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ABSTRACT

This thesis sights to propose hybrid heuristic methods that effectively address
the 0-1 Multidimensional Knapsack Problem (MKP01). MKP01 is a well-
known NP-hard combinatorial optimisation problem that has received a

wide attention from researchers relative to its multiple applications such as project
selection, resource allocation, etc. In the last decades, a huge number of exact,
approximate and hybrid methods have been suggested. This work will focus on
approximate and hybrid solutions.

With a will to cover different types of solutions, this study attempts to investi-
gate heuristics from simple to complex, starting by the local search algorithms,
then hybrid population-based and local search algorithms and finishing by hy-
brid knowledge and population-based heuristics; therefore, the work is divided
into three parts accordingly. Firstly, Simulated Annealing (SA) and Stochastic
Local Search are unified to produce a new local search algorithm named SLSA.
Additionally, SA, SLS, Tabu Search (TS) and Hill-Climbing (HC) algorithms are ap-
plied to the Winner Determination Problem in Multi-Unit Combinatorial Auctions
(MU-WDP) which is an application of the MKP01.

Secondly, Genetic Algorithm is combined with SA and with SLS, then, is
combined with SLSA. Also, Harmony Search (HS) is improved to the Self-Adaptive
Harmony Search (SAHS) by adding new strategies to measure the Pitch Adjusting
Rule (PAR) and the Bandwidth (bw); SAHS is also hybridised with SLS.

Thirdly, a two-step heuristic that consists of a greedy algorithm which extracts
a useful acknowledge about the structure of the optimal solutions combined with
an acknowledge-guided GA. The proposed approach, denoted Guided Genetic
Algorithm (GGA), first performs a pre-analysis of the data using greedy algorithm
and then, utilises the collected information to guide the process of a standard GA.

Several experimental studies were conducted to evaluate the performance of
the proposed approaches on well-known MKP01 data. Three sets of data have
been used: a set of simple and small-size data, two sets of large and complex data.
Despite some benchmarks may probably be considered as old, the optimal solution
of some instances are still unknown. Further experiments were undertaken that
aimed to compare our methods to the literature as well.

The results revealed that SLS, SLSA, GA-SLS, MSA, HAHS-SLS and GGA
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were capable to achieve high-quality solutions and were competitive with the
literature. Consequently, they are most likely to contribute to solve other combina-
torial optimisation problems. The finding of this work indicated that further work
still could be done to increase the upper bounds of the MKP01, in particular, in
the field of hybrid heuristics.
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1
INTRODUCTION

C ombinatorial Optimisation (CO) is one of the most emergent fields of

applied mathematics and computer science. It has been extensively

used in diverse domains including industry, economy, manufacturing,

engineering, etc. CO is the domain of applied mathematics and of computer science

which consists in finding, among a discrete set of objects, the subset of objects

which represents the optimal configuration. Before becoming a full domain, CO was

a branch of the Combinatorics. As a discipline of mathematical, CO is relatively

young (Schrijver, 2005). The Linear and Integer Programming (LP, IP respectively)

leaded to the creation of CO at the end of the forties. Moreover, problems that

previously were independent, were formulated with mathematical models in CO.

Our ability to solve big and complex CO problems is improved in a spectacular

way during the last decades. Methods and tools were suggested in a will of tackling

all the models of CO’s problems by one tool. Diverse applications in various

domains were modelled as CO problems. Therefore, the 0-1 Multidimensional

Knapsack Problem (MKP01) was one of the most studied CO problems during the

second half of the twentieth century. The work presented in this thesis can be

1



CHAPTER 1. INTRODUCTION

classified in the CO domain. Three types of solution are introduced to solve the

0-1 Multidimensional Knapsack Problem (MKP01).

MKP01 is a strong NP-hard CO problem (Hartmanis, 1982). This problem

is a generalised version of 0-1 Knapsack Problem (KP01). Many names have

been used such as: Multi-knapsack problem, m-dimensional, knapsack problem,

multi-constraints knapsack Problem 0-1, etc.

MKP01 has been extensively considered owing to its theoretical importance

for a wide range of applications. Many practical engineering design problems can

be formulated as MKP01 such as: capital budgeting (Meier et al., 2001; Gilmore

& Gomory, 1966), project selection (Beaujon et al., 2001), resource allocation

in distributed systems (Gavish & Pirkul, 1985) and cutting stock (Shih, 1979)

problems. Moreover, MKP01 can be seen as a general model for any kind of binary

problems with positive coefficients(Hooker et al., 1994; Kochenberger et al., 1974).

MKP01 is composed of n items and one knapsack of m dimensions. Each item

is characterised by its weight and its value. Weight of an item i is given by a

m-dimensional vector wi j = 〈wi1,wi2, . . . ,wim〉 and knapsack has a m-dimensional

capacity vector 〈w1,w2, . . . ,wm〉. The target is to maximise the total value of items

in the knapsack so that the sum of weights in each dimension j does not exceed

its capacity w j.

MKP01 has received a wide attention from the CO research community. Meth-

ods for solving MKP01 can be classified into exact, approximate and hybrid. Exact

methods are used for small-size problems. Branch and Bound (B&B), Branch and

Cut (B&C), Linear, Dynamic and Quadratic Programming (LP, DP, QP respec-

tively), etc. are the principal exact methods used for solving MKP01 (Fukunaga,

2011; Yoon & Kim, 2013). The advantage of exact methods is their ability to return

optimal solutions, but their processing time is exponential with the data-size of the

tackled problem. Problems with small-size data are most adapted to this category.

Approximate methods are capable to give solutions close to optimal solutions.

They are mainly based on heuristics such as: Simulated Annealing (SA), Tabu

2



CHAPTER 1. INTRODUCTION

Search (TS), Genetic Algorithm (GA), Ant Colony Optimisation (ACO), Particle

Swarm Optimisation (PSO), Harmony Search (HS), etc. (Cho & Kim, 1997; Chu &

Beasley, 1998; Vasquez & Vimont, 2005). Approximate methods have the advan-

tage of giving good solutions within a reasonable time, consequently, they are used

for solving large MKP01. The inconvenience is that these methods are uncertain

to reach solutions of high quality, because they have been validated based on

experimental studies.

Hybrid methods combine two or more exact or/and approximate methods. In a

hybrid method, multiple methods of different kind are united in a way to improve

the performance of each other. Usually, meta-heuristics are combined with others

meta-heuristics or with exact methods. Hybrid methods are the most used for

MKP01 such as (Chih et al., 2014; Deane & Agarwal, 2013; Della Croce & Grosso,

2012; Djannaty & Doostdar, 2008; Ke et al., 2010; Feng et al., 2014; Tuo et al.,

2014) and so on. Obtained solutions are approximate but of high quality and using

exact methods may guaranty this quality by calculating upper and lower bounds.

The central aim of this thesis is to develop heuristic methods that deal ef-

fectively with the MKP01. This study intends to combine (hybridise) existing

heuristics and possibly, propose new versions that solve effectively large MKP01

problems as well as improve significantly the existing ones. These methods will be

inspired and created based on existing methods. Therefore, this work attempts

to investigate the literature review, in order to determine strength and weakness

of methods in literature. Additionally, the study needs to conduct experimental

tests to examine the developed methods on state-of-the-art experimental data.

Furthermore, the work must validate the suggested approaches via comparing

them with the best results in the literature in terms of performance, processing

time, etc.

The data used to undertake experimental studies is composed of three sets.

The first (usually ’SAC-94’ is used to refer to this set) set consists in simple and

small-size problems. The number of variables (i.e. items) n ranges from 6 to 105

3



CHAPTER 1. INTRODUCTION

and the number of constraints (i.e. dimensions) m from 2 to 30. The second set con-

sists in large-size and complex problems (’chubeas’ refers to this set). The number

of variables and constraints is equal to n = {100,250,500} and m = {5,10,30} res-

pectively. This set is divided into nine classes; each class contains thirty instances

of MKP01. The third set consists in more complex and larger data; where n ranges

from 100 up to 2500 and m ranges from 15 up to 50. Eleven instances compose this

data, for most of them, the optimal solution is still unknown. Furthermore, as data

for the MU-WDP is unavailable, a set of instances is generated randomly. all this

data are widely used by researchers and are available online in the OR-Library 1.

This work is conducted in a will to cover many kinds of method such as: local-

search, evolutionary and hybrid heuristics. Therefore, this thesis is divided into

two parts. The first part gives an extended literature review and the second details

the contributions of the work.

The first part is an extended literature review which is composed of chapters 2

and 3. Chapter 2 outlines combinatorial optimisation, knapsack problems, multi-

dimensional knapsack problem and so on. This is followed by a literature review

on methods proposed to deal with the MKP01 (Chapter 3).

The second part (chapters 4,5,6) presents the contributions of this work. Each

of the three chapters introduces a type of solutions to solve the MKP01. Chapter

4 gives the description of two methods based on local-search heuristics, the first,

consists in multiple local-search methods adapted for the MU-WDP, while, the

second is a new algorithm denoted SLSA produced by the hybridisation of Simu-

lated Annealing (SA) and Stochastic local-search (SLS) to the MKP01. Chapter 5

describes three hybrid approaches that combine population-based and local-search

heuristics. The first compares two algorithms produced from the hybridisation of

GA with SA and with SLS denoted GA-SA and GA-SLS respectively. The second

consists in a memetic algorithm named Memetic Search Algorithm (MSA). MSA is

a GA version combined with SLSA presented in Chapter 4. The third approach is
1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/

4
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CHAPTER 1. INTRODUCTION

a Self-Adaptive Harmony Search hybridised with Stochastic local-search (SAHS-

SLS). Chapter 6 provides another type that consists in hybridising a pre-analysis

algorithm with a GA. The purpose here is to extract useful information about

the problem and use it to reduce the optimisation charge and time. The proposed

Guided Genetic Algorithm (GGA) is a new algorithm that utilises prior-knowledge

about MKP01 to calculate high-quality solutions.

Finally, Chapter 7 provides the conclusion on the contributions of this work to

the discipline and to the practice, but also its difficulties and limitations and the

eventual future work as well.
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2
KNAPSACK PROBLEMS

2.1 Introduction

The 0-1 Multidimensional Knapsack Problem (MKP01) is a NP-hard combi-

natorial optimisation problem (Martello & Toth, 1990). Furthermore, the

MKP01 is a generalisation of the 0-1 Knapsack Problem (KP01) (Wang

et al., 2013). In the domain of Combinatorial Optimisation (CO), this problem is

widely studied as it has many applications in different domains.

This chapter aims to give a general definition of the main subjects related to

the MKP01. The CO, the KP01 as well as the MKP01 are described. The Winner

Determination Problem in Multi-Unit combinatorial auctions (MU-WDP) which is

a practical application of the MKP01 is detailed as well.

The content of this chapter attempts to draw the border of the addressed

problem (i.e. the MKP01). It attempts also to detail the MKP01 in terms of

mathematical model, applications and related problems. Thus, the remainder

of this chapter is organised as follows: Section 2.2 describes the fundamental

topics related to the CO. Section 2.3 gives definitions, mathematical modelling

6
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and types of knapsack problem. Section 2.4 details the MKP01 and the MU-WDP.

The conclusions and perspectives are given in Section 2.5.

2.2 Combinatorial optimisation

Mathematical optimisation (is often also called optimisation, mathematical pro-

gramming, numerical optimisation) is the mathematical science of determining

the best solutions to mathematically defined problem (Snyman, 2005, p. 2) that

satisfy eventually constraints. The optimisation methods are used to solve prob-

lems in many domains such as: operational research (Gupta, 2008), graph theory

(Kocay & Kreher, 2004), engineering (Rao & Rao, 2009), statistics (Rustagi, 2014),

etc.

Combinatorial Optimisation (CO) is a class of problems in which the number of

candidate solutions is combinatorial. Each possible solution has an associated cost.

The goal is to find the solution with the lowest cost. Because of the vast numbers

involved, explicit search an entire search space is not always possible (Meaning

of Combinatorial Optimization, 2007). A problem is considered as combinatorial

optimisation problem if it consists in determining the best solution that satisfies a

set of constraints from a finite set of solutions. It is associated with a mathematical

objective function to optimise and a set of the boundary constraints to satisfy.

The importance of the CO is due to a large number of practical applications

that can be formulated as a CO problem. Indeed, it has many applications in

various fields such as: telecommunication networks design, air traffic scheduling,

frequencies allocation of cellular networks, finance, distribution and production

planning, resource allocation (Yu, 2013; Cheng et al., 2006).

Although CO problems are often easy to identify, they are usually difficult to

resolve. In complexity theory most of these problems belong to the class of NP-hard

problems (Ausiello et al., 2012). Therefore, up to now, there is no valid effective

algorithmic solution able to solve all CO problems.

7
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According to the objective function definition, two categories of CO problems

exist single objective and multi-Objectives problems.

1. Single objective problem is expressed by a single objective function to op-

timise (minimise or maximise) e.g. maximise a revenue, minimise risks,

minimise a time, etc.

2. Multi-objectives problem requires solution according to several objective

functions e.g. Maximising income and minimising production cost.

2.3 0-1 knapsack problem (KP01)

The 0-1 Knapsack Problem (KP01) is a NP-hard CO problem. It refers to the com-

mon situation of packing the most valuable or useful items without overloading

an allowed luggage. The KP01 has been studied for more than a century, as it

was first introduced by Mathews (1896). The name "knapsack problem" was first

introduced by T. Dantzig (1932). The problem often arises in resource allocation

where there are financial constraints and is studied in fields such as combina-

torial optimisation, computer science, complexity theory, cryptography, applied

mathematics, and daily fantasy sports.

Since its introduction, the KP01 has been the basis of many successful ap-

plications such as loading cargo, risk tolerance, budget control, etc. In terms of

complexity, it has been shown that the KP01 is a NP-hard problem.

2.3.1 Mathematical modelling

Formally, the KP01 is composed of a knapsack of capacity b and a set N con-

taining n items (variables) j where N = { j1, j2, . . . , jn} each having a value p j ∈
{p1, p2, . . . , pn} and a weight w j ∈ {w1,w2, . . . ,wn}. The purpose here is to select the

subset of variables (items) x j that produces the maximum total value with a total

weight not exceeding the capacity of the Knapsack. the KP01 can be expressed by

8
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the following linear program:

KP01=


maximise

∑n
j=1 p jx j

sub ject to
∑n

j=1 w jx j ≤ b

x j ∈ {0,1} j ∈ {1 . . .n}

the KP01 is a binary optimisation problem. The decision variables x j are

defined in the set {0,1} such that x j = 1 if the item is selected and 0 otherwise. A

feasible solution is a solution where the constraints on the maximum weight and

the type variables are both verified.

2.3.2 Solution methods

Many solutions were proposed in the previous five decades, especially, during the

sixties, seventies and eighties of the last century. The solutions varied between

exact, non-exact and hybrid.

The first application of the Branch and Bound method (B&B) for the KP01 is

proposed by (Kolesar, 1967). This work was later extended by (Horowitz & Sahni,

1974; Fayard & Plateau, 1975; Nauss, 1976; Martello & Toth, 1977; Pisinger,

1995a). The branching in these approaches is based on an enumeration following

a depth-first search of a binary tree (1 means pack the item and 0 otherwise)

guided by upper or lower bound (depending on application). This strategy saves

memory space and reduces the number of branches. A comparison conducted by

(Martello & Toth, 1990) has shown that the B&B method is very effective for small

KP01 only. G. B. Dantzig (1957) concluded that the optimal solution of KP (the

item may be split) can be obtained by sorting the items in an ascending order

obtained by a function expressed by the value and the weight. Items are packed

in order until the first item called critical item that can not be entirely packed.

Its findings have led to the introduction of core concept by (Balas & Zemel, 1980),

which subsequently, was the source of several other approaches. The core is a

9
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subset of items around the critical item that are considered to determine the

optimal solution. The variables (items) outside the core are initialised with the

value 0 or 1 depending on their ratios value/weight.

Different methods based on Dynamic Programming for solving the KP01 are

proposed by (Horowitz & Sahni, 1974; Ahrens & Finke, 1975; Toth, 1980; Rong &

Figueira, 2012; Figueira et al., 2013). By (Martello & Toth, 1979) it is shown that,

when there is no correlation between the value and the weight, solution by B&B

is easier than when the correlation is strong. The dynamic programming is most

effective when the correlation is strong, however, the required space increases

significantly with the increase in data-size. That means the dynamic programming

performs efficiently and within a reasonable time only on small data.

2.3.3 Other related problems

Many specifications of KP have been defined since it was first introduced. Most of

them have been inspired from real-world problems. Each particular problem is

-itself- a case of research for many projects. Here, we briefly describe some of the

KP types.

• The Continuous Knapsack Problem (CKP) (Kellerer et al., 2004b). In CKP,

the items can be split; in other words; the decision variables x j are defined

in the interval [0, 1]. The CKP can be solved as a linear program with con-

ventional methods such as Simplex (for a polynomial problem). The CKP

can be expressed by the following equation:

CKP =


maximise

∑n
j=1 p jx j

sub ject to
∑n

j=1 w jx j ≤ b

x j ∈ [0,1] j ∈ {1 . . .n}

• The Quadratic Knapsack Problem (QKP) (Gallo et al., 1980). In this type,
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two related items are taken simultaneously and packed in the knapsack. To

express this relationship, a gain value pi j on the connections between each

two items (i, j) expresses the objective function (the decision variables are

binary) as in the following equations:

QKP =


maximise

∑n
i=1

∑n
j=1 pi jxix j

sub ject to
∑n

j=1 w jx j ≤ b

xi, x j ∈ {0,1} j ∈ {1 . . .n}

• The Bounded and the Unbounded Knapsack Problems (Kellerer et al., 2004a).

Items have copies; if the number of copies is limited this type is called

bounded knapsack, if not then we speak about unbounded knapsack. The

solution consists of determining the number of copies of each item to pack in

the knapsack. In this case, the variables are integer because they consist of

the number of items and not whether the item is packed or not (the 0-1 case)

and the item cannot be divided (as opposed to the continuous case). Many

works have proposed solutions to both problems (Sural et al., 1997; Pisinger,

2000; Poirriez et al., 2009).

• The two-dimensional Knapsack Problem (BKP) (Caprara & Monaci, 2004).

In this type, the knapsack has two dimensions. It is a version of KP where

the model contains two constraints, for example, packing in a knapsack

of items having each a weight and a volume. The BKP is often solved as

a linear problem with two capacity constraints, as shown in the following

mathematical model:

BKP =



maximise
∑n

j=1 p jx j

sub ject to
∑n

j=1 w jx j ≤U∑n
j=1 w jx j ≤V

x j ∈ {0,1} j ∈ {1 . . .n}

11
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• The MultiObjective Knapsack Problem (MOKP) (Lust & Teghem, 2012).

Several objective functions are optimised. The fact that there are several

objective functions needs to find the compromise between them in order to

have efficiency. The latter means determining the non-dominated solutions

of the problem; i.e. solutions better on all non-dominated objectives by at

least one criterion (objective function). A summary on the MOKP is proposed

by (Ulungu & Teghem, 1994). The following linear program illustrates a

problem of bi-objectives knapsack:

MOKP =



maximise
∑n

j=1 p1
j x j

maximise
∑n

j=1 p2
j x j

sub ject to
∑n

j=1 w jx j ≤ b

x j ∈ {0,1} j ∈ {1 . . .n}

• The Multiple Knapsack Problem (MuKP) (Kellerer et al., 2004a). Items are

distributed on knapsacks such as an item is assigned to only one knapsack.

Therefore, the objective function is to maximise the total value of the items

under constraints on the capacity of each knapsack and the items assign-

ment. This issue has been the subject of several works such as (Chekuri &

Khanna, 2005; Cotta & Troya, 1998). The model of this type is formulated

as follows:

MuKP =



maximise
∑m

i=1
∑n

j=1 p jxi j

sub ject to
∑n

j=1 w jxi j ≤ bi i ∈ {1 . . .m}∑n
j=1 xi j ≤ 1 i ∈ {1 . . .m}

x j ∈ {0,1} j ∈ {1 . . .n}

• The Multiple-Choice Knapsack Problem (MCKP) (Sinha & Zoltners, 1979).
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Items are grouped into classes; one item is selected from each class. The

constraints are the number of items selected from each group and the total

capacity. This problem has largely been addressed (Pisinger, 1995b; Akbar

et al., 2006), its model is given as follows:

MCKP =



maximise
∑d

i=1
∑Ni

j=1 pi jxi j

sub ject to
∑d

i=1
∑Ni

j=1 wi jxi j ≤ b∑Ni
j=1 xi j = 1 i ∈ {1 . . .m}

x j ∈ {0,1} j ∈ {1 . . .n}

• The Quadratic Multiple Knapsack Problem (Kellerer et al., 2004a). This prob-

lem combines between the quadratic and the multiple knapsack problems.

In other words, the items are packed in pairs and in multiple knapsacks. The

objective function is the maximum amount of profits pairs of items under

capacity constraints of each knapsack.

• The Mixed Knapsack Problem (MiKP). In this type, some decision variables

are integers. Also, the knapsack can be mixed binary (0-1 mixed knapsack

problem), which means that all decision variables are composed of binary

and integer variables. This means that some of the indivisible items may

have many copies. The following model expresses the Mixed Knapsack Prob-

lem:

MiKP =


maximise

∑n
j=1 p jx j

sub ject to
∑n

j=1 w jx j ≤ b

x j ∈ {0,1}n j ∈ {1 . . .n}

• The 0-1 Multidimensional Knapsack Problem (MKP01) (Puchinger et al.,

2010). This type is composed of a knapsack divided into m dimensions, each

with its own capacity, and n items to be packed each with m weights corre-

13
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sponding to the knapsack dimensions and a value. the MKP01 is detailed in

the next section.

2.4 The 0-1 multidimensional knapsack problem

(MKP01)

Various names have been used to describe the 0-1 Multidimensional Knapsack

problem (MKP01) including for example Multi-knapsack problem, m-dimensional

knapsack problem, multi-constraints knapsack Problem 0-1, etc. Historically, the

problem is relatively old as its mathematical model dates from the mid-fifties.

However, it remains among the most known problems in the field of CO. Its

importance lies in the fact that a significant number of problems of daily-life were

modelled in its form. Indeed, the MKP01 was applied to solve the projects selection

problem (Beranek, 1965; Petersen, 1967; Mcmillan & Plane, 1973; Meier et al.,

2001).

the MKP01, is used to model various applications such as decision-making

process, set packing (Fox & Scudder, 1985), combinatorial auctions (Rothkopf et al.,

1998; De Vries & Vohra, 2003), resource allocation (Johnson et al., 1985), project

selection (Petersen, 1967), cutting stock (Gilmore & Gomory, 1966), cargo loading

(Shih, 1979), asset-backed securing (Mansini & Speranza, 2002), manufacturing

in-sourcing (Cherbaka et al., 2004), computer systems design (Ferreira et al.,

1993), and capital budgeting (early examples include (Markowitz & Manne, 1957;

Lorie & Savage, 1955; Weingartner, 1966)).

