REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie Houari Boumediène

Faculté de MATHEMATIQUES

THESE de Doctorat en Sciences

Présentée pour l'obtention du grade de DOCTEUR

$\mathbf{En}: \mathbf{MATHEMATIQUES}$

Spécialité : Recherche Opérationnelle

Par : AHMANE Messaouda

Sujet

Sur le nombre d'indépendance broadcast de quelques classes d'arbres

Soutenue publiquement le 07/10/2020, devant le jury composé de :

M. Sadek BOUROUBI	Professeur à l'U.S.T.H-B	Président
Melle. Isma BOUCHEMAKH	Professeure à l'U.S.T.H-B	Directrice de thèse
M. Éric SOPENA	Professeur à l'Université de Bordeaux	Co-Directeur de thèse
M. Mustapha CHELLALI	Professeur à l'Université de Blida 1	Examinateur
M. André RASPAUD	Professeur à l'Université de Bordeaux	Examinateur
M. Ahmed SEMRI	Professeur à l'U.S.T.H-B	Examinateur

Remerciements

Je tiens tout d'abord à exprimer toute ma gratitude et ma reconnaissance à Mademoiselle Isma BOUCHEMAKH, Professeure à L'USTHB qui a cru en moi en me donnant la chance de reprendre ma recherche, et en acceptant de diriger ce travail. Je la remercie chaleureusement pour sa patience, sa disponibilité, son aide précieuse et l'intérêt qu'elle a porté à ce travail.

J'adresse mes vifs remerciements à Monsieur Éric SOPENA, Professeur à l'Université de Bordeaux qui a co-dirigé ce travail, malgré la distance et ses nombreuses autres charges. Je le remercie également pour ses remarquables qualités humaines, sa gentillesse, sa bienveillance et sa disponibilité lors de mes séjours au Laboratoire Bordelais de Recherche en Informatique (LaBRI). J'ai eu l'honneur et le plaisir de bénéficier de sa rigueur et de ses compétences scientifiques.

Je remercie vivement Monsieur Sadek BOUROUBI, Professeur à L'USTHB qui me fait l'honneur de présider le jury de cette thèse.

Je suis très sensible à l'honneur que me font Monsieur Mustapha CHELLALI, Professeur à l'Université de Blida, Monsieur André RASPAUD, Professeur à l'Université de Bordeaux, et Monsieur Ahmed SEMRI Professeur à L'USTHB, en acceptant de participer à ce jury.

Je remercie sincèrement mes amies et collègues pour leurs encouragements constants. En particulier, Djamila OUDRAR qui m'a initié au Latex et qui répondait toujours présente à chaque fois que j'avais besoin de son aide, Kahina MESLEM pour son aide précieuse pour les figures, et Samia KERDJOUDJ pour sa lecture attentive et critique du manuscrit.

Profitant de cette occasion, je voudrais exprimer toute ma sympathie à Madame Maïté et Madame Sylvie, de l'université de Bordeaux (LaBRI) pour leur accueil toujours sympathique lors de mes différents séjours au LaBRI, ainsi qu'à Madame Catherine (Cathy) du secrétariat pour sa disponibilité et sa gentillesse.

Je ne saurais manquer à l'agréable devoir de remercier mon mari Nassreddine, mes enfants Yasmine et Amine pour leur soutien et leur compréhension tout au long de ce travail, et ma mère pour toutes ses prières.

Enfin, je remercie toutes celles et tous ceux à qui cet ouvrage doit enfin de paraître.

À la mémoire de mon père et de mon frère.

 \grave{A} toute ma famille.

Qu'ils trouvent ici le témoignage de ma profonde affection.

Nacéra.

"LA SCIENCE EST UN EFFORT POUR RENDRE PENSABLE UN UNIVERS QUI NE L'EST PAS"

Jacques RUEFF.

Table des matières

Re	emer	ciemen	its	3
In	trod	uction		5
1 Généralités sur les graphes				9
	1.1	Définit	tions et notations	9
	1.2	Sous-g	raphe et sous-graphe induit	13
	1.3	Quelqu	les classes de graphes	13
	1.4	Domin	ation dans les graphes	16
		1.4.1	Motivation et définitions	16
		1.4.2	Quelque types de domination	18
		1.4.3	Complexité du problème de domination	21
2	Bro	adcast	s dans les graphes	23
	2.1	Motiva	ation et définitions	23
	2.2	Différe	ents types de broadcasts	25
		2.2.1	Broadcast dominant	26
		2.2.2	Broadcast non-redondant	31
		2.2.3	Broadcast indépendant	34
		2.2.4	Broadcast dominant indépendant	37
		2.2.5	Broadcast indépendant non-redondant	38
		2.2.6	Broadcast de packing	39
		2.2.7	Broadcast efficace	40
		2.2.8	Broadcast limité	42
		2.2.9	Complexité du problème de domination broadcast	43
	2.3	Broade	cast indépendant	44
		2.3.1	Sur le nombre d'indépendance broadcast	44
		2.3.2	Quelques propriétés générales des broadcasts indépendants	48
		2.3.3	Nombre d'indépendance broadcast des double-araignées	49
3	Nor	nbre d	indépendance broadcast des chenilles	53
	3.1	Introd	uction \ldots	53
	3.2	Prélim	inaires	53
		3.2.1	Définitions	53

		3.2.2	Quelques propriétés des broadcasts indépendants	. 55
	3.3	Cheni	lles sans troncs adjacents	. 56
		3.3.1	Différents types de motifs	. 56
		3.3.2	Borne inférieure de $\beta_b(CT)$. 60
		3.3.3	Borne supérieure de $\beta_b(CT)$. 64
		3.3.4	Résultat principal	. 77
4	No	mbre o	d'indépendance broadcast des homards localement uniformes	81
	4.1	Introd	uction	. 81
	4.2	Prélin	ninaires	. 82
	4.3	Homa	rds localement uniformes	. 83
		4.3.1	Différents types de sous-arbres épine	. 85
		4.3.2	Quelques propriétés des broadcasts indépendants	. 90
	4.4	Homa	rds localement uniformes sans sous-arbre épine de type \mathcal{F}_c	. 101
		4.4.1	Définition de $\beta^*(L)$. 102
		4.4.2	Borne inférieure de $\beta_b(L)$. 103
		4.4.3	Borne supérieure de $\beta_b(L)$. 109
		4.4.4	Résultat principal	. 118
		4.4.5	2-homards localement uniformes	. 119
Co	onclu	sion		121
Bi	bliog	graphie		125
in	dex			131

Table des figures

1.1	Un exemple de graphe simple	10
1.2	Graphe G avec $rad(G) = 4$ et $diam(G) = 6$	12
1.3	Un graphe G et le sous-graphe induit $H = G[S]$ où $S = \{c, d, g\}$	13
1.4	Exemple d'arbres à 6 sommets.	14
1.5	L'araignée $S(3^5)$.	16
1.6	La grille $G_{4,5}$.	16
1.7	Un graphe G avec $\gamma(G) = 2$ et $\Gamma(G) = 4$	17
1.8	Un arbre T avec $\gamma_{\leq 3}(T) = 2$ et $\gamma_{\leq k}(T) = 1$ pour tout $k \geq 4$	21
2.1	Deux broadcasts f et g sur G	25
2.2	f et g broadcasts minimaux mais non minimum, h est un γ_b -broadcast	26
2.3	Broadcasts non-redondants sur la chaîne P_7	32
2.4	Un broadcast indépendant non maximal f et un broadcast indépendant maximal	
	$g \operatorname{sur} G$	34
2.5	Graphe de Petersen	36
2.6	Un broadcast indépendant non-redondant sur la chaîne P_7	38
2.7	Un broadcast de packing non maximal f et un broadcast de packing maximal g	
	sur la chaîne P_5	39
2.8	Broadcasts efficaces sur la chaîne P_7	41
2.9	La chaîne P_5 et son β_b -broadcast $\ldots \ldots \ldots$	45
2.10	L'étoile subdivisée $S(K_{1,4})$ et son β_b -broadcast.	45
2.11	La double-araignée $S_{\times 2}(3^5)$.	49
3.1	La chenille $CT(1, 0, 2, 1, 1, 2, 1, 0, 3)$.	54
3.2	Un broadcast indépendant canonique sur une chenille	55
3.3	Les motifs simples impliqués dans la définition de $\beta^*(CT)$	58
3.4	La preuve du Lemme 3.11 : de f_1 à f_3	61
3.5	La preuve du Lemme 3.11 : de f_3 à f_4	62
3.6	Les configurations pour la preuve du Lemme 3.12	67
3.7	Un β_b -broadcast sur une chenille sans tronc et sans sommet support adjacent à	
	au moins trois feuilles	78
3.8	L'unique β_b -broadcast sur une chenille sans tronc et sans sommet support adja-	
	cent à au plus deux feuilles	79

3.9	L'unique β_b -broadcast sur une chenille sans troncs adjacents et dont tout sommet	
	support est adjacent à au moins trois feuilles.	79
4.1	Un homard localement uniforme.	84
4.2	Les différents types de sous-arbres épine	88
4.3	Les broadcasts indépendants pour la preuve de la Proposition 4.15 : cas 1 et cas 2.	92
4.4	Les broadcasts indépendants pour la preuve de la Proposition 4.15 : cas 3	93
4.5	Les broadcasts indépendants pour la preuve de la Proposition 4.15 : cas 4	95
4.6	Les broadcasts indépendants pour la preuve de la Proposition 4.15 : cas 4 (suite)	98
4.7	La preuve du Lemme 4.21 : de f_1 à f_4	04
4.8	La preuve du Lemme 4.21 : de f_4 à f_5 , pour une séquence de type $\langle \varnothing \rangle \mathcal{F}_a.\mathcal{X}_c.\mathcal{F}_b.\mathcal{F}_a.\mathcal{F}_b$	$ \mathcal{G}.\mathcal{X}_a angle$
	(la valeur de σ augmente de 2).	06
4.9	La preuve du Lemme 4.21 : de f_5 à f_6 , pour une séquence de type $\langle \varnothing \rangle \mathcal{F}_a.\mathcal{F}_b.\mathcal{Y}_d.\mathcal{F}_a.\mathcal{F}_b$	$\langle \mathcal{G}.\mathcal{X}_a angle$
	(la valeur de σ augmente de 1).	06
4.10	Un β_b -broadcast sur un 2-homard localement uniforme	19

Introduction

Ce présent travail de recherche a été initié par un cours sur la *domination* et la *domination* broadcast dans les graphes, dispensé aux étudiants de Master. Un simple voyage à travers l'histoire de la théorie des graphes, nous indique que le problème de domination, rendu célèbre par Berge, est un problème classique de la théorie des graphes. À la fin des années cinquante, Berge [11] a formulé mathématiquement le concept de domination dans les graphes en introduisant le *coefficient de stabilité externe*, plus tard nommé *nombre de domination* (voir Ore [74]).

Un ensemble dominant S d'un graphe G donné est un sous-ensemble de sommets tel que tout sommet de G est soit un sommet de S soit admet un voisin dans S. Le problème standard de la domination optimale consiste à déterminer un ensemble dominant de cardinalité minimum, appelé le *nombre de domination* du graphe G.

La domination dans les graphes n'est pas un concept abstrait mais une exigence concrète. En effet, un ensemble dominant peut être considéré comme un modèle de distribution de ressources dans un réseau, afin que tous les nœuds du réseau aient un accès garanti. De plus, le nombre de domination fournit une mesure optimale de la distribution de telles ressources.

Actuellement, la théorie de la domination occupe une place importante dans la recherche en théorie des graphes. C'est sans doute l'un des sujets qui a passionné le plus de chercheurs ces dernières décennies. Pour preuve, la domination dans les graphes est abordée dans plus de 6000 références et par plus de 300 auteurs qui ont largement contribué à son développement.

Dans la littérature, de nombreuses variantes de la domination standard ont été définies et étudiées. Nous citons à titre d'exemple, la domination distance-k pour un entier k positif, introduite par Henning [59], dans laquelle tout sommet u qui n'est pas dans l'ensemble dominant S est à une distance au plus k d'un sommet v de S. En 2001, Erwin [43] introduisit une autre variante de la domination, il s'agit de la domination broadcast dans les graphes, où il est permis d'attribuer différentes valeurs (poids) entières non négatives aux sommets sélectionnés du graphe, de sorte que tout sommet de poids nul soit broadcast-dominé par un sommet de poids strictement positif. Ce modèle reflète la situation réelle des réseaux de transmission avec des antennes de puissances variées. En effet, considérons l'application suivante : une station-radio souhaite diffuser une émission sur une grande région. Elle doit décider de l'emplacement des tours de transmission (et de leurs capacités), afin de minimiser le nombre de tours tout en veillant à ce que toute la région entende la diffusion. Cette situation peut être modélisée par un graphe (ou réseau) G, où les sommets représentent les localités de la région et deux sommets sont adjacents si leurs localités correspondantes sont suffisamment proches pour qu'une diffusion d'une localité puisse être entendue par l'autre localité. Si les tours sont identiques et chaque sommet du graphe G est une localité qui contient soit une tour, soit peut entendre la diffusion à partir d'un sommet voisin qui correspond à une localité abritant une tour, on dit que le graphe est *dominé*. Ce problème peut être formulé comme un problème de domination dans G. Si de plus, la station veut utiliser des tours appropriées plus puissantes pouvant diffuser plus loin (mais dont le coût est plus élevé), l'objectif sera alors de déterminer l'emplacement des tours et leurs puissances respectives, tout en minimisant le coût total de ces tours. Cela est équivalent à l'attribution d'un entier non négatif f(v) à chaque sommet v, de sorte que chaque sommet (localité) de poids nul est à une distance au plus f(v) d'un sommet v de poids positif, on dit que le graphe est *broadcast dominé* et que les sommets de poids non nul sont des *sommets broadcasts*. Ce problème peut être formulé comme un problème de *domination broadcast* dans le graphe G.

Formellement, le problème de domination broadcast consiste à construire une fonction f optimale sur un graphe G = (V, E), où l'on attribue à tout sommet v une valeur $f(v) \ge 0$ de sorte que $\sum_{v \in V} f(v)$ soit minimum et tel que tout sommet u avec f(u) = 0 soit à distance au plus f(v) d'un sommet v avec f(v) > 0, appelé sommet broadcast. La fonction f est dite broadcast dominante sur G et son coût minimum est le nombre de domination broadcast de G. Notons que si f(v) = 1 pour tout sommet broadcast v, alors le problème de domination broadcast coïncide avec celui de la recherche d'un ensemble dominant, et si pour un entier positif k, f(v) = k pour tout sommet broadcast v, il coïncide avec le problème de domination distance-k.

Depuis l'introduction du problème de domination *broadcast*, de nombreux invariants liés à ce problème ont été introduits et étudiés dans la littérature [44]. Nous mentionnons ici l'invariant *d'indépendance broadcast* introduit par Erwin dans [43] et qui est au cœur de notre thèse. Dans l'exemple d'application précédent cela signifie qu'aucun sommet *broadcast* ne peut entendre un autre sommet *broadcast*. Plus précisément, un *broadcast f* sur *G* est dit *broadcast indépendant*, si tout sommet v avec f(v) > 0 n'est dominé que par lui-même, autrement dit, pour toute paire de sommets distincts u et v, avec f(u) > 0 et f(v) > 0, on a max $\{f(u), f(v)\} < d_G(u, v)$ où $d_G(u, v)$ représente la distance entre les sommets u et v dans G.

Cette thèse examine le problème de recherche d'un broadcast indépendant f sur un graphe G = (V, E) de sorte que le coût du broadcast égal à $\sum_{v \in V} f(v)$ soit maximum. Le coût maximum d'un broadcast indépendant sur G est appelé le nombre d'indépendance broadcast du graphe G. Nous avons opté pour l'étude de ce paramètre car nous avons été interpellée particulièrement par le fait que très peu de travaux ont été réalisés sur ce sujet. Comme la préoccupation concrète et très courante des chercheurs est d'établir des valeurs exactes pour les invariants d'un graphe, notre tentation était grande d'aller vers la solution la moins « facile » mais en même temps la plus interéssante, celle qui détermine la valeur exacte du nombre d'indépendance broadcast de quelques classes de graphes. Pour cela, Il nous a semblé naturel de traiter des graphes dont la structure est particulière, et nous avons pensé aux arbres. L'étude de la classe générale des arbres s'est avérée difficile, c'est pourquoi nous avons préféré nous restreindre à quelques sousclasses d'arbres. Les chapitres sur lesquels s'articule notre thèse sont au nombre de quatre, en plus de l'introduction et de la conclusion.

Le but du premier chapitre est de poser le décor pour le problème envisagé, des définitions de base et des notations sur la théorie des graphes en général et la domination en particulier y seront données.

Dans le second chapitre, nous introduirons d'abord le concept de *broadcast* dans les graphes. Nous présenterons ensuite une brève revue de la littérature sur les *broadcasts* et ses nombreuses variantes. Enfin, nous exposerons nos résultats concernant quelques propriétés générales sur les *broadcasts* indépendants et proposerons à la fin de ce chapitre la valeur exacte du *nombre d'indépendance broadcast* d'arbres particuliers, à savoir les *double-araignées*.

Les chapitres trois et quatre seront consacrés à l'étude du nombre d'indépendance broadcast pour deux sous-classes d'arbres, nous y présenterons les résultats des travaux établis conjointement avec Isma Bouchemakh et Éric Sopena dans [2, 3]. L'étude initiale d'une sous-classe d'arbres, appelée la classe des *chenilles*, conduit au chapitre trois. Après avoir décrit la classe et présenté quelques résultats sur les propriétés d'un *broadcast* indépendant sur une chenille, une formule explicite sera proposée. Cette formule présente un double avantage, elle détermine non seulement le *nombre d'indépendance broadcast* d'une sous-classe des chenilles sans troncs adjacents, mais aussi un *broadcast indépendant optimal* explicite.

Au vu des résultats obtenus dans le chapitre trois, il nous a semblé intéressant de poursuivre l'exploration d'une autre sous-classe d'arbres, appelée la classe des *homards*, qui est une suite logique de la classe des chenilles. La démarche proposée au chapitre quatre aboutira à une formule qui détermine le *nombre d'indépendance broadcast* d'une sous-classe des *homards localement uniformes*, ne contenant aucun sous-arbre ayant une unique branche et exactement trois feuilles (plus communément appelé *patte*) en particulier, de la sous-classe des 2-*homards localement uniformes*.

Enfin, une discussion sur le travail contenu dans cette thèse sera proposée dans la conclusion. Nous proposerons aussi divers problèmes ouverts qui ont découlé de notre étude pour des travaux futurs.

Chapitre 1

Généralités sur les graphes

Ce chapitre est consacré comme son nom l'indique à un certain nombre de définitions de base de la théorie des graphes qui nous ont paru nécessaires à une meilleure compréhension de ce présent document. Nous avons maintenu tant que possible la terminologie et les notations qui sont communément utilisées dans la littérature et que le lecteur pourra retrouver dans les ouvrages [11, 12, 18, 50]. Après avoir rappelé les définitions élémentaires de la théorie des graphes, nous présenterons la plupart des classes de graphes que nous traiterons tout au long de cette thèse. La dernière section de ce chapitre est une brève revue de la littérature sur la domination et certains invariants de la domination. Enfin nous terminerons cette section avec un mot sur la complexité.

1.1 Définitions et notations

Plusieurs situations réelles peuvent être convenablement décrites par un diagramme appelé *graphe*, qui consiste en un ensemble de points et de lignes joignant certaines paires de ces points. Le concept de graphe peut être utile à de nombreux problèmes dans les domaines tels que la gestion, les sciences sociales, les réseaux routiers, les réseaux de télécommunications etc.

Un graphe G est défini par un ensemble non vide V(G) de sommets, un ensemble E(G)d'arêtes et une relation d'incidence qui associe à toute arête e de G, une paire $\{u, v\}$ de sommets (non nécessairement distincts). On notera indifféremment uv ou vu l'arête e de G. On dit alors que e relie u à v et que les sommets u et v sont les extrémités de e. Dans toute la suite, quand aucune confusion n'est possible, on écrira V et E au lieu de V(G) et E(G)respectivement.

Un graphe est *fini* si son ensemble de sommets et son ensemble d'arêtes sont finis. Pour un graphe fini G, le nombre de sommets et le nombre d'arêtes de G, sont notés respectivement n et m. Ces deux paramètres sont appelés respectivement l'*ordre* et la *taille* de G. Un graphe *vide* est un graphe de taille m = 0 et un graphe *trivial* est un graphe d'ordre n = 1.

Adjacence

Deux sommets distincts u et v sonts dits *adjacents* s'ils sont les extrémités d'une même arête e, l'arête e est dite *incidente* à u et v. On dit aussi que deux sommets distincts adjacents sont voisins.

Une *boucle* est une arête dont les extrémités sont confondues.

Une arête uv est dite simple s'il existe une seule arête d'extrémités u et v, dans le cas contraire elle est dite *multiple*.

Un graphe simple est un graphe sans boucle, dans lequel toute paire de sommets est reliée par au plus une arête. Notons que dans un graphe simple G, deux sommets ne peuvent être extrémités que d'une seule arête. Ainsi la relation d'incidence n'a plus lieu d'être, autrement dit, G est entièrement défini par le couple (V, E).

La Figure 1.1 représente un graphe simple G d'ordre 4 et de taille 4, avec $V = \{v_1, v_2, v_3, v_4\}$ et $E = \{v_1v_2, v_1v_3, v_2v_3, v_3v_4\}$.

FIGURE 1.1 – Un exemple de graphe simple.

Dans toute la suite, les graphes considérés seront finis, non vides, non triviaux et simples.

Voisinage

Dans un graphe G, le voisinage ouvert d'un sommet v, noté $N_G(v)$ (ou simplement N(v)), est l'ensemble des sommets adjacents à v et le voisinage fermé de v, est l'ensemble

$$N[v] = N(v) \cup \{v\}.$$

Le voisinage ouvert (resp. fermé) d'un ensemble de sommets S est

$$N(S) = \bigcup_{v \in S} N_G(v)$$

(resp. $N[S] = \bigcup_{v \in S} N[v]$).

Pour un ensemble $S \subset V$ et un sommet $v \in S$, le *S*-voisinage privé de v (ou voisinage privé de v relatif à S) est l'ensemble

$$PN(v, S) = N[v] \setminus N[S \setminus \{v\}].$$

Donc si $u \in PN(v, S)$ alors $N[u] \cap S = \{v\}$.

Pour un entier $k \ge 0$, le k-voisinage ouvert d'un sommet v de G est l'ensemble

$$N_k(v) = \{ u : d(u, v) = k \}.$$

où d(u, v) est la distance de u à v dans G.

Le k-voisinage fermé du sommet v, est l'ensemble

$$N_k[v] = \{u : d(u, v) \le k\}.$$

Le k-voisinage ouvert (resp. fermé) d'un ensemble de sommets S est

$$N_k(S) = \bigcup_{u \in S} N_k(u)$$

(resp. $N_k[S] = \bigcup_{u \in S} N_k[u]$).

Degré d'un sommet

Le degré d'un sommet v dans un graphe G, noté $d_G(v)$ (ou simplement d(v)), est le nombre d'arêtes incidentes à v, c'est-à-dire le cardinal de l'ensemble N(v). Le degré minimum et le degré maximum dans G sont notés respectivement $\delta(G)$ et $\Delta(G)$.

Un sommet *isolé* est un sommet de degré nul.

Un sommet *pendant* est un sommet de degré 1 et son unique voisin est un sommet *support*.

Chaîne et cycle

Une chaîne P dans un graphe G est une séquence finie de sommets $P = v_0 v_1 \dots v_k$ telle que pour tout $1 \leq i \leq k, v_{i-1}v_i \in E(G)$. Les sommets v_0 et v_k sont les *extrémités* de la chaîne P et l'entier k est sa longueur (c'est-à-dire, son nombre d'arêtes).

Une chaîne d'extrémités u et v est dite (u - v)-chaîne. Une chaîne est dite simple (resp. élémentaire) si toutes ses arêtes (resp. tous ses sommets) sont distinctes (resp. distincts). Pour un entier n, on note P_n la chaîne induite sur n sommets.

Un cycle C est une chaîne dont les extémités sont confondues.

Dans la Figure 1.1, $d(v_1) = d(v_2) = 2$, $d(v_3) = 3$, $d(v_4) = 1$, $\delta(G) = 1$, $\Delta(G) = 3$, v_4 est un sommet pendant, v_3 est un sommet support, $N(v_1) = \{v_2, v_3\}$, $N[v_1] = \{v_1, v_2, v_3\}$, v_4 est un voisin privé de v_3 , $P = v_1 v_3 v_4$ est une $(v_1 - v_4)$ -chaîne de longueur 2 et $C = v_1 v_2 v_3 v_1$ est un cycle de longueur 3.

Distance

Pour une paire de sommets u et v de G, la distance de u à v dans G, notée $d_G(u, v)$ (ou simplement d(u, v)), est la longueur d'une plus courte chaîne joignant u à v (longueur minimum d'une (u - v)-chaîne). S'il n'existe aucune chaîne d'extrémités u et v, on pose $d_G(u, v) = \infty$.

Excentricité

L'excentricité d'un sommet u dans G, notée $e_G(u)$ (ou simplement e(u)), est la distance maximum de u à tous les autres sommets de G, c'est-à-dire

$$e(u) = \max_{v \in V} d(u, v).$$

Diamètre et rayon

Le rayon de G, noté rad(G), est l'excentricité minimum dans G, c'est-à-dire

$$rad(G) = \min_{v \in V} e(v).$$

Le diamètre de G, noté diam(G), est l'excentricité maximum dans G, c'est-à-dire

$$diam(G) = \max_{v \in V} e(v)$$

Un sommet *central* est un sommet d'excentricité minimum, c'est-à-dire un sommet u tel que e(u) = rad(G) et le *centre* de G, noté C(G), est l'ensemble de tous ses sommets centraux.

Deux sommets u et v de G sont dits antipodaux dans G si d(u, v) = diam(G). Dans ce cas, toute (u - v)-chaîne est dite chaîne diamétrale.

Pour illustrer toutes ces définitions, nous considérons le graphe G de la Figure 1.2.

 v_2

FIGURE 1.2 – Graphe G avec rad(G) = 4 et diam(G) = 6.

Dans la Figure 1.2, $d(v_1, v_4) = 4$, $e(v_1) = 6$, $e(v_2) = 4$, $e(v_4) = 4$, diam(G) = 6, rad(G) = 4, v_2 et v_4 sont des sommets centraux de G et, v_1 et v_6 sont des sommets antipodaux de G.

1.2 Sous-graphe et sous-graphe induit

Un sous-graphe H de G est un graphe défini par un ensemble de sommets $V(H) \subseteq V(G)$ et un ensemble d'arêtes $E(H) \subseteq E(G)$. Le sous-graphe induit par un sous-ensemble de sommets $S \subseteq V(G)$, est le graphe G[S] défini par l'ensemble de sommets V(G[S]) = S et l'ensemble d'arêtes $E(G[S]) = \{uv : uv \in E(G) \text{ et } \{u, v\} \subset S\}.$

La Figure 1.3 représente un graphe et l'un de ses sous-graphes induits.

FIGURE 1.3 – Un graphe G et le sous-graphe induit H = G[S] où $S = \{c, d, g\}$

Certains types de graphes jouent un rôle important dans l'étude de certaines propriétés de graphes. Nous allons citer dans la section suivante ceux pour lesquels nous avons eu un intérêt particulier tout au long de cette thèse.

1.3 Quelques classes de graphes

Graphe connexe

Un graphe G est dit *connexe* si pour toute paire de sommets u et v de G, il existe une (u - v)-chaîne dans G.

Dans la Figure 1.3, le graphe G n'est pas connexe car il n'existe pas de (a - b)-chaîne.

Graphe complet

Un graphe G est dit *complet* si toute paire de sommets est reliée par une arête.

Graphe biparti

Un graphe G est dit *biparti* si V peut être partitionné en deux ensembles V_1 et V_2 de sorte que chaque arête du graphe possède une extrémité dans V_1 et l'autre extrémité dans V_2 . Dans le cas particulier où $|V_1| = m$, $|V_2| = n$, d(u) = n pour tout $u \in V_1$ et d(v) = m pour tout $v \in V_2$, le graphe G est noté $K_{m,n}$, et il est dit graphe biparti complet.

Le graphe de la Figure 1.4(b) est le graphe biparti complet $K_{1,5}$.

Graphe subdivisé

Le graphe subdivisé S(G) d'un graphe G, est obtenu à partir de G en remplaçant chaque arête $e = v_i v_j$ de G par un nouveau sommet $v_{i,j}$ et deux arêtes $v_i v_{i,j}$ et $v_j v_{i,j}$. Autrement dit, en insérant un nouveau sommet sur chaque arête de G.

Plus généralement, pour un entier $k \ge 1$, le graphe k-subdivisé $S_k(G)$ d'un graphe G, est obtenu à partir de G en insérant k nouveaux sommets sur chaque arête de G. Notons que, $S_1(G) = S(G)$ et pour un entier $n \ge 2$, $S_k(P_n) = P_{k(n-1)+n}$.

Arbre

Un *arbre* T est un graphe connexe et sans cycle.

Un arbre T enraciné, de racine r est un arbre admettant un sommet r tel que pour tout autre sommet v de T, il existe une unique (r - v)-chaîne.

Dans toute la suite, les sommets pendants d'un arbre T seront appelés *feuilles*. De plus, nous avons les propriétés suivantes :

- Tout arbre non trivial admet au moins deux feuilles.
- Le centre d'un arbre non trivial est réduit soit à un sommet, soit à deux sommets adjacents.
- Tout arbre T vérifie :

$$2 rad(T) - 1 \le diam(T) \le 2 rad(T).$$

La Figure 1.4 représente deux arbres à 6 sommets.

