
Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α -1,3-glucan in the cell wall of the fungus *Aspergillus nidulans* increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus *A. oryzae* in which the three genes encoding α -1,3-glucan synthase were disrupted (triple Δ). Although the hyphae of the triple Δ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene *cutL1* into *A. oryzae* wild-type and the triple Δ mutant (i.e. wild-type-cutL1, triple Δ -cutL1). *A. oryzae* triple Δ -cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of triple Δ -cutL1 cells under anaerobic conditions.

Summary of the growth characteristic and enzyme productivity in A. oryzae ags triple Δ strain.

