at time step t; + d; by task ¢ and at step ¢; + d; by task j. To satisfy the
resource constraint for r it is necessary that:

ti +d; 75 tj + dj, ie., t; — tj 75 (di,j = dj — dz) (4.1)

Note that the values d; and d; are problem inputs as the reservation tables are given,
whereas t; and t; are unknowns. In fact, dis-equation ( 4.1) eliminates, from the solution space of
t; and t;, only the forbidden distance d; ;. In this way, all resource constraints for a pair of tasks
(,7) can be expressed as dis-equations by a systematic examination of their respective reserva-
tion table. It follows that, for the set T of tasks in a logical state, all the resource constraints
can be obtained by defining for each couple of tasks (7,7) all the dis-equations expressing the
resource constraints. Figure 4.1 illustrates the notion of forbidden distance.

When there are more than one copy of each resource, this simple formulation of the constraints
is no longer possible, unless we bind resources to tasks a priori. As mentioned below, our binding
rule assigns the available resources to the competing tasks in a round-robin way. We have
done some experiments that show that this heuristic has no great influence on the final latency
(§6.2.4).

4.2.4 Example 1

Consider the following excerpt from the PerfectClub Benchmark, The SPICE'® program, from
line 16 to 19. This example illustrates what a logical step may contain after symbolic scheduling.

Task 1: GSPR = VALUE(LOCM+2)*AREA
Task 2: GEQ VALUE (LOCT+2)

Task 3: XCEQ = VALUE(LOCT+4)*0MEGA
Task 4: LOCY = LYNL+NODPLC(LOC+13)

The four tasks are data independent. Assume that the available resources are one adder, one
multiplier, and two memory blocks: Val (where the VALUE array is mapped) and Ndp (where the
NODPLC array is mapped). Assume also that a memory access and the multiplication take 2 cycles
and that both can be pipelined. Scalar variables like AREA or LOCY are assumed to be allocated
to registers, where they can be accessed in no time. Figure 4.2 diagrams one possible binding,
where the label RM Val (resp. RM Ndp) means to read the memory block Val (resp. Ndp).

'5SPICE is a widely used circuit simulation program developed at UC Berkeley.
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___@__ ___@_. ___@__ ____@__

Task 1 Task 2 Task 3 Task 4

Figure 4.2: Binding for Example 1.

For this example, the system of resource constraints is composed of 9 constraints defined as
follows:
t1—ta#0 ti—ts3#£0 t1—ts#0
t3—ta#0 to—t3#0 to—1t4 #0
ta—to# =2 ty—t; £ -2 ty—1tg# —2

For instance, the constraint ¢; — t3 # 0 expresses the fact that tasks 1 and 3 cannot start at the
same time because (among other reasons) both use the adder in their first step.

4.3 Scheduling Problem Formulation

Now, if there are no data dependences between tasks, finding a valid schedule for T entails solving
the following system of dis-equations in integer values:

ti—t;#df;  i,jeT (42)
t; >0 ‘

For a given pair of tasks i and j, there can be several forbidden distances d; ;, hence the index k.
The set of inequalities ¢; > 0 is added into the system just to fix the origin of the schedule.

In addition, as the goal is to get an optimal schedule (a schedule with minimal execution time
or latency) we must minimize the total time max;(t; + p;).

If necessary, dependences between tasks can also be handled; they can be expressed as addi-
tional inequalities of the form ¢; —¢; > d; ;. When, ¢; ; > 0, such a constraint means that task j
must start at least d; ; steps after task ¢ (a typical data dependence); when ¢; ; < 0, it means
that task ¢ can start at most —d; ; steps after task j.

4.4 How To solve a System of Dis-equation?

First let us notice that, as defined, the problem of solving such a system of dis-equations while
minimizing max; t;, with ¢; > 0, is an N'P-Complete problem.

Proof. The proof of this N'P-completeness is straightforward; we claim that the graph coloring
problem is a particular case of the problem defined in (4.2). Indeed, if one takes all dz-];- equal to
0 and all p; are equal, then the solution, at the end, is to give ¢ a different color than j. Now, the
graph coloring problem, in its general forms, is well known as an A"P-Complete problem [110]. O

Consequently, we are sure that finding an optimal schedule can’t be done in a polynomial time.
Nevertheless, there are many methods for solving the system defined in (4.2):
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e one can be satisfied with a greedy heuristic such as a list-scheduling algorithms [33]. In
these methods, we simulate an execution by maintaining, at each time, a list of ready tasks.
This list is ordered according to a given arbitrary order. In most cases, this order favorises
the long tasks or tasks belonging to the critical path. Then, we launch the first ready tasks
such that no resource is deliberately left idle.

e conversely, if we need more accuracy, in other words, if we search the optimality, there are
also many solutions from operation research which are based on:

— Branch and bound (BAB) techniques [59];
— Integer Linear Programming techniques [79, 99|.

— Since there is an obvious bound for the t; (; < >, p;), another solution can be
employed by using constraint handling methods, provided by Constraint logic Pro-
gramming (CP) paradigm [14]|. Indeed, CP uses the concept of constraint solving in
a specific computation domains. Generally these domains are finite domains.

Indeed, Integer Linear Programming and Constraint Logic Programming are two alternative
approaches for solving combinatorial optimization problems.

Concerning the CP resolution, interval methods, which are the main techniques used by
the solvers of the constraints, have shown their ability to locate and prove the existence of
an optimal solution in rigorous way, unfortunately, these methods are rather slow. Indeed, a
solution can be found by instantiating all domain variables with values from their respective
domains. Instantiating a variable may cause the execution of constraints and therefore failure.
On backtracking, another value from the domains has to be chosen. These backtrackings may
slow down a lot the all process.

The situation is similar for the ILP techniques. In fact, the theoretical complexity of the ILP
solutions is exponential in the product of the task number and the number of needed variable
in the standard coding [25]. However, we have tried in Chapter 5 to define some economical
codings and straightforward formulations.

In the same way, a Branch-And-Bound-based method has an exponential time complexity,
but it can have a different behavior in practice. Indeed, Branch-And-Bound is a meta-method
of guidance in the space of solutions. Its strategy of resolution depends strongly on the features
of the problem to resolve. For this reason, we have developed a Branch-and-bound in Chapter 6.

In the rest, we will develop and experiment a greedy heuristic which will be used as yardstick
for measuring the efficiency and robustness of the exact algorithms developed in both following
chapters.

4.5 A Greedy Heuristic

First let us consider a classical greedy heuristic, which can be used for data-independent tasks.
It is easy to adapt this heuristic to the case where dependences such as t; —t; > d; ; give rise to
a directed acyclic graph.

4.5.1 Algorithm

We use a classical greedy-scheduling (GS) heuristic. Without any data dependences, all the tasks
are ready at time zero. Tasks are scheduled one after the other. At each step, given a subset T},
of already-scheduled tasks, we check whether the next task ¢ can be scheduled at time 0, i.e.,
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Algorithm 1: Greedy Scheduling Algorithm.
Data:

- ListTasks,

- Resource reservation table for each task 7 in ListTasks,

- Forbidden distances.

begin
forall i € ListTasks, following the order in ListTasks do
StartTime « 0;
while not (isPossible(i, StartTime)) do
| StartTime « StartTime + 1;
end
Schedule[i] < StartTime;
end
end

if all forbidden distances between ¢ and all tasks in T, are respected. If not, the start time is
incremented, and the process is reiterated.

Algorithm 1 constructs a global reservation table. After each scheduling step, this table is
updated. Thus, it is important to emphasize that this algorithm can be used before resource
allocation, as for any classical list-scheduling algorithm. Indeed, the isPossible procedure
can use the information on the number of available resources and takes into account forbidden
distances when there remains only one resource to share. In fact, freedom to place binding after
or before scheduling gives this heuristic an advantage.

Our algorithm is a pseudo-polynomial heuristic, as its time complexity is O(n|R|>_; pi).
where n is the number of tasks.

When the dependence constraints t; — ¢; > 6; ; form an acyclic graph, one can develop a
similar heuristic: consider tasks according to some topological order of the graph and place them
in a greedy fashion as early as possible while respecting dependence and resource constraints.
This is the standard list-scheduling approach |33, 25].

It is important to note that the order in which tasks are considered in the list influences
the latency of the schedule. In this first version of the algorithm, we did not take this fact into
account. Much work has been devoted to the construction of good priority rules, i.e., in the
search for a good task ordering. Of course there are different possible strategies to decide which
tasks are given priority in the (frequent) case where there are more free tasks than available
resources. But a key result due to Coffman is that any strategie deciding not to deliberately keep
a resource idle can be shown to achieve good performance [32].

4.5.2 Example 1, Continued

Let us return to the example of Section 4.2.4. An optimal solution (found for example by our
exact algorithm in Chapter 6) is t; = 0, to = 3, t3 = 1, t4 = 2, it needs only 5 cycles. The GS
heuristic gives the solution t; = 0, to = 1, t3 = 2, t;, = 3 with a latency of 6 cycles. Figure 4.3
diagrams both solutions. The GS algorithm reaches the optimum only for the ordered list Task 1,
Task 3, Task 4, Task 2. Note that, in the general case, there may be no order in which the optimal
is reached by the greedy scheduling. However, here a deviation of 1 cycle from the optimum is
acceptable, in particular if one needs a fast compilation.
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(a) (b)

Figure 4.3: (a) Greedy Solution and (b) Optimal Solution.

4.5.3 Experiments

We have implemented this heuristic and tested it on groups of independent tasks from real-life
applications. They consist of 22 tests from the PerfectClub [18] and HLSynth95 [85] benchmarks.
The PerfectClub benchmarks represent applications in a number of areas of engineering and
scientific computing and the HLSynth95 benchmarks, more specifically, represent a repository of
applications in embedded systems (see Appendix B for more details on these benchmarks). The
runtime is computed in user seconds on a 1.73 GHz Intel Pentium M running Linux. Results are
reported in Table 4.1.

The test programs are fairly small, they contain between 3 and 9 data-independent (possibly
complex) tasks, each one containing between 1 and 15 operations. All kind of resources are
considered: sequential resources like memory ports, and combinatorial ones such as adders,
multipliers, comparators, and dividers. Also, more than one-cycle delays resources are taken into
account. Miscellaneous resource features are considered, for example memories with two-ports,
multipliers with two and three cycles, pipelined resources and so on.

Test T | pT | Schedule latency | Deviation
cssl 4 15 6 1
cssll 4 15 5 2
css12 4 17 6 2
css2 9 32 7 1
css3 7 27 10 3
cssh 3 9 5 0
css6 8 12 4 0
jacl 6 19 6 0
jac2 6 82 23 0
jac3 7 97 20 1
rasm1 3 9 5 0
wss3 5 11 4 0
wss31 5 11 6 1
wss32 5 11 4 0
wocl 4 13 5 0
woc2 7 9 4 1
wssl 4 44 21 5
wssll 4 44 19 3
wss2 3 23 11 1
wss12 4 44 17 4
wmt22 4 31 13 0
css21 9 32 11 1

Table 4.1: Greedy Scheduling Results.

The first three columns of Table 4.1 are the test names, the number n of tasks (column T),
and the total number of micro-tasks (column pT) that compose them. For such instances, this
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heuristic is very fast; its runtime is less than the Linux clock resolution. So, we did not report its
runtime in the table, which is about 0.0032s in average, a value obtained by timing one million
repetitions of the algorithm.

To evaluate the stability of the algorithm, we have repeated it on a sample of n? random
permutations of the tasks. The “Deviation” column gives the difference between the best and
the worst schedule in such sample.

To get an idea about the quality of the computed latencies and the behaviour of the GS
heuristic, we need some information relative to the optimal solutions hence we delayed this
analysis once we present our exact methods.

4.6 Conclusion

We have presented a formalism, for high-level synthesis, to accurately express resource constraints
for complex tasks represented as reservation tables. The resource constraints are modeled by
dis-equations and finding an optimal schedule leads to resolving a system of dis-equations. The
proposed formalism can be generalized to support problems of resource-constrained scheduling
even when tasks are dependent.

Because our scheduling problem is NP-complete, first, we have relied on heuristics. The
most natural idea is to use a greedy strategy: at each time step, we try to schedule as many
tasks as possible onto available resources. Hence our GS heuristic. The results have shown that
this heuristic is very fast and enough stable.
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Chapter 5

Integer Linear Programming Approach

Scheduling theory was originated from operations research thus, it is obvious to think about using
some of its own techniques to resolve the scheduling problems. Indeed, the best understood and
well known exact scheduling techniques are based on combinatorial optimization especially on
Integer Linear Programming. The HLS literature offers a very rich variety of ILP formulations.
Due to our particular kind of constraints (expressed by means dis-equations), in this chapter
some ILP formulations of the scheduling problem defined in Section 4.3 are proposed. Then
some experiments are reported and commented.

The main aim of our contribution isn’t to bring some improvements in this field, as ILP
formulations have been enough studied by many scholars |72, 61, 47, 27, 112, 65| but our ILP
scheduling algorithm will be used as yardstick for measuring the efficiency and robustness of one
of our branch-and-bound-based algorithms defined in the following chapters.

5.1 General Introduction

Integer and combinatorial optimizations deal with problems of minimizing or maximizing a func-
tion of many variables subject to inequalities and equalities constraints when the values of some
or all of the variables are restricted to be integral. The versatility of the combinatorial optimiza-
tion model stems from the fact that in many practical problems, activities and resources, such
as machines, airplanes, people and clock cycles are indivisible.

Because of the robustness of the general model, it covers a rich variety of problems [53].
An important and widespread area of applications concerns the management and efficient use
of scarce resources to increase productivity. These applications include finance, marketing, pro-
duction scheduling, distribution of goods and machine sequencing. They also include design
problems such as communication and transportation network design, VLSI-circuitry design and
testing, the design of automated production systems and design of the layout of circuits to mini-
mize the area dedicated to wires, design and analysis of data networks, solid-waste management,
determination of ground states of spin-glasses and many other typical applications: portfolio
analysis, high energy physics, x-ray crystallography and molecular biology . ...

On the other hand, there are many real-world problems where it is impossible to write down
all of the constraints in a mathematically "clean" way. Such problems often arise in scheduling
where there are a myriad of constraints and other rules related to what constitutes a "feasible
schedule". Furthermore, formulations based on ILP offer the possibility of integrating constraints
in a homogeneous problem description and of solving them together.

In what follow, we will just sketch the basics of Integer Linear Programming, which are

93



Chapter 5. Integer Linear Programming Approach

T2 & Objective function

Integer points

Figure 5.1: Feasible Areas.

essential for understanding of the presented ILP-formulations. For further information see [99]
or [83].
Integer Linear Programming (ILP) is the following optimization problem:

min z;p = 'z

r e P.NZ"

where
Pp={z|Az>b,z € R}},ceR", beR", A e R™" (5.1)

The set Py is called feasible region. We will agssume that A € Z™*™ and b € Z™ holds. The
optimal solution of an Integer Linear Program can be calculated by solving the following problem

min z;,p = T
x e P NZ"

where
P =conv({zx |z € P. NZ"Y}) (5.2)

Here, conv denotes the convex hull. For the two-dimensional case, a representation of P, and P,
are given in Figure 5.1.

The integral points within P, denote the feasible solutions to the integer linear problem;
depending on the objective function, at least one of them represents an optimal solution. The
feasible region defined by (5.1) consists only of the integer points, whereas the feasible region Py,
defined by (5.2), consists of the convex hull of these points.

Let us recall that solution techniques for ILP: solving combinatorial optimization problems
can be a difficult task. The difficulty arises from the fact that unlike linear programming, for
example, whose feasible region is a convex set, in combinatorial problems, one must search a
lattice of feasible points to find an optimal solution. Thus, unlike linear programming where,
due to the convexity of the problem, we can exploit the fact that any local solution is a global
optimum, integer programming problems have many local optima and finding a global optimum
to the problem requires one to prove that a particular solution dominates all feasible points by
arguments other than the calculus-based derivative approaches of convex programming.
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At least, there are three different approaches for solving integer programming problems, al-
though they are frequently combined into "hybrid" solution procedures in computational practice.
They are:

o Enumerative techniques: the simplest approach to solving a pure integer programming
problem is to enumerate all finitely many possibilities card(P,). However, due to the
"combinatorial explosion" resulting from the parameter "size", only the smallest instances
could be solved by such an approach. The most commonly used enumerative approach is
the branch and bound method.

o Relazation and decomposition techniques: Relaxing the integrality restriction is not the
only approach to relaxing the problem. An alternative approach to the solution of integer
programming problems is to take a set of "complicating" constraints into the objective
function (with fixed multipliers that are changed iteratively). This approach is known
as Lagrangian relaxation. By removing the complicating constraints from the constraint
set, the resulting sub-problem is frequently considerably easier to solve. The latter is a
necessity for the approach to work because the subproblems must be solved repetitively
until optimal values for the multipliers are found.

o Cutting planes approaches based on polyhedral combinatorics: The underlying idea is to re-
place the constraint set of an ILP problem by an alternative convexification of the feasible
points and extreme rays of the problem. H. Weyl (1935) established the fact that a convex
polyhedron can alternatively be defined as the intersection of finitely many halfspaces or
as the convex hull plus the conical hull of some finite number of vectors or points. Original
problem formulation are in rational numbers, it implies the existence of a finite system of
linear inequalities whose solution set coincides with the convex hull of the integer points in
Pr. Thus, if we can list the set of linear inequalities that completely define the convexifi-
cation of Py, then we can solve the integer programming problem by linear programming.
Gomory derived a "cutting plane" algorithm for integer programming problems.