FIGURE 1.4 – Exemple d'arbres à 6 sommets.

Il existe plusieurs sous-classes d'arbres auxquelles nous allons nous intéresser particulièrement. Nous citons :

Chaîne P_n

Une chaîne P_n d'ordre n, est un arbre T avec $d(v) \leq 2$ pour tout sommet $v \in V(T)$. Notons que $diam(P_n) = n - 1$.

Les chaînes sont l'un des types d'arbres les plus simples nous permettant de mettre au point des techniques qui seront ensuite utilisées et étendues pour obtenir des résultats pour les arbres en général.

Étoile

L'étoile d'ordre n, notée $K_{1,n-1}$, est un arbre avec un seul sommet de degré (n-1) et (n-1) feuilles.

Chenille

Une *chenille* est un arbre tel que, le sous-graphe induit par les sommets de degré supérieur ou égal à 2 est une chaîne simple non vide. Les sommets qui ne sont pas les extrémités de cette chaîne sont soit des sommets supports soit des sommets internes de degré 2.

Le graphe représenté dans la Figure 1.4(a) est une chenille et le graphe représenté dans la Figure 1.4(b) est l'étoile $K_{1.5}$.

Araignée

Pour des entiers $k \geq 3$ et $n_i \geq 1$ pour tout $1 \leq i \leq k$, l'araignée généralisée $S = S(n_1, n_2, \ldots, n_k)$, est l'arbre avec un unique sommet c de degré k et tels que les k composantes connexes de $S(n_1, n_2, \ldots, n_k) \setminus \{c\}$ sont des chaînes de longueur $(n_1 - 1), (n_2 - 1), \ldots, (n_k - 1)$ respectivement. En particulier, l'araignée $S(n, n, \ldots, n)$ est notée $S(n^k)$. Notons que l'étoile n-subdivisée $S_n(K_{1,t})$ est donc l'araignée $S(n^t)$.

La Figure 1.5 représente l'araignée $S(3^5)$.

Grille

Soient G et H deux graphes. Le produit cartésien $G \Box H$ de G et H est le graphe ayant pour ensemble de sommets $V(G) \times V(H)$ et tel que deux sommets (u_1, v_1) et (u_2, v_2) de $V(G) \times V(H)$ sont reliés par une arête si et seulement si, $u_1u_2 \in E(G)$ et $v_1 = v_2$, ou $v_1v_2 \in E(H)$ et $u_1 = u_2$.

Pour deux entiers strictement positifs m et n, la grille de dimension $m \times n$, notée $G_{m,n}$, est le produit cartésien $P_m \Box P_n$ des deux chaînes P_m et P_n .

La Figure 1.6 représente la grille de dimension 4×5 .

FIGURE 1.6 – La grille $G_{4,5}$.

1.4 Domination dans les graphes

Nous introduisons dans cette section le concept de domination et donnons un bref aperçu sur quelques variantes de la domination. Pour plus de détails, les deux ouvrages [52, 53] instruisent le lecteur sur ces notions et sont à ce titre des références sûres.

1.4.1 Motivation et définitions

L'origine de l'étude de la domination dans les graphes est illustrée par un échiquier 8×8 sur lequel on place un nombre minimum de reines de sorte que chaque case est soit occupée par une reine, ou bien peut être occupée en un seul mouvement par l'une des reines (voir [64, 46]). Il a été prouvé que le nombre minimum de reines nécessaires pour couvrir un échiquier 8×8 est 5. Le problème qui consiste à couvrir (dominer) l'ensemble des cases d'un échiquier $n \times n$ par un nombre minimum de reines, peut être énoncé comme un problème de domination des sommets d'un graphe. Généralement, on parle d'ensembles dominants lorsqu'on étudie les nombreux problèmes d'emplacements, tels que l'emplacement optimal d'hopitaux, de stations radio, de casernes de pompiers, de postes de police, d'écoles etc. On peut aussi utiliser la domination pour les surveillances, les affectations de personnels, la communication et les jeux.

Afin d'énoncer quelques invariants de la domination, nous donnons d'abord la définition suivante qui sera utile pour la suite.

Soit \mathcal{P} une propriété quelconque d'un ensemble de sommets S dans un graphe G = (V, E). S est dit *minimal* (resp. *maximal*) pour cette propriété s'il n'existe aucun sous-ensemble de sommets $S' \subset S$ (resp. $S \subset S'$) ayant la propriété \mathcal{P} .

Considérons un graphe G = (V, E) non trivial et simple. Un sous-ensemble de sommets D de V est un *dominant* de G, si tout sommet de $V \setminus D$ est adjacent à au moins un sommet de D, c'est-à-dire N[D] = V.

Le nombre de domination de G, noté $\gamma(G)$, est le cardinal minimum d'un ensemble dominant de G et le nombre de domination supérieur de G, noté $\Gamma(G)$, est le cardinal maximum d'un ensemble dominant minimal de G.

La Figure 1.7 représente un graphe G avec $\gamma(G) = 2$ et $\Gamma(G) = 4$.

FIGURE 1.7 – Un graphe G avec $\gamma(G) = 2$ et $\Gamma(G) = 4$.

Un ensemble dominant de cardinalité minimum est dit $\gamma(G)$ -ensemble (ou simplement γ ensemble) et un ensemble dominant minimal de cardinalité maximum est appelé $\Gamma(G)$ -ensemble (ou simplement Γ -ensemble). Notons qu'un graphe G peut admettre plusieurs $\gamma(G)$ -ensembles (resp. $\Gamma(G)$ -ensembles).

Dans [74], Ore a caractérisé les ensembles dominants minimaux d'un graphe G quelconque.

Théorème 1.1 ([74]). Soit D un ensemble dominant de G. D est minimal si et seulement si pour tout sommet $v \in D$, l'une des deux conditions suivantes est satisfaite :

1. v est un sommet isolé dans G[D].

2. Il existe un sommet $u \in V \setminus D$ tel que $N(u) \cap D = \{v\}$.

Observation 1.2.

- 1. Un sous-ensemble d'un ensemble dominant de G n'est pas nécessairement un ensemble dominant.
- 2. Tout ensemble contenant un ensemble dominant de G est un ensemble dominant de G.
- 3. Un ensemble dominant contient tous les sommets isolés de G.
- 4. L'ensemble V de sommets de G est un ensemble dominant, et un dominant contient au moins un sommet. Par conséquent, $1 \le \gamma(G) \le n$.
- 5. Un ensemble dominant minimal n'est pas forcément minimum.

Dans la Figure 1.7, $\gamma(G) = 2$, $D_1 = \{a, c\}$ et $D_2 = \{a, d\}$ sont des $\gamma(G)$ -ensembles, $D_3 = \{e, f, c\}$ est un ensemble dominant minimal mais pas minimum, et $D_4 = \{b, d, e, f\}$ est l'unique $\Gamma(G)$ -ensemble.

1.4.2 Quelque types de domination

La diversification est une notion qui interpelle les chercheurs. C'est ainsi que plusieurs problèmes liés à la domination ont été considérés et dans certains de ces problèmes, de nouvelles régles de domination ont été proposées, ce qui a donné naissance à plusieurs paramètres de domination (voir [52, 53]). Nous assistons ces dernières décennies à l'explosion des travaux de recherche sur la domination et ses nombreuses variantes. On dénombre actuellement quelques 200 types de domination et plus de 6000 références et la liste ne cesse de s'allonger. Nous nous sommes intéressée à quelques-uns de ces types que nous présentons dans ce qui suit.

Indépendance

Un sous-ensemble de sommets S de V est dit *indépendant* (ou *stable*), si ses sommets sont deux à deux non adjacents.

Le nombre de domination stable de G, noté i(G), est le cardinal minimum d'un indépendant maximal et le nombre d'indépendance (ou nombre de stabilité) de G, noté $\beta_0(G)$ (ou $\alpha(G)$), est le cardinal maximum d'un indépendant de G.

Observation 1.3.

- 1. Tout sous-ensemble d'un indépendant de G est un indépendant de G.
- 2. Un ensemble indépendant contient tous les sommets isolés.
- 3. Le nombre d'indépendance $\beta_0(G)$ existe toujours et

$$1 \le \beta_0(G) \le n.$$

Proposition 1.4 ([11]). Un ensemble indépendant S est un indépendant maximal si et seulement si il est indépendant et dominant. **Proposition 1.5** ([11]). Tout ensemble indépendant maximal dans G est un ensemble dominant minimal de G.

Cockayne *et al.* [36] ont utilisé la Proposition 1.4 pour déduire une première chaîne d'inégalités simple :

$$\gamma(G) \le i(G) \le \beta_0(G) \le \Gamma(G).$$

Dans la Figure 1.7, $D_1 = \{a, c\}$ est un ensemble dominant non indépendant, $D_2 = \{a, d\}$ est un ensemble dominant indépendant et $D_4 = \{b, d, e, f\}$ est un ensemble indépendant maximal.

Non-redondance

Cockayne *et al.* [36] ont utilisé la propriété d'un dominant minimal et ont introduit le concept de *non-redondance*.

Un sous-ensemble de sommets S de V est dit *non-redondant* si pour tout sommet $v \in S$, $PN(v, S) \neq \emptyset$. Autrement dit, si tout sommet $v \in S$ possède au moins un voisin privé relatif à S.

Le nombre de non-redondance de G, noté ir(G), est le cardinal minimum d'un ensemble non-redondant maximal et le nombre de non-redondance supérieur, noté IR(G), est le cardinal maximum d'un ensemble non-redondant.

Dans la Figure 1.7, $D_1 = \{a, c\}$ est un ensemble non-redondant maximal.

Proposition 1.6 ([36]). Un ensemble dominant S de G est minimal si et seulement si il est dominant et non-redondant.

Proposition 1.7 ([36]). Tout ensemble dominant minimal dans G est un ensemble nonredondant maximal de G.

Grâce à ces propriétés Cockayne *et al.* [36] ont obtenu une nouvelle chaîne de domination qui est une extension de la première chaîne d'inégalités :

Théorème 1.8 ([36]). Pour tout graphe G,

$$ir(G) \le \gamma(G) \le i(G) \le \beta_0(G) \le \Gamma(G) \le IR(G).$$

Notons que cette chaîne de domination a été à l'origine de plus d'une centaine de travaux de recherche. En particulier, des travaux sur la caractérisation des graphes pour lesquels l'égalité est atteinte pour une ou plusieurs inégalités.

Efficacité

Un ensemble dominant S de G est dit *efficace* si tout sommet de G est dominé par exactement un sommet de S, c'est-à-dire pour tout sommet v de G, $|N[v] \cap S| = 1$.

Un dominant efficace n'existe pas toujours, puisque le cycle C_n d'ordre n admet un dominant efficace si et seulement si $n \equiv 0 \pmod{3}$. Tandis que, la chaîne P_n admet toujours un dominant efficace.

Théorème 1.9 ([6, 7]). Si G admet un dominant efficace, alors le cardinal de tout dominant efficace est égal au nombre de domination $\gamma(G)$. En particulier, tous les dominants efficaces ont même cardinal.

Packing

Un sous-ensemble S de sommets de G est dit de packing si pour tout sommet $v \in V$, $|N[v] \cap S| \leq 1$. Autrement dit, pour toute paire de sommets distincts u et v de S on a $d_G(u, v) \geq 3$.

Le nombre de packing de G, noté P(G), est le cardinal maximum d'un packing de G et le nombre de packing inférieur de G, noté p(G), est le cardinal minimum d'un packing maximal dans G.

Dans la Figure 1.7, $D_5 = \{a\}$ est un ensemble de *packing* maximal.

Observation 1.10.

- 1. Tout packing dans G est un indépendant de G.
- 2. Tout dominant efficace de G est un packing dans G.

Nous avons donc la chaîne de domination suivante (voir [52]) :

Théorème 1.11 ([52]). Pour tout graphe G,

$$p(G) \le P(G) \le \gamma(G) \le i(G) \le \beta_0(G) \le \Gamma(G).$$

Notons que tout ensemble dominant peut être défini comme un sous-ensemble S de sommets de G tel que tout sommet de G est à distance au plus 1 d'un sommet de S. Henning [59] a généralisé le concept de domination en introduisant la *distance domination*.

Distance domination

Pour un entier k positif, un sous-ensemble de sommets S de V est un dominant distance-k de G si tout sommet de $V \setminus S$ est à distance au plus k d'un sommet de S. Autrement dit, $N_k[S] = V$. Le nombre de domination distance-k de G, noté $\gamma_{\leq k}(G)$, (ou $\gamma_k(G)$) est le cardinal minimum d'un ensemble dominant distance-k de G. Il est clair que $\gamma_{\leq 1}(G) = \gamma(G)$ et que si rad(G) = ralors $\gamma_{\leq r}(G) = 1$.

La Figure 1.8 représente un arbre T avec $\gamma_{\leq 3}(T) = 2$ et $\gamma_{\leq k}(T) = 1$ pour tout entier $k \geq 4$. De plus, $D_1 = \{b, c\}$ est un ensemble dominant distance-3 et $D_2 = \{a\}$ est un ensemble dominant distance-k pour tout entier $k \geq 4$.

FIGURE 1.8 – Un arbre T avec $\gamma_{\leq 3}(T) = 2$ et $\gamma_{\leq k}(T) = 1$ pour tout $k \geq 4$.

1.4.3 Complexité du problème de domination

Dans cette section nous parlerons brièvement de la complexité du problème de la détermination de $\gamma(G)$, afin de signaler la difficulté de ce problème, mais nous ne ferons pas de rappels sur la théorie de la complexité algorithmique. Le lecteur non familiarisé avec cette théorie est orienté vers les ouvrages [38, 48, 34].

Le problème de la détermination du nombre de domination $\gamma(G)$ pour un graphe G en général occupe une place prépondérante dans la littérature en terme de complexité algorithmique [48]. Plusieurs problèmes sont prouvés être NP-complets sur des graphes en général, mais peuvent être résolus en un temps polynomial si les graphes ont des propriétés particulières. Garey et Johnson [48] ont été les premiers a prouvé que le problème de la détermination de $\gamma(G)$ pour un graphe G quelconque est NP-complet et reste NP-complet pour plusieurs classes de graphes, telle que la classe des graphes planaires [48], la classe des graphes bipartis [40] et la classe des graphes triangulés [19]. Néammoins, ce problème est polynomial, pour la classe des arbres, avec un ordre de complexité égal à O(n) [35] et pour la classe des graphes de permutation avec un ordre de complexité égal à $O(n^2)$ [45].

Chapitre 2 Broadcasts dans les graphes

Nous rappelons que l'objet principal de notre thèse est l'étude du paramètre d'indépendance *broadcast* dans les graphes, et la littérature joue un rôle de premier plan dans une telle étude. Dans ce chapitre, nous introduisons d'abord le concept de *broadcast* dans les graphes et ses nombreuses variantes, nous y présentons ensuite un certain nombre de résultats obtenus sur les différents invariants qui nous ont semblé les plus marquants, en mettant l'accent sur un des paramètres d'indépendance *broadcast*. Enfin, nous proposons quelques propriétés générales des *broadcasts* indépendants et terminons ce chapitre en fournissant une valeur exacte du nombre d'indépendance *broadcast* de la classe des double-araignées.

2.1 Motivation et définitions

La notion de domination *broadcast* dans les graphes est une variante de la domination, dans laquelle différents poids entiers sont associés aux sommets de sorte que pour tout sommet u de poids nul, il existe un sommet v de poids non nul, disons k, tel que u est à distance au plus k du sommet v.

Pour illuster le lien existant entre la domination et la domination *broadcast*, nous considérons l'exemple d'application suivant : en 1968, Liu [66] a discuté le concept de domination dans les réseaux de télécommunication où il est question de trouver, dans une région donnée, les villages dans lesquels il est possible de placer des stations de diffusion radio pouvant couvrir toute la région. Chaque station de diffusion peut émettre dans le village où elle est hebergée et dans les villages voisins (c'est-à-dire ayant une frontière commune). En 2001, D.J.Erwin généralisa dans sa thèse de doctorat [43], le concept de domination pour modéliser la situation où les villes peuvent construire des stations de diffusion plus puissantes, pouvant diffuser plus loin, avec des coûts de construction proportionnels à la puissance de diffusion. Ce modèle représente le concept de domination *broadcast* et reflète mieux la réalité, avec l'avantage de construire éventuellement moins de stations et dont le coût n'excèdera pas celui du modèle de Liu [66].

Nous présentons maintenant la définition formelle d'un *broadcast* proposée dans [43].

Soit G = (V, E) un graphe simple et connexe. Une application $f : V \to \{0, \ldots, \operatorname{diam}(G)\}$ est un *broadcast* sur G si pour tout sommet $v \operatorname{de} G$, $f(v) \leq e(v)$ où e(v) représente l'excentricité du sommet v. La valeur f(v) est appelée la f-valeur de v.

Soit f un broadcast sur G. Un sommet v de G avec f(v) > 0, est dit sommet f-broadcast. L'ensemble de tous les sommets f-broadcast est

$$V_f^+ = \{ v \in V : f(v) > 0 \}.$$

Si v est un sommet f-broadcast et u est un sommet de G tel que $d(u, v) \leq f(v)$, on dit que v f-domine le sommet u et que u est un f-voisin de v, on dit aussi que u entend le sommet v. En particulier, tout sommet f-broadcast est f-dominé par lui-même. Notons que si u est un f-voisin de v, alors v n'est pas nécessairement un f-voisin de u.

Le *f*-voisinage d'un sommet $v \in V_f^+$ est l'ensemble des *f*-voisins de v, c'est-à-dire

$$N_f[v] = \{ u \in V : d(u, v) \le f(v) \}$$

Le voisinage-broadcast de f est l'ensemble

$$N_f[V_f^+] = \bigcup_{u \in V_f^+} N_f[u]$$

L'ensemble des sommets f-broadcast qu'un sommet $u \in V$ peut entendre est

$$H_f(u) = \{ v \in V_f^+ : d(u, v) \le f(v) \}.$$

Pour un sommet $v \in V_f^+$, un *f*-voisin privé de v est un sommet u avec $H_f(u) = \{v\}$ et le *f*-voisinage privé de v est l'ensemble de tous ses *f*-voisins privés, c'est-à-dire

$$PN_f[v] = \{ u \in V : H_f(u) = \{v\} \}.$$

Pour un sommet $v \in V_f^+$, la *f*-frontière de v est l'ensemble

$$B_f(v) = \{ u \in V : d(u, v) = f(v) \}.$$

Si $u \in B_f(v)$, on dit que u est un sommet-frontière de v.

La *f*-frontière privée d'un sommet $v \in V_f^+$ est soit l'ensemble de ses *f*-voisins privés qui sont à distance f(v) de v, soit le singleton $\{v\}$, si f(v) = 1 et $PN_f[v] = \{v\}$, c'est-à-dire

$$PB_{f}(v) = \begin{cases} \{v\} & \text{si } f(v) = 1 \text{ et } PN_{f}[v] = \{v\} \\ \{u \in PN_{f}[v] : d(u, v) = f(v)\} & \text{sinon.} \end{cases}$$

Tout sommet de $PB_f(v)$ est un *f*-voisin-frontière privé de v. En particulier, si f(v) = 1 et $PN_f[v] = \{v\}$, alors v est son propre *f*-voisin-frontière privé.

Le $co\hat{u}t$ d'un broadcast f sur G est

$$\sigma(f) = \sum_{v \in V(G)} f(v) = \sum_{v \in V_f^+} f(v).$$

Dans toute la suite, si le coût d'un broadcast f sur G vaut σ nous dirons que f est un σ -broadcast.

Pour illustrer toutes ces définitions, considérons le graphe G de la Figure 2.1 (a). Dans la Figure 2.1 (b), $V_f^+ = \{v_0, v_3, u_2\}, \sigma(f) = 4, N_f[v_0] = \{v_0, v_1, v_2, u_0, u_1\}, H_f(v_2) = \{v_0, v_3, u_2\}, H_f(u_3) = \{v_3\}$ et donc u_3 est un voisin privé de v_3 . Dans la Figure 2.1 (c), $V_g^+ = \{v_1, u_3\}, \sigma(g) = 3, v_0$ ne g-domine aucun sommet de G, $H_g(v_2) = \{v_1\}, PN_g[v_1] = \{v_0, v_1, v_2, u_0, u_1, u_2\}, B_g(v_1) = \{v_3, u_0, u_2\}, PB_g(u_3) = \{u_3\},$ et $PB_g(v_1) = \{u_0, u_2\}.$

FIGURE 2.1 – Deux broadcasts f et g sur G.

2.2 Différents types de broadcasts

En 2005, Dunbar *et al.* [42] ont développé une théorie sur les *broadcasts* en rajoutant des propriétés supplémentaires telles que la domination, l'indépendance, la non-redondance, l'efficacité ou le *packing*. Ces recherches ont abouti à la définition de plusieurs types de *broadcasts*.

Avant d'introduire les différents types de *broadcasts* et leur paramètres respectifs, ainsi que les relations qui peuvent exister entre ces paramètres, nous allons d'abord définir les notions de minimalité et de maximalité d'un *broadcast*, qui nous seront utiles pour la suite.

Pour un type de broadcast donné, le broadcast f sur G est dit minimal (resp. maximal) s'il n'existe aucun autre broadcast du même type g tel que, $g \neq f$ et $g(v) \leq f(v)$ (resp. $g(v) \geq f(v)$) pour tout $v \in V$.

2.2.1 Broadcast dominant

Rappelons que la notion de *domination broadcast* a été introduite par D.J. Erwin dans sa thèse de doctorat [43] intitulée « *Cost domination in graphs* ». Depuis, de nombreux auteurs se sont intéressés à la *domination broadcast*. Nous proposons ci-dessous, un bref résumé de la littérature sur le *nombre de domination broadcast* et le *nombre de domination broadcast supérieur*. Pour plus de détails, le lecteur pourra consulter les références [42, 44].

Un broadcast f sur G est dit dominant si tout sommet de G est f-dominé par au moins un sommet de V_f^+ . Autrement dit, si pour tout sommet $v \in V$, $|H_f(v)| \ge 1$.

Le nombre de domination broadcast de G est

 $\gamma_b(G) = \min\{\sigma(f) : f \text{ est un } broadcast \text{ dominant sur } G\}.$

Le nombre de domination broadcast supérieur de G est

 $\Gamma_b(G) = \max\{\sigma(f) : f \text{ est un } broadcast \text{ dominant minimal sur } G\}.$

Un broadcast dominant (resp. dominant minimal) sur G avec un coût égal à γ_b (resp. $\Gamma_b(G)$) est dit γ_b -broadcast (resp. $\Gamma_b(G)$)-broadcast). Un $\gamma_b(G)$ -broadcast (resp. $\Gamma_b(G)$)-broadcast) sur G est un broadcast dominant optimal.

La Figure 2.2 représente un graphe avec deux broadcasts minimaux f et g et un γ_b -broadcast h.

FIGURE 2.2 – f et g broadcasts minimaux mais non minimum, h est un γ_b -broadcast.

Des bornes inférieures, des bornes supérieures et des valeurs exactes simples ont été établies pour les deux paramètres de domination *broadcast*, en fonction de l'ordre, de la taille, du rayon, ou du diamètre d'un graphe. Nous proposons ici quelques résultats sur le nombre de domination *broadcast* $\gamma_b(G)$ de G. Notons d'abord que la fonction caractéristique f_S d'un ensemble dominant S d'un graphe G est un *broadcast* dominant sur G. De plus, pour tout sommet u de G, l'application $f_u : V(G) \to \{0, \ldots, \operatorname{diam}(G)\}$ définie par

$$f_u(v) = \begin{cases} e(u) & \text{si } v = u, \\ 0 & \text{sinon,} \end{cases}$$

est un broadcast dominant minimal sur G. En particulier, si e(u) = rad(G) (resp. e(u) = diam(G)), alors f_u est appelé broadcast radial (resp. broadcast diamétral) sur G.

Le broadcast h représenté dans la Figure 2.2 (c) est un broadcast radial.

Erwin [43, 44] a généralisé des résultats connus sur la domination [74] et la distance domination [59, 60] en caractérisant les *broadcasts* dominants minimaux.

Théorème 2.1 ([43, 44]). Soit f un broadcast dominant sur G. Alors f est minimal si et seulement si les deux conditions suivantes sont satisfaites :

1. pour tout sommet v avec $f(v) \ge 2$, il existe un f-voisin privé u de v tel que d(u, v) = f(v), 2. si f(v) = 1, alors v a un f-voisin privé $u \in N[v]$.

Comme la fonction caractéristique d'un ensemble dominant minimal d'un graphe G est un $\gamma(G)$ -broadcast dominant minimal, et qu'un broadcast radial est aussi un broadcast dominant minimal, Erwin a obtenu une première borne supérieure simple pour le nombre de domination broadcast, en fonction du rayon et du nombre de domination de G.

Proposition 2.2 ([43]). Pour tout graphe G,

$$\gamma_b(G) \le \min\{rad(G), \gamma(G)\}.$$

De plus, pour tout entier $1 \leq k \leq rad(G)$, la fonction caractéristique d'un ensemble S, dominant distance-k de G, définie par

$$f_S(v) = \begin{cases} k & \text{si } v \in S \\ 0 & \text{sinon,} \end{cases}$$

est aussi un broadcast dominant sur G. Grâce à cette propriété, Erwin [43] a obtenu une borne supérieure pour $\gamma_b(G)$ plus générale que celle proposée dans la Proposition 2.2.

Proposition 2.3 ([44]). Pour tout graphe G,

$$\gamma_b(G) \le \min\{k \times \gamma_k(G) : 1 \le k \le rad(G)\}.$$

La borne établie dans la Proposition 2.3 a immédiatement suggéré les questions suivantes :

- Existe-t-il des graphes G tels que $\gamma_b(G) = rad(G)$?
- Existe-t-il des graphes G tels que $\gamma_b(G) = \gamma(G)$?

La réponse est affirmative puisque pour tout entier $t \ge 3$, $\gamma_b(S(K_{1,t})) = rad(S(K_{1,t}))$ et pour tout entier $n \ge 2$, $\gamma_b(P_n) = \gamma(P_n)$.

Un graphe G tel que $\gamma_b(G) = rad(G)$ est appelé graphe radial. Le problème de la caractérisation des arbres radiaux a été d'abord considéré par Dunbar et al. dans [41], puis étudié plus tard dans [42]. Les auteurs ont établi l'existence de deux classes de graphes radiaux, il s'agit de la classe des grilles et de la classe des étoiles subdivisées. Seager [76] a caractérisé les chenilles dont le nombre de domination broadcast est égal au nombre de domination, et les chenilles dont le nombre de domination broadcast est égal au rayon. Le problème de la caractérisation des arbres radiaux a été finalement résolu par Herke et Mynhardt dans [63]. Les auteurs ont utilisé les ensembles *P*-scindés permettant la décomposition d'un arbre en composantes, telles que chaque composante est dominée par un broadcast radial. S'il n'est pas possible de former de telles composantes, alors l'arbre est lui-même radial.

Soit P une chaîne diamétrale d'un arbre T. Un sous-ensemble non vide M d'arêtes de P est dit P-scindé si les extrémités de ses arêtes sont toutes de degré 2 dans T et pour chaque composante T' de $T \setminus M$, la chaîne $T' \cap P$ est une chaîne diamétrale de longueur positive paire. Notons que $M = \emptyset$ est un P-scindé de T.

Théorème 2.4 ([63]). Un arbre T est radial si et seulement si T n'admet pas d'ensemble-scindé non vide.

Le résultat suivant fournit une condition nécessaire et suffisante pour que les nombres de domination *broadcast* et de domination d'un graphe soient égaux.

Théorème 2.5 ([44]). Pour tout graphe G, $\gamma_b(G) = \gamma(G)$ si et seulement si il existe un broadcast dominant f sur G tel que V_f^+ est un ensemble dominant.

Dans [61], Herke a établi une borne supérieure du nombre de domination *broadcast* pour tout graphe connexe G.

Proposition 2.6 ([61]). Pour tout graphe connexe G,

 $\gamma_b(G) = \min\{\gamma_b(T) : T \text{ est un arbre couvrant de } G\}.$

Erwin [44] s'est intéressé aux graphes dont le nombre de domination broadcast est assez petit. Il a caractérisé les graphes G pour lesquels $\gamma_b(G) \in \{1, 2\}$.

Théorème 2.7 ([44]). Pour tout graphe G,

- 1. $\gamma_b(G) = 1$ si et seulement si rad(G) = 1.
- 2. $\gamma_b(G) = 2$ si et seulement si $\min\{rad(G), \gamma(G)\} = 2$.

L'item 1 du Théorème 2.7 pourrait être reformuler comme suit : $\gamma_b(G) = 1$ si et seulement si $\gamma(G) = 1$. De plus, les résultats de ce théorème ont été étendu aux graphes G tels que $min\{rad(G), \gamma(G)\} = 3$.

Proposition 2.8 ([44]). Pour tout graphe G et pour tout entier $1 \le k \le 3$, si min $\{rad(G), \gamma(G)\} = k$, alors $\gamma_b(G) = k$.

Cette proposition n'est pas vérifiée pour tout graphe G tel que $min\{rad(G), \gamma(G)\} = 4$. Pour le prouver Erwin [44] a considéré le graphe G obtenu en joignant un sommet pendant de l'étoile subdivisée $S(K_{1,4})$ à une extrémité de la chaîne P_3 . Dans ce cas, nous avons $\gamma_b(G) = 3$ et $min\{rad(G), \gamma(G)\} = 4$. Il a également montré que la différence entre $min\{rad(G), \gamma(G)\}$ et $\gamma_b(G)$ peut être arbitrairement grande.

Le résultat suivant donne la valeur exacte du nombre de domination *broadcast* des graphes multipartis complets.

