$N^0 d$ 'ordre :

Université des Sciences et de la Technologie « HOUARI BOUMEDIENE » Faculté de chimie

Thèse

Présentée par

RAMDANE Amar

en vue de l'obtention du diplôme de

Magister en chimie

<u>Spécialité</u>: Chimie Physique. <u>Option</u>: Thermodynamique des solutions .

Thème

ETUDE DES PROPRIETES THERMODYNAMIQUES DES MELANGES CETONE + AMINES ET ETHERS + AMINES

Soutenue le 21 /03 /2002 devant la commission d'examen composée de :

M.M.M.H.GUERMOUCHEProfesseur (USTHB)PrésidentF.AMRANIProfesseur (USTHB)ExaminateurM.ROGALSKIProfesseur (Université de METZ)ExaminateurAo. DAHMANIMaître de conférences (USTHB)ExaminateurA. AIT-KACIProfesseur (USTHB)Rapporteur

Année :2002

SOMMAIRE

	I	Page
INTRODUCTION GENERALE		1

CHAPITRE I : PARTIE EXPERIMENTALE

I-1- Introduction	2
I-2- Produits utilisés	2
I-3- Détermination des enthalpies d'excès	3
I-3-1- Principe	3
I-3-2- Appareillage	3
I-3-2-a- équation fondamentale du calorimètre	3
I-3-2-b- mesure de la quantité de chaleur	4
I-3-2-c- étalonnage "Effet joule"	5
I-3-3- Mode opératoire	6
I-3-4- Résultats Expérimentaux	6
I-3-5- Conclusion	8
I-4- Détermination des volumes d'excès	9
I-4-1 Appareillage	9
I-4-1-a- Description du densimètre	9
I-4-1-b- Principe du densimètre	10
I-4-1-c Contrôle du densimètre	11
I-4-2- Mode opératoire	11
I-4-3- Résultats expérimentaux	11
I-4-4- Conclusion	12

CHAPITRE II : PARTIE THEORIQUE

II-1- Introduction	31
II-2- Application du modèle DISQUAC	31
II-2-1- Equation du modèle	32
II-2- 2- Paramètres géométriques	34
II-2-3- Ajustement des paramètres d'interechanges et calcul prévisionnel	35
II-3- Application du modèle UNIFAC dans sa version originale.	39

II-3-1- Equations du modèle	39
II- 4- Application du modèle UNIFAC Modifié (Dortmund)	41
II-5- Calcul des enthalpie molaires d'excès par l'équation de Gibbs - Helmoltz pour l	es deux
versions	43
CONCLUSION GENERALE	63

REFERENCES BIBLIOGRAPHIQUES

Introduction générale :

L'étude thermodynamique des mélanges moléculaires dans tout le domaine de concentration, aboutit à la détermination des écarts des fonctions thermodynamiques des mélanges binaires par rapport à l'idéalité. Ces écarts appelés fonctions d'excès résultent essentiellement de la structure et des interactions moléculaires se produisant dans les mélanges étudiés.

Le chapitre I concerne la partie expérimentale qui consiste en la détermination des grandeurs molaires d'excès h^E , v^E respectivement par calorimétrie(dispositif à flux type SETARAM C80) et densimétrie(densimètre digital «ANTON PARR 0 2C » de quelques mélanges binaires Cétone – Amines et éthers - amines à 303.15 K.

Le chapitre II est consacré à l'interprétation des résultats obtenus à l'aide de modèles thermodynamiques statistiques «UNIFAC » dans ses deux versions : originale [1,2] et modifié DO [3,4] et le modèle DISQUAC [5,6,7]

Ces théories sont basées sur la méthode de contributions de groupes qui fait intervenir les paramètres caractéristiques de chacun des groupements fonctionnels des molécules considérées. Le modèle UNIFAC dans ses deux versions [1,2,3,4] n'a été appliqué que pour quelques systèmes car pour d'autres il y a suspicion de réactions chimiques. Le modèle DISQUAC [5,6,7] qui est la combinaison de deux contributions (une contribution dispersive concernant les groupements apolaires et une contribution quasi-chimique concernant les groupements polaires.) a également été appliqué pour ces systèmes dans un but prévisionnel.

	+	Benzylamine
	+	Décylamine
	+	N-N Dimethylaniline
	+	Triethylamine
Dioxane	+	Butylamine
	+	Triethylamine
Oxane	+	Butylamine
	+	Triethylamine

Les courbes expérimentales sont représentées par les figures (4 à 13) et les valeurs sont rassemblées dans les tableaux (2 à 12).

Nous avons obtenu des valeurs de h^E endothermiques et exothermiques. Les valeurs sont ajustées à une équation du type Redlich – Kister [10] à « p » paramètres de la forme :

$$h^{E} = x_{1}x_{2}\sum_{i=0}^{p} A_{i}(x_{i} - x_{2})^{i}$$
(9)

L'écart standard de l'ajustement est calculé par la relation

$$\sigma = \left[\frac{\sum (h_{\exp}^{E} - h_{cal}^{E})^{2}}{n - p}\right]^{1/2}$$
(10)

avec : n = nombre de mesures.

p = nombre de paramètres de l'équation de lissage.

Les valeurs d'ajustement sont rassemblées dans les mêmes tableaux (2 à 12).

Les Amines primaires étudiées donnent des valeurs de h^E inattendues, toutes négatives. Il s'agit bien de fortes interactions voir de probables réactions chimiques, ce qui nous à conduit à faire l'étude de certains mélanges binaires (methylethylcétone +

Butylamine ; Methylethylcétone + Triethylamine) par la technique de la spectrométrie de résonance magnétique nucléaire qui consiste en la connaissance détaillée d'une molécule.

Les résultats obtenus par RMN ne sont pas concluants et nous pensons que ces mélanges présentent de fortes intéractions.

I-3-5 Conclusion

Les mesures d'enthalpie d'excès de la methylcétone avec les amines étudiées donnent des valeurs de h^E négatives, positives et une seule valeur nulle.

La chaleur de mélange du système Butanone + Triethylamine est endothermique. La cétone fortement polaire, avec l'amine aliphatique légèrement polaire, donne un h^E positif.

La Butanone + N-N diméthylaniline donne un h^E presque nul ou légèrement négatif à cause des interactions CO avec le noyau benzénique de l'amine aromatique.

La chaleur de mélange du système Butanone + Pipéridine est inférieure à celle du système Butanone + Triethylamine. La Pipéridine est plus associée que la Triethylamine. Les amines primaires donnent des valeurs de h^E toutes très négatives, spécialement dans le cas de la diamine. Il s'agit probablement de fortes interactions ou de réactions chimiques.

La résonance magnétique nucléaire n'est pas concluante. Les mesures d'enthalpies d'excès effectuées sur les mélanges binaires Butylamine + Dioxane, Butylamine + Oxane, Triéthylamine + Dioxane et Triéthylamine + Oxane sont toutes endothermiques. Tous les résultats expérimentaux obtenus dans cette étude associés à d'autres données de la littérature seront traités dans le second chapitre en terme d'interactions moléculaires à l'aide de certains modèles statistiques.

I-4 Détermination des volumes molaires d'excès

 $\label{eq:view} La \mbox{ connaissance des volumes molaires } v_m \mbox{ des mélanges et ceux des constituants purs } v_i \mbox{ est indispensable pour le calcul des volumes molaires d'excès } v^E.$

Les grandeurs v_m , v_i et v^E sont reliées par la relation suivante :

$$\mathbf{v}^{\mathrm{E}} = \mathbf{v}_{\mathrm{m}} - \sum_{i=1}^{n} x_{i} \mathbf{v}_{i}$$
(11)

Expérimentalement nous avons déterminé les volumes molaires d'excès à partir de la masse volumique du mélange (ρ_m) et de celle des constituants purs (ρ_i) par l'expression littérale suivante :

$$v^{E} = \frac{\sum_{i=1}^{n} x_{i} M_{i}}{\rho_{M}} - \sum_{i=1}^{n} \frac{x_{i} M_{i}}{\rho_{i}}$$
(12)

Dans notre étude, nous avons affaire à des mélanges binaires, ce qui nous conduit à l'expression :

$$v^{E} = \frac{(x_{1}M_{1} + x_{2}M_{2})}{\rho_{M}} - (\frac{x_{1}M_{1}}{\rho_{1}} + \frac{x_{2}M_{2}}{\rho_{2}})$$
(13)

Où

 x_1 = fraction molaire du constituant 1.

 x_2 = fraction molaire du constituant 2.

M₁= masse molaire du constituant 1.

 M_2 = masse molaire du constituant 2.

1-4-1 Appareillage

1-4-1-a Description du densimètre

Pour mesurer les volumes molaires d'excès, nous avons utilisé un densimètre digital "ANTON PARR 02C".

