
For Gaussian sampling matrices, we provide bounds on the minimal number of measurements m 
required to achieve robust weighted sparse recovery guarantees in terms of how well a given prior 
model for the sparsity support aligns with the true underlying support. Our main contribution is that 
for a sparse vector x ∈ RN supported on an unknown set S ⊂ {1, ..., N} with |S| ≤ κ, if S has weighted 
cardinality ω(S) : = Σj∈S ωj

2, and if the weights on Sc exhibit mild growth, ωj
2 ≥ γlog(j/ω(S)) for j ∈ Sc and 

γ > 0, then the sample complexity for sparse recovery via weighted ℓ1-minimization using weights ωj 
is linear in the weighted sparsity level, and m = O(ω(S)/γ). This main result is a generalization of 
special cases including a) the standard sparse recovery setting where all weights ωj ≡ 1, and m = O(k 
log(N/κ)); b) the setting where the support is known a priori, and m = O(κ); and c) the setting of 
sparse recovery with prior information, and m depends on how well the weights are aligned with the 
support set S. We further extend the results in case c) to the setting of additive noise. Our results are 
nonuniform that is they apply for a fixed support, unknown a priori, and the weights on S do not all 
have to be smaller than the weights on Sc for our recovery results to hold. 