Proposition 2.9 ([44]). Si n_1, n_2, \ldots, n_k sont des entiers tels que $n_i \ge 2$, pour tout $1 \le i \le k$, alors,

$$\gamma_b(K_{n_1,n_2,\dots,n_k}) = 2.$$

Dans [44], Erwin a obtenu une borne inférieure du nombre de domination broadcast $\gamma_b(G)$ en fonction du diamètre de G. Cette borne est identique à celle déjà établie par Haynes *et al.* [52], pour le nombre de domination $\gamma(G)$.

Théorème 2.10 ([44]). Pour tout graphe G,

$$\gamma_b(G) \ge \left\lceil \frac{diam(G)+1}{3} \right\rceil.$$

Cette borne est atteinte pour les chaînes d'ordre $n \ge 2$.

Corollaire 2.11 ([44]). Pour tout entier $n \ge 2$,

$$\gamma_b(P_n) = \gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil.$$

Plus récemment, Bouchouika *et al.* [24] ont résolu la question posée par Ahmadi *et al.* [1] sur les invariants dans les *broadcasts* pour les chaînes et les cycles. En utilisant d'une part, le résultat de Brešar et Spacapan [25] qui montre que pour tout graphe connexe G, il existe un arbre couvrant T de G tel que $\gamma_b(G) = \gamma_b(T)$, et d'autre part, le fait que les arbres couvrants du cycle C_n sont isomorphes à la chaîne P_n , ils ont prouvé l'égalité des nombres de domination *broadcast* des cycles et des chaînes.

Proposition 2.12 ([24]). Pour tout entier $n \ge 3$,

$$\gamma_b(C_n) = \gamma_b(P_n) = \left\lceil \frac{n}{3} \right\rceil.$$

Nous proposons maintenant quelques résultats connus sur le nombre de domination broadcast supérieur $\Gamma_b(G)$ de G. D'abord introduit par Erwin [43], ce paramètre a été étudié plus tard par Dunbar *et al.* [42], Ahmadi *et al.* [1], Bouchemakh et Fergani [21], Gemmrich et Mynhardt [49], Mynhardt et Roux [69] et plus récemment par Bouchouika *et al.* [24].

Étant donné que la fonction caractéristique d'un ensemble dominant minimal est un broadcast dominant minimal et qu'un broadcast diamétral est aussi un dominant minimal, Erwin [43] a obtenu une première borne inférieure simple pour le nombre de domination broadcast supérieur de G, en fonction du diamètre et du nombre de domination supérieur de G.

Proposition 2.13 ([43]). Pour tout graphe G,

 $\Gamma_b(G) \ge max\{\Gamma(G), diam(G)\}.$

La différence entre $max\{\Gamma(G), diam(G)\}$ et $\Gamma_b(G)$ peut être arbitrairement grande. Pour le prouver Dunbar *et al.* [42] ont construit une famille de graphe comme suit : pour un entier kpositif, soit H_k le graphe obtenu en joignant un sommet pendant de $S(K_{1,2+k})$ à une extrémité de la chaîne P_{2k} . Dans ce cas, nous avons $\Gamma(G) = 2k + 3$ et diam(G) = 2k + 4 de sorte que $max\{\Gamma(G), diam(G)\} = 2k + 4$. De plus, soit v l'extrémité de P_{2k} qui n'est pas adjacente dans H_k à un sommet pendant de $S(K_{1,2+k})$. L'application f sur $V(H_k)$ définie par

$$f(u) = \begin{cases} 2k+2 & \text{si } u = v ,\\ 1 & \text{si } u \text{ est une feuille de } H_k \ u \neq v,\\ 0 & \text{sinon,} \end{cases}$$

est un (3k+3)-broadcast minimal sur H_k . Ainsi $\Gamma_b(H_k) \ge 3k+3$. D'où l'observation

Observation 2.14 ([42]). Pour tout entier positif k,

$$\Gamma_b(H_k) - max\{\Gamma(H_k), diam(H_k)\} \ge k - 1.$$

Par ailleurs, les mêmes auteurs ont établi une borne supérieure sur le nombre de domination broadcast supérieur en fonction de la taille de G.

Théorème 2.15 ([42]). Pour tout graphe G de taille m, $\Gamma_b(G) \leq m$. De plus, $\Gamma_b(G) = m$ si et seulement si G est une étoile ou une chaîne non trivial.

Par conséquent, pour tout entier $n \ge 2$, $\Gamma_b(P_n) = diam(P_n) = n - 1$.

Plus tard, Bouchemakh et Fergani [21] ont amélioré cette borne.

Théorème 2.16 ([21]). Si G est un graphe d'ordre n et de degré minimum $\delta(G)$, alors

$$\Gamma_b(G) \le n - \delta(G),$$

et cette borne est atteinte.

Mynhardt et Neilson [73] ont déterminé la valeur exacte du nombre de domination *broadcast* supérieur de l'araignée $S(2^k)$.

Proposition 2.17 ([73]). Pour tout entier $k \ge 3$,

$$\Gamma_b(S(2^k)) = k + 1.$$

Enfin, Bouchouika *et al.* [24] ont déterminé la valeur exacte du nombre de domination *broadcast* supérieur des cycles.

Théorème 2.18 ([24]). Pour tout entier $n \ge 4$,

$$\Gamma_b(C_n) = 2\left(\left\lfloor \frac{n}{2} \right\rfloor - 1\right).$$

Notons que le cas n = 3 est trivial, puisque $\Gamma_b(C_3) = 1$.

2.2.2 Broadcast non-redondant

En s'inspirant de la définition d'un ensemble non-redondant dans un graphe, Ahmadi *et al.* ont introduit dans [1] la notion de *broadcast non-redondant*.

Un broadcast f sur G est dit non-redondant si pour tout sommet $v \in V_f^+$, $PB_f(v) \neq \emptyset$. Autrement dit, si les deux conditions suivantes sont satisfaites :

- (i) pour tout sommet *f*-broadcast v avec $f(v) \ge 2$, il existe un sommet u tel que $H_f(u) = \{v\}$ et d(u, v) = f(v),
- (ii) pour tout sommet *f*-broadcast avec f(v) = 1, il existe un sommet $u \in N[v]$ tel que $H_f(u) = \{v\}$ (notons que, dans ce cas nous pouvons avoir u = v).
Le nombre de non-redondance broadcast de G est

 $ir_b(G) = \min\{\sigma(f) : f \text{ est un broadcast non-redondant maximal sur } G\}.$

Le nombre de non-redondance broadcast supérieur de G est

 $IR_b(G) = \max\{\sigma(f) : f \text{ est un broadcast non-redondant sur } G\}.$

La Figure 2.3 représente trois broadcasts f, g et h non-redondants sur la chaîne P_7 . Les broadcasts f et h sont non-redondants maximaux et dominant minimaux. Le broadcast g est un broadcast non-redondant, mais n'est pas maximal (car on peut augmenter la g-valeur de l'unique sommet g-broadcast v avec f(v) = 1 de 1 à 2). De plus g n'est un pas broadcast dominant.

FIGURE 2.3 – Broadcasts non-redondants sur la chaîne P_7 .

Si f est un broadcast non-redondant maximal sur G tel que f(v) = 1 pour tout $v \in V_f^+$, alors V_f^+ est un ensemble non-redondant maximal. Le coût minimum (resp. maximum) d'un tel broadcast est le nombre de non-redondance ir(G) (resp. nombre de non-redondance supérieur IR(G)) de G.

En utilisant la définition d'un *broadcast* non-redondant et la caractérisation des *broadcasts* dominants minimaux (voir le Théorème 2.1), Ahmadi *et al.* [1] ont prouvé le résultat suivant.

Proposition 2.19 ([1]). Tout broadcast dominant minimal est un broadcast non-redondant maximal.

Les auteurs ont donc déduit la chaîne d'inégalités suivante :

Corollaire 2.20 ([1]). Pour tout graphe G,

$$ir_b(G) \le \gamma_b(G) \le \gamma(G) \le i(G) \le \beta_0(G) \le \Gamma(G) \le \Gamma_b(G) \le IR_b(G).$$

Pour un graphe G, l'inégalité $ir_b(G) \leq \gamma_b(G)$ n'est pas forcément stricte, puisque le graphe $G = S(K_{1,t})$ vérifie, $ir_b(G) = \gamma_b(G) = 2$. Bouchouika *et al.* [24] ont prouvé que les chaînes et les cycles vérifient aussi cette égalité.

Théorème 2.21 ([24]).

1. Pour tout entier $n \geq 2$,

$$ir_b(P_n) = \gamma_b(P_n) = \left\lceil \frac{n}{3} \right\rceil$$

2. Pour tout entier $n \geq 3$,

$$ir_b(C_n) = \gamma_b(C_n) = \left\lceil \frac{n}{3} \right\rceil$$

Mynhardt et Roux [69] ont reformulé en terme de frontière privée, la caractérisation des broadcasts dominants minimaux proposée par Erwin [44]. Ils ont prouvé qu'un broadcast nonredondant est dominant s'il est à la fois non-redondant maximal et dominant minimal.

Proposition 2.22 ([69]). Un broadcast dominant est un broadcast dominant minimal si et seulement si pour tout $v \in V_f^+$, $PB_f(v) \neq \emptyset$.

Corollaire 2.23 ([69]). Si un broadcast non-redondant f est dominant, alors il est non-redondant maximal et dominant minimal.

Les auteurs ont également prouvé que le rapport $\gamma_b(G)/ir_b(G)$ est borné, mais ont noté que le rapport $IR_b(G)/\Gamma_b(G)$ ne l'est pas forcément.

Théorème 2.24 ([69]). Pour tout graphe $G, \gamma_b(G) \leq \frac{5}{4}ir_b(G)$.

En construisant une famille de graphes $\{G_r\}_{r\geq 3}$, où chaque graphe G_r est obtenu en joignant deux copies de K_{r+1} par r arêtes indépendantes, Mynhardt et Roux [69] ont prouvé que pour tout $r \geq 3$, $\Gamma_b(G_r) = 3 \leq IR_b(G_r) = r$. Ceci prouve que la différence $IR_b(G) - \Gamma_b(G)$ peut être arbitrairement grande et que le rapport $IR_b(G)/\Gamma_b(G)$ n'est pas borné. Néamoins, l'égalité $IR_b(G) = \Gamma_b(G)$, peut être satisfaite puisque Bouchouika *et al.* [24] l'ont prouvé pour les chaînes et les cycles.

Théorème 2.25 ([24]).

1. Pour tout entier $n \geq 2$,

$$IR_b(P_n) = \Gamma_b(P_n) = diam(P_n) = n - 1.$$

2. Pour tout entier $n \geq 3$,

$$IR_b(C_n) = \Gamma_b(C_n) = 2(\left\lfloor \frac{n}{2} \right\rfloor - 1).$$

2.2.3 Broadcast indépendant

Dans [43], Erwin a introduit l'idée de restreindre les interactions entre les différentes tours de transmission dans le réseau de télécommunication. Il a donc défini la notion d'*indépendance broadcast* qui a été par la suite considérée par Dunbar *et al.* [42], Bouchemakh et Zemir [23], Bessy et Rautenbach [13, 14, 15], Mynhardt et Neilson [73] et plus récemment Bouchouika *et al.* [24]. Rappelons que le paramètre d'*indépendance broadcast* est le paramètre pricipal de notre étude, développée dans les deux chapitres suivants.

Un broadcast f sur G est dit broadcast indépendant si pour tout sommet $v \in V_f^+$, $N_f[v] \cap V_f^+ = \{v\}$, (ou encore $H_f(v) = \{v\}$) c'est-à-dire, si tout sommet f-broadcast n'est f-dominé que par lui-même.

Le nombre d'indépendance broadcast de G est

 $\beta_b(G) = \max\{\sigma(f) : f \text{ est un broadcast indépendant sur } G\}.$

Le nombre d'indépendance broadcast inférieur de G est

 $i_b(G) = \min\{\sigma(f) : f \text{ est un broadcast indépendant maximal sur } G\}.$

Un broadcast indépendant (resp. indépendant maximal) sur G avec un coût égal à $\beta_b(G)$ (resp. $i_b(G)$) est un $\beta_b(G)$ -broadcast (resp. $i_b(G)$ -broadcast) sur G. Un $\beta_b(G)$ -broadcast (resp. $i_b(G)$ broadcast) sur G est un broadcast indépendant optimal. Notons que tout broadcast indépendant optimal est nécessairement un broadcast dominant.

Dans la Figure 2.4 (a), f est un broadcast indépendant, mais n'est pas maximal (car on peut augmenter la f-valeur de tout sommet f-broadcast de 1 à 2). De plus, f est un broadcast dominant minimal et un broadcast non-redondant maximal. Dans la Figure 2.4(b), g est un broadcast indépendant maximal et un broadcast dominant non minimal mais n'est pas un broadcast non-redondant (car aucun sommet g-broadcast ne posséde de g-voisin-frontière privé).

FIGURE 2.4 – Un broadcast indépendant non maximal f et un broadcast indépendant maximal g sur G.

Nous proposons dans ce qui suit quelques propriétés établies par Erwin dans [44], sur l'ensemble V_f^+ d'un *broadcast* indépendant f sur G. **Observation 2.26** ([44]). Si f est un broadcast indépendant sur G, alors l'ensemble broadcast V_f^+ est un ensemble indépendant de G.

Théorème 2.27 ([44]). Soit f un β -broadcast et V_f^+ l'ensemble des sommets broadcasts. Alors V_f^+ est un ensemble indépendant et pour tout sommet $u \in V \setminus V_f^+$, il existe un sommet $v \in V_f^+$ pour lequel $d(u, v) < \min\{d(x, v) : x \in V_f^+ \setminus \{v\}\}.$

Corollaire 2.28 ([44]). Soit f un broadcast indépendant maximal sur G. Alors il existe deux sommets $u, v \in V_f^+$ tels que f(v) = f(u).

Tout *broadcast* radial (resp. diamétral) sur G est un *broadcast* indépendant maximal. Dunbar *et al.* [42] ont établi alors une chaîne d'inégalités simple :

Proposition 2.29 ([42]). Pour tout graphe G,

$$i_b(G) \le rad(G) \le diam(G) \le \beta_b(G).$$

Observation 2.30 ([44]).

- 1. La fonction caractéristique d'un ensemble indépendant maximal de G est un broadcast indépendant sur G mais pas nécessairement maximal.
- 2. Tout broadcast indépendant maximal est un broadcast dominant. En particulier, tout broadcast indépendant optimal est un broadcast dominant. Par conséquent,

$$\beta_b(G) \ge \beta_0(G).$$

Erwin [44] a ainsi obtenu la chaîne d'inégalités suivante :

Proposition 2.31 ([44]). Pour tout graphe G,

$$\gamma_b(G) \le \gamma(G) \le \beta_0(G) \le \beta_b(G).$$

Dunbar *et al.* [42] ont noté que ni $\gamma(G)$, ni i(G) ne sont comparables avec $i_b(G)$. En effet, il est facile de montrer que pour la chaîne P_6 , $\gamma(P_6) = i(P_6) = 2 < 3 = i_b(P_6)$, alors que pour $S(K_{1,t})$ la sudivision de l'étoile $K_{1,t}$, nous avons $\gamma(S(K_{1,t})) = i(S(K_{1,t})) = t > 2 = i_b(S(K_{1,t}))$. De même, ni p(G), ni P(G) ne sont comparables avec $i_b(G)$. En effet, pour le graphe de Petersen PG représenté dans la Figure 2.5, nous avons $p(PG) = P(PG) = 1 < 2 = \gamma_b(PG) = i_b(PG)$, tandis que pour le graphe G construit à partir de trois copies disjointes de la chaîne P_5 en joignant leur sommets centraux par trois arêtes formant un triangle, nous avons $\gamma_b(G) = i_b(G) =$ 3 < 5 = p(G) < P(G).

Par ailleurs, les auteurs ont prouvé que si G est un graphe radial alors le nombre de domination broadcast et le nombre d'indépendance broadcast inférieur sont égaux.

FIGURE 2.5 – Graphe de Petersen

Proposition 2.32 ([42]). Pour tout graphe G, si $\gamma_b(G) = rad(G)$, alors $i_b(G) = rad(G)$.

Notons que la réciproque est fausse, puisque pour un arbre T obtenu à partir de l'étoile subdivisée $S(K_{1,t})$ avec $t \ge 3$ et la chaîne P_9 en rajoutant une arête joignant le centre de $S(K_{1,t})$ à une extrémité de P_9 , nous avons $\gamma_b(T) = 5 < 6 = rad(T) = i_b(T)$.

Dunbar et al. [42] ont déduit la chaîne d'inégalités suivante :

Proposition 2.33 ([42]). Pour tout graphe G,

$$\gamma_b(G) \le i_b(G) \le \beta_b(G) \ge i(G) \ge \gamma(G) \ge \gamma_b(G).$$

Cependant, $\beta_b(G)$ et $\Gamma_b(G)$ sont en général incomparables. En effet, si nous considérons la chaîne P_4 , $\beta_b(P_4) = 4 > \Gamma_b(P_4) = 3$, alors que pour le graphe de Petersen PG nous avons $\beta_b(PG) = 4 < 5 = \Gamma_b(PG)$. De même, $\beta_b(G)$ et $\Gamma(G)$ sont incomparables, puisque $\Gamma(PG) = 5 > 4 = \beta_b(PG)$ alors que $\beta_b(P_4) = 4 > 2 = \Gamma(P_4)$.

Plus récemment Bouchouika *et al.* [24] ont déterminé la valeur exacte du nombre d'indépendance *broadcast* inférieur des chaînes et des cycles.

Théorème 2.34 ([24]).

1. Pour tout entier $n \geq 2$,

$$i_b(P_n) = \left\lceil \frac{2n}{5} \right\rceil.$$

2. Pour tout entier $n \geq 3$,

$$i_b(C_n) = \left\lceil \frac{2n}{5} \right\rceil.$$

Comme cette thèse s'intéresse au nombre d'indépendance broadcast de quelques classes d'arbres, nous faisons le choix d'inclure dans la section 2.3 d'autres résultats sur le paramètre $\beta_b(G)$ dûs à Erwin [44], ainsi que ceux des autres chercheurs cités au début de cette sous-section.

2.2.4 Broadcast dominant indépendant

Un broadcast f sur G est dit dominant indépendant s'il est à la fois dominant et indépendant.

Le nombre de domination-indépendance broadcast est

 $\gamma_{ib}(G) = \min\{\sigma(f) : f \text{ est un broadcast dominant indépendant sur } G\}.$

Le nombre de domination-indépendance broadcast supérieur de G est

 $\Gamma_{ib}(G) = \max\{\sigma(f) : f \text{ est un broadcast dominant indépendant minimal sur } G\}.$

Dans la Figure 2.3, le *broadcast* h est dominant indépendant.

Rappelons que la fonction caractéristique d'un ensemble indépendant maximal est un broadcast dominant indépendant minimal. Par conséquent, $\gamma_{ib}(G) \leq i(G)$ et $\Gamma_{ib}(G) \geq \beta_0(G)$.

Dans le résultat qui suit Erwin [43] a prouvé qu'à partir de tout *broadcast* dominant non indépendant f, on peut construire un *broadcast* g qui est à la fois dominant et indépendant.

Théorème 2.35 ([43]). Si f est un broadcast dominant sur un graphe G, alors il existe un broadcast g sur G dominant et indépendant pour lequel $\sigma(g) \leq \sigma(f)$ et $V_q^+ \subset V_f^+$.

Une conséquence immédiate du Théorème 2.35 est le corollaire

Corollaire 2.36 ([43]). Pour tout graphe G,

$$\gamma_{ib}(G) = \gamma_b(G).$$

Dunbar et al. [42] ont donc déduit la chaîne d'inégalités suivante :

Proposition 2.37 ([42]). Pour tout graphe G,

$$\gamma_{ib}(G) = \gamma_b(G) \le i_b(G) \le rad(G) \le diam(G) \le \Gamma_{ib}(G).$$

Par ailleurs, les auteurs ont également fourni une borne supérieure et une borne inférieure pour le nombre de domination-indépendance *broadcast* supérieur.

Proposition 2.38 ([42]). Pour tout graphe G,

$$\beta_0(G) \le \Gamma_{ib}(G) \le \min\{\Gamma_b(G), \beta_b(G)\}.$$

Notons que $\Gamma_{ib}(G)$ et $\Gamma(G)$ ne sont pas comparables. En effet, pour le graphe de Petersen et la chaîne P_{10} nous avons, $\Gamma_{ib}(PG) = 4 < 5 = \Gamma(PG)$ et $\Gamma(P_{10}) = 5 < 9 = diam(P_{10}) \leq \Gamma_{ib}(P_{10})$.

2.2.5 Broadcast indépendant non-redondant

Mynhardt et Neilson [73] ont introduit et examiné différents types de broadcasts indépendants. Tous ces types exigent que les sommets broadcasts forment un ensemble indépendant. Par exemple, le broadcast indépendant frontière défini comme un broadcast f tel que, pour tout sommet w avec $H_f(w) = \{v_1, \ldots, v_k\}, d(w, v_i) = f(v_i)$, pour tout $1 \le i \le k$. Le coût maximum d'un broadcast indépendant frontière, noté $\alpha_{bn}(G)$, est le nombre d'indépendance broadcast-frontière de G. Ils ont également déterminé la valeur exacte de tous ces paramètres d'indépendance pour les chaînes et les grilles. Pour un graphe en général, les auteurs ont examiné les relations entre ces paramètres d'indépendance et le nombre de domination broadcast (resp. le nombre de domination broadcast supérieur). Nous présentons ci-dessous un des type d'indépendance broadcast, à savoir le broadcast indépendant non-redondant. Pour plus de détails le lecteur est orienté vers [73].

Un broadcast f sur G est dit indépendant non-redondant s'il est à la fois indépendant et non-redondant.

Le nombre d'indépendance-non-redondance broadcast de G est

 $\beta_{br}(G) = \max\{\sigma(f) : f \text{ est un broadcast dominant indépendant non-redondant sur } G\}.$

Le nombre d'indépendance-non-redondance broadcast inférieur est

 $i_{br}(G) = \min\{\sigma(f) : f \text{ est un broadcast indépendant non-redondant maximal sur } G\}.$

La Figure 2.6 représente un broadcast indépendant non-redondant sur la chaîne P_7 .

FIGURE 2.6 – Un broadcast indépendant non-redondant sur la chaîne P_7 .

Mynhardt et Neilson [73] ont prouvé que pour tout graphe G, le nombre d'indépendancenon-redondance broadcast et le nombre de non-redondance broadcast supérieur de G sont comparables.

Proposition 2.39 ([73]). Pour tout graphe G,

$$\beta_{br}(G) \le IR_b(G).$$

2.2.6 Broadcast de packing

Rappelons qu'un ensemble S de sommets de G est un packing dans G si pour tout sommet $v \in V, |N[v] \cap S| \leq 1$. Dunbar et al. [42] ont défini par analogie la notion de broadcast de packing.

Un broadcast f sur G est dit de packing si tout sommet de G est f-dominé par au plus un sommet f-broadcast, c'est-à-dire, pour tout sommet $v \in V$, $|H_f(v)| \leq 1$.

Le nombre de packing broadcast de G est

 $P_b(G) = \max\{\sigma(f) : f \text{ est un broadcast de packing sur } G\}.$

Le nombre de packing broadcast inférieur de G est

 $p_b(G) = \min\{\sigma(f) : f \text{ est un broadcast de packing maximal sur } G\}.$

Dans la Figure 2.7, f est un broadcast de packing non maximal et g est un broadcast de packing maximal sur la chaîne P_5 .

FIGURE 2.7 – Un broadcast de packing non maximal f et un broadcast de packing maximal g sur la chaîne P_5 .

Observation 2.40 ([42]).

- 1. La fonction caractéristique d'un packing maximal dans G est un broadcast de packing sur G, non nécessairement maximal.
- 2. Un broadcast radial (resp. diamétral) est un broadcast de packing.
- 3. Tout broadcast de packing est un broadcast indépendant. Par conséquent, pour tout graphe G, $P_b(G) \leq \beta_b(G)$.
- 4. Tout broadcast de packing est un broadcast non-redondant. Par conséquent, pour tout graphe G, $P_b(G) \leq IR_b(G)$.

Dunbar *et al.* ont observé dans [42] que, pour tout graphe G, P(G) (resp. p(G)) et $p_b(G)$ ne sont pas comparables, alors que nous avons $p(G) \leq P(G) \leq P_b(G)$ et

$$p_b(G) \le rad(G) \le diam(G) \le P_b(G) \le \beta_b(G).$$

Bouchouika *et al.* [24] ont prouvé que la borne inférieure diam(G) de $P_b(G)$ est atteinte pour les chaînes et les cycles, alors que la différence entre $p_b(G)$ et rad(G) peut être arbitrairement grande.

Théorème 2.41 ([24]).

1. Pour tout entier $n \geq 2$,

$$P_b(P_n) = diam(P_n) = n - 1$$

2. Pour tout entier $n \geq 3$,

$$P_b(C_n) = diam(C_n) = \left\lfloor \frac{n}{2} \right\rfloor.$$

Les auteurs [24] ont également déterminé la valeur exacte du nombre de *packing broadcast* inférieur des chaînes et des cycles.

Théorème 2.42 ([24]).

1. Pour tout entier $n \geq 2$,

$$p_b(P_n) = \begin{cases} \frac{n}{4} & si \ n \equiv 0 \pmod{8}, \\ 2\left\lfloor \frac{n}{8} \right\rfloor + 1 & si \ n \equiv 1, 2, 3 \pmod{8}, \\ 2\left\lfloor \frac{n}{8} \right\rfloor + 2 & si \ n \equiv 4, 5, 6, 7 \pmod{8}. \end{cases}$$

2. Pour tout entier $n \geq 3$,

$$p_b(C_n) = \begin{cases} \frac{n}{4} & si \ n \equiv 0 \pmod{8}, \\ 2\left\lfloor\frac{n}{8}\right\rfloor + 1 & si \ n \equiv 1, 2, 3 \pmod{8}, \\ 2\left\lfloor\frac{n}{8}\right\rfloor + 2 & si \ n \equiv 4, 5, 6, 7 \pmod{8}. \end{cases}$$

2.2.7 Broadcast efficace

Rappelons qu'un dominant S dans G est efficace si tout sommet de G est dominé par exactement un sommet de S. Dunbar *et al.* [42] ont défini par analogie la notion de *broadcast efficace*.

Un broadcast f sur G est dit efficace si tout sommet de G est f-dominé par un unique sommet f-broadcast, c'est-à-dire, pour tout sommet $v \in V$, $|H_f(v)| = 1$.

Le nombre d'efficacité broadcast de G est

 $\gamma_{eb}(G) = \min\{\sigma(f) : f \text{ est un broadcast efficace sur } G\}.$

Le nombre d'efficacité broadcast supérieur de G est

 $\Gamma_{eb}(G) = \max\{\sigma(f) : f \text{ est un broadcast efficace sur } G\}.$

La Figure 2.8 représente trois broadcasts f, g et h efficaces sur la chaîne P_7 . Notons que f est un γ_b -broadcast et h est un Γ_b -broadcast diamétral.

FIGURE 2.8 – Broadcasts efficaces sur la chaîne P_7 .

Dans le chapitre 1, Section 1.4, nous avons souligné qu'un dominant efficace n'existait pas toujours. Dunbar *et al.* [42] ont prouvé qu'il en est autrement pour les *broadcasts* efficaces.

Théorème 2.43 ([42]). Tout graphe G possède un γ_b -broadcast qui est efficace.

Du théorème 2.43, nous déduisons que pour tout graphe G, $\gamma_b(G) = \gamma_{eb}(G)$. De plus, tout broadcast dominant efficace sur G est un broadcast dominant minimal et indépendant. Par conséquent, $\Gamma_{eb}(G) \leq \min\{\beta_b(G), \Gamma_b(G), \Gamma_{ib}(G)\}.$

Dunbar et al. [42] ont établi alors la chaîne d'inégalités

Corollaire 2.44 ([42]). Pour tout graphe G,

$$\gamma_b(G) = \gamma_{ib}(G) = \gamma_{eb}(G) \le i_b(G) \le rad(G) \le diam(G) \le \Gamma_{eb}(G) \le \Gamma_{ib}G).$$

Notons que ni p(G), ni P(G) ne sont comparables avec $\Gamma_{eb}(G)$, puisque pour le graphe de Petersen PG, $p(PG) = P(PG) = 1 < 2 = \Gamma_{eb}(PG)$, tandis que pour un arbre binaire complet T de profondeur 6 et d'ordre 63, nous avons $\Gamma_{eb}(T) = 10 < 13 = p(T)$. De même, ni $\gamma(G)$, ni i(G), ni $\Gamma(G)$, ni $\beta_0(G)$, ne sont comparables avec $\Gamma_{eb}(G)$. **Proposition 2.45** ([42]). Un broadcast efficace est

- (i) un broadcast de packing maximal,
- (ii) un broadcast dominant minimal, et
- (iii) un broadcast dominant indépendant.

Le résultat qui suit est une conséquence immédiate du Corallaire 2.44 et de la Proposition 2.45.

Corollaire 2.46 ([42]). Pour tout graphe G,

 $p_b(G) \le \gamma_{eb}(G) = \gamma_{ib}(G) = \gamma_b(G) \le i_b(G) \le \Gamma_{eb}(G) \le \min\{P_b(G), \Gamma_b(G), \Gamma_{ib}G)\}.$

2.2.8 Broadcast limité

Un problème ouvert a été proposé dans [42] concernant une version limitée de la fonction *broadcast*. Cette version restreinte vient du fait que la puissance de transmission des différentes stations pourrait être limitée, puisque des réseaux assez grands nécessitant des puissances de transmission égales ou proches du diamètre, pourraient ne pas avoir de sens. Cette notion a été étudié dans [30, 31, 65].