2.4.1 Mathematical modelling

The MKP01 is composed of n items and a knapsack with m different capacities ci

where i ∈ {1, . . . ,m}. Each item j where j ∈ {1, . . . ,n} has a profit p j and can take

wi j of the capacity i of the knapsack. The goal is to pack the items in the knapsack

14
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so as to maximise the profits of items without exceeding the capacities of the

knapsack. the MKP01 can be represented as the following integer program:

MKP01=


maximise

∑n
j=1 p jx j

sub ject to
∑n

j=1 wi jx j ≤ ci i ∈ {1 . . .m}

x j ∈ {0,1} j ∈ {1 . . .n}

A feasible solution X for the MKP01 represents the selected items to be packed

in the knapsack. The decision variables x j are binary where x j = 1 means that the

item j is packed in the knapsack, and x j = 0 means that item j is not packed in

the knapsack. wi j represents the weight of the item j on the dimension i.

2.4.2 The winner determination problem in multi-unit

combinatorial auctions (MU-WDP)

The Combinatorial Auction (CA) is an efficient mechanism in which a seller is faced

with a set of price offers for various bundles of goods. The aim is to allocate the

goods in a way that maximises the auctioneer revenue. In multi-unit combinatorial

auctions, each good has a set of occurrences. The buyer instead to bid for a set

of goods, bids for a set of bundles of goods with a price. The multi-unit winner

determination problem (MU-WDP) consists of selecting the subset of bids which

maximises the revenue of sellers.

The combinatorial auction is a mechanism that has proven its effectiveness

in solving many problems such as resources allocation in multi-agent systems,

the auctions for radio spectrum rights (Caplice, 1996), airport slot allocations

(Jackson, 1976), transportation services (Jones, 2000; Graves et al., 1993), course

registrations (Rassenti et al., 1982), and commercial time slot allocations (Sheffi,

2004).

In multi-unit combinatorial auctions, for each good i, we have some number of

units qi of this good for sale, contrary to the single-unit combinatorial auctions
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where there is only one unit of each good.

For example, suppose there are three goods g1, g2 and g3. We have 10 units of

good g1, 4 units of good g2 and 5 units of good g3 for sale. We have the following

bids:

• {(8g1,4g2,2g3);20}

• {(2g1,2g2,4g3);10}

• {(5g1,1g3);8}

This means, for example, that the first bidder wants to buy 8 units of g1, 4

units of good g2 and 2 units of g3, and he is willing to pay 20 for this.

In general the problem can be stated as follows:

Let us consider G a set of m goods, G = {g1, g2, . . . , gm} to be auctioned, and l i

denote the number of available units of good i for sale. Let us consider B a set of

n bids, B = {B1,B2, . . . ,Bn}. A bid B j = [(S1 j;S2 j, . . .Sm j);P j] where Sk j ≥ 0 is the

requested number of units of good k, and P j is the price of B j, (P j > 0). Finally the

decision variables are defined as follows: x j = 1 if the bid B j is accepted (a winning

bid), and x j = 0 otherwise (a losing bid). The WDP in multi-unit auctions can be

modelled as the following integer program:

MU −WDP =


maximise

∑n
j=1 p jx j

sub ject to
∑n

j=1 S i
jx j ≤ mui i ∈ {1 . . .m}

x j ∈ {0,1} j ∈ {1 . . .n}

the MU-WDP is the problem of finding an allocation of winning bids that

maximise the auctioneer’s revenue under the constraint that for any good i, the

sum of units of i over all the winning bids does not exceed mui.
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2.4.3 Solutions for the MU-WDP: breve state-of-the-art

Several approaches have been proposed for the single-unit combinatorial auc-

tions version where the number of goods for each bid is exactly equal to one,

among these approaches, we cite: Branch on Bids (BoB) (Sandholm & Suri, 2003),

Combinatorial Auctions BoB (CABoB) (Sandholm et al., 2005), Branch-on-Price

(Kameshwaran & Benyoucef, 2006), Branch-and-Cut (Escudero et al., 2009), Com-

binatorial Auction Structured Search (CASS) (Fujishima et al., 1999). Most of

these solutions are based on the Branch-and-Bound searching method. Other

methods are investigated for the single-unit winner determination problem such

as the dynamic programming (Rothkopf et al., 1998), the linear programming

(Nisan, 2000), the integer programming (Andersson et al., 2000), the constraint

programming to solve the Vickrey combinatorial auction (Holland & O’sullivan,

2004).

In order to handle large scale instances of the winner determination prob-

lem, the non-exact methods are often preferable. The heuristic methods are then

largely used. We can cite the local search approaches for example Hybrid Simu-

lated Annealing (SAGII) (Guo et al., 2004; Guo, Lim, Rodrigues, & Zhu, 2006),

Casanova (H. H. Hoos & Boutilier, 2000), the stochastic local search (Boughaci

et al., 2010) and the mimetic algorithm (Boughaci et al., 2009). We can also find

other approaches like Artificial Fish-Swarm Algorithm (AFSA), the ant colony

algorithm (Zheng & Lin, 2012) and the genetic algorithm hybridised with the ant

colony algorithm (L. Chen et al., 2008).

Contrary to single-unit WDP, there are few works proposed to solve the multi-

unit the MU-WDP. Among them, we can find a Branch-and-Bound based algorithm

(Gonen & Lehmann, 2002), Combinatorial Auctions Multi-Unit Search CAMUS

(Leyton-Brown et al., 2000) which is a version of CASS adapted to the multi-unit

case. An algorithm based on the Particle Swarm Optimisation (PSO) approach

(Farzi, 2010), a local search algorithm (Singh et al., 2012), a heuristic suggestion
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based on a Lagrangian relaxation (Guo, Lim, Rodrigues, & Tang, 2006).

2.5 Conclusion

The aim of this chapter was to draw the borders of the 0-1 multidimensional

knapsack problem (MKP01) and locate it in the cloud of combinatorial optimisation

problems. It was shown that the MKP01 is one of the types of knapsack problem

KP. Specifically, it is a generalisation of the 0-1 knapsack problem (KP01). The

MKP01 is a well-known NP-complete CO problem widely studied in the field of

combinatorial optimisation. Moreover, various applications can be formulated as

MKP01. The winner determination problem in multi-unit combinatorial auctions

is one of these applications. The next chapter will cover the methods in literature

proposed to solve the MKP01.
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3
0-1 MULTIDIMENSIONAL KNAPSACK PROBLEM:

OVERVIEW

3.1 Introduction

L iterature is rich with approaches proposed to solve the 0-1 Multidimen-

sional Knapsack Problem (MKP01). Indeed, several studies consider

MKP01 as a Combinatorial Optimisation (CO) problem sufficiently com-

plex to test and validate their approaches. This justifies the importance given

to its solution. To be able to contribute to this domain, it is important to have a

comprehensive idea on how researchers tried to deal with this problem. In this

context, this chapter gathers and classifies works dealing with the solution of

MKP01.

Thus far, a number of studies have summarised the state-of-the-art of MKP01,

some including all approaches (Hanafi & Freville, 1998; Chu & Beasley, 1998;

Gottlieb, 1999; Osorio et al., 2002; Fréville, 2004; Raidl & Gottlieb, 2005; Kellerer

et al., n.d.; Fréville & Hanafi, 2005), whereas others included only works applying

one particular method, such as Tabu Search (TS) (Hanafi & Freville, 1998) or Evo-
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lutionary Algorithm (EA) (Gottlieb, 1999). Fréville (2004) classifies the methods

into exact and heuristic methods and describes the various theoretical analyses

of MKP01 and the existing experimental data. Varnamkhasti (2012) classifies

methods into exact, heuristic and meta-heuristics.

MKP01 solution methods can generally be classified into two categories:

1. The deterministic methods (exact) include all methods that are used to

calculate the optimal solution.

2. The approximate methods (non-exact) gather the methods that do not guar-

antee to obtain the optimum solution, but return an approximate solution

near the optimality.

3.2 Deterministic methods

Mathematical theories aim to simplify physical and natural phenomena in order

to study, understand and resolve them. Researchers such as Church, Turing,

Babbage, Von Neumann, Dantzig etc, installed the theories and the fundamentals

of computing and algorithms on mathematical foundations. For the problem of

MKP01 mathematical methods were obviously used to solve it. In the following,

we describe the main methods.

3.2.1 Explicit enumeration

Before the emergence of approximate algorithms, the trend was focused on devel-

oping algorithms with the main idea to enumerate all the possible solutions in

order to find the best. The proposed approaches tried to introduce mechanisms

allowing to avoid revisiting the solutions already visited, in order to save effort

and time. Balas (1965) as Geoffrion (1969) and Glover (1965) proposed enumerat-

ing algorithms for solving linear binary programs in general and MKP01 as an

example (see also (Balas, 1967)). Then, Lemke and Spielberg (1967), Trauth Jr
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and Woolsey (1969) and Breu and Burdet (1974) conducted experiments to exam-

ine the effectiveness of these methods. Their and others’ results revealed that

enumeration methods may be outperformed by others more effective methods such

as Branch and bound (B&B). Therefore, these methods are more unlikely to deal

effectively with big-size MKP01. Furthermore, their processing time could not be

polynomial. The introduction of more sophisticated algorithms becomes necessary

to solve large problems. To respond to this need, methods based on the lower and

upper bounds were invented, such as the branching methods (e.x. B&B). These

methods are able to limit the search process to a part of the solution space, and

therefore make them gaining valuable time.

3.2.2 Implicit enumeration

The Branch and Bound (B&B ) method applied to the MKP01 is a process based

on the enumeration, using a binary tree of feasible solutions built based on a

Lower Bound (LB) or Upper Bound (UB). The first researcher that adapted B&B

to the MKP01 is Thesen (1975), using the linear relaxation of the MKP01. But

this relaxation is often applied to the KP, as it consumes a significant memory

space, however, the produced results were not encouraging. Practically, the first

succeeded B&B to MKP01 came four years later by (Shih, 1979). A LB is calculated

considering the linear relaxation of each constraint apart, then, the solution is

calculated on the basis of these partial solutions. The results of its application on

a set of test data, has shown its effectiveness. It also demonstrated its superiority

over the algorithm by (Balas, 1965) in terms of processing time (it was ten times

less than the Balas’ approach). (Gavish & Pirkul, 1985) claimed that the limitation

of Shih’s method is in the large memory space required, in addition to its weakness

to give good results when applied to larger problems.
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3.2.3 Dynamic programming

Dynamic Programming (DP) was presented for the first time by (Bellman, 1954).

It is a simple enumeration algorithm invented primarily for solving combinatorial

problems. It is based on cutting the original problem into a set of partial sub-

problems easier to solve. After solving all the sub-problems, the partial solutions

are combined so as to build the overall solution of the problem. Toth (1980) is the

first who adapted the DP to KP. This was followed by (Pisinger, 1997) with a DP

algorithm to build a collection of variables from the original problem named Core.

Plateau and Elkihel (1985) combined DP with an enumeration algorithm. Similarly

to the Primal and Dual Greedy algorithms (see Section 3.3.1), Weingartner and

Ness (1967) presented two approaches based on DP. The first, fill a knapsack

initially empty, while the second begins with a knapsack containing all the items. A

comprehensive study on the DP application to the KP problem has been conducted

by (Pisinger, 2005).The works by (Marsten & Morin, 1977, 1978) are the first

applications of the DP to solve MKP01. The approach they proposed extends the

algorithm by (Gilmore & Gomory, 1966) on KP by integrating DP and B&B. In

addition, algorithms combining a pretreatment that calculates the bounds and DP

were presented by (Balev et al., 2008). Through the experimental results, it may be

concluded that this approach reduces the solution time and requires low memory

space. Boyer et al. (2009) have chosen to deal with DP surrogate relaxation. Two

versions were presented in this work. In the first, DP is applied to the surrogate

relaxation of MKP01; whereas, in the second, the first version is combined with

the Branch and Cut method (B&C) to improve the bounds. The results showed an

increase in terms of optimisation time and results.

3.2.4 Relaxation

Relaxation is a transformation of the mathematical model of a CO problem. It

consists to remove or reduce the constraints to simplify solving the model. A
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penalty charges made on the objective function are added to compensate the

deleted constraints. The solution of the relaxed problem represents a lower bound

to the original problem. Various relaxations have been proposed to MKP01 such

as Linear relaxation, Lagrangian relaxation, Surrogate relaxation etc. With the

introduction of this method, many researchers were interested in its application

for solving combinatorial problems. This coincided with a diversification and a

large emergence of heuristics.

3.2.4.1 Linear relaxation

The Linear Relaxation of MKP01 is perhaps the simplest among the relaxation

methods. It involves replacing the constraint x ∈ {0,1}, by x ∈ [0,1], in another

word, consider the decision variables as fractional values instead of binary which

means an item may be split and packed in the knapsack. Simplex method is often

used as a solution tool for the linear relaxation of MKP01, and the solution is used

as LB for solving MKP01.

As mentioned before, Dantzig invented Simplex for solving linear programs

and among them, of course, the relaxed KP01. The solution of a linear relaxed

problem is an UB for the original problem. From solving KP01 by relaxation, this

method has been generalised to MKP01. Kochenberger et al. (1974) presented a

heuristic based on the MKP01 linear relaxation to calculate a feasible solution

that is improved later. Fréville and Plateau (1996) suggested several algorithms

specifically for the bi-dimensional knapsack problem most of them based on linear

and surrogate relaxation.

The most successful method based on the MKP01 linear relaxation is Pivot

and Complement (Balas & Martin, 1980). It is a heuristic that combines a version

of Simplex and a complementary algorithm. It begins by relaxing the MKP01,

then, it performs a bounded variables Simplex with a series of Pivot, which is

used to enter the bounded variables in the base with the lowest cost. In a second
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step, the obtained solution is improved and adjusted to a feasible solution to the

original problem. The Pivot movements are applied according to a priority list.

This method has been proved to be efficient after its test on several problems

different in complexity and data size. Pivot and Complement is a component

for many approaches, one of the most successful is the approach presented by

(Aboudi & Jörnsten, 1994) where this method is combined with TS. The algorithm

by (Løkketangen et al., 1994) provides a solution to improve its efficiency by

replacing the list of priority by a TS algorithm. This, has been successfully tested

on relatively simple test data set.

3.2.4.2 Lagrangian relaxation

The Lagrangian relaxation of MKP01 merges the structural constraints on the

maximum weight and the objective function and defines the Lagrangian multipli-

ers as new variables. Usually, the number of new variables is significantly less

than those of the original problem. Due to the constraints removal, a penalty

expression is added to the objective function. Therefore, solution of the problem is

simplified from determining n variables to find only m multipliers that optimise

the new objective function.

The effectiveness of Lagrangian relaxation compared to Linear relaxation

has attracted more attention. Obviously, it is easier to find a small number of

multipliers to solve a complex problem with complex methods. Although the

solutions are not optimal, it is preferred to deal with data of large size. According

to how the approaches use the Lagrangian relaxation method, two categories are

distinguishable. First, approaches that use it to calculate an UB, usually use the

dual MKP01. This is integrated into a solution with a branching method (usually

B&B) in order to find the optimal solution. Second, other approaches use it to

directly calculate an approximate feasible solution to the MKP01. It is important

to note that in the first category, the quality of results depends on how close is
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the UB to the optimum, which depends on the heuristic used for its measurement.

An UB far from the optimal means that a long time would be needed if the data

are big. The closer is the UB the shorter is the processing time. In the second

category, the results obtained by the existing approaches, are very eligible but not

competitive with other methods less complicated and faster.

Magazine and Oguz (1984) extended the Dual Greedy (Toyoda, 1975) by ap-

plying it to find the Lagrangian multiplier. In their algorithm, the variables are

initialised to 1, then one multiplier is modified at each iteration to have a feasible

solution. Later, Volgenant and Zoon (1990) improved this approach and, instead

of changing one multiplier at once, they suggested changing k multipliers (k > 1).

After several experiments using data generated randomly, they concluded that this

change has further refined the first approach, but with a longer optimisation time.

Yoon et al. (2005) proposed LM-ES (Lagrangian Multipliers-Evolutionary Search),

an evolutionary algorithm that calculates the multipliers of the Lagrangian re-

laxation of MKP01. This, by developing a different Lagrangian relaxation and

its integration with ES to calculate the UB and LB of the dual MKP. The results

showed that the proposed relaxation is better, however, it took longer time to

achieve good solutions. Yoon et al. (2012) proposed the FPLS relaxation. It is

a heuristic based on the Lagrangian Capacity. The proposed relaxation allows

obtaining better multipliers than the Lagrangian relaxation. The FPLS relaxation

is recently integrated with the Ant Colony Optimisation method (Nakbi et al.,

2015). All these approaches are trying to calculate the best multipliers that give

the best solutions to MKP01.

3.2.4.3 Surrogate relaxation

Other relaxation techniques have also been proposed to solve various CO problems

and have been applied to MKP01 such as the surrogate and the decomposition

relaxations.
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Surrogate relaxation was introduced by (Glover, 1965). It means to replace the

constraints by only one constraint called Surrogate constraint. From the state of

the art, it is noticed that the Surrogate relaxation has been used with deterministic

and approximate heuristics to solve the MKP01. It has also been combined with

other approaches as a pretreatment procedure to reduce the problem size.

The surrogate relaxation brings a great simplification of combinatorial prob-

lems, which caused its great emergence during the past three decades. It is better

than the Linear and the Lagrangian relaxations in terms of simplicity and ef-

ficiency which explains the great interest that has given to it. The Surrogate

relaxation is combined with various heuristics to solve MKP01. This provided

effective approaches that have managed to solve difficult instances of the problem.

Greenberg and Pierskalla (1970) completed Glover’s work and conducted the first

major study of Surrogate relaxation in the programming area. Glover (1968),

Karwan and Rardin (1979) and Dyer (1980) enriched this work by more problems

and data. Fréville through his works claimed that when the Surrogate relaxation

is used to calculate a LB to MKP01 problem, it can obtain better results than the

methods in the literature. This conclusion was supported by (Gavish & Pirkul,

1985) through a B&B method based on a LB calculated by Surrogate relaxation.

This direction is a promising field of study, that means there is still a margin

of improvement for the LB to achieve. Furthermore, in order to improve the LB,

some researchers opted for the dual surrogate relaxation, however, the solution of

Dual Surrogate itself is a NP-complete problem (Boyer, 2007). Several approaches

adopting this approach including the work by (Dyer, 1980; Karwan & Rardin, 1979;

Sarin et al., 1987). Freville and Plateau (1986) developed three algorithms based

on the surrogate relaxation for solving the MKP01. They integrated techniques to

fast repair, disruption and define the strong variables. It has been revealed that

this approach requires a long time, so it is more suited to the problems of small or

medium size.
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3.3 Heuristics and meta-heuristics

In this part, two main classes of approximate solutions are considered, the heuris-

tic and the meta-heuristic methods. Here, heuristics are different than meta-

heuristic as they do not contain a technique to avoid the local optimum.

3.3.1 Heuristics

The Gradient algorithm (Cauchy, 1847) was the source of inspiration for inventing

the Greedy algorithm. The Greedy algorithm was firstly proposed by (G. B. Dantzig,

1957) for dealing with the KP. A few years later, it has been adapted to the

KP01 (Senju & Toyoda, 1968). The Effective Gradient Greedy (Senju & Toyoda,

1968) is a heuristic that may be summarised in three steps. Firstly, calculate an

efficiency value for each item (in the general case an item is a variable of the

KP01 mathematical model). It is a mathematical relationship (Eq. 3.1) based on

the item’s value and weight. Secondly, sort the items decreasingly according to

their efficiency values, in a way that the best items will be prioritised. Finally,

pack one by one in order, the items in the knapsack, while all the constraints are

verified. By abstraction, adding an item to the knapsack is expressed by setting

its representative variable to 1. As this algorithm built a solution from an empty

knapsack, it was named Primal Greedy in a sense that all variables are initially

equal to 0.

(3.1) e j =
p j∑m

i=1 wi j
∑n

j=1 wi j −bi

The Primal Greedy algorithm was tested on MKP01 data-sets, relatively com-

plex if we consider the computational power of this period (60 items and 30

dimensions). As items are selected in order according to their positions, the effi-

ciency function determines the quality of the solutions obtained by the algorithm.

27



CHAPTER 3. 0-1 MULTIDIMENSIONAL KNAPSACK PROBLEM: OVERVIEW

Therefore, other formulations of this function have been suggested, such as the

simple expression Dobson (1982), another more efficient and complex was intro-

duced by (Freville & Plateau, 1994) or using the dual MKP01 problem presented

by (Puchinger et al., 2006). Kochenberger et al. (1974) generalised the Primal

Greedy to the MKP in which the variables are defined in the interval [0, 1].

Toyoda (1975) introduced the Dual Greedy algorithm. This new version starts

the optimisation with an infeasible solution, where variables are all initially

equal to 1 (i.e. all items are initially in the knapsack). Then, sorts the items in

an ascending order according to their efficiency values. After that, it iteratively

removes one item at once by setting their variables to 0 and repeats this while at

least one constraint is still not satisfied . It was proven by experimental comparison

that Dual Greedy is more effective than Primal Greedy. Furthermore, Dual Greedy

is successfully integrated to repair infeasible solutions in the Genetic Algorithm

by (Chu & Beasley, 1998).

3.3.2 Meta-heuristics

Despite their effectiveness in solving difficult combinatorial problems, heuristic

quickly converges to local optima. Meta-heuristics are a logical and a necessary

evolution of heuristics to deal with this limitation. Indeed, meta-heuristics include

diversification mechanisms allowing them to change the search area to cover

the entire space of feasible solutions and avoid the local optimum. For dealing

with large data, Meta-heuristics are better than heuristic and deterministic ap-

proaches because they are able to reach solutions very close to the optimal within

a reasonable time.

Many meta-heuristics have been proposed to solve MKP01, such as Simu-

lated Annealing (SA), Tabu Search (TS), Genetic Algorithm (GA), Ant Colony

Optimisation (ACO), Particle Swarm Optimisation (PSO), Harmony Search (HS),

etc.
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The meta-heuristics can be classified according to the structure and the operat-

ing principle into two groups: Single solution-based and Population-based. Single

solution-based methods build a single solution that will be improved by browsing

its neighbourhood in the solution space through random or semi-random move-

ment. Population-based methods initialise a population of solutions and improve it

by iterative operations and extract the best solution at the end of the optimisation

process. In the sections that follow, we cite the most popular meta-heuristics that

have been the most successful in solving the MKP01 and this in chronological

order.

3.3.2.1 Single solution-based meta-heuristics

Several methods may be included under this class of solution. The Simulated

Annealing (SA) and the Tabu Search (TS) are considered in this work.

1. Simulated Annealing

The Simulated Annealing (SA) invented by (Kirkpatrick et al., 1983) is

a local search algorithm that simulates the method used by miners, for

cooling the metal gradually and periodically by decreasing the temperature

until it (metal) takes its stable state. Few studies have used SA to solve

MKP01 despite being old and more effective in such combinatorial problem

than other heuristics such as Hill-Climbing. It Mostly hybridised with a

population-based method.