The complexity of these methods and many other facts make a general ILP problem a NP-
complete one [104]; yet many large instances of such problems can be solved. This, however,
requires the selection of a structured formulation and no ad-hoc approach [27]. More details
on how to formalize several kind of constraints that can be used for scheduling problems are
given by Gebotys et al. [47|, Késtner et al. [65], and Zhang [117]. We will adapt some of these
formulations to our problem.

5.2 Integer Linear Programming Approaches

Let us recall that we have to resolve the following system of dis-equations in integer values:

{ti—tj;édfj i,j €T

t>0 (5.3)

while minimizing the total latency max;(t; + p;).

The reservation tables scheduling can easily be formalized as an Integer Linear Programming
problem (ILP) using standard coding techniques.

We propose two ILP-formulations: one using a standard 0/1 encoding that we optimize for
our problem, and the second one using the “Big-M” trick. Before this, let us fix some notations.
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5.2.1 Notations

We use the following notations: x;; is a binary variable associated with task ¢ where x; ; = 1 if
and only if task ¢ is scheduled at the jth clock cycle. The indices j go from 0 to H, a maximal
“horizon” for the schedule. We can easily have such upper bound as the p; are inputs of the
problem. In fact, one can set H to ), p;. The variable ¢; is the starting date of task 4, R the
set of available resources, R, the set of tasks that use the resource r, and d;, the time step 16
(relative to the beginning of the task) at which the task i uses the resource 7.

5.2.2 Standard 0/1 Encoding

A standard way of expressing our scheduling problem is the following. Fix H, the maximal
schedule H, to an upper bound for the optimal latency. As explained, we can fix H to ), p;
or, better, to the latency of the solution found by the greedy heuristic GS. Then, minimize the
schedule latency L subject to the following constraints (in addition to the fact that all variables
are integers and the x; j are 0/1 variables):

H—p;
ti= Y jxay; Vi€ [l...n (5.4)

7=0

H—p;
dwy=1 Viell..n] (5.6)

7=0
> wigoq,) <1 VreRVte(0... H| (5.7)

1€ER,

The n equalities in (5.4) define the starting dates t; as functions of the z; ; binary variables. The
inequalities (5.5) express the latency to be minimized. For each task i, the equality (5.6) guar-
antees that ¢ is executed exactly once. Finally, the inequalities (5.7) express resource constraints
for each resource r € R. Once the variables t; are available — through the constraints (5.4) — the
dependence constraints (if any) are naturally expressed as inequalities t; — t; > 0; ;.

This ILP formulation, like the previous greedy heuristic, can be used before resource
allocation: we have only to replace the right-hand side of the inequalities (5.7) by
the number of available resource of type r.

5.2.3 0/1 Simplified Encoding

One reason for an ILP solver to be slow for the previous standard 0/1 formulation is the presence
of the constraints (5.4) which have large coefficients, especially when the horizon H is large. To
efficiently solve the scheduling problem, it is important to use a more structured formulation, and
a mathematical analysis of the problem constraints is needed to find such structured formulation.

Let us recall that by construction, the tasks in T" are data independant. Consequently, in such
context, the variables ¢; are needed only to express the objective function in the constraints (5.5),
and we can get rid of these variables as well as the constraints (5.4) and (5.5) by the following

61t is possible that, in the same task 4, a resource 7 is used in more than one micro-task. Again, for simplicity,
we assume that each task uses each resource at most once, but this may be easily generalized.
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Chapter 5. Integer Linear Programming Approach

trick. Instead of using the ILP solver as an optimization tool, we use it to test the feasibility of
the following reduced system:

H—p;
dowy=1 Viell..n
§j=0

Z xiv(t_di,r) S 1 vr S R7 Vt S [0 . H]
1€ER,

If the problem is feasible, it means that there is a schedule of latency H or less while, if the
problem is unfeasible, H is too small. One can adjust H by decreasing it from some upper
bound until a feasible problem is found, or by binary search on H. The smallest H for which
there is a solution is the optimal latency L. This multiplies the number of calls to the ILP solver,
but each call may be faster. In fact, one can argue that it would be better to do one call to the
ILP solver to resolve the problem defined by the 0/1 standard encoding rather than multiple calls
to resolve the previous simplified formulation. This seems of course true but in general solving
ILP programs with integer variables is well known as more hard than ILP programs with binary
variables [58]. We will show this effect in the experiments.

Note that, if there are dependences, we still need the constraints (5.4) to express the depen-
dences constraints, unless we use the technique of Gebotys et al. [47], which has the drawback
of greatly increasing the number of constraints.

5.2.4 Big-M Encoding

If we use the standard 0/1 encoding, the number of binary variables is the product of the number
of tasks and the number of cycles needed for the whole schedule. However, one can use a more
economical encoding: the “Big-M” method. In this formulation we replace each dis-equation by
the four inequalities:

ty —ti+ (1= Xig).M > 1 - dj;
ti—t; #df < ti—tj+ M.X;; > dfj+1
0<X;;<1

where M is a large number (larger than the sum of the p;, where p; is the latency of task ).
Unlike the usage of the Big-M as a penalization of some variables in classic ILP problem here
we use this technique to penalize an inequality. Indeed, the artificial binary variables X; ; and
M are used to ensure the disjunction of the two first inequalities.

In this formulation, the number of variables is equal to the sum of the number of dis-equations
and the number of tasks, which is independent of the latency of the schedule. However, the
coefficients in the inequalities (such as M) are large.
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CPLEX: an ILP Solver

Before reporting experimental results let us present the used ILP solver. There are many efficient
implementations of ILP solvers available. For instance, we can find the GLPK'" and Lp-Solver 8
solvers, both are open-source softs. In academic area we can quote PIP'Y an efficient Parametric
Integer linear programming solver. ... For more details on discrete tools, the reader can see Hans
Mittelmann’s webpage??.

In our framework, the ILP problems are solved using the CPLEX?! tool [84]. It is the most
used tool by both academic and industrial communities. CPLEX is a powerful commercial tool
for solving a general linear optimization problems and also some special optimization problems:
network flow problems, quadratic programming problems, quadratic constrained programming
problems and mixed integer programming (MIP) problems. In MIP problems, variables are
further restricted to take integer values. CPLEX solves MIP problems using a general branch &
cut algorithm.

The CPLEX kit offers three forms: 1/ an Interactive Optimizer which is an executable
program that can interactively solve a problem given in certain standard formats, 2/ a Concert
Technology which is a set of JAVA, C++ and .NET class libraries, and 3/ Callable Library which
is a C library. In our experiments we have use both interactive Optimizer and the Callable
library.

In addition, CPLEX allows many interaction and actions before and during the resolving
process: preprocessing which tries to simplify the problem, monitoring the iteration by giving
some log information and possibility to halt the resolution process and to recover it after some
changes.

5.2.5 Experiments

We have implemented these ILP methods on the same benchmarks described previously in Chap-
ter 4. The results are presented in Table 5.1. The third column reports the latency of the optimal
schedule. The runtime for the original ILP formulation given by the constraints (5.4) to (5.7)
is reported in the columns “0/1 Standard Encoding”, with the schedule horizon H fixed to an
upper bound for the optimal latency, either ) . p; or the latency given by the greedy heuris-
tic GS, which reduces the number of variables. The column “0/1 Simplified Encoding” gives the
runtimes when the latency L and the variables ¢; are not expressed in the constraints so the
constraints (5.4) and (5.5) are removed. The latency is optimized by decrementing H from the
latency obtained by the greedy heuristic GS, in our case, GS heuristic gives solutions that are
very close to optimal, so decrementing H is more efficient than a binary search. The last column
gives the results for the Big-M method.

These results show that the first 0/1 Standard Encoding method is the slowest. This is due
to the large number of unknowns. The Big-M method is faster for small problems, when the
solver time is dominated by the time to set up the constraints. However, it gives running times
of the same order of magnitude as the second 0/1 standard encoding method.

For some paradoxical cases, increasing the horizon (and hence the number of unknowns)
actually reduce the running time. This is probably due to the well-known fact that ILP solvers

'"A GNU Linear Programming solver. Available at http://www.gnu.org/software/glpk/

A GNU Linear Programming solver. Available at http://www.cs.sunysb.edu/~algorith/files/
linear-programming.shtml

!9 Available at http://www.prism.uvsq.fr/~cedb/bastools/piplib.html

20 Available at http://plato.asu.edu/bench.html.

*http://www.ilog.com/
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Test pT | Opt. Sched. ILP formulations

0/1 Standard Encoding 0/1 Simplified Encoding Big-M

H set to Y p; | H set by GS initial H set by GS

cssl 15 5 0.19s 0.13s 0.2s 0.06s
cssll 15 4 0.21s 0.14s 0.22s 0.08s
css12 17 5 0.24s 0.22s 0.21s 0.07s
css2 32 6 0.91s 0.95s 0.77s 0.27s
css3 27 9 1.09s 0.67s 0.3s 2.6s
cssd 9 5 0.13s 0.29s 0.17s 0.09s
css6 12 4 0.26s 0.13s 0.18s 0.1s
jacl 19 6 0.36s 0.14s 0.13s 0.07s
jac2 82 22 47 42s 7,328 1.83s 5.52s
jac3 97 19 2’ 02s 3,47s 2.57s 6.2s
rasm1 9 5 0.1s 0.09s 0.15s 0.06s
wss3 11 4 0.21s 0.15s 0.18s 0.08s
wss31 11 6 0.26s 0.13s 0.19s 0.1s
wss32 11 4 0.24s 0.13s 0.16s 0.12s
wocl 13 5 0.18s 0.12s 0.14s 0.07s
woc2 9 4 0.21s 0.13s 0.16s 0.1s
wssl 44 17 1.3s 0.8s 1.26s 0.5s
wss11 44 16 1.1s 0.54s 0.75s 0.3s
wss2 23 9 0.25s 0.42s 0.62s 0.07s
wss12 44 16 1.13s 2.758 0.83s 0,23s
wmt22 31 13 0.6s 0.33s 0.25s 0.12s
css21 32 10 1’ 34s 4.64s 0.48s 1’ 57s

Table 5.1: Scheduling Results with the Different ILP Formulations.

are sensitive to the variables and constraints ordering. These variations are particularly visible
for small runtimes.

The remaining version (0/1 Simplified encoding) gives the best running times for complex
problems, which are the most important for practical applications.

5.3 Conclusion

We have presented two structured ILP formulations to resolve the reservation tables scheduling
problem: a standard 0/1 encoding that we have simplified and an encoding using a Big-M trick.
The first proposed encoding can be generalized to support problems of resource-constrained
scheduling even when tasks are dependent. Furthermore, this scheduling solution can be done
before resource assignation.

The ILP-based scheduling optimization are N'P-complete. This is of course true in general
but, in our context we have relied on two facts. Firstly, let us recall that by construction, we
deal with problems that size are relatively small (the size of a front). Secondly, the adopted ILP
formulation uses only binary variables and it is well known that solving integer linear programs
with just binary variables is easier than solving ILP programs with large integer ones [58].

The experiments have shown that the runtimes for all formulations are sufficiently acceptable,
at least for our benchmarks, in contrast to the high exponential theoretic complexity of the ILP-
based algorithms. But, the 0/1 Simplified encoding version gives the best running times for
complex problems, which are the most important for practical applications.
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Chapter 6

Branch-and-Bound-Based Longest-Path
Computation Solution

The resource-constrained scheduling formulation, presented in Chapter 4, will be used here to
develop another practicable scheduling alternative to the ILP one. In this chapter, an exact
algorithm based on a branch-and-bound technique is developed as well as some techniques which
are used to improve its runtime. Finally some experiments are reported and commented.

Despite the N'P-completeness of the defined scheduling problem, we look forward reaching
an algorithm with a better practical temporal complexity. Indeed, we rely on the features of the
branch-and-bound approach as a meta-method which can be a more adjustable method than the
integer linear program techniques.

6.1 General Introduction

Branch-and-Bound is a general algorithmic meta-method for finding optimal solutions of various
optimization problems, especially in discrete and combinatorial optimization. The method was
first proposed by Land and Doig in 1960 for integer linear programming contexts [70] and by
Murty et al. in 1962 in an unpublished paper at Case Institute of Technology: "The Traveling
Salesman Problem: Solution by a Method of Ranking Assignments" in the context of a combi-
natorial problem. The branch-and-bound approach is used for a number of A"P-hard problems,
such as: knapsack problem, integer programming, nonlinear programming, traveling salesman
problem, quadratic assignment problem, maximum satisfiability problem and scheduling prob-
lems. . ..

The essence of the branch-and-bound approach is the following observation: at any node
in the total enumeration tree of the solution space, if one can show that the optimal solution
cannot occur in any of its descendents. Thus, there is no need to consider those descendent
nodes. Hence, one can "prune" the tree at that node. If we can prune enough branches of
the tree in this way, we may be able to reduce it to a computationally manageable size. Note
that, we are not ignoring those solutions in the leaves of the branches that we have pruned, we
have left them out of consideration after we have made sure that the optimal solution cannot
be at any one of these nodes. Thus, the branch-and-bound approach is not just a heuristic, or
approximating, procedure, but it is an exact optimizing procedure. However, one can also use
it as a basis of various heuristics. For example, one may wish to stop branching when the gap
between the upper and lower bounds becomes smaller than a certain threshold.

A branch-and-bound algorithm requires two tools: the Branch and the Bound procedures;
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hence its name. In the branch procedure, the solution space is split into disjoint subsets (feasible
subregions) so that no solution will be lost. The procedure is repeated recursively in all the
subregions and all produced subregions naturally form a tree structure, called search tree or
branch-and-bound-tree. Its nodes are the constructed subregions. The bounding tool, is a fast
way of finding upper or lower bounds for the optimal solution within a feasible subregion.

Now, how can we make sure that the optimal solution cannot be at one of the descendents of a
particular node on the tree? It is always possible to find a feasible solution to a combinatorial or
discrete optimization problem. If available, one can use some heuristics to obtain a "reasonably
good" solution. Let us call this solution the incumbent. Then at any node of the tree, if we can
compute a "bound" on the best possible solution that can be expected from any descendent of
that node, we can compare the "bound" with the objective value of the incumbent. If what we
have on hand, the incumbent, is better than what we can ever expect from any solution resulting
from that node then it is safe to stop branching from that node. In other words, we can discard
that part of the tree from further consideration.

The efficiency of the method depends critically on many facts: 1/ the effectiveness of the
branching and bounding algorithms used; bad choices could lead to repeated branching, without
any pruning, until the sub-regions become very small. In that case the method would be reduced
to an exhaustive enumeration of the domain, which is often impractically large, 2/in addition,
the efficiency depends also on the good formulation of the objective function and on how much
the incumbent solution is tightened compared to the optimal solution.

This has been a brief introduction to the branch-and-bound approach. For a more detailed
discussion, the reader is referred to Chap. 9 and 10 of [81].

It should be clear that, like dynamic programming, we cannot talk about a branch-and-bound
algorithm that can solve all discrete and combinatorial optimization problems by a uniform
model. There is no universal bounding algorithm that works for all problems. Indeed, branch-
and-bound itself is just a meta-algorithm, which can be declined in many different directions.
According to the general purpose of this approach, in what follow, we design a scheduling algo-
rithm with a specially designed branching and bounding algorithms looking forward to a better
alternative to the ILP algorithms.

6.2 An Exact Branch-and-Bound Solution

Let us recall that we have to resolve this system of dis-equations in integer values:

{ti—t;#df; i,jeT (6.1)

while minimizing the total latency max;(t; + p;). We propose the following strategy, which
progressively builds a search tree of subproblems:

e At the root, we start with the empty system (for data-independent tasks);

e At each node N of the tree structure, we deal with a new constraint (dis-equation e of

the given system). It is clear that the dis-equation e can be seen as the disjunction of two

inequalities %2:

*Note that our framework will work the same if instead of a forbidden distance (i.e., a single value) we express
a forbidden interval, e.g., when a resource is used in both tasks for several consecutive cycles.
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elzti—tjgdfj—l
ti—tj#dfj@ or
eyt —t; >df+1

hence we perform a separation by introducing the inequality e; (resp. e3) into the left child
(resp. right child) of N.

It is easy to prove that this branching is legal. Indeed, the inequalities e; and es form two
disjoint sets e; M ey = () and their union is e; U es = e, which means that we are neither
losing nor duplicating any solution in branching.