Pour un graphe G et pour un entier $1 \leq k \leq diam(G)$, un broadcast f sur G est dit kdominant si $f : V(G) \to \{0, \ldots, k\}$ et si pour tout sommet $u \in V(G)$, il existe un sommet $v \in V_f^+$ tel que $d(u, v) \leq f(v)$.

Le nombre de k-domination broadcast de G est

 $\gamma_{b_k}(G) = \min\{\sigma(f) : f \text{ est un broadcast } k \text{-dominant sur } G\}.$

Le nombre de k-domination broadcast supérieur de G est

 $\Gamma_{b_k}(G) = \max\{\sigma(f) : f \text{ est un broadcast } k \text{-dominant minimal sur } G\}.$

Observation 2.47 ([31]).

- 1. D'aprés la définition $\gamma(G) = \gamma_{b_1}(G), \ \gamma_b(G) \leq \gamma_{b_k}(G)$ et $\gamma_{b_{k+1}}(G) \leq \gamma_{b_k}(G)$, pour tout graphe G et pour tout entier $k \geq 1$.
- 2. Si r = rad(G), alors nous avons la chaîne d'inégalités suivante :

$$\gamma_b(G) = \gamma_{b_r}(G) \le \gamma_{b_{r-1}}(G) \le \dots \le \gamma_{b_2}(G) \le \gamma_{b_1}(G) = \gamma(G).$$

Dans [30], Cáceres *et al.* ont obtenu une borne supérieure de $\gamma_{b_2}(G)$ pour tout graphe G.

Théorème 2.48 ([30]). Pour tout graphe G d'ordre n,

$$\gamma_{b_2}(G) \le \left\lceil \frac{4n}{9} \right\rceil$$

Cáceres *et al.* [31] ont prouvé un certain nombre de propriétés sur le paramètre de la kdomination *broadcast* et ont proposé dans le Théorème 2.50, une borne supérieure du nombre de k-domination *broadcast* pour tout graphe G pour tout entier $k \ge 1$. De plus, les auteurs ont montré dans [31] que le problème de la k-domination *broadcast* est un problème NP-complet.

Le théorème suivant est analogue au Théorème 2.6 prouvé par Herke [61] pour le nombre de domination *broadcast*.

Théorème 2.49 ([31]). Pour tout graphe G connexe et tout entier $k \ge 3$,

 $\gamma_{b_k}(G) = \min\{\gamma_{b_k}(T) : T \text{ est un arbre couvrant de } G\}.$

Théorème 2.50 ([31]). Pour tout graphe G d'ordre n avec rad(G) = r,

$$\gamma_{b_k}(G) = \begin{cases} \left\lfloor \frac{n}{2} \right\rfloor & si \ k = 1, \\ \left\lceil \frac{n(k+2)}{3(k+1)} \right\rceil & si \ 1 < k < r \\ \left\lceil \frac{n}{3} \right\rceil & si \ k \ge r. \end{cases}$$

2.2.9 Complexité du problème de domination broadcast

Plusieurs variantes de domination dans les graphes ont été étudiées au fil des ans et ont tendance à être des problèmes *NP*-complets. Une exception remarquable est le problème de domination *broadcast*.

En effet, on pourrait penser intuitivement que le problème de domination *broadcast* est plus difficile que le problème de domination, or ce n'est pas le cas. Le problème de recherche d'un *broadcast* dominant minimum peut être résolu en un temps polynomial, avec un ordre de complexité égal à $O(n^6)$ pour un graphe général [57]. Blair *et al.* [16] ont réduit considérablement l'ordre de complexité pour la classe des arbres en proposant un algorithme polynomial pour la classe des arbres avec un ordre de complexité égal à $O(n^2)$. Enfn, dans [39] Dabney *et al.* ont amélioré cet ordre en donnant un algorithme linéaire pour la classe des arbres.

2.3 Broadcast indépendant

Rappelons que la notion d'indépendance *broadcast* a été introduite pour la première fois en 2001 par D.J. Erwin [43]. Alors que la domination *broadcast* a été abondamment étudiée par de nombreux auteurs, cette notion quant à elle n'a fait l'objet que de peu de travaux de recherche. Nous citons dans cette section quelques travaux réalisés par Dunbar *et al.* [42], Bouchemakh et Zemir [23], Bessy et Rautenbach [13, 14, 15], et Minhardt et Neilson [73] sur les *broadcasts* indépendants et le nombre d'indépendance *broadcast*.

2.3.1 Sur le nombre d'indépendance broadcast

Dans [44], Erwin a caractérisé les broadcasts indépendants maximaux.

Théorème 2.51 ([43, 44]). Soit f un broadcast indépendant sur G. Si $V_f^+ = \{v\}$, alors f est maximal si et seulement si f(v) = e(v). Si $|V_f^+| \ge 2$, alors f est maximal si et seulement si les deux conditions suivantes sont satisfaites :

- 1. f est dominant et,
- 2. pour tout $v \in V_f^+$, $f(v) = \min\{d(v, u) : u \in V_f^+ \setminus \{v\}\} 1$.

L'auteur a également noté que si G est un graphe connexe, d'ordre $n \ge 2$ et $G \ne K_n$, alors tout β_b -broadcast sur G vérifie $V_f^+ > 1$. Il a aussi observé que le $2(\operatorname{diam}(G)-1)$ -broadcast obtenu en attribuant la valeur $\operatorname{diam}(G) - 1$ à deux sommets antipodaux est un broadcast indépendant sur G, et a donc établi une première borne pour le paramètre $\beta_b(G)$. Dunbar *et al.* [42] ont par la suite affiné cette borne :

Observation 2.52 ([42, 43]). Pour tout graphe G connexe d'ordre $n \ge 2$,

$$\beta_b(G) \ge |A|(\operatorname{diam}(G) - 1) \ge 2(\operatorname{diam}(G) - 1)$$

où A est l'ensemble des sommets deux à deux antipodaux dans G, $|A| \ge 2$.

En effet, il est facile de vérifier que la fonction f definie par

$$f(u) = \begin{cases} \operatorname{diam}(G) - 1 & \operatorname{si} u \in A \\ 0 & \operatorname{sinon.} \end{cases}$$

est un $|A|(\operatorname{diam}(G) - 1)$ -broadcast indépendant sur G.

Dans [43], Erwin a prouvé que la chaîne P_n d'ordre $n \ge 3$ atteint la borne.

Théorème 2.53 ([43]). Pour tout entier $n \ge 3$,

$$\beta_b(P_n) = 2(n-2).$$

FIGURE 2.9 – La chaîne P_5 et son β_b -broadcast

La Figure 2.9 représente la chaîne P_5 et son β_b -broadcast.

Dunbar *et al.* [42] ont ensuite prouvé que l'étoile subdivisée $S(K_{1,t})$, pour $t \ge 2$, et plus généralement, l'araignée $S(n^k)$, pour $n \ge 1$ et $k \ge 2$, atteignent la borne :

 $\beta_b(S(K_{1,t})) = 3t = t(\operatorname{diam}(S(K_{1,t})) - 1).$

$$\beta_b(S(n^k)) = k(2n-1) = k(\operatorname{diam}(S(n^k)) - 1).$$

La Figure 2.10 représente l'étoile subdivisée $S(K_{1,4})$ et son β_b -broadcast.

FIGURE 2.10 – L'étoile subdivisée $S(K_{1,4})$ et son β_b -broadcast.

Depuis l'introduction du nombre d'indépendance *broadcast*, Bouchemakh et Zemir [23] ont été parmi les premiers chercheurs à s'intéresser à ce paramètre. Les auteurs ont étudié ce paramètre pour la classe des grilles.

Théorème 2.54 ([23]). Soit $G_{m,n}$ une grille de dimension (m,n) avec $m \ge 2$ et $n \ge 2$. On a alors

1. $\beta_b(G_{m,n}) = 2(m+n-3) = 2(\operatorname{diam}(G_{m,n})-1)$ si $m \le 4$,

2. $\beta_b(G_{5,5}) = 15$, $\beta_b(G_{5,6}) = 16$ et,

3. $\beta_b(G_{m,n}) = \left\lceil \frac{mn}{2} \right\rceil \text{ pour tout } m, n, 5 \le m \le n, (m,n) \ne (5,5), (5,6).$

Plus récemment, Bessy et Rautenbach [13, 14, 15] se sont intéressés aux *broadcasts* indépendants. Dans [14], les auteurs ont établi une relation entre le nombre d'indépendance *broadcast* $\beta_b(G)$ et l'une des notions les plus fondamentales et les mieux étudiées en théorie des graphes

Théorème 2.55 ([14]). Si G est un graphe connexe tel que $diam(G) \ge 3$ ou $\beta_0(G) \ge 3$ et f un broadcast indépendant optimal sur G, alors

à savoir le nombre d'indépendance $\beta_0(G)$. Ils ont donné une borne supérieure pour $\beta_b(G)$ pour

$$\sigma(f) \le 4\beta_0(G) - 4\min\left\{1, \frac{2\beta_0(G)}{f_{max} + 2}\right\},\,$$

 $o\hat{u} f_{max} = \max\{f(x) : x \in V\}.$

tout graphe G connexe.

Ce résultat exclut les cas triviaux de graphes dont le diamètre est au plus 2 et $\beta_0(G) \leq 2$, puisque si $\beta_0(G) = 1$ alors G est un graphe complet K_n , ce qui implique que $\beta_b(G) = \beta_0(G)$. Si $\beta_0(G) = 2$ alors $\beta_b(G) = 2$. Par conséquent, dans les deux cas, les deux paramètres sont égaux.

Théorème 2.56 ([14]). Pour tout graphe G connexe,

$$\beta_b(G) \le 4\beta_0(G).$$

Nous savons maintenant que $\beta_0(G) \leq \beta_b(G) \leq 4\beta_0(G)$. Bessy et Rautenbach [14] ont noté que, puisque les deux paramètres $\beta_0(G)$ et $\beta_b(G)$ différent d'un facteur constant, cela implique immédiatement que $\beta_b(G)$ hérite de la complexité du problème de calcul de $\beta_0(G)$ et de tous les algorithmes efficaces d'approximation à facteur constant qui existent pour $\beta_0(G)$.

Les auteurs ont ensuite montré dans [15] que lorsqu'ils imposaient des limites inférieures au degré minimum $\delta(G)$ et à la maille g de G, où la maille g est la taille minimum d'un cycle dans G, la fraction $\frac{\beta_b(G)}{\beta_0(G)}$ passe de 4 à en-dessous de 2, mais pas moins.

Théorème 2.57 ([15]). Si G est un graphe connexe de maille au moins 6 et de degré minimum au moins 3, alors

$$\beta_b(G) < 2\beta_0(G).$$

Théorème 2.58 ([15]). Pour tout entier positif k, il existe un graphe connexe G de maille au moins k et de degré minimum au moins k tel que

$$\beta_b(G) \ge 2\left(1 - \frac{1}{k}\right)\beta_0(G).$$

Dans [15], Bessy et Rautenbach ont établi une relation entre le nombre d'indépendance *broadcast*, le nombre d'indépendance et le nombre de *packing* pour des graphes dont la maille et le degré minimum sont assez grands.

Théorème 2.59 ([15]). Soit G un graphe connexe de maille au moins g et de degré minimum au moins δ .

1. Si g = 6 et $\delta = 5$ alors $\beta_b(G) \ge \beta_0(G) + P(G)$ où P(G) est le nombre de packing de G. 2. Si ξ est un nombre réel avec $2 \le \xi < 4$, g = 4, et $\delta \ge \frac{10}{\xi}$, alors $\beta_b(G) \le \xi \beta_0(G)$.

Enfin, répondant aux questions posées dans [42] et dans [56] sur la complexité du problème d'indépendance *broadcast*, Bessy et Rautenbach ont montré dans [13] que le problème de décision associé au problème : $\beta_b(G) \ge k$ pour un graphe planaire G donné de degré maximum 4 et pour un entier positif k, est NP-complet.

Avant d'énoncer le résultat suivant, nous donnons d'abord la définition d'un graphe planaire. Un graphe G est dit *planaire* si on peut le représenter dans un plan, sans que deux arêtes ne se croisent.

Théorème 2.60 ([13]). Pour un graphe planaire connexe G de degré maximum $\Delta(G) = 4$ et pour un entier positif k, il est NP-complet de décider si $\beta_b(G) \ge k$.

En outre, les auteurs ont proposé dans [13] un algoritme polynomial qui détermine la valeur de $\beta_b(T)$ pour un arbre T donné.

Théorème 2.61 ([13]). Le nombre d'indépendance broadcast $\beta_b(T)$ d'un arbre T d'ordre n peut être déterminé par un algorithme polynomial, avec un ordre de complexité égal à $O(n^9)$.

Dans [73], Mynhardt et Neilson ont établi une nouvelle borne supérieure pour $\beta_b(G)$, en considérant un arbre couvrant T d'un graphe G en général. Puisque la suppression des arêtes conserve l'indépendance nous obtenons que tout $\beta_b(G)$ -broadcast sur G est un broadcast indépendant sur T. Par conséquent, $\beta_b(G) \leq \beta_b(T)$. Notons que cette borne est analogue a celle trouvée par Herke [61] pour le nombre de domination broadcast $\gamma_b(G)$.

Proposition 2.62 ([73]). Pour tout graphe G d'ordre $n \ge 2$,

 $\beta_b(G) \le \min\{\beta_b(T) : T \text{ est un arbre couvrant de } G\}.$

Cette borne peut être assez petite. Par exemple, pour n > 2, $\beta_b(K_n) = 1$.

Dunbar *et al.* [42] ont noté que le nombre de *broadcast* domination supérieur $\Gamma_b(G)$ et le nombre d'indépendance *broadcast* $\beta_b(G)$ d'un graphe G sont en général incomparables. Erwin [43] a prouvé que pour tout $n \geq 3$, $\beta_b(P_n) = 2(n-2)$ et d'après le Théorème 2.15, $\Gamma_b(P_n) = diam(P_n) = n - 1$. Par conséquent, pour tout n > 3, $\beta_b(P_n) > \Gamma_b(P_n)$. Néamoins, Bouchouika *et al.* [24] ont prouvé l'égalité de ces deux paramètres pour les cycles (voir Théorème 2.18). Théorème 2.63 ([24]). Pour tout $n \ge 4$,

$$\beta_b(C_n) = \Gamma_b(C_n) = 2\left(\left\lfloor \frac{n}{2} \right\rfloor - 1\right).$$

Pour n = 3, il est facile de vérifier que $\beta_b(C_3) = 1$.

Avant d'étudier le nombre d'indépendance *broadcast* d'une sous-classe d'arbres appelée la classe des double-araignées, nous prouvons quelques propriétés générales sur les *broadcasts* indépendants.

2.3.2 Quelques propriétés générales des broadcasts indépendants

Soit G un graphe et H un sous-graphe induit de G. Puisque $d_H(u, v) \ge d_G(u, v)$ pour toute paire de sommets $u, v \in V(H)$, alors tout broadcast indépendant f sur G tel que $f(u) \le e_H(u)$ pour tout sommet $u \in V(H)$ est un broadcast indépendant sur H.

Observation 2.64 ([2]). Si H est un sous-graphe induit de G et f un broadcast indépendant sur G vérifiant $f(u) \leq e_H(u)$ pour tout sommet $u \in V(H)$, la restriction f_H de f à V(H) est un broadcast indépendant sur H.

Pour tout broadcast indépendant f sur un graphe G et tout sous-graphe H de G, nous désignons par $f^*(H)$ la f-valeur de H définie par

$$f^*(H) = \sum_{v \in V(H)} f(v).$$

Observons que $f^*(G) = \sigma(f)$.

Le résultat suivant montre que pour tout graphe G, d'ordre au moins 3, si v est un sommet support de G ayant au moins un voisin pendant, alors aucun *broadcast* indépendant f sur Gavec f(v) > 0 ne peut être optimal.

Lemme 2.65 ([2]). Soit G un graphe d'ordre au moins 3 et soit v un sommet de G ayant un voisin pendant u. Si f est un broadcast indépendant sur G avec f(v) > 0, alors il existe un broadcast indépendant f' sur G avec $\sigma(f') > \sigma(f)$.

Preuve. L'application f' définie par f'(u) = f(v) + 1, f'(v) = 0 et f'(w) = f(w) pour tout sommet $w \in V(G) \setminus \{u, v\}$ est un broadcast indépendant sur G avec $\sigma(f') > \sigma(f)$.

Notons que le Lemme 2.65 peut être étendu aux arbres comme suit :

Lemme 2.66 ([2]). Soit T un arbre d'ordre au moins 3 et T' un sous-arbre de T, d'ordre au moins 2 et de racine r. Soit f un broadcast indépendant optimal sur T. Si r est un sommet f-broadcast, alors T' admet au moins un autre sommet f-broadcast. En particulier, si T' est un sous-arbre de hauteur 1 (c'est-à-dire que $e_{T'}(r) = 1$), alors f(r) = 0.

Preuve. Supposes par l'absurde que f(r) > 0 et f(u) = 0 pour tout sommet $u \in V(T') \setminus \{r\}$. Soit $t' = e_{T'}(r)$ et $\overline{t'} = e_{T-(T'-r)}(r)$.

Si f(r) < t', le broadcast indépendant f' défini par f'(v) = f(r) pour un sommet v dans T'avec $d_{T'}(r, v) = t'$ et f'(u) = f(u) pour tout sommet $u \in V'(T) \setminus \{v\}$ vérifie $\sigma(f') = \sigma(f) + f(r)$, cela contredit l'optimalité de f.

Si $f(r) \ge \overline{t'}$, alors r est l'unique sommet f-broadcast, ce qui implique que $\sigma(f) < 2(\operatorname{diam}(T) - 1)$ et donc d'après l'Observation 2.52, cela contredit l'optimalité de f.

Il en résulte que $\overline{t'} > f(r) \ge t'$. Soit maintenant v un voisin quelconque de r dans T'. Puisque $\overline{t'} > f(r) \ge t'$, on a alors $e_T(v) = e_T(r) + 1 = \overline{t'} + 1 > f(r) + 1$. La fonction f' définie par f'(r) = 0, f'(v) = f(r) + 1 et f'(u) = f(u) pour tout sommet $u \in V(T) \setminus \{r, v\}$ est un broadcast indépendant sur T avec $\sigma(f') = \sigma(f) + 1$, ce qui contredit l'optimalité de f.

2.3.3 Nombre d'indépendance broadcast des double-araignées

Définition 2.67. Pour deux entiers $n \ge 1$ et $k \ge 2$, la double-araignée notée $S_{\times 2}(n^k)$ est un arbre obtenu à partir de deux copies d'araignées $S(n^k)$, en joignant par une arête leur racines respectives.

Notons que diam $(S_{\times 2}(n^k))$ = diam $(S(n^k))$ + 1 = 2n + 1.

La Figure 2.11 représente la double-araignée $S_{\times 2}(3^5)$.

FIGURE 2.11 – La double-araignée $S_{\times 2}(3^5)$.

Soit $S_{\times 2}(n^k)$ une double-araignée et $A \subset V$ (|A| = 2k), l'ensemble des feuilles de $S_{\times 2}(n^k)$. Il est facile de vérifier que la fonction f définie par

$$f(u) = \begin{cases} 2n-1 & \text{si } u \in A, \\ 0 & \text{sinon.} \end{cases}$$

est un 2k(2n-1)-broadcast indépendant sur $S_{\times 2}(n^k)$, avec $2k(2n-1) \ge 2(diam(S_{\times 2}(n^k))-1)$. D'où l'observation suivante qui améliore la borne inférieure du nombre d'indépendance broadcast des double-araignées. **Observation 2.68.** Pour toute double-araignée $S_{\times 2}(n^k)$ pour $n \ge 1$ et $k \ge 2$,

$$\beta_b(S_{\times 2}(n^k)) \ge 2k(2n-1).$$

Désignons par S_0 et S_1 les deux sous-arbres araignées de $S_{\times 2}(n^k)$ de racine r_0 et r_1 , respectivement et par l_0^j (resp. l_1^j) pour tout $j, 1 \leq j \leq k$, les feuilles du sous-arbre S_0 (resp. S_1).

Afin de prouver le résultat qui détermine la valeur exacte du nombre d'indépendance broadcast de la double-araignée, nous prouvons d'abord le lemme suivant qui montre que pour toute double-araignée $S_{\times 2}(n^k)$, si v est un sommet qui n'est ni un sommet central ni une feuille de $S_{\times 2}(n^k)$, alors aucun broadcast indépendant f sur $S_{\times 2}(n^k)$ avec f(v) > 0 ne peut être optimal.

Lemme 2.69. Soit $S_{\times 2}(n^k)$ une double-araignée et soit v un sommet de $S_{\times 2}(n^k)$ qui n'est ni un sommet central ni une feuille. Si f est un broadcast indépendant sur $S_{\times 2}(n^k)$ avec f(v) > 0, alors il existe un broadcast indépendant f' sur $S_{\times 2}(n^k)$ avec $\sigma(f') > \sigma(f)$.

Preuve. Soit v un sommet de $S_{\times 2}(n^k)$ qui n'est ni un sommet central ni une feuille, avec f(v) > 0. Dans ce cas, v appartient à une $(r_i - l_i^j)$ -chaîne pour $i \in \{0, 1\}$ et pour $1 \le j \le k$. Supposons sans perte de généralité que v appartient à la $(r_0 - l_0^1)$ -chaîne. D'après le Lemme 2.66, v ne peut pas être un sommet support. Considérons le sommet v le plus proche (en terme de distance) de l_0^1 (v n'étant pas un support), l'application f' définie par $f'(l_0^1) = f(l_0^1) + f(v) + 1$, f'(v) = 0 et f'(u) = f(u) pour tout sommet $u \in V \setminus \{l_0^1, v\}$ est un broadcast indépendant sur $S_{\times 2}(n^k)$ avec $\sigma(f') > \sigma(f)$.

Le résultat qui suit donne la valeur exacte du nombre d'indépendance *broadcast* de la doublearaignée.

Théorème 2.70. Pour toute double-araignée $S_{\times 2}(n^k)$, nous avons

$$\beta_b(S_{\times 2}(n^k)) = 2k(2n-1).$$

Preuve. Soit f un β_b -broadcast sur $S_{\times 2}(n^k)$. Nous allons montrer que les seuls sommets f-broadcast de $S_{\times 2}(n^k)$ sont ses feuilles.

Montrons d'abord que $f^*(S_0) > 0$ et $f^*(S_1) > 0$. Supposons $f^*(S_0) = 0$ (le cas $f^*(S_1) = 0$ étant similaire). Soit v l'unique sommet de S_1 (autrement f ne serait pas un broadcast indépendant) qui f-domine tous les sommets de S_0 et donc tout le graphe $S_{\times 2}(n^k)$, ce qui implique que $\sigma(f) = e(v) < 2(diam(S_{\times 2}(n^k)) - 1)$ et donc d'après l'Observation 2.52, cela contredit l'optimalité de f.

Supposons maintenant que r_0 est un sommet f-broadcast de S_0 (le cas r_1 pour S_1 étant similaire). Grâce aux Lemmes 2.66 et 2.69, S_0 admet au moins un autre sommet f-broadcast et ce sommet est nécessairement une feuille l_0^j pour un certain $j, 1 \leq j \leq k$. De plus, on vérifie aisément que si une feuille de S_0 est un sommet f-broadcast, alors toutes les autres feuilles sont aussi des sommets f-broadcast, autrement cela contredit l'optimalité de f. Par ailleurs, puisque $f^*(S_1) > 0$, S_1 admet au moins un sommet f-broadcast u. Comme $f(r_0) \ge 1$, alors $u \ne r_1$ (car f est indépendant). Donc d'aprés le Lemme 2.69, u est nécessairement une feuille de S_1 . Dans ce cas, toutes les autres feuilles de S_1 sont aussi des sommets f-broadcast. Par conséquent, nous obtenons

$$f(r_0) \le n - 1, f(l_0^j) \le n - 1$$
 et $f(l_1^j) \le n$ pour tout $j, 1 \le j \le k$.

Ce qui implique que, $\sigma(f) \leq (k+1) \times (n-1) + kn$. Donc d'après l'Observation 2.68, ce la contredit l'optimalité de f.

Il en résulte que les seuls sommets f-broadcast de $S_{\times 2}(n^k)$ sont toutes ses feuilles. D'après le Théorème 2.51, nous obtenons

$$f(l_i^i) \leq (2n-1)$$
 pour tout $i, 0 \leq i \leq 1$ et pour tout $j, 1 \leq j \leq k$.

Ce qui implique que, $\sigma(f) \leq 2k(2n-1)$.

Ceci conclut la preuve.

Chapitre 3

Nombre d'indépendance broadcast des chenilles

Ce chapitre fournit le premier traitement « complet » de l'indépendance *broadcast* pour une classe initiale (simple) d'arbres connus sous le nom de « chenilles sans troncs adjacents ». Les résultats de ce chapitre ont fait l'objet d'une publication dans Discrete Applied Mathematics [2].

3.1 Introduction

Lorsque nous avions considéré le problème de la détermination du nombre d'indépendance *broadcast* des arbres, la complexité de ce problème n'était pas encore connue. Il était donc tout à fait naturel de chercher à étudier pour un premier axe de recherche, une sous-classe initiale d'arbres. Dans ce chapitre, nous étudions la classe des chenilles et nous nous restreignons expressément à la classe des chenilles sans troncs adjacents. Dans la section suivante, nous introduisons des définitions principales et quelques résultats préliminaires sur les *broadcasts* indépendants des chenilles, qui nous ont paru nécessaires à une meilleure compréhension du sujet. Ensuite, nous considérons dans la section 3.3 le cas des chenilles sans troncs adjacents. Enfin, nous prouvons notre résultat principal en donnant une formule explicite, qui détermine le nombre d'indépendance *broadcast* de telles chenilles.

3.2 Préliminaires

3.2.1 Définitions

Rappelons qu'une chenille de longueur $k \ge 0$ est un arbre tel que, lorqu'on supprime tous ses sommets pendants, le graphe résultant est une chaîne de longueur k, appelée épine dorsale ou colonne vertébrale de la chenille. En suivant scrupuleusement la terminologie de [76], un sommet non pendant est appelé sommet-épine. Plus précisement, un tel sommet est dit sommet support s'il est adjacent à un sommet pendant et tronc sinon. Un sommet pendant adjacent à un sommet support v est dit voisin pendant ou feuille de v.

Notons qu'une chenille de longueur 0 n'est autre qu'une étoile $K_{1,n}$ pour un entier $n \ge 1$. Il est donc facile de déterminer le nombre d'indépendance *broadcast* de l'étoile.

Observation 3.1. Pour tout entier $n \ge 1$, $\beta_b(K_{1,n}) = n$.

En effet, on obtient un *broadcast* indépendant optimal f sur $K_{1,n}$ en attribuant une f-valeur égale à 1 à toute feuille de $K_{1,n}$, si n > 1, ou bien à l'un des deux sommets de $K_{1,1}$, sinon. Par conséquent, dans toute la suite, nous considérons des chenilles de longueur $k \ge 1$.

Notation 3.2. Désignons par $CT(\lambda_0, \ldots, \lambda_k)$, $k \ge 1$, avec $(\lambda_0, \ldots, \lambda_k) \in \mathbb{N}^* \times \mathbb{N}^{k-1} \times \mathbb{N}^*$, la chenille de longueur $k \ge 1$ dont l'épine dorsale $v_0 \ldots v_k$ est telle que chaque sommet v_i est adjacent à λ_i feuilles.

Notons que pour toute chenille CT de longueur $k \ge 1$, diam(CT) = k + 2.

Pour tout *i* tel que $\lambda_i > 0, 0 \le i \le k$, désignons par $\ell_i^1, \ldots, \ell_i^{\lambda_i}$ les feuilles adjacentes au sommet v_i .

De plus, désignons par $CT[a, b], 0 \le a \le b \le k$, le sous-graphe de CT induit par les sommets v_a, \ldots, v_b et leurs voisins pendants. Notons que, selon notre définition des chenilles, CT[a, b] est une sous-chenille de CT si et seulement si $\lambda_a > 0$ et $\lambda_b > 0$).

La Figure 3.1 représente la chenille CT(1, 0, 2, 1, 1, 2, 1, 0, 3).

FIGURE 3.1 – La chenille CT(1, 0, 2, 1, 1, 2, 1, 0, 3).

Soit f un broadcast indépendant sur une chenille $CT = CT(\lambda_0, \ldots, \lambda_k)$. Notons par f^* l'application de $\{v_0, \ldots, v_k\}$ dans \mathbb{N} définie par

$$f^*(v_i) = f(v_i) + \sum_{j=1}^{j=\lambda_i} f(\ell_i^j)$$
, si $\lambda_i > 0$, et $f^*(v_i) = f(v_i)$ sinon,

pour tout $i, 0 \le i \le k$. En fait, lorsque $\lambda_i > 0, f^*(v_i)$ est considéré comme le "poids" de l'étoile définie par le sous-graphe induit par le support v_i et ses voisins pendants.

Deux broadcasts indépendants f_1 et f_2 sur CT seront dits similaires si $f_1^* = f_2^*$. Il en résulte que deux broadcasts indépendants similaires ont le même coût.

D'après l'Observation 2.52, pour toute chenille $CT = CT(\lambda_0, \ldots, \lambda_k)$

$$\beta_b(CT) \ge 2(k+1).$$

En particulier, la fonction f_c sur CT définie par $f_c(\ell_0^1) = f_c(\ell_k^1) = k + 1$ et $f_c(u) = 0$, pour tout sommet $u \in V(CT) \setminus \{\ell_0^1, \ell_k^1\}$, est un 2(k+1)-broadcast indépendant sur CT.

