
An offline sampling design problem for distributed detection is considered in this paper. To reduce 
the sensing, storage, transmission, and processing costs, the natural choice for the sampler is the 
sparsest one that results in a desired global error probability. Since the numerical optimization of the 
error probabilities is difficult, we adopt simpler costs related to distance measures between the 
conditional distributions of the sensor observations. We design sparse samplers for the Bayesian as 
well as the Neyman-Pearson setting. The developed theory can be applied to sensor 
placement/selection, sample selection, and fully decentralized data compression. For conditionally 
independent observations, we give an explicit solution, which is optimal in terms of the error 
exponents. More specifically, the best subset of sensors is the one with the smallest local average 
root-likelihood ratio and largest local average log-likelihood ratio in the Bayesian and Neyman-
Pearson setting, respectively. We supplement the proposed framework with a thorough analysis for 
Gaussian observations, including the case when the sensors are conditionally dependent, and also 
provide examples for other observation distributions. One of the results shows that, for nonidentical 
Gaussian sensor observations with uncommon means and common covariances under both 
hypotheses, the number of sensors required to achieve a desired detection performance reduces 
significantly as the sensors become more coherent. 