SA can be decomposed into two phases. The first phase consists in preparing

the data by generating an initial feasible solution X . The second phase

is the optimisation of the initial solution. This operation is based on the

temperature parameter T fixed initially as T0.

The optimisation includes four steps given as follows:
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a) Creating a neighbour solution X ′ of X . For that, one item I is chosen

arbitrary. If I increases the objective function f (X ) then it will be

accepted i.e. added to the solution X ′, otherwise it will be added if the

comparison exp−(∆ f ()/T) > R is true. Where R is a random value and

∆ f ()= f (X ′)− f (X ).

b) The first step may cause a conflict. In order to eliminate all conflicts,

and make X ′ as a feasible solution, it is repaired by removing an item.

The item to be removed is chosen in two manners according to the

probability P(P = 0.7). Either an item is randomly chosen or the worst

one in X ′ is found and removed. This process is repeated until the

elimination of all conflicts.

c) During the process, among the neighbours, every solution that increases

the objective function is considered as the best solution and saved in

X∗. By the end of the process X∗ contains the best solution.

d) The last step in this phase consists in updating the temperature value

using the Coefficient of Temperature CT.

The optimisation phase is repeated for a certain Number of Iterations (NI)

fixed empirically.

Drexl (1988) is the first to propose the application of SA to MKP01. Practi-

cally, this version of SA performs two random exchanges at each iteration

to go from one solution to another similar with keeping its feasibility. SA

has been improved to a new version named Threshold Accepting (Dueck

& Wirsching, 1989). With this version, they obtained better results than

Drexl (1988). Qian and Ding (2007) augmented SA with a Markov chain

that determines when the temperature should be decreased. This allows

estimating the execution time of the algorithm, i.e. ensure that after an

optimisation time the process stops. Its application showed that it was faster

than SA with its strategy of cooling but with poor performance. Battiti and
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Tecchiolli (1992) compared SA with Tabu Search (TA) and the comparison

showed a total superiority of TS over SA. Perhaps the biggest obstacle of

using SA is how to determine the right value of the initial temperature and

what cooling strategy to adopt. These two factors, although determinants,

their ideal values depend on the addressed problem and may differ from one

to another.

2. Tabu Search

Tabu Search Algorithm (TS) was invented by (Glover, 1986, 1989, 1995).

This approach is one of the most popular meta-heuristics that has acquired

success in a wide variety of CO problem (Glover & Laguna, 2013). The

main innovation that has introduced in TS is the tabu list. It is an adaptive

memory allowing a sensitive exploration as a basis for solving combinatorial

problems. This memory is divided into short and long-term memories.

Chronologically, the first application of TS for the MKP01 was conducted by

(Dammeyer & Voß, 1993). It was developed on the basis of the Reverse Elim-

ination Method (REM) (Glover, 1989). This work proposed and compared

the static and the dynamic management strategies of tabu list. The obtained

results using the data-set by (Drexl, 1988) showed the dynamic strategy as

the best version which also succeeded to surpass SA. Furthermore, the REM

has reached the optimal solution in 44 of the 57 experimental problems.

A strategy of oscillation between the solutions’ feasibility borders was pre-

sented by (Glover & Kochenberger, 1996). In this version of TS, the search

process is allowed to go into the regions of infeasible solutions to diversify

the search. Good results have been obtained by applying this approach on

many test data including the 57 problems by (Drexl, 1988); these have all

been resolved to optimality.

A TS version combined with Greedy algorithm and guided by Surrogate

constraints was introduced by (Hanafi & Freville, 1998). The Surrogate
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constraints introduced by (Glover & Kochenberger, 1996) are calculated to

reduce the problem size. The TS process is divided into two phases, con-

structive and destructive and adopts Greedy algorithms to perform the

movements in the feasible and infeasible solutions. The movements to infea-

sible solutions follow an oscillation strategic dynamic and adaptive to the

addressed problem. This approach has been applied to a variety of data and

achieved very competitive results.

The TS hybridisation is also one of the approaches adopted by researchers.

In this sense, Vasquez and Hao (2001) combined TS with Simplex. This

former is partially applied to solve the linear relaxation of MKP01, then,

TS improves the obtained solution. The results were satisfying for certain

instances, however, the processing time was long.

Motivated by assuming that the search space around x (the optimal solu-

tion of the linear relaxation MKP01) should contain high-quality solutions,

Vasquez et al. (2001) proposed a two-phase approach. The first phase solves

a linear relaxation of MKP01 by the Simplex method. The second phase

carefully explores some areas around this fractional solution using TS. An

additional constraint
∑n

j=1 x j = k allows research on a small limited number

of a partial solution was included. This approach has been examined on some

data-sets (Drexl, 1988; Chu & Beasley, 1998; Glover & Kochenberger, 1996).

This TS version was able to improve the most part of the results. Other

researchers has focused on the calculation of effective values of k such as

(Glover, 1965; Fréville & Plateau, 1993; Vasquez & Vimont, 2005). Several

results have been improved by extending TS version presented by (Vasquez

et al., 2001) especially that proposed by (Vasquez & Vimont, 2005).
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3.3.2.2 Population-based meta-heuristics

1. Genetic Algorithm

Thiel and Voss (1994) estimated that the solution of MKP01 with the stan-

dard GA is not able to provide good solutions when it comes to complex

problems. They offered a more promising approach by combining GA with

TS. This hybridisation approach was able to significantly improve the perfor-

mance of GA. However, the obtained results were not competitive with other

heuristics.

Cotta and Troya (1998) proposed a hybrid version of GA in superposition

with the Greedy algorithm. Although this approach is guided by knowledge

of the problem, moderate results were obtained by applying these approaches

on small data.

In the GA version proposed by (Khuri et al., 1994), the approach enriched the

population of chromosomes (solutions) by infeasible solutions and defined a

fitness function which introduces the concept of penalty s (s is described by

the total amount of superfluous knapsack dimensions). The approach has

been tested on a few simple data and moderate results were reported. This

confirms the findings on the poor performance of standard GA on MKP01

claimed by (Thiel & Voss, 1994).

In the GA version proposed by (Rudolph & Sprave, 1996) for solving MKP01,

two main contributions were included. First, the selection operator chooses

only neighbouring solutions. Second, a calendar manages the frequency and

the offspring acceptance rate (new individuals created). As in (Khuri et al.,

1994), The infeasible solutions were accepted.

Hoff et al. (1996) tried to prove that GA could be effective with a set of

appropriate parameters. In this sense, they tested many different operators

and settings to determine the best. Based on their conclusion, they were
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able to express using the number of variables (i.e. items) n, the desirable

parameters for a good GA as follows: an initial population of size 5∗ n

containing only feasible solutions, a number of generation of 250∗ n, a

selection operator according to the fitness with the Monte Carlo method, a

crossover in Burst with a probability of 0.5 and a reverse mutation with a

probability of 1÷n. Despite the promising results, there is no formal method

to proof that these settings produce always good solutions, mainly because

the proposed version has been tested only on a simple problems of small size.

Chu and Beasley (1998) suggested a version of GA for MKP01 solution. So

far, this work is among the algorithms that achieved the most promising

results. This version of GA combines a standard GA and a strategy for repair-

ing the infeasible solutions. This former sorts the items in the descending

order according to their efficiency value (a ratio between the value and the

weight). The repair strategy repeatedly excludes an item (in order) until

the solution becomes feasible. In addition to the already existing test data,

The experimental scope introduced others more complex data-sets. These

data are the best-known and the widely used by researchers. A comparison

with the CPLEX Optimiser was also conducted. Encouraging results have

been obtained, however, the execution time is the major inconvenient of this

approach.

Djannaty and Doostdar (2008) suggested a hybrid GA (Hybrid Genetic

Algorithm HGA) in which the initial population is created on the basis of

the work by (G. B. Dantzig, 1957) on the KP01. It also adopted the penalty

function approach to avoid the strong constraints and expresses the fitness

function. However, HGA has been tested only on simple data and uses a

binary codification of the chromosomes which requires unnecessary memory

space.

The Orthogonal Genetic Algorithm (OGA) is a version of GA that incorpo-
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rates the orthogonal geometric concept. This technique allows to virtually

and dynamically locate solution over its neighbouring solutions, in order

to consider them or even adopt them. This method has been implemented

via the structures that manage solutions neighbour relations. They were

integrated into GA either partially to control an operator or globally as a

full operator. In this sense, Li et al. (2006) proposed an OGA to tackle the

MKP01 incorporating a crossover operator which forms a sample of the best

genes among the offspring from which it generates and repairs offspring of

higher quality.

Gallardo et al. (2005) suggested a cooperative approach between an Evolu-

tionary Algorithm (EA) and B&B. Both methods Exchange useful informa-

tion as follows: EA provides the lower bound (LB) to B&B to significantly

reduce its research area. In parallel, the solution of a partial optimisation

by B&B serves to guide EA to areas of promising solutions. The hybrid

algorithm that results has been tested on large instances of the MKP01

problem with encouraging results.

The approach defined by (Alonso et al., 2005) applies a GA to estimate a

set of multipliers of a surrogate relaxed MKP01. Then, it performs an EA

combined with a Local Search applied periodically to improve all individuals

of the population. Good results were obtained with this method.

2. Harmony Search

Harmony Search (HS) (Geem et al., 2001) is a new population-based heuristic

that stimulates the construction of a musical harmony from a repertory

(named Harmony Memory (HM)) containing other harmonies. The HM is

composed of Harmony Memory Size (HMS) harmonies coded by vectors

representing feasible solutions. Each iteration, a new harmony is improvised

by adding an item either randomly or from the HM according to the harmony

memory considering rate (HMCR). Then, the item may be adjusted by a
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Bandwidth (bw) according to the pitch adjusting rate (PAR). Finally, the

improvised harmony replaces the worst harmony in HM, if its fitness is

better. Since its appearance, HS has known several changes focusing mainly

on various schemes of components HMCR , PAR and BW.

In the context of our work, several approaches have proposed the solution of

MKP01 by HS. In the NBHS (New Binary Harmony Search) (X. Kong et al.,

2015), the authors have chosen the binary representation of the harmonies,

replaced the adjustment PAR by a step similar to the GA mutation operator,

introduced an Adaptive HMCR and proposed the generation of the new

harmony from a selection of elements named Mean Harmony (MH). The

conducted tests showed that this approach converges slowly but effectively

towards solutions close to optimal solutions. Despite this, the structure of

NBHS differs significantly from the original HS. In HHS (Hybrid Harmony

Search), B. Zhang et al. (2015) combined the exploration of HS and the

exploitation of the FFO local search (Fruit Fly Optimisation). HHS has a

new scheme of HMCR giving it more exploration ability. At each iteration,

an intensification by application of FFO is performed at each harmony to

explore its neighbourhood, and improve its quality. Experimental tests on

complex instances show that this approach performs better than other HS-

based methods, however, from a number of generation (100,000) and the

complexity of HHS it can be concluded that the execution time is relatively

long.

Many researchers have attempted to integrate the theories of a quantum

computer in heuristic approaches. Quantum computing is a new generation

of computers (CPUs) that exploits characteristics and properties such as

entanglement and superposition to represent information. The bit, which

takes state 0 or 1 is replaced by the Qubit which is used to encode more

than two states. This technology is qualified as the future of computer, there
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are a few implementations such as Google 1 100 million times faster than

normal PC, NASA2 developed by the Canadian company D-Wave 3 or IBM

set free on its Cloud 4 platform. Layeb (2013) integrated some of its theory

such as Interference and Superposition operators in his QIHSA (Quantum

Inspired Harmony Search Algorithm). It offers a quantum representation

of harmonies, a quantum mutation and another operator. Tests on some

MKP01 data by (Chu & Beasley, 1998) m = 5-10 and n = 100 showed a

moderate performance of QIHSA.

A judicious choice of the HMCR, PAR and BW values may induce a good

performance of HS. For this reason, the major part of the research on the HS

have focused on the invention of mechanisms to set these three parameters.

DGHS for KP01 presented by (Xiang et al., 2014) integrates a dynamic

generation of PAR and HMCR such as:

 HMCR (t) = HMCRmin + HMCRmax−HMCRmin
NI

P AR (t) = P ARmin + P ARmax−P ARmin
NI

Where NI is the number of iteration and t the number of current iteration).

It iteratively improvises a harmony either by selecting an item from the best

harmony or by selecting a harmony randomly in HM. Knowing that in the

second option, it is undergoing an adjustment by binary mutation with a

PAR probability. To restore any infeasibility, DGHS has a two-phase method

DROP and ADD.

3. Other methods

1https://www.technologyreview.com/s/544421/googles-quantum-dream-machine/
2https://ti.arc.nasa.gov/tech/dash/physics/quail/
3http://www.dwavesys.com/
4http://www.research.ibm.com/quantum/
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• Ant colony Optimisation (ACO). Recently, M. Kong et al. (2008) have

presented an Ant Colony Optimisation (ACO), called Binary Ant System

(BAS) for the MKP01. BAS uses a pheromone deposit method specific

to the case of binary solutions and allows the generation of feasible

solutions during the optimisation procedure. BAS has been compared to

three other proposed ACO algorithms by (Leguizamon & Michalewicz,

1999; Fidanova, 2002; Alaya et al., 2004), on 60 instances of the data

sets by (Chu & Beasley, 1998). BAS obtained all the best solutions

that are not met by the other three algorithms. But the remain 210

instances have not been used. ACO was also used by (Ke et al., 2010)

for solving MKP01.

• Variable Neighbouhood Search (VNS). Puchinger and Raidl (2008) pre-

sented a version of the variable neighbourhood search algorithm. Unlike

the standard VNS, the proposed solution (Relaxation Guided Variable

Neighbourhood Search) is based on different methods to adaptively

order (compared to the solution) the Neighbourhood of a solution.

• Particle Swarm Optimisation (PSO). M. Kong and Tian (2006), and

Hembecker et al. (2007) presented the optimisation by particle swarm

optimisation (PSO) method for the MKP.

• Scatter Search (SS). Hanafi and Wilbaut (2008) considered the scatter

search as a method for solving MKP01.

3.4 Methodology

In order to test the proposed approaches, standard test-data must be used. For

this, several experimental data-sets have been created, some are simple and

others are complex. The community of researchers in this subject uses the same

data to validate their approaches and to make comparisons. All these data are
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gathered and published in a OR-Library. Three data-sets are used to conduct the

experiments: the SAC-94, Chu&Beasley and Glover&Kochenberger.

• SAC-94:This data-set is composed of 54 instances where the number of items

n varies from 2 to 30 and the number of dimensions m varies from 10 to 105.

This data-set is divided into six groups of MKP01 problems, all considered

by many researchers as simple and the optimal solution of each instance is

known.

Table 3.1: SAC-94 description

Group Number of Dimensions (N, M)
instance

hp 2 (28,4), (35,4)
pb 6 (27,4), (34,4), (29,2), (20,10), (40,30),

(37,30)
pet 6 (10,10), (15,10), (20,10), (28,10),(39,5),

(50,5)
wento 2 (60,30), (60,30)
weing 8 (28,2), (28,2), (28,2), (28,2), (28,2), (28,2),

(105,2), (105,2)
weish 30 (30,5), (30,5), (30,5), (30,5), (30,5),

(40,5), (40,5), (40,5), (40,5),
(50,5), (50,5), (50,5), (50,5),
(60,5), (60,5), (60,5), (60,5),
(70,5), (70, 5),(70,5), (70,5),
(80,5), (80,5), (80,5), (80,5),
(90,5), (90,5), (90,5), (90,5), (90,5)

Table 3.1 contains the description of the used data. Here N and M represent

the number of items and the number of constraints (the number of dimen-

sions) respectively. Column Ins represents the number of instance in each

group of data.

• Chu&Beasley: These data are more complex and larger than SAC-94. They

are composed of 270 instances classified in nine groups. The number of items

n= 5, 10, 30 and the number of dimensions m= 100, 250, 500. These data

have been generated in 1998 based on a complex mathematical formula. The

major part of the instances has been solved to the optimality, but for some

instances the optimal solution is still unknown.
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• Glover&Kochenberger: This data-set consists of 11 larger and more complex

instances. The number of items n varies from 15 to 50 and the number

of dimension M varies from 100 to 1500. The optimal solution for all the

instances is still unknown.

This work intends to compare the proposed approaches with exact methods pro-

posed in the CPLEX. CPLEX is a software developed by IBM that was developed

to solve complex linear programs. Several exact methods of optimisation are im-

plemented in CPLEX such as: Branch and Bound, Branch and Cut, Simplex. In

our project we compare the results obtained by our approach with those obtained

by the CPLEX.

3.5 Conclusion

The study of this chapter allows us to reach the following conclusions: firstly, in

terms of quality, the exact methods exceed the approximate methods, however, they

required more time, so their choice depends on the data size; secondly, although

some heuristics are effective, the problem of the local optimum requires caution

when using them; thirdly, the hybridisation may be a good option to avoid the local

optimum and have a good quality in an acceptable time. Here, hybridisation is

either between several approximate methods or between exact and approximate

methods; finally, the exploitation of prior knowledge on data could increase the

solution quality and accelerates the convergence to the optimal solution.
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4
LOCAL-SEARCH METHODS FOR MKP01 AND

MU-WDP

4.1 Introduction

One of the objectives of our work, is to investigate the different kind

of solution methods. Consequently, it seems logical to start with the

simplest ones: the local-search meta-heuristics. Two contributions are

suggested in this chapter. The first is a new local-search algorithm resulting from

the combination of Simulated Annealing (SA) and Stochastic Local Search (SLS).

The algorithm named SLSA exploits the advantages of both algorithms and pro-

poses a modified search and repair structures. Moreover, SLSA is examined on

SAC-94 and Glover & Kochenberger data-sets. The second attempts to investigate

the application of SLS, TS and Hill-Climbing (HC) to solve the Winner Determi-

nation Problem in Multi-Unit Combinatorial Auctions (the MU-WDP), which is a

particular case of the MKP01.

This chapter is organised into two main sections, Section 4.2 details the first

proposed approach, which is SLSA method for the MKP01. Section 4.3 describes
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the second approach, a local search methods for the MU-WDP. The main conclu-

sions of both approaches as well as some perspectives are summarised in Section

4.4.

4.2 Local search method for the MKP01

Generally, it is known that the local-search meta-heuristics converge quickly

but may converge to a local optimum. Simulated Annealing (SA) (explained in

Section 3.3.2.1) is a popular local-search heuristics owing to its simplicity and

effectiveness. Similarly Stochastic Local Search (SLS) is an efficient local-search

meta-heuristic as well. SA is able to find zones not yet visited thanks to its

neighbourhood creation strategy. Nevertheless, its searching process may visit

the same solution several times. Comparatively, SLS (H. H. Hoos & Boutilier,

2000; H. Hoos & Stutzle, n.d.) is effective in terms of diversification capacity,

due to its neighbourhood creation strategy. But this strategy, based on a random

and HC techniques requires a long time to reach good results. The Stochastic

Local search-Simulated Annealing algorithm (SLSA) to solve MKP01 is proposed

here. SLSA is a hybridisation between SLS and SA. Three main modifications are

proposed in SLSA. The proposed SLSA approach is compared with SA and SLS

using data-sets of OR-Library 1.

4.2.1 Stochastic Local Search (SLS)

SLS is a local-search meta-heuristic that performs a certain number of local steps

that combines diversification and intensification strategies to locate a high-quality

solution. The intensification phase consists in selecting a best neighbour solution.

The diversification phase consists in selecting a random neighbour solution. The

diversification phase is applied with a fixed probability wp > 0 whereas the
1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
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intensification phase with a probability 1 - wp. SLS starts with an initial solution

X generated randomly according to the RK encoding. Then, it performs a certain

number of local steps as follows:

• Step 1. Creating neighbour solution X ′ to X by selecting an item I to be

added in the current solution X . At each step, the item to be accepted is

selected according to one of the two following criteria:

– Choose one item in a random way with a fixed probability wp > 0.

– Choose the best item to be accepted.

• Step 2. To make X ′ a feasible solution, it is repaired by removing an item

repeatedly. The item to be deleted is chosen in two manners according to the

probability P. either an item is randomly chosen or the worst one in X ′ is

found and removed.

• Step 3. Save in X∗ the best neighbour feasible solution found so far.

The process is repeated for a certain Number of Iterations (NI) that was deter-

mined empirically. The SLS algorithm could be summarised by the pseudo-code of

Algorithm 1.

4.2.2 The proposed SLSA

We propose the combination of the SLS and the SA to produce a new approach

called SLSA. In the following, we explain the main component of the proposed

approach. The SLSA process is based on two phases as follows:

4.2.2.1 Create the initial solution

The SLSA begins by creating an initial feasible solution. For that, the Random

Key method (Bean, 1994) is used. n values in [0, 1] are generated randomly

and arranged in ascending order, such that each item corresponds to one of the
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Algorithm 1 the SLS method.
Require: a feasible solution X , maxiter, wp
Ensure: a better feasible solution X∗

for i = 1 to maxiter do
generate r, r ∈ [0,1] ;
if r < WP then

xi = xrand (*Step 1)
else

xi = xmax (*Step 2)
end if
X = X ∪ {xi}; Update (f(X) and somConflit);
while there is conflict do

xi = xmin; X = X - {xm}; Update (f(X) and somConflit);
end while
if (F(X )> F(X∗)) then

X∗ = X ;
end if

end for

return the best solution X∗.

generated values. Secondly, the solution is built by adding items one after one in

order, as long as all constraints are satisfied. If the addition of an item leads to

break at least one constraint then it is ignored. This operation continues until the

last item. Thirdly, the objective function of the solution is calculated. The creation

of feasible solution by the RK is the first phase in SLSA. It is followed by the

optimisation phase.

4.2.2.2 Optimisation by SLSA

Here the initial feasible solution X is iteratively modified. The SLSA process

performs a certain number of local steps that consists in: Create a neighbour

solution X , Repair the created neighbour solution, Record the best solution and

update the Temperature.

• Step 1. Create a neighbour solution X ′ of X . At each operation and with the

probability wp ∈ [0,1], the item accepted to be packed is selected according
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to one of the two following criteria:

– SA strategy. One item I is chosen arbitrary. If I increases the objective

function f (X ) then it will be packed to the knapsack, otherwise it will

be accepted if the exponential exp(∆ f ()/T) > r where r is a probability

generated randomly, ∆ f ()= f (X ′)− f (X ) and T is the temperature value

initially equal to T0 relatively high.

– Mutation of an item. replace an item in X ′ by another not in X ′. The

replaced and the replacement items are chosen randomly.

• Step 2. Repair the solution. The first step may cause a conflict. To eliminate

all conflicts, and make X ′ a feasible solution, it is repaired by removing

an item. The item to be deleted is chosen in two manners according to the

probability P. either an item is randomly chosen or the worst one in X ′ is

found and removed.

• Step 3. If the created neighbour solution outperforms the objective function

value ( f (X ′)> f (X∗)) then it is recorded as the best solution found so far.

• Step 4. The temperature value is updated. In our case the decreasing rule is

found empirically as T = T −0.0105.