Dans toute la suite, tout broadcast indépendant f similaire à f_c et tel que $|V_f^+| = 2$ est appelé broadcast indépendant canonique. Un broadcast indépendant f sur une chenille CT est dit broadcast indépendant optimal non-canonique sur CT si

- (i) $|V_f^+| \neq 2$ ou $f^* \neq f_c^*$ (f est non-canonique) et,
- (ii) pour tout broadcast indépendant f' sur CT avec $|V_{f'}^+| \neq 2$ ou $f'^* \neq f_c^*, \sigma(f) \geq \sigma(f')$ (f est optimal sur l'ensemble des broadcasts indépendants non-canoniques).

La Figure 3.2 représente un broadcast indépendant canonique sur une chenille.

FIGURE 3.2 – Un broadcast indépendant canonique sur une chenille.

Nous proposons maintenant quelques propriétés des *broadcasts* indépendants sur une chenille CT.

3.2.2 Quelques propriétés des broadcasts indépendants

Le résultat qui suit prouve que pour toute chenille $CT = CT(\lambda_0, \ldots, \lambda_k)$, aucun broadcast indépendant f sur CT avec f(v) > 0 pour un sommet support v, ne peut être optimal.

Lemme 3.3. Si $CT = CT(\lambda_0, ..., \lambda_k)$ est une chenille de longueur $k \ge 1$ et f un broadcast indépendant sur CT avec $f(v_i) > 0$ pour un sommet support v_i , $0 \le i \le k$, alors il existe un broadcast indépendant f' sur CT avec $\sigma(f') > \sigma(f)$.

Preuve. Puisque f est un broadcast indépendant et $f(v_i) > 0$, on a nécessairement $f(\ell_i^j) = 0$ pour tout $j, 1 \leq j \leq \lambda_i$. Considérons la fonction f' definie par $f'(v_i) = 0, f'(\ell_i^1) = f(v_i) + 1$ et f'(u) = f(u) pour tout $u \in V(CT) \setminus \{v_i, \ell_i^1\}$. Puisque $d_{CT}(\ell_i^1, u) = d_{CT}(v_i, u) + 1$ pour tout sommet $u \in V(CT) \setminus \{\ell_i^1\}$, alors f' est clairement un broadcast indépendant sur CT avec $\sigma(f') = \sigma(f) + 1$.

Une autre propriété du *broadcast* indépendant optimal sur une chenille CT montre que chaque extrémité de l'épine dorsale possède au moins une feuille *broadcast*.

Lemme 3.4. Soit $CT = CT(\lambda_0, ..., \lambda_k)$ une chenille de longueur $k \ge 1$. Si f est un broadcast indépendant optimal sur CT, alors $f^*(v_0) - f(v_0) \ne 0$ et $f^*(v_k) - f(v_k) \ne 0$.

Preuve. Supposons par l'absurde que, $f(\ell_0^j) = 0$ pour tout $j, 1 \le j \le \lambda_0$. D'après le Lemme 3.3 nous savons que $f(v_0) = 0$. Soit u un sommet broadcast qui f-domine ℓ_0^1 et soit f(u) = x. D'après le Lemme 3.3, u est soit une feuille, soit un tronc.

Si u est une feuille, disons $u = \ell_i^j$, $1 \le i \le k$, $1 \le j \le \lambda_i$, considérons l'application f' définie par $f'(\ell_0^1) = x + i$, f'(u) = 0 et f'(u') = f(u') pour tout sommet $u' \in V(CT) \setminus \{\ell_0^1, u\}$. Notons que tout sommet qui était f-dominé par u est maintenant f'-dominé par ℓ_0^1 . L'application f'est donc un $(\sigma(f) + i)$ -broadcast indépendant sur CT. Cela contredit l'optimalité de f.

Si u est un tronc, par exemple $u = v_i$, $1 \le i \le k - 1$, considérons de manière analogue l'application f' définie $f'(\ell_0^1) = x + i + 1$, f'(u) = 0 et f'(u') = f(u') pour tout sommet $u' \in V(CT) \setminus \{\ell_0^1, u\}$. L'application f' est donc un $(\sigma(f) + i + 1)$ -broadcast indépendant sur CT, cela contredit encore l'optimalité de f.

Notons que le même résultat est obtenu par symétrie dans le cas où $f(\ell_k^j) = 0$ pour tout j, $1 \le j \le \lambda_k$.

Ceci conclut la preuve.

3.3 Chenilles sans troncs adjacents

Dans cette section, nous déterminons la valeur exacte du nombre d'indépendance *broadcast* des chenilles sans troncs adjacents. Nous introduisons d'abord quelques notations supplémentaires et prouvons un certain nombre de lemmes indispensables pour la suite.

3.3.1 Différents types de motifs

Afin d'établir la formule qui calcule le nombre d'indépendance *broadcast* des chenilles sans troncs adjacents, nous définissons au préalable différents types de *motifs* spécifiques qui apparaissent dans ces chenilles, et qui sont essentiels à l'établissement de cette formule.

Notation 3.5. Nous disons qu'un motif Π de longueur p + 1, $\Pi = \pi_0 \dots \pi_p$, $p \ge 0$, $\pi_i \in \mathbb{N}$ pour tout $i, 0 \le i \le p$, apparaît dans une chenille $CT = CT(\lambda_0, \dots, \lambda_k)$ s'il existe un indice $i_0, 0 \le i_0 \le k - p$, tel que $CT[i_0, i_0 + p] = CT(\pi_0, \dots, \pi_p)$, c'est-à-dire, $\lambda_{i_0+j} = \pi_j$ pour tout

 $j, 0 \leq j \leq p$. Nous disons aussi que la chenille CT contient le motif Π et que le sous-graphe $CT(\lambda_{i_0}, \ldots, \lambda_{i_0+p})$ de CT est une occurrence du motif Π .

Par exemple, la chenille CT(1, 0, 2, 1, 1, 2, 1, 0, 3), représentée dans la Figure 3.1, contient une seule fois le motif 211 et deux fois le motif 10.

Nous étendons maintenant les notations de ces motifs comme suit :

Notation 3.6.

- Par π_i^+ , nous signifions que le support v_i est adjacent à au moins π_i feuilles;
- Par π_i^- , nous signifions que le support v_i est adjacent à au plus π_i feuilles;
- Par [Π , nous signifions que le motif Π apparaît et commence par le support le plus à gauche v_0 ;
- Par Π], nous signifions que le motif Π apparaît et se termine par le support le plus à droite v_k ;
- Par { Π, Π' }, nous signifions que l'un ou l'autre des motifs Π ou Π' apparaît dans la chenille;
- Par $\pi_0(\pi_1\pi_2)^{+r}\pi_3$, nous signifions que le motif de la forme

$$\pi_0 \pi_1 \pi_2 \pi_3$$
 ou $\pi_0 \underbrace{\pi_1 \pi_2 \dots \pi_1 \pi_2}_{r \text{ fois, } r \ge 2} \pi_3,$

est maximal, où maximal signifie ici que le sous-motif $\pi_1 \pi_2$ se répète au moins une fois et autant de fois que possible.

• Par $\pi_0(\pi_1\pi_2)^{*r}\pi_3$, nous signifions que le motif de la forme

$$\pi_0 \pi_3, \ \pi_0 \pi_1 \pi_2 \pi_3 \quad \text{or} \quad \pi_0 \underbrace{\pi_1 \pi_2 \dots \pi_1 \pi_2}_{r \text{ fois, } r > 2} \pi_3,$$

est maximal, où maximal signifie ici que le sous-motif $\pi_1\pi_2$ se répète autant de fois que possible, éventuellement aucune fois.

D'autres notations sont obtenues en faisant des combinaisons des notations précédentes.

Notation 3.7.

- Par π_i^+], nous signifions que le support le plus à droite v_k est adjacent à au moins π_i feuilles;
- Par $\{\pi, [\}\Pi, \text{ nous signifions que soit le motif } \pi\Pi, \text{ soit le motif } [\Pi \text{ apparaît dans la chenille.}$

Nous pouvons aisément vérifier que la chenille CT(1, 0, 2, 1, 1, 2, 1, 0, 3) illustrée dans la Figure 3.1, contient une fois chacun des motifs $[1, 3], 2^+$] et 2111^+ , deux fois le motif $0\{2, 3\}$, et trois fois le motif $1^+1^+1^+$.

D'autre part, la chenille CT(1, 0, 2, 0, 2, 0, 2, 1, 0, 3) contient seulement une fois le motif $1^+0(20)^{+r}1^+$, à savoir la sous-chenille CT(1, 0, 2, 0, 2, 0, 2) ou simplement le motif explicite, 10(20)(20)2.

Notation 3.8. Pour tout motif Π et pour toute chenille CT, notons par $\#_{CT}(\Pi)$ le nombre d'occurrences du motif Π dans CT. De plus, si M est une occurrence de Π dans CT, définissons la valeur

$$\alpha_1(M) = \max\{0, \#_M(1) - 1\}$$

qui est égale soit au nombre de supports v_i dans M, avec $\lambda_i = 1$ moins 1, soit à 0 si M ne contient pas de tels supports, et la valeur

$$\alpha_2(M) = \alpha_1(M) + \#_M([1^+) + \#_M(1^+]),$$

est égale à $\alpha_1(M)$ plus 0, 1 ou 2, suivant que M contient 0, une, ou deux extrémités de CT, respectivement.

Nous étendons ensuite les fonctions α_1 et α_2 à l'ensemble de la chenille CT par

$$\alpha_1(CT;\Pi) = \sum_{M \text{ occurrence de }\Pi} \alpha_1(M)$$

 et

$$\alpha_2(CT;\Pi) = \sum_{M \text{ occurrence de }\Pi} \alpha_2(M).$$

FIGURE 3.3 – Les motifs simples impliqués dans la définition de $\beta^*(CT)$

Notation 3.9. Notons par

$$\lambda(CT) = \sum_{i=0}^{i=k} \lambda_i$$

le nombre de feuilles de CT, et notons par

$$\tau(CT) = |\{i \mid 1 \le i \le k - 1 \text{ et } \lambda_i = 0\}|$$

le nombre de troncs de CT.

Avec toutes ces notations, nous sommes en mesure de définir, pour toute chenille CT, la valeur $\beta^*(CT)$. Nous verrons plus loin que cette valeur représente le coût optimal d'un broadcast indépendant sur CT.

Pour toute chenille CT sans troncs adjacents, nous définissons la valeur $\beta^*(CT)$ comme suit :

$$\beta^{*}(CT) = \lambda(CT) + \tau(CT) + \#_{CT}(\{1^{+}, [\}1\{1^{+},]\}) + \alpha_{1}(CT; 1^{+}2^{-}(02^{-})^{+r}1^{+}) + \alpha_{2}(CT; 02^{-}(02^{-})^{*r}0) + \alpha_{2}(CT; [2^{-}(02^{-})^{*r}0) + \alpha_{2}(CT; 02^{-}(02^{-})^{*r}]).$$

Les motifs simples qui sont impliqués dans la formule ci-dessus sont illustrés dans la Figure 3.3. Sur cette figure, un motif avec une ligne de tirets à gauche (resp. à droite) de son épine dorsale ne peut pas apparaître à l'extrémité gauche (resp. droite) de la chenille. Un motif avec une ligne en pointillé à gauche (resp. à droite) de son épine dorsale peut apparaître à l'extrémité gauche (resp.droite) de la chenille, ou au milieu de la chenille. Une arête en pointillé est une arête optionnelle (utilisée par exemple pour le motif 2^- , correspondant à un support adjacent soit à une feuille soit à deux feuilles).

Nous dirons que deux occurrences *distinctes* de motifs *se chevauchent* si elles partagent un sommet en commun.

En raison de la structure spécifique des motifs utilisés dans la formule de $\beta^*(CT)$ (en particulier, de la maximalité du nombre de répétitions des sous-motifs, de la forme Π^{+r} ou Π^{*r}), nous avons l'observation suivante :

Observation 3.10. Pour toute chenille CT de longueur $k \ge 1$,

- 1. aucune occurrence du motif $02^{-}(02^{-})^{*r}0$ ne peut chevaucher une occurrence des motifs $\{1^{+}, [\}1\{1^{+},]\}, 1^{+}2^{-}(02^{-})^{+r}1^{+}, 02^{-}(02^{-})^{*r}0, [2^{-}(02^{-})^{*r}0 \text{ ou } 02^{-}(02^{-})^{*r}],$
- 2. aucune occurrence du motif $[2^{-}(02^{-})^{*r}0$ ne peut chevaucher une occurrence des motifs $\{1^{+}, [\}1\{1^{+},]\}, ou \ 1^{+}2^{-}(02^{-})^{+r}1^{+},$
- 3. aucune occurrence du motif $02^{-}(02^{-})^{*r}$] ne peut chevaucher une occurrence des motifs $\{1^{+}, [\}1\{1^{+},]\}$ ou $1^{+}2^{-}(02^{-})^{+r}1^{+}$,

4. si deux occurrences des motifs $[2^{-}(02^{-})^{*r}0 \text{ et } 02^{-}(02^{-})^{*r}]$ se chevauchent, alors la chenille CT est le motif $[2^{-}(02^{-})^{*r}]$.

3.3.2 Borne inférieure de $\beta_b(CT)$

Après avoir défini et examiné les différents motifs, nous allons à présent prouver que toute chenille CT sans troncs adjacents admet un *broadcast* indépendant f avec $\sigma(f) = \beta^*(CT)$. Par conséquent, $\beta_b(CT) \ge \beta^*(CT)$.

Lemme 3.11. Toute chenille $CT = CT(\lambda_0, ..., \lambda_k)$ de longueur $k \ge 1$, sans troncs adjacents, admet un broadcast indépendant f avec $\sigma(f) = \beta^*(CT)$.

Preuve. Nous allons construire étape par étape, une séquence de broadcasts indépendants f_1 , ..., f_4 , de sorte que $\sigma(f_4) = \beta^*(CT)$. Chaque broadcast indépendant f_i , $2 \le i \le 4$, est obtenu en modifiant éventuellement le broadcast indépendant f_{i-1} de sorte que $\sigma(f_i) \ge \sigma(f_{i-1})$. De plus, pour chaque broadcast indépendant f_i , $1 \le i \le 4$, nous avons $f_i(v) = 0$ chaque fois que v est un support.

Toutes ces modifications sont illustrées dans les Figures 3.4 et 3.5, en utilisant les mêmes conventions de dessins que pour la Figure 3.3. Seules les valeurs utiles du *broadcast* sont données dans ces figures. Ces figures devraient aider le lecteur à voir que toutes les modifications proposées conduisent à un nouveau *broadcast* indépendant valide.

Étape 1. Soit f_1 l'application définie par $f_1(v) = 1$ si v est une feuille ou un tronc, et $f_1(v) = 0$ sinon. Il est clair que f_1 est un *broadcast* indépendant sur CT avec

$$\sigma(f_1) = \lambda(CT) + \tau(CT).$$

Étape 2. Soit f_2 l'application définie par $f_2(v) = 2$ si $v = \ell_i^1$ pour un certain $i, 0 \le i \le k$, tel que (i) $\lambda_i = 1$, (ii) i = 0 ou $\lambda_{i-1} \ge 1$, et (iii) i = k ou $\lambda_{i+1} \ge 1$, et $f_2(v) = f_1(v)$ sinon (voir Figure 3.4(a)). Il s'ensuit que f_2 est encore un broadcast indépendant sur CT avec

$$\sigma(f_2) = \sigma(f_1) + \#_{CT}(\{1^+, [\}1\{1^+,]\}).$$

Étape 3. Supposons que la chenille CT contient le motif $1^+2^-(02^-)^{+r}1^+$, de longueur 2r + 3, et soit $M = CT[i_0, i_0 + 2r + 2]$ une occurrence de ce motif. Nous avons donc $f_2(v) = 1$ pour tout tronc de M et pour chaque feuille adjacente à un sommet support v_j sur M avec $i_0 + 1 \le j \le i_0 + 2r + 1$. Par conséquent, le coût de la restriction f'_2 de f_2 à M est

$$\sigma(f_2') = f_2^*(v_{i_0}) + \lambda(M[i_0 + 1, i_0 + 2r + 1]) + \tau(M) + f_2^*(v_{i_0 + 2r + 2}).$$

Nous modifions f_2 pour obtenir f_3 comme suit :

Si le sous-graphe $M[i_0 + 1, i_0 + 2r + 1]$ contient un sommet support v_i avec $\lambda_i = 1$, nous posons

• $f_3(\ell_{i_0+1}^1) = 2 \text{ si } \lambda_{i_0+1} = 1,$

(c) de f₂ à f₃, le motif 1+2010201011⁺, $\sigma(f'_3) = \sigma(f'_2) + (3-1)$

FIGURE 3.4 – La preuve du Lemme 3.11 : de f_1 à f_3

FIGURE 3.5 – La preuve du Lemme 3.11 : de f_3 à f_4

- $f_3(\ell_{i_0+2r+1}^1) = 2$ si $\lambda_{i_0+2r+1} = 1$,
- $f_3(\ell_{i_0+2j+1}^1) = 3$ (et $f_3(\ell_{i_0+2j+1}^2) = 0$ si $\lambda_{i_0+2j+1} = 2$) pour tout $j, 1 \le j \le r - 1$, • $f_3(v_{i_0+2j}) = 0$ pour tout $j, 1 \le j \le r$, (voir Figure 3.4(b) et (c)).

(von 1 igure 0.1(b) et (c)).

Le coût de la restriction f'_3 de f_3 à M est alors

$$\sigma(f'_3) = \sigma(f'_2) + \max\{0, \#_{M[i_0+1,i_0+2r+1]}(1) - 1\} = \sigma(f'_2) + \alpha_1(M).$$

D'après l'Observation 3.10, deux occurrences du motif $1^+2^-(02^-)^{+r}1^+$ ne peuvent se chevaucher que sur leurs extrémités. Par conséquent, en effectuant les modifications ci-dessus pour chaque occurrence M du motif $1^+2^-(02^-)^{+r}1^+$, le *broadcast* indépendant f_3 ainsi obtenu satisfait

$$\sigma(f_3) = \sigma(f_2) + \alpha_1(CT).$$

Étape 4. Supposons d'abord que la chenille CT contient le motif $02^{-}(02^{-})^{*r}0$, de longueur 2r+3, et soit $M = CT[i_0, i_0 + 2r + 2], i_0 \ge 1, i_0 + 2r + 2 \le k - 1$, une occurrence de ce motif. Nous avons donc $f_2(v) = 1$ pour tout tronc de M et pour chaque feuille adjacente à un sommet support v_j sur M pour $i_0 + 1 \le j \le i_0 + 2r + 1$. Par conséquent, le coût de la restriction f'_3 de f_3 à M est

$$\sigma(f'_3) = f^*_3(v_{i_0}) + \lambda(M) + \tau(M[i_0 + 1, i_0 + 2r + 1]) + f^*_3(v_{i_0 + 2r + 2}).$$

Nous modifions f_3 pour obtenir f_4 comme suit :

Si le sous-graphe $M[i_0 + 1, i_0 + 2r + 1]$ contient un sommet support v_i avec $\lambda_i = 1$, nous posons

- $f_4(\ell_{i_0+2j+1}^1) = 3$ (et $f_4(\ell_{i_0+2j+1}^2) = 0$ si $\lambda_{i_0+2j+1} = 2$) pour tout $j, 0 \le j \le r$,
- $f_4(v_{i_0+2j}) = 0$ pour tout $j, 0 \le j \le r$,

(voir Figure 3.5(a)).

Le coût de la restriction f'_4 de f_4 à M est alors

$$\sigma(f_4') = \sigma(f_3') + \max\{0, \#_M(1) - 1\} = \sigma(f_3') + \alpha_2(M).$$

Supposons maintenant que la chenille CT contient le motif $[2^{-}(02^{-})^{*r}0)$, de longueur 2r + 2, et soit M = CT[0, 2r + 1] une occurrence de ce motif. En effectuant les mêmes modifications que précédemment, nous obtenons :

• $f_4(\ell_{2j}^1) = 3$ (et $f_4(\ell_{2j}^2) = 0$ si $\lambda_{i_0+2j+1} = 2$) pour tout $j, 0 \le j \le r$, • $f_4(v_{2j+1}) = 0$ pour tout $j, 0 \le j \le r$, (voir Figure 3.5(b)).

Le coût de la restriction f'_4 de f_4 à M est alors

$$\sigma(f'_4) = \sigma(f'_3) + \max\{0, \#_M(1) - 1\} + 1 = \sigma(f'_3) + \alpha_2(M).$$

Enfin, si la chenille CT contient le motif $02^{-}(02^{-})^{*r}$] mais CT n'est pas exactement le motif $[2^{-}(02^{-})^{*r}]$, alors le même type de modifications conduit au même résultat. D'après l'Observation 3.10, deux occurrences de motifs $02^{-}(02^{-})^{*r}0$ et $[2^{-}(02^{-})^{*r}0$ (ou $02^{-}(02^{-})^{*r}0$ et $02^{-}(02^{-})^{*r}]$) ne peuvent se chevaucher. Par conséquent, en effectuant le même type de modifications citées précédemment sur chaque occurrence M de ces motifs, le broadcast f_4 ainsi obtenu est un broadcast indépendant avec

$$\sigma(f_4) = \sigma(f_3) + \alpha_2(CT) = \beta^*(CT).$$

Ceci conclut la preuve.

3.3.3 Borne supérieure de $\beta_b(CT)$

Dans le but d'établir une borne supérieure du paramètre $\beta_b(CT)$, nous allons prouver un certain nombre de lemmes fondamentaux sur les propriétés d'un *broadcast* indépendant optimal non-canonique sur CT.

Le lemme suivant montre que si f est un *broadcast* indépendant optimal non-canonique sur une chenille CT sans troncs adjacents, avec $\sigma(f) > 2(\operatorname{diam}(CT)-1)$, alors il existe un *broadcast* indépendant optimal non-canonique \tilde{f} sur CT tel que les \tilde{f} -valeurs des feuilles adjacentes à v_0 et v_k dépendent uniquement des valeurs λ_0, λ_1 , et λ_{k-1}, λ_k respectivement.

Lemme 3.12. Soit $CT = CT(\lambda_0, ..., \lambda_k)$ une chenille de longueur $k \ge 1$, sans troncs adjacents. Si f est un broadcast indépendant optimal non-canonique sur CT avec $\sigma(f) > 2(\operatorname{diam}(CT) - 1)$, alors il existe un broadcast indépendant optimal non-canonique \tilde{f} sur CT, avec donc $\sigma(\tilde{f}) = \sigma(f)$, tel que pour tout $i \in \{0, k\}$ on a

- 1. si $\lambda_i = 1$ et $\lambda_{i'} \geq 1$, alors $\tilde{f}(\ell_i^1) = 2$,
- 2. si $\lambda_i = 1$ et $\lambda_{i'} = 0$, alors $\tilde{f}(\ell_i^1) = 3$,
- 3. si $\lambda_i = 2$ et $\lambda_{i'} \ge 1$, alors $\tilde{f}(\ell_i^1) = \tilde{f}(\ell_i^2) = 1$,
- 4. si $\lambda_i = 2$ et $\lambda_{i'} = 0$, alors $\tilde{f}(\ell_i^1) = 3$ et $\tilde{f}(\ell_i^2) = 0$,
- 5. si $\lambda_i \geq 3$, alors $\tilde{f}(\ell_i^j) = 1$ pour tout $j, 1 \leq j \leq \lambda_i$,

 $où i' = 1 \ si \ i = 0, \ et \ i' = k - 1 \ si \ i = k.$

Preuve.

Notons d'abord, que d'après Lemme 3.3, si un tel broadcast \tilde{f} existe, on a nécessairement $\tilde{f}(u) = 0$, pour tout support u de CT. Par conséquent, la valeur de $\sum_{1 \le j \le \lambda_i} \tilde{f}(\ell_i^j)$ ne peut être

strictement inférieure à la valeur indiquée dans le lemme, car sinon cela contredirait l'optimalité de \tilde{f} . Par ailleurs, il est suffisant de prouver le lemme pour les feuilles de v_0 , car par symétrie nous obtenons le même résultat pour les feuilles de v_k . Soit $CT_0 = CT(\lambda_0, \ldots, \lambda_k)$ un contre-exemple minimal du lemme (au sens de l'ordre de la sous-chenille). Autrement dit, toute sous-chenille de la chenille CT_0 satisfait l'énoncé du lemme. Par conséquent, pour tout broadcast indépendant

optimal non-canonique f sur CT_0 avec $\sigma(f) > 2(\operatorname{diam}(CT) - 1)$, il existe une feuille adjacente à v_0 , disons sans perte de généralité ℓ_0^1 , telle que $f(\ell_0^1) = x$ avec x strictement supérieur à la valeur proposée par le lemme (notons que, dans le cas 3, si $f(\ell_0^1) = 2$ (resp. 0) et $f(\ell_0^2) = 0$ (resp. 2), alors nous pouvons attribuer de manière équivalente la valeur 1 à chaque feuille adjacente à v_0). Nous allons prouver qu'un tel contre-exemple minimal ne peut exister. Soit f_0 un tel broadcast indépendant sur CT_0 pour lequel la valeur $f(\ell_0^1) = x$ est minimale. Nous avons donc $x \ge 3$ lorsque $\lambda_1 > 0$ ou $\lambda_0 \ge 3$ (puisque dans ce dernier cas nous pouvons attribuer la valeur 1 à au moins trois feuilles adjacentes à v_0 , et donc x = 2 impliquerait que f_0 n'est pas optimal) et $x \ge 4$ lorsque $\lambda_1 = 0$.

Puisque $f_0(\ell_0^1) = x > 1$, nous avons $f_0^*(v_i) = 0$ pour tout $i, 1 \le i \le x-2$, et $f_0(v_{x-1}) = 0$. De plus, x - 1 < k puisque f_0 est un broadcast indépendant optimal non-canonique, et v_{x-1} n'est pas un sommet tronc, car sinon, nous pourrions poser $f_0(\ell_0^1) = x + 1$ (rappelons que, d'après le Lemme 3.3, $f_0(v_i) = 0$ pour tout support v_i , donc $f_0(v_x) = 0$), ce qui contredit l'optimalité de f_0 .

Considérons maintenant la chenille $CT_1 = (\lambda_{x-1}, \ldots, \lambda_k)$ obtenue à partir de CT_0 en supprimant les sommets v_0, \ldots, v_{x-2} et leurs feuilles (voir Figure 3.6(a)). Notons que $f_0(u) = 0$ pour chaque sommet supprimé $u \neq \ell_0^1$. Soit f_1 la restriction de f_0 à $V(CT_1)$. Puisque $f_0(\ell_0^1) = x$, nous avons

$$f_1(u) = f_0(u) \le \max\{e_{CT_1}(u), d_{CT_0}(u, \ell_0^1)\} \le e_{CT_1}(u)$$

pour tout sommet $u \in V(CT_1)$. Par conséquent, d'après l'Observation 2.64, f_1 est un broadcast indépendant sur CT_1 . Par ailleurs, puisque diam $(CT_1) = \text{diam}(CT_0) - x + 1$, nous avons

$$\sigma(f_1) = \sigma(f_0) - x > 2(\operatorname{diam}(CT_0) - 1) - x = 2(\operatorname{diam}(CT_1) - 1) + x - 2$$

Puisque x > 1, nous obtenons $\sigma(f_1) \ge 2(\operatorname{diam}(CT_1) - 1)$. Or CT_0 est un contre-exemple minimal, donc soit f_1 est un broadcast indépendant canonique sur CT_1 , soit il existe un broadcast indépendant optimal non-canonique f'_1 sur CT_1 avec $\sigma(f'_1) \ge \sigma(f_1)$ et f'_1 satisfait l'énoncé du lemme.

Supposons d'abord que f_1 est un broadcast indépendant canonique. Cela implique que

$$\sigma(f_1) = 2(\operatorname{diam}(CT_1) - 1).$$

Donc,

$$\sigma(f_0) = \sigma(f_1) + x = 2(\operatorname{diam}(CT_1) - 1) + x < 2(\operatorname{diam}(CT_0) - 1),$$

ce qui contredit notre hypothèse sur $\sigma(f_0)$.Par conséquent, il existe un broadcast indépendant non-canonique f'_1 sur CT_1 avec $\sigma(f'_1) \geq \sigma(f_1)$ vérifiant l'énoncé du lemme. Si $\sigma(f'_1) > \sigma(f_1)$, alors l'application f'_0 définie par $f'_0(u) = f'_1(u)$ pour tout sommet $u \in V(CT_1)$ et $f'_0(u) = f_0(u)$ pour tout sommet $u \in V(CT_0) \setminus V(CT_1)$, est un broadcast indépendant non-canonique sur CT_0 (puisque $x \geq 3$) ce qui contredit l'optimalité de f_0 . Il en résulte que f_1 est optimal et donc satisfait l'énoncé du lemme. Soit \tilde{f}_1 un broadcast indépendant non-canonique satisfaisant les items de 1 à 5 du lemme, et soit

$$m = \max\left\{\tilde{f}_1(\ell_{x-1}^j), \ 1 \le j \le \lambda_{x-1}\right\}.$$

Nous allons considérer deux cas, selon que v_{x-2} est un sommet support ou pas. Rappelons que $v_{x-2} \neq v_0$, puisque $x \geq 3$.

1. $\lambda_{x-2} > 0.$

Soit f'_0 le broadcast indépendant non-canonique sur CT_0 défini par $f'_0(\ell_0^1) = x - 1$, $f'_0(\ell_{x-2}^1) = 2$, $f'_0(u) = 0$ pour tout sommet $u \in V(CT_0) \setminus (V(CT_1) \cup \{\ell_0^1, \ell_{x-2}^1\})$, nous avons soit $f'_0(u) = \tilde{f}_1(u)$ pour tout sommet $u \in V(CT_1)$, si $m \leq 2$. (voir Figure 3.6(b)), soit $f'_0(\ell_{x-1}^1) = 2$ et $f'_0(u) = \tilde{f}_1(u)$ pour tout sommet $u \in V(CT_1) \setminus \{\ell_{x-1}^1\}$, if m = 3(voir Figure 3.6(c)). Nous obtenons alors, soit $\sigma(f'_0) = \sigma(f_0) + 1$ si $m \leq 2$, cela contredit l'optimalité de f_0 , soit $\sigma(f'_0) = \sigma(f_0)$ si m = 3, auquel cas soit f'_0 satisfait les items 1 à 5 du lemme soit cela contredit la minimalité de x.