Cet appareil est muni d'un tube en verre Pyrex en forme de diapason constituant la cellule de mesure dont la contenance est de l'ordre de 0.5cm³ et d'un compteur digital à sept chiffres affichant la période d'oscillations.

L'ensemble est thermorégulé afin d'éviter les fluctuations de température, donc des densités et cela grâce à une circulation d'eau provenant d'un thermostat de type "Mg W LAUDA".

1-4-1-b Principe du densimètre

Le principe de la mesure est la détermination de la période d'oscillations du tube de mesure contenant un volume bien déterminé du mélange à étudier.

La fréquence f d'oscillations de la cellule de mesure est donnée par la relation :

$$f = \frac{1}{2\pi} \left(\frac{c}{m}\right)^{1/2} = \frac{1}{2\pi} \left(\frac{c}{M+\rho V}\right)^{1/2}$$
(14)

Pour augmenter la précision on préfère mesurer la période T d'oscillations.

$$T = \frac{l}{f} = 2\pi \left(\frac{M}{c} + \frac{\rho V}{c}\right)^{l/2}$$

On pose :

$$A = 4\pi^2 \frac{V}{c} \qquad \text{et} \qquad B = 4\pi^2 \frac{M}{c} \tag{15}$$

Il vient :

 $T^2 = A\rho + B$

Les constantes A et B sont déterminées à partir des périodes d'oscillations des composés étalons de densités connues qui sont l'eau et l'air. Si ρ_1 et ρ_2 sont les masses volumiques des deux constituants purs et T_1 et T_2 les périodes correspondantes, on peut écrire :

$$T_1^2 = A\rho_1 + B$$
 et $T_2^2 = A\rho_2 + B$ (16)

D'où

$$A = \frac{(T_I^2 - T_2^2)}{(\rho_I - \rho_2)} \quad \text{et} \quad B = T_I^2 - A\rho_I \tag{17}$$

La différence entre les densités des deux échantillons est alors :

$$\rho_1 - \rho_2 = K(T_1^2 - T_2^2)$$
 avec $K = \frac{1}{A}$ (18)

I-4-1-c Contrôle du densimètre

Le bon fonctionnement de l'appareil a été vérifié par l'étude d'un système benzène(1) -cyclohexane (2) à T= 303.15K. Les valeurs expérimentales sont en bon accord avec celles de la littérature [11-14] et sont reportées dans le tableau 13 et représentées sur la figure 14.

Ces valeurs sont ajustées à une équation du type Redlich – Kister [10] à « p » paramètres.

$$\mathbf{v}^{\mathrm{E}} = x_1 x_2 \sum_{i=0}^{p} A_i \left(x_1 - x_2 \right)^i$$
(19)

L'écart standard de l'ajustement est calculé par la relation :

$$\sigma = \left[\frac{\sum (v_{exp}^{E} - v_{cal}^{E})^{2}}{n - p}\right]^{1/2}$$
(20)

avec : n= nombre de mesures.

p = nombre de paramètres de l'équation de lissage.

I-4-2 Mode opératoire

Après avoir rincé le tube avec de l'acétone et séché par la suite au moyen d'air comprimé, on doit vérifier la période de l'air avant l'introduction dans le tube de l'échantillon à l'aide d'une seringue en verre à embout métallique. Une fois le mélange injecté, on vérifie qu'il n'y a pas de bulles d'air à l'intérieur du tube et on attend à ce que la température se stabilise (vérifiée par la reproductibilité de la période des oscillations). Les valeurs de T sont déterminées dans un premier temps à 10-³ et enfin à 10-5 unités près. Les pesées sont faites à l'aide d'une balance de précision 10-³ g près.

I-4-3 Résultats expérimentaux

Les volumes molaires d'excès ont été mesurés pour des fractions molaires comprises entre 0 et1. Les résultats expérimentaux sont reportés dans les tableaux (14 à 18) et sont représentés sur les figures (15 à 19). Les mélanges methyléthylcétone avec la pipéridine et avec la N-N Dimethylaniline sont parfaits. Ces valeurs sont ajustées à une équation du type Redlich - Kister à « p » paramètres.

$$v^{E} = x_{1}x_{2}\sum_{i=0}^{p} A_{i}(x_{1} - x_{2})^{i}$$
(21)

L'écart standard de l'ajustement est calculé par la relation :

$$\sigma = \left[\frac{\sum (v_{exp}^{E} - v_{cal}^{E})^{2}}{n - p}\right]^{1/2}$$
(22)

avec n = nombre de mesures

p = nombre de paramètres de l'équation de lissage.

Les paramètres d'ajustement A_i , l'écart standard σ sont également reportes dans les tableaux (14 à 18).

I-4-4 Conclusion :

L'étude expérimentale nous a permis d'obtenir des valeurs originales du fait qu'il n'existe aucune valeur de comparaison dans la littérature.

Nos mesures de volumes d'excès effectuées sur les mélanges binaires entre la butanone-2 et les amines étudiées varient de la même manière que les enthalpies d'excès des mêmes mélanges.

TABLEAU 2

Butanone (1) - Butylamine (2)

<u>(T = 303.15 K)</u>

X_1	$h^{E} \exp(J.mol^{-1})$	h^{E} cal (J.mol ⁻¹)	DEV(J.mo	ol^{-1}) % DEV
0.1422	-3915.10	-3897.32	-17.78	0.45
0.1518	-4098.50	-4139.16	40.66	-0.99
0.3000	-6968.50	-6915.96	-52.54	0.75
0.4337	-7523.20	-7556.88	33.68	-0.45
0.4913	-7279.40	-7310.31	30.91	-0.42
0.6260	-5880.80	-5828.74	-52.06	0.89
0.7312	-4151.10	-4171.32	20.22	-0.49
0.8900	-1600.00	-1601.91	1.91	-0.12

sigma=

44.59

A_0	=	-28997.92	±	104.34
A_1	=	14645.22	±	453.42
A_2	=	8619.31	±	487.27
A ₃	=	-8496.56	±	1144.91

TABLEAU 3

Butanone (1) - Decylamine (2)

(T = 303.15 K)

X_1	$h^{E}exp(J.mol^{-1})$	h^{E} cal (J.mol ⁻¹)	DEV(J.mo	D^{-1}) % DEV
0.1900	-4859.70	-4858.81	-0.89	0.02
0.3000	-6983.80	-6982.72	-1.08	0.02
0.4717	-7376.40	-7387.58	11.18	-0.15
0.5925	-6039.60	-6021.06	-18.54	0.31
0.7526	-3585.50	-3601.07	15.57	-0.43
0.8870	-1808.20	-1799.76	-8.44	0.47

sigma=

16.17

A_0	=	-28615.69	±	46.26
A_1	=	18805.62	±	202.68
A_2	=	9679.76	±	229.41
A_3	=	-20908.41	±	581.01

TABLEAU 4

Butanone (1) - Propylènediamine (2)

<u>(T = 303.15 K)</u>

X1	h ^E exp (J.mol ⁻¹)	h ^E cal (J.mol ⁻¹)	DEV(J.mol	⁻¹) % DEV
0.1588	-6940.00	-6789.02	-150.98	2.18
0.3016	-12515.60	-12822.71	307.11	-2.45
0.4343	-16042.00	-15853.50	-188.50	1.18
0.5990	-14928.00	-14757.38	-170.62	1.14
0.7344	-9942.04	-10254.91	312.87	-3.15
0.9020	-3185.30	-2978.81	-206.49	6.48

sigma=

283.85

A_0	=	-64307.78	\pm	801.69
A_1	=	6789.35	±	1587.10
A_2	=	38907.88	\pm	3777.56

TABLEAU 5

Butanone (1) - Benzylamine (2)

<u>(T = 303.15 K)</u>

X_1	h ^E exp (J.mol ⁻¹)	h ^E cal (J.mol ⁻¹)	DEV(J.mol	⁻¹) % DEV
0.1300	-2809.50	-2877.33	67.83	-2.41
0.2995	-4934.00	-4810.69	-123.31	2.50
0.4480	-5021.80	-5126.52	104.72	-2.09
0.6800	-3798.60	-3763.15	-35.45	0.93
0.7490	-3073.40	-3059.09	-14.31	0.47
0.8904	-1355.80	-1383.54	27.74	-2.05

sigma=

81.25

TABLEAU 6

Butanone (1) - Piperidine (2)

(T = 303.15 K)

X ₁	h ^E exp (J.mol ⁻¹)	h ^E cal (J.mol-1)	DEV(J.mo	l ⁻¹) % DEV
0.0994	256.40	267.76	-11.36	-4.43
0.2033	457.80	443.65	14.15	3.09
0.3028	541.10	547.33	-6.23	-1.15
0.3922	603.90	599.69	4.21	0.70
0.5090	606.40	614.01	-7.61	-1.26
0.6660	536.30	528.32	7.98	1.49
0.7094	470.80	482.04	-11.24	-2.39
0.7980	375.80	359.06	16.74	4.45
0.8910	185.70	198.21	-12.51	-6.73
0.8910	185.70	198.21	-12.51	-6.73

sigma=

13.36

A_0	=	2460.65	\pm	33.20
A_1	=	-212.09	±	115.58
A_2	=	67.29	±	147.90
A_3	=	-617.04	±	312.97