Each leaf of the tree corresponds to a system of inequalities whose solutions are solutions to
the system of dis-equations (6.1). Conversely, any solution to the system (6.1) is solution
to the system defined at a leaf, for one and only one leaf.

e During the resolution process, we maintain the latency of the best schedule computed so
far. At the beginning, we can set this value Lyes; to ), p; (which is the latency of the
sequential execution of the tasks). Lpest is the incumbent solution.

e At each node N, we treat the system defined by the inequalities introduced by all nodes
belonging to the branch from the root to this node N. Except for the leaves, a schedule
for this system is a partial schedule; it is not a schedule for the whole system (6.1) as it
respects only part of the constraints. However, the latency Ljgca of an optimal schedule for
this partial system is a lower bound for the latency of any schedule for the system defined
at any leaf of the subtree below N. The pruning can occur in both possible situations:

1. If Ligcal = Lpest, the subtree below N is not constructed as it will never lead to a
better complete solution.

2. The system may not be feasible; in this case, the subtree below N is not constructed
either.

e At a leaf, we have exhausted all the constraints, so we can now compute an actual solution.
If its latency is better than Lpeg, then Ly is updated.

e The algorithm stops when all the branches are explored; the whole space of solutions has
been explored and Lyegt is returned as the optimum solution.

note It is important to note that this strategy can be applied even if, at the root the system
is not empty but contains some other constraints such as data dependence between tasks of the
form t; —t; > 6; ; (classical precedence constraints). Therefore, our branch-and-bound method
can deal with data-dependent tasks too even though we do not primarily need it in our context
(by construction we get independent tasks when the symbolic schedule is performed). note

The core of the algorithm is the evaluation and eventual pruning of a node. We now explain
this operation in details.

6.2.1 Finding the Local Bound

When the “branch” operation is done (i.e., once e or ey is selected) at each node of the tree
structure, we have to examine and resolve a system of [ inequalities, where [ is the level of the
node. This system can be normalized as follows:

tj — ti 2 wm (6'2)
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where w; ; € Z is the maximal value of the right-hand sides of all inequalities of type t; —¢; > ...
introduced so far. The values w; ; are integers of arbitrary sign. This problem can be modeled
by a weighted directed graph G = (V, E,w), with one vertex for each i and an edge from i to j
with weight w; ; for each inequality. Note that G may have cycles. This model is known, in the
scheduling literature, as a task graph [46].

In this formalism, the key point is that an optimal schedule is obtained by computing the
simple paths of maximal weight in G. Let us see why. First, note that if we sum the inequalities
tj —t; > w; ; along a cycle, we obtain an inequality of the form 0 > W, where W is the weight of
the cycle. Hence, if G has a cycle of positive weight then the problem has no solution. Conversely,
if G has only nonpositive cycles, we can define, for each vertex ¢, the maximal weight a; of a path
leading to i (an empty path has weight 0). This is due to the fact that following a cycle cannot
increase the weight of a path, hence all maximal weight paths are simple and each a; is finite. As
the maximal weight of a path leading to j is at least the weight of any path going first through 4,
we have a; > a; + w; j. Therefore, the a; are a solution of the problem. Furthermore, any non-
decreasing objective function of the t; (for example the latency max;(¢; + p;)) is minimized by
a;. Indeed, for any solution ¢;, it is easy to see that ¢; is at least the weight of any path leading
to ¢ (make an induction on the path length), thus ¢; > a;. This formulation can be simplified by
introducing an initial task, with an edge of weight 0 from it to all other tasks, and a terminal
task, with an edge of weight p; from any task ¢ to the terminal task. The latency is now given
by the maximal weight of a simple path from the initial to the terminal task.

There are many algorithms for finding paths of maximal?® weights in a graph [30]. We could
use the Bellman-Ford algorithm or Floyd’s algorithm directly at each node of the BAB tree.
Moreover, we can use the fastest Dijkstra’s algorithm if all edge weights are nonpositive. But
we can do better: we can reduce the complexity of the method by noticing that, at each stage
of the BAB algorithm, we add a new edge to a graph in which some information on paths of
maximal weights has already been computed. What we need then is an incremental version of
maximal-weight paths algorithm. In the following, according to our context we propose two
algorithms based respectively on Floyd’s and Dijkstra’s algorithm.

6.2.1.1 Floyd-based Algorithm

Floyd’s algorithm [42| computes, with complexity O(|V|?), the relation of accessibility in a
graph G = (V, E,w) by computing, for each couple of vertices (7,7), the maximal weight a; ; of
a path from ¢ to 7. This algorithm assumes that G has no cycle with positive weight (otherwise
there is a path with infinite weight in the graph), but it can be modified to also detect positive
cycles, in which case the system, defined by (6.2), has no solution. Allison et al. [4] modified
Floyd’s algorithm to produce a dynamic algorithm, but in their variant, at a given stage in the
dynamic algorithm, they introduce a new vertex plus a set of its arcs -to and from it-. According
to our context, we need just an algorithm which updates the maximal-weight paths matrix, when
adding at each stage, just one new arc.

To get this algorithm let us recall that, at a node of the BAB process, we have to compute
the maximal weight a; ; of a path from i to j (for any ¢ and j) in the graph G = (V,EU{e},w),
where G = (V, E,w) is the graph at its parent node and the edge e = (z,y) with weight w, , = wy
represents the constraint to be added to this node. In G, we have already computed the maximal
weight a; ; of a path from 7 to j for any ¢ and j. It remains to consider paths that go through e.

22In the literature, these algorithms are often presented as finding paths of minimal weight. This is the same,
one just have to change the weight signs. Our explanations are based on maximal weight paths.
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We first need to check that G’ has no cycle of positive weight. If this is the case, this means
that there is a cycle of positive weight that goes through the new edge e (from z to y) with
weight wg and then back to x, in particular through a path of maximal weight (in G), i.e., of
weight a, . Thus, G’ has a cycle of positive weight if and only if wy + a, » > 0. Otherwise, the
new a;j can be easily obtained by the relation a;’j = max{a; j, a; » + wo + a, j}. Note also that
when wg < ag y, the new constraint is actually redundant and no update is necessary.

Our Floyd-based algorithm (Algorithm 2) follows this strategy. We get the dates ¢; =
max;aj; and an evaluation of Ligca as max;t;, in O(|V|?) instead of O(|[V[®). At the root
of the BAB process, we set all a(i,7) to oo, as the system is empty -no constraint-.

One can notice that this algorithm don’t use the same principle as in Floyd’s original algo-
rithm, we call it Floyd-based as it uses the same definition of the matrix and resolves the same
problem.

Algorithm 2: Floyd-based Incremental Algorithm.
Data: G = (V, E,w), Floyd’s matrix a for G, e = (z,y,wg) edge to add
begin

if wg + ay . > 0 then
| Exit; /* Elimination, no solution below */

end

if wy > a,,, then

/* Update is needed */
for 7 from 1 to n do
for j from 1 to n do
| @i =max{a;;,air+wo+ay;};
end
end
end

end

6.2.1.2 Dijkstra-based Incremental Algorithm

In this algorithm, we only compute the maximal weight ¢; of a path leading to each vertex 1,
instead of all a;; for any ¢ and j. For that, we could apply the Bellman-Ford algorithm with
complexity O(|V||E|) but again, we can do better using the knowledge we have from the parent
node. We use an idea similar to Johnson’s algorithm [30] to be able to use Dijkstra’s algo-
rithm [36], which is the best known solution, by finding an equivalent system of nonpositive
weights (reweighting).

In Algorithm 3, we compute the values t} in the graph G’ = (V, EU{e}, w), defined as below.
We assume that the ¢; for G are available from the parent node. Again, we need to solve two
problems. First, we need to check the feasibility of the problem, i.e., to check that no positive
cycle is created when adding e. In a second time, if the problem is feasible, we need to compute
the new solution ..

Let us first explain the general mechanism we use in this algorithm to be able to use Dijkstra’s
algorithm. When all edge weights w in a graph G = (V, E,w) are nonpositive, we can find a path
of maximal weight from a source s to each vertex ¢ € V by running Dijkstra’s algorithm. If G has
a positive weight, we will first modify the edge weights w into nonpositive weights w", thanks to
a well-chosen reweighting function r (a function that assigns an integer r; to each vertex ¢) such
that waj =w; j+r; —r; <0. It is easy to see that G = (V, E,w) has a cycle of positive weight
if and only if G" = (V, E,w") has a cycle of positive weight because the cycle weights are not
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changed by reweighting. Furthermore, the weight w”(P) in G" of a path P from i to j is equal
to w(P) +rj —r;.

Using this reweighting mechanism, we get an incremental algorithm (Algorithm 3) faster than
Algorithm 2, though more complicated. Again, we first check that the problem is feasible and
then, if it is, we compute the new solution ¢..

Feasibility

We use the same argument as for the Floyd-based incremental algorithm. The graph G =
(V, EU{e},w), where the weight of e is wp, has a cycle of positive weight if and only if it has a
cycle of positive weight that goes through e, since G = (V, E, w) has no cycle of positive weight.
As already mentioned, this is equivalent to the fact that wg +a, , > 0 where a, , is the maximal
weight of a path in G from y to z.

To compute ay ;, thanks to Dijkstra’s algorithm. We proceed as follows: remember that we
are given t;, for all ¢ € V| the maximal weight of a path in G leading to i. These values are
such that, for each edge (i,7) € E, t; —t; > w;, i.e., they satisfy the system of constraints
for GG. Let us define G" with r = —t. We have ij =w;j+r;—ri=w;;j—t; +t; <0. We can
therefore compute in G, using Dijkstra’s algorithm, the maximal weight ay , of a path from y
to any reachable vertex z. We then obtain a, . thanks to the relation:

z

— AT : T
Ay = Ay, +Ty =Tz LE., Qyz = Qy, + ty —ty.

We then conclude that the system of constraints defined by G’ is feasible if and only if
wo + ay , +tz —t, < 0 (pick z = x in the previous relation) or z is not reachable from y in G
(e, ayq = ay , = —00).

New Solution ¢

If the problem is feasible, we still have to compute ¢, the maximal weight of a path leading to 4
in G'. We can do this by adding a fictive source in V, i.e., a new vertex s in V and for each ¢ in V
a new edge (s,7) of weight 0. We can then use Dijkstra’s algorithm in G’ if G’ has nonpositive
weights. If not, we have to perform a reweighting. Unfortunately, this time, —t may not be an
adequate reweighting function because of the new edge e of weight wy, if t; —¢; < wy. However
it is possible to find a reweighting function r thanks to the values a,; we just computed during
the feasibility test. Indeed, choose K such that K < a, ; —t; for all j reachable from y and, if x
is not reachable, K < —t, — wg. We claim that the function r defined by

S BX: if ¢ is reachable from y
| —t; — K otherwise

is a valid reweighting, i.e., is such that w; ; +r; — r; < 0 for each edge (i, 7), including the new
edge e = (z,y). (Note: for s, we let t; = 0. Then, for any vertex i in G, we have t; > ts 4+ ws;
since t; > 0 and w,; = 0. We also let 7y = —ty — K as for any vertex not reachable from y.)

Proof. Consider an edge (i,7) € E U{e}. Only three situations are possible: neither i nor j are
reachable from y, both ¢ and j are reachable from y, or j is reachable from y but not .

e In the first case, (’L,]) # e and ’LU;J- =w;; —t; — K+t,+ K= w; s+t —t; < 0.

e In the second case, w; ;
bl

path weights from y to ¢ and from y to j.

= w; j — Ay j + ay; < 0 by definition of a,; and a, ; as maximal
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e In the last case, w; ; = wj j —ay;+t;+ K. If (1,7) # e then wi ; < —ay;+ K +1;, otherwise

wf,j = wo + t, + K. In both cases, w;:j < 0 by choice of K.
Therefore r is a valid reweighting. 0

We can then compute, using Dijkstra’s algorithm, the maximal weight ¢ of a path from s
to any vertex ¢ in the graph G and we finally go back to ¢, with the relation ¢, =t — r; + r.

Note that, as in our Floyd-based incremental algorithm, we can add a preliminary test (¢, >
ty +wp in Algorithm 3) to minimize computations when it is possible to determine that the new
constraint is redundant for the previously-computed solution (¢;);ey. However, the edge should
be nevertheless added to the graph as it may not be redundant for the constraints themselves,
but just for this particular solution.

6.2.2 Complexity

Dijkstra’s static algorithm has a complexity O(n?), for n = |V| vertices and m = O(n?) edges.
However, if one implements its priority queue with a specific data structure like a binary heap
(resp. Fibonacci heap), the complexity is reduced to O((n + m)lgn) (resp. O(nlgn + m)).
Algorithm 3, whose core is Dijkstra’s static algorithm, has the same complexity. Moreover,
compared to the Floyd-based incremental algorithm which requires O(n?) memory, only O(n)
memory is needed here. Thus, Algorithm 3 is faster and less memory consuming. In addition,
this algorithm can be speedup by replacing the second call to Dijkstra’s algorithm by one of
its dynamic versions recently published (the most important are the ones of Ramalingam and
Reps [95] and Frigioni et al. [43]). The first call to Dijkstra’s algorithm can’t be replaced by a
dynamic version as the source may change at each stage.

In the worst case, when no elimination has been done, we have to examine each node of the
BAB tree structure. Thus, 2™ nodes, where m is the number of dis-equations. At each node, we
update Floyd’s matrix in O(|V|?) (resp. we update the maximal weight ¢;, using Dijkstra-based
incremental algorithm in O(nlgn+m). Hence, the worst-case complexity of the BAB algorithm
is O(|V]2.2™) (resp. O((nlgn 4+ m).2™)). In fact, as an enumerative method, it is clear that
the branch-and-bound method scans all or part of the solution space. In general, this leads to
such exponential theoretical complexity. However, in practice, as we will see in the experiments,
many branches are not explored and the algorithm is much faster, except for a few pathological
cases.

6.2.3 Speeding up the BAB Algorithm

As discussed in the previous section, the BAB algorithm computational complexity can be very
high. For this reason, we try to focus on some facts that could reduce the practical complexity of
the designed algorithm. Let us recall that improving any BAB-based algorithm efficiency leads
us to consider some critical facts, as:

1. the choice of the branching and bounding algorithms so that prunings holds early;
2. how much the initial best solution (incumbent solution) is close to the optimal solution;

3. objective function formulation. Nevertheless, in our context, it is difficult to intervene
successfully here.
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Algorithm 3: Dijkstra-based Incremental Algorithm.

Data: ¢;, the maximal weight of a path leading to i in G = (V, E,w), e = (z,y,wp) edge to add
Result: t, the maximal weight of a path leading to i in G' = (V, E U {e},w).
begin
if t, >1t; + wy then
| Return {t;}iev; /* add e but no update needed */
else
ri = —t; forall i € V;
{a}, .}:ev < DIJKSTRA(G",y) ;
Ay, = a;z +t,—tyforall z€V;
if wo +ay, > 0 then
| Exit; /* Elimination, no solution below */
end

add s in V, ts =0, Vi, add (s,7) in E, ws; = 0;

define K such that K < ay ; —t; for all j with a, ; < 400 and K < —t, —wy if ay,, = +00;
r; = —ay; for all ¢ € V reachable from y; r; = —t; — K otherwise;

{ay;}iev « DIJKSTRA(G™, s) ;
Return {t; = ay; — i + rs}tiev;
end

end

First, let us examine the second possibility. Recall, that at the BAB process initialization,
we set the Lpest value to ZZ p;. If one can have a better bound than EZ pi, it will avoid building
some subtrees until a better lower bound is found. The GS heuristic (see Section 4.5) gives a
schedule that seems quite close to the optimum. Its quality is unfortunately without guarantee,
but it can be used as the Ly value initialization. See Section 6.2.4 for an evaluation of the
effect of this initialization.

It remains to intervene in the first possibility. Indeed, as mentioned earlier, our BAB al-
gorithm uses two tests to avoid building a subtree. The first one checks the feasibility of the
problem, i.e., that no positive circuit is created when adding a new constraint (this is done by
the test wp + ay, > 0 in both the Floyd-based incremental algorithm and the Dijkstra-based
incremental algorithm as seen previously). The second one intervenes when a high lower bound
is found (Ligcal = Lpest). Thus, for improving the BAB runtime, we focus on these two facts.

In the following, as we will talk both about undirected and directed graphs, we use the
following terminology to avoid ambiguities: we use edge and cycle for undirected graphs, and
arc and circuit for directed ones.

Let us now consider a strategy that makes positive circuits appear as soon as possible. We
did some experiments showing that the BAB runtime highly depends on the order in which
constraints are examined. With some random permutations on the constraints, we observe in
some case that the runtime decrease by a factor of 20. For this reason, we designed several
heuristics which arrange the constraints to improve the BAB runtime. This reordering can be
done statically as well as dynamically:

e Statically, the constraints are reordered before applying the BAB algorithm. At this level,
we deal with dis-equations (i.e., edges) thus, it is difficult to guess all existing paths, and
therefore all circuits. However, we can allow more time to reorder because we do it only
once, as a pre-processing time.

e Dynamically, during the BAB algorithm coupled with the Floyd-based incremental algo-
rithm, we try to get the more convenient constraint. Because we have more information
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about the graph features (Floyd’s matrix), we can choose the constraint that reduce the
final explored tree size.

We now describe four reordering heuristics. The first three are static and the fourth is dynamic.

6.2.3.1 Heuristic 1

This heuristic, which is based on probabilities, is a greedy one. Our goal is to try to keep the
subgraph defined by the constraints as connected as possible so that circuits (and maybe circuits
of positive weights) appear. This algorithm builds the list of constraints by selecting constraints
successively as follows: at each step, we maintain a list £ of vertices that are visited, the criterion
of selection favors the constraint c : t; —t; # d;; according to the following order: a) i and j
belong to L, b) either i or j belongs to £, ¢) i and j are involved in as many not-yet-treated
constraints as possible, d) w; ; is maximal.