2. $\lambda_{x-2} = 0.$

Il est clair que si x = 3, alors $\lambda_1 = 0$ et cela implique (d'après notre hypothèse) que $x \ge 4$, ce qui est une contradiction. Par conséquent, nous avons $x \ge 4$ et donc $v_{x-3} \ne v_0$. Soit f'_0 le broadcast indépendant non-canonique sur CT_0 défini par $f'_0(\ell_0^1) = x - 2$, $f'_0(\ell_{x-3}^1) = 2$, $f'_0(u) = 0$ pour tout sommet $u \in V(CT_0) \setminus (V(CT_1) \cup \{\ell_0^1, \ell_{x-3}^1\})$, et $f'_0(u) = \tilde{f}_1(u)$ pour tout sommet $u \in V(CT_1)$ (voir Figure 3.6(d)). Nous obtenons alors $\sigma(f'_0) = \sigma(f_0)$. Par conséquent, soit f'_0 satisfait les items 1 à 5 du lemme soit cela contredit la minimalité de x.

Ceci conclut la preuve.

Nous allons maintenant nous intéresser aux supports internes d'une chenille. Nous montrons que si f est un broadcast indépendant optimal non-canonique sur une chenille CT sans troncs adjacents, avec $\sigma(f) > 2(\operatorname{diam}(CT) - 1)$, alors il existe un broadcast indépendant optimal non-canonique \tilde{f} sur CT tel que $\tilde{f}^*(v_i) > 0$ pour tout support interne v_i de CT, $1 \le i \le k - 1$.

Lemme 3.13. Soit $CT = CT(\lambda_0, ..., \lambda_k)$ une chenille de longueur $k \ge 1$, sans troncs adjacents. Si f est un broadcast indépendant optimal non-canonique sur CT avec $\sigma(f) > 2(\operatorname{diam}(CT) - 1)$, alors il existe un broadcast indépendant optimal non-canonique \tilde{f} sur CT, avec donc $\sigma(\tilde{f}) = \sigma(f)$, tel que

- 1. \tilde{f} satisfait les cinq items du Lemme 3.12,
- 2. pour tout $i, 1 \leq i \leq k-1, si \lambda_i > 0, alors \tilde{f}^*(v_i) > 0.$

Preuve. D'après le Lemme 3.12, il existe un broadcast indépendant optimal non-canonique \tilde{f} sur CT, avec $\sigma(\tilde{f}) = \sigma(f)$, qui satisfait les cinq items du Lemme 3.12. De plus, supposons que \tilde{f} est choisi, de sorte que $V_{\tilde{f}}^+$ contient le maximum de feuilles.

Supposons par l'absurde qu'il existe un sommet v_i , $1 \le i \le k-1$, avec $\lambda_i > 0$ et $\tilde{f}^*(v_i) = 0$, tel que pour tout j < i, $\tilde{f}^*(v_j) > 0$ dès que $\lambda_j > 0$. Autrement dit, i est le plus petit indice tel que $\lambda_i > 0$ et $\tilde{f}^*(v_i) = 0$. Nous considérons trois cas (selon la valeur de i et de λ_{i-1}).

1. i = 1 ou i = k - 1.

Il suffit de considérer le cas i = 1 (l'autre cas se déduit par symétrie). D'après le Lemme 3.12, nous savons que $\tilde{f}(\ell_0^j) \leq 2$ pour tout $j, 1 \leq j \leq \lambda_0$. Par conséquent, aucune feuille adjacente à v_1 n'est \tilde{f} -dominée par une feuille adjacente à v_0 . Soit y le

FIGURE 3.6 – Les configurations pour la preuve du Lemme 3.12
sommet de CT qui f-domine les feuilles adjacentes à v_1 (notons que y est nécessairement unique) et soit g l'application définie comme suit : pour tout sommet u de CT,

$$g(u) = \begin{cases} \tilde{f}(y) - 1 & \text{if } u = y, \\ 1 & \text{si } u = \ell_1^1, \\ 1 & \text{si } u \neq \ell_1^1, u \text{ est un } \tilde{f}\text{-voisin privé de } y \text{ et } d_{CT}(u, y) = \tilde{f}(y), \\ \tilde{f}(u) & \text{sinon.} \end{cases}$$

(rappelons qu'un \tilde{f} -voisin privé de y est un sommet \tilde{f} -dominé uniquement par y). Nous prétendons que l'application g est un broadcast indépendant non-canonique sur CT avec $\sigma(g) \geq \sigma(\tilde{f})$. En effet, tous les sommets x tels que $d_{CT}(x, y) < \tilde{f}(y)$ qui étaient \tilde{f} -dominés par y restent g-dominés par y, et tous les sommets $x' \neq \ell_1^1$ tels que $d_{CT}(x', y) = \tilde{f}(y)$ qui étaient \tilde{f} -dominés uniquement par y deviennent des sommets g-broadcast avec g(x') = 1 (notons que puisqu'un tel sommet x' était \tilde{f} -dominé uniquement par y, nous avons $g(z) = \tilde{f}(z) = 0$ pour tout voisin z de x').

S'il existe au moins un sommet z \tilde{f} -voisin privé de y, nous obtenons $\sigma(g) \ge \sigma(\tilde{f}) + 1$, ce qui contredit l'optimalité de \tilde{f} . Si au contraire un tel sommet n'existe pas, nous obtenons $\sigma(g) = \sigma(\tilde{f})$ et V_g^+ contient plus de feuilles que $V_{\tilde{f}}^+$, ce qui contredit notre hypothèse.

2.
$$i = 2$$
 et $\lambda_1 = 0$, ou $i = k - 2$ et $\lambda_{k-1} = 0$.

Il suffit de considérer le cas i = 2 (l'autre cas se déduit par symétrie). D'après Lemme 3.12, nous savons que $\tilde{f}(\ell_0^j) \leq 3$ pour tout $j, 1 \leq j \leq \lambda_0$. Par conséquent, aucune feuille adjacente à v_2 n'est \tilde{f} -dominée par une feuille adjacente à v_0 . Soit y l'unique sommet de CT qui \tilde{f} -domine les feuilles de v_2 (notons que nous avons nécessairement $\tilde{f}(y) \geq 2$). Si $y = v_3$ et $\tilde{f}(v_3) = 3$ (puisque $\tilde{f}^*(v_0) > 0$, nous avons nécessairement $\tilde{f}(v_3) \leq 3$), nous définissons l'application g comme suit. Pour tout sommet u de CT, posons

$$g(u) = \begin{cases} 0 & \text{si } u = v_3, \\ 3 & \text{si } u = \ell_2^1, \\ 1 & \text{si } u \neq \ell_2^1, u \text{ est un } \tilde{f}\text{-voisin privé avec } v_3 \text{ et } d_{CT}(u, y) = 2, \\ \tilde{f}(u) & \text{sinon.} \end{cases}$$

Sinon (en incluant le cas $y = v_3$ et $\tilde{f}(v_3) = 2$), l'application g est définie par

$$g(u) = \begin{cases} \tilde{f}(y) - 2 & \text{if } u = y, \\ 2 & \text{si } u = \ell_2^1, \\ 1 & \text{si } u \neq \ell_2^1, u \text{ est un } \tilde{f}\text{-voisin privé de } y \text{ avec } d_{CT}(u, y) = \tilde{f}(y) - 1, \\ \tilde{f}(u) & \text{sinon,} \end{cases}$$

pour tout sommet u de CT.

Dans les deux cas, l'application g est un *broadcast* indépendant non-canonique sur CTavec $\sigma(g) \geq \sigma(\tilde{f})$. En effet, tous les sommets x avec $d_{CT}(x,y) < \tilde{f}(y) - 1$ qui étaient \tilde{f} -dominés par y sont g-dominés par ℓ_1^2 (si $y = v_3$) ou g-dominés par y (si $y \neq v_3$), et tous les sommets $x' \neq \ell_2^1$ tels que $\tilde{f}(y) - 1 \leq d_{CT}(x', y) \leq \tilde{f}(y)$ qui étaient \tilde{f} -dominés uniquement par y (voisins privés de y) sont maintenant soit des sommets g-broadcasts (si $d_{CT}(x', y) = \tilde{f}(y) - 1$) ou g-dominés par un sommet x'' tel que $d_{CT}(x'', y) = \tilde{f}(y) - 1$ et g(x'') = 1. Nous obtenons donc une contradiction, comme dans le Cas 1.

- 3. 2 < i < k 2, ou i = 2 et $\lambda_1 > 0$, ou i = k 2 et $\lambda_{k-1} > 0$. Dans ce cas, nous avons $\tilde{f}^*(v_j) > 0$ pour tout sommet v_j avec j < i et $\lambda_j > 0$. Notons également que nous avons au moins deux de ces sommets v_j avec j < i et $\lambda_j > 0$. Il suffit de considérer les cas 2 < i < k - 2, et i = 2 (avec $\lambda_1 > 0$), les autres cas seront obtenus par symétrie. Nous distinguons trois sous-cas.
 - (a) Supposons d'abord que les feuilles adjacentes à v_i sont \tilde{f} -dominées uniquement par un sommet $y = v_{j_0}$ ou uniquement par un sommet $y = \ell_{j_0}^{k_0}$ avec $j_0 < i$ et $1 \le k_0 \le \lambda_{j_0}$ (c'est-à-dire que les feuilles adjacentes à v_i sont des \tilde{f} -voisins privés de y). Observons que si les feuilles adjacentes à v_i étaient \tilde{f} -dominées par deux de ces sommets, disons y et y', nous aurions $d_{CT}(y, y') < d_{CT}(y, \ell_i^1)$ de sorte que \tilde{f} ne serait pas indépendant. D'autre part, puisque $\tilde{f}^*(v_j) > 0$ pour tout j < i tel que $\lambda_j > 0$, nous en déduisons, d'après le Lemme 3.3, que soit y est une feuille adjacente à v_{i-1} , si $\lambda_{i-1} > 0$, soit yest une feuille adjacente à v_{i-2} , si $\lambda_{i-1} = 0$. De plus, puisque $\tilde{f}^*(v_j) > 0$ pour chaque indice j < i tel que $\lambda_j > 0$ et qu'il existe au moins deux de tels sommets, nous avons nécessairement $\tilde{f}(y) \leq 3$. Ce qui implique en particulier $\lambda_{i-1} > 0$, car sinon nous aurions $\tilde{f}(y) \leq 3$ et $d_{CT}(y, \ell_i^1) = 4$, ce qui contredit le fait que y \tilde{f} -domine ℓ_i^1 et donc y est une feuille adjacente à v_{i-1} .

Considérons maintenant l'application g définie comme suit : pour tout sommet u de CT, posons

$$g(u) = \begin{cases} \tilde{f}(y) - 1 & \text{si } u = y, \\ 1 & \text{si } u = \ell_i^1, \\ 1 & \text{si } u \neq \ell_i^1, u \text{ est } \tilde{f}\text{-voisin privé de } y \text{ avec } d_{CT}(u, y) = \tilde{f}(y), \\ \tilde{f}(u) & \text{sinon.} \end{cases}$$

L'application g est un broadcast indépendant non-canonique sur CT avec $\sigma(g) \geq \sigma(\tilde{f})$. En effet, tous les sommets x avec $d_{CT}(x, y) < \tilde{f}(y)$ qui étaient \tilde{f} -dominés par y restent g-dominés par y, et tous les sommets $x' \neq \ell_i^1$ tel que $d_{CT}(x', y) = \tilde{f}(y)$ et qui étaient \tilde{f} -dominés uniquement par y deviennent des sommets g-broadcast. Comme pour les Cas 1 et 2, nous obtenons une contradiction.

(b) Supposons maintenant que les feuilles adjacentes à v_i sont f-dominées uniquement par un sommet $y = v_{j_0}$ (avec $\lambda_{j_0} = 0$) ou $y = \ell_{j_0}^{k_0}$ ($1 \le k_0 \le \lambda_{j_0}$), avec $j_0 > i$. Observons qu'en utilisant les mêmes arguments que dans le Cas (a), un tel sommet y doit être unique. De plus, nous avons nécessairement $\tilde{f}(y) \ge 2$. Si $\lambda_{i-1} = 0$, nous considérons deux sous-cas, comme nous l'avons fait dans le Cas 2. Si $y = v_{i+1}$ et $\tilde{f}(v_{i+1}) = 3$, nous définissons l'application g par

$$g(u) = \begin{cases} 0 & \text{si } u = v_{i+1}, \\ 3 & \text{si } u = \ell_i^1, \\ 1 & \text{si } u \neq \ell_i^1, u \text{ est un } \tilde{f}\text{-voisin privé de } y \text{ avec } d_{CT}(u, y) = 2, \\ \tilde{f}(u) & \text{sinon,} \end{cases}$$

pour tout sommet u de CT, et dans le cas contraire l'application g est définie par

$$g(u) = \begin{cases} \tilde{f}(y) - 2 & \text{if } u = y, \\ 2 & \text{si } u = \ell_i^1, \\ 1 & \text{si } u \neq \ell_i^1, u \text{ est un } \tilde{f}\text{-voisin privé de } y \text{ avec } d_{CT}(u, y) = \tilde{f}(y) - 1, \\ \tilde{f}(u) & \text{sinon,} \end{cases}$$

pour tout sommet u de CT.

Si $\lambda_{i-1} > 0$, nous définissons l'application g comme suit : pour tout sommet u de CT, posons

$$g(u) = \begin{cases} \tilde{f}(y) - 1 & \text{si } u = y, \\ 1 & \text{si } u = \ell_i^1, \\ 1 & \text{si } u \neq \ell_i^1, u \text{ est un } \tilde{f}\text{-voisin privé de } y \text{ avec } d_{CT}(u, y) = \tilde{f}(y), \\ \tilde{f}(u) & \text{sinon.} \end{cases}$$

Dans chacun des cas, l'application définie ci-dessus est un *broadcast* indépendant non-canonique sur CT avec $\sigma(g) \geq \sigma(\tilde{f})$. En utilisant les mêmes arguments que dans les Cas 1 et 2, nous obtenons une contradiction.

(c) Enfin supposons que les feuilles adjacentes à v_i sont \tilde{f} -dominées à la fois par un sommet $y_1 = v_{j_1}$ ou $y_1 = \ell_{j_1}^{k_1}$ avec $j_1 < i$ et $1 \le k_1 \le \lambda_{j_1}$, et par un sommet $y_2 = v_{j_2}$ ou $y_2 = \ell_{j_2}^{k_2}$ avec $j_2 > i$ et $1 \le k_2 \le \lambda_{j_2}$ (de même, les deux sommets y_1 et y_2 doivent être uniques). Dans ce cas, comme dans le Cas (a) ci-dessus, nous avons nécessairement $\lambda_{i-1} > 0$. De plus, nous avons aussi $\tilde{f}(y_1) = 3$ et $\tilde{f}(y_2) \ge 2$. Considérons l'application q définie par

$$g(u) = \begin{cases} \tilde{f}(y_1) - 1 & \text{si } u = y_1, \\ \tilde{f}(y_2) - 1 & \text{i } u = y_2, \\ 2 & \text{si } u = \ell_i^1, \\ 1 & \text{si } u \neq \ell_i^1, u \text{ est un } \tilde{f}\text{-voisin privé de } y_2 \text{ avec } d_{CT}(u, y_2) = \tilde{f}(y_2), \\ \tilde{f}(u) & \text{sinon,} \end{cases}$$

pour tout sommet u de CT.

Notons ici qu'aucun sommet w à distance $f(y_1)$ de y_1 ne peut être un f-voisin privé de y_1 (c'est-à-dire, \tilde{f} -dominé uniquement par y_1). En effet, supposons qu'un tel sommet existe. Il est clair que, si w est « à gauche de v_i » ce qui implique que $w = v_{i-3}$ et $\lambda_{i-2} = 0$, mais dans ce cas w est aussi \tilde{f} -dominé par au moins une de ses feuilles voisines. De même, si w est « à droite de v_i » alors w est également \tilde{f} -dominé par y_2 .

L'application définie ci-dessus est donc un *broadcast* indépendant non-canonique sur CT avec $\sigma(g) \geq \sigma(f)$. En utilisant les mêmes arguments que dans les Cas 1 et 2, nous aboutissons à une contradition.

En résumé, dans chacun des trois cas mentionnés plus haut nous obtenons une contradiction. Ceci conclut la preuve.

Avant de prouver notre résultat principal qui montre que si f est un broadcast indépendant optimal non-canonique sur une chenille CT sans troncs adjacents, avec $\sigma(f) > 2(\operatorname{diam}(CT)-1)$, $\sigma(f) = \sigma(\beta^*)$ (Lemme 3.17 qui va suivre), il est intéressant, à ce stade, de prouver (comme conséquence directe du Lemme 3.13), que pour un tel broadcast $f, f(v_i) \leq 1$ pour tout tronc v_i .

Lemme 3.14. Soit $CT = CT(\lambda_0, ..., \lambda_k)$ une chenille de longueur $k \ge 1$, sans troncs adjacents. Si f est un broadcast indépendant optimal non-canonique sur CT avec $\sigma(f) > 2(\operatorname{diam}(CT) - 1)$, alors il existe un broadcast indépendant optimal non-canonique \tilde{f} sur CT, avec donc $\sigma(\tilde{f}) = \sigma(f)$, tel que

- 1. \tilde{f} satisfait les deux items du Lemme 3.13,
- 2. pour tout i, $1 \leq i \leq k-1$, si $\lambda_i = 0$, alors $\tilde{f}^*(v_i) \leq 1$.

Preuve. Nous savons d'après le Lemme 3.13 qu'il existe un broadcast indépendant optimal non-canonique \tilde{f} sur CT satisfaisant les deux items du Lemme 3.13, en particulier, $\tilde{f}^*(v_j) > 0$ pour tout sommet support v_j , $0 \le j \le k$. Puisque CT ne posséde pas de troncs adjacents et que \tilde{f} est indépendant, nous avons nécessairement $\tilde{f}^*(v_i) \le 1$ pour tout tronc v_i , $1 \le i \le k-1$.

Au vu des résultats obtenus dans les lemmes précédents, nous allons montrer, à travers le lemme suivant, que le coût de tout *broadcast* indépendant optimal non-canonique d'une chenille CT de longueur $k \ge 1$, sans troncs adjacents, ne peut excéder la valeur $\beta^*(CT)$. Mais d'abord, afin de simplifier la preuve, nous introduisons quelques notations supplémentaires.

Soit CT une chenille de longueur $k \ge 1$, sans paire de troncs adjacents. Nous désignerons par ξ une séquence de ℓ sommets-épine consécutifs dans CT, c'est à dire, $\xi = v_i \dots v_{i+\ell-1}$, avec $\ell \le k+1$ et $0 \le i \le k-\ell+1$. Pour une telle séquence $\xi = v_i \dots v_{i+\ell-1}$ donnée, nous désignerons par t_{ξ} le nombre de troncs dans ξ , c'est-à-dire,

$$t_{\xi} = |\{v_j \mid i \le j \le i + \ell - 1 \text{ et } \lambda_j = 0\}|.$$

Si f est un broadcast indépendant sur CT, nous désignerons alors par $f^*(\xi)$ le poids de ξ , c'est-à-dire,

$$f^*(\xi) = \sum_{0 \le j \le \ell - 1} f^*(v_{i+j})$$

Lemme 3.15. Soit $CT = CT(\lambda_0, ..., \lambda_k)$ une chenille de longueur $k \ge 1$, sans troncs adjacents, et f un broadcast indépendant optimal non-canonique sur CT avec $\sigma(f) > 2(\operatorname{diam}(CT) - 1)$. Alors il existe un broadcast indépendant optimal non-canonique \tilde{f} sur CT, avec donc $\sigma(\tilde{f}) = \sigma(f)$, tel que

- 1. \tilde{f} satisfait les deux items du Lemme 3.14.
- 2. Pour tout $i, 0 \leq i \leq k, si \lambda_i \geq 3, alors \tilde{f}^*(v_i) \leq \lambda_i$.
- 3. Si $v_a v_{a+1}$, $0 \le a < k$, est une occurrence du motif 1^+2^- (resp. du motif 2^-1^+), alors $\tilde{f}^*(v_{a+1}) \le 2$ (resp. $\tilde{f}^*(v_a) \le 2$).
- 4. Si $v_a \xi v_b$ est une occurrence du motif $1^+2^-(02^-)^{+r}1^+$, alors $\tilde{f}^*(\xi) \leq 3t_{\xi} + 2$ si $v_a \xi v_b$ est une occurrence du motif $1^+2(02)^{+r}1^+$, et $\tilde{f}^*(\xi) \leq 3t_{\xi} + 1$ sinon.
- 5. Si ξ est une occurrence du motif $02^{-}(02^{-})^{*r}0$, alors $\tilde{f}^{*}(\xi) \leq 3t_{\xi} 2$ si $v_a \xi v_b$ est une occurrence du motif $02(02)^{*r}0$, et $\tilde{f}^{*}(\xi) \leq 3t_{\xi} 3$ sinon.
- 6. Si ξ est une occurrence du motif $[2^{-}(02^{-})^{*r}0$ ou du motif $02^{-}(02^{-})^{*r}]$, alors $f^{*}(\xi) \leq 3t_{\xi}$.

Preuve. Nous considérons les six items du lemme :

- 1. D'après le Lemme 3.14 nous savons qu'il existe un *broadcast* indépendant optimal noncanonique \tilde{f} sur CT satisfaisant les deux items du Lemme 3.14, en particulier, $\tilde{f}^*(v_i) > 0$ pour tout sommet support v_i , $0 \le i \le k$ et $\tilde{f}^*(v_j) \le 1$ pour tout tronc v_j , $1 \le j \le k - 1$. Nous supposons donc qu'un tel *broadcast* indépendant optimal non-canonique \tilde{f} sur CTa été choisi comme hypothèse pour tous les cas qui vont suivre.
- 2. Supposons par l'absurde qu'il existe un indice $i, 0 \le i \le k$, avec $f^*(v_i) > \lambda_i \ge 3$. Ce qui implique que v_i est adjacent à exactement une feuille \tilde{f} -broadcast, disons, sans perte de généralité ℓ_i^1 . Puisque $\tilde{f}(\ell_i^1) \ge 4$, nous avons nécessairement un sommet support v avec $d_{CT}(v_i, v) \le 2$ et $\tilde{f}^*(v) = 0$, ce qui contredit le fait que \tilde{f} satisfait le Lemme 3.13.
- 3. Soit $v_a v_{a+1}$, $0 \leq a < k$, une occurrence du motif 1^+2^- (le cas 2^-1^+ est similaire, par symétrie). D'après le Lemme 3.3 et le Lemme 3.13, nous avons $\tilde{f}^*(v_a) > 0$ et $\tilde{f}(v_a) = 0$. Ce qui implique clairement que $\tilde{f}^*(v_{a+1}) \leq 2$.
- 4. Soit $v_a \xi v_b = v_i v_{i+1} \dots v_{i+2r+2}$ une occurrence du motif $1^+ 2(02)^{+r} 1^+$, pour un indice i, $0 \le i \le k 2r 2$. Nous avons donc $t_{\xi} = r$. Puisque \tilde{f} satisfait le Lemme 3.14, nous avons $\tilde{f}^*(v_i) > 0$, $\tilde{f}^*(v_{i+2r+2}) > 0$, $\tilde{f}^*(v_{i+2j+1}) > 0$ pour tout j, $0 \le j \le r$, et $\tilde{f}^*(v_{i+2j}) \le 1$ pour tout j, $1 \le j \le r$. Ce qui implique

$$\tilde{f}^*(v_{i+1}) \le 2, \ \tilde{f}^*(v_{i+2r+1}) \le 2, \ \text{et} \ \tilde{f}^*(v_{i+2j+1}) \le 3 \ \text{pour tout} \ j, \ 1 \le j \le r-1.$$
 (3.1)

Nous considérons trois sous-cas, selon le nombre de troncs dans ξ qui sont des sommetsbroadcast. (a) $f(v_{i+2j}) = 1$ pour tout $j, 1 \le j \le r$. Dans ce cas, chaque feuille dans ξ est un sommet \tilde{f} -broadcast, avec une \tilde{f} -valeur égale à 1. Ce qui donne

$$\tilde{f}^*(\xi) = \lambda(\xi) + \tau(\xi) \le 2(r+1) + r = 3r + 2 = 3t_{\xi} + 2,$$

si $v_a \xi v_b$ est une occurrence du motif $1^+ 2(02)^{+r} 1^+$, et

$$\tilde{f}^*(\xi) = \lambda(\xi) + \tau(\xi) \le 1 + 2r + r = 3r + 1 = 3t_{\xi} + 1,$$

sinon (puisque nous avons au moins un support dans ξ ayant une f-valeur égale à 1).

(b) $\hat{f}(v_{i+2j}) = 0$ pour tout $j, 1 \le j \le r$. Dans ce cas, d'après (3.1), nous obtenons

$$\tilde{f}^*(\xi) \le 2 + 3(r-1) + 2 = 3r + 1 = 3t_{\xi} + 1.$$

- (c) Tous les troncs de ξ n'ont pas la même f-valeur.
 - Supposons que le broadcast f a été choisi de sorte que le nombre de troncs dans ξ ayant une \tilde{f} -valeur égale à 0 est maximum. Dans ce cas, ξ contient au moins deux troncs consécutifs (non adjacents), disons, sans perte de généralité (par symétrie), v_{i+2j_0} et v_{i+2j_0+2} , $1 \leq j_0 \leq r-1$, avec $\tilde{f}(v_{i+2j_0}) = 0$ et $\tilde{f}(v_{i+2j_0+2}) = 1$. Ce qui implique $\tilde{f}^*(v_{i+2j_0+1}) = \lambda_{i+2j_0+1} \leq 2$. Nous pouvons alors modifier \tilde{f} en posant $\tilde{f}(v_{i+2j_0}) = \tilde{f}(v_{i+2j_0+2}) = 0$, $f(\ell^1_{i+2j_0+1}) = 3$ (et $\tilde{f}(\ell^2_{i+2j_0+1}) = 0$ si $\lambda_{i+2j_0+1} = 2$), ce qui contredit notre hypothèse sur la maximalité du nombre de troncs ayant une \tilde{f} -valeur égale à 0. Par conséquent, ce cas est impossible et ceci achève la discussion.
- 5. La preuve utilise les mêmes arguments que pour le cas précédent.

Soit $\xi = v_i v_{i+1} \dots v_{i+2r+2}$ une occurrence du motif $02^{-}(02^{-})^{*r}0$, pour un certain indice i, $1 \leq i \leq k - 2r - 3$. Nous avons donc $t_{\xi} = r + 2$. Puisque \tilde{f} satisfait le Lemme 3.14, nous avons alors

$$0 < f^*(v_{i+2j+1}) \le 3$$
 pour tout $j, \ 0 \le j \le r,$ (3.2)

 et

$$\hat{f}^*(v_{i+2j}) \le 1$$
 pour tout $j, \ 0 \le j \le r+1.$ (3.3)

Nous considérons trois sous-cas, selon le nombre de troncs dans ξ qui sont des sommetsbroadcast.

(a) $f(v_{i+2j}) = 1$ pour tout $j, 0 \le j \le r+1$. Dans ce cas, tout sommet pendant de ξ est un sommet \tilde{f} -broadcast, ayant une \tilde{f} -valeur égale à 1. Ce qui donne

$$f^*(\xi) = \lambda(\xi) + \tau(\xi) \le 2(r+1) + r + 2 = 3r + 4 = 3t_{\xi} - 2,$$

si ξ est une occurrence du motif $02(02)^{*r}0$, et

 $\tilde{f}^*(\xi) = \lambda(\xi) + \tau(\xi) \le 1 + 2r + r + 2 = 3r + 3 = 3t_{\xi} - 3,$

sinon (puisque nous avons au moins un sommet support dans ξ avec une f-valeur égale à 1).

(b) $f(v_{i+2j}) = 0$ pour tout $j, 0 \le j \le r+1$. Dans ce cas, d'après (3.2) et (3.3), nous obtenons

$$\tilde{f}^*(\xi) \le 3(r+1) = 3r+3 = 3t_{\xi} - 3.$$

- (c) Tous les troncs de ξ n'ont pas la même \tilde{f} -valeur.
 - Supposons que le broadcast f a été choisi de sorte que le nombre de troncs dans ξ ayant une \tilde{f} -valeur égale à 0 est maximum. Dans ce cas, ξ contient au moins deux troncs consécutifs (non adjacents), disons, sans perte de généralité (par symétrie), v_{i+2j_0} et v_{i+2j_0+2} , $0 \leq j_0 \leq r$, $\tilde{f}(v_{i+2j_0}) = 0$ et $\tilde{f}(v_{i+2j_0+2}) = 1$. Ce qui implique $\tilde{f}^*(v_{i+2j_0+1}) = \lambda_{i+2j_0+1} \leq 2$. Nous pouvons donc modifier \tilde{f} en posant $\tilde{f}(v_{i+2j_0}) =$ $\tilde{f}(v_{i+2j_0+2}) = 0$, $\tilde{f}(\ell_{i+2j_0+1}^1) = 3$ (et $\tilde{f}(\ell_{i+2j_0+1}^2) = 0$ si $\lambda_{i+2j_0+1} = 2$), ce qui contredit notre hypothèse sur la maximalité du nombre de troncs ayant une \tilde{f} -valeur égale à 0. Par conséquent, ce cas est impossible et notre discussion s'achève.
- 6. Soit $v_0 \ldots v_{2r+1}$ une occurrence du motif $[2^{-}(02^{-})^{*r}0$ (le cas $02^{-}(02^{-})^{*r}]$ étant similaire par symétrie). Nous montrons d'abord que pour tout $i, 0 \le i \le r, \tilde{f}^{*}(v_{2i}) + \tilde{f}^{*}(v_{2i+1}) \le 3$. D'après le Lemme 3.14, nous savons que $\tilde{f}(v_{2i+1}) \le 1$. Si $\tilde{f}(v_{2i+1}) = 1$, alors nous avons $\tilde{f}(\ell_{2i}^{j}) \le 1$ pour chaque feuille ℓ_{2i}^{j} adjacente à v_{2i} et donc $\tilde{f}^{*}(v_{2i}) \le \lambda_{2i} \le 2$. D'autre part, si $f(v_{2i+1}) = 0$, nous avons $\tilde{f}^{*}(v_{2i}) \le 3$ (ce qui implique $\tilde{f}(\ell_{2i}^{j}) = 3$ pour une feuille ℓ_{2i}^{j} adjacente à v_{2i}) car sinon nous aurions $\tilde{f}^{*}(v_{2i+2}) = 0$, ce qui contredirait le Lemme 3.13. Ainsi dans les deux cas, l'inégalité souhaitée est vérifiée. Puisque ξ contient exactement $r + 1 = t_{\xi}$ paires de sommets distintes de la forme (v_{2i}, v_{2i+1}) , nous obtenons

$$\tilde{f}^*(\xi) = \sum_{i=0}^{i=r} \left(\tilde{f}^*(v_{2i}) + \tilde{f}^*(v_{2i+1}) \right) \le 3(r+1) = 3t_{\xi}$$

Ceci conclut la preuve.