TABLEAU 7

Butanone (1)- Triethylamine (2)

(T = 303.15 K)

X1	h ^E exp (J.mol ⁻¹)	h ^E cal (J.mol ⁻¹)	DEV(J.mo	ol ⁻¹) % DEV	
0.1850	386.30	379.26	7.04	1.82	
0.2835	501.90	516.17	-14.27	-2.84	
0.4480	644.50	639.03	5.47	0.85	
0.6500	606.40	599.88	6.52	1.08	
0.7700	474.60	472.53	2.07	0.44	
0.8986	231.20	246.18	-14.98	-6.48	

sigma=

10.53

TABLEAU 8

Butanone (1) - NNdimethylaniline (2)

<u>(T = 303.15 K)</u>

	· E · · · 1.	· E · · · · · 1.		. 1.
X1	$h^{L} \exp(J.mol^{-1})$	h^{L} cal (J.mol ⁻¹)	DEV(J.mo	l^{-1}) % DEV
0.1011	-7.54	-18.80	11.26	-149.30
0.1520	-20.40	-12.85	-7.55	37.02
0.3000	-9.70	4.73	-14.43	148.72
0.4430	26.40	-5.46	31.86	120.67
0.5975	-22.60	-23.75	1.15	-5.09
0.5999	-58.80	-23.84	-34.96	59.45
0.7000	-9.50	-18.49	8.99	-94.63
0.7322	-38.00	-12.80	-25.20	66.31
0.7727	44.10	-3.46	47.56	107.84
0.8800	3.00	22.57	-19.57	-652.26
sigma=			29.25	

A_0	=	-55.17	+/-	70.08
A_1	=	-285.93	+/-	260.67
A_2	=	139.97	+/-	306.37
A_3	=	923.37	+/-	681.92

TABLEAU 9

Butylamine (1) - Dioxane 2)

|--|

-	F 1	F 1		1	
X_1	$h^{E}exp(J.mol^{-1})$	h^{E} cal (J.mol ⁻¹)	DEV(J.mo	ol^{-1}) % DEV	
0.1522	245.76	245.86	-0.10	-0.04	
0.2976	410.51	398.29	12.22	2.98	
0.4378	474.50	468.98	5.52	1.16	
0.4905	479.01	476.18	2.83	0.59	
0.6079	446.07	454.17	-8.10	1.82	
0.7503	347.00	356.98	-9.98	-2.88	
0.9015	160.10	169.20	-9.10	5.68	

sigma=

7.89

 $A_0 = 1905.40 \pm 14.82$

TABLEAU 10

Triethylamine (1) - Dioxane (2)

<u>(T = 303.15 K)</u>

X_1	$h^{E}exp(J.mol^{-1})$	h ^E cal (J.mol ⁻¹)	DEV(J.mo	ol ⁻¹) % DEV
0.1522	515.77	510.05	5.72	1.11
0.3007	800.62	831.20	-30.58	-3.82
0.3795	921.58	930.81	-9.23	-1.00
0.4352	975.40	971.61	3.79	0.39
0.5496	990.99	978.48	12.51	1.26
0.5913	970.10	955.26	14.84	1.53
0.7975	627.95	638.36	-10.41	-1.66
0.8990	380.17	358.91	21.26	5.59

sigma=

15.83

 $A_0 = 3952.82 \pm 27.52$

TABLEAU 11

Triethylamine (1) - Oxane (2)

(T = 303.15 K)

X_1	h ^E exp (J.mol ⁻¹)	h ^E cal (J.mol ⁻¹)	DEV(J.m	ol ⁻¹) % DEV
0.1487	87.01	85.18	1.83	2.10
0.3065	140.96	142.06	-1.10	-0.78
0.4477	154.15	156.39	-2.24	-1.46
0.5965	138.24	135.34	2.90	2.09
0.7504	85.32	85.17	0.15	0.17
0.8970	27.66	29.49	-1.83	-6.60

sigma=

TABLEAU 12

Butylamine (1) - Oxane (2)

(T = 303.15 K)

X ₁	h ^E exp (J.mol ⁻¹)	h ^E cal (J.mol ⁻¹)	DEV(J.m	ol^{-1}) % DEV
0.1508	142.34	135.06	7.28	5.11
0.3042	203.59	206.77	-3.18	-1.56
0.4593	220.17	223.06	-2.89	-1.31
0.6032	195.92	197.50	-1.58	-0.81
0.7547	143.38	138.53	4.85	3.38
0.9084	55.04	55.78	-0.74	-1.34
sigma=			4.43	

TABLEAU 13

Benzène (1) - Cyclohexane (2)

<u>(T = 303.15 K)</u>

X1	v_{exp}^{E} (cm ³ .mol ⁻¹)	v_{cal}^{E} (cm ³ .mol ⁻¹)	DEV(cm ³ .mol ⁻¹)	% DEV
0.1010	0.2610	0.2428	0.0182	6.966
0.2470	0.5100	0.4974	0.0126	2.474
0.3700	0.6380	0.6234	0.0146	2.294
0.4300	0.6540	0.6555	-0.0015	-0.222
0.4940	0.6660	0.6685	-0.0025	-0.370
0.5730	0.6430	0.6543	-0.0113	-1.759
0.7130	0.5260	0.5472	-0.0212	-4.036
0.8010	0.4070	0.4263	-0.0193	-4.735
0.9060	0.2470	0.2277	0.0193	7.794

0.9430	0.1590	0.1437	0.0153	9.596
0.9490	0.1560	0.1294	0.0266	17.032

sigma =

0.0164

 $A_0 = 2.6742 \pm 0.0274$

TABLEAU 14

Butanone (1) - Butylamine (2)

<u>(T = 303.15 K)</u>

X_1	v_{exp}^{E} (cm ³ .mol ⁻¹)	v_{cal}^{E} (cm ³ .mol ⁻¹)	DEV(cm ³ .mol ⁻¹)	% DEV
0.1400	1 0261	1 2005	0.0256	1 9 1 7
0.3040	-3.3000	-3.3766	0.0766	-2.322
0.4540	-4.0390	-3.9641	-0.0749	1.855
0.5990	-3.6520	-3.6685	0.0165	-0.451
0.7530	-2.5518	-2.5817	0.0299	-1.173
0.8990	-1.1310	-1.1017	-0.0293	2.587

sigma =

0.0702

A_0	=	-15.8357	±	0.1960
A_1	=	2.0793	±	0.7879
A_2	=	4.0767	±	0.9021
A_3	=	-1.0890	±	2.0335

TABLEAU 15

Butanone (1) - Benzylamine (2)

$$(T = 303.15 \text{ K})$$

X1	v_{exp}^{E} (cm ³ .mol ⁻¹)	v_{cal}^{E} (cm ³ .mol ⁻¹)	DEV(cm ³ .mol ⁻¹)	% DEV
0 1220	1 2160	1 1091	0.0170	1 476
0.1320	-2.1337	-2.1573	0.0236	-1.104
0.4490	-2.4658	-2.4656	-0.0002	0.008
0.6260	-2.2515	-2.2069	-0.0446	1.979
0.7490	-1.6280	-1.6806	0.0526	-3.228
0.9000	-0.7648	-0.7394	-0.0254	3.325

sigma =

0.0396

A_0	=	-9.8301	±	0.1145
A_1	=	1.4105	±	0.2211
A_2	=	0.7602	±	0.5158

TABLEAU 16

Butanone (1) - Decylamine (2)

<u>(T = 303.15 K)</u>

 X_1	v_{exp}^{E} (cm ³ .mol ⁻¹)	v_{cal}^{E} (cm ³ .mol ⁻¹)	DEV(cm ³ .mol ⁻¹)	% DEV
0.1500	-1.9400	-1.8718	-0.0682	3.517
0.3000	-2.9200	-2.9765	0.0565	-1.934
0.5520	-3.3150	-3.2945	-0.0205	0.617
0.6000	-3.1089	-3.1584	0.0495	-1.593
0.7480	-2.4700	-2.3864	-0.0836	3.386
0.9000	-1.0290	-1.0932	0.0642	-6.238

sigma =

0.0661

TABLEAU 17

Butanone (1) - triethylamine (2)