The optimisation phase is repeated for a certain Number of Iterations NI, which

was determined empirically. The SLSA algorithm is sketched in Algorithm 2.

4.2.3 Simulation results

The algorithms SA, SLS and SLSA are coded using C++ and compiled on a PC

having 2 GHz Intel Core 2 Duo processor and 2 GB RAM. In order to evaluate

the efficiency and the performance of the proposed SLSA, it was tested on the

SAC-94 standard test problems (divided into six different sets) which are available
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Algorithm 2 The SLSA pseudo-code.
Require: a feasible solution X , NI,wp,T0
Ensure: a better feasible solution X∗

1: for Cpt = 1 to NI do
2: if (r < wp) then
3: I1 = RandItem (); I1 ∈ X ′

4: if ( f (X ′)+ pI1 > f (X )) then
5: X ′ = X ′∪ {I1}
6: else
7: if (r1 < exp(∆ f /T)) then
8: X ′ = X ′∪ {I1}
9: end if

10: end if
11: else
12: I2 = RandItem(); I2 ∈ X ′

13: I3 = RandItem(); I3 6∈ X ′

14: X ′ = X ′− {I2}
15: X ′ = X ′∪ {I3}
16: end if
17: while (ExistConflict (X ′)) do
18: if (r2 < P ) then
19: Imin =WorstItem(); Imin ∈ X ′

20: X ′ = X ′− {Imin}
21: else
22: I4 = RandItem(); I4 ∈ X ′

23: X ′ = X ′− {I4}
24: end if
25: end while
26: if ( f (X ′)> f (X∗)) then
27: X∗ = X ′

28: end if
29: T = T −CT
30: end for
31: Return the best solution X∗.
32: Where r, r1, r2 ∈ [0,1]. T is the temperature. ∆ f = f (X∗)− f (X ′), pI1 is the

value of item I1 and CT: coefficient of temperature update.

at the OR-Library 2. These data-sets are a real-world problems widely used to

test and validate the algorithms effectiveness in the optimisation community.
2http://www.brunel.ac.uk/~mastjjb/jeb/info.html
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Table 4.1: The parameters of algorithms.

Parameter Description Value

NI Number of iteration of SLSA 100000
wp Probability of SLSA 0.98
T0 Initial temperature 50
CT Coefficient T update 0.0105
Run Number of run times 30

These problems dimensions vary as m = 2 to 30 and n = 6 to 105. After several

experiments, we set the parameters for SLSA as in table 4.1.

Table 4.2 shows the obtained results of the application of SA, SLS and SLSA

algorithms on the 54 instances. Column A.V .F means the average fitness of all

the 30 runs while column D.F.O represents the deviation from the optimal.

From these results we have identified various observations. We observed that

the A.V .F obtained by SLSA is better than SA and SLS in all instances of the

groups: pet, sento and weish, furthermore in 43 of the 54 instances A.V .F SLSA is

better. We see that instances pet1, pet2, weing2 and weing3 are the less complex

ones; it is the reason why the A.V .F obtained by SA, SLS and SLSA is equal to

the optimal. But only SLSA reached the optimal solution in all the 30 runs in

the two instances weish1 and weish4. In all groups, in terms of average D.F.O,

SLSA surpassed SA which surpassed SLS. Also we found that in terms of average

D.F.O, SLSA outperformed SA of 1.2% SLS of 1.31%. Additionally, in terms of

average D.F.O, SA was slightly better than SLS of 0.11%. Fig. 4.1 shows clearly

the difference.

In this study, three major modifications have been made to the algorithms.

One of them concerned all the algorithms when the two others characterised

only the SLSA. These modifications gave to the algorithms more effectiveness.

Firstly, introducing the SA neighbourhood creation mechanism in SLSA allowed

to increase the quality of the obtained results. Secondly, the mutation represents

the change that has the most significant impact on SLSA. Finally, repairing the

solution by removing an item chosen randomly with probability P performed the
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Table 4.2: SLSA vs. SA and SLS

SA SLS SLSA

Group A.V.F D.F.O A.V.F D.F.O A.V.F D.F.O

hp 3347,97 97,95 3345,7 97,88 3345,67 97,88
2998,07 94,10 2993,93 93,97 3011,27 94,52

pb 3018,67 97,69 3027,9 97,99 3027,07 97,96
3034,2 95,24 3034,27 95,24 3031,87 95,16

87063,5 91,48 86672,3 91,07 90793,7 95,40
2095,8 97,98 2101,97 98,27 2098,6 98,11

679,2 87,53 679,233 87,53 727,033 93,69
935,5 90,39 928,333 89,69 999,333 96,55

pet 87061 100 87061 100 87061 100
4015 100 4015 100 4015 100
6120 100 6120 100 6120 100

12206,7 98,44 12200 98,39 12285,3 99,08
10384,4 97,80 10373,5 97,70 10394,6 97,90
15925,3 96,30 15938,2 96,38 15977,7 96,62

sento 7675 98,75 7675 98,75 7690,57 98,95
8580,8 98,38 8587,43 98,46 8670,93 99,41

weing 138453 98,00 138871 98,30 141267 99,99
130883 100 130883 100 130883 100

95677 100 95677 100 95677 100
115709 96,96 114896 96,28 118598 99,38
96936,8 98,12 96897,5 98,08 98693,5 99,90
130610 99,99 130610 99,99 130610 99,99

1087448 99,27 1086462 99,18 1086790 99,21
583048 93,39 575396 92,16 576703 92,37

weish 4491,33 98,62 4505,2 98,92 4554 100
4531,17 99,89 4531,5 99,90 4535,17 99,98
3993,2 97,04 4002,67 97,27 4090,77 99,41

4512,47 98,93 4516,17 99,01 4561 100
4384,33 97,12 4391,97 97,29 4512,2 99,96
5327,13 95,86 5304,6 95,45 5465,33 98,35
5326,1 95,67 5312,03 95,42 5470,27 98,26

5326,07 95,02 5318,03 94,88 5483,03 97,82
5218,8 99,48 5221,07 99,52 5218,8 99,48

6166,23 97,27 6166,33 97,27 6224,13 98,18
5059,87 89,66 4978,87 88,23 5363,67 95,04
6227,13 98,23 6217,57 98,08 6211,7 97,99
5902,17 95,83 5903,8 95,85 5977 97,04

6769 97,33 6765,37 97,28 6743,57 96,97
7199,77 96,17 7208,23 96,28 7336,9 98,00
7053,73 96,773 7051,53 96,74 7124,87 97,74
8503,43 98,49 8504,53 98,51 8507,53 98,54

9249,5 96,55 9245,53 96,50 9291,2 96,98
6952,73 90,31 6921,7 89,91 7207,03 93,62

9121,4 96,52 9155,83 96,88 9282,5 98,22
8838,43 97,40 8842,53 97,44 8860,93 97,65
8246,73 92,17 8178,83 91,41 8417 94,07
7635,63 91,51 7611,1 91,21 7722,83 92,55
9730,67 95,21 9729,57 95,20 9777,17 95,66
9589,67 96,48 9595,13 96,54 9710,37 97,69

8733,7 91,12 8715,93 90,94 8944 93,32
8888,67 90,52 8873,4 90,36 9145,17 93,13
8996,63 94,78 8958,67 94,38 8923 94,00
8866,93 94,22 8847,47 94,02 8810,03 93,62
10681,3 95,44 10676,9 95,40 10830,9 96,78

Total Average 52693,1 96,24 52512,9 96,13 52829,1 97,44
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Figure 4.1: SLSA vs. SA and SLS.

obtained results by SA, SLS and SLSA. This mechanism prevents the search

process from reproducing solutions already visited. It provides effective means to

conduct the search process in zones not yet discovered. Thanks to this mechanism

and the SA neighbourhood strategy SLSA avoids stagnation in the local optima

and succeed to find solution very close to the optimal.

4.3 Local search methods for the MU-WDP

As a second part of this chapter, the study adapts some local-search methods to

deal with the MU-WDP, which is a particular and applicative case of the MKP01.

The MU-WDP is an NP-hard combinatorial optimisation problem (Sandholm et

al., 2002). Several works tried to study the similarity between the MKP01 and the

MU-WDP. Thus, it has been demonstrated that the MU-WDP can be modelled as

a MKP01 (Holte, 2001; Kelly, 2004). In this section, we propose three local search

methods to solve the MU-WDP. Therefore, we present Hill-Climbing (HC), Tabu

Search (TS) and Stochastic Local Search (SLS) for the MU-WDP.
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4.3.1 Background

A background about the main shared components of the three approaches is

presented first. It concerns the solution representation, the Random Key encoding

strategy used to generate the initial solution and the objective function used to

measure the quality of solutions.

4.3.1.1 Solution representation

A solution for the MU-WDP is an allocation S which can be represented by a vector

with a variable length. Each of those components Si represents the winning bid

number.

4.3.1.2 Generate the initial solution

The initial solution is generated at random using the RK strategy (see Section

4.2.2.1). RK encoding mechanism permits to generate and manipulate only feasible

solutions. The initial solution is created as follows:

• Step 1. Generate n real numbers sequenced by an r order, where n is the

number of bids and the r order is a permutation of key values.

• Step 2. Select the bid having the highest order value to include in the

allocation, knowing that the allocation is initially empty. Then, the bid

having the second-highest order value is accepted if its acceptance with

accepted bid currently in the allocation verifies the constraint that means

that for any good i, the sum of units of i over all the winning bids in

the current allocation does not exceed mui, otherwise it is discarded. This

process continues until having examined the n bids. The output is a subset

of bids that can be a feasible solution to the MU-WDP.
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4.3.1.3 Objective function

The quality of a solution S is evaluated by calculating its objective function. The

objective function of an allocation is equal to the sum of prices of the winning bids

S = {B1,B2, . . . ,Bl}. Where l is the number of element of the allocation S.

(4.1) f (S)=
l∑

i=1
pixi

4.3.2 The proposed local search algorithms

In this section, the aim is to adapt the Hill-Climbing (HC), Tabu Search (TS) and

Stochastic Local Search (SLS) methods for solving the MU-WDP.

4.3.2.1 Hill-Climbing (HC)

The Hill-Climbing (HC) method is an iterative improvement method that consists

of two essential components: finding a neighbour solution and a exploring the

neighbourhood solutions to find good ones (Hansen & Mladenović, 1999).

More precisely, it consists of the following steps:

• Step 1. start with a random initial configuration or an arbitrary solution S0.

• Step 2. consider this configuration as a solution with the problem S = S0,

measure the quality of S by F(S) where F is the objective function to be

optimised.

• Step 3. choose a neighbour solution S
′
of S such as F(S

′
) > F(S), replace S

by S
′
.

• Step 4. Repeat Step 3. until for all neighbour S
′
of S, F(S

′
) ≤ F(S).
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4.3.2.2 Tabu Search (TS)

The proposed TS for the winner determination problem starts from an initial

allocation created using the Random Key RK method. Then, it tries to locate for

the best allocation by generating neighbour allocation. This is done by applying

the three steps:

• Step 1. Generate a neighbour allocation from the current allocation. A bid

O is chosen such as it does not belong to the Tabu List and its price is the

highest. When O is found, it will be included into the allocation, and added

into the Tabu List. After that, we update the allocation revenue and a vector

somConflit allows controlling the conflicts.

• Step 2. Conflict elimination. To do that, the bid Om having the minimal price

is found and deleted from the allocation. When a bid is deleted from the

solution, its price and goods quantities requested must be omitted. This

procedure is repeated while the conflict persists.

• Step 3. Saving the best allocation. For each neighbour allocation, the revenue

is evaluated, so if it is more than the revenue of the best allocation then the

neighbour allocation becomes the best allocation S∗.

The search process is repeated for a number of iterations fixed empirically. At

the end, we obtain the best solution that gives the optimal revenue to the sellers.

The TS algorithm is sketched in Algorithm 3.

52



CHAPTER 4. LOCAL-SEARCH METHODS FOR MKP01 AND MU-WDP

Algorithm 3 TS pseudo-code for the MU-WDP.
Require: a MU-WDP instance, maxiter, a collection S,
Ensure: An improved allocation S

1: The Tabu List, is initially empty: Tabu List = φ;
2: Generate an arbitrary feasible allocation S using RK encoding;
3: for iter = 0 to maxiter do
4: Choose O from reparation bids having the maximal price and O ∩ Tabu List

= φ;
5: S = S ∪ O;
6: Update (Revenue and somConflit);
7: Tabu List = Tabu List ∪ O;
8: while there is conflict do
9: Om in S having the minimal price;

10: S = S - Om;
11: Update (Revenue and somConflit);
12: end while
13: if F(S) > F(S∗) then
14: S∗ = S;
15: end if
16: end for
17: return the best solution S∗.

4.3.2.3 Stochastic Local Search (SLS)

The SLS (see Section 4.2.1) has been applied successfully on several optimisation

problem such as the single-unit winner determination problem in combinatorial

auctions (Boughaci et al., 2010; Boughaci, 2013). In this section, we propose an

SLS adaptation for the multi-unit winner determination problem (the MU-WDP).

The proposed SLS method starts with an initial allocation S generated randomly

according to the RK encoding. Then, it performs a certain number of local steps

that consists in selecting a O to be added in the current allocation S and in

removing all conflicting bids that occur in the current allocation.

At each step, the bid to be accepted is selected according to one of the two

following criteria:

1. The first criterion (step1 of Algorithm 4) consists of choosing the bid in a

random way with a fixed probability wp > 0.
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2. The second criterion (step2) consists of choosing the best bid (the one max-

imising the auctioneer’s revenue when it is selected) to be accepted.

The process is repeated for a certain number of iterations maxiter, which is

determined empirically.

The SLS algorithm is sketched in Algorithm 4.

Algorithm 4 : The SLS method.
Require: a MU-WDP instance, maxiter, wp
Ensure: an allocation S

1: Generate an initial solution according to RK S
2: for I = 1 to maxiter do
3: r ⇐ random number between 0 and 1;
4: if r < wp then
5: O = pick a random bid (*Step 1)
6: else
7: O = pick a bid having the maximum price; (*Step 2)
8: end if
9: S = S∪O;

10: Update (Revenue and somConflit);
11: while there is conflict do
12: Om = the bid having the minimum price;
13: S = S - Om;
14: Update (Revenue and somConflit);
15: end while
16: if (F(S)> F(S∗)) then
17: S∗ = S;
18: end if
19: end for
20: return the best allocation S∗.

4.3.3 Simulation results

In order to evaluate the performance of the three proposed approaches HC, TS

and SLS in solving the MU-WDP, they have been implemented and evaluated on

some benchmarks of the problem. The algorithms have been run on a hp Compaq

610 Laptop with a core 2 duo 2 GHz CPU and 2 GB of memory.
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Table 4.3: The Data set description.

data bid good good/bid price quantity

B1 1400 1500 [0, 110] [322, 325] [900, 920]
B2 1300 900 [0, 200] [600, 605] [1200, 1230]
B3 800 800 [0, 400] [400, 420] [800, 830]
B4 900 900 [0, 250] [200, 210] [1000, 1100]
B5 700 1000 [0, 60] [100, 105] [200, 220]
B6 1000 600 [0, 55] [150, 155] [100, 115]
B7 1100 1500 [0, 70] [700, 710] [200, 220]
B8 1500 1500 [0, 90] [800, 820] [600, 630]
B9 1500 1000 [0, 300] [10000, 10500] [3000, 3100]
B10 1200 1000 [0, 120] [500, 510] [900, 950]

4.3.3.1 Data issue

Despite the MU-WDP has been widely investigated, to our knowledge, no standard

test data has been created. Additionally, many authors have generated their own

data to validate their approaches. Test data-set used in this study is randomly

generated. Ten benchmarks of various sizes have been generated.

Table 4.3 gives information about the considered benchmarks. The first column

gives the name of benchmark, column bid the number of bids, column good the

number of goods, column good/bid the number of goods per bid, column price

the interval values of bids and column quantity the available quantities of goods.

The benchmarks were generated so as to increase the complexity of the problem

by creating much competition between the variables of the problem (the bids).

we notice that the prices of bids are very brought closer as well as the available

quantity of each good.

4.3.3.2 Parameters tuning

The adjustment of the different parameters of the proposed approaches SLS, TS

and HC is fixed by an experimental study.

• The TS parameters: are the maximum number of iterations is fixed to 5000

iterations. This number of iteration is sufficient and allows the process to

find the best solution. The size of the Tabu List is set to 40 elements.
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Table 4.4: Numerical results of SLS, TS, HC and CPLEX.

SLS TS LS CPLEX

data Time Rev Time Rev Time Rev Rev
(s) (Mu) (s) (Mu) (s) (Mu) (Mu)

B1 0.047 3573.9 3.222 3573.9 0.002 3569.5 3561.5
B2 1.233 4839.2 2.265 4821.1 0.001 4833.6 4832
B3 0.078 839.8 4.84 839.8 0.0001 839.1 839.7
B4 3.074 839.6 2.646 839.6 0.001 837.9 838.7
B5 0.936 419.6 2.374 419.4 0.0008 417.2 419.0
B6 0.514 309.8 2.73 309.7 0.0004 308.8 309.8
B7 1.108 2129.7 2.488 2129.7 0.0001 2128.8 2128.4
B8 1.2 7378.4 3.877 7303.8 0.0032 7035.6 7351.4
B9 0.062 6053.9 3.568 5789.6 0.0004 5047.2 6042.7
B10 2.075 5600.2 3.892 5098.7 0.0024 5283.3 5597.5

(s) : second and (Mu) : Monetary unit.

• The SLS parameters: are the maximum number of iterations is fixed to

50000 iterations. The value of probability wp = 0.87.

• The HC parameters: are the searching process is stopped according to the

increasing of the objective function F, when F is not increasing any more and

no bid remains then the process stops.

4.3.3.3 Numerical results

Table 4.4 gives the results obtained by SLS algorithm, HC and TS for the consid-

ered the MU-WDP benchmarks. For each method, we give the CPU time (Time in

second) and the revenue of the best solution found by each approach (Rev is in

Monetary unit).

In order to show the performance of the SLS approach, we conducted a compar-

ison with the CPLEX solver 12.5. We note that for each benchmark, the CPLEX is

launched for fifteen minutes (15 min).

Table 4.4 gives the average results obtained after multiple runs of the algo-

rithms where Rev is the average revenue and Time is the average CPU consumed

in second.

According to the obtained results we released the following remarks:
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• for all the benchmarks we noticed that the approach SLS is always able to

give the same results of revenue after several runs. The TS always gives the

same results of revenue for the benchmarks 1, 3, 4 and 7, whereas HC finds

various results for each run for all benchmarks.

• according to the numerical results, SLS succeeds to find solutions of good

quality for the all checked benchmarks. For benchmarks 1 and 3 the quality

solutions found by SLS is similar to those found by TS. We remark that,

the Benchmark 6 is not very complex since CPLEX gave the same revenue

as SLS. However, the simple HC fails to obtain good results for all the

benchmarks compared to both SLS and TS.

• In term of CPU time point of view, HC is faster than both SLS and TS, but

the disadvantage is that it falls quickly into the local optimum.

4.4 Discussion & conclusion

This chapter provided two main solutions for the MKP01 and the MU-WDP.

Therefore, the work has been divided into two parts.

The first part proposed a local search solution to the 0-1 multidimensional knap-

sack problem (MKP). The suggested solution is the combination of the Stochastic

Local Search (SLS) with the simulated annealing (SA). The proposed approach

is called the Stochastic Local Search-Simulated Annealing (SLSA). Several tests

and comparison were carried out on a large range of benchmarks known by their

complexity. In conclusion, the use of the three techniques allowed SLSA to obtain

good results and surpass significantly SA and SLS. Similarly SLSA succeed to

reach or at least be close to the optimal, indeed the overall success rate is of

97.44%.

The second part is an extension of the first one. It proposed three local search

methods for the MU-WDP. The three proposed approaches SLS, Tabu Search (TS)
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and Hill-Climbing (HC) have been implemented and tested on some benchmarks

generated randomly. Also, A comparison with the CPLEX solver 12.5 has been

conducted. According to the experimental study, SLS outperforms the other meth-

ods with encouraging results. The comparative study with CPLEX confirms the

conclusions.
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HYBRID META-HEURISTICS FOR THE MKP01

5.1 Introduction

M eta-heuristics may be a good methods for solving complex CO problem.

However, there are several other CO problems where they fail, hybridi-

sation is therefore encouraged. Hereby, three hybrid meta-heuristic

approaches are proposed for the MKP01. All the proposed approaches combine

a local-search algorithm with a population-based algorithm. Furthermore, the

population-based algorithm provides good exploration of the solution space, while

the local-search improves the quality of the solutions by exploiting deeply their

neighbourhood.

The first approach proposed here, is based on GA as population-based algorithm

supported by SA and SLS as local-search algorithms. Thus, two methods are

suggested GA-SA which combines GA with SA and GA-SLS which combines GA

with SLS. Both methods are examined using the well-known test data-sets and

compared to other methods of the literature.

The second approach extends the first one and proposes the Memetic Search
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Algorithm (MSA). MSA consists on the hybridisation of a modified GA and SLSA

(explained in Section 4.2). Several experimental tests are carried out to examine

the effectiveness of MSA on the MKP01.

The last approach hybridises a new version of HS denoted Self-Adaptive

Harmony Search (SAHS) with SLS. The resulting method denoted SAHS-SLS

introduces many strategies to dynamically calculate the HS as well as the SLS

parameters.

5.2 Background

Three local-search methods are used to build the proposed approaches, all have

already been described in previous chapters (see Section 3.3.2.1, 4.2.1 and 4.2.2

for the SA, SLS and SLSA descriptions respectively). The main parts of each

algorithm are maintained unchanged. Specifically, in our approaches, local-search

is applied on a solution chosen from the population of the population-based method.

It is executed for a number of iterations and returns a better neighbour solution -

if one is found - or the same solution otherwise.

Moreover, two population-based methods are combined with the above men-

tioned local-search methods, which are GA and HS, these methods have been

described in Section 3.3.2.2.

5.3 GA-SA and GA-SLS for the MKP01

This section describes GA-SA and GA-SLS. SA and SLS have already been de-

scribed in detail in Section 3.3.2.1 and 4.2.1 respectively. Only GA-SLS is discussed

here as its structure is similar to GA-SA. The difference between both methods is

only on which local-search algorithm is applied (i.e. SA or SLS).
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5.3.1 The GA in GA-SLS and GA-SA

GA-SLS (resp. GA-SA) starts by executing the GA process. The GA steps and

some modifications concerning selection, crossover, mutation and replacement

operations are presented in following. Fig. 5.1 summarises the GA steps.

replacement

population
parents offspring

selection operators

Figure 5.1: The scheme of the Genetic Algorithm process.

1. Population initialisation. The GA in GA-SLS (resp. GA-SA) initialises a

population P of size PS > 1 individuals. The RK method is used to create

the individuals. To create an individual, n values in the range [0, 1] are

generated randomly and arranged in an ascending order, such that each

item corresponds to one of the generated values. The individual is built by

adding items one after one, according to the order, as long as all constraints

are satisfied. The creation of individuals by the random key is repeated until

filling the entire population.