Le résultat suivant indique que le Lemme 3.15 couvre toutes les chenilles sans troncs adjacents qui admettent un *broadcast* indépendant non-canonique avec un coût suffisamment grand.

Lemme 3.16. Si $CT = CT(\lambda_0, ..., \lambda_k)$ est une chenille de longueur $k \ge 1$, sans troncs adjacents, tel qu'il existe un broadcast indépendant optimal non-canonique f sur CT avec $\sigma(f) > 2(\operatorname{diam}(CT) - 1)$, alors le Lemme 3.15 donne une borne supérieure de $\sigma(f)$.

Preuve. Soit $CT = CT(\lambda_0, \ldots, \lambda_k)$ une chenille de longueur $k \ge 1$, sans troncs adjacents, f un broadcast indépendant optimal non-canonique sur CT avec $\sigma(f) > 2(\operatorname{diam}(CT) - 1)$ et v_i ,

 $0 \le i \le k$, un sommet-épine de CT.

Si $\lambda_i \geq 3$, alors d'après l'item 5 du Lemme 3.12, et donc l'item 1 du Lemme 3.15, $f^*(v_i) = \lambda_i$.

Si $\lambda_i = 0$, alors d'après l'item 2 du Lemme 3.14, et donc l'item 1 du Lemme 3.15, $f^*(v_i) \leq 1$.

Supposons maintenant que $1 \leq \lambda_i \leq 2$.

Si i = 0 ou i = k, alors d'après les items 1 à 4 du Lemme 3.12, et donc l'item 1 du Lemme 3.15, $f^*(v_i) \leq 3$.

Nous supposons à présent que $1 \le i \le k - 1$.

Si $\lambda_{i-1} > 0$ ou $\lambda_{i+1} > 0$, alors d'après l'item 3 du Lemme 3.15, $f^*(v_i) \leq 2$.

Il reste donc le cas $1 \leq i \leq k-1$, $\lambda_{i-1} = 0$ et $\lambda_{i+1} = 0$. Considérons l'ensemble de toutes les occurrences d'un motif, dans lequel des 0 et des 2^- alternent et qui contiennent les sommets v_{i-1} , v_i et v_{i+1} . Soit $\xi = v_a v_{a+1} \dots v_b$, $0 \leq a \leq i-1 < i+1 \leq b \leq k$ une telle occurrence de longueur maximum. Notons ici que nous avons nécessairement $v_a \neq v_i$ et $v_b \neq v_i$.

Nous distinguons trois cas.

1. $\lambda_a = \lambda_b = 0.$

D'après la maximalité de ξ , nous avons nécessairement $\lambda_{a-1} \geq 3$ et $\lambda_{b+1} \geq 3$. Par conséquent, d'après l'item 5 du Lemme 3.15, la valeur de $f^*(\sigma)$ est bornée.

2. $\lambda_a = 0$ et $\lambda_b > 0$ (le cas $\lambda_a > 0$ et $\lambda_b = 0$ étant similaire, par symétrie). D'après la maximalité de ξ , nous avons nécessairement $\lambda_{a-1} \ge 3$, et soit b = k soit b < k et $\lambda_{b+1} \ge 1$.

Si b = k, alors d'après l'item 6 du Lemme 3.15, la valeur de $f^*(\xi)$ est bornée.

Si b < k et $\lambda_{b+1} \ge 1$, alors d'après l'item 5 du Lemme 3.15, $f^*(v_a \dots v_{b-1})$ est bornée.

3. $\lambda_a > 0$ et $\lambda_b > 0$.

D'après la maximalité de ξ , nous avons nécessairement

- (i) a = 0, ou a > 0 et $\lambda_{a-1} \ge 1$ et
- (ii) b = k, ou b < k et $\lambda_{b+1} \ge 1$.

Si a > 0 et b < k, d'après l'item 4 du Lemme 3.15, la valeur de $f^*(\xi)$ est bornée.

Si a = 0 et b < k (le cas a > 0 et b = k étant similaire, par symétrie), alors d'après l'item 6 du Lemme 3.15, la valeur de $f^*(v_a \dots v_{b-1})$ est bornée.

Enfin, si a = 0 et b = k, le motif $2^{-}(02^{-})^{+r}$ représente la chenille entière CT. Dans ce cas, nous avons diam(CT) = 2r + 2 et donc $2(\operatorname{diam}(CT) - 1) = 4r + 2$. Mais d'après le Lemme 3.13 et le Lemme 3.14 (comme discuté dans la preuve de l'item 6 du Lemme 3.15), nous avons $f^{*}(v_{j}) + f^{*}(v_{j+1}) \leq 3$ pour tout sommet $j, 0 \leq j \leq 2r - 2$. De plus, d'après l'item 2 du Lemme 3.12, nous avons $f^{*}(v_{2r}) = 3$. Par conséquent, $f^{*}(CT) \leq 3r + 3 \leq 4r + 2 =$ $2(\operatorname{diam}(CT) - 1)$. Ce qui contredit notre hypothèse concernant la valeur de $\sigma(f)$, et donc ce cas est impossible.

En résumé, dans tous les cas mentionnés plus haut, par un des items du Lemme 3.15 soit la valeur de $f^*(v_i)$ soit la valeur $f^*(\xi)$, pour une occurrence ξ d'un motif contenant le sommet support v_i , est bornée.

Ceci conclut la preuve.

Enfin, en utilisant le Lemme 3.15 et le Lemme 3.16, nous pouvons à présent prouver qu'il n'existe aucun broadcast indépendant optimal non-canonique f sur CT avec $\sigma(f) > 2(\operatorname{diam}(CT) - 1)$ et $\sigma(f) > \beta^*(CT)$.

Lemme 3.17. Soit $CT = CT(\lambda_0, ..., \lambda_k)$ une chenille de longueur $k \ge 1$, sans troncs adjacents, et f un broadcast indépendant optimal non-canonique sur CT avec $\sigma(f) > 2(\operatorname{diam}(CT) - 1)$. On a alors $\sigma(f) \le \beta^*(CT)$.

Preuve. Désignons par f_4 le broadcast indépendant non-canonique sur CT construit dans la preuve du Lemme 3.11, avec $\sigma(f_4) = \beta^*(CT)$.

En considérant les quatre étapes impliquées dans la construction de f_4 , il apparaît clairement que f_4 satisfait les 5 items du Lemme 3.12, l'item 2 du Lemme 3.13 et l'item 2 du Lemme 3.14. Par conséquent, f_4 satisfait l'item 1 du Lemme 3.15. De plus, si v_i est un tronc qui n'apparaît dans aucun motif considéré dans le Lemme 3.15, alors $f_4(v_i) = 1$. En effet, la f_4 valeur de v_i est égale à 1 à l'étape 1 du Lemme 3.11 et n'est pas modifiée aux étapes de 2, 3 et 4.

Montrons maintenant que f_4 satisfait aussi les cinq derniers items du Lemme 3.15 et que, dans chaque cas, la borne supérieure est atteinte. Nous nous référons aux étapes 1 à 4 de la preuve du Lemme 3.11 et aux *broadcasts* indépendants intermédiaires correspondants f_1 à f_3 . Rappelons d'abord qu'à l'étape 1, on attribue à chaque tronc et chaque feuille la valeur 1.

1. Item 2 du Lemme 3.15.

Si v_i est un sommet support avec $\lambda_i \geq 3$, la valeur des feuilles adjacentes à v_i n'est pas modifiée aux étapes 2, 3 et 4. Par conséquent, nous avons pour un tel sommet v_i , $f_4^*(v_i) = f_1^*(v_i) = \lambda_i$.

2. Item 3 du Lemme 3.15.

Soit $v_a v_{a+1}$, $0 \le a < k$, une occurrence du motif 1^+2^- (le cas 2^-1^+ étant similaire, par symétrie). Notons ici que si v_{a+1} est le sommet le plus à gauche d'une occurrence du motif $1^+2(02)^{+r}1^+$, alors la valeur des feuilles qui lui sont adjacentes n'est pas modifiée à l'étape 3.

Si $\lambda_{a+1} = 1$, alors, à l'étape 2, la valeur de ℓ_{a+1}^1 est égale à 2 et n'est pas modifée à l'étape 4. Si $\lambda_{a+1} = 2$, alors la valeur des feuilles adjacentes à v_{a+1} n'est pas modifiée aux étapes 2, 3 et 4. Par conséquent, dans les deux cas $f_4^*(v_{a+1}) = 2$.

3. Item 4 du Lemme 3.15.

Soit $v_a \xi v_b = v_i v_{i+1} \dots v_{i+2r+2}$ une occurrence du motif $1^+ 2^- (02^-)^{+r} 1^+$, pour un indice i, $0 \le i \le k - 2r - 2$. Dans ce cas, nous avons $t_{\xi} = r$.

Si $v_a \xi v_b$ est une occurrence du motif $1^+ 2(02)^{+r} 1^+$, les valeurs des sommets de ξ ne sont pas modifiées aux étapes 2, 3 et 4. Par conséquent, nous avons $f_4^*(\xi) = f_1^*(\xi) = 2(r+1) + r = 3r + 2 = 3t_{\xi} + 2$.

Supposons maintenant que ξ contient au moins un sommet support adjacent à une unique feuille. À l'étape 3, la valeur de ℓ_{i+1}^1 est égale à 2 si $\lambda_{i+1} = 1$, la valeur de ℓ_{i+2r+1}^1 est égale à 2 si $\lambda_{i+2r+1} = 1$, la valeur de ℓ_{i+2j+1}^1 , $1 \le j \le r-1$ est égale à 3 (et la valeur de ℓ_{i+2j+1}^2 est égale à 0 si $\lambda_{i+2j+1} = 2$) et la valeur de chaque tronc est égale à 0. Nous avons donc

$$f_4^*(\xi) = f_3^*(\xi) = 2 + 2 + 3(r-1) = 3r + 1 = 3t_{\xi} + 1$$

4. Item 5 du Lemme 3.15.

Soit $\xi = v_i v_{i+1} \dots v_{i+2r+2}$ une occurrence du motif $02^{-}(02^{-})^{*r}0$, pour un indice $i, 1 \leq i \leq k - 2r - 3$. Dans ce cas, nous avons $t_{\xi} = r + 2$.

Si ξ est une occurrence du motif $02(02)^{*r}0$, les valeurs des sommets de ξ ne sont pas modifiées aux étapes 2, 3 et 4. Par conséquent, nous avons $f_4^*(\xi) = f_1^*(\xi) = 2(r+1)+r+2 = 3r+4 = 3t_{\xi}-2$.

Supposons maintenant que ξ contient au moins un sommet support adjacent à une unique feuille. À l'étape 3, la valeur de ℓ^1_{i+2j+1} , $0 \le j \le r$, est égale à 3 (et la valeur de ℓ^2_{i+2j+1} est égale à 0 si $\lambda_{i+2j+1} = 2$) et la valeur de chaque tronc est égale à 0. Nous obtenons alors

$$f_4^*(\xi) = f_3^*(\xi) = 3(r+1) = 3r+3 = 3t_{\xi} - 3.$$

5. Item 6 du Lemme 3.15.

Soit $v_0 \dots v_{2r+1}$ une occurrence du motif $[2^-(02^-)^{*r}0$ (le cas $02^-(02^-)^{*r}]$ étant similaire, par symétrie). Dans ce cas, nous avons $t_{\xi} = r + 1$.

À l'étape 3, la valeur de ℓ_{2j}^1 , $0 \le j \le r$, est égale à 3 (et la valeur de ℓ_{2j}^2 est à 0 si $\lambda_{2j} = 2$) et la valeur de chaque tronc est égale à 0. Nous avons donc

$$f_4^*(\xi) = f_3^*(\xi) = 3(r+1) = 3r+3 = 3t_{\xi}.$$

D'après le Lemme 3.15, nous savons qu'il existe un *broadcast* indépendant optimal noncanonique \tilde{f} avec $\sigma(\tilde{f}) = \sigma(f)$ satisfaisant tous les items du Lemme 3.15. D'autre part, nous avons prouvé que le *broadcast* indépendant non-canonique f_4 construit dans la preuve du Lemme 3.11 satisfait aussi tous les items du Lemme 3.15. Par conséquent, grâce au Lemme 3.16, nous obtenons

$$\sigma(f) = \sigma(f) \le \sigma(f_4) = \beta^*(CT).$$

Ceci conclut la preuve.

3.3.4 Résultat principal

Nous sommes maintenant en mesure d'énoncer notre résultat principal. Ce théoréme découle directement des lemmes précédents et permet d'établir la valeur exacte du nombre d'indépendance *broadcast* de toute chenille sans troncs adjacents.

Théorème 3.18. Pour toute chenille $CT = CT(\lambda_0, ..., \lambda_k)$ de longueur $k \ge 1$, sans troncs adjacents, nous avons

$$\beta_b(CT) = \max\left\{2(\operatorname{diam}(CT) - 1), \beta^*(CT)\right\}.$$

Preuve. D'après l'Observation 2.52, nous savons que $\beta_b(CT) \geq 2(\operatorname{diam}(CT) - 1)$, et nous avons déjà mentionné précédement qu'un broadcast indépendant canonique f_c sur CT satisfait $\sigma(f_c) = 2(\operatorname{diam}(CT) - 1)$. D'après le Lemme 3.11, il suffit donc de prouver que pour tout broadcast indépendant optimal non-canonique f sur CT avec $\sigma(f) > 2(\operatorname{diam}(CT) - 1)$, nous avons $\sigma(f) \leq \beta^*(CT)$, or ceci découle immédiatement du Lemme 3.17.

Ceci conclut la preuve.

Dans plusieurs cas, la valeur de $\beta^*(CT)$ a une expression simple. En effet, considérons par exemple une chenille CT, de longueur $k \ge 1$, sans tronc. Nous avons alors $\beta^*(CT) = \lambda(CT) + n_1(CT)$, où n_1 désigne le nombre de sommets supports adjacents à exactement une feuille. Puisque $\lambda(CT) \ge n_1(CT) + 2(k+1-n_1(CT)) = 2k+2-n_1(CT)$ (les sommets supports sont adjacents soit à une feuille soit à au moins deux feuilles), nous avons $\beta^*(CT) \ge 2k+2$ et cette borne est atteinte si et seulement si CT ne contient aucun sommet support adjacent à au moins trois feuilles. Comme $2(\operatorname{diam}(CT) - 1) = 2k+2$, nous obtenons le corollaire suivant :

Corollaire 3.19. Pour toute chenille CT de longueur $k \ge 1$, sans tronc, nous avons $\beta_b(CT) = 2k + 2 = 2(\operatorname{diam}(CT) - 1)$ si CT n'a aucun sommet support adjacent à au moins trois feuilles et $\beta_b(CT) = \lambda(CT) + n_1(CT)$ sinon.

La Figure 3.7 représente un β_b -broadcast sur une chenille sans tronc et dont chaque sommet support est adjacent à au plus deux feuilles, et la Figure 3.8 représente l'unique β_b -broadcast sur une chenille sans tronc et dont chaque sommet support est adjacent à au moins trois feuilles.

FIGURE 3.7 – Un β_b -broadcast sur une chenille sans tronc et sans sommet support adjacent à au moins trois feuilles.

Grâce à l'Observation 2.64, nous pouvons aussi déterminer le nombre d'indépendance *broadcast* d'une chenille avec troncs adjacents, mais n'ayant aucun sommet support adjacent à au moins trois feuilles.

FIGURE 3.8 – L'unique β_b -broadcast sur une chenille sans tronc et sans sommet support adjacent à au plus deux feuilles.

Corollaire 3.20. Pour toute chenille CT de longueur $k \ge 1$, n'ayant aucun sommet support adjacent à au moins trois feuilles, nous avons

$$\beta_b(CT) = 2k + 2 = 2(\operatorname{diam}(CT) - 1).$$

Notons enfin que pour une chenille CT de longueur $k \ge 1$, sans troncs adjacents et telle que chaque sommet support est adjacent à au moins trois feuilles, aucun motif impliqué dans la définition de $\beta^*(CT)$ ne peut apparaître dans CT. Dans ce cas, puisque $\tau(CT) \le \lfloor \frac{k}{2} \rfloor$ et $\lambda(CT) \ge 3 \left(\lceil \frac{k}{2} \rceil + 1 \right)$, nous obtenons

$$\beta^*(CT) = \lambda(CT) + \tau(CT) > 2k + 2 = 2(\operatorname{diam}(CT) - 1).$$

Par conséquent, nous avons :

Corollaire 3.21. [2] Pour toute chenille CT de longueur de $k \ge 1$, sans troncs adjacents et ayant tous ses sommets supports adjacents à au moins trois feuilles, nous avons

$$\beta_b(CT) = \lambda(CT) + \tau(CT).$$

La Figure 3.9 représente l'unique β_b -broadcast sur une chenille sans troncs adjacents et sans sommet support adjacent à au plus deux feuilles.

FIGURE 3.9 – L'unique β_b -broadcast sur une chenille sans troncs adjacents et dont tout sommet support est adjacent à au moins trois feuilles.

Chapitre 4

Nombre d'indépendance broadcast des homards localement uniformes

Ce chapitre s'inscrit dans le prolongement du chapitre précédent. Dans le chapitre 3, nous avons étudié les *broadcasts* indépendants des chenilles. Nous poursuivons cette ligne de recherche, en considérant les *broadcasts* indépendants des *homards*. Nous justifions ce choix par le fait qu'un *homard* est un arbre tel que, le sous-graphe induit par les sommets de degré supérieur ou égal à 2 est une chenille. Nous allons nous intéresser ici à une sous-classe de la classe des homards appelés *homards localement uniformes*. Les résultats obtenus pour la sous-classe particulière des 2-*homards localement uniformes* ont fait l'objet d'un papier soumis pour publication et visible sur arXiv [3].

4.1 Introduction

L'étude du paramètre de l'indépendance *broadcast* a focalisé une nouvelle fois notre attention sur une nouvelle sous-classe d'arbres, appelés les *homards*. Notre objectif initial était donc l'étude de la classe générale des homards. Ceci dit, si nous tenons compte de la difficulté déjà observée sur les chenilles, il est tout à fait naturel et surtout raisonnable de considérer une sousclasse afin de réduire efficacement la difficulté, et les *homards localement uniformes* semblaient être une « bonne classe candidate » pour une telle étude. Nous avons donc commencé à étudier cette classe, et à prouver des résultats sur les broadcasts indépendants optimaux. Malheureusement cette étude ne nous a pas permis de trouver une formule qui détermine la valeur exacte du nombre d'indépendance *broadcast*. Nous avons donc décidé de considérer une sousclasse, les homards localement uniformes qui ne contiennent pas un certain type de sous-arbre épine.

La suite de ce chapitre est organisée comme suit. Dans la section suivante, nous introduisons des définitions principales et quelques résultats préliminaires. La section 4.3 est consacrée à l'étude de quelques propriétés des *broadcasts* indépendants optimaux sur des homards localement uniformes. Enfin nous proposons dans la section 4.4 une formule explicite pour le nombre d'indépendance *broadcast* des homards localement uniformes qui ne contiennent pas de sous-arbre épine d'un certain type, et plus particulièrement pour les 2-homards localement uniformes.

4.2 Préliminaires

Rappelons qu'une *chenille* est un arbre tel que, si l'on supprime tous ses sommets pendants, le graphe résultant est une une chaîne simple non vide, appelée *épine dorsale* de la chenille.

Un homard L est un arbre tel que, si l'on supprime tous ses sommets pendants, le graphe résultant est une chenille. L'épine dorsale de la chenille ainsi obtenue est aussi l'épine dorsale du homard L.

Un sommet qui appartient à l'épine dorsale de la chenille ou du homard, est appelé *sommet-épine* ou *sommet-épine* interne s'il n'est pas extrémité de l'épine dorsale.

Une 1-feuille de L est un sommet pendant de L adjacent à un sommet-épine. Un sommet pendant de L qui n'est pas une 1-feuille sera dit une 2-feuille (rappelons que tout sommet pendant est à distance au plus 2 d'un sommet-épine). Une feuille unique est une feuille dont le voisin a un unique voisin feuille. Une feuille unique peut donc être soit une 1-feuille soit une 2-feuille, et sera dite une 1-feuille unique ou une 2-feuille unique, respectivement. Deux feuilles ayant un même voisin sont dites feuilles jumelles.

La longueur d'un homard L est la longueur (nombre d'arêtes) de son épine dorsale.

Notons que si L est un homard de longueur 0, l'unique sommet-épine de L doit nécessairement être de degré au moins 2, puisque autrement, en supprimant toutes les feuilles de L on obtient une unique arête, laquelle n'est pas une chenille. Il s'ensuit que, diam(L) = k + 4 pour tout homard L de longueur k.

Pour rendre plus facile la lecture de ce chapitre, nous commençons d'abord par citer le résultat suivant, dejà mentionné et prouvé dans le Chapitre 2 (voir le Lemme 2.66), ainsi que l'Observation 2.52.

Lemme 4.1 ([2]). Soit T un arbre d'ordre au moins 3 et T' un sous-arbre de T, d'ordre au moins 2 et de racine r. Soit f un broadcast indépendant optimal sur T. Si r est un sommet f-broadcast, alors T' admet au moins un autre sommet f-broadcast. En particulier, si T' est un sous-arbre de hauteur 1 (c'est à dire que, $e_{T'}(r) = 1$), alors f(r) = 0.

Observation 4.2 ([42]). Pour tout graphe G d'ordre au moins 2 et tout ensemble $A \subset V(G)$, $|A| \geq 2$, de sommets deux à deux antipodaux dans G, $\beta_b(G) \geq |A|(\operatorname{diam}(G)-1)$. En particulier, pour tout arbre T, $\beta_b(T) \geq 2(\operatorname{diam}(G)-1)$.

Pour tout broadcast indépendant f sur un graphe G et pour tout sous-graphe H de G, nous désignons par $f^*(H)$ la f-valeur de H définie par

$$f^*(H) = \sum_{v \in V(H)} f(v).$$

Observons que $f^*(G) = \sigma(f)$.

Afin que nous puissions définir dans la section suivante les *homards localement uniformes*, nous introduisons quelques notations :

Notation 4.3. Un arbre T enraciné au sommet r est de type S_1 si chaque feuille de T est à distance 1 de la racine r, ce qui signifie que T est une étoile de centre r. Un arbre T enraciné au sommet r est de type S_2 si chaque feuille de T est à distance 2 de r.

Soit L un homard et $v_0 \ldots v_k$, $k \ge 0$, son épine dorsale. Pour tout sommet v_i , $0 \le i \le k$, le sous-arbre épine v_i , désigné par S_i , est le sous-arbre maximal de L enraciné en v_i , qui ne contient aucun autre sommet-épine (en dehors de v_i).

4.3 Homards localement uniformes

Dans le but d'établir une formule constructive semblable à celle trouvée pour les chenilles sans tronc adjacents, nous allons d'abord chercher à mieux comprendre la structure des *broad*casts indépendants optimaux sur des homards localement uniformes. Nous commençons par décrire la classe des *homards localement uniformes* en introduisant quelques notations, ainsi que les différents types de sous-arbres épine qui peuvent apparaître dans un homard localement uniforme. Ensuite nous prouvons un certain nombre de propriétés des *broadcasts* indépendants optimaux sur cette classe.

Définissons un homard localement uniforme comme suit :

Définition 4.4. Un homard L est *localement uniforme* si chaque sous-arbre épine de L est soit de type S_1 soit de type S_2 .

L'observation suivante découle directement de la définition.

Observation 4.5 ([2]). Si L est un homard localement uniforme d'épine dorsale $v_0 \ldots v_k$, $k \ge 0$ alors les sous-arbres S_0 et S_k sont de type S_2 .

En effet, si S_0 ou S_k est de type S_1 , alors v_0 ou v_k est un sommet pendant de la chenille obtenue à partir de L en supprimant toutes ses feuilles. Ainsi, $v_0 \ldots v_k$ n'est pas l'épine dorsale de L, ce qui est une contradiction.

La Figure 4.1 représente un homard localement uniforme.

Le corollaire suivant découle immédiatement du Lemme 4.1.

FIGURE 4.1 – Un homard localement uniforme.

Corollaire 4.6 ([3]). Si L est un homard localement uniforme d'épine dorsale $v_0 \ldots v_k$, $k \ge 0$, et f est un broadcast indépendant optimal sur L, alors les deux conditions suivantes sont satisfaites.

- 1. Si v est un sommet support, alors f(v) = 0.
- 2. Pour tout i, $0 \leq i \leq k$, $f(v_i) = 0$ si S_i est de type \mathcal{S}_1 , et $f(v_i) \leq 1$ si S_i est de type \mathcal{S}_2 .

Le résultat qui suit montre que pour tout *broadcast* indépendant optimal f sur un homard localement uniforme d'épine dorsale $v_0 \ldots v_k$, $k \ge 0$, les sous-arbres S_0 et S_k contiennent au moins un sommet f-broadcast.

Lemme 4.7. Soit L est un homard localement uniforme et $v_0 \dots v_k$, $k \ge 0$, son épine dorsale. Si f est un broadcast indépendant optimal sur L, alors $f^*(S_0) > 0$ et $f^*(S_k) > 0$.

Preuve. Il suffit de prouver le résultat pour S_0 (le cas S_k se déduit par symétrie).

Supposons par l'absurde que $f^*(S_0) = 0$ et soit v un sommet de L qui f-domine les feuilles de S_0 . Puisque $f^*(S_0) = 0$, nous avons nécessairement $f(v) \ge 4$ et donc v est unique. D'après le Corollaire 4.6, v doit être une feuille de L. Soit ℓ une feuille de S_0 .

Si $f(v) + d_L(\ell, v) > \text{diam}(L)$, alors v est l'unique sommet f-broadcast de L et donc d'après l'Observation 4.2, cela contredit l'optimalité de f. Définissons l'application f' sur V(L) comme suit :

$$f'(u) = \begin{cases} 0 & \text{si } u = v, \\ f(v) + d_L(\ell, v) - 2 & \text{si } u = \ell, \\ f(u) & \text{sinon.} \end{cases}$$

Il est clair que l'application f' est un broadcast indépendant sur L et puisque $d_L(v, \ell) \ge 4$, nous obtenons $\sigma(f') > \sigma(f)$, ce qui contredit l'optimalité de f.

Ceci conclut la preuve.

Rappelons que pour tout homard localement uniforme L de longueur k, diam(L) = k + 4. D'après l'Observation 4.2, nous obtenons $\beta_b(L) \ge 2(k+3)$. En particulier, si ℓ_0 et ℓ_k sont des feuilles adjacentes à v_0 et v_k , respectivement, alors la fonction f_c sur V(L) définie par $f_c(\ell_0) = f_c(\ell_k) = k + 3$ et $f_c(v) = 0$ pour tout autre sommet v de L est un 2(k+3)-broadcast indépendant sur L.

4.3.1 Différents types de sous-arbres épine

Soit L un homard localement uniforme et $v_0 \ldots v_k$, $k \ge 0$, son épine dorsale. Deux sous-arbres épine consécutifs S_i et S_{i+1} , $0 \le i \le k-1$, sont appelés sous-arbres voisins. De plus, nous disons que S_i précède S_{i+1} et que S_{i+1} succède à S_i . Une séquence de p sousarbres, $p \ge 2$, est une séquence de sous-arbres épine consécutifs de la forme $S_i \ldots S_{i+p-1}$ pour $i, 0 \le i \le k-p+1$.

Nous disons que deux *broadcasts* indépendants f_1 et f_2 sur un homard L localement uniforme sont *similaires*, si leurs valeurs respectives sur chaque sous-arbre épine de L sont égales, c'està-dire, $f_1^*(S_i) = f_2^*(S_i)$ pour tout $i, 0 \le i \le k$. Observons que deux *broadcasts* indépendants similaires ont même coût. Tout *broadcast* indépendant f sur L similaire à f_c et tel que $|V_f^+| = 2$ est dit *broadcast indépendant canonique*.