<u>(T = 303.15 K)</u>

X_1	v_{exp}^{E} (cm ³ .mol ⁻¹)	v_{cal}^{E} (cm ³ .mol ⁻¹)	DEV(cm ³ .mol ⁻¹)	% DEV
0.1476	0.0300	0.0319	-0.0019	-6.268
0.2499	0.0624	0.0593	0.0031	4.949
0.3533	0.0816	0.0845	-0.0029	-3.573
0.4488	0.1032	0.1015	0.0017	1.673
0.5277	0.1105	0.1089	0.0016	1.461
0.6015	0.1068	0.1094	-0.0026	-2.441
0.7629	0.0874	0.0870	0.0004	0.454
0.8980	0.0447	0.0442	0.0005	1.165
sigma =			0.0024	
	A —	0 4292 1 0 0052		

A_0	=	0.4282	±	0.0053
A_1	=	0.1635	±	0.0122
A_2	=	-0.1199	±	0.0270

TABLEAU 18

Butanone (1)- Propylènediamine (2)

<u>(T = 303.15 K)</u>

 \mathbf{X}_1	v_{exp}^{E} (cm ³ .mol ⁻¹)	\mathbf{v}_{cal}^{E} (cm ³ .mol ⁻¹)	DEV(cm ³ .mol ⁻¹)	% DEV
0.1670	-2.7946	-2.7557	-0.0389	1.391
0.3000	-5.0400	-5.0686	0.0286	-0.567
0.4516	-7.0380	-7.1989	0.1609	-2.285
0.5965	-8.3400	-8.1308	-0.2092	2.508
0.7500	-7.3500	-7.2703	-0.0797	1.084
0.8990	-3.6870	-3.9608	0.2738	-7.427
•			0 1751	

sigma =

0.1751

Figure 4 : Enthalpie molaire d'excès à 303.15 K du système binaire Butanone (1) + Butylamine (2)

Figure 5 : Enthalpie molaire d'excès à 303.15 K du système binaire Butanone (1) + Decylamine (2)

Figure 6 : Enthalpie molaire d'excès à 303.15 K du système binaire Butanone (1) + Propylènediamine (2)

Figure 7 : Enthalpie molaire d'excès à 303.15 K du système binaire Butanone (1) + Benzylamine (2)

Figure 8 : Enthalpie molaire d'excès à 303.15 K du système binaire Butanone (1) + Pipéridine (2)

Figure 9 : Enthalpie molaire d'excès à 303.15 K du système binaire Butanone (1) + Triéthylamine (2)

Figure 10 : Enthalpie molaire d'excès à 303.15 K du système binaire Butylamine (1) + Dioxane (2)

Figure 11 : Enthalpie molaire d'excès à 303.15 K du système binaire Triéthylamine (1) + 1,4-Dioxane (2)

Figure 12 : Enthalpie molaire d'excès à 303.15 K du système binaire Triéthylamine (1) + Oxane (2)

Figure 13 : Enthalpie molaire d'excès à 303.15 K du système binaire Butylamine (1) + Oxane (2)

Figure 14 : Volume molaire d'excès à 303.15 K du système binaire Benzène (1) + Cyclohexane (2)

Figure 15 : Volume molaire d'excès à 303.15 K du système binaire Butanone (1) + Butylamine (2)

Figure 16 : Volume molaire d'excès à 303.15 K du système binaire Butanone (1) + Benzylamine (2)

Figure 17 : Volume molaire d'excès à 303.15 K du système binaire Butanone (1) + Decylamine (2)

Figure 18 : Volume molaire d'excès à 303.15 K du système binaire Butanone (1) + Trietylamine (2)

Figure 19 : Volume molaire d'excès à 303.15 K du système binaire Butanone (1) + Propylènediamine (2)

Figure 1

Calorimètre

- 1 Bouchon calorifugé
- 2 Thermostat
- 3 Fluxmètre de mesure
- 4 Sonde à résistance
- 5 Fluxmètre de référence

Figure 2

Cellule de mesure

- 1- Obturateur
- 2- Joint en Téflon
- 3- Compartiment supérieur
- 4- Opercule
- 5- Compartiment inférieur

CHAPITRE II

Partie théorique

PREVISION DES PROPRIETES THERMODYNAMIQUES D'EXCES A L'AIDE DE MODELES DE CONTRIBUTION DE GROUPE : DISQUAC ET UNIFAC

II.1 INTRODUCTION

Afin de prévoir les valeurs des propriétés thermodynamiques de quelques systèmes binaires étudiés et les relations qui relient ces propriétés aux interactions moléculaires, nous nous proposons d'appliquer les modèles DISQUAC [5,6,7] et UNIFAC [1,2,3,4], basés tous deux sur la méthode de contribution de groupements fonctionnels.

En effet pour corréler les propriétés thermodynamiques, il est nécessaire de considérer une molécule comme un assemblage de groupements. Les interactions moléculaires sont considérées comme étant les résultantes des interactions existant entre les groupements constitutifs de la molécule. Chaque groupement est caractérisé par des paramètres géométriques (surface, volume et fraction de surface) et des paramètres interactionnels. On peut à partir d'un système binaire contenant des groupements spécifiques de prévoir les propriétés thermodynamiques d'autres mélanges binaires contenant les mêmes groupements.

II.2 Application du modèle DISQUAC

L'origine du modèle DISQUAC remonte au modèle de contribution de groupes mis au point et développé par KEHIAIAN et al [7]. Ce modèle a été élaboré à partir de la théorie du réseau rigide de GUGGENHEIM [15]. Les équations générales sont pratiquement les mêmes que celles utilisées dans la théorie quasi-chimique de BARKER [16–18] mais KEHIAIAN et al [5] font intervenir la notion d'interactions entre groupements fonctionnels par l'intermédiaire de leurs surfaces de contact et non par des points de contact comme dans la théorie de BARKER [16-18]. Il a été généralisé par KEHIAIAN [5] avec l'énergie configurationnelle U s'écrivant alors comme la somme de deux termes, un terme dispersif U^{dis} (qui prend en compte les interactions de type polaire). Dans l'expression des fonctions thermodynamiques d'excès, on aura ainsi généralement un terme dispersif et un terme quasi-chimique.

Dans ce modèle chaque contact (st) polaire ou non polaire, est caractérisé par un jeu de paramètres dispersifs, auxquels s'ajoutent pour les contacts polaires un jeu de paramètres quasi - chimiques, et un nombre de coordination z.

Ce nombre z est pris égal à 4 mais théoriquement sa valeur pourrait varier de 0 à l'infini. Lorsque z tend vers zéro les molécules dans le mélange seront de plus en plus orientées, il existera dans le mélange de fortes interactions. Lorsque z tend vers l'infini, l'orientation des molécules dans le mélange se réalise de plus en plus au hasard, dans ce cas on a uniquement des forces de dispersion.

L'énergie configurationnelle U s'écrit comme la somme de deux termes, un terme dispersif, et un terme quasi – chimique.

La fonction de partition se met sous la forme :

$$\Omega = g \exp\left(-U^{DIS} / RT\right) \exp\left(-U^{QUAC} / RT\right)$$
(23)

Ce qui constitue le fondement du modèle DISQUAC.

Le modèle a été largement décrit dans la littérature [5], nous ne donnerons que les équations essentielles relatives aux grandeurs thermodynamiques d'excès.

II.2.1 Equation du modèle

Pour représenter les enthalpies libres et les enthalpies d'excès qui sont considérées comme étant la somme des termes interactionnels dispersifs (disp) et quasi - chimiques (quac) ainsi qu'un terme combinatoire qui est pris en compte dans l'équation de g^E

$$(g^{E}) = (g^{E})_{comb} + (g^{E})_{disp} + (g^{E})_{quac}$$
 (24)

$$(h^E) = (h^E)_{disp} + (h^E)_{quac}$$
⁽²⁵⁾

avec

$$(g^{E})_{comb} = (x_{1} \ln \frac{\phi_{1}}{x_{1}} + x_{2} \ln \frac{\phi_{2}}{x_{2}})RT$$

$$(g^{E})_{disp} = (q_{1}x_{1} + q_{2}x_{2})\xi_{1}\xi_{2}(g_{12}^{disp})$$
(27)

$$=\frac{q_1q_2x_1x_2}{q_1x_1+q_2x_2}(g_{12}^{disp})$$

$$(h^{E})_{disp} = (q_{1}x_{1} + q_{2}x_{2})\xi_{1}\xi_{2}(h_{12}^{disp})$$
(28)

ou

$$g_{12}^{disp} = -\frac{1}{2} \sum_{s} \sum_{t} (\alpha_{s1} - \alpha_{s2}) (\alpha_{t1} - \alpha_{t2}) g_{st}^{disp}$$
(29)

$$h_{12}^{disp} = -\frac{1}{2} \sum_{s} \sum_{t} (\alpha_{s1} - \alpha_{s2}) (\alpha_{t1} - \alpha_{s2}) h_{st}^{disp}$$
(30)

 g_{st}^{disp} et h_{st}^{disp} sont respectivement les paramètres d'interechange dispersifs de l'enthalpie libre et de l'enthalpie du contact (st)