The first criterion guarantees that at least one circuit will appear soon during the BAB
process. The second and the third ones may promote an earlier appearance of circuits in the
following steps. The last one may increase the lower bound in one of the BAB branch below.

In the worst case i.e., where G has no cycle and each vertex has no more than one neighbor,
the complexity of this heuristic is majored by O(n3). In fact, this worst case constrains the
algorithm to verify all the above criterions

6.2.3.2 Heuristic 2

In this heuristic, we model the problem by an undirected graph G = (V, E) which is obtained by
representing each dis-equation t; — t; # d; j by an edge (7,7). At start, edges are not weighted.

We build a basis of cycles of G using a standard spanning tree algorithm. A spanning tree
classifies edges in two categories: tree edges and non-tree edges. Each non-tree edge defines, with
the tree edges, a unique cycle. For each such cycle C' = (v1,v2, ..., vp, v1), Wwe compute its weight
in both directions vy, v ~ v1 and vy, v, ~» vy, giving to the edge (v;, viy1) the weight 1+ d; 41
or 1 —d; ;41 depending whether the edge is traversed from v; 1 to v; or in the opposite direction.
If at least one of these cycle weights is positive, the cycle is chosen.

These positive-weight cycles are sorted in an increasing order according to their length (num-
ber of edges). Then, the constraint list is built as follows: the first constraints are the constraints
of the first cycle, then we add the constraints of the second cycle, except those already treated
in the first one, etc. The list is completed by the constraints that do not belong to any of these
positive-weight cycles.

This heuristic mainly uses a spanning tree algorithm and a sorting algorithm. A spanning
tree of a given graph can be built thanks to the depth-first search (DFS) algorithm. With a
good implementation, DFS algorithm has a complexity in O(n+m). Using a fast sort algorithm
(such quicksort or heapsort), the sort can be achieved in O(qlg q), where ¢ is the cardinal of the
found basic cycles set. Thus, the complexity of this heuristic is O((¢lgq) + (n + m)).

6.2.3.3 Heuristic 3

Another possibility is to represent each dis-equation by one of its two exclusive arcs. During
the BAB algorithm each dis-equation leads to two arcs, one with weight d; ; + 1, and the other
with weight 1 — d; ;. We choose to represent each dis-equation by its nonnegative arc. Thus, in
the resulting directed graph, all eventual circuits are positive. Then, we do as in heuristic 2, we
enumerate circuits. Here, the non-tree edges are classified into forward, across, and back arcs,
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only the back arcs are part of circuits. Hence, the constraint list is built by the list of constraints
composing each circuit followed by the remained constraints.

It can happen that both edges of a particular dis-equation (those whose weight is 0, 1, or —1)
are nonnegative. In this case, the problem is to choose one of them. For this, we delay dealing
with this kind of dis-equations after building the graph of all others constraints. Once the graph
is built, for each particular dis-equation, we add the arc that may create a circuit, if not we
choose arbitrarily one of them. The Roy-Warshall’s algorithm, which computes the accessibility
relation, is used for circuit detection.

Notice that this heuristic considers circuits that are exclusively composed of nonnegative
arcs, hence, some positive circuits are ignored.

Similar to heuristic 2, this heuristic, whose core is a spanning tree algorithm and a sorting
algorithm, has a complexity in O((qlgq) + (n +m)).

6.2.3.4 Heuristic 4

As mentioned earlier, in a dynamic reordering, one can look for the most useful constraint
since we have a lot of information in Floyd’s matrix. But a dynamic heuristic is applied at
each node of the branch-and-bound tree, and hence may have an exponential additional cost in
pathological cases. For this reason, we use a very simple algorithm (Algorithm 4), which has a
linear complexity in the worst case and even a constant time in most cases. We simply choose
the first constraint that allows pruning (i.e., a subtree below is not constructed). If no such
constraint exists, we select the first one in the list.

Algorithm 4: Dynamic Reordering Algorithm.

Data: ConstraintList, a: Floyd’s matrix (of the parent node)
Result: ¢ constraint to add
begin
for (¢ = (t, — ty # d)) in ConstraintList do
if (agz, +d>0) and (ay, —d > 0) then
| return(“Pruning”);
else
if (ay, +d > 0) then
| return(c, “Only left subtree”, constraint t, —t, > 1 — d);
else
if (ay, —d > 0) then
| return(c, “Only right subtree”, constraint t, —t, > 1+ d);
end
end
end
end

return(first constraint in ConstraintList, “Construct the two subtrees”);
end

In the worst case, the complexity of this heuristic is O(n).

6.2.4 Experiments

We have implemented the BAB algorithm with both variants and heuristics of reordering con-
straints on the same benchmarks. Results are reported in Table 6.1. The third column (nbC)
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gives the size of the system of constraints (number of dis-equations), the fourth column (Opt.)
gives the latency of an optimal schedule, the fifth and the seventh columns (Floyd, Dijk) give
the scheduling runtime, without reordering constraints, respectively by the Floyd-based incre-
mental algorithm and the Dijkstra-based incremental algorithm. The effect of the reordering
heuristics are presented in the remaining columns. As the Dijkstra-based incremental procedure
is better than the Floyd-based incremental algorithm, we give only the runtimes obtained with
the heuristics applied to the first one (columns Dijk+H1, Dijk+H2, and Dijk-+H3 for heuristic 1,
heuristic 2, and heuristic 3), except for the dynamic reordering heuristic (column Floyd+H4),
which can be applied only to the Floyd-based incremental algorithm (as it needs Floyd’s matrix).

Test T | nbC | Opt. Floyd Floyd+H4 Dijk Dijk+H1 | Dijk+H2 | Dijk+H3
cssl 4 9 5 0.11 s 0.09 s < 0,0ls 0.04 s 0.04 s 0.05 s
cssll 4 6 4 0.07 s 0.06 s 0.04 s < 0,01ls 0.04 s 0.04 s
css12 4 9 5 0.06 s 0.06 s 0.06 s 0.04 s 0.04 s 0.06 s
css2 9 23 6 30.37 s 26.59 s 5.01 s 9.23 s 0.90 s 2.74 s
css3 7 36 9 41.26 s 17.55 s 3.42 s 297 s 24s 5.67 s
cssH 3 7 5 0.05 s 0.05 s 0.05 s 0.03 s 0.04 s 0.04 s
css6 8 7 4 1.04 s 1.00 s 0.14 s 0.11 s 0.11s 0.14 s
jacl 6 7 6 0.32 s 0.28 s 0.07 s 0.05 s 0.04 s 0.04 s
jac2 6 75 22 54.56 s 35.67 s 9.76 s 18.23 s 10.70 s 1710 s
jac3 7 85 19 1’3 s 49.29 s 8.5 s 7.42 s 9.04 s 2’41 s
rasm1 3 1 5 0.01 s 0.01 s 0.03 s 0.03 s 0.03 s 0.03 s
wss3 5 7 4 0.1s 0.10 s < 0,01ls 0.04 s < 0,0ls 0.05 s
wss31 5 12 6 0.9s 0.87 s 0.25 s 0.14 s 0.1s 0.16 s
wss32 5 6 4 0.11 s 0.10 s 0.05 s 0.03 s 0.04 s 0.05 s
wocl 4 5 5 0.05 s 0.04 s 0.04 s 0.02 s < 0,01s 0.04 s
woc2 7 10 4 1.90 s 1.82s 0.2s 0.26 s 0.13 s 0.26 s
wssl 4 54 17 1.79 s 1.37 s 0.46 s 0.46 s 0.43 s 1.13 s
wss11 4 49 16 2.07 s 1.39 s 0.46 s 0.32's 0.62 s 0.99 s
wss2 3 9 9 0.05 s 0.05 s 0.04 s 0.02 s 0.04 s 0.03 s
wss12 4 49 16 2.27 s 1.45 s 0.48 s 0.24 s 0.75 s 1.47 s
wmt22 | 4 24 13 0.56 s 0.52 s 0.19 s 0.23 s 0.1s 0.34 s
css21 9 44 10 3h 25" s 1h 20’ s 15 50 s 822s 2’43 s 13’ 16 s

Table 6.1: Scheduling Results for the Various Tests on the BAB Algorithms.

The analysis of the BAB algorithm runtimes shows that they are sufficiently acceptable in
contrast to its high exponential theoretic complexity (except for one pathological case, pro-
gram css21, presented hereafter). In addition, the results confirm the fact that the BAB algo-
rithm, using the Dijkstra-based incremental procedure, is faster than the Floyd-based incremental
procedure.

Concerning the reordering heuristics, the results show that heuristic 1 and heuristic 2 do
improve the runtime. But it is difficult to choose one among them because there are some
compromises; when one improves runtime for part of the cases, it increases the runtime for
the other ones. Heuristic 3 has the worst runtime; this result can be explained by the fact
that only positive circuits composed exclusively of positive arcs are taken into account while
some positive circuits, which are composed by a mixture of positive and negative edges, are not
taken into account. The dynamic heuristic (heuristic 4) improves the runtime too, however the
BAB algorithm coupled with the Dijkstra-based incremental version is slightly better than this
improvement. For the pathological case, the constraints reordering heuristic 2 gives the best
runtime.

Table 6.2 presents the results for the BAB algorithms and heuristics when we initialize Lpegt,
the best global lower bound during the BAB process, to the latency of the schedule obtained
by the GS heuristic. For each algorithm, the results give the percentage of improvement due to
this better initialization. Only significative improvements (more than 5%) are given. The results
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Test Branch-and-bound

Floyd | Floyd 114 | Dijk | Dijk+ 01 | Dijk+H2 | Dijkt 03
cssl - - - - - -
cssll 38 % 32 % - 10 % 11 % -
css12 23 % 22 % 15 % 13 % 8 % 16 %
css2 5% 5% 16 % 22 % 16 %
css3 7% 11 %
cssh 7% 9% 16 %
css6
jacl 14 % 12 % 18 % 15 %
jac2 - - - - - -
jac3 — — - 27 % — 12 %
rasm1 — - - - - -
wss3 32 % 34 % 23 % 36 % 20 % 23 %
wss31 18 % 18 % 40 % 12 % 23 % 14 %
wss32 23 % 22 % 12 % 13 % 14 % 11 %
wocl 12 % 8 % 5% 6 %
woc2 6 % 6 % 9 % 10 %
wss1
wssll 10 % 7% 50 % 5 %
wss2 7% 15 % 18 %
wss12 16 % 12 % - - 5 % 22 %
wmt22 — - - 7% - -
css21 — — - - - -

Table 6.2: Improvements on the BAB Algorithm with Lyes Set to the GS Schedule Latency.

clearly depend on the application.

Concerning the influence of our binding heuristic on the latency and the resolution time,
when there are more than one copy of each resource, we have done some experiments. Indeed, on
the same example with same resources, we have generated several bindings. Results are reported
in Table 6.3. In the first batch of tests (first four tests), we have only changed resource bindings,
while in the second batch, we have cut the tasks in smaller and smaller pieces. Results show that
changing the bindings have no influence on the latency, and a small influence on the scheduling
time. On the other hand, changing the tasks granularity has a small influence on the latency,
with large variations on the scheduling time.

Test wss 1 | wss 2 | wss 3 | wss 4 | wss 5 | wss 6 | wss 7 | wss 8 | wss 9 | wss 10
T 4 4 4 4 5 6 7 8 9 10
nbC 48 50 51 50 75 64 67 64 60 64
Latency 16 16 16 16 15 14 14 14 15 14
Time 0,74s 0,7s 0,78s 0,7s 3,1s 1.3s 7s 1,2s 3,7s 1,3s

Table 6.3: Influence of the Binding Heuristic on Latency and Resolution Time.

Pathological case The pathological case we encountered (program css21) has only 9 tasks
(but 32 micro-tasks). These independent tasks are taken from the SPICE program (from line 765
to line 773) of the PerfectClub benchmarks. What happens in this test is that all local lower
bounds are close to the optimum, so no early elimination is possible, and this causes the total
scan of the solution space. The problem is typical of the difficulties one may encounter when
scheduling parallel loops. The code is the following:

Task 1:  GDPR=VALUE(LOCM+4)*AREA
Task 2:  GSPR=VALUE(LOCM+5)*AREA
Task 3:  GM=VALUE(LOCT+5)

Task 4:  GDS=VALUE(LOCT+6)

Task 5:  GGS=VALUE(LOCT+7)
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Task 6: XGS=VALUE (LOCT+9) *OMEGA
Task 7: GGD=VALUE (LOCT+8)

Task 8: XGD=VALUE (LOCT+11) *0OMEGA
Task 9: LOCY=LYNL+NODPLC (LOC+20)

Assume that we have one adder, one multiplier, a memory block VAL (where the VALUE array is
mapped) and a memory block Mdp (where the NODPLC array is mapped) with one port. Assume
also that memory access takes 2 cycles and is pipelined, while all the other resources take one
cycle. Figure 6.1 diagrams the reservation table for the tasks — type (a) for tasks 3, 4, 5, and 7,
type (b) for tasks 1, 2, 6, and 8, and type (c) for task 9 and the optimal schedule, computed
by the BAB scheduler, whose latency is 10. It corresponds to t1 = 0, to = 1, t3 = 2, t4 = 3,
ts =4, tg =5, t7 =8, tg = 6, tg = 7. It is never obtained by the GS heuristic in a sample of n?
permutations.
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Figure 6.1: Pathological Case css21.

6.3 Conclusion

We have designed a new exact resource-constrained scheduling method in which ILP is replaced
by longest-path calculations as tools for a branch-and-bound meta-algorithm. The longest-path
computations are accelerated by variants of Floyd’s or Dijkstra’s algorithms. We have also
designed four constraints ordering heuristics that we employed to perform prunings, as soon as
possible, in the BAB process. Thus, improving the runtime of the algorithm.

This method is contextually designed to schedule data-independent tasks. However, it can
be easily generalized to support problems of resource-constrained scheduling even when tasks are
dependent.

Scheduling results show that, in effect, the BAB algorithm has an acceptable runtime at least
on our benchmarks. Though it was observed that it can be vulnerable to some rare pathological
cases. The use of the constraints ordering heuristics have really improved the runtime of the
BARB algorithm; the results have shown that, in most cases, they give better runtime than the
original solution.
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Comparative Study

In the previous chapters, we have presented some solutions to the resource-constrained scheduling
problem presented in Section 4.3 in which tasks are represented by reservation tables and the
resource constraints are modeled by dis-equations. These solutions consist on a greedy heuristic
and two exact algorithms. The first uses ILP techniques and the second is based on the branch-
and-bound meta-algorithm.

In this chapter, we report and comment some comparative results. The aim of this com-
parisons is to demonstrate the effectiveness of the proposed methods. We make some additional
tests to analyze in more detail the parameters that influence their runtime and thus we give some
guidelines for selecting the most effective one according to the context.

7.1 Comparative Results and Discussion

To compare the three methods, the GS heuristic, the BAB scheduler, and the ILP scheduler, we
have chosen the best performances of each one. Comparative results are reported in Table 7.1.
For the BAB algorithm, we have reported its runtime using the Dijkstra-based algorithm, cou-
pled with the reordering heuristic 2, while setting the initial value of Lpest to the GS schedule
latency (column Dijk+H2). For the ILP techniques, we have selected the method which uses
the 0/1 simplified encoding. For the GS heuristic, we have only presented its deviations from
the optimum. Indeed, knowing that the GS heuristic is sensitive to the order of the task list,
we ran the algorithm on a sample of permutation of tasks. The size of this sample is the square
of the number of tasks, and the permutation are random. The maximum deviation (DevMax
column) presents the difference between the worst schedule in the sample and the optimum as
given by the BAB algorithm. The DevMin column presents the deviation of the best schedule,
in the sample of permutations, from the optimum.

The results show that, despite its simplicity, the GS heuristic has a good behavior, at least
for these examples: even the latency of the worst schedule (in the sample) is not very far from
the optimum. The result in the DevMin column demonstrates that the best schedule is very close
to the optimum. Hence one can find a good schedule by applying only GS to a small sample
of permutations. At least for our benchmarks, the BAB algorithm is often faster than the ILP
technique. However, there are exceptions. Hence, both methods can be useful for practical
applications. We made some additional tests to analyze in more detail the parameters that
influence their runtimes.