2. Selection. The selection operator uses the fitness to choose the parents.

The individuals with higher values are most likely to be selected. Several

selection approaches exist such as elitist, roulette or random, etc. In GA-SLS

(resp. GA-SA), the two individuals X1, X2 with the first and the second best

fitness values are designated as parents for the genetic operations.

3. Crossover. X1, X2, are used to make the crossover. GA-SLS (resp. GA-SA)

uses the random multiple point crossover method. The number of crossing

points (N.C.P) is calculated by the following formula:
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(5.1) N.C.P = 1
k

Min(|X1|, |X2|)

Where k is a positive integer such that k < n.

A queue Q is used to store the list of individuals that have already partic-

ipated in a crossover. The purpose of this list is to prevent parents to be

selected more than once during a number of iterations. The size of the Q is

defined according to the population size PS so that it turns the major part

of its individuals WT = F ∗PS, with F < 1/2 is a coefficient to calculate the

size of Q.

4. Offspring repair. The offspring X ′
1, X ′

2 may be unfeasible solutions. The

process to repair the offspring can be described by the following steps:

Algorithm 5 Offspring repair process.
1: while (ConflictExist(X )) do
2: Iworst =WorstItem(); Iworst ∈ X .
3: X = X − {Iworst}.
4: end while

5. Fitness function. Offspring X ′
1 and X ′

2 represent a feasible solutions, these

lead to calculate their fitness f (X ′
1) and f (X ′

2). The fitness of an individual

is calculated by the sum of the profits of the items that compose it.

6. Mutation. A number of items (MNI) from offspring X ′
1 and X ′

2 are replaced

by others items selected randomly from the best individual found so far

Xbest. The replaced items must not be included in the concerned offspring.

The procedure can be summarised by the following pseudo code:

7. Replacement and stopping criteria. X ′
1, X ′

2 replace the two worst individuals

in the population. The optimisation process is repeated until the stopping

criterion is checked. The criterion for stopping the optimisation process is a
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Algorithm 6 Mutation process.
1: for Cpt = 1 to MNI do
2: Ix = RandItem(); Ix ∈ X
3: I(xb)= RandItem(); Ixb ∈ Xbest, Ixb 6∈ X and Ix 6= Ixb
4: X = X − {Ix}
5: X = X ∪ {Ixb}
6: end for

limited number of iteration NI determined empirically according to the size

of the studied problem.

5.3.2 The proposed GA-SLS and GA-SA

The GA-SLS procedure consists in:

• Step 1. Create the initial population P using the RK method (see Section

4.2.2.1) and initialise Q = {}, NI and T = T0 (T for GA-SA only).

• Step 2. Select two parents X1 and X2 that are the two best individuals in P

and X1, X2 6∈Q.

• Step 3. Exchange NCP items between the parents X1 and X2 to produce

two new infeasible offspring X ′
1 and X ′

2, then if conflict exists in X ′
1 or

X ′
2, repeatedly remove either the worst items or an item chosen randomly

according to a probability rp.

• Step 4. Push the two parents X1 and X2 in Q. Apply the local-search (SLS

for GA-SLS or SA for GA-SA) on offspring X ′
1, X ′

2. Find the best individuals

Xbest in P and replace randomly a number of items in X ′
1 and X ′

2 by items

in Xbest.

• Step 5. If the quality of X ′
1 and X ′

2 is better than the two worst individuals

in P, then they replace them. If the number of iterations NI is not attend

then go to Step 2.. Otherwise return the best individual in P.
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The GA-SLS and GA-SA can be expressed by Algorithm 7.

Algorithm 7 GA-SLS Algorithm.
Require: An MKP01 instance, NI and Q =φ.
Ensure: An best solution found X∗.

1: Create the initial population P by the RK method.
2: for (Cpt = 1 to NI) do
3: Selection of the two best individuals X1, X2 in P and X1, X2 6∈Q.
4: Crossover X1, X2 to produce offsprings X ′

1, X ′
2

5: Repair offsprings X ′
1, X ′

2
6: Apply the local-search method on X ′

1, X ′
2

7: Mutation on X ′
1, X ′

2 with Xbest of P
8: Xworst ←− the worst individual in P
9: if ( f (X ′

1)> f (Xworst)) then
10: P = P − {Xworst}
11: P = P ∪ {X ′

1}
12: end if
13: Xworst ←− the worst individual in P
14: if ( f (X ′

2)> f (Xworst)) then
15: P = P − {Xworst}
16: P = P ∪ {X ′

2}
17: end if
18: Q =Q∪ {X1, X2}
19: end for
20: Return the best individual found.

5.3.3 Simulation results

GA, GA-SA and GA-SLS were implemented in C++ on 2 GHz Intel Core 2 Duo

processor and 2 GB RAM. They were tested on the OR-Library 1 54 benchmarks,

with m = 2 to 30 and n = 6 to n = 105 and on the OR-Library GK with m = 15 to

m = 50 and n = 100 to n = 1500. In all experiments the parameters are chosen

empirically such as: the number of iteration NI = 30000, the population size

PS = 100, the waiting time WT = 50, the number of crossing bites NCB = 1/10.

the initial temperature T0 = 50, the walk probability wp = 0.93, the number of

local iteration N = 100 and the number of runs is 30.
1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html
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Table 5.1: Comparison of GA, GA-SA and GA-SLS on SAC-94 datasets.

GA GA-SA GA-SLS

Dataset Opt Result GAP Result GAP Result GAP

hp 3418 3381,07 1,080 3418 0 3418 0
3186 3120,63 2,052 3186 0 3186 0

pb 3090 3060,27 0,962 3090 0 3090 0
3186 3139,13 1,471 3186 0 3186 0

95168 93093,5 2,180 95168 0 95168 0
2139 2079,93 2,762 2139 0 2139 0

776 583,767 24,772 776 0 776 0
1035 1018,13 1,630 1035 0 1035 0

pet 87061 86760,1 0,346 87061 0 87061 0
4015 4015 0 4015 0 4015 0
6120 6091 0,474 6120 0 6120 0

12400 12380,3 0,159 12400 0 12400 0
10618 10560,9 0,538 10609,1 0,084 10608,6 0,089
16537 16373,9 0,986 16528,1 0,054 16528,3 0,053

sento 7772 7606,03 2,135 7772 0 7772 0
8722 8569,7 1,746 8721,2 0,009 8722 0

weing 141278 141263 0,011 141278 0 141278 0
130883 130857 0,020 130883 0 130883 0

95677 94496,2 1,234 95677 0 95677 0
119337 118752 0,490 119337 0 119337 0

98796 97525,3 1,286 98796 0 98796 0
130623 130590 0,025 130623 0 130623 0

1095445 1086484,2 0,818 1094579,6 0,079 1095432,7 0,001
624319 581683 6,829 623727 0,095 624319 0

weish 4554 4530,03 0,53 4554 0 4554 0
4536 4506,8 0,64 4536 0 4536 0
4115 4009,4 2,57 4115 0 4115 0
4561 4131,1 9,43 4561 0 4561 0
4514 4159,7 7,85 4514 0 4514 0
5557 5491,7 1,17 5557 0 5557 0
5567 5428,4 2,49 5567 0 5567 0
5605 5509,4 1,7 5605 0 5605 0
5246 5104,5 2,7 5246 0 5246 0
6339 6014,2 5,12 6339 0 6339 0
5643 5234,3 7,24 5643 0 5643 0
6339 5916 6,7 6339 0 6339 0
6159 5769,5 6,3 6159 0 6159 0
6954 6495,6 6,6 6954 0 6954 0
7486 6684,6 10,7 7486 0 7486 0
7289 6878,4 5,6 7289 0 7289 0
8633 8314,7 3,7 8629,5 0,041 8633 0
9580 9146,5 4,52 9559,63 0,213 9568,63 0,119
7698 7223,2 6,2 7698 0 7698 0
9450 8632,1 8,65 9448,63 0,014 9449,37 0,01
9074 8114,4 10,6 9073,23 0,008 9073,33 0,01
8947 8321,2 6,99 8926,73 0,227 8938,83 0,09
8344 7603,8 8,87 8321,97 0,264 8318,93 0,3

10220 9685,8 5,23 10152,9 0,657 10164,2 0,55
9939 9077,9 8,66 9900,07 0,392 9910,73 0,28
9584 8728,9 8,92 9539,4 0,465 9560,53 0,24
9819 8873,7 9,63 9777,9 0,419 9802,03 0,17
9492 8653,6 8,83 9423,87 0,718 9442,17 0,52
9410 8466,7 10,02 9359,5 0,537 9369,5 0,43

11191 10250,1 8,41 11106,3 0,757 11128,7 0,56
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Table 5.2: Results of NSR, RSR and Time parameters obtained by GA, GA-SA and
GA-SLS.

GA GA-SA GA-SLS

NSR RSR Time NSR RSR Time NSR RSR Time

hp 1 1,7 1,8 2 100 6,1 2 100 7,1
pb 4 3,3 1,8 6 100 3,4 6 100 4,7
pet 4 32,8 1,4 6 81,7 11,3 6 80,5 12,2
sento 0 0,001 2,6 2 66,7 46,6 2 100 24,3
weing 6 39,6 1,7 8 76,3 10,3 8 99,6 10,6
weish 3 4,5 1,6 25 66,9 17,3 26 76,9 17,1

Average 18 13,6 1,82 49 81,9 15,8 50 92,8 12,7

5.3.3.1 Results for the SAC-94 standard instances

The average fitness (Result), the average gap (GAP), the best (Best) and the worst

fitness (Worst), the number of success runs (NSR), the number of success instance

(NSI) and the rate of success runs (RSR) have been recorded by analysing the

recorded fitness. Also, the average CPU run-time (Time) has been calculated. All

the results and statistics computed by the GA, GA-SA and GA-SLS are reported

in Tables 5.1 and 5.2. From results, GA resolved to optimality one instance of 54

with average gap of 4,454 %, GA-SA 35 instances with a global gap of 0,093 % and

GA-SLS 39 instances with a global gap of 0,0221 %. GA-SLS reached the optimum

at least once in 50 instances followed by GA-SA in 49 instances then GA in 18

instances. The RSR show that GA-SLS totally solved instances of groups hp, pb

and sento followed by GA-SA. GA-SLS obtained a total RSR better than GA-SA

(92,83% and 81,91%, respectively). At the same time, GA-SA and GA-SLS widely

surpass GA (13,65%). RSR shows that hybridisation of GA with SA has improved

the success rate of 79,18% and its hybridisation with SLS of 68,49%. From Table

5.2, GA is the fastest with an global average CPU time of 1.818 sec.

5.3.3.2 Results for the ten large instances

From results on the GK shown in Table 5.3 GA-SA has the best value of Result

and GAP for 1, 3, 5, 6 and 8 instances. GA-SLS has the best value of Result and
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Table 5.3: Results of the approaches test on the GK data-set.

Dataset GA GA-SA GA-SLS

Instance Optimal Result Gap Result Gap Result Gap

1 3766 3673,5 2,456 3704,3 1,638 3704,2 1,641
2 3958 3860,7 2,458 3894,8 1,596 3897,7 1,523
3 5656 5511,5 2,554 5538,8 2,072 5535,7 2,127
4 5767 5630,6 2,365 5655,2 1,938 5655,4 1,935
5 7560 7351,3 2,76 7395,1 2,181 7391,3 2,231
6 7677 7505,7 2,231 7528,4 1,935 7528,1 1,939
7 19220 18612,1 3,162 18691 2,752 18692,4 2,745
8 18806 18330,2 2,53 18393 2,196 18392,4 2,199
9 58091 56198,5 3,257 56371,1 2,96 56381,4 2,943
10 57295 55837,9 2,543 55959,3 2,331 55961,9 2,326

Average 18779,6 18251,2 2,632 18313,1 2,484 18314,05 2,479

GAP for instances 2, 4, 7, 9 and 10. Global, GA-SLS has the best performance for

all instances with an total average GAP of 2.479 %. GA-SA has almost the same

performance with average GAP of 2.484 %. Also, GA is not very far from GA-SA

and GA-SLS with a total average GAP of 2.632 %.

5.3.3.3 Comparison with other GA approaches

We compared results of the proposed GA-SA and GA-SLS to other approaches.

The results of the KHBA (Khuri et al., 1994), COTRO (Cotta & Troya, 1998),

TEVO (Thiel & Voss, 1994), CHEBE (Chu & Beasley, 1998) and HGA (Djannaty

& Doostdar, 2008) were obtained from (Djannaty & Doostdar, 2008). From Table

5.4 GA-SA and GA-SLS gave improved results compared to KHBA, COTRO and

TEVO, for almost all instances. GA-SA and GA-SLS were able to find the optimal

solutions to 6, and 3 of 7 problems respectively. Furthermore, GA-SA performs

results quite similar to CHEBE and HGA.
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Table 5.4: Comparison of GA-SA and GA-SLS with some GA-based approaches.

KHBA COTRO TEVO CHBE HGA GA-SA GA-SLS

Optimal Sol A. Sol A. Sol A. Sol A. Sol A. Sol A. Sol A.

sento1 7772 7626 7767,9 7754,2 7772 7772 7772 7772
sento2 8722 8685 8716,3 8719,5 8722 8722 8721,2 8722
weing7 1095445 1093897 1095296 1095398 1095445 1095445 1094579 1095432
weing8 624319 613383 622048 622021 624319 624319 623727 624319
weish23 8344 8165,1 8245,8 8286,7 8344 8344 8321,97 8344
hp1 3418 3385,1 3394,3 3401,6 3418 3418 3418 3418
pb2 3186 3091 3131,2 3112,5 3186 3186 3186 3186

5.4 Memetic Search Algorithm (MSA) for the

MKP01

MSA is a hybrid method composed of two algorithms GA and the Stochastic

local-search-Simulated Annealing algorithm (SLSA). In MSA, the operators of the

GA have been modified and adapted to the MKP01 and its efficiency has been

improved by SLSA. In this section, MSA is described.

5.4.1 The Stochastic Local-Simulated Annealing algorithm

(SLSA)

SLSA is a local-search algorithm that combines components from SLS and SA

(SLSA has been presented in Section 4.2.2). In MSA, SLSA is used as intensifica-

tion method to improve the fitness of each offspring generated by the GA. SLSA

is applied to offspring following a local steps that consists in: firstly, create a

neighbour solution by selecting and adding an item, secondly, repair the solution

infeasibility. The SLSA process is divided into two steps as follows:

• Step 1. Select an item I to add to the solution with the probability wp ∈ [0,1].

The chosen item is selected according to one of the following criteria:

– Chosen randomly an item, then if it increases the solution fitness f (X )

then it will be packed, otherwise it will be accepted if the following
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expression is true r1 < exp(−∆ f /T) where r is a random value, ∆ f =
f (X ′)− f (X ) and T is a temperature value initially equal to T0 relatively

high.

– I is the best item i.e. the item having the highest value.

• Step 2. In a case of unfeasible solution, the worst item is discarded from

the solution. This process is repeated until eliminated all conflicts. Then,

the temperature value is updated. In our case, the decreasing rule is found

empirically.

5.4.2 The GA population-based component of MSA

The MSA algorithm starts by launching the GA process. The GA steps and some

modifications concerning selection, crossover, mutation, replacement operations

are presented in following.

1. Population initialisation. MSA begins by the creation of the initial population

P of individuals of a population size (PS). The RK method is used to create

the individuals of P.

2. Genetic operators. The MSA selection operator is based on the fitness. The

individuals in the population with higher values are selected. Two parents

X1, X2 are selected to produce two new offspring. The crossover operator is

based on the multiple point crossing method. Two new offspring X ′
1, X ′

2 are

generated from this operator. Then, the crossing parents are stored in a list

Q of size WT to prevent selecting the same individual more then once for

a number of generation. The mutation is based on the multiple point flip

method. Here, the mutated item is replaced by another one chosen randomly

from the best item of the population. The number of mutation points is

defined experimentally.
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Algorithm 8 The MSA pseudo-code
Require: an instance of the MKP01. a vector of items that maximizes the knap-

sack revenue, empty queue Q = ;
Ensure: the subset of items to be packed in the knapsack that maximize the

profit.
1: Generate randomly an initial population P according to the RK encoding
2: while the maximum number of generations is not reached do
3: Select the two best individuals X1, X2 ∈ P and 6∈Q
4: Apply the crossover to obtain the new individuals X ′

1, X ′
2

5: Remove redundancy from X ′
1, X ′

2
6: Remove conflict from X ′

1, X ′
2

7: Apply the SLSA on X ′
1, X ′

2
8: Apply mutation on X ′

1, X ′
2 with Xbest

9: if ( f (X ′
1)> f (Xworst)) then

10: P = P − {Xworst}
11: P = P ∪ {X ′

1}
12: end if
13: if ( f (X ′

2)> f (Xworst)) then
14: P = P − {Xworst}
15: P = P ∪ {X ′

2}
16: end if
17: Q =Q∪ {X1, X2}
18: end while
19: Return the best individual found.

3. a local-search improvement is performed on the new offspring X ′
1, X ′

2 using

the SLSA (Algorithm of section 5.4.1). During this operation the offspring

are repaired.

4. the offspring is compared to the worst individuals in the population in terms

of fitness, they replace them in the population if they are better.

The optimisation process is repeated until the stopping criterion is verified. The

criterion for stopping the optimisation process is a limited number of iteration NI

determined empirically according to the size of the studied problem.

The steps of the MSA algorithm are described by the pseudo code in Algorithm

8.
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5.4.3 Simulation results

We coded MSA in C++ and compile it on a PC having 2 GHz Intel Core 2 Duo

processor and 2 GB RAM. To evaluate the efficiency and performance of our

MSA algorithm, it was initially tested on 54 standard test problems (divided

into six different sets) which are available at the OR-Library 2 maintained by

Beasley. These problems are real-world problems widely used for the validation of

the effectiveness of algorithms in the optimisation community. These problems

consisting of m = 2 to 30 and n = 6 to 105. After several experiments, we set the

parameters for the MSA as in Table 5.5.

Table 5.5: The values of MSA parameters.

Parameter Description Value

NI Number of iteration 50000
PS Population size 200
WT Wait time 70
N Number of iteration of SLSA 100
wp Probability of SLSA 0,93
T0 Initial temperature 30
CT Coefficient T update 0.0105
Nrun Number RUN 30

5.4.3.1 Results on SAC-94 data

Table 5.6 shows the results of MSA application on the 54 instances. Here columns

n and m represent the number of items, and the number of constraints (the

number of dimensions) respectively, column Optimum is the value of Z optimal,

column Time is the average time of 30 runs. Column AV I is the average number

of iteration of all the 30 runs. Column DTO is the deviation to the optimum and

finally NSR is the number of successful runs.

From these results, we have identified various remarks. Firstly, MSA has

succeeded to reach the optimal value once at least for all instances and 52 of the

54 in all 30 runs. The total average deviation of optimum is 0.0017%. Secondly,
2http://www.cs.nott.ac.uk/ jqd/the MKP01/
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Table 5.6: Results of MSA applied on the SAC-94.

n m Optimum Time AV I DTO NSR

HP 28 4 3418 5,020 24291 0 30/30
35 4 3186 2,382 11237 0 30/30

PB 27 4 3090 1,133 5289 0 30/30
34 4 3186 1,718 7717 0 30/30
29 2 95168 0,335 1582 0 30/30
20 10 2139 5,508 23963 0 30/30
40 30 776 0,403 860 0 30/30
37 30 1035 5,424 10746 0 30/30

PET 10 10 87061 0,013 1 0 30/30
15 10 4015 0,010 2 0 30/30
20 10 6120 0,013 13 0 30/30
28 10 12400 0,905 3652 0 30/30
39 5 10618 37,801 148 0,0922 9/30
50 5 16537 13,059 47317 0,0026 29/30

SENTO 60 30 7772 0,773 1767 0 30/30
60 30 8722 24,457 48509 0 30/30

WEING 28 2 141278 0,028 82 0 30/30
28 2 130883 0,014 19 0 30/30
28 2 95677 0,009 4 0 30/30
28 2 119337 0,217 990 0 30/30
28 2 98796 0,109 542 0 30/30
28 2 130623 0,019 63 0 30/30

105 2 1095445 58,112 121421 0 30/30
105 2 624319 16,681 61761 0 30/30

WIESH 30 5 4554 0,010 10 0 30/30
30 5 4536 0,057 216 0 30/30
30 5 4115 0,063 248 0 30/30
30 5 4561 0,013 28 0 30/30
30 5 4514 0,013 35 0 30/30
40 5 5557 0,647 2798 0 30/30
40 5 5567 0,659 2863 0 30/30
40 5 5605 0,893 3795 0 30/30
40 5 5246 0,105 437 0 30/30
50 5 6339 0,619 2491 0 30/30
50 5 5643 0,774 3251 0 30/30
50 5 6339 0,706 2810 0 30/30
50 5 6159 0,782 3222 0 30/30
60 5 6954 3,623 13939 0 30/30
60 5 7486 0,613 2326 0 30/30
60 5 7289 2,767 10593 0 30/30
60 5 8633 9,375 31597 0 30/30
70 5 9580 15,670 53919 0 30/30
70 5 7698 4,035 15589 0 30/30
70 5 9450 3,713 12805 0 30/30
70 5 9074 3,445 11963 0 30/30
80 5 8947 7,761 26499 0 30/30
80 5 8344 32,683 112813 0 30/30
80 5 10220 60,773 192505 0 30/30
80 5 9939 29,397 96748 0 30/30
90 5 9584 14,307 47672 0 30/30
90 5 9819 20,250 67586 0 30/30
90 5 9492 23,620 78641 0 30/30
90 5 9410 18,233 61025 0 30/30
90 5 11191 232,352 683614 0 30/30

72



CHAPTER 5. HYBRID META-HEURISTICS FOR THE MKP01

Table 5.7: WT influence with PS = 50 individuals.

5 6 8 10 12 16 25 33

AFV 16464,4 16453,1 16465,3 16510,6 16484,4 16515,1 16527,3 16530,4
BFV 16524 16518 16518 16537 16537 16537 16537 16537
WFV 16424 16395 16417 16457 16439 16439 16510 16515
DEV 0,439 0,507 0,433 0,159 0,318 0,132 0,058 0,039
AV I 44847 46151 46774 45551 45206 45186 44972 45018

NOP 0 0 0 2 1 4 5 6

in 27 of 54 instances, the average execution time of MSA is less than one second,

however, some instances required more time than the rest as WEISH 23-29, PET

5, WEING 7 and 8 and, in particular, the WEISH30, but in general, the time is

relatively little with global average of 11,7 seconds. 7,4 seconds if the WEISH30 is

ignored. Thirdly, the number of required average iteration varies from 1 to 600

thousand iterations (for PET1 and WEISH30 respectively) or an average of 35895

iterations and 23194 iterations without the WEISH30.

