Background: Plant and soil nitrogen stable isotope ($\delta^{15}N$) can integrate several fundamental biogeochemical processes in ecosystem nitrogen dynamics, and reflect characteristics of ecosystem nitrogen cycling.

Aims: We investigated how climate change influenced plant-soil nitrogen cycling by relating soil δ^{15} N, plant δ^{15} N and $\Delta\delta^{15}$ N (difference between soil and plant δ^{15} N) with climatic factors.

Methods: Field investigation was conducted in temperate grasslands in Inner Mongolia during August 2015. Plant $\delta^{15}N$, soil $\delta^{15}N$ and $\Delta\delta^{15}N$ were determined, and their relationships with climatic factors were examined by simple regression analyses and general linear models.

Results: Soil δ^{15} N was significantly higher than plant δ^{15} N, and there was a positive linear correlation between them. Soil and plant δ^{15} N were negatively related with mean annual precipitation (MAP) and positively with mean annual temperature (MAT); conversely, $\Delta\delta^{15}$ N was positively related with MAP and negatively with MAT.

Conclusion: Soil δ^{15} N was dominantly controlled by MAT, while it was MAP for plant δ^{15} N. Climate factors influenced plant δ^{15} N not only through their effects on soil nitrogen dynamics but also strategies of plant nitrogen acquisition. Thus, compared with plant δ^{15} N, soil δ^{15} N can more accurately reflect soil nitrogen dynamics, while plant δ^{15} N may integrate soil nitrogen dynamics and plant nitrogen acquisition.