As a rule of thumb, ILP works well whenever the task durations (the p;) are small and
especially when they are all equal to 1. But if one multiplies the duration and resource occupation
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Test T | pT Greedy scheduling ILP Branch-and-Bound
DevMax | DevMin | TLP (0/1) | nbC Dijk-+H2
cssl 4 15 2 1 0.2s 9 0.04 s
cssll 4 15 2 0 0.22's 6 < 0,01s
css12 4 17 3 1 0.21s 9 0.04 s
css2 9 32 2 1 0.77 s 23 0.75 s
css3 7 27 3 0 0.3s 36 2.36 s
cssh 3 9 0 0 0.17 s 7 0.04 s
cssb 8 12 0 0 0.18 s 7 0.11 s
jacl 6 19 0 0 0.13 s 7 0.03 s
jac2 6 82 1 1 2.83 s 75 10.70 s
jac3 7 97 1 0 2.57 s 85 9.0 s
rasml 3 9 0 0 0.15 s 1 0.03 s
wss3 5 11 0 0 0.18 s 7 < 0,01s
wss31 5 11 1 0 0.19 s 12 0.09 s
wss32 5 11 0 0 0.16 s 6 < 0,01s
wocl 4 13 0 0 0.14 s 5 0.03 s
woc2 7 9 1 0 0.16 s 10 0.12 s
wssl 4 44 5 0 1.26 s 54 0.43 s
wssll 4 44 4 1 0.75 s 49 0.30 s
wss2 3 23 1 0 0.62 s 9 < 0,01s
wss12 4 44 5 1 0.83 s 49 0.71 s
wmt22 4 31 0 0 0.25 s 24 0.1s
css21 9 32 2 1 0.48 s 44 243 s

Table 7.1: Comparative Results.

of each micro-task by a constant factor f (which means the corresponding resource is non-
pipelined and is used during f steps), the complexity of the ILP problem increases dramatically,
both in terms of the number of unknowns and of the size of the coefficients because the schedule
horizon H increases. In contrast, the BAB algorithm is not particularly sensitive to the involved
numbers size but more to the dis-equations number. If each micro-task uses a resource during f
steps, we can describe the corresponding resource constraint by a dis-equation expressing a
forbidden interval of length f (i.e., the two corresponding inequalities ¢; — ¢t; < d;; — f or
ti —t; > d;; + f). This extension does not increase the BAB algorithm complexity.

Test >opi P BAB
css3 original 27 0.3 s 2.36 s
css3 (2) 47 0.69s | 0.38s
css3 (3) 67 0.9s | 0.38s
css3 (4) 87 1.18 s | 0.43 s
css3 (5) 107 1.45s | 0.38s
css3 (6) 127 1.76 s | 0.39 s
css3 (7) 147 2.06s | 0.3s
css3 (8) 167 243s | 0.38s
css3 (9) 187 2.82s | 0.39s
css3 (10) 207 3.29s | 0.40s

Table 7.2: Comparative Results when the p; Vary.

To demonstrate this effect, we generated variants of the program test css8 for which the ILP
approach was faster than the BAB algorithm. These variants consists in duplicating the tasks
twice, four times, etc. The results are given in Table 7.2.

Concerning data dependences, integrating them in the BAB algorithm is almost for free as
we just have to plug them as constraints at the root node of the BAB tree. For the ILP approach
however, we cannot use the 0/1 simplified formulation anymore as we need the constraints (5.4)
to express the dependences. So, in general it takes more time than without dependences. This
effect is demonstrated in Tables 7.3 and 7.4. To get the results of Table 7.3, we add a few
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artificial (i.e., they are not in the initial program) data dependences between the tasks. The ILP
approach gets slower as we have to use the 0/1 standard encoding, while the BAB algorithm
gets usually faster. Indeed, at each node of the BAB process, more edges need to be traversed
(so this should be more costly), but the solution space gets smaller (some task orders are now
impossible) and also some subtrees are not searched anymore because their new Ljgca i now
larger than the current best evaluation Lpegt-

Test nb Dep. 1LP BAB

Without dep. | With dep. Without dep. | With dep.
css2 3 0.77 s 0.8 s 0.75 s 0.74 s
css3 5 0.3s 0.86 s 2.36 s 0.18 s
cssH 3 0.17 s 0.33 s 0.04 s < 0,01s
css6 6 0.18 s 0.38 s 0.11 s 0.02 s
jacl 5 0.13 s 0.26 s 0.03 s < 0,01 s
jac2 5 2.83 s 3.18 s 10.70 s 0.67 s
jac3 4 2.57 s 4.02 s 9.0 s 0.85 s
wss1 4 1.26 s 2.12s 0.43 s 0.07 s
wss11 4 0.75 s 1.14 s 0.62 s 0.09 s
wss12 4 0.83 s 1.44 s 0.71 s 0.06 s
rasm1 2 0.15 s 0.36 s 0.03 s < 0,01ls
css21 5 0.48 s 1.03 s 2743 s 1.59 s

Table 7.3: Comparative Results with Artificial Data Dependances.

One can argue that this comparison is not fair as we should compare with original programs
containing actual data dependences. To get such programs, we consider some of our benchmarks
and we decompose a few macro-tasks into 2 or 3 data-dependent sub-tasks. The results are given
in Table 7.4. The ILP approach still slows down a bit, but now the BAB algorithm slows down
too although it remains in general faster than the ILP algorithm for these examples. The reason
of this slow-down is that by splitting a task 7T into two sub-tasks 77 and T5, we sometimes
increase the number of dis-equations. Indeed, if T is is involved with another macro-task U
with two dis-equations combined into one because they have the same forbidden distance, we
may now have two different dis-equations to consider: one involving 77 and U and the other
involving T5 and U. Table 7.4 gives, in addition to the runtimes, the number of corresponding
dis-equations. To summarize this study, the BAB algorithm seems to be more suitable when the
number of dis-equations is small and when the ILP solver may take too much time because data
dependences need to be expressed, for a large schedule horizon H.

Test T nb Dep. | old nbC | new nbC ILP BAB

Without dep. | With dep. | Without dep. | With dep.
css2 12 3 23 26 0.77 s 0.90 s 0.75 s 0.47 s
css3 11 5 36 36 0.3s 0.98 s 2.39 s 0.71 s
cssH 5 2 7 8 0.17 s 0.32 s 0.04 s < 0,01s
css6 10 2 7 10 0.18 s 0.36 s 0.11s 0.12 s
jacl 8 2 7 9 0.13 s 0.28 s 0.03 s 0.14 s
jac2 9 3 75 93 2.83 s 3.28 s 10.70 s 1’16 s
jac3 10 4 85 107 2.57 s 4.02 s 9.0 s 11.03 s
wss12 7 3 49 71 0.83 s 2.26 s 0.71 s 1.68 s
css21 12 3 44 49 0.48 s 1.21s 2’43 s 3 34s

Table 7.4: Comparative Results when Splitting a few Macro-tasks.
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7.2 Conclusion

In this first part of the thesis, we presented a formalism, for HLS scheduling, to accurately express
resource constraints for complex tasks represented as reservation tables. The resource constraints
are modeled by dis-equations and finding an optimal schedule entails resolving a system of dis-
equations. The proposed formalism can be applied to problems of resource-constrained scheduling
where tasks may be linked by data dependences.

We have proposed some solutions for scheduling such tasks: a greedy heuristic and two exact
algorithms. The first use ILP technique and the second is based on the branch-and-bound meta-
algorithm. Scheduling results show that, in effect, the greedy heuristic has a suitable behavior.
Similarly, the BAB algorithm has an acceptable runtime but can be vulnerable to some rare
pathological cases. For improving the runtime of the BAB algorithm, we have designed four
constraints ordering heuristics. The results have shown that, in most cases, they give better
runtime than the original solution. Compared to the ILP technique, the BAB algorithm has
shown better behavior when tasks execution times are large.
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Chapter 8

Scheduling via
Branch-and-Bound-Based Graph
Coloring

In the first part of this thesis, we have developed some scheduling solutions that are integrated
in a three-step scheduling approach (§ 3.3.2). However, one can emphasize that the partitioning
into steps 2 and 3 in the three-step scheduling approach seems artificial. In other words, one can
ask: “is it a good methodology to first "micro-schedule" each macro-task independently and then,
schedule them together 7”. For this reason, in this chapter, we try alternatively to formalize the
problem so that the steps 2 and 3 are performed in a unified way. Using this formalism, we design
a novel exact scheduling algorithm in which an optimal schedule is computed by properly coloring
the graph that represents both resource constraints and data dependencies. Some commented
experiences illustrate the effectiveness and the efficiency of this scheduler.

8.1 Formalisms

8.1.1 Task Model

Conversely to the model task of the first part, where a task was a sequence of micro-tasks
(elementary operations), here, we consider directly all the elementary operations of the macro-
tasks. So a task ¢ is an elementary operation such as an addition, a multiplication, a shift. ...
We assume that this elementary operation is already mapped on the available resource. Here
also, a simple binding is used: each functional operation is mapped to the first free resource,
resources are allocated on a cyclic way. In what follow, for the sake of simplicity, we use task
instead of elementary operation or micro-task.

We denote by T the set of tasks which represents the set of the DFG (Data Flow Graph)
nodes, R the set of resources, t; the starting date of the task ¢, each task latency is assumed
to be one “unit” (the unit is the clock cycle). As will be seen in what follows, this assumption
allows us using easily a graph coloring model.

However, this hypothesis should not preclude the multi-cycle and/or pipelined functional
units use. In fact, we allow such resource features by the following tricks. When a task is
mapped to a multi-cycling resource which delay is more than one cycle, there are two possible
scenarios:
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1. the resource can be pipelined: here, we add supplementary operations nop —fictitious
operation as they do not use real resource to T

2. the resource doesn’t allow pipelining: we add supplementary operations nop to T but
here they are not fictitious as they do use the resource.

In both situations, some “false data dependences” have to be added to the DFG in order to
preserve the data-flow dependences constraints.

Let us illustrate these tricks by means an example in which a functional operation mult
is mapped to a three-cycle multiplier, as described in Figure 8.1 (a). If the multiplier can be
pipelined then we add two nop tasks to T', we add also two data dependences as in Figure 8.1 (b)
and all successors of mult, in the original DFG, become successors of the last nop operation. If
the multiplier is a simple resource, i.e., it can’t be pipelined, similar additions are performed but
now the nop operations are bounded to the multiplier resource i.e., they are assumed using the
multiplier (see Figure 8.1 (c).

This simulation validity imposes us to guarantee that each nop operation will be exactly
scheduled 1 cycle after its direct predecessor node. We will see that it is possible to perform.