5.4.3.2 Impact of the Waiting Time parameter (WT)

The Waiting Time WT is the mechanism that synchronises the participation of

individuals in the MSA algorithm operations. It is a waiting list of size relative

to the size of the population (PS). In order to assess its influence, MSA is tested

for 8 values of WT calculated the ratio PS * k such that k = 1/10, 1/8, 1/6, 1/5,

1/4, 1/3, 1/2, 2/3. The influence of WT on the behaviour of MSA is evaluated for

three sizes of population PS = 50, 100, 200. Finally, the following factors have

been identified: the average fitness "AVF", the best fitness "BFV", the worst fitness

"WFV", the deviation to optimum "DEV", the average number of iteration "AVI"

necessary to obtain optimum and finally the number of times that the optimal

value is obtained "NOP" (Number of Optimal case). TW is tested with several PS

values {50,100,200} given in Tables 5.7, 5.8 and 5.9 respectively. The number of

optimal solutions is given in Table 5.10.

Table 5.10 summarises Table 5.7, 5.8, 5.9 in terms of number of successful runs.
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Table 5.8: WT influence with PS = 100 individuals.

10 12 16 20 25 33 50 66

AFV 16483.2 16486.8 16500.7 16521.7 16518.5 16527.1 16531 16527.8
BFV 16537 16524 16524 16537 16537 16537 16537 16537
WFV 16433 16439 16447 16477 16417 16464 16490 16508
DEV 0.325 0.303 0.219 0.092 0.111 0.059 0.036 0.055
AVI 45827 45092 45251 43487 43470 44170 44916 45006

NOP/10 1 0 0 3 4 7 8 5

Table 5.9: WT influence with PS = 200 individuals.

20 25 33 40 50 66 100 133

AFV 16511,4 16516,5 16518 16527,7 16534,4 16529,7 16522,6 16519.8
BFV 16537 16537 16537 16537 16537 16537 16537 16537
WFV 16439 16463 16470 16470 16524 16507 16496 16508
DEV 0,154 0,123 0,114 0,056 0,015 0,044 0,087 0.104
AVI 44166 43818 42864 42320 41788 41966 42966 43487

NOP/10 5 4 1 7 8 6 2 2

Table 5.10: The number of optimal solutions for different values of WT.

PS 1/10 1/8 1/6 1/5 1/4 1/3 1/2 2/3 total

50 0 0 0 2 1 4 5 6 18
100 1 0 0 3 4 7 8 5 28
200 5 4 1 7 8 6 2 2 35

SUM 6 4 1 12 13 17 15 13

There we can see that in 15 of the 24 possible cases MSA has failed to achieve the

optimum in more than 5/10 runs. MSA has reached the optimum in 5/10 runs in

only 3 of the 24 possible cases and more than 5/10 runs in only 6/24 possible cases.

In addition, the most appropriate population size is PS = 200 to which corresponds

a WT size between 66 and 100 (we set WT = 70). Finally, we can conclude that

WT is a determining factor in the operation of crossover and therefore greatly

influences the effectiveness of the MSA algorithm.

5.4.3.3 MSA compared to other approaches

1. MSA vs. GA, GA-SA and GA-SLS.

In this experiment the MSA approach was compared to three other ap-

proaches: the Genetic Algorithm (GA), its hybridisation with the Simulated
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Table 5.11: The average deviation obtained by MSA for PS equals to: 50, 100 and
200 individuals.

PS 1/10 1/8 1/6 1/5 1/4 1/3 1/2 2/3

50 0,439 0,507 0,433 0,159 0,318 0,132 0,058 0,039
100 0.325 0.303 0.219 0.092 0.111 0.059 0.036 0.055
200 0,154 0,123 0,114 0,056 0,015 0,044 0,087 0.104

AVERAGE 0,306 0,311 0,255 0,102 0,148 0,078 0,060 0,066

Annealing (GA-SA) and by the Stochastic local-search (GA-SLS) (Rezoug

et al., 2015). In all tests, same parameters were used. We applied the GA,

GA-SA, GA-SLS and MSA algorithms on the WEISH27 instance (optimum

= 9819). The value of fitness was noted every second for 15 seconds. With

the average of fitness obtained in 10 runs, the curves 5.2 and histogram 5.3

were drawn.
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Figure 5.2: Comparing MSA to GA, GA-SA, GA-SLS through the WEISH27

The curves of the Fig. 5.2 and 5.3 represent the evolution of the four algo-

rithms for 15 seconds. Algorithms start using population generated according
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Figure 5.3: Comparing MSA to GA, GA-SA, GA-SLS through the WEISH27

to RK. The algorithms MSA and GA-SLS curves are too close together except

at the end where only MSA reaches the optimum.

These two algorithms exceeded slightly that of the GA-SA algorithm and

largely that of the GA algorithm. We can deduce that MSA is faster and

more efficient than the other three algorithms. Indeed, the same experience

with WEISH8 (optimal = 624319). But this time, the value of fitness was

relieved each 0.5 seconds for 25 seconds, confirms the results of the first

experiment. The Fig. 5.4 shows the results.

2. MSA vs. CRGA and SRGA.

Table 5.12 shows the comparison of MSA with CRGA and SRGA algorithms

(H. Yang et al., 2013) in terms of effectiveness. Where CRGA and SRGA are

two algorithms based on GA. The comparison was done according to the

calculated means fitness. The values of results presented in Table 5.12 are
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Figure 5.4: Comparing MSA to GA, GA-SA, GA-SLS through the WEING8.

the same published by the authors.

We can observe that MSA was able to reach the optimum in almost all

instances, whereas CRGA and SRGA were not able to reach the optimum in

any instance. MSA is more effective than CRGA and SRGA.

3. MSA vs. DPHEU. Table 5.13 shows the comparison of MSA with DPHEU

algorithm (Veni & Balachandar, 2010) in terms of effectiveness. DPHEU is.

The comparison was done according to the calculated average p o d APOD

and the number NOPT. The values of results presented in Table 5.13 are the

same published by the authors.

Both MSA and DPHEU obtained similar results in three of the six sets (HP,

SENTO and WEING). MSA is more effective than DPHEU in two sets PB

and WEISH. DPHEU is more effective than MSA in the PET set. We can

say that MSA and DPHEU are quite similar in terms of effectiveness.
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Table 5.12: Mean fitness obtained by MSA compared to CRGA and SRGA.

CRGA SRGA MSA
instance optimum Mean Mean Mean

PET1 3800 3782 3800 3800
PET2 8706 8562 8662 8706
PET3 4015 3878 3941 4015
PET4 6120 5476 5630 6120
PET5 12400 11203 12240 12400
PET6 10618 10107 9953 10608,2
PET7 16537 15184 14915 16536,5
HP1 3418 3259 3214 3418
HP2 3186 2921 2864 3186
Weing1 141278 130885 131409 141278
Weing2 130883 113289 116883 130883
Weing4 119337 107535 106950 119337
Weing5 98796 79038 75109 98796
Weing6 130623 116773 115671 130623
Weing7 1095445 975269 783196 1095445
PB1 3090 2953 2936 3090
PB2 3186 2965 2907 3186
PB4 95168 83483 81412 95168
PB5 2139 1984 2016 2139
Weish1 4554 3774 3777 4554

Table 5.13: Average fitness and number of optimal solutions obtained by MSA
compared to DPHEU.

number DPHEU MSA
data of instances A.P.O.D N.O.P.T A.P.O.D N.O.P.T

HP 2 0.0 2 0.0 2
PB 6 0.04 5 0.0 6
PET 6 0.0 6 0,0158 4
SENTO 2 0.0 2 0.0 2
WEING 8 0.0 8 0.0 8
WEISH 30 0.03 28 0.0 30

4. Further comparison. The MSA effectiveness is more demonstrated through

the comparison to the works by (Cotta & Troya, 1998; Chu & Beasley, 1998;

Djannaty & Doostdar, 2008; Khuri et al., 1994; Thiel & Voss, 1994) shown in

Table 5.14. MSA, HGA and CHBE resolved to optimality all instances used

in the tests.
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Table 5.14: Fitness obtained by MSA compared to other approaches based on GA.

KHBA COTRO TEVO CHBE HGA MSA
data optimum Sol A. Sol A. Sol A. Sol A. Sol A. Sol A.

sento1 7772 7626 7767.9 7754.2 7772 7772 7772
sento2 8722 8685 8716.3 8719.5 8722 8722 8722
weing7 1095445 1093897 1095296.1 1095398.1 1095445 1095445 1095445
weing8 624319 613383 622048.1 622021.3 624319 624319 624319
weish23 8344 8165.1 8245.8 8286.7 8344 8344 8344
hp1 3418 3385.1 3394.3 3401.6 3418 3418 3418
pb2 3186 3091 3131.2 3112.5 3186 3186 3186

5.5 Adaptive Harmony Search for the MKP01

It has proven advantageous to combine a population based method with a local-

search to ensure a balance between the global exploration and the local exploitation

of the search space. Motivated by this idea, we propose a hybrid Self-Adaptive

Harmony Search (SAHS) combined with SLS to solve the MKP01. SAHS is used

to ensure exploration while SLS performs exploitation. First, we improved the

SAHS by adding a tuning strategy for the pitch adjusting rate (PAR) and the

Bandwidth (bw). then, we apply the local-search SLS on every generated solution

with a specified Probability (ESP) strategy. the proposed SAHS-SLS is evaluated

on the well-known the MKP01 benchmarks proposed by (Chu & Beasley, 1998).

5.5.1 Self-adaptive Global best Harmony Search algorithm

(SGHS)

Self-adaptive Global best Harmony Search algorithm (SGHS) (Pan et al., 2010) pro-

posed a self-adapted tuning of the parameters HMCR, PAR and bw by a learning

mechanism, a modified PAR and dynamic generation of bw. SGHS proposed also,

in the memory consideration phase, an improved method to avoid getting trapped

in local optima. SGHS can be summarised by the pseudo code in Algorithm 9.
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Algorithm 9 the SGHS method.
Require: HMS,LP, NImax,n,bwmax,bwmin,HMCRm and PAR
Ensure: the better feasible solution Xbest

1: initialise and evaluate HM. Set generation counter l p = 1, NI = 0.
2: for i = 1 to NI do
3: Generate HMCR and PAR according to HMCRm and PARm. Yield bw

according to bwmax and bwmin.
4: for j = 1 to n do
5: if r ≤ HMCR then
6: xnew j = xa j ± r1∗bw. where a ∈ {1, · · · ,HMS} ;
7: if r2≤ PAR then
8: xnew j = xbest j ;
9: end if

10: else
11: xnew j = xL + (xU − xL)∗ r3;
12: end if
13: end for
14: if f (xnew)< f (xworst) then
15: update the HM as xworst = xnew ; Record the values of HMCR and PAR.
16: end if
17: if l p = LP then
18: recalculate HMCRm, PARm according to the recorded values of HMCR,

PAR and reset l p = 1;
19: else
20: l p = l p+1;
21: end if
22: end for
23: Note: where r, r1, r2 ∈ [0,1]

5.5.2 Hybrid Self-Adaptive Harmony Search (SAHS-SLS)

SAHS-SLS initialises the HM population following the RK method before starting

the optimisation. After that, the optimisation step consists in improvising a new

harmony according to SAHS, then with probability P, apply a local-search SLS.

5.5.2.1 bw tuning strategy

In the improvisation step, bw is generated in two phases. First, bw is computed

according to the number of iterations (NI). bw starts with a high value and
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decreases continuously until half NI which allows to explore the search space. In

the second phase, for each improvised harmony X j corresponds a bw j value set at

random in [bwmin, bwmax]. the bw is generated as the following strategy:

bw j =


bwmax −bwmin

NI
i ≤ NI/2

bwrand ∈ [bwmax,bwmin] i > NI/2

5.5.2.2 Modified Pitch Adjusting Rate (PAR).

In SAHS-SLS, the PAR is modified as follows: the selected item from Xbest of

HM is slightly adjusted with a bw generated according to the strategy seen

previously. the adjustment is applied with a probability pbw2. A small value of

PAR guaranties the compromise between exploitation and exploration. Contrary,

a high value increases the exploration but decreases the exploitation and the

obtained solutions will be of bad quality. The proposed PAR is given in Algorithm

10 by lines 8-13.

5.5.2.3 WP adaptation

the WP parameter is dynamically generated in SAHS-SLS. At each iteration, a

value of WP is generated according to a normal distribution with a mean value

WPm and deviation (0.01). the values of WP allowing SAHS-SLS to obtain a

better harmony than the worst harmony among HM are saved. After a number of

iterations LP, WPm is adjusted to the average of the saved best WP values.

5.5.3 Simulation results

the proposed algorithms were coded in C++. the experiments were run on an Intel

core 2 duo CPU 2 GHz and 2 GB of RAM and windows 7 32-bit. Large the MKP01

data set available in the OR-library (Chu & Beasley, 1998) have been used. the

problem set consists of 270 instances. there are 9 classes each one composed of 3
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Algorithm 10 the SAHS-SLS algorithm.
Require: Set HMS, NI, n, HMCRm, PAR, WPm, LP, P,MI, pbw1, pbw2, bwmin

and bwmax.
Ensure: the better feasible solution Xbest

1: initialise HM according to RK and set l p = 1, NI = 0.
2: for i = 1 to NI do
3: Generate HMCR, PAR and WP according to HMCRm, PARm and WPm.

Yield bw.
4: improvise a new harmony Xnew as follows :
5: for j = 1 to n do
6: if r ≤ HMCR then
7: xnew j = xak ± pbw1∗bw. where a ∈ {1, · · · ,HMS} ;
8: if r1≤ P AR then
9: xnew j = xbest j ± pbw2∗bw.

10: end if
11: else
12: xnew j = xrand;
13: end if
14: end for
15: if r2≤ P then
16: apply SLS to the new harmony Xnew
17: end if
18: if f (Xnew)> f (Xworst) then
19: Update HM as Xworst = Xnew; Record the values of HMCR, PAR and wp
20: end if
21: if l p = LP then
22: Recalculate HMCRm, PARm and WPm according to the recorded values

of HMCR, PAR and WP respectively; lp =1
23: else
24: lp = lp +1
25: end if
26: end for

groups, 10 instances in every group. the number of constraints m and items n are

5, 10, 30 and 100, 250, 500 respectively. the optimal solution for some instances

are yet unknown. We compared the obtained results to those collected in the web

page 3.
3http://www.cs.nott.ac.uk/~jqd/mkp/results.html
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Table 5.15: Impact of HMS in SAHS-SLS

10 30 70 100 200 500

(5,10,30)x100_0.25 Deviation 1,092 0,718 0,763 0,789 0,708 1,054
. Time 34,063 36,676 50,091 46,386 54,681 163,209

(5,10,30)x250_0.25 Deviation 2,016 1,831 1,865 1,891 2,014 2,541
. Time 68,337 71,698 81,109 83,943 98,091 191,815

(5,10,30)x500_0.25 Deviation 2,538 1,948 1,964 1,982 2,399 3,423
. Time 166,127 159,143 174,019 177,917 194,035 328,02

Average Deviation 1,882 1,499 1,530 1,554 1,707 2,339
. Time 89,509 89,172 101,739 102,748 115,602 227,681

Table 5.16: the appropriate probability of SLS application.

0 0.1 0.2 0.4 0.8 0.9 1

Deviation(%) 1.22 0.6 0.58 0.68 0.52 0.59 0.64

5.5.3.1 Parameters tuning

This experiment aims to determine the impact of HMS and P on SAHS-SLS. the

parameters of the proposed algorithms are empirically fixed. In each experiment,

only the tested parameter is changed and one the MKP01 instance is used. the

average fitness and CPU time is taken over 20 runs. HMS varies between 10 and

100, and P ∈ [0,1] .

• HMS

We used six different values of HMS to evaluation its impact on effectiveness

and speed of SAHS-SLS. We used the ten first instances from each of the nine

the MKP01 benchmark classes (those with α = 0.25). the results showed

in Table 5.15 represent the average value of CPU time and the fitness

obtained for instances having the same number of items m = 100, m = 250

and m = 500.

• WP

This experiment was carried out only with the OR10x250_0.75_1 first in-

stance to determine, in an empirical way, the value of suitable probability for

applying SLS following the ESP strategy. For that, the value of probability
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Figure 5.5: the convergence speed of SAHS-SLS, SGHS and HS.

was varied between seven different values. the results are reported in Table

5.16:

5.5.3.2 SAHS-SLS speed investigation

By using the same instance OR10x250_0.75_1 we carried out experimental tests

in order to compare the speed of convergence of the three algorithms. It consists

in running SAHS-SLS, SGHS and HS during 100 seconds. the value of fitness was

recovered each 0.05 second. the obtained results were translated into the curves

depicted in Fig. 5.5.

5.5.3.3 Results on large data

Constant values were assigned to the parameters to which the values are not

dynamically generated. Table 5.17 summarises the values of those parameters

for the three algorithms used to carry out the experiments. Table 5.18 reports the

results of SAHS-SLS, SGHS and HS.
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Table 5.17: the values of the algorithms parameters.

Parameter Value

HMS 30
[BWmin,BWmax] [1, 10]
pbw1 and pbw2 0.0001
P 0.8

HMCR [0.9, 1]
PAR and wp [0, 1]

HMCRm 0.99
PAR 0.8
WPm 0.7

NI {30000, 50000, 75000, 100000}
n {700, 1000, 1500}
maxiter 200
LP 200

5.6 Conclusion

This chapter aimed to present three approaches based on hybridisation between

a population-based and a single solution-based methods. The studies revealed

several conclusions on the performance of each approach.

The chapter began by describing two hybrid methods, GA-SA and GA-SLS,

that consists of a GA combined with two local-search algorithms SA and SLS. In

the current study, comparing GA-SA with GA-SLS showed that GA combined with

SLS outperforms its combination with SA and gives a high-quality solutions.

After that, the chapter introduced the Memetic Search Algorithm (MSA) for

dealing with MKP. It is a GA augmented by the local-search algorithm SLSA

presented in Chapter 4. MSA was also able to achieve high-quality solutions and

outperformed several other methods in literature.

Finally, the chapter presented a new approach resulting from the Self-Adaptive

Harmony Search (SAHS) combined with SLS. The SAHS introduced a new strategy

to measure bw and a new structure for the PAR part, and it has been combined

with SLS. These changes allowed SAHS-SLS to achieve encouraging performances

on complex and large data and surpass other methods.
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Table 5.18: Comparison of SAHS-SLS, SGHS and HS.

SAHS-SLS SGHS HS

Deviation Time Deviation Time Deviation Time

5 100 0.25 0,6 18,89 0,77 16,33 5,35 9,54
0.50 0,57 24,79 0,78 22,32 5,15 12,35
0.75 0,32 29,06 0,47 27,56 3,09 16,55

Average 0,49 24,24 0,68 22,07 4,53 12,82

250 0.25 2,14 31,54 2,62 26,56 8,41 22,39
0.50 1,48 68,07 2,27 57,16 6,21 36,31
0.75 1,215 99,34 1,77 80,45 3,78 62,32

Average 1,61 66,31 2,22 54,72 6,13 40,34

500 0.25 1,85 146,3 3,75 109,06 9,57 66,74
0.50 1,31 248,36 3,59 177,27 7,24 116,41
0.75 1,33 339,97 2,68 269,62 4,67 187,63

Average 1,5 244,87 3,34 185,32 7,16 123,59

10 100 0.25 0,9 29,01 1,26 27,84 5,31 16,46
0.50 0,64 46,6 0,97 33,61 4,89 20,58
0.75 0,36 48,8 0,64 43,51 3,22 27,32

Average 0,63 41,47 0,96 34,99 4,48 21,46

250 0.25 1,49 93,28 2,33 74,11 7,17 44,74
0.50 0,91 160,19 2,06 116,26 6,01 76,59
0.75 0,67 261,48 1,59 172,83 3,84 116,62

Average 1,03 171,65 1,99 121,07 5,67 79,32

10 500 0.25 2,11 157,14 4,16 118,5 9,95 78,03
0.50 1,61 267,03 4,23 207,42 7,95 143,54
0.75 1,45 384,42 4,11 297,31 5,04 229,34

Average 1,72 269,53 4,16 207,74 7,65 150,3

30 100 0.25 1,23 76,98 0,93 68,49 2,79 49,69
0.50 0,68 64,93 0,96 52,54 3,9 36,46
0.75 0,33 87,05 0,52 67,91 3,21 46,85

Average 0,75 76,32 0,8 62,99 3,3 44,33

30 250 0.25 1,93 155,91 2,47 91,9 7,59 61,82
0.50 0,84 155,75 2,49 102,97 6,99 71,56
0.75 0,66 231,71 1,77 150,69 4,28 108,27

Average 1,14 181,12 2,24 115,18 6,29 80,55

30 500 0.25 2,24 173,32 5,62 127,13 9,71 88,99
0.50 1,19 264,16 4,82 206,27 8,39 137,07
0.75 0,87 343,99 6,31 285,05 6,43 243,26

Average 1,43 260,49 5,58 206,15 8,18 156,44

Average all 1,14 148,44 2,44 108,64 6,01 74,01



C
H

A
P

T
E

R

6
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6.1 Introduction

Genetic Algorithm (GA) has emerged as an efficient method for solving wide range

of Combinatorial Optimisation (CO) problems. Its application has long been a

question of great interest in a wide range of research fields.

Genetic Algorithm (GA) was first introduced more than four decades ago and

it is still a widely used in several research applications. GA is mainly used as

a stochastic method for solving CO problems, especially for NP-hard problems.

In may real-world problems, exact methods fail to find a satisfactorily solution

in a reasonable processing time. GA has been applied successfully in many real

applications as well as many traditional combinatorial problems (Gen, 2006).

Originally, GA is inspired by the biological evolution of living species. Starting with

a randomly generated initial population of a set of individuals, GA aims to improve

the quality of the successive generations by a set of selection and modification

operators, e.g. crossover and mutation. It is known that GA is relatively simple to

implement compared to several other methods, but, is it really able to provide the
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best solutions? In reality, GA is a stochastic process, so there is no guarantee of

optimality, only a large number of generations and individuals can increase the

confidence in the obtained solution (Pappa & Freitas, 2009; Snášel et al., 2010).

This chapter presents a GA variant - named Guided GA (GGA) - for the Multi-

dimensional Knapsack Problem (MKP01). The proposed algorithm is inspired by

two main concepts. The first is the concept of Proximate Optimality; in most cases,

the best solutions have a similar structure, in other words; part of the solution

may appear in all the best individuals. The second motivation is based on the

Core Concept for the Multidimensional Knapsack Problem CCMKP01 (Puchinger

et al., 2010; Senju & Toyoda, 1968); CCMKP01 provides a mathematical model

for ordering the items in the MKP01 based on a compromise between the cost

and the benefit of each object. GGA uses the output of the CCMKP01 model as

an additional guide for the GA’s evolutionary process. The CCMKP01 output is

used at two stages of the evolutionary process; in the initialisation and evaluation

(fitness function) stages.

The chapter is structured as follows: Section 6.3 gives an overview of the

literature review related to the GGA. The proposed algorithm GGA is introduced

in Section 6.4. The experimental setup and the parameters tuning are given in

Section 6.5. Section 6.6 presents the conducted experiments and the obtained

results. The conclusions and final remarks are drawn in Section 2.5.