 α si est la fraction de surface moléculaire de type s (s = a, n, k, e, b, c) sur une molécule de type i

 q_i est la surface moléculaire totale d'une molécule de type i

 ξ_i est la fraction de surface du composé i dans le mélange (i = 1.2)

$$\xi_1 = \frac{q_1 x_1}{q_1 x_1 + q_2 x_2} \qquad \text{et} \qquad \xi_2 = \frac{q_2 x_2}{q_1 x_1 + q_2 x_2} \tag{31}$$

Pour un système binaire, le terme enthalpie libre interactionnel quasichimique et le terme enthalpie quasichimique sont donnés par :

$$(g^{E})_{quac} = x_1 g_1^{E,quac} + x_2 g_2^{E,quac}$$
 (32)

ou

$$g^{E,quac} = zqi \sum_{s} \left[\alpha si \ln(\frac{X_s \alpha_{si}}{Xsi\alpha_s}) \right]$$
(33)

avec i = 1,2

$$h^{E,quac} = (\frac{1}{2})(q_1 x_1 + q_2 x_2) \sum_{s} \sum_{t} [X_s X_t - (\xi_1 X_{s1} X_{t1} + \xi_2 X_{s2} X_{t2})] \mathbf{h}_{st} h^{quac}_{st}$$
(34)

ou

$$\eta_{st} = exp(-g_{st}^{quac} / zRT)$$
(35)

 g_{st}^{quac} et h_{st}^{quac} sont les paramètres d'interéchange quasi - chimiques du contact (st) et z le nombre de coordination du réseau.

Les inconnues X_s , X_t sont obtenues par la résolution du système de BARKER à x équations (x est le nombre de surface de contact).

$$X_s(X_t + \sum_t X_t \eta_{st}) = \alpha_s \qquad (s, t = a, n, k....) \qquad (36)$$

 X_{si} et X_{ti} (i = 1.2) sont les solutions du système d'équation (36) pour x_i =1 (constituant i pur)

La variation avec la température des paramètres g_{st} et h_{st} est donnée par

$$\frac{g_{st(T)}}{RT} = C_{st,1} + C_{st,2} \left[\left(\frac{T^{\circ}}{T} \right) - 1 \right]$$
(37)

$$\frac{h_{st(T)}}{RT} = C_{st,2} \left(\frac{T^{\circ}}{T}\right)$$
(38)

ou T° est la température de référence

 $C_{st,1} = g_{st} (T^{\circ}) / RT^{\circ}$ et $C_{st,2} = h_{st} (T^{\circ}) / RT^{\circ}$ sont les coefficients d'énergie d'intéréchange.

Chaque contact (st) est caractérisé par deux coefficients dispersifs, et deux coefficients d'interechange quasichimiques, où l = 1 (enthalpie libre) et l = 2 (enthalpie)

II.2.2 Paramètres géométriques

Pour les mélanges binaires étudiés : Butanone (1) + Triethylamine (2) et Butylamine

(1) + Dioxane (2)

Nous considérons pour :

La Butanone deux types de surface

- une surface aliphatique de type a
- une surface carbonyle de type m

La Triethylamine deux type de surface

- une surface aliphatique de type a
- une surface azote de type k

Les contacts sont (k m), (m a) et (k a)

La Butylamine deux types de surfaces

- une surface aliphatique de type a
- une surface amine aliphatique de type b

La Dioxane deux types de surfaces

- une surface O de type e
- une surface C-CH₂ de type c

les contacts sont (b e), (b c), (b a), (e c), (e a) et (a c)

Les volumes V_g et les surfaces Q_g de ces types de groupements ont été estimés par la méthode de Bondi [19-20], à partir des rayons de Van Der Walls et des distances interatomiques. Dans nos calculs nous avons utilisé les incréments relatifs

$$r_g = \frac{V_g}{V_{CH_4}}$$
 et $q_g = \frac{Q_g}{Q_{CH_4}}$

rapportés au volume et à la surface du méthane. Nous avons calculé ensuite les volumes r_i , et les surfaces q_i et les surfaces partielles q_{s_i} de ses molécules à partir des incréments. La fraction de surface est définie par :

$$\alpha_{s_i} = \frac{q_{s_i}}{q_i}$$

Nous regroupons dans les tableaux 19 et 20 respectivement les paramètres géométriques des groupements fonctionnels et des molécules étudiées.

III.2.3 Ajustement des paramètres d'interechange et calcul prévisionnel

Système Butanone (1) + Triethylamine (2)

Ce système est caractérisé par trois types de surface $CH_3 - et CH_2$ (type a), N (type k), C = O (type m), ce qui entraîne trois types de contact, (a k), (k m) et (a m).

Les paramètres dispersifs et quasi – chimiques des contacts (am) et (ak) ont été pris dans la littérature [21-22]. Les paramètres dispersifs et quasi – chimiques du contact (km) sont ajustés sur les valeurs expérimentales de g^E [23] et de nos valeurs de h^E à x_i = 0.5 de manière à reproduire au mieux les courbes g^E et h^E ce qui nous donne la valeur de chaque contribution (dispersive et quasi – chimique). Les résultats obtenus sont reportés dans le tableau 22 et représentés sur la figure 19.

Système Butylamine (1) + Dioxane (2)

Ce système est caractérisé par quatre types de surface $CH_3 - et CH_2$ (type a) - N (type b), - O - (type e) et c-CH₂ (type c) ce qui entraîne six types de contact (be), (ba), (bc), (ea), (ec) et (ae). Les paramètres dispersifs et quasichimiques des contacts (ba), (bc), (ea), (ec) et (ac) ont été pris dans la littérature [24 - 27]. Les paramètres dispersifs et quasi – chimiques du contact (be) sont ajustés sur les valeurs expérimentales de g^E [23] et de nos valeurs de h^E à $x_i = 0.5$ de manière à reproduire au mieux les courbes g^E et h^E ce qui nous donne la valeur de chaque contribution (dispersive et quasi – chimique). Les résultats obtenus sont reportés dans le tableau 22 et représentés sur la figure 20.

Système Butylamine (1) + Oxane (2)

Ce système est caractérisé par quatre types de surface CH_3 –et CH_2 (type a) - N (type b), - O – (type e) et c- CH_2 (type c) ce qui entraîne six types de contact (be), (ba), (bc), (ea), (ec) et (ae). Nous ne disposons malheureusement d'aucune mesure d'équilibre liquide – vapeur ou d'enthalpie molaire d'excès.

Nous nous proposons d'utiliser pour ce système les paramètres dispersive et quasi – chimique ajustés du système précédent. Les résultats obtenus sont reportés dans le tableau 22 et représentés sur la figure 22.

Groupement	R _G	q _G	Type de surface
fonctionnel			
CH ₃	0.79848	0.73103	a
CH ₂	0.59755	0.46552	a
C = O	0.21612	0.55172	m
Ν	0.25290	0.07932	k
- 0 -	0.21612	0.20690	e
NH ₂	0.61655	0.6000	b
$c - CH_2$	0.58645	0.43277	c

Tableau 19 :Volumes r_g et surfaces q_g relatifs des groupements fonctionnels

Tableau 20 : Volumes r_i , surfaces q_i et fraction α_{si} des molécules.

Composes	r _i	q_i	α_{ai}	α_{mi}	$\alpha_{_{ki}}$	α_{ei}	$\alpha_{_{bi}}$	α_{ci}
Butanone	2.41063	2.4793	0.7775	0.2225	0.0000	0.0000	0.0000	0.0000
T.E.A	4.4410	3.6690	0.9784	0.0000	0.0216	0.0000	0.0000	0.0000
Butylamine	3.2068	2.7276	0.7800	0.0000	0.0000	0.0000	0.2200	0.0000
Dioxane 1.4	2.7780	2.1448	0.000	0.0000	0.0000	0.1929	0.0000	0.8071

Tableau 21 : Pressions de vapeur totale expérimentales P, coefficients d'activité γ_i des constituants i (i = 1.2) en phase liquide, enthalpie libre molaire d'excès g^E et composition y₁ de la phase vapeur du système Butanone (1) + Triethylamine (2) à T = 303.15 K, [23]

X_1	Y ₁	$P_{mm Hg}$	γ_1	γ_2	$g^{E}(J.mol^{-l})$
0.000	0.000	85.01	2.264324	1	0
0.0771	0.1898	96.86	2.01712	1.000258	137
0.1752	0.3452	109.83	1.830642	1.025678	319.71
0.2502	0.4051	117.46	1.608832	1.0962725	473.55
0.3403	0.4803	122.44	1.461906	1.1346437	535.730
0.4349	0.5412	125.77	1.32401	1.2011718	568.707
0.5583	0.6098	127.92	1.181963	1.3293162	552.144
0.6951	0.6899	128.71	1.080679	1.539879	467.68
0.8348	0.8004	125.92	1.021328	1.789679	286.74
0.9433	0.9078	121.90	0.992407	2.3317476	102.86
1.000	1.000	118.21	1	2.608517	0