BN N S

~~~~~~~~~ s e

(a) Three-cycle multiplier (b) Pipelined multiplier (c) Non—-pipelined multig

Figure 8.1: One unit-cycle resource simulation.

8.1.2 Data Dependences and Resource Constraints Formalism

Finding legal and optimal schedules for T entails more precision into the way of expressing
resource constraints and data dependences between its tasks. In the following, we will express
uniformly both kinds of constraints, using dis-equations. Here, by dis-equation we mean “a
negation of equation where the second member is null”, conversely to what we have defined in
the first part, where it is the most general definition, “a dis-equation is a negation of equation”).

Let 7 and j be two tasks and ?; and ¢; their respective starting dates. First, in a valid
schedule, 7 and j can start at any date except those which put them into a resource conflict or
data dependence conflict. Indeed, if a resource r is used by both ¢ and j, then ¢; and ¢; have to

take different values. Thus, the intuitive idea is to express resource constraint by:

ti —t; #0.
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Similarly, a data dependence constraint between ¢ and j can also be expressed with a dis-
equation. Indeed, when the task j depends on the task 7 it implies that the task j must be
executed after the task 7. This can be expressed by the constraint ¢; —¢; > 1 or more general
by t; —t; > d;; (classical precedence constraints). Here again, ¢; and t; have to take different
values, thus yielding the inequality t; —t; > 1 as t; — ¢; # 0. It should be noted that solutions
for t; —t; > 1 are included in the set of solutions of ¢; —¢; # 0. Thus, replacing t; —t; > 1
inequality by the dis-equation t; — ¢; # 0 represents a relaxation that we have to compensate
when a solution is found to guarantee the schedule validity. We will return to this fact later.

It follows that, for the set T of tasks, 1) all the resource constraints can be expressed by
defining for each couple of tasks (7,7) the dis-equation expressing the resource constraint, if i
and j share the same resource, 2) all the data dependences are expressed by defining for each
couple of tasks (7,7) the dis-equation expressing the data dependence constraint if i and j are
linked by a data dependence.

8.2 Scheduling Problem Formulation

Using this formalism, finding a schedule for 7" entails solving the following system of dis-equations
on integer values:

{ti—t;#0  i,j €T A((i,j share a resource) V (i, j are linked by a data dependence)) (8.1)

then choosing one solution, among the set of solutions, which respects precedence constraints.
Indeed, the previous relaxation, in which we have replaced t; —t; > 1 by t; —t; # 0, have to be
verified.

First, let us mention that this system is usually feasible; it has at least one solution, the
solution corresponding to the sequential execution order.

In addition, these dis-equations can be represented by an undirected graph G = (V| E),
where an edge between two tasks ¢ and j means that ¢ and 7 cannot be scheduled at the same
time. G is easily built by merging both graphs G™ and G¢, where G" represents the interference
graph (or conflict graph); there is an edge between i and j if they share a same resource and
G? represents the graph obtained by performing a transitive closure on the DFG and replacing
all directed edges by undirected ones. The transitive closure operation guarantees that all data
dependences, implicit and explicit ones, will be expressed by an edge. Indeed, the edges in the
DFG express only explicit data dependences, hence implicit data dependences, expressed by any
path 7 ~~ j, have to be expressed by dis-equation t; —¢; # 0. Transforming all directed edges in
G? by undirected ones, here also, is a relaxation which must be compensated when a solution is
found to guarantee that the computed schedule is valid. We will return to this fact later.

Let us mention that G' can have any structure. We denote by n(G) the cardinal of V' which
represents the task number (i.e., the cardinal of the set T') and m the number of distinct dis-
equations. As formalized, it is easy to see, that finding a schedule for these tasks entails properly
coloring®® the graph G, then establishing an order on colors which respects the precedence
constraints.

Further, for getting an optimal schedule, we have to minimize the colors number needed for
properly coloring G. Thus, finding the chromatic number 2 x(G) of G.

241n graph theory, let us recall that “graph coloring” is an assignment of “colors* to certain objects in a graph
subject to certain constraints. Here, we use its simplest form which is a way of coloring the vertices of a graph
such that no two adjacent vertices share the same color, called a “vertex coloring”.

?The chromatic number x(G) of G is the smallest number of colors needed to properly color G.
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8.3 How To Color a Graph?

First, let us mention that there are several practical problems that are modeled by graph coloring.
Although graph coloring takes its name from the map-coloring application, it enjoys several
theoretical challenges. Beside the classical types of problems, the problem of coloring a graph has
found a number of applications especially register allocation in compilers, scheduling, frequency
assignment in mobile radios and pattern matching.

Specially, graph coloring and its generalizations are useful tools in modeling a wide variety of
scheduling and assignment problems, such as precoloring extension, list coloring, multicoloring,
minimum sum coloring. ... More details on these applications in scheduling are given by Marx
in |76].

Unfortunately, optimally coloring a graph i.e., determining its chromatic number is an NP-
Complete problem (Chap 5 of [110]). Nevertheless, there are many methods for coloring a graph
G, or solving the system defined in (8.1):

e one can be satisfied with greedy coloring heuristics where coloring is done vertex by vertex,
the order of the vertex coloring can be established statically as well as dynamically;

e We can also use meta-heuristics such as simulated annealing, Tabu search, and genetic-
based algorithms;

e for optimality, some solutions from operations research are availables, they can be based
on:

— Coloring using a Branch-And-Bound meta-method;
— Integer Linear Programming techniques [99].

— Since there is an obvious bound for the x(G) (x(G) < n), we can also use finite
domain constraint satisfaction programming [14].

As discussed earlier, Integer Linear Programming and Constraint Logic Programming are
the main alternative approaches used to solve combinatorial optimization problems. They have
shown their ability to locate and prove the existence of an optimal solution in rigorous ways.
Unfortunately, these methods are rather slow.

Similarly, the Branch-And-Bound method has an exponential theoretical complexity, but
conversely, it can have a better behavior in practice if it is well instrumented. Indeed, Branch-
And-Bound is a meta-method of guidance in the space of solutions, its resolution strategy depends
strongly on the problem features to resolve. Hence, in what follows we will design an exact
coloring graph by mean of Branch-And-Bound technique.

Example

Let us consider the same example seen in Section 4.2.4

Task 1: GSPR = VALUE(LOCM+2)*AREA
Task 2: GEQ = VALUE(LOCT+2)

Task 3: XCEQ VALUE (LOCT+4) *OMEGA
Task 4: LOCY = LYNL+NODPLC(LOC+13)

With the same assumptions: the available resources are one adder, one multiplier, and two
memory blocks: Val (where the VALUE array is mapped) and Ndp (where the NODPLC array is
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mapped). Assume also that both memory access and multiplication take two cycles and that
both can be pipelined. Scalar variables like AREA or LOCY are assumed to be allocated to registers,
where they can be accessed in no time.

Figure 8.2 diagrams the DFG of the macro-tasks with one possible binding, where the label
RM Val (resp. RM Ndp) means to read the memory block Val (resp. Ndp). Here we chose the
binding that greedily allocates all the available resources to tasks, i.e., we assign all the resources
to the functional operations of each task. Let us note that the fictitious operations nop are
added to satisfy the 2-cycle resources (multiplier and memory blocks). Operations 1 to 17 are

the elementaries tasks.
LOC\ /4
NG

RM
-

LOCM 2 AREA |oCcT 2 LOCT

TNy N\

OMEGA LY

o
(D@
o

a
g a.
w
h
Pl
-
w
-
9]
Is)
<

XCEQ
Macro-Task 1 Macro-Task 2 Macro-Task 3 Macro-Task 4

Figure 8.2: Binding for the Example.

For this example, the resource constraints system is composed of 15 constraints defined as follows:

t1—t6#0 t1—tg#0 t1—tiu#0 t1—t17#0 to—1t7#0
to—t1o#0 tg—t12#0 te—tg#0 tg—tu#0 tg—1t17#0
t7 —t1w#0 to—t1u#0 tg—t17#0 t1y—t17#0

For instance, the constraint ¢; — tg # 0 expresses the fact that the operation 1 and 6 cannot
start at the same time because, among other reasons, both use the adder. This system of
constraints is used to build the conflict graph G.

Explicit data dependence constraints are extracted from the DFG. For example the data
dependence between the operation 5 and 4 defined by the inequality t5 — ¢4 > 1 will be replaced
by the constraint t5—t4 # 0 and so on. We obtain the following system of direct data dependences
constraints, which is used as a basis to construct the data dependences graph G%:

ts —ty A0  ty—t3A0 l3—ta£0 to—11£0 tg—1t7 40
tr—t6#0  tiz—t12#0 tio—t11 #0 t11—tio#0 tio—tg#0
tir —tie #0 tig—tis #0 tis —tia #0
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8.4 Branch-and-Bound-Based Graph Coloring Solution

Let us recall that Branch-And-Bound is an implicit enumerative meta-method which searches, in
the solution space, a solution according to an objective function. Its resolution strategy depends
strongly on the feature of the objective function and the quality of the lower and upper bounds
used for pruning.

Let G = (V, E) be the graph which formalizes the dis-equation system given by (8.1). Let
n(G) = |V| be the number of tasks and m = |E|, the number of dis-equations.

In our context, let us recall that we consider only valid colorings (schedulable ones) of G. A
coloring is valid if we can get an order on colors such that no precedence constraint is violated.
Indeed, the precedence constraints can be violated due to the previous relaxations, in which we
have replaced t; —t; > 1 by t; — t; # 0 and replaced an arc by an edge in G?. In other words, a
coloring is valid if we can build a valid schedule from this coloring.

Before explaining our algorithm strategy, first let us explain how the branching is done, which
lower bound is used and how it is evaluated.

8.4.1 Branching Rule

The branching rule used here is inspired from the idea of Béla Bollobas (Chap. 5 of [13]) for
coloring any graph?6. The idea is based on coloring a graph G by reducing the problem to
coloring two other graphs derived from G. Let w and v be nonadjacent vertices of a graph G.
Let G’ be obtained from G by joining u and v, and let G” be obtained from G by identifying
(merging) u and v. Thus, in G” there is a new vertex (uv) instead of u and v which is joined to
vertices adjacent to at least one of u and v (see Fig. 8.3).

These operations are even more natural if we start with G’: then G is obtained by cutting
the edge (u,v), and G is obtained from G” by exploding the vertex (uv).

This separation guarantees that we are not losing any solution. Indeed, let us note that
colorings of G’ and colorings of G” are disjoint sets, because colorings of G’ give u and v different
colors and colorings of G” give them the same color. In addition, the colorings of G in which u
and v get distinct colors are in 1-to-1 correspondence with the colorings of G'. Indeed, ¢:  V —
{1,2,...,k} is a coloring of G with ¢(u) # ¢(v) iff ¢ is a coloring of G’. Similarly, the colorings
of G in which u and v get the same color are in 1-to-1 correspondence with the colorings of G”.
In particular, if for a natural number x and a graph H, we denote py(z)?” for the number of
colorings of a graph H with = colors, then

pe(r) =py (%) +pgr (2).

By definition x(G) is the least natural number %k for which p,(x) > 1. Thus, these remarks
imply that x(G) can be defined as:

X(G) = min{x(G"), x(G")} (82)

8.4.2 Evaluation -Bounding- Procedure

Many upper and lower bounds for the chromatic number are proposed in the literature [13, 111].
First, let us consider the upper bounds. Most upper bounds come from algorithms that produce

26This Divide-to-Conquer technique is originally designed to get some information about the number of colorings
of a graph with a given set of colors.
*TCalled the chromatic polynomial.
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Figure 8.3: The Graphs G, G’ and G".

colorings. For example assigning distinct colors to the vertices yields x(G) < n. This coloring
uses nothing about the structure of G; we can do better by coloring the vertices in some order.
For example, a greedy coloring relative to a vertex ordering vi,...,v, of V can be obtained by
coloring vertices in the order vy,...,v,, assigning to v; the smallest-indexed color not already
used on its lower-indexed neighbors. Each vertex has at most A(G) neighbors, so the greedy
coloring cannot be forced to use more than A(G)+ 1, this is the worst upper bound that a greedy
coloring could produce (x(G) < A(G) + 1) colors.

Welsh-Powell [109] proposed another greedy coloring, in which they apply the previous greedy
coloring to the vertices in non-increasing order of degree d; > ... > d,, when we color the ith
vertex v;, it has at most min{d;,7 — 1} earlier neighbors, so at most this many colors appear on
its neighbors. Hence, the color we assign to v; is at most 1+ min{d;,7 — 1}. This holds for each
vertex. So, we obtain an upper bound; we maximize over ¢ to obtain the upper bound on the
maximum color used: x(G) < 1+ max; min{d;,7 — 1}.

For our coloring algorithm (see below) the most important bounds for the chromatic number
used are the lower ones. Let us quote that for any graph G, we have:

e the most known lower bound:

X(G) = w(@), (8.3)

where w(G) is the clique number: the size of the largest set of pairwise adjacent vertices
in G (mazimal clique).

e and a second lower bound:
x(G) = n/a(G), (8.4)

where a(QG) is the independence number: the cardinal of the largest set of vertices in V' so
that no two vertices are adjacent (mazimal size of an independent set ).
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The first bound holds because vertices of a clique require distinct colors. The second bound
holds because in a proper coloring the set of vertices of each color is an independent set and thus
has at most a(G) vertices. Both upper bounds are exact when G is a complete graph. However,
for certain graphs inequalities (8.3) and (8.4) may be very weak; it can happens that w(G) can
be much smaller than x(G). But according to our context, we rely on the particularity of the
built graphs (not very large and high probably may be very connected).

Unfortunately again, in general both maximal clique problem and maximal independent set
problem are N'P-Hard [110], although good approximation algorithms can be found in |58].

However, a clique computation, as a lower bound to the clique number, can be obtained by
several methods:

e one can be satisfied with a greedy clique heuristic. For example, that which we use, build a
clique C' progressively as follows: we start with the vertex which has the maximal degree,
then we add, as long as there is, the vertex with a maximal degree and which is adjacent
to all vertices in C. Thus, we obtain in a polynomial time a lower bound such that:

X(G) z w(G) = |C].

e for optimality, one can use Integer Linear Program formulation. Indeed, knowing that
computing the clique number entails computing the independence number for G, the com-
plementary graph, since the maximal clique problem is complementary to the maximal
independent set problem. This fact allows us to use the following natural ILP formulation
of the Independant Set problem (IS):

max Yo B
1P2: subject to: z; +x; <1 for every edge (4,7) in G
0<m <1 i=1,...,n)

where x; are binary variables, x; = 1 if the vertex ¢ belongs to the maximal independent
set of G.

One can argue that computing an exact clique may be very expensive, as it uses ILP formu-
lation, this is true in general, but let us mention that this last formulation is known as binary
integer program IP2%8 or 2-SAT?? which has some powerful properties than a general IP problem.
Indeed, it turns out that solutions of this IP2 problem always have denominators not greater
than 2, which guarantees that in the process of an integer resolution, no number explosion will
be occur. In addition, this property guarantees that all basic solutions of linear relaxation of
this 2-SAT are integer multiples of 1/2 (Chap. 3 of |58]).

This property follows from the following statement: the determinants of all nonseparable
submatrices of the 2-SAT linear programing problem have absolute value of at most 2. A matrix
is nonseparable if there is no partition of the columns and rows to two subsets (or more) C, Co
and R, Rs such that all nonzero entries in every row and column appear only in the submatrices

defined by sets C1 X Ry, Co X Rs.

Proof. Let A denote the constraint matrix of this 2-SAT integer program. Thus, A has at most
non-zero entries in every row . Let’s do it by induction on the size of the submatrix. Since the
entries of A are from {—1,0,1}, the claim holds for 1X1 submatrices. Assume that it holds for

%% Integer Programming with two variables per inequality.
299_gatisfiability boolean formula on variables z1, ..., z, where the objective is to find an assignment satisfying
all clauses such that >°7 | @; is maximized.
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any (m — 1)X(m — 1) submatrix and we show that the claim holds for any mXm submatrix.
Let A;; denotes the submatrix obtained by deleting the ’th row and the j’th column from
A. Without loss of generality, we assume that the two non-zero elements in row i of A are in
columns ¢ and i+ 1 (modulo m). Due to the nonseparability of the matrix, this can be achieved
by appropriate row and column interchanges, thus:

det(A) = A[1,1].det(A11) — (—=1)™ Alm, 1].det(Am1)

The absolute values of A1y and A,,; determinants are equal to 1, since both are triangular
matrices with nonzero diagonal elements. Therefore, the A determinant absolute value is at
most 2. O

8.4.3 Algorithm

According to these Branch and Bound procedures, we have designed a BAB algorithm which
progressively builds a tree of subproblems as follows:

e At the root, we start with the original graph G, which is obtained by expressing both
resource constraints and data dependencies between tasks of T;

e At each tree structure node N , we get two nonadjacent vertices and we branch using the
previous branching rule.

e During the resolution process, we maintain Lyeg;, the the best schedule latency computed
so far which corresponds to the number of colors needed by a valid coloring of G. At the
beginning, we can set Lpest to one of the x(G) upper bounds, previously seen; thus set to
1 + max; min{d;,7 — 1} or A(G) + 1.

e At each node N, we treat GV, the graph obtained by the branch operation. Except for
the leaves, we compute clique number (or a greedy clique which is a lower bound to the
clique number) Ligca of GV. As seen above Ligea is a lower bound of x(GY) and so of
G. If Ligcal > Lpest the subtree below NV is not constructed as it will not lead to a better
complete solution.

e A leaf is reached if there is no nonadjacent vertices in the obtained graph G!, which means
that the graph is complete. It is well known that for such complete graph we have X(Gl) =
A(GH +1 = w(G" = |V!|. So now we have an actual solution. We check if this coloring is
valid; so no precedence constraints is violated, then if it is better than Lpeg; then Lpest is
updated.

e The algorithm stops when all branches are explored; Thus, whole solution space has been
explored and Lypegt is returned as the optimum solution which satisfied the objective func-
tion.

It is easy to prove that this algorithm terminates. Indeed, when we branch, there are two
possible situations. In the first one, we merge two vertices so we decrease the vertex number
of the graph, no more than (n — 1) merges are possible for a given G. In the second situation,
we connect two vertices, at most k = (n?/2 — m) additions are allowed, where k is the number
of pairs of vertices not connected in G; it represents the number of edges to be added to G for
being a complete graph. Thus, the algorithm terminates and the depth of the BAB tree is at
most max (k,n — 1); these values correspond to the length of the extremal branches.
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In this algorithm variant, we wait until a solution is found (reaching a leaf) for checking the
computed coloring validity, thus the schedule validity. Another possibility can be considered as
this test can be dynamically performed. Indeed, a coloring can’t be valid if a contraction of two
nonadjacent vertices, i and j causes a creation of a cycle in the original DFG (which expresses the
precedence constraints). For this reason, we can guard a contraction by a test in which we check
if no path, in the DFG, join between i and j (in both directions so both paths ¢ ~» j and j ~ i
are considered). This fact entails maintaining a Roy-Warshall’s matrix3? after each contraction.
This solution can improve considerably the algorithm runtime by performing soon the prunings.
In contrast, it may slow down the algorithm as maintaining a Roy-Warshall’s matrix requires ¢?,
where ¢ is the cardinal of the graph vertex set defined at each level of the BAB tree.

In addition, when a coloring is computed, other conditions have to be verified. In fact, the
one unit-cycle resource simulations, which are performed at the beginning in order to allow multi-
cycle resource use, have to be verified. Thus, an optimal schedule will be rejected if it does not
verify that each nop operation is exactly scheduled 1 cycle after its direct predecessor node.

Further, let us also mention that for this algorithm version, the choice of the couple of