6.2 The Core Concept for MKP01

The core concept for solving the combinatorial and linear programming problems

was specifically applied for the knapsack problems by (Balas & Zemel, 1980)

and successfully extended to the MKP01 by (Puchinger et al., 2010). It consists

in the part of variables (items) for which it is hard to approximately know in

advance what their value will be in an optimal solution. The CCMKP01 calculates

a score for each item in the MKP01, the score reflects the expected added value
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of the item to the final solution; a high score indicates that the item is likely to

appear in the optimal solution, low score indicates that the item is unlikely to

appear in the optimal or near-optimal solutions, while "average" score indicate

that there is uncertainty about the item’s added value. Therefore, after being

sorted decreasingly according to CCMKP01 score, the variables are divided into

three sets. The variables with high efficiency measures are fixed to 1 whereas

those with low efficiency measures are fixed to 0 and those with close efficiency

represent the core. Consequently, the core concept allows reducing the original

problem into only the core problem.

(6.1) esimple
j = p j∑m

i=1 wi j

(6.2) escaled
j = p j∑m

i=1
wi j
ci

(6.3) est
j = p j∑m

j=1 wi j(
∑n

l=1 wil − ci)

(6.4) egeneral
j = p j∑m

i=1 r iwi j

(6.5) r i =
∑n

j=1 wi j − ci∑n
j=1 wi j

As mentioned earlier, the core concept is based on the efficiency measurement

function (score). The aim is to assigns an efficiency value to each variable, ac-

cording to its significance in producing the optimal solution, in such a way to

promote those having the high benefits and low costs. Several efficiency definitions

have been used as approximations of the efficiency function, for example, simple
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efficiency (esimple
j ) (Dobson, 1982), scaled efficiency (escaled

j ), Senju & Toyoda (est
j )

Senju and Toyoda (1968) and general efficiency (egeneral
j ) (Freville & Plateau, 1994;

Kellerer et al., 2004b) as shown in Eq. 6.1, 6.2, 6.3 and 6.4-6.5 respectively.

Balas and Zemel (1980) provided a method based on the core concept to solve

the knapsack problem. In their solution the authors supposed that the weights of

the items are uniformly distributed. Thus, they claimed that if the weights in the

core are uniformly distributed, then there is a high probability of finding an opti-

mal solution in the core. However, Pisinger (1999) demonstrated experimentally

that the weights in the core are not uniformly distributed in some complex test.

Also, it is experimentally shown that the heuristic proposed by (Balas & Zemel,

1980) does not find as good solutions as expected.

The core concept method has many inconveniences related to the method itself

or to the data used. Firstly, the solution quality depends on the core size which

is different from an instance to another. Secondly, the more is the correlation

between the efficiency of the variables the hard is to find the core. Thirdly, it is

not easy to generalise the core concept method to multi-objectives combinatorial

optimisation problems, when the variables are continuous or for the problems

with multiple variables. Finally, if the adopted method to sort the variables is not

efficient, then the obtained results using the core concept method will be of low

quality.

6.3 Related Works

There are several methods related to the guided GA concept in the literature,

that has been applied to a wide range of applications. For solving the Course

Timetabling Problem, the approaches by (Jat & Yang, 2009; S. Yang & Jat, 2011)

use a memory denoted MEM to record useful information to guide the GA process

and improve its performance. MEM is a list of limited size, in which a list of

room and time slot pairs is recorded. This information is integrated into the
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crossover operator of the proposed guided GA. Other researchers used an external

structure to guide GA such as (Acan & Tekol, 2003; Louis & Li, 1997). Another

approach for guiding the GA is through the use of approximate probabilistic

models. In (S.-H. Chen et al., 2012; Q. Zhang, 2009) The GA is augmented with an

approximate probabilistic model to guide the crossover and mutation operators.

The probabilistic model is used to estimate the quality of candidate solutions

generated by the traditional crossover and mutation operators. It also evaluates

the quality of candidate solutions. This estimation enables the crossover and

mutation operators to generate more promising solutions.

Specific characteristics of the addressed problem are used to guide the GA search

process. The Process Discovery through a Genetic algorithm (ProDiGen) (Vázquez-

Barreiros et al., 2014) is a GA that adopts three characteristics of the Process

Discovery. A methods calculate the precision, simplicity and completeness values of

the treated model (i.e. log files of the information system process). These values are

integrated into the expression of the GA fitness function to guide the optimisation

process. A slowdown-guided GA for the job scheduling problem is proposed by

(Gabaldon et al., 2014). The proposed model is based on the estimation of the

execution slowdown of the tasks which is used to guide the GA search process, the

slowdown estimation is embedded the fitness function.

A subset of the genetic operators is guided. The proximate optimality principle

assumes that good solutions have a similar structure. Based on this principle,

the guided mutation proposed by (Q. Zhang et al., 2005) uses a probability model

inspired by estimation of distribution algorithms EDA mutation operator. The

generated offspring by this operator is constructed based on the best parent so

far and a dynamic probability model and a probability β. This allows conducting

the searching process in promising areas. A guided crossover operator has been

proposed by (Rasheed, 1999). The crossover operator works by using guidance

from all members of the GA population to select a direction for exploration. The

first parent is selected by the selection operator. To select the second parent,
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a metric named Mutual_ f itness is calculated for all the other chromosomes.

The chromosome which has the maximum value is selected. One offspring is

generated by crossing the parents in a point chosen randomly such that the

offspring resulting is the best.

6.4 The Guided Genetic Algorithm GGA

The algorithm in this chapter is motivated by the observation that in many

optimisation real-world problem, we may have some prior information about the

components/patterns that are likely to appear in the good solutions. For example,

in MKP01, it is possible using linear relaxation or the "optimal fractional solution"

(G. B. Dantzig, 1957; Shih, 1979) to predict some of the items that are likely or

unlikely to appear in the good solutions. This study proposes a method for using

such prior information as an additional guide for the GA evolutionary process

for the MKP01 problem. By guide, we mean any structure external to GA, which

maintains its original composition and is used to drive its search process. This

can be through a subset of operators, in order to accelerate the search process

and improve the speed of convergence. This section aims to describe the GGA

components.

6.4.1 Chromosome design

The population is composed of a finite number of chromosomes. A chromosome

represents a feasible solution to the problem (MKP01). As mentioned before, the

target in the MKP01 is to define the subset of items that maximises the total

profit. The GGA chromosome consists of the set of the items to be added to the

knapsack. GGA uses the integer representation, where each gene represents an

item ID. The items are coded as integer numbers. A chromosome is formed only by

the number of items that it contains. This representation allows reducing the size
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of the processed data (Fig. 6.1).

4 8 6 0 2 100 100.21

Objects Objective function Fitness

Figure 6.1: Example of the the chromosome design. The objects(items) packed in
the knapsack are represented by their identifiers. The objective function value is
calculated by summing the benefit of all the objects while the fitness is calculated
according to the fitness function.

6.4.2 Guiding Information

The guiding information is based on the work by (Puchinger et al. (2010)). The

items are sorted in decreasing order according to a statistical efficiency e j based

on the profit and the cost (esimple
j , escaled

j , est
j or egeneral

j ). In simple words, the

items are sorted based on how likely each item is to appear in high performing

individuals, the item at the top of this list are the items that are likely to be

selected while the items at the bottom of the list are the items that are unlikely to

appear in good solutions. However, it is important to note here that this list is just

an estimate and not a predefined part of the solution. It should be noted also that

the Greedy heuristic as by (Senju & Toyoda, 1968) only based on the efficiency

sorting is not an effective solution for the strongly correlated problem instances of

the MKP01 (Huston et al., 2008).

The sort operation allows favouring items that have a good compromise (i.e.

efficiency) between the average profit and overall capacity. The efficiency of an

item is high if its profit is high while its required global capacity is low. The sorted

items are split into three sets (Fig. 6.2) where the value of each variable is assigned

as follows:
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• X1 : x j = 1 The variables have the best efficiency e j. These variables are most

likely to build the best solutions even the optimal solution.

• Core : x j =? The variables have the values of the efficiency e j very close. In

this group, it is difficult to determine the best.

• X0 : x j = 0 The variables have a very low efficiency e j, in other words, the

profit is low or the capacity is large or both.

3 7 2 1 5 9 0 4 6 8

X1 Core X0

Figure 6.2: Example of the guide construction. The objects (items) are sorted
according to the efficiency e j

The guide is represented by the items of X1∪Core∪X0. The sizes of X1, Core

and X0 are determined as follows: Construct a feasible solution by adding the

items in the order. The item that makes the solution unfeasible represents the

centre of Core. The size of each part of the guide depends on the size of Core. By

determining the size of Core, we define the size of the other parts.

6.4.3 Initial population

GGA algorithm uses a special initialisation process which allows the GA to make

use of the prior information available about the items, and at the same time

generates a diverse initial population to ensure exploration of the search space.

A chromosome is generated from the items of X1 completed by items generated

randomly. In each chromosome, X1 is integrated with a probability α. If α is set to

zero this means that all the items in each individual are selected randomly, while

α= 1 means that each individual in the initial population contains all the items in

X1. This method allows having an initial population of good quality by integrating

X1 and ensures the diversification by adding the rest randomly.
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6.4.4 Fitness evaluation

In GGA, the objective function can be different than the fitness function f ( j).

The first is the value of a solution relative to MKP01 problem. It is evaluated

according to the first equation of the MKP01 model (see Section 2.4). While the

fitness function is defined in a way to guide the search process of GGA. Different

formulations of the fitness function are examined by introducing the efficiency e j,

X1 and X0.

1. The fitness function is exactly equal to the objective function (Eq. 6.6) :

(6.6) f ( j)=
n∑

j=0
p jx j

2. The efficiency e j is introduced in its evaluation according to Eq. 6.7. Each

generation, the fitness value of each chromosome is calculated. The fitness

formula allows giving more chance to the chromosome that has a high

efficiency to be selected more than the others.

(6.7) f ( j)=
n∑

j=0
e j p jx j

3. X1 and X0 are introduced in the fitness measuring; the first as a reward and

the second as a penalty (Eq. 6.8). The aim is to reward (respectively penalize)

each chromosome according to its similarity with X1 (respectively X0). Thus

allows, at the same time, increasing the chance for the good chromosome to

be selected and decreasing it for the bad ones.

(6.8) f ( j)=
n∑

j=0
p jx j + reward− penalty

Where reward = s1 ∗ pz, penalty = s0 ∗ pz, s1 and, s0 represents the simi-

larity rate with X1 and X0 respectively, and pz is a significant percentage of

the average objective function of the generation (in the experiments pz = 0.1

is used).
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4. The fitness uses the similarity of the chromosome with X1 as follows:

(6.9) f ( j)= (1+ s1)
n∑

j=0
p jx j

6.4.5 Genetic operators

GGA uses standard genetic crossover and mutation operators. Tournament se-

lection of size 5 is used as the selection method. For the crossover operator, the

random single point method is applied with a probability pc. For mutation, the

mutation by random multiple point bit flip is applied with the probability pm. And

finally, a reproduction operator copies a subset of individuals with the probability

pr such as pc + pm + pr = 1.

Algorithm 11 The GGA pseudo-code.
Require: MKP01 instance
Ensure: a feasible solution S

1: calculate the efficiency e j for each variable
2: sort the items according to the efficiency function
3: calculate X1, Core and X0 of the guide
4: initialise the population pop with X1 and α

5: for ctr = 1 to ng do
6: evaluate the fitness for each chromosome in pop according to the fitness

equation
7: crossover with (pc)
8: mutation with (pm)
9: reproduction with (pr)

10: end for
11: return the best solution S∗.

6.5 Experimental setup and parameters tuning

This section explains the experimental setup and presents the parameter tuning

analysis for the GGA algorithm. It is important to note that the concept of guide

can be applied to any problem if an effective method for sorting variables exists.

For an experimental purpose, and because the chosen sorting method concerns
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start MKP01 instance

sort the variables
according to e j

calculate the
parts of the guide

initialising
population

evaluate the fitness
selection and

crossover with (pc)

selection and
mutation with (pm)

reproduction
with (pr)

stopping
cre-

tiria?

stop (return S∗)

no

yes

Figure 6.3: Flowchart of the GGA optimisation process.

MKP01, it is natural to use data from this problem. The test platform is a Toshiba

laptop with 4GB RAM capacity and an Intel Core (TM) i5-4200 M 2.5 Ghz CPU.

The Java language is used to implement the approach. As for the test data, two

well-known benchmarks from the OR-Library1 are used.

Determine the best parameters is a difficult and deterministic task for any

algorithm. Unfortunately there is no proven approach to do that. Furthermore,

even by using the same parameters, it is not sure to have similar resolution

quality for different problems. Generally, the empirical method is the only solution

in a similar situation. This method is used in our study. As GGA has several
1http://people.brunel.ac.uk/ mastjjb/jeb/orlib/files/
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Table 6.1: Parameters of the GGA used to perform the experiments

parameter description value

ps population size 500
ng number of generations 500
pc crossover probability 0.2
pm mutation probability 0.7
pr reproduction probability 0.1
α X1 integration rate on the initial population 0.9
st selection tour 10
nmp number of mutation points 3
nbk number of best chromosomes keeped 5
nrun number of run for each instance 30

parameters, we do a set of experiments aiming to determine the values of the

most important parameters. In this sense the subset of instances 5x100-0.25 is

used. All parameter values are set as shown in Table 6.1; only the parameter to be

measured is changed.

Fig. 6.4 (a), displays how α may affect GGA Distance From the Optimum

(D.F.O) by changing its value. The study revealed that: α was relatively propor-

tional to D.F.O in the range 0-0.9 and α= 0.9 gave the lowest D.F.O and D.F.O

value was higher when α exceeded 0.9. This indicates that using more items of

I1 in the initial population individuals improves significantly the quality of the

obtained solutions. Furthermore, the integration of the whole group (i.e. α = 1)

reduces the diversity of individuals.

The Average Distance From the Optimum A.D.F.O of the GGA application on the

OR5x100-0.25 instances with different values of ng is given in Fig. 6.4 (b). The

results indicated that when ng was high the A.D.F.O decreased. Moreover, the

process kept reaching good solutions and might even reach the optimum for some

problem instances. In the next experiments it is considered that ng = 500.

The effect of using different values of population size ps on the GGA performance

is given in Fig. 6.4 (c). The results showed that more individuals (between 100

and 1000) in the population led to have an A.D.F.O close to the optimum; and

ps = 500 allowed having the best solutions. ps = 1000 gave a low value because

a large population requires more time to reach solutions of high-quality. In the
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Figure 6.4: Guided-GA tuning of four parameters by calculating the Average
Distance From the Optimum A.D.F.O of 30 runs on the OR5x100_0.25 instances.
α, number of generation ng, population size ps the couple crossover/mutation
probability (pc, pm) are illustrated in (a), (b), (c) and (d) respectively. (pc, pm)
value is in {(0.1, 0.8), (0.2, 0.7), (0.3, 0.6), (0.4, 0.5), (0.5, 0.4), (0.6,0.3), (0.7, 0.2),
(0.8, 0.1)}

following it is assumed that ps = 500.

Eight couple values of crossover and mutation probabilities (pc, pm) were com-

pared to identify which one is to be used in GGA. The OR5x100_0.25 instances
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Figure 6.5: Impact of the efficiency measurement. The average objective function
values rang obtained by Giuded-GA with different values of efficiency measure-
ment and using the data set OR5x100-0.25 OR5x250-0.25 and OR5x500-0.25.

were applied 30 runs and the A.D.F.O results are shown in Fig 6.4 (d). The

A.D.F.O significantly increased when the crossover probability was increased

while the mutation probability was decreased (Fig 6.4(d)). The first couple gave

the best A.D.F.O. This suggests that more mutation and less crossover allows

obtaining the best solutions.

A comparison of the efficiency measurement function impact on GGA was in-

vestigated. The average objective function range values of its application on the

OR5x250-0.25 and OR5x500-0.25 instances are illustrated by Fig. 6.5. It was

difficult to decide which function is the best.

6.5.1 Core size

This experiment aim to determine the best size of the Core. Also, it allows to

determine whether enlarging the size I1 is likely or not to include more items of

the optimal solutions. The experiment consists in applying the CPLEX on the Core

of the 270 instances, and measuring the A.D.F.O. this experiment allows also to
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determine the position of the best items after sorting is performed.

Table 6.2: Average Distance From the Optimum A.D.F.O of the CPLEX application
with on the Core for different size δ on all the experimental data.

α δ= 10 δ= 0.1n δ= 0.15n δ= 0.2n
t = 5
5 0.25 14.446 7.589 3.830 1.355

0.5 5.605 2.885 1.555 0.637
0.75 1.968 0.826 0.440 0.158

10 0.25 9.777 5.784 3.239 1.679
0.5 4.555 2.780 1.598 1.055

0.75 2.127 1.234 0.793 0.393
30 0.25 6.316 4.234 2.817 1.672

0.5 4.664 3.280 2.264 1.646
0.75 2.111 1.319 0.832 0.508

t = 10
5 0.25 14.446 7.589 3.830 1.354

0.5 5.605 2.885 1.555 0.637
0.75 1.968 0.826 0.440 0.158

10 0.25 9.777 5.784 3.239 1.677
0.5 4.555 2.780 1.597 1.052

0.75 2.127 1.234 0.792 0.392
30 0.25 6.316 4.234 2.817 1.662

0.5 4.664 3.280 2.264 1.642
0.75 2.111 1.319 0.831 0.507

t = 50
5 0.25 14.446 7.589 3.830 1.350

0.5 5.605 2.885 1.554 0.636
0.75 1.968 0.826 0.439 0.158

10 0.25 9.777 5.784 3.239 1.672
0.5 4.555 2.780 1.596 1.049

0.75 2.127 1.234 0.792 0.391
30 0.25 6.316 4.234 2.817 1.661

0.5 4.664 3.280 2.264 1.637
0.75 2.111 1.319 0.831 0.503

t = 100
5 0.25 14.446 7.589 3.830 1.350

0.5 5.605 2.885 1.554 0.636
0.75 1.968 0.826 0.439 0.158

10 0.25 9.777 5.784 3.239 1.669
0.5 4.555 2.780 1.596 1.048

0.75 2.127 1.234 0.792 0.391
30 0.25 6.316 4.234 2.817 1.661

0.5 4.664 3.280 2.264 1.637
0.75 2.111 1.319 0.831 0.503

Table 6.2 summarises the obtained A.D.F.O with δ = {10,0.1n,0.15n,0.2n}

with n is the number of items. The results indicated that the larger is δ the better

is the A.D.F.O. Also, it revealed that the optimal solution, after the sort, was

probably gathered in a subset of 20% of the items. This could means, in our case

to include more items from the Core in I1.
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Table 6.3: Comparison of the D.F.O obtained by GGA with different expression of
the f itness f unction, using the OR5x100-0.25 dataset

instance Eq.6.6 Eq.6.7 Eq.6.8 Eq.6.9
1 1,180 0,682 1,318 1,017
2 1,237 0,757 1,111 0,908
3 0,843 0,382 0,781 0,487
4 1,254 0,663 1,488 0,967
5 0,951 0,583 0,955 0,768
6 1,061 0,523 1,084 0,666
7 1,710 0,856 2,111 1,485
8 1,414 0,570 1,249 0,949
9 1,086 0,620 0,909 0,813
10 1,230 0,563 1,112 0,745

6.5.2 Comparing the fitness functions

A comparison between the four expressions of fitness function is reported in Table

6.3. It revealed that the use of e j to express the fitness function is the best choice.

The A.D.F.O that showed the stability of the obtained results suggest that e j

expresses the guidance in the best way. The equation increases the chance of

individuals having the most good variables (in terms of e j) to be selected, in

parallel, it reduces it for those having more bad variables. Other expressions may

give better results as assigning a decrease weight to the variables according to the

order, but it is still true that the idea of expressing the values of fitness with e j is

interesting.

6.6 Simulation results

In order to provide a comprehensive analysis of the proposed GGA algorithm,

this section provides two sets of experiments. The first set of experiments aims

to evaluate the performance gain from adding the "guiding" component to the

standard GA supported with statistical analysis. This is achieved by comparing

the GGA against GA using the same evolutionary parameters (Section 6.6.1). The

second set of experiments aims to compare the proposed GGA with the state-of-art

results reported in the literature (Section 6.6.2).
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6.6.1 Comparing GGA to GA

A comparison between GA and GGA was conducted to measure the contribution

of the data pre-analysis information on the convergence of GA. Both GGA and

GA were executed 30 times during 200 generation on the OR5x100-0.25_1. The

obtained objective function value of each generation was recorded. The average

objective function of both approaches is compared in Fig. 6.6. The curves indicated

two search steps: diversification (0-35) and intensification (36-200) in both GA-

Guided kept a large gap on GA and maintained it throughout the process.

An extended investigation was done using the first and the last instances of each

class of the Chu & Beasley benchmarks. The comparison was done including many

factors: Average D.F.O, Best D.F.O, Worst D.F.O and average processing Time

(Table 6.4). It was noticed that GGA obtained better solutions than GA in most

instances. GGA was able to reach the optimal solution for some instances. Also, for

the instances with α= 0.50 and 0.75, both approaches were closer to the optimum

than with α= 0.25.

Moreover, to analyse the capacity of GGA to obtain solutions of good quality, the

range of objective function value of 30 runs compared to GA on six instances is

given in Fig. 6.7. This illustration suggested that through 30 runs, the quality of

solutions that GGA was able to reach was largely improved than GA.

It could be concluded that the information about the addressed problem known in

advance when integrated for guiding the GA process, improves its convergence

capacity and enhances the quality of the results.

