Given an unstable linear scalar differential equation $x \cdot (t) = \alpha x(t)$ ($\alpha > 0$), we will show that the discretetime stochastic feedback control $\sigma x([t/\tau]\tau)dB(t)$ can stabilize it. That is, we will show that the stochastically controlled system $dx(t) = \alpha x(t)dt + \sigma x([t/\tau]\tau)dB(t)$ is almost surely exponentially stable when $\sigma^2 > 2\alpha$ and $\tau > 0$ is sufficiently small, where B(t) is a Brownian motion and $[t/\tau]$ is the integer part of t/τ . We will also discuss the nonlinear stabilization problem by a discrete-time stochastic feedback control. The reason why we consider the discrete-time stochastic feedback control is because that the state of the given system is in fact observed only at discrete times, say $0, \tau, 2\tau, \cdots$, for example, where $\tau > 0$ is the duration between two consecutive observations. Accordingly, the stochastic feedback control should be designed based on these discrete-time observations, namely the stochastic feedback control should be of the form $\sigma x([t/\tau]\tau)dB(t)$. From the point of control cost, it is cheaper if one only needs to observe the state less frequently. It is therefore useful to give a bound on τ from below as larger as better.