nonadjacent vertices is random, or rather it is greedy; i.e., we get the first two nonadjacent
vertices. One can speed up the algorithm runtime by getting the most adequate two nonadjacent
vertices to perform the branching.

8.4.4 Complexity

It is difficult to give the actual complexity of any BAB algorithm except perhaps for the worst
cases, where no elimination are done. Specially, for our algorithm when it is coupled with the
maximal clique computation algorithm which is based on an integer linear program. For this
reason, here; we just try to bring some information which can give an idea on the complexity of
the designed algorithm.

First, let us notice that any branch length from the root to a leaf is variable and has a value
in the interval [min(n — 1, k), max(n — 1,k)] , where k = (n?/2 — m) is the number of pairs of
vertices non connected in G. As explained above, these values correspond to the length of the
extremal branches of the BAB tree. Indeed, not more than (n—1) merges are possible for a given
graph to become complete and not more than k = (n?/2 — m) joinings are allowed in a given
graph to become complete. The interval [min(n—1, k), max(n—1, k)] is included in [n—1,n2/2)].

On the other hand, the variant of the greedy clique heuristic, which we use, is a pseudo-
polynomial heuristic, as its time complexity is O(nA(G)), where for A(G) is the degree of G.

8.5 Integer Linear Program Solution

To compare with the previous BAB approach, we design another exact algorithm based on an
integer linear program. Indeed, as seen in Chapter 5, our scheduling problem can be formalized
by mean of standard coding techniques.

We use the following notations: x;; is a binary variable associated with task ¢ where x; ; = 1
if and only if task ¢ is scheduled at the jth clock cycle. The indices j go from 0 to H, a maximal
“horizon” for the schedule. The variable t; is the starting date of task ¢, R the set of available
resources, I2, the set of tasks that use the resource r, and d; , the time step 31 (relative to the

30A Roy-Warshall’s matrix is a boolean matrix which reports the accessibility relation [108]; an entry
(¢,7) = True in this matrix, if there is a path from ¢ to j in G.

31Tt is possible that, in the same task 4, a resource 7 is used in more than one micro-task. Again, for simplicity,
we assume that each task uses each resource at most once, but this may be easily generalized.
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beginning of the task) at which task i uses resource r.

Let us recall that a standard way of expressing our scheduling problem is the following. Fix
H, the maximal schedule horizon, to an upper bound for the optimal latency. For example, fix
H to card(T), which correspond to the sequential execution order latency. Then, minimize the
schedule latency L subject to the following constraints (in addition to the fact that all variables
are integers and the x; j are 0/1 variables):

H—p;
ti= Y jxay; Vie[l...n (8.5)
=0
0<t;<L—p; Vie[l...n] (8.6)
H—p;
dayy=1 Vie[l...n] (8.7)
j=0
> wip<1  VreRVte[0... H] (8.8)
1€ER,
tj—t; >1  Vedge (i,j) € DFG (8.9)

The n equalities in (8.5) define the starting dates ¢; as functions of the x;; binary vari-
ables. The inequalities (8.6) express the latency to be minimized. For each task i, the equal-
ity (8.7) guarantees that ¢ is executed exactly once. Finally, the inequalities (8.8) express resource
constraints for each resource r € R. Once the variables ¢; are available — through the con-
straints (8.5), the dependence constraints are naturally expressed through the constraints (8.9).
These last inequalities can also be replaced by general precedence constraints: t; —t; > ¢; ;.

8.6 Experimental Results and Discussion

We implemented the algorithms presented previously, in our framework, on the same benchmarks
and on the same machine. We also implemented the BAB algorithm with both clique computation
variants (maximal clique and greedy clique). Results are reported in Table 8.1. In these first
experiments, only 12 test programs, among those used previously, are treated.

In the first two columns of Table 8.1, we report the name of the test and the number of
included tasks. The third column represents the chromatic number; so the optimal schedule. For
each evaluation procedure variant, we report the runtime of the BAB algorithm and the number
of nodes (Nb nodes) actually constructed by the BAB algorithm. The Eighth column represents
the ILP technique runtimes.

Experimental results show that, in effect, our exact branch-and-bound approach has an ac-
ceptable runtime despite its theoretical complexity. However, the results show that the version
of the BAB using the greedy clique algorithm is more faster than the one using the maximal
clique computation. This is due to the large number of ILP solver calls, this number can be
quantified by the corresponding “Nb nodes” column.

Concerning comparison, except for few cases, the results show that our BAB algorithm has
a better behavior than the ILP technique.

8.7 Conclusion

Given a set of tasks linked by some data dependences, under resource constraints, we formalize the
problem that finding an optimal schedule lead us to properly color their conflict graph. Indeed,
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Test nbT | Optimum Branch-and-bound

Mazimal Clique (TP2-Pip) Greedy Clique ILP formulation

Time Nb nodes Time Nb nodes
cssl 15 5 3,04 s 343 1.09 s 2200 0.9 s
cssll 15 4 0.40 s 42 0.02 s 88 0.6 s
cssl2 17 10 5.8 5870 1.14 s 1505 0.83 s
cssh 9 4 5.39 s 233 0.2s 49 0.28 s
css6 12 4 1s 13 0.07 s 35 0.32 s
wss3 11 5 1.32s 104 0.05 s 360 0,51 s
wss32 11 4 1.63 s 235 0.07 s 482 0,4 s
wocl 13 5 0.08 s 8 0.01s 73 0,62 s
woc2 9 4 0.03 s 4 0.02 s 44 0,27 s
rasm1 9 5 0.90 s 19 0.03 s 22 0.24 s
rasm?2 7 4 0.15 s 2 0.01 s 6 0.15 s
jacl 19 6 1’08 s 1025 1.98 s 1678 2.1s

Table 8.1: Scheduling Results for the BAB with both Maximal and Greedy Clique Bounding
Algorithms and the ILP.

we have accurately and uniformly expressed both resource constraints and data dependences
using dis-equations.

Conversely to classic graph coloring algorithms, we design an exact algorithm in which the
coloring is done by means a branch-and-bound meta method [28]. Each evaluation is accelerated
by either maximal or greedy clique computation.

Results show that, in effect, our exact branch-and-bound approach has an acceptable runtime
despite its theoretical complexity. However, the BAB version in which it is coupled with the
greedy clique algorithm is faster than the one using a maximal clique computation.

Furthermore, the effectiveness of this algorithm is also proven by some comparative experi-
ments. We compare the designed algorithm to a classical ILP solution. In fact, except for few
cases, the results show that our BAB algorithm has a better behavior than the ILP technique.

Besides, the results show that this simple designed algorithm variant, in our context instru-
mented to compute an optimal schedule, deserves more attention as it can be used as a solution
to many graph coloring problems in others contexts. Indeed, there are several interesting real-
life applications that are modeled by graph coloring. In fact using a fast implementation and
many others tricks: getting the most adequate two nonadjacent vertices to perform the branch-
ing or improving the greedy clique computation heuristic may considerably reduce the algorithm
runtimes.
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Chapter 9

(General Conclusion and Future
Directions

Scheduling is one key process in HLS. Under resource constraints, scheduling operations while
minimize the total duration is an NP-complete problem since too many constraints and objec-
tives interact. These considerations lead to the idea of designing gradual approaches to schedule
programs especially with loops.

Indeed, in order to efficiently exhibit and exploit parallelism we use a symbolic scheduling
algorithm. This produces a sequence of logical steps, each of which contains a pool of macro-tasks
(with no loops), where each macro-task is a complex sequence of elementary operations. Despite
that many hardware constraints can be roughly taken into account by this scheduling pass, it
remains that this symbolic scheduling technique is quite complex and cannot take into account
all the operations and the architectural resources they need. Thus, we need at least another step
to schedule locally all operations of the macro-tasks belonging to the same logical step to satisfy
the resource constraints and data dependencies between the elementary operations of the same
macro-task. In this work, we have investigated many possibilities.

9.1 Contribution

In a first one and for complexity reasons, we have again divided the problem into two subproblems:
1/ mapping and scheduling each macro-task independently taking into account all peculiarities
of the target architecture. This produces a reservation table for each macro-task. 2/ refining
each logical step by scheduling all its macro-tasks, now represented by the reservation tables,
while respecting resource constraints.

In another possibility, we have simultaneously scheduled all operations of the macro-tasks
while satisfying both resource constraints and data dependencies between the elementary oper-
ations of the same macro-task.

In this thesis and for both approaches, we have proposed some solutions to certain scheduling
steps. Indeed, for the three-step approach, we have focused on the third scheduling step problem:
“scheduling tasks whose resource usage s described by reservation tables”. First, we have pre-
sented a formalism that accurately expresses resource constraints for complex tasks represented
by reservation tables. The resource constraints are modeled by dis-equations and finding an
optimal schedule lead us to resolve a system of dis-equations. In a second time, we have pro-
posed some solutions for scheduling such problem: a greedy heuristic and two exact algorithms.
The first uses ILP techniques and the second is based on the branch-and-bound meta-algorithm.
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The last one represents our main algorithmic contribution. It consists on a new exact resource-
constrained scheduling method in which classic ILP is replaced by longest-path calculations as
tools for a branch-and-bound meta-algorithm. The longest-path computations are accelerated
by either variant of Floyd’s or Dijkstra’s algorithms. In order to improve this algorithm runtime,
we have also designed four constraints ordering heuristics that we employed to perform prunings,
as soon as possible, in the BAB process. Most of them are based on graph cycle detection.

Scheduling results show that, in effect, the greedy heuristic has a suitable behavior, at least
on our benchmarks. On the other hand, the BAB algorithm has an acceptable runtime but can
be vulnerable to some rare pathological cases. Concerning the constraints ordering heuristics, the
results show that, in most cases, they give better runtime than the original solution. Compared
to the ILP technique, the BAB algorithm show better behavior when tasks execution times are
large.

Contextually, the BAB method is designed to schedule data-independent tasks. However,
it can be easily generalized to support problems of resource-constrained scheduling even when
tasks are dependent. Quite paradoxically, we saw that the case of independent tasks is the most
difficult one for our branch-and-bound formulation; adding dependences is easy and reduces the
size of the solution space.

Furthermore, in the last chapter we have proposed some solutions to perform the last schedul-
ing step —the simultaneous scheduling— defined in the two-step approach. Similar as in the first
part, we use “dis-equations”, as mathematical way to express uniformly both constraints: resource
constraints and data dependences. Consequently, to find an optimal schedule, this formalism led
us to properly coloring the obtained conflict graph. In order to optimally color this graph and
conversely to classic graph coloring algorithms, we design a new method so that coloring is done
by means of a branch-and-bound that is accelerated by clique computation algorithms. The
clique computation can be accomplished exactly as well as greedily.

[Mustrated by means of some practical benchmarks, the effectiveness and efficiency of the
method are good. However, the algorithm version which is coupled with the greedy clique
algorithm, is faster than the one using a maximal clique computation. Moreover, the effectiveness
of this algorithm is also proven by some comparative experiments. Indeed, we have compared
the designed algorithm to a classical ILP solution. In fact, except for few cases, the results show
that our BAB algorithm has a better behavior than the ILP technique.

Finally, let us argue why we opt for exact solutions to resolve the defined scheduling problems.
Indeed, this choice interest is twofold. Firstly, it is true that embedded systems designers tolerate
much longer compilation times than high-performance programmers. A design is the result of
many iterations in which different architectural options are evaluated. It is likely that scheduling,
even when using complex techniques like BAB or ILP, takes negligible time comparing with
extensive simulation or place-and-route synthesis. GS is well suited for the initial exploration. In
the final phases, when one must meet strict performance constraints, the use of an optimal method
like the BAB or the ILP algorithms may be warranted. Secondly, we believe that integrating
exact methods into hierarchical scheduling approaches; that could identify code fragments (so
with manageable size) and schedule them optimally couldn’t affect a lot the whole scheduling
runtime.

9.2 Future Directions

Modeling scheduling problems and designing their correspondent algorithms is known as a labo-
rious task, especially for constrained systems such as the embedded ones. In this thesis, we have
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mainly tried to get some exact methods but we believe that the performances of these algorithms
can be improved. We have thought about to many ideas which will be exploited. Currently, we
investigate some ones and left for future work some others.

Concerning the greedy algorithm, it might be interesting to design a prior: task reordering
heuristics, using ideas similar to those we applied to the BAB algorithm.

The situation is similar for both Branch-and-Bound-based algorithms, many improvements
can be envisaged as Branch-and-Bound itself is a meta-algorithm, which can be configured in
many different directions according to the context.

About the first Branch-and-Bound Algorithm

In fact, the Branch-and-Bound coupled with the Dijkstra’s algorithm variant, we have chosen,
is the most obvious. One may consider variants, in which the lower bound —computation of the
longest paths is not computed for all the nodes, or in which the order of elaboration of the
nodes is best-first instead of depth-first.

In addition, we have used an incremental version of the longest-paths computation, whose core
is Dijkstra’s static algorithm. This algorithm is faster and less memory consuming comparing
with some others. However, as we have already mentioned, that it can be sped up by replacing
the second call to Dijkstra’s algorithm by one of its dynamic versions recently published.

About the Graph Coloring Algorithm

On the other hand, experimental results about the designed branch-and-bound-based graph
coloring algorithm, although they have to be proven by more larger graphs, lead us to take more
attention about this graph coloring kernel algorithm which is instrumented to compute a schedule
in our context. Indeed, “graph coloring” and its generalizations are useful tools in modeling a
wide variety of scheduling and assignment problems and many interesting practical problems.
Hence, we have thought about many tricks which are able to improve this method performances
—specially its runtime—.

First, let us recall that, for certain graphs, both chosen chromatic number lower bounds,
(X(G) > n/a(G) and x(G) > w(G) ) may be very weak; it can happens that w(G) can be
much smaller than x(G). In such case, one can search, in the wide graphs’ literature, for more
better lower bounds by analyzing deeply and extracting the real nature and features of the built
graphs in our context. In fact, we currently explore another lower bound which is surely ideal
for our coloring strategy. Indeed, Grotschel, Lovasz, and Schrijver proved [54], thanks to their
“sandwich theorem”, that we can compute in polynomial time a real number that is “sandwiched"
between these hard-to-compute integers (w(G) and x(G)). They call this lower bound the “theta
function™

w(G) <0(G) < x(G).

Additional improvements can be envisaged before the branching procedure i.e., when getting
the pair of nonadjacent vertices. In the current version, we get greedly, in a polynomial time, the
first pair that respects the condition. One can use an algorithm which chooses the most adequate
couple of nonadjacent vertices such that it will improve soon the lower bounds along a branch.
Indeed, we are currently trying to get an incremental version of a greedy clique computation
algorithm that will be linked to the algorithm which chooses the pair of nonadjacent vertices.
The aim is to reach a complexity of O(1) instead of the currently pseudo-polynomial one. The
principle of this algorithm is described as follows:
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e At the root of the BAB tree structure, we get a greedy clique of G using the current static
greedy clique computation algorithm. Let C' be this clique.

e At each node, during the choice of the nonadjacent vertices, first, we try to examine the
greedy clique vertices so that the choosen vertex pair contents, if it is possible, one vertex
among the clique vertices. Let (¢, c2) be the chosen pair of vertices.

e Successively, at each step, C' is increased, of course if it is possible, by one vertex. The
candidate vertex is chosen among the set ¢1, ¢ i.e., among the couple of the two nonadjacent
vertices. This choice criterion may at least guarantee that the successive joining operations
will early increase the size of C'. Indeed, after the nonadjacent vertices choice two situations
are possible. 1/ ¢1 or ¢ belongs to C, and successive joinings will increase soon the size of
C, 2/ neither ¢; nor ¢y belongs to C, and we know that C' is an independent component
of G, then if its size is greater than n/2 thus it is the exact clique number else we can try
to construct another greedy clique.

Further future work consists in comparing the designed coloring technique with some other
exact techniques |21, 91] especially those designed for resolving VLST CAD problem [31].

In the interest of fast prototyping, all our algorithms are implemented in the programming
language of the MuPAD computer algebra system, which is interpretive. Despite the suitable
results, a C or Fortran implementation would certainly improve more the runtime of the designed
algorithms.
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ASAP: As Soon As Possible a scheduling technique. It schedules operations taking into
account only the data dependences constraints.

ALAP: As Late As Possible a scheduling technique.

AFAP: —As Fast As Possible— a scheduling technique.

Architectural synthesis: see Behavioral synthesis.

BAB: Branch-And-Bound technique is a general algorithmic meta-method for finding optimal
solutions of various optimization problems, especially in discrete and combinatorial op-
timization.

Behavioral synthesis: the process which takes a program —behavioral specification— of a system
to be performed on a dedicated circuit and finds a structural description description
of a circuit— that implements this behavior.

Binding: assignment of operations, memory accesses, and interconnections from the behavioral
design description to hardware units for optimal area and performance.

CAD: Computed-Aided Design .

Chaining: the scheduling of two data-dependent operations in the same control-step.

Clique: For an undirected graph G, a clique represents a set of pairwise adjacent vertices in G.

DFS: Deepth-First Search .

Dis-equation: negation of equation.

DSP: Digital Signal Processing .

FPGA: —Field Programmable Gates Array— a programmable circuit.

FSM: Finite-State machine a design model for representing controllers that assigns boolean
constants to output signals in every clock cycle.

FSMD: Finite-State Machine with Datapath is a model for representing control-dominated
and data-dominated designs that augments FSM model with variables and expressions
that specify conditions and actions in each state.

ILP : —Integer Linear Programming (Program)—.

Latency: It represents the needed runtime for a circuit between the the first data reception and
the last data emission.

Logic synthesis: synthesis of a structural view, described via memory elements and boolean
expressions, into logic gates.

RTL: —Register Transfer Level- a description level where the register assignments are done.

Multi-cycling : a scheduling technique in which a "complex” operation is scheduled in multiple
clock cycles. This echnique allows slower functional units use within faster clocks.

Netlist A list, by name, of each signal and each symbol component and pin logically connected
to the signal (or net). A netlist can be generated automatically by a Computer-Aided
Design system.

Resources-constrained Scheduling: scheduling operations while respecting a given resource
constraints set.
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Retiming : is the technique of moving the structural location of registers in a circuit to improve
its performance, area, and/or power characteristics in such a way that preserves its
functional behavior at its outputs.

Scheduling : partitioning the design behavior into time control steps.

Set Independent: SI for a graph G = (V| E), a set independent represents a vertex set from
V', so that no two vertices are adjacent.

SoC : System On a Chip .

Sub-optimal solution: near optimal solution.

Time-constrained Scheduling : assignment of operations into control steps, given a fixed