Système	Contact (st)	$C_{st,1}^{disp}$	$C_{st,2}^{disp}$	$C_{st,1}^{quac}$	$C_{st,2}^{quac}$
Butanone $(1) +$	mk	39.18	1.260	33.53	0.672
T.E.A	ma	3.25	6.16	5.35	6.35
	ka	40	100	15	5
Butylamine (1)	be	14.10	-0.370	-3.10	4.90
+	ba	1.200	2.40	3.51	7.20
Dioxane (1.4)	bc	1.20	2.4	3.51	7.20
	ea	13.43	21.84	4.27	4.93
	ec	13.43	21.84	4.27	4.93
	ac	0.050	0.126	0.000	0.000

Tableau 22 :Coefficients d'énergie d'interechange dispersifs, C_{st}^{dip} , 1 et quasichimique $C_{st,l}^{quac}$ où l = 1 (enthalpie libre), l = 2 (enthalpie)

I-3- APPLICATION DU MODELE UNIFAC DANS SA VERSION ORIGINALE

Proposé par Fredenslund et al [1–3], le modèle UNIFAC résulte de la méthode UNIQUAC [28-29], dérivée de la théorie de Guggenheim [15]et utilise le concept de contribution de groupes pour l'estimation des propriétés thermodynamiques des solutions liquides.

En effet, le modèle UNIFAC s'appuie sur le fait qu'il existe des milliers de composés chimiques alors que le nombre de groupements fonctionnels des constituants est beaucoup plus petit. Dans ce cas, la solution n'est plus considérée comme un mélange de molécules, mais comme un mélange de groupements fonctionnels tels que CH_3 , CH_2 , ACH..... Ces différents groupements (n, m) auront des paramètres structuraux, de volume r et de surface q, et des paramètres d'interaction a_{nm} et a_{mn} .

Ainsi à partir d'un nombre restreint de groupements fonctionnels dont on connaît les paramètres structuraux et les paramètres d'interaction, il sera possible de reconstituer n'importe quel système et d'en déterminer ses propriétés thermodynamiques ainsi que les équilibres entre phases. Les propriétés des mélanges seront alors calculées à partir des propriétés des différents groupements plutôt qu'à partir des propriétés des molécules.

Selon le modèle UNIFAC, le logarithme du coefficient d'activité d'un constituant i présent dans une solution liquide est supposé être la somme de deux comtributions : une contribution combinatoire qui prend en compte la différence de taille et de forme des molécules et une contribution résiduelle, essentiellement due à l'énergie d'interaction entre les molécules. Soit pour un mélange constitué de c constituants i :

$$\ln\gamma_i = \ln\gamma_i^{comb} + \ln\gamma_i^{res}$$
(39)

III-3-1- Equations du modèle

Le coefficient d'activité d'un constituant i dans un mélange est donné par la somme des deux contributions, combinatoire et résiduelle :

$$\ln\gamma_i = \ln\gamma_i^C + \ln\gamma_i^R \tag{40}$$

- Contribution combinatoire

$$\ln\gamma_i^C = \ln\frac{\Phi_i}{x_i} + \frac{z}{2}q_i\ln\frac{\theta_i}{\Phi_i} + l_i - \frac{\Phi_i}{x_i}\sum_j x_j l_j$$
(41)

$$l_{i} = \frac{z}{2}(r_{i} - q_{i}) - (r_{i} - 1) \text{ avec } z = 10$$

$$\theta_{i} = \frac{q_{i}x_{i}}{\sum q_{j}x_{j}}; \qquad \Phi_{i} = \frac{r_{i}x_{i}}{\sum r_{j}x_{j}}$$

$$r_{i} = \sum_{k} v_{k}^{(i)}R_{k}; \qquad q_{i} = \sum_{k} v_{k}^{(i)}Q_{k} \qquad k=1, N_{G}$$

$$R_{k} = \frac{V_{wk}}{15,17} \qquad Q_{k} = \frac{A_{wk}}{2,5.10^{9}}$$
(42)

où

 V_{wk} et A_{wk} sont respectivement les volumes et les aires de Van der Walls

z représente le nombre de coordination du réseau ou nombre de plus proches voisins d'une particule. z est généralement égal à 10

x_i est la fraction molaire du constituant i

 θ_i : la fraction moléculaire superficielle du constituant i dans la solution liquide.

 Φ_i est la fraction moléculaire volumique du constituant i

Soulignons que la contribution combinatoire du coefficient d'activité d'un constituant i est indépendante de la température.

- Contribution résiduelle

Elle représente la différence entre la somme des contributions individuelles de chaque groupe présent dans la solution et celles des contributions individuelles de ces derniers dans un corps pur.

$$\ln \gamma_i^R = \sum_k \nu_k^{(i)} \left[\ln \Gamma_k - \ln \Gamma_k^{(i)} \right] \qquad \qquad k = 1, N_G$$
(43)

où

 Γ_k représente le coefficient d'activité résiduel du groupe k dans la solution

 $\Gamma_k^{(i)}$ est le coefficient d'activité résiduel du groupe k dans une solution de référence contenant uniquement les molécules de type i.

$$ln \Gamma_{k} = Q_{k} \left[l - ln \left(\sum_{k} \theta_{m} \psi_{mk} \right) - \sum_{m} \left(\theta_{m} \psi_{mk} / \sum_{n} \theta_{n} \psi_{nm} \right) \right]$$
(44)

$$\theta_m = \frac{\mathcal{Q}_m X_m}{\sum_n \mathcal{Q}_n X_n} ; \qquad \qquad X_m = \frac{\sum_i v_m^{(i)} x_i}{\sum_i \sum_j v_k^{(i)} x_i}$$
(45)

$$\Psi_{nm} = \exp\left[-a_{nm} / T\right] \tag{46}$$

$$a_{nm} = \frac{U_{nm} - U_{nn}}{R} \qquad \text{avec } a_{nm} \neq a_{mn}$$
(47)

où

- X_m et θ_m représentent respectivement la fraction de volume et la fraction de surface du groupe m dans le mélange.
- a_{mn} est le paramètre d'interaction entre les groupes m et n.
- U_{nn} et U_{nm} représentent respectivement les énergies d'interactions entre les groupes m et n d'une part et n et m d'autre part.

L'application du modèle nécessite la connaissance des paramètres géométriques R_k et Q_k et des paramètres a_{mn} et a_{nm} . Les paramètres géométriques relatifs à ces groupements ont été pris dans la littérature.

II- 4- APPLICATION DU MODELE UNIFAC Modifié (Dortmund) [3-4]

Le modèle UNIFAC, dans sa version originale, supporte relativement mal les opérations de dérivation par rapport à la température qui conduisent au premier ordre au calcul de l'enthalpie d'excès et au deuxième ordre à la capacité calorifique d'excès.

C'est pourquoi, des modifications ont été réalisées empiriquement pour améliorer ce modèle et permettre la détermination simultanée des propriétés d'excès, des coefficients d'activité à dilution infinie avec les calculs d'équilibre entre phases. Celles – ci sont principalement de deux types :

- modification de la partie combinatoire
- calcul des paramètres d'interaction binaire entre groupes en fonction de la température.

Contribution combinatoire

Une nouvelle expression du terme combinatoire [30] est donnée pour améliorer les prévisions des coefficients d'activité à dilution infinie γ^{∞} pour des systèmes contenant des molécules de tailles très différentes. Un exposant ³/₄ a été introduit dans le terme Flory – Huggins.

$$\ln\gamma_{i}^{comb} = 1 - \frac{\varphi_{i}}{x_{i}} + \ln\frac{\varphi_{i}}{x_{i}} - \frac{z}{2}q_{i}\left[\ln\left(\frac{\varphi_{i}}{\Theta_{i}}\right) + 1 - \frac{\varphi_{i}}{\Theta_{i}}\right]$$
(48)

ou z est le nombre de coordination, z=10

 φ_i est la fraction de volume définie par la relation $\varphi_i = \frac{r_i x_i}{\sum_i r_j x_j}$ (49)

$$\varphi_{i}^{'}$$
étant la fraction de volume modifiée : $\varphi_{i}^{'} = \frac{r_{i}^{3/4} x_{i}}{\sum_{j} r_{j}^{3/4} x_{j}}$ (50)

et θ_i est la fraction de surface du constituant i dans le mélange $\theta_i = \frac{q_i x_i}{\sum_j q_j x_j}$ (51)

Les paramètres structuraux sont calculés de la même manière que dans le modèle UNIFAC.

