This paper shows a detailed characterization and estimation of the temperature-dependent onresistance R_{ON} (T) of AlN/GaN/AlGaN high electron-mobility transistors (HEMTs) through dc and lowfrequency (LF) S-parameter measurements. The measurements are carried out at different chuck temperatures (T_{chuck}) and the R_{ON} (T) is calculated for different values of gate-source bias (V_{GS}) of HEMT grown on a silicon carbide (SiC) substrate. Furthermore, we also present the two-dimensional (2-D) physics-based numerical simulation results for the R_{ON} (T) extraction of this device. Knowing R_{ON} (T) values of the device for different source-drain lengths (L_{SD}), we propose a simplified method to extract the temperature-dependent series contact resistance R_{se} (T) and channel sheet resistance R_{sh} (T) of the GaN HEMT technology.