6.6.1.1 Statistical analysis

An ANalysis Of the Variance (ANOVA) pairwise comparison was conducted to

investigate whether or not the guidance has a real effect on the GA. It has been

supposed that the null hypothesis H0 is "GGA has not a significant improvement

on GA". The first comparison included only one instance (Table 6.6 and 6.7) while
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Table 6.4: The GGA compared to GA in term of A.D.F.O, Best D.F.O, Worst
D.F.O and Average exection Time. The first and the last instance of each group
is used

GGA GA

Average Best Worst Time Average Best Worst Time
Instance D.F.O D.F.O D.F.O (sec) D.F.O D.F.O D.F.O (sec)

5x100 0.25_01 0.56 0 1.13 3 2.46 1.45 4.71 3
0.25_10 0.58 0 1.18 3 1.55 0.55 2.71 2
0.50_01 1.03 0.73 1.6 5 0.74 0.12 1.73 5
0.50_10 0.44 0.22 0.77 5 0.91 0.43 1.79 4
0.75_01 0.44 0 0.78 7 0.35 0.12 0.58 6
0.75_10 0.57 0.21 0.74 7 0.34 0.09 0.77 6

5x250 0.25_01 0.83 0.42 1.25 7 3.45 2.68 5.32 5
0.25_10 0.8 0.25 1.51 7 4.33 2.74 5.63 4
0.50_01 0.53 0.31 0.73 13 1.21 0.71 1.86 11
0.50_10 0.59 0.38 0.93 12 0.97 0.48 1.47 10
0.75_01 0.4 0.18 0.62 82 0.53 0.29 0.78 17
0.75_10 0.39 0.24 0.59 19 0.44 0.24 0.85 17

5x500 0.25_01 0.87 0.52 1.32 15 4.21 3.46 5.26 10
0.25_10 0.91 0.58 1.57 16 3.82 3.14 4.74 11
0.50_01 0.42 0.23 0.81 29 1.58 1.23 1.94 23
0.50_10 0.5 0.29 0.73 29 1.31 0.9 1.74 24
0.75_01 0.25 0.14 0.41 47 0.64 0.44 0.86 41
0.75_10 0.3 0.14 0.55 51 0.59 0.42 0.9 40

10x100 0.25_01 0.81 0.2 1.88 3 1.77 1.31 2.63 3
0.25_10 1.02 0 1.82 3 2.82 1.29 4.63 3
0.50_01 0.67 0.24 1.21 5 1.2 0.51 2.09 5
0.50_10 0.47 0.27 0.65 6 1.87 0.7 2.88 5
0.75_01 0.31 0.23 0.44 8 0.51 0.25 1.4 7
0.75_10 0.09 0 0.32 8 0.61 0.3 0.94 7

10x250 0.25_01 0.92 0.39 1.56 9 3.76 2.16 4.93 6
0.25_10 0.88 0.61 1.59 9 3.65 2.78 4.41 7
0.50_01 0.56 0.26 0.84 15 1.29 0.93 1.9 12
0.50_10 0.49 0.23 0.95 16 1.7 0.85 2.78 13
0.75_01 0.28 0.14 0.52 23 0.54 0.29 0.95 19
0.75_10 0.29 0.08 0.6 23 0.69 0.36 1.08 19

10x500 0.25_01 1.01 0.58 1.62 19 2.78 2.17 4.05 14
0.25_10 0.88 0.57 1.24 19 3.46 2.38 4.62 13
0.50_01 0.46 0.28 0.84 35 1.45 1.04 2.15 28
0.50_10 0.54 0.32 0.8 35 1.49 1.07 2.14 27
0.75_01 0.26 0.12 0.41 53 0.8 0.63 1.11 44
0.75_10 0.26 0.13 0.59 53 0.68 0.52 0.82 45

30x100 0.25_01 1.58 0.79 2.73 3 2.15 1.08 3.73 4
0.25_10 1.28 0.18 2.63 4 2.15 1.6 4.7 3
0.50_01 1.18 0.54 1.79 7 1.76 0.99 2.13 6
0.50_10 0.66 0.42 1.17 7 2.5 1.61 3.19 5
0.75_01 0.48 0.15 1.23 10 0.9 0.46 0.97 8
0.75_10 0.35 0.11 0.6 10 0.54 0.34 0.93 9

30x250 0.25_01 2.09 1.83 3.13 9 2.88 1.86 3.93 9
0.25_10 2.68 1.51 3.29 8 3.61 2.6 4.79 8
0.50_01 1.17 0.74 1.58 18 1.23 0.61 2.41 18
0.50_10 1.2 1.04 1.41 18 1.63 1.35 2.12 17
0.75_01 0.38 0.23 0.64 30 0.9 0.68 0.99 25
0.75_10 0.58 0.41 0.77 30 0.77 0.5 1.29 25

30x500 0.25_01 3.39 2.18 4.69 100 4.83 3.48 5.49 164
0.25_10 3.9 2.9 6.29 99 3.58 3.37 3.89 16
0.50_01 2.2 2.05 2.42 35 1.45 1.36 1.72 33
0.50_10 1.51 1.25 1.77 41 1.63 1.48 2.39 35
0.75_01 0.41 0.35 0.5 67 0.68 0.41 1.01 61
0.75_10 0.35 0.26 0.49 77 0.6 0.47 1 59
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Figure 6.6: Comparing the convergence of GGA with GA using the OR5x100-0.25_1
instance

the second included all the instances (Table 6.8 and 6.9). The first comparison

indicated an F = 152.72 largely greater than Fcrit = 3.99, and a P − value =
2.23E−18 largely lower than α= 0.05. The second comparison including all the

instances showed an F = 9.58 greater than F crit = 4.03, and a P −value = 0.003

lower than α = 0.05. Both results confirm that GA is significantly improved by

adding the guidance to its search process. Consequently, the null hypothesis can

be rejected.

A t-Test, ANOVA and t-Test (with Two-Sample Assuming Unequal Variances)

comparative analysis between GGA and the approaches reported in section 6.6.1

was conducted. The same results have been used to perform the comparison

reported in Table 6.10. The obtained t-Test values of the pairwise GGA comparison

to the other approaches were less than the P − value = 0.05 except SAHS-SLS.

Also the ANOVA comparison results indicated P −value less than α= 0.05 and

F largely greater than F crit except when compared with SAHS-SLS. The t-Test

(with Two-Sample Assuming Unequal Variances) indicated that the tStat was

negative and a P − value less than the P − value (i.e. α= 0.05) associated with

105



CHAPTER 6. KNOWLEDGE-GUIDED GA FOR THE MKP01

GGA GA

2.35

2.4

·104
OR5x100-0.25_1

GGA GA
5.6

5.7

5.8

5.9

·104
OR5x250-0.25_1

GGA GA

1.14

1.16

1.18

1.2
·105

OR5x500-0.25_1

GGA GA
2.24

2.26

2.28

2.3

·104
OR10x100-0.25_1

GGA GA

5.7

5.8

5.9

·104
OR10x250-0.25_1

GGA GA

1.14

1.16

·105
OR10x500-0.25_1

GGA GA

2.12

2.14

2.16

·104
OR30x100-0.25_1

GGA GA
5.45

5.5

5.55

·104
OR30x250-0.25_1

Figure 6.7: The objective function values rang obtained by Guided-GA compared
with GA within 30 run

that in both one-tail level and two-tail level excluding the GGA vs. SAHS-SLS

comparison. From all this statistical analysis it may be concluded that the null

hypothesis H0 is rejected. Therefore, GGA performs significantly better than the

other approaches and is comparative to the SAHS-SLS.
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Table 6.5: Comparison of GGA to GA, SAHS-SLS, SGHS and HS in terms of
A.D.F.O and average Time

GGA GA SAHS-SLS SGHS HS Greedy

Data-set D.F.O time D.F.O time D.F.O time D.F.O time D.F.O time D.F.O

5x100 0.25 0.62 3 2.17 2.2 0.60 18.9 0.78 16.3 5.36 9.5 29.25
0.50 0.67 5.1 0.86 4.0 0.57 24.8 0.78 22.3 5.15 12.4 13.01
0.75 0.34 6.9 0.42 6.0 0.32 29.1 0.47 27.6 3.09 16.6 6.40

Average 0.54 5 1.15 4.1 0.49 24.2 0.68 22.1 4.53 12.8 16.22

5x250 0.25 0.80 7.6 4.03 4.8 2.14 31.5 2.62 26.6 8.41 22.4 23.81
0.50 0.56 12.6 1.15 10.4 1.48 68.1 2.27 57.2 6.21 36.3 9.10
0.75 0.33 18.9 0.58 16.8 1.22 99.3 1.77 80.5 3.78 62.3 4.07

Average 0.56 13.0 1.92 10.7 1.61 66.3 2.22 54.7 6.13 40.3 12.33

5x500 0.25 0.84 15.6 4.27 10.5 1.85 146.3 3.75 109.1 9.57 66.7 20.70
0.50 0.53 30.8 1.45 24.0 1.31 248.4 3.60 177.3 7.25 116.4 9.62
0.75 0.26 47.7 0.65 42.3 1.33 340.0 2.69 269.6 4.67 187.6 3.39

Average 0.54 31.4 2.12 25.6 1.50 244.9 3.34 185.3 7.16 123.6 11.24

10x100 0.25 1.23 3.0 2.40 3.0 0.90 29.0 1.26 27.8 5.31 16.5 21.69
0.50 0.61 5.2 1.53 5.0 0.64 46.6 0.97 33.6 4.90 20.6 10.20
0.75 0.35 7.9 0.53 6.8 0.36 48.8 0.64 43.5 3.22 27.3 4.91

Average 0.73 5.4 1.49 4.9 0.63 41.5 0.96 35.0 4.48 21.5 12.26

10x250 0.25 0.98 8.9 3.56 6.2 1.49 93.3 2.33 74.1 7.17 44.7 15.94
0.50 0.58 15.0 1.35 12.6 0.91 160.2 2.06 116.3 6.01 76.6 7.91
0.75 0.33 23.0 0.66 19.2 0.67 261.5 1.59 172.8 3.85 116.6 3.57

Average 0.63 15.6 1.86 12.7 1.03 171.7 1.99 121.1 5.68 79.3 9.14

10x500 0.25 0.91 18.5 3.61 13.2 2.11 157.1 4.16 118.5 9.95 78.0 15.39
0.50 0.50 32.6 1.44 27.4 1.61 267.0 4.23 207.4 7.95 143.5 6.10
0.75 0.31 50.3 0.71 45.4 1.45 384.4 4.11 297.3 5.04 229.3 2.61

Average 0.57 33.8 1.92 28.7 1.72 269.5 4.16 207.7 7.65 150.3 8.03

30x100 0.25 1.66 3.6 2.27 3.0 1.23 77.0 0.93 68.5 2.79 49.7 18.04
0.50 1.10 6.0 1.72 5.8 0.68 64.9 0.96 52.5 3.90 36.5 8.83
0.75 0.49 9.6 0.78 8.9 0.33 87.1 0.52 67.9 3.22 46.8 5.97

Average 1.08 6.4 1.59 5.9 0.75 76.3 0.80 63.0 3.30 44.3 10.94

30x250 0.25 2.03 9.2 3.20 8.6 1.93 155.9 2.47 91.9 7.59 61.8 11.53
0.50 1.17 17.1 1.46 17.3 0.84 155.8 2.49 103.0 7.00 71.6 5.55
0.75 0.48 27.7 0.73 28.3 0.66 231.7 1.77 150.7 4.28 108.3 3.33

Average 1.23 18.0 1.80 18.1 1.14 181.1 2.25 115.2 6.29 80.6 6.80

30x500 0.25 4.07 99.1 3.50 18.8 2.24 173.3 5.63 127.1 9.71 89.0 44.18
0.50 1.90 40.4 1.45 36.1 1.19 264.2 4.82 206.3 8.39 137.1 6.21
0.75 0.43 63.4 0.69 58.5 0.87 344.0 6.31 285.1 6.44 243.3 2.30

Average 2.14 67.6 1.88 37.8 1.43 260.5 5.58 206.2 8.18 156.4 17.56

6.6.2 Comparison with the literature

As with most optimisation problems, MKP01 heuristics could be classified into

two groups: the first isconstructive heuristics, that aim to construct a solution. The

second is improvement heuristics which aim to improve a given initial solution

generated first by a constructive heuristic. The proposed method is considered as a
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Table 6.6: Statistic summary of GGA and GA on OR100x5-0.25_1

Algorithm Count Sum Average Variance Std. Dev Best Worst

GGA 32 20.53 0.64 0.12 0.34 0.30 0.98
GA 32 82.88 2.59 0.68 0.82 1.77 3.41

Table 6.7: ANOVA comparison between GGA and GA on OR100x5-0.25_1

Source of Variation SS df MS F P-value F crit

Between Groups 60.75 1 60.75 152.75 2.23E-18 3.996
Within Groups 24.66 62 0.40
Total 85.40 63

Table 6.8: Statistic summary of GGA and GA on Chu & Beasley instances

Algorithm Count Sum Average Variance Std. Dev Best Worst

GGA 27 24.08 0.89 0.63 0.80 1.69 0.10
GA 27 47.19 1.75 1.43 1.20 2.94 0.55

Table 6.9: ANOVA comparison between GGA and GA on the Chu & Beasley
instances

Source of Variation SS df MS F P-value F crit

Between Groups 9.89 1 9.89 9.58 0.003 4.03
Within Groups 53.67 52 1.03
Total 63.56 53

Table 6.10: Statistical comparison using t-Test, ANOVA and Two-Sample Assum-
ing Unequal Variances of GGA to Greedy, GA SAHS, SGHS and HS through the
Chu & Beasley instances

GGA vs. Greedy GGA vs. GA GGA vs. SAHS GGA vs. SGHS GGA vs. HS

t-Test 2.3E-06 0.002 0.093 3.7E-05 2.7E-13

P-value 5.1E-07 0.003 0.19 4.6E-05 9.1E-16
F 32.85 9.58 1.80 19.75 130.08
F crit 4.03 4.03 4.03 4.03 4.03

t Stat -5.54 -2.89 -1.36 -4.50 -11.02
P(T<=t) one-tail 4.6E-06 0.003 0.091 3.2E-05 1E-12
t Critical one-tail 1.71 1.68 1.68 1.69 1.69
P(T<=t) two-tail 9.3E-06 0.006 0.182 6.4E-05 2E-12
t Critical two-tail 2.06 2.02 2.01 2.03 2.04
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constructive heuristic. However, in order to demonstrate the performance of the

proposed method, the performance of the GGA is compared with both constrictive

and improvement approaches. The following text gives a short description of the

methods (constructive and improvement) used in the comparison presented in this

section.

Constructive: PECH (Primal Effective Capacity Heuristic) (Akçay et al., 2007)

is a simple greedy heuristic which incorporates a strategy based on the

effective capacity for selecting and adding the items to the knapsack. Thus,

PECH is a polynomial-time algorithm with the computational complexity

O(mn2). Magazine And Oguz (MAG) (Magazine & Oguz, 1984) proposed an

algorithm based on the Lagrange multipliers approach. The multipliers and

variables values are initialised to zero and one respectively. Iteratively, the

approach increases the corresponding multiplier to the largest remain/total

capacity ratio until a certain constraint is violated and then set a variable

to zero. Volgenant and Zoon (VZ) (Volgenant & Zoon, 1990) improved this

heuristic by computing more than one multiplier value in each iteration and

readjusting these values at the end of the algorithm. PIR (Pirkul, 1987) is an

approach based on a dual surrogate relaxation of the 0-1 MKP01 supported

with a branch and bound method. The proposed solution significantly reduces

the solution times compared to the resolution of the initial problem. SCE

(Shuffled Complex Evolution) is applied for MKP01 in (Baroni & Varejão,

2015). It is a population based meta-heuristic which shuffles the population

into complexes according to the fitness ascending sort. Iteratively, different

crossing alternatives and shuffling are operated within the complexes during

the optimisation process.

Improvement: CB (Chu & Beasley, 1998) is a standard genetic algorithm aug-

mented with a feasibility and constraint operator which utilises problem-

specific knowledge. The proposed GA obtains high-quality solutions, however,
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it demands a long computational time. In a purpose of reducing the problem

size and simplify its resolving, NR (P) (New Reduction (Pirkul)) (Hill et al.,

2012), operates a lagrangian dual relaxation on MKP01, and proposes a

dynamic estimation of the core problem size relative to the problem difficulty.

The core is then solved with a greedy heuristic combined with a local improve-

ment phase. MCF (Modified Choice Function - Late Acceptance Strategy)

(Drake et al., 2015) is a hyper-heuristic based on heuristics selection func-

tion "Modified Choice Function". A score Ft for each low-level heuristic h j is

calculated which includes its dependence with the other low-level heuristics,

its previous performance and an elapse time of selection.

GGA is compared with the standard GA algorithm and other state-of-the-art

optimisation methods reported in the literature. The comparison is shown in

Table 6.11 and Fig. 6.8. As shown in table 6.11, GGA is competitive with both

construction and improvement methods and has managed to outperform both

group of methods on a few instances.

6.7 Conclusion

The aim of this chapter was to introduce a new hybrid algorithm named Guided

Genetic Algorithm (GGA) for solving the Multidimensional Knapsack Problem

(MKP01). GGA is a two-step approach that analyses the problem data based on a

greedy method in the first step. Useful information about the items of the MKP01,

extracted in the first step, are integrated in the second step as a guide in the

initialisation and evaluation operators of a GA. To validate the approach, several

experiments were conducted on well-known MKP01 test data. The research has

shown that adding the guidance has significantly improved the performance of the

GA and accelerated its processing time. The statistical experiments confirmed that

GGA has a real impact on GA performance. One of the most significant findings
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Table 6.11: Comparison of results obtained by GGA with GA, constructive and
improvement heuristics

Constructive Improvement

n m α GGA GA PECH MAG VZ PIR SCE CB NR(P) MCF

5 100 0.25 0.62* 2.17 7.3 13.6 10.3 1.6 3.5 0.99 0.94 1.09
0.50 0.66 0.86 3.4 6.7 6.9 0.77 2.6 0.45 0.44* 0.57
0.75 0.34 0.42 2.02 5.1 5.6 0.48 1.1 0.32 0.22* 0.38

250 0.25 0.79 4.03 7.1 6.6 5.8 0.53 4.3 0.23* 0.46 0.41
0.50 0.56 1.15 3.2 5.2 4.4 0.24 3.3 0.12* 0.17 0.22
0.75 0.33 0.58 1.8 3.5 3.5 0.16 1.5 0.08* 0.1 0.14

500 0.25 0.83 4.27 6.4 4.9 4.1 0.22 4.6 1.56 0.15* 0.21
0.50 0.53 1.45 3.4 2.9 2.5 0.08 3.6 0.79 0.06* 0.1
0.75 0.26 0.65 1.7 2.3 2.41 0.06 1.8 0.48 0.03* 0.06

10 100 0.25 1.23 2.40 8.2 15.8 15.5 3.4 6.8 0.09* 2.05 1.87
0.50 0.61 1.53 3.7 10.4 10.7 1.8 5.1 0.04* 0.81 0.95
0.75 0.35 0.53 1.8 6.1 5.67 1.1 2.4 0.03* 0.44 0.53

250 0.25 0.98 3.56 5.8 11.7 10.5 1.1 6.9 0.51* 0.88 0.79
0.50 0.58 1.35 2.5 6.8 5.9 0.57 5.4 0.25* 0.39 0.41
0.75 0.32 0.66 1.5 4.4 3.7 0.33 2.8 0.15* 0.19 0.24

500 0.25 0.9 3.61 5.1 8.8 7.9 0.52 6.8 0.24* 0.34 0.44
0.50 0.5 1.44 2.4 5.7 4.1 0.22 5.8 0.11* 0.14 0.2
0.75 0.31 0.71 1.2 3.6 2.9 0.14 3.4 0.07* 0.1 0.13

30 100 0.25 1.65* 2.27 6.8 17.3 17.2 9.1 8.6 2.91 2.24 3.61
0.50 1.09* 1.72 3.2 11.8 10.1 3.51 6.6 1.34 1.32 1.6
0.75 0.49* 0.78 1.9 6.58 5.9 2.03 3.6 0.83 0.8 0.97

250 0.25 2.03 3.20 4.8 13.5 12.4 3.7 8.3 1.19* 1.27 1.75
0.50 1.16 1.46 2.1 8.6 7.1 1.5 6.9 0.53* 0.75 0.79
0.75 0.48 0.73 1.2 4.4 3.9 0.84 3.8 0.31* 0.38 0.43

500 0.25 4.07 3.50 3.7 9.8 9.6 1.89 8.6 0.61* 0.89 1.05
0.50 1.9 1.45 1.7 7.1 5.7 0.73 7.4 0.26* 0.36 0.44
0.75 0.43 0.69 0.9 3.7 3.5 0.48 4 0.17* 0.23 0.27

of this study is that prior-knowledge about the data of a CO problem could be

significantly helpful to accelerate its solving.
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7
CONCLUSIONS

C ombinatorial optimisation (CO) is important for a wide range of scien-

tific and industrial processes. In particular, the 0-1 Multidimensional

Knapsack Problem (MKP01) is one of the most studied CO problems

thanks to its many applications in different fields. This project was undertaken

for designing approximate solutions that deal with the MKP01. The main goal

was to propose hybrid heuristics able to return solutions of high quality within

a reasonable time. The second aim of this study was to evaluate the proposed

approaches on well-known MKP01 benchmarks and investigate their effects on

state-of-art methods.

Three categories of solutions have been suggested based on classic heuristics.

The first (Chapter 4) consists in utilising multiple local search methods to solve

MKP01 and also the winner determination problem in multi-unit combinatorial

auction (MU-WDP) which is an application of MKP01. The second (Chapter 5)

hybridises population-based and local search algorithms for ensuring diversifica-

tion and intensification of a developed approaches. The last (Chapter 6) combines

greedy and evolutionary algorithms in a two-step approach in such a way to ex-
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ploit prior-knowledge about optimal solutions, for improving the genetic algorithm

performance.

This study has shown that the local search algorithms (SA, SLS, SLSA, TS and

HC) employed for solving both MKP01 and MU-WDP performed successfully on

simple and small samples of data. According to the experimental studies, SLS and

SLSA outperformed the other methods with encouraging results. The research

has also revealed that the hybrid methods (MSA, GA-SLS, GA-SA and SAHS-SLS)

had better capability on large benchmarks. The conducted experiments confirmed

that the proposed approaches were competitive to the state-of-the-art approaches.

This study has also found that, generally, prior knowledge about the structure of

final solutions, even if partial, could dramatically simplify its solving. Moreover,

when GA was augmented by integrating prior information about MKP01, GA’s

processing time was reduced and better results have been achieved.

Taken together, these findings suggest a role for our proposed hybrid methods

in promoting the MKP01 solving in particular and the CO domain in general.

Although this study focuses on solving MKP01, the findings may well have a

bearing on other problems.

This work extends our knowledge of solving the CO problems, in particular np-

hard ones. It will serve as a base for future studies on MKP01. The content of this

thesis makes several contributions to the current literature. First, the literature

review gathered and classified the main methods in literature and focused on the

hybrid heuristics. It could be a source for the researches of CO domain, especially

those studying MKP01. Second, too much work has been undertaken on local

search methods where new methods were suggested. These are applicable to other

CO problems; they may even be applied on real applications. Third, the present

study makes several noteworthy contributions in terms of hybrid approaches that

were proven a high performance on complex data and will do similarly on other

problems. Moreover, the key strengths of this study are its diversified heuristics

and the huge amount of experimental study, but also the number of proposed
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approaches.

The main weakness of this study was the lack of data for the MU-WDP. Besides,

being limited to MKP01, this study lacks more validation on other problems and

real applications. An issue that was not addressed in this study was whether

hybridising heuristics with exact method gives better options. Additionally, it is

unfortunate that the study did not include recent data, therefore the used sample

could have affected the generalisability of these results.

This research has thrown up many questions in need of further investigation.

More research is required to determine the efficacy of the proposed methods. In

terms of directions for future research, it would be interesting to try to involve

some of the techniques presented in this thesis in global selective hyper-heuristics.

Additionally, combining our algorithms with deterministic methods such as Branch

and Cut, Branch and Bound and so on, is likely to produce encouraging outcomes.

Also, further experiments on recent benchmarks, is probably recommended to

validate the findings of this work.
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