$$r_{i} = \sum_{k} v_{k}^{(i)} R_{k}$$

$$q_{i} = \sum_{k} v_{k}^{(i)} Q_{k}$$
(52)

Contribution résiduelle

L'expression du terme résiduel est donnée par la même expression que celle utilisée dans UNIFAC original.

$$\ln \gamma_i^{res} = \sum_k \gamma_k^{(i)} \left[\ln \Gamma_k - \ln \Gamma_k^{(i)} \right]$$
(53)

avec
$$ln \Gamma_k = Q_k \left[l - ln \left(\sum_k \theta_m \psi_{mk} \right) - \sum_m \frac{\theta_m \psi_{km}}{\sum_n \theta_n \psi_{nm}} \right]$$
 (54)

La même relation est obtenue pour $\Gamma_k^{(i)}$

Ou i, j = 1, 2, c constituants

N, m = 1, 2, 3, N groupes

 θ_m est la fraction de surface du groupement m dans le mélange, elle est donnée par :

$$\theta_m = \frac{Q_m X_m}{\sum_n Q_n X_n} \tag{55}$$

avec
$$X_m = \frac{\sum_{j} v_m^{(i)} x_j}{\sum_{j} \sum_{n} v_n^{(i)} x_j}$$
 (56)

Les paramètres d'interactions Ψ_{mk} et Ψ_{km} s'expriment en fonction de la température par la relation suivante :

$$\Psi_{mk} = \exp\left(-\frac{a_{mk} + b_{mk}T + c_{mk}T^2}{T}\right)$$
(57)

Les paramètres géométriques R_k et Q_k ne sont plus calculés d'après les paramètres structuraux de BONDI [19-20]. Ils sont ajustés de la même façon que les six paramètres d'interaction à partir de données expérimentales. Trois données sont utilisés, les coefficients d'activité à dilution infinie, les équilibres liquide – vapeur (ELV) et les enthalpies d'excès h^E des mélanges binaires. Les groupements fonctionnels sont les mêmes que ceux utilisés dans le modèle UNUFAC original.

II-5- CALCUL DES ENTHALPIES MOLAIRES D'EXCES (H^E) PAR L'EQUATION DE GIBS-HELMOTZ POUR LES DEUX VERSIONS

Nous avons calculé les coefficients d'activité γ_i et les g^E en fonction de la composition du système à la température T=303.15K pour les systèmes binaires étudiés. Les résultats sont résumés dans le tableau (23 à 31) Nous avons ensuite calculé l'enthalpie molaire d'excès h^E en fonction de la composition à 303,15K pour tous les systèmes étudiés à l'aide de la relation de Gibbs-Helmotz :

$$\frac{\partial(\frac{g^E}{T})}{\partial(\frac{1}{T})} = h^E$$
(58)

Les variations de h^E en fonction de x_I sont données dans les tableaux (23 à 31) et représentées sur les figures (23 à 27).

Butanone(1) + Triethylamine (2)

Décomposition des constituants en sous-groupes

Constituant n°1 : Butanone

Groupe	□ Sous-gr	oupe	Nombre de fois	Ri	Qi
	Nom	N°			
1	CH ₃	1	1	0,9011	0,848
1	CH ₂	2	1	0,6744	0,54
9	CH ₃ CO	18	1	1,6724	1,448
]	Ri = 3,2479	Qi = 2,836

Constituant n°2 : Triethylamine

Groupe	Sous-g	roupe	Nombre de fois	Ri	Qi
	Nom	N°			
1	CH ₃	1	1	0,9011	0,848
1	CH ₂	2	1	0,6744	0,54
16	CH_2N	35	1	1,6724	1,448
				Ri = 4,3374	Qi = 4,256

Paramètres d'interaction UNIFAC (dans sa version originale), [31]

(1-9) = 476,4 K	(16-1) = -83,9	Κ
(9-1) = 26,76 K	(9-16) = - 169	Κ
(1-16) = 206,6 K	(16-9) = 225,3	Κ

Tableau 23 : Coefficients d'activité γ_i du constituant i (i = 1,2) en phase liquide, Enthalpie libre et enthalpie molaire d'excès et composition x_i du système :

Butanone (1) + Triethylamine (2) T = 303.15K

Х	γ1	γ2	g^E	$h^E_{I=1}$
			$(J.mol^{-1})$	J .moi
0,1	2,1367	1,0104	214,8509	211,40
0,2	1,8034	1,0409	378,0983	349,336
0,3	1,5640	1,0917	493,0025	427,54
0,4	1,3869	1,1646	560,2161	459,455
0,5	1,2553	1,2635	581,3265	452,19
0,6	1,1577	1,3948	556,9558	411,567
0,7	1,0870	1,5683	483,4661	343,638
0,8	1,0384	1,7988	371,962	250,28
0,9	1,0097	2,1094	210,0373	136,068

Butanone(1) + Pipéridine(2)

Décomposition des constituants en sous-groupes.

Constituant n°1 : Butanone

Groupe	Sous-groupe		Nombre de fois	Ri	Qi
	Nom	N°			
1	CH ₃	1	1	0,9011	0,848
1	CH ₂	2	1	0,6744	0,54
9	CH ₃ CO	18	1	0,6724	1,448
				Ri = 3,2479	Qi = 2,836

Constituant n°2 : Pipéridine

Groupe	Sous-groupe		Nombre de fois	Ri	Qi
	Nom	N°			
1	CH ₂	2	4	0,6744	0,54
15	CH ₂ NH	32	1	1,2070	0,936
				Ri = 3,9046	Qi = 3,096

Paramètres d'interaction UNIFAC (dans sa version originale)

(1-9) = 476,4 K	(15-1)=65.33 K	(9-15)=174.2 K
(9-1) = 26,76 K	(1-15)=255.7 K	(15-9)=394.6 K

Tableau 24 : Coefficients d'activité γ_i du constituant i (i = 1,2) en phase liquide, Enthalpie libre et enthalpie molaire d'excès et composition X_i du système Butanone (1) + Pipéridine T = 303,15 K

Х	γ_1	γ_2	g^E	h^E
			$(J.mol^{-1})$	$(J.mol^{-1})$
0,1	6,200	1,0320	531	410.79
0,2	3,9679	1,1154	915,0231	645.75
0,3	2,8363	1,2467	1177,373	774.75
0,4	2,1813	1,4355	1333,086	805.4524
0,5	1,7662	1,7059	1390,015	820.48
0,6	1,4856	2,1080	1350,506	805.74
0,7	1,2876	2,7520	1211,513	732.88
0,8	1,1450	3,9249	962,3449	611.76
0,9	1,0460	6,6311	578,8638	411.67

Butylamine(1) + 1,4-Dioxane (2)

Décomposition des constituants en sous-groupes

Constituant n°1 : Butylamine

Groupe	☐ Sous	-groupe	Nombre de fois	Ri	Qi
	Nom	N°			
1	CH ₃	1	1	0.9011	0.848
1	CH ₂	2	2	0.6744	0.540
14	CH_2NH_2	29	1	1.3692	1.236
				Ri = 3.6191	Oi = 3.164

Constituant n°2 : 1,4-Dioxane

Groupe	Sous-gr	oupe	Nombre de fois	Ri	Qi
	Nom	N°			
1	CH_2	2	2	0.6744	0.540
13	CH_2O	25	2	0.9183	0.780
				Ri = 3.1854	$O_i = 2.64$

Paramètres d'interaction UNIFAC (dans sa version originale)

(1-14) = 391.50 K	(1-13)=251.5 K	(14-13)=222.1 K
(14-1) = -30.48 K	(13-1)=83.86 K	(13-14)=78.36 K

Tableau 25 : Coefficient d'activité γ_i du constituant i (i = 1,2) en phase liquide, Enthalpie libre et enthalpie molaire d'excès du système Butylamine (1) + 1,4- Dioxane (2) T = 303.15 K

Х	γ_1	γ ₂	G^{E}	$h_{cal}^{E} (J.mol^{-1})$
			$(J.mol^{-1})$	
0.1	12953	1.0033	71.91271	39.8624
0.2	1.225	1.0130	127.3281	73.1394
0.3	1.1659	1.0292	166.8515	97.0131
0.4	1.1195	1.0519	190.3348	114.8948
0.5	1.0819	1.0817	198.1853	124.6566
0.6	1.0521	1.1193	190.4421	123.1819
0.7	1.0293	1.1658	166.958	113.6274
0.8	1.131	1.2226	127.5621	90.7992
0.9	1.0033	1.2918	72.01031	53.1349

Triethylamine (1) + Oxane(2)

Décomposition des constituants en sous-groupes

Constituant n°1 : Triethylamine

Groupe	Sous-groupe		Nombre de fois	Ri	Qi
	Nom	N°			
1	CH ₃	1	3	0.9011	0.848
1	CH ₂	2	2	0.6744	0.540
16	CH_2N	35	1	0.9597	0.632
				Ri = 4.3374	Qi = 4.256

Constituant n°2 : Oxane.

