
We extend the theory of low-rank matrix recovery and completion to the case when Poisson 
observations for a linear combination or a subset of the entries of a matrix are available, which arises 
in various applications with count data. We consider the usual matrix recovery formulation through 
maximum likelihood with proper constraints on the matrix M of size d1-by-d2, and establish 
theoretical upper and lower bounds on the recovery error. Our bounds for matrix completion are 
nearly optimal up to a factor on the order of O(log(d1d2)). These bounds are obtained by combining 
techniques for recovering sparse vectors with compressed measurements in Poisson noise, those for 
analyzing low-rank matrices, as well as those for one-bit matrix completion [Davenport , “1-bit Matrix 
Completion, Information and Inference,” Information and Inference, vol. 3, no. 3, pp. 189-223, Sep. 
2014] (although these two problems are different in nature). The adaptation requires new 
techniques exploiting properties of the Poisson likelihood function and tackling the difficulties posed 
by the locally sub-Gaussian characteristic of the Poisson distribution. Our results highlight a few 
important distinctions of the Poisson case compared to the prior work including having to impose a 
minimum signal-to-noise requirement on each observed entry and a gap in the upper and lower 
bounds. We also develop a set of efficient iterative algorithms and demonstrate their good 
performance on synthetic examples and real data. 