execution time.

Verilog: a hardware description language (IEEE Standard 1364-2005).

VHDL: a hardware description language (IEE Std 1076-1987) used by designers to describe
design behavior and structure at various abstraction levels.
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Appendix A

Graph Algorithms

The most algorithms designed in this thesis are based on graph elementary algorithms. For sake
of clarifying their principle and their complexity, we have dressed this appendix. Indeed, in this
appendix we recall some fundamental graph algorithms and theirs complexities are detailed if
necessary.

Given a graph G = (V, E), where V is a set of n vertices and E the set of m edges. In
what follow, as we will talk about both undirected and directed graphs, we use the following
terminology: we use edge and cycle for undirected graphs, and arc and circuit for directed graph.

A.1 Depth-First Search Algorithm and its Features

Depth-First Search (DFS) algorithm is one of the simplest algorithms for searching a graph and
the archetype for many important graph algorithms.

The strategy followed by depth-first search is, as its name implies, to search “deeper” in
the graph whenever possible. In depth-first search, edges are explored out of the most recently
discovered vertex v that still has unexplored edges leaving it. When all edges have been explored,
the search “backtracks” to explore edges leaving the vertex from which v was discovered. This
process continues until we have discovered all the vertices that are reachable from the original
source vertex. If any undiscovered vertices remain, then one of them is selected as a new source
and the search is repeated until all vertices are discovered.

Depth-first search provides many information about the structure of a graph and has many
interesting features, we can quote:

1. Depth-first search builds a sub graph of predecessors G, = (V,E;), where : E; =
{(w(v),v) : v € Vand w(v) # NIL}. G, forms a depth-first forest. In the case
of an undirected (resp. directed) graph, the edges (resp. arcs) of E, are called tree edges
(tree arcs).

2. Besides creating a depth-first forest, depth-first search also “time-stamps” each vertex. Each
vertex v has two time-stamps: the first time-stamp d[v] records when v is first discovered
(and grayed), and the second time-stamp f[v] records when the search finished examining
all the adjacency list and blackens v. Thus, a vertex v is a proper descendent of a vertex u
in the depth-first forest of a given directed /undirected graph iff d[u] < d[v] < f[v] < f[u].

3. Another interesting property of depth-first search is that the search can be used to classify
the edges of the input graph G. We can define four edge types in terms of the depth-first
forest G produced by a depth-first search on G.
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Algorithm 5: Depth-First Search Algorithm
begin

foreach vertez u € V|[G] do
color|u] < White;
7[u] < NULL;

end

time «— 0;

foreach verter u € V|[G] do
if color[u] = White then

| PP-Visit (u);

end

end

end

PP-Visit(u)

begin

color[u] « Gray;

d[u] <« time + 1 ;

foreach wverter v € Adjv] do
if color[u] = White then
| wlu] =y
end

end

color[u] = Black;

flu] < time + 1 ;

end

e Tree edges : are edges in the depth-first forest G,. Edge (u,v) is a tree edge if v
was first discovered by exploring edge (u,v).

e Back edges (R) are those edges (u,v) connecting a vertex u to an ancestor v in the
depth-first tree Gp;. Self-loops, which may occur in directed graphs, are considered
to be back edges.

e Forward edges (T) are those non-tree edges (u,v) connecting a vertex u to a de-
scendant v in a depth-first tree.

e Cross edges (A) are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other, or they can go
between vertices in different depth-first trees.

It should be mentioned that in the case of undirected graphs, we can distinguished only
two kinds of edges: edges belonging to the depth-first forest and those which don’t belong
to it. Let us see Figure. A.1: (a) represents the steps of the DFS, where each vertex u
is labeled by its d[u]/d[f], and (b) represents the depth-first forest (bold arrows) and the
classification of arcs.

The complexity of Algorithm 5 is in O(n + m). This algorithm can serve to enumerate a
basis of cycles and paths of G. In addition, in the case of graph without cycles, one can establish
the topological sort by exploiting the values of f. Furthermore, the DFS allows a cycle detection
and it can be used to enumerate the strongly connected components of a graph . ...
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A.2 Maximal-weight Paths

In the problem of finding paths of maximal weights 32 (for brevity we use longest-paths) in a
graph [30] we are given a directed graph G = (V| E,w), where V is a set of n vertices and E a set
of arcs with a weight function w : E' — Z which affects each arc (i,7) by a real value weight
w(i,7) . The weight of path P = [vg, v1,...,v) is the sum of the weights of its constituent edges:
w(P) = Zle w(vi—1,v;). We define the path of maximal weight from u to v by:

Alu,v) = § 8% w(p) : u~> v if there are paths from u to v
’ +00 else

In the literature, we can distinguished two kinds of algorithms resolving this problem accord-
ing to what we consider: 1/ searching paths of maximal weight from a given vertex s —called
source to all the others, the problem is called “Single-source longest-paths problem” or 2/ search-
ing paths of maximal weights from u to v for every pair of vertices u and v, the problem is called
“All-pairs longest-paths problem”.

A.2.1 Relaxation Technique

First, let us explain the relaxation technique that is used in both algorithms, described in what
follow, which finds paths of maximal weight from a given source s to all the others.

In this technique, for each vertex v € V, we maintain an attribute d[v], which is an upper
bound on the weight of a longest-path from source s to v. We call d[v] the “estimate of the path
of maximal weight ”. We initialize the estimate paths of maximal weight by d[v] = —oo for each
v. We define 7(v) the predecessor of vertex v for which d[v] has been updated for the last time.

RELAX (u,v,w)
if dv] < dfu] then
dfv] — d[u] + w(u,v);
m(v) — u;
end

*2In the literature, these algorithms are often presented as finding paths of minimal weight. This is the same,
one just have to change the weight signs. Our explanations are based on maximal-weight paths.
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Algorithm 7: Dijkstra’s Algorithm
début

Initialize-source(G, s);

S —0;

Qe<=V;

while @ # 0 do
u «— Extract-Max(Q);
S — U{u};
foreach v € Adj[u] do

| RELAX(u,v,w)

end

end

fin

The process of relaxing an arc (u,v,w) consists of testing whether we can improve the “path
of maximal weight estimate” of v, going through u and, if so, updating d[u] and 7(v).

A.2.2 Dijkstra’s Algorithm

Dijkstra’s algorithm resolves the “Single-source longest-paths problem” on a weighted graph
whose all edge weights are nonpositive (w(u,v) < 0). Dijkstra’s algorithm maintains a set S of
vertices whose longest-paths from the source s have already been determined such that for each
vertex v € S we have du] = A(u,v). At each step, the algorithm selects a vertex u € V — 8
whose d[u] is maximal —which is done by Extract-Max primitive-, adds u to S, and relaxes all
edges leaving u.

In Algorithm 7, the data-structure of () represents a max-priority queue, which contains
vertices in V' — S, keyed by their d values. If the priority queue is implemented with a simple
array then the Extract-Max procedure will be executed in O(n). In Dijkstra’s algorithm the
While loop is repeated n times. In the whole execution, the For loop is repeated |E| times
i.e. m times, the number of arcs, thus for each iteration, it takes O(1). Consequently, the total
runtime of the algorithm is O(n? + m) = O(n?)33.

However, when the graph is dense |E| is close to [V|? | it is more advised to implement the
max-priority queue by a binary heap®*. With such implementation, the procedure Extract-Max
will be in O(lgn) and eventual assignation d[v] < d[u] +w(u,v) will be realized by the primitive
Increase-key (Q,v,d[u] + w(u,v)) in O(lgn), in which case the complexity of the algorithm 7
becames O((n +m).lgn).

However, the most suitable data structure for speeding up this algorithm is the Fibonacci-
heap [30]. With this data structure, the amortized cost of each call to Extract-Max primitive
35 in O(lgn), and each of the |E| calls to the Increase-key takes only an amortized time in

Y

O(1). Consequently, Dijkstra’s algorithm can be executed in O(n.lgn + m).

#31n what follow, often the O(|E|) is majored by O(n?)

34 A (binary) heap data structure is an array object that can be viewed as a nearly complete binary search tree
which has special basic primitives such : Increase-key (Q,v, k) that increase the key of a node v in O(lgn) while
preserving the queue order.

35The amortized cost is the required time to perform a sequence of data-structure operations is averaged over
all the operations performed. Amortized analysis differs from average-case analysis in that probability is not
involved; an amortized analysis guarantees the average performance is an of each operation in the worst case.
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Algorithm 8: Bellman-Ford’s Algorithm.
begin

Initialize-source(G, s);

for i—11to0|V|—1do

foreach arc (u,v) € E do

| RELAX(u,v,w);

end

end

foreach arc (u,v) € E do

if d[v] < d[u] +w(u,v) then
| return FALSE ;

end

end

return TRUE ;
end

A.2.3 Bellman-Ford’s Algorithm

The Bellman-Ford’s algorithm solves the single-source longest-paths in the general; i.e. the case
where edge weights are arbitrary. Given a weighted, directed G = (V, E,w) with a source s, the
Bellman-Ford’s algorithm returns a boolean value indicating whether or not there is a positive-
weight cycle, that is reachable from the source. If there is such a cycle, the algorithm indicates
that no solution exists. If there is no such cycle, the algorithm produces the longest-paths from
the source s to each vertex v € V and their weights. Bellman-Ford’s algorithm —Algorithm 8-
runs in O(n?) time.

In the longest-paths problem, one wishes to find for each pair of vertices u, v € V, the
longest-path from u to v, where the weight of a path is the sum of the weights of its constituent
edges. We typically want the output in tabular form: the entry in u’s row and v’s column should
be the weight of a longest path from u to v.

One can solve the all-pairs longest-paths problem by running a single-source longest-paths
algorithm |V| times, once for each vertex as the source. If all edge-weights are nonpositive
the n calls to Dijkstra’s algorithm, according to its implementation needs O(n3) with an array,
(n? + nm)lgn) with a binary heap, or O(n?Ign + nm)) with a Fibonacci heap. But in general
case, the n calls to the Bellman-Ford’s algorithm gives results in O(n?).

In the literature, there are some solutions which do better. In this short appendix, we report
the two well known algorithms to find all-pairs longest-paths: Floyd-Warshall’s algorithm and
Johnson’s algorithm.

A.2.4 Floyd-Warshall’s Algorithm

Floyd-Warshall’s algorithm, assume that there are no positive-weight cycles. This algorithm
uses a dynamic-programming formulation to resolve the all-pairs longest-paths problem. Before
proceeding, let us briefly recap the steps for developing any dynamic-programming algorithm,
indeed one has to : 1/ characterize the structure of an optimal solution, 2/ recursively define
the value of an optimal solution, 3/ compute the value of an optimal solution in a bottom-up
fashion.

Indeed, Floyd and Warshall start by characterizing the structure of an optimal solution.
Assume that the graph is represented by an adjacency matrix W = (wj;).
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All intermediate vertices of p; are in {1,2,...,k — 1} All intermediate vertices of po are in {1,2,..., k—1}

' I : " I
$p_1% $p_2%

_ J

All intermediate vertices of p are in {1,2,..., k}

The algorithm is based on the following observation. Let V' = {1,2,...,n} be the set of all
vertices of G, for each k € V, consider the subset {1,2,...,k}. Let p be the longest-path from
vertices ¢ to j. p is an elementary path as there are nonpositive cycles in G.

The algorithm uses the relationship between the path p and all longest paths from ¢ to j
whose components vertices are in the set {1,2,...,k—1}: (1) If k£ is not an intermediate vertex
in the path p, so all intermediate vertices of p are in {1,2,...,k— 1}, thus the longest-paths from
i to j whose intermediates vertices are in {1,2,...,k—1} is also a longest path from i to j whose
intermediates vertices are in {1,2,...,k}. (2) If k is an intermediate vertex in p then we cut the
path into two sub-paths: p: i AN R Jj, as shown in Figure. A.2.4. The path p; (resp. p2) is a
longest-path from i to k (resp. from k to j whose intermediate vertices are in {1,2,... k — 1}.
Indeed, k isn’t an intermediate vertex in both paths p; and py. This is induces directly from the
fact that the sub-paths of a longest-path are them self longest-path.

Given a graph where all cycles are negative or null, Floyd-Warshall’s algorithm, based on

(k) '
;; as the longest-path from 7 to
(%)

ij

the dynamic programming principle described above, defines a

J whose intermediates vertices are belonged to {1,2,...,k}. When k =0, a
recursive definition of the longest path is:

= wjj;, thus the

%ij maa:{ag;c_l),agz_l) + a,(:;._l)} if k> 0.

Floyd-Warshall’s algorithm —Algorithm 9- runs in (n3) time and its space requirement is
about n?. In this algorithm, the superscript k in a® is added only to indicate the number of
the iteration. When implementing this algorithm, it does not appear.

A.2.5 Johnson’s Algorithm

Johnson’s algorithm —Algorithm 10 resolves the all-pairs longest-paths problem in O(n?lgn +
m.n). For sparse graphs, it is asymptotically better than the Floyd-Warshall’s algorithm which
is in O(n3). The algorithm either returns a matrix of longest-path weights for all pairs of vertices
or reports that the input graph contains at least one positive-weight cycle. Johnson’s algorithm
uses, as subroutines, both Dijkstra’s algorithm and the Bellman-Ford’s algorithm, which are
described previously.

Johnson’s algorithm uses the technique of reweighting, which works as follows. If all edge-
weights w in G are non positives, we can find longest paths between all pairs of vertices by running
Dijkstra’s algorithm one from each vertex. If G has positive-weight edges but no positive-weight
cycles
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Algorithm 9: Floyd-Warshall’s Algorithm
begin
for i from 1 ton do

for j from 1 ton do
| Qij Wi
end

ai; < 0
nd
or k from 1 ton do
for ¢ from 1 ton do
for j from 1 to n do

Z(;.C) — max{ag;c_l), az(.],z_l) + a,(c];_l)} :

= O

| a
end
end
end
end

This technique defines a new reweighting function w” which satisfies two proprieties: (1)
For each couple of vertices ¢,5 € V, if we knew the longest-paths for G = (V, E,w") using
the reweighting function w”—, it will be easy to find the longest-paths from ¢ to j by using the
function w, we talk about “longest-path conservation”, (2) for each pair (i,7), the new weight
w" (i, ) is positive or null.

To get the new reweighting function w”, we define the function A : V' — R which associate
a real value to each vertex. Indeed, for each edge (u,v) € E, we define a new weight w"(i,j) =
w(u,v) + h(v) — h(u).

In Algorithm 10, Bellman-Ford’s algorithm is used to check whether a positive-weight cycle,
in which case no solution exists. In the opposite case, the longest-paths from the fictitious source
s to each vertex v € V', A(s,v) will serve to define the reweighting function h.

Table A.1 summarizes, for each algorithm, described above, their respective complexity and
the features of the graph for which they are most suitable.

A.3 Roy-Warshall’s Algorithm

Roy-Warshall’s algorithm computes, for a directed graph G = (V, E), the reachability rela-
tionship between all-pairs of vertices; it returns, for each pair of vertices 4,7, a boolean value
indicating whether or not there is a path from ¢ to j. Roy-Warshall’s algorithm follows the
dynamic programming principles same as in Floyd-Warchall’s algorithm3®. Indeed, we define

Acci;c the boolean value which attests that j is reachable from ¢ by a path whose intermediates

vertices are in the set {1,2,...,k}. Thus, we define recursively Acc;; as:
TRUE If an edge from ¢ to j exists and k=0
Accl(.;?) —{ FALSE If no edge from i to j and k =0

Accl(-;?_l) or (Accg:_l) and Acc,(:;._l)) if k> 0.

%6 Historically, the Floyd-Warchall’s algorithm is inspired from the principle of the Roy-Warshall’s algorithm by
performing the following substitutions : “or = max” and “and = +”
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Algorithm 10: Johnson’s algorithm

begin
Build G’, Where V[G'] = V[G] U {s} and
E[G'] = E[G] U {(s,v);v € V[G]};
if Bellman-Ford (G',w,s) — False then
| “ G contains positive-weights cycles”
end
foreach vertez v € V[G'] do
h(v) «— —A(s,v)
/* Where A(s,v) is computed by Bellman-Ford’s Algorithm */
end
foreach edge (u,v) € E[G'] do
| w(w,v) — wlu,v) +h(v) = h(u)
end
foreach wverter u € V[G] do
A" (u,v) <« Dijkstra(G, w", u);
foreach wvertex v € V[G] do
| auy — —A"(u,v) + h(u) — h(v)

end
end
Return D ;
end
Algorithm Problem Graph proper- Time Complexity Space Com-
ties plexity
- Single-source | Edge weights Using an array Binary heap Fibonacci heap | O(n)
Dijkstra
longest-paths must be (Sparse graph)
positive O(n?) O((n+m)lgn) | O(nlgn+m)
Bellman-Ford // any graph O(n3 O(n)
Floyd-Warshall | All-pairs no  positive- O(n?) O(n?)
longest-paths weight cycles
Johnson // Sparse graph O(n?lgn + n.m) O(n)

Table A.1: Summary of Longest-Paths Algorithms.

Same as Floyd-Warchall’s algorithm, Roy-Warshall’s algorithm ~Algorithm 11 runs in n?

time and requires n? memory space.
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Algorithm 11: Roy-Warshall’'s Algorithm

begin

else
end
end
f

for

end
end
end

for each pair (i,j7) € (VXV)E do
if edge (i,j) then
| Acc;j — TRUE;

| ACCij — FALSE

or k from 1 ton do

i from 1 ton do

for j from 1 ton do
| Accij « Accyj or (Accyy, and Accyj)
end
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Benchmark Description

In order to measure the real performances of our algorithms, we have tested them on some test
programs get from real-life applications. These consist of code fragments from the Perfect-
Club [18] and HLSynth95 |85] benchmarks. The PerfectClub benchmarks represent applications
in a number of areas of engineering and scientific computing and the HLSynth95 benchmarks,
more specifically, represent a repository of applications in embedded systems.

B.1 1995’ High-Level Synthesis Design Repository

HLSynth95 represents a set of designs that can serve as examples for High-Level Synthesis
systems. Indeed, it contains many applications and modules widely used in embedded systems.
The designs vary in complexity from simple behavioral finite state machines to more complex
designs such as microprocessors, floating point units, image processing applications, . ...

The designs are in C or VHDL languages. All of these designs are available from the design
repository at U.C Irvine university (anonymous ftp://ics.uci.edu/pub/hlsynth). Mainly, we have
selected the designs described at the behavioral level. Table B.1 summarizes some of the impor-
tant aspects related to the functionality of these designs, such as typical control features present,
style of description and major data types used. The number of lines of code is mentioned to give
a rough idea of the design’s size.

B.2 PerfectClub Benchmarks

The PerfectClub For “PERFormance Evaluation for Cost-effective Transformations” suite is
a set of thirteen programs that total well over 50,000 lines of source code |18]. They represent
application in a number of area of engineering and scientific computing, and in many cases they
represent codes that are currently used by a number of computational research and development
groups. This repository has been originally developed in order to measure performances of
parallel architectures and supercomputers.

Our benchmark are simple kernels rather than full-fledged applications, which are much
more complex. However, the added complexity is a problem for symbolic scheduling. Indeed,
the PerfectClub benchmarks are chosen as they contain scientific applications which contain
more parallelism through nested loops. These applications are the most aimed by our general
scheduling strategies. Table B.2 reports some features of a part of these designs.

114



Appendixz B. Benchmark Description

Design Name Design Description Design Level Control fea- | Data types Lines of Code
tures
FP _Adder Floating Point Adder Algorithmic Nested Ifs | Bit Vector In- | 640
Behavior For loops | teger Enum
Proc/Func
FP_ Mult Floating Point Multi- | Algorithmic Nested Ifs | Bit Vector In- | 425
plier Behavior For loops | teger Enum
Proc/Func
FP Divider Floating Point Divider | Algorithmic For loops Case | Bit Vector In- | 410
Behavior Stmt teger Enum
Barcode Barcode Reader Algorithmic Nested Loops Bit Vector In- | 110
Behavior teger
Adaptive Chip Adaptive Interpo- | Algorithmic Func Calls | Multi Dimen- | 810
lation Behavior Nested Loops sional Integer
arrays
Memory (7 models) | Tmage Processing Ap- | Algorithmic Func  Nested | 2-Dimensional 140
plications Behavior Loops Float arrays
Beamformer Filter Vector  Prod- | Nested For | 3-Dimensional 100
uct/Summation | Loops (4 | Integer arrays
levels)
Jacobian Robot Motion Compu- | Algorithmic For Loops 2-Dimensional 450
tation Behavior Double Integer
arrays
FFT Fast Fourier Transform | Algorithmic Nested While | Array of Bit | 145
Behavior Loops Vector

Table B.1: Features of Designs.

Program Application Control Features Lines of Code
ADM Air Pollution Nested Ifs, For loops 6 142
SPICE Circuit Simulation For loops 18 304
OCEAN Computational Fluid | Nested Ifs, For loops 4215
Dynamics
SPECT77 Weather Simulation Nested Ifs, For loops 3880
MDG Liquid Water Simula- | For loops 1231
tion

Table B.2: Part of the PerfectClub Benchmarks Suite.
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