Groupe	Sous-groupe		Nombre de fois	Ri	Qi
	Nom	N°			
1	CH ₃	2	4	0.6744	0.540
13	CH_2O	25	1	0.9183	0.780
				Ri = 3.6159	Oi = 2.94

Paramètres d'interac	tion UNIFAC (dans sa	a version originale)
(1-16) = 206.6 K	(1-13)=251.5 K	(16-13)=-194.1 K
(16-1) = -83.9 K	(13-1)=83.6 K	(13-16)=5422 K

Tableau 26 : Coefficients d'activité γ_i du constituant i (i = 1,2) en phase liquide,Enthalpie libre et enthalpie molaire d'excès du systèmeTriethylamine (1) + Oxane (2)T = 303.15K

Х	γ_1	γ ₂	\mathbf{g}^{E}	$h^E (J.mol^{-1})$
			$(J.mol^{-1})$	
0.1	1.6686	1.0091	149.6012	87.5936
0.2	1.4544	1.0337	255.6755	159.7614
0.3	1.3069	1.0710	323.4241	193.8310
0.4	1.2029	1.1197	357.2461	219.584
0.5	1.1288	1.1793	360.5419	225.4023
0.6	1.0763	1.2497	335.9429	215.1580
0.7	1.0402	1.3312	285.8689	186.6436
0.8	1.0169	1.4246	212.1972	142.4388
0.9	1.0040	1.5308	116.3808	80.0428

Butylamine(1) + Oxane(2)

Décomposition des constituants en sous-groupe

Constituant n°1 : Butylamine

Groupe	Sous-groupe		Nombre de fois	Ri	Qi
	Nom	N°			
1	CH ₃	1	1	0.9011	0.848
1	CH ₂	2	2	0.6744	0.540
14	CH_2NH_2	29	1	1.3692	1.236
				Ri = 3.6191	Qi = 3.164

Constituant n°2 : Oxane

Groupe	Sous-groupe		Nombre de fois	Ri	Qi
	Nom	N°			
1	CH_2	1	4	0.6744	0.540

Liste des symboles:

W	:	puissance calorifique développée dans la cellule de mesure.
μ	:	capacité calorifique
Q	:	quantité de chaleur
Ι	:	intensité du courant
K	:	constante d'étalonnage
Al	:	Coefficients de Redlich-Kister.
Ν	:	nombre de mesures
Р	:	nombre de paramètres de lissage
\mathbf{g}^{E}	:	Enthalpie libre molaire d'excès.
vE	:	Volume molaire d'excès.
h ^E	:	Enthalpie molaire d'excès.
Т	:	période de vibration.
Т	:	<i>Température absolue.</i>
Xi	:	Fraction molaire du constituant i
\mathbf{g}_{st}	:	paramètre d'interéchange dispersif de l'enthalpie libre du contact (st)
h _{st}	:	paramètre d'interéchange quasichimique de l'enthalpie du contact (st)
qi	:	surface moléculaire totale d'une molécule de type i.
f	:	fréquence d'oscillations.
X _{si} ,X _{ti}	:	solutions du systèmes d'équation de Barker
C _{st,l}	:	coefficient d'énergie d'interéchange
V _{CH4}	:	volume molaire du méthane
Q _{CH4}	:	surface molaire du méthane
ri	:	volume relatif de la molécule i
qi	:	surface relative de la molécule i
Z	:	nombre de coordination du réseau
Xm	:	fraction de volume du groupe m dans le mélange
U _{nm}	:	energie d'interéchange entre les groupes n et m
V_{wk}	:	volume de Van Der Waalls
Awk	:	aire de Van Der Waalls

Symboles :

σ	:	déviation standard .
ρ	:	masse volumique
ξi	:	fraction de surface du composé i dans le mélange
α_{si}	:	fraction de surface de type s dans la molécule
γ _i	:	coefficient d'activité d'un constituant i dans le mélange
θ _i	:	fraction moléculaire superficielle du constituant i dans le mélange
$\Gamma_{\mathbf{k}}$:	coefficient d'activité résiduel du groupe k dans la solution
$\theta_{\mathbf{m}}$:	fraction de surface du groupe m dans le mélange
Ψ_{nm}	:	paramètre d'interaction entre les groupes n et m
ϕ_i	:	fraction volumique du constituant i

Indices

exp	:	expérimentale
Cal	:	calculé
Comb	:	combinatoire
Quac	:	quasichimique
Int	:	interactionnel
s,t	:	type de surface de contact
Disp	:	dispersif
i	:	type de molécule
1	:	indice du coefficient d'interéchange :l=1 (enthalpie libre) ; l=2 (enthalpie)
nm	:	paramètres d'interéchange entre les groupes n et m

Références :

- [1] Aa.Fredenslund, R.L.Jones, J.M.Prausnitz, AICHE.J.21 (1976)1086.
- [2] Aa.Fredenslund,J.Gmehling and P.Rasmussen, *VLE using UNIFAC* Edition Elseiver, Amsterdam 1977.
- [3] J.Gmehling and al, Ind.Eng.Chem.Res .1993,1998
- [4] W.C.Moollan and al, *Fluid* .*Phase*.*Equilib* .1997
- [5] H.V.Kehiaian, Fluid .Phase.Equilib 13(1983)243
- [6] H.V.Kehiaian, Pure. Appl. Chem, 57(1985)15-30
- [7] H.V.Kehiaian, J.P.E Grolier, G.Bensen, J.Chem. Phys. 75(1978)11-12
- [8] E.Calvet, M.Prat, Recent progrés en microcalorimetrie, Dumod 1968
- [9] K.N.Marsh.*Ind.Data Ser. ; Ser. A.Sel Data Mixtures* 1 (1973) 1-3, Mc Graw-Hill
 Book Company ,New Yoek USA (ISBN 0-07-051799) –1 (1987)1-742.
- [10] O.Redlich and A.T.Kister, Ind.Eng.Chem. 40(1948)345
- [11] A. Ait-kaci ; *These de Doctorat 3 cycle* , Lyon , 1979.
- [12] E.L.Derr, C.H.Deal, *Int.Chem.Eng.Symp.Ser*, london 1969, N°=32,3 :40-51
 Jurgen Gmehling, Jiding Li, and Martin Schiller, *Ind.Eng.Chem.Res.* 1993(32)178-193
- [13] Beath, O Neil, Williamson. J. Chem. Therm. 1.293,1969.[
- [14] R.Chareyron, *These de Doctorat*, *3cycle*, Lyon. 1979.
- [15] E.Guggenheim, Mixtures, Clarendon Press.Oxford, 1952
- [16] Barker, J.A. J. Chem. Phys. 1952, 20, 1526-1532
- [17] Barker, J.A. Austr J.Chem. Phys. 1952, 6, 207
- [18] Barker, J.A.; Smith, F. J. Chem. Phys. 1954, 22, 375
- [19] A.Bondi, J.Chem.Phys.68(1952)441
- [20] Bondi, A. Physical Properties of Molecular Crystals, Liquids and Glasses. J. Wiley and sons, New York, 1968.
- [21] A.Yahiaoui, Thèse de Magister .USTHB 1992
- [22] F.Belaribi, Thèse de Doctorat d'état, USTHB 1996
- [23] S.H.Khalali Emghani Bochum,(1984).Resultats non publiés .Communication personnelle.
- [24] I.Ferino, B. Marongiu ,V. Solinas and S.Torraza ; *Fluid. Phase.Equilib.* ;9 (1982) 49-65.

- [25] M.R.Tine ,H.V.Kehiaian ;*Fluid .Phase. Equilib.* ;32 (1987) 211-248.
- [26] H.V.Kehiaian ,M.R.Tine, L.Lepori ,E. Matteoli ; B.Marongiu ;*Fluid. Phase. Equilib.*, 46 (1989) 131-177.
- [27] H.V.Kehiaian , M.R.Tine ; *Fluid .Phase .Equilib.* ;59 (1990) 233-245.
- [28] Skjold Jorgensen, S. ;Kolbe, B. ; Gmehling, J. ; Rasmussen, P. Vapor liquide equilibria by UNIFAC group contribution. Revision and extension. *Ind. Eng. Chem. Process Des. Dep.* 1979, 18, 714 – 722.
- [29] Skjold J Orgensen, S.; Rasmussen, P. Fredenslund, A. On the temperature dependence of the UNIQUAC/UNIFAC models.Chem.Eng.Science 1982,37, 99 – 111.
- [30] Larsen, B. L.; Rasmussen, P.; Fredenslund ,A. A modified UNIFAC group contribution model prediction of phase equilibria and heats of mixing ,*Ind .Eng. Chem. Res.* 1987, 26, 2274-2286.