Notation 4.8. Pour tout $i, 0 \le i \le k$, nous désignons par $\lambda_1^*(S_i), \lambda_2^*(S_i), \lambda_1(S_i)$ et $\lambda_2(S_i)$ le nombre de 1-feuilles uniques, de 2-feuilles uniques, de 1-feuilles et de 2-feuilles de S_i , respectivement. De plus, nous étendons ces quatre fonctions à l'ensemble du homard L, en posant

$$\lambda_1^*(L) = \sum_{i=0}^{i=k} \lambda_1^*(S_i), \quad \lambda_2^*(L) = \sum_{i=0}^{i=k} \lambda_2^*(S_i), \quad \lambda_1(L) = \sum_{i=0}^{i=k} \lambda_1(S_i), \quad \text{et} \quad \lambda_2(L) = \sum_{i=0}^{i=k} \lambda_2(S_i)$$

Soit v_i un sommet-épine de L et soient w_i^1, \ldots, w_i^t ses t voisins qui ne sont pas des sommetsépines. Pour tout $j, 1 \leq j \leq t$, la branche B_i^j de v_i est le sous-arbre maximal de S_i , enraciné en v_i , contenant l'arête $v_i w_i^j$, mais ne contenant aucune arête $v_i w_i^{j'}$ avec $j' \neq j$. Nous définissons alors deux types de branches.

Notation 4.9. Une branche est de type \mathcal{B}_1 si elle ne contient aucune 2-feuille. Elle sera de type \mathcal{B}_2 si elle ne contient aucune 1-feuille. Pour tout sous-arbre épine S_i , $0 \le i \le k$, nous désignons par $\alpha_1(S_i)$ et $\alpha_2(S_i)$ le nombre de branches de S_i de type \mathcal{B}_1 et de type \mathcal{B}_2 , respectivement. De plus, nous désignons par $\alpha_2^*(S_i)$ le nombre de branches de S_i de type \mathcal{B}_2 ayant au plus deux 2-feuilles.

Puisque toutes les branches d'un sous-arbre épine quelconque d'un homard localement uniforme sont de même type, nous avons , $\alpha_1(S_i) > 0$, $\alpha_2(S_i) = \alpha_2^*(S_i) = 0$, si S_i est de type \mathcal{S}_1 , et $\alpha_1(S_i) = 0$, $\alpha_2(S_i) > 0$, $\alpha_2^*(S_i) \ge 0$, si S_i est de type \mathcal{S}_2 .

Notation 4.10. Pour tout $i, 0 \le i \le k$, nous désignons par b_i le nombre de branches d'un sous-arbre épine S_i .

Notons que
$$b_i = \deg_L(v_i) - 2$$
 si $1 \le i \le k - 1$, et $b_i = \deg_L(v_i) - 1$ si $i \in \{0, k\}$

Afin de définir les différents types de sous-arbres épines d'un homard localement uniforme, nous utilisons aussi les notations suivantes :

Notation 4.11. [Opérateurs sur les types de sous-arbres épine]

Soient \mathcal{X} , \mathcal{Y} et \mathcal{Z} des sous-arbres épine de type quelconque. Nous définissons alors les différents types suivants :

• $\overline{\mathcal{X}}$.

Un sous-arbre épine S est de type $\overline{\mathcal{X}}$ si S n'est pas de type \mathcal{X} .

• $\mathcal{X}|\mathcal{Y}$.

Un sous-arbre épine S est de type $\mathcal{X}|\mathcal{Y}$ si S est de type \mathcal{X} ou \mathcal{Y} .

• $\mathcal{X}.\mathcal{Y}, \mathcal{XY}.$

Une séquence de deux sous-arbres épine SS' est de type $\mathcal{X}.\mathcal{Y}$, ou simplement \mathcal{XY} , si S est de type \mathcal{X} et S' est de type \mathcal{Y} .

• $\mathcal{X}[P_1,\ldots,P_p].$

Soient les propriétés $P_1, \ldots, P_p, p \ge 1$. Un sous-arbre épine S est de type $\mathcal{X}[P_1, \ldots, P_p]$ si S est un sous-arbre épine de type \mathcal{X} satisfaisant les propriétés P_1, \ldots, P_p . Par exemple, un sous-arbre épine S est de type $\mathcal{S}_2[\lambda_2 \ge 5, \alpha_2^* \le 3]$ si S est sous-arbre épine de type \mathcal{S}_2 ayant au moins cinq feuilles et au plus trois branches, chaque branche a au plus deux feuilles.

De même, une branche de type $\mathcal{Y}[P_1, \ldots, P_p]$ est une branche de type \mathcal{Y} satisfaisant les propriétés P_1, \ldots, P_p . Par exemple, une branche de type $\mathcal{B}_2[\lambda_2 = 3]$ est une branche de type \mathcal{B}_2 avec trois 2-feuilles.

• $\langle \mathcal{X} \rangle \mathcal{Y}, \mathcal{Y} \langle \mathcal{Z} \rangle, \langle \mathcal{X} \rangle \mathcal{Y} \langle \mathcal{Z} \rangle.$

Un sous-arbre épine S est de type $\langle \mathcal{X} \rangle \mathcal{Y}$ (resp. $\mathcal{Y} \langle \mathcal{Z} \rangle$) si S est un sous-arbre épine de type \mathcal{Y} et si S', le sous-arbre épine qui précède S (resp. succède à S) est de type \mathcal{X} (resp. \mathcal{Z}). Un sous-arbre épine S est alors de type $\langle \mathcal{X} \rangle \mathcal{Y} \langle \mathcal{Z} \rangle$ si S est à la fois de type $\langle \mathcal{X} \rangle \mathcal{Y}$ et de type $\mathcal{Y} \langle \mathcal{Z} \rangle$.

• Ø.

Nous utiliserons aussi le symbole \emptyset pour désigner un « sous-arbre vide », par exemple, un sous-arbre épine S est de type $\langle \emptyset \rangle \mathcal{Y} = (\text{resp. } \mathcal{Y} \langle \emptyset \rangle)$, si $S = S_0$ (resp. $S = S_k$) et Sest de type \mathcal{Y} .

• $\{\mathcal{X}_1 \ldots \mathcal{X}_p\}^+, \{\mathcal{X}_1 \ldots \mathcal{X}_p\}^*.$

Pour des types quelconques de sous-arbres épine $\mathcal{X}_1, \ldots, \mathcal{X}_p, p \ge 1$, une séquence de sousarbres épine $S_i, \ldots, S_{i+pj}, 0 \le i \le k - pj, 0 \le j \le \lfloor \frac{k-i}{p} \rfloor$, est de type $\{\mathcal{X}_1 \ldots \mathcal{X}_p\}^+$, si chaque sous-arbre épine $S_\ell, i \le \ell \le i + pj$, est de type $\mathcal{X}_{\ell-i+1 \pmod{p}}$, et aucune des séquences $S_{i-p}, \ldots, S_i, \ldots, S_{i+pj}$ et $S_i, \ldots, S_{i+pj}, \ldots, S_{i+pj+p}$ n'est de type $\{\mathcal{X}_1 \ldots \mathcal{X}_p\}^+$ (la séquence est donc maximale). De plus, nous désignons par $\{\mathcal{X}_1 \ldots \mathcal{X}_p\}^*$ le type $\emptyset | \{\mathcal{X}_1 \ldots \mathcal{X}_p\}^+$.

Nous sommes maintenant en mesure de présenter les différents types de sous-arbres épine,

ainsi que des séquences de sous-arbres épine spécifiques, qui apparaissent dans un homard localement uniforme. Tous ces types sont illustrés dans la Figure 4.2 (ne pas considérer à ce stade les valeurs *broadcast* qui y sont décrites, elles seront discutées plus loin, dans le Fait 1).

Notation 4.12. $[\mathcal{F}_a, \mathcal{F}_b, \mathcal{F}_c, \mathcal{F}, \mathcal{G}, \mathcal{X}_a, \mathcal{X}_b, \mathcal{X}_c, \mathcal{X}, \mathcal{Y}_a, \mathcal{Y}_b, \mathcal{Y}_c, \mathcal{Y}_d, \mathcal{Y}_e, \mathcal{Y}]$

- $\mathcal{F}_a = \mathcal{S}_2[\alpha_2^* = 0, \alpha_2 \ge 2]$. Un sous-arbre épine de type \mathcal{F}_a est un sous-arbre épine de type \mathcal{S}_2 ayant au moins deux branches de type \mathcal{B}_2 et chaque branche a au moins trois 2-feuilles.
- $\mathcal{F}_b = \mathcal{S}_2[\alpha_2 = 1, \lambda_2 \ge 4].$

Un sous-arbre épine de type \mathcal{F}_b est un sous-arbre épine de type \mathcal{S}_2 ayant une unique branche de type \mathcal{B}_2 avec au moins quatre 2-feuilles.

• $\mathcal{F}_c = \mathcal{S}_2[\alpha_2 = 1, \lambda_2 = 3].$ Un sous-arbre épine de type \mathcal{F}_c

Un sous-arbre épine de type \mathcal{F}_c est un sous-arbre épine de type \mathcal{S}_2 ayant une unique branche de type \mathcal{B}_2 avec exactement trois 2-feuilles.

•
$$\mathcal{F} = \mathcal{F}_a \mid \mathcal{F}_b \mid \mathcal{F}_c$$
.

- $\mathcal{G} = \langle \mathcal{S}_1 \rangle \ \mathcal{S}_1[\lambda_1 = 2] \ | \ \mathcal{S}_1[\lambda_1 = 2] \ \langle \mathcal{S}_1 \rangle$. Un sous-arbre épine de type \mathcal{G} est un sous-arbre épine de type \mathcal{S}_1 avec exactement deux 1-feuilles et au moins un sous-arbre épine voisin de type \mathcal{S}_1 .
- $\mathcal{X}_a = \mathcal{S}_1[\lambda_1 \ge 3].$

Un sous-arbre épine de type \mathcal{X}_a est un sous-arbre épine de type \mathcal{S}_1 avec au moins trois 1-feuilles.

•
$$\mathcal{X}_b = \mathcal{S}_2[\alpha_2^* = 1, \alpha_2 \ge 2].$$

Un sous-arbre épine de type \mathcal{X}_b est un sous-arbre épine de type \mathcal{S}_2 ayant au moins deux branches de type \mathcal{B}_2 , dont une (branche) avec au plus deux 2-feuilles.

•
$$\mathcal{X}_c = \langle \mathcal{S}_2 \rangle \ \mathcal{S}_1[\lambda_1 = 2] \ \langle \mathcal{S}_2 \rangle.$$

Un sous-arbre épine de type

Un sous-arbre épine de type \mathcal{X}_c est un sous-arbre épine de type \mathcal{S}_1 ayant exactement deux 1-feuilles et deux sous-arbres épine voisins de type \mathcal{S}_2 .

- $\mathcal{X} = \mathcal{X}_a \mid \mathcal{X}_b \mid \mathcal{X}_c.$
- *Y_a* = ⟨*S*₁⟩ *S*₁[λ₁ = 1] | *S*₁[λ₁ = 1] ⟨*S*₁⟩.
 Un sous-arbre épine de type *Y_a* est un sous-arbre épine de type *S*₁ avec une 1-feuille unique et au moins un sous-arbre épine voisin de type *S*₁.
- $\mathcal{Y}_b = \langle \mathcal{S}_1 \rangle \ \mathcal{S}_2[\alpha_2 = \alpha_2^* = 1] \mid \mathcal{S}_2[\alpha_2 = \alpha_2^* = 1] \ \langle \mathcal{S}_1 \rangle.$

FIGURE 4.2 – Les différents types de sous-arbres épine.

Un sous-arbre épine de type \mathcal{Y}_b est un sous-arbre épine de type \mathcal{S}_2 ayant une unique branche avec au plus deux 2-feuilles et au moins un sous-arbre épine voisin de type \mathcal{S}_1 .

• $\mathcal{Y}_c = \mathcal{S}_2[\alpha_2^* \ge 2].$

Un sous-arbre épine de type \mathcal{Y}_c est un sous-arbre épine de type \mathcal{S}_2 ayant au moins deux branches avec au plus deux 2-feuilles.

• $\mathcal{Y}_d = \langle \mathcal{S}_2 \rangle \ \mathcal{S}_1[\lambda_1 = 1] \ \langle \mathcal{S}_2 \rangle.$

Un sous-arbre épine de type \mathcal{Y}_d est un sous-arbre épine de type \mathcal{S}_1 avec une 1-feuille unique et deux sous-arbres épine voisins de type \mathcal{S}_2 .

- $\mathcal{Y}_e = \langle \overline{\mathcal{S}_1} \rangle \ \mathcal{S}_2[\alpha_2 = \alpha_2^* = 1] \langle \overline{\mathcal{S}_1} \rangle$. Un sous-arbre épine de type \mathcal{Y}_e est un sous-arbre épine de type \mathcal{S}_2 ayant une unique branche avec au plus deux 2-feuilles et aucun sous-arbre épine voisin de type \mathcal{S}_1 .
- $\mathcal{Y} = \mathcal{Y}_a \mid \mathcal{Y}_b \mid \mathcal{Y}_c \mid \mathcal{Y}_d \mid \mathcal{Y}_e.$

L'observation suivante découle directement des définitions précédentes (en tenant compte des exigences de voisinage).

Observation 4.13. Un sous-arbre épine de type \mathcal{G} ou de type \mathcal{X}_a ne peut avoir aucun sous-arbre épine voisin de type \mathcal{X}_c .

Dans le résultat suivant, nous affirmons que l'ensemble de tous les types { $\mathcal{F}_a, \mathcal{F}_b, \mathcal{F}_c, \mathcal{X}_a, \mathcal{X}_b, \mathcal{X}_c, \mathcal{Y}_a, \mathcal{Y}_b, \mathcal{Y}_c, \mathcal{Y}_d, \mathcal{Y}_e$ } induit une partition des sous-arbres épine d'un homard localement uniforme (avec éventuellement le vide).

Proposition 4.14. Soit $\mathcal{T} = \{\mathcal{F}_a, \mathcal{F}_b, \mathcal{F}_c, \mathcal{X}_a, \mathcal{X}_b, \mathcal{X}_c, \mathcal{Y}_a, \mathcal{Y}_b, \mathcal{Y}_c, \mathcal{Y}_d, \mathcal{Y}_e\}$, et soit L un homard localement uniforme. Alors, tout sous-arbre épine de L appartient à exactement un type dans \mathcal{T} .

Preuve. Il est clair que tous les types dans \mathcal{T} sont deux à deux disjoints, c'est-à-dire, qu'aucun sous-arbre épine de L ne peut appartenir à deux types de cet ensemble (voir Figure 4.2). Montrons maintenant que tout sous-arbre épine d'un homard localement uniforme, appartient à exactement un type de cet ensemble. Pour cela, soit S un tel sous-arbre épine.

1. Si S est de type S_1 , alors S a au moins trois 1-feuilles (type \mathcal{X}_a), ou deux 1-feuilles et au moins un sous-arbre épine voisin de type S_1 (type \mathcal{G}), ou deux 1-feuilles et aucun sous-arbre épine voisin de type S_1 (type \mathcal{X}_c), ou une 1-feuille unique et au moins un sous-arbre épine voisin de type S_1 (type \mathcal{Y}_a), ou une 1-feuille unique et aucun sous-arbre épine voisin de type \mathcal{S}_1 (type \mathcal{Y}_a), ou une 1-feuille unique et aucun sous-arbre épine voisin de type \mathcal{S}_1 (type \mathcal{Y}_a).

2. Supposons maintenant que S est de type \mathcal{S}_2 . Si S a une unique branche, alors S a au plus deux 2-feuilles (type \mathcal{Y}_b ou \mathcal{Y}_e), ou S a exactement trois 2-feuilles (type \mathcal{F}_c), ou S a au moins quatre 2-feuilles (type \mathcal{F}_b). Si S a au moins deux branches, alors chaque branche de S a au moins trois 2-feuilles (type \mathcal{F}_a), ou S a exactement une de ses branches, avec au plus deux 2-feuilles (type \mathcal{X}_b), ou S a au moins deux branches avec au plus deux 2-feuilles (type \mathcal{X}_b), ou S a au moins deux branches avec au plus deux 2-feuilles (type \mathcal{X}_b), ou S a au moins deux branches avec au plus deux 2-feuilles (type \mathcal{Y}_c).

Ceci conclut la preuve.

4.3.2 Quelques propriétés des broadcasts indépendants

Rappelons que d'après l'Observation 4.2, nous savons que $\beta_b(L) \ge 2(\operatorname{diam}(L) - 1)$ pour tout homard localement uniforme. Nous allons à présent prouver quelques propriétés des *broadcasts* indépendants optimaux f avec $\sigma(f) > 2(\operatorname{diam}(L) - 1)$, sur tout homard localement uniforme de longueur $k \ge 1$ (le cas particulier d'un homard localement uniforme de longueur k = 0 sera traité séparément).

La proposition suivante montre que si f est un broadcast indépendant optimal sur un homard localement uniforme L de longueur $k \ge 1$ tel que $\sigma(f) > 2(\operatorname{diam}(L) - 1)$, alors il existe un broadcast indépendant optimal \tilde{f} sur L tel que les \tilde{f} -valeurs des sommets dans les sous-arbres S_0 et S_k sont au plus 4.

Proposition 4.15. Si L est un homard localement uniforme de longueur $k \ge 1$ et f est un broadcast indépendant optimal sur L avec $\sigma(f) > 2(\operatorname{diam}(L) - 1)$, alors il existe un broadcast indépendant optimal \tilde{f} sur L tel que, $\tilde{f}(\ell) \le 4$ pour toute feuille ℓ de S_0 et S_k .

Preuve. Rappelons d'abord que d'après l'Observation 4.5, les deux sous-arbres S_0 et S_k doivent être de type S_2 . Notons que le résultat est vrai si k = 1 puisque, dans ce cas, diam(L) = 5 et comme f est maximal, nous avons donc $f(v) \leq 4$ pour tout sommet v de L. Notons aussi qu'il suffit de prouver le résultat pour S_0 , l'autre cas est obtenu par symétrie.

Soit L un contre-exemple minimal de longueur $k \ge 2$ du lemme et f un broadcast indépendant optimal sur L qui minimise la valeur de $f(\ell) = \alpha$, où ℓ est une feuille f-broadcast de S_0 . Nous avons donc $\alpha \ge 5$.

Observons qu'au moins un sommet à distance $\alpha + 1$ de ℓ doit être un sommet f-broadcast, puisque autrement nous pourrions augmenter la valeur de $f(\ell)$ de 1, ce qui contredirait l'optimalité de f. Soit x un tel sommet. Puisque $\alpha \geq 5$, les sous-arbres épine $S_1, \ldots, S_{\alpha-4}$ ne contiennent aucun sommet f-broadcast et x est soit une 2-feuille de $S_{\alpha-3}$, une 1-feuille de $S_{\alpha-2}$, ou le sommet-épine $v_{\alpha-1}$.

Nous considérons quatre cas, selon que ces sommets sont des sommets f-broadcast ou pas. Pour chacun de ces cas, nous supposons qu'aucun des cas précédents ne se produit.

1. $v_{\alpha-1}$ est un sommet f-broadcast.

Dans ce cas, d'après le Corollaire 4.6, nous savons que f(x) = 1. Considérons alors le sous-arbre épine $S_{\alpha-3}$. Si $S_{\alpha-3}$ est de type S_1 , alors tous ses sommets sont f-dominés par

 ℓ . L'application g definie par $g(\ell) = \alpha - 1$, $g(\ell_{\alpha-3}) = 2$ pour une feuille $\ell_{\alpha-3}$ de $S_{\alpha-3}$ et g(v) = f(v) pour tout autre sommet v de L est un broadcast indépendant sur L, avec $\sigma(g) = \sigma(f) - 1 + 2 = \sigma(f) + 1$, ce qui contredit l'optimalité de f (voir Figure 4.3(a)). Si maintenant, $S_{\alpha-3}$ est de type S_2 , alors $f(\ell_{\alpha-3}) \leq 3$ pour toute feuille $\ell_{\alpha-3}$ de $S_{\alpha-3}$. Puisque $\alpha \geq 5$ (et donc $\alpha - 4 \geq 1$), l'application g définie par $g(\ell) = \alpha - 2$, $g(\ell_{\alpha-4}) = 2$ pour une feuille $\ell_{\alpha-4}$ de $S_{\alpha-4}$ et g(v) = f(v) pour tout autre sommet v de L est un broadcast indépendant sur L, avec $\sigma(g) = \sigma(f) - 2 + 2 = \sigma(f)$, ce qui contredit la minimalité de α (voir Figure 4.3(b), où $S_{\alpha-4}$ est supposé être de type S_1 , le cas $S_{\alpha-4}$ de type S_2 étant similaire). Il s'ensuit que $v_{\alpha-1}$ ne peut pas être un sommet f-broadcast.

2. Une 2-feuille $\ell_{\alpha-3}$ de $S_{\alpha-3}$ et une 1-feuille $\ell_{\alpha-2}$ de $S_{\alpha-2}$ sont toutes deux des sommets f-broadcast.

Dans ce cas, nous avons nécessairement $f(\ell_{\alpha-3}) \leq 3$ et $f(\ell_{\alpha-2}) \leq 3$. Par conséquent, l'application g définie par $g(\ell) = \alpha - 2$, $g(\ell_{\alpha-4}) = 3$ pour une feuille $\ell_{\alpha-4}$ de $S_{\alpha-4}$ et g(v) = f(v) pour tout autre sommet v de L est un broadcast indépendant sur L, avec $\sigma(g) = \sigma(f) - 2 + 3 = \sigma(f) + 1$, ce qui contredit l'optimalité de f (voir Figure 4.3(c), où $S_{\alpha-4}$ est encore supposé être de type S_1 , le cas $S_{\alpha-4}$ de type S_2 étant similaire).

3. Une 1-feuille $\ell_{\alpha-2}$ de $S_{\alpha-2}$ est un sommet f-broadcast.

Posons $\beta = f(\ell_{\alpha-2})$. Nous avons nécessairement $\beta \leq \alpha$. Si $\beta = 1$, l'application g définie par $g(\ell) = \alpha - 1$, $g(\ell_{\alpha-3}) = 2$ pour une feuille $\ell_{\alpha-3}$ de $S_{\alpha-3}$ et g(v) = f(v) pour toute autre sommet v de L est un *broadcast* indépendant sur L, avec $\sigma(g) = \sigma(f) + 1$, ce qui contredit l'optimalité de f (voir Figure 4.4(a), où le sous-arbre épine $S_{\alpha-3}$ est supposé être de type S_1 , le cas $S_{\alpha-3}$ de type S_2 étant similaire).

Supposons maintenant $\beta \geq 2$ et soit $g_{\alpha-2}$ l'application définie par $g_{\alpha-2}(\ell) = 3$, $g_{\alpha-2}(\ell_j) = 2$ pour une feuille ℓ_j de chaque sous-arbre épine S_j , $1 \leq j \leq \alpha - 3$, $g_{\alpha-2}(\ell_{\alpha-2}) = 2$ et g(v) = f(v) pour toute autre sommet v de L, alors l'application $g_{\alpha-2}$ est un broadcast indépendant sur L, avec

$$\sigma(g_{\alpha-2}) = \sigma(f) - \alpha - \beta + 3 + 2(\alpha - 2) = \sigma(f) + (\alpha - \beta) - 1$$

(voir Figure 4.4(b), où les sous-arbres épine $S_1, \ldots, S_{\alpha-3}$ sont supposés être de type S_1 , tous les autres cas sont étant similaires). Donc, l'application $g_{\alpha-2}$ contredit soit l'optimalité de f ou la minimalité de α , si $\beta < \alpha$.

Nous pouvons donc supposer $\beta = \alpha$. Supposons d'abord que le sous-arbre épine $S_{\alpha-1}$ contient une feuille $\ell_{\alpha-1}$ qui est f-dominée uniquement par $\ell_{\alpha-2}$ (Observons que c'est en particulier le cas, si le sous-arbre épine $S_{\alpha-1}$ est de type S_2). Considérons alors l'application $g_{\alpha-1}$ définie de la même manière que l'application $g_{\alpha-2}$ ci-dessus, en remplaçant simplement $\alpha - 2$ par $\alpha - 1$. L'application $g_{\alpha-1}$ est encore un *broadcast* indépendant sur L, avec

$$\sigma(g_{\alpha-1}) = \sigma(f) - 2\alpha + 3 + 2(\alpha - 1) = \sigma(f) + 1,$$

ce qui contredit l'optimalité de f (voir Figure 4.4(c), où les sous-arbres épine $S_1, \ldots, S_{\alpha-3}$ et $S_{\alpha-1}$ sont supposés être de type S_1 , tous les autres cas étant similaires).

(c) Cas 2

FIGURE 4.3 – Les broadcasts indépendants pour la preuve de la Proposition 4.15 : cas 1 et cas 2.

Par conséquent, $S_{\alpha-1}$ est de type S_1 et chacune de ses 1-feuilles est f-dominée par $\ell_{\alpha-2}$ et par (au moins) un autre sommet x. De plus, nous avons nécessairement $f(x) = f(\ell_{\alpha-2}) =$ $\alpha \geq 5$, ce qui implique l'unicité de x, puisque une 2-feuille du sous-arbre épine $S_{2\alpha-4}$ et une 1-feuile du sous-arbre épine $S_{2\alpha-3}$ sont à distance 4 l'une de l'autre, et d'après le Corollaire 4.6 le sommet épine $v_{2\alpha-2}$ ne peut pas être un sommet f-broadcast. Considérons alors l'application $g'_{\alpha-1}$ définie par $g'_{\alpha-1}(x) = \alpha - 1$ et $g'_{\alpha-1}(v) = g_{\alpha-1}(v)$ pour tout autre sommet v de L. Une fois encore, l'application $g'_{\alpha-1}$ est un broadcast indépendant sur L, avec

$$\sigma(g'_{\alpha-1}) = \sigma(g_{\alpha-1}) - 1 = \sigma(f)$$

ce qui contredit la minimalité de α (voir Figure 4.4(d), où x est une 1-feuille de $S_{2\alpha-3}$, le cas où x est une 2-feuille de $S_{2\alpha-4}$ étant similaire).

4. Une 2-feuille $\ell_{\alpha-3}$ de $S_{\alpha-3}$ est sommet f-broadcast. Notons d'abord que si $\alpha - 3 = k$, alors l'optimalité de f implique que $f(\ell_{\alpha-3}) = \alpha$, donc $\sigma(f) = 2\alpha = 2(\operatorname{diam}(L) - 1)$, cela contredit notre hypothèse. Donc $\alpha - 3 < k$.

(d) Cas 3, $\beta = \alpha$ et $\ell_{\alpha-1}$ est f-dominée par $\ell_{\alpha-2}$ et $x = \ell_{2\alpha-3}$.

FIGURE 4.4 – Les broadcasts indépendants pour la preuve de la Proposition 4.15 : cas 3

Posons $\beta = f(\ell_{\alpha-3})$. Nous avons nécessairement $\beta \leq \alpha$.

Si $\beta \leq 2$, alors l'application g définie par $g(\ell) = \alpha - 1$, $g(\ell_{\alpha-3}) = 3$, et g(v) = f(v) pour tout autre sommet de L est un *broadcast* indépendant sur L, avec $\sigma(g) = \sigma(f) - 1 - \beta + 3 = \sigma(f) - \beta + 2 \geq \sigma(f)$, ce qui contredit la minimalité de α ou l'optimalité de f (voir Figure 4.5(a)).

Supposons maintenant $\beta \geq 3$ et soit $g_{\alpha-3}$ l'application définie par $g_{\alpha-3}(\ell) = 3$, $g_{\alpha-3}(\ell_j) = 2$ pour une feuille ℓ_j de chaque sous-arbre épine S_j , $1 \leq j \leq \alpha - 4$, $g_{\alpha-3}(\ell_{\alpha-3}) = 3$ et g(v) = f(v) pour tout autre sommet v de L. L'application $g_{\alpha-3}$ est alors un broadcast indépendant sur L, avec

$$\sigma(g_{\alpha-3}) = \sigma(f) - \alpha - \beta + 3 + 2(\alpha - 4) + 3 = \sigma(f) + (\alpha - \beta) - 2$$

(voir Figure 4.5(b), où les sous-arbres épine $S_1, \ldots, S_{\alpha-4}$ sont supposés être de type S_1 , tous les autres cas étant similaires). Par conséquent, l'application $g_{\alpha-3}$ contredit soit l'optimalité de f ou la minimalité de α , si $\beta < \alpha - 1$.

Nous pouvons donc supposer $\alpha - 1 \leq \beta \leq \alpha$. Supposons d'abord que $\alpha = 5$ et $\beta = 4$. Dans ce cas particulier, $S_{\alpha-3} = S_2$ et $\ell_{\alpha-3} = \ell_2$. L'application g_2 définie par $g_2(\ell) = 3$, $g_2(\ell_1) = 3$ pour une feuille de S_1 , $g_2(\ell_2) = 3$, et $g_2(v) = f(v)$ pour tout autre sommet v de L est un broadcast indépendant sur L, avec

$$\sigma(g_2) = \sigma(f) - 5 - 4 + 3 \times 3 = \sigma(f),$$

ce qui contredit la minimalité de α (voir Figure 4.5(c), où le sous-arbre épine S_1 est supposé être de type S_1 , l'autre cas étant similaire).

Nous pouvons supposer donc $\beta \geq 5$. Supposons maintenant que le sous-arbre épine $S_{\alpha-2}$ contient une feuille $\ell_{\alpha-2}$ qui est f-dominée uniquement par $\ell_{\alpha-3}$. Considérons l'application $g_{\alpha-2}$ définie par $g_{\alpha-2}(\ell) = 3$, $g_{\alpha-2}(\ell_j) = 2$ pour une feuille ℓ_j de chaque sous-arbre épine S_j , $1 \leq j \leq \alpha - 4$, $g_{\alpha-2}(\ell_{\alpha-3}) = g_{\alpha-2}(\ell_{\alpha-2}) = 3$, et g(v) = f(v) pour tout autre sommet v de L (voir Figure 4.5(d), où les sous-arbres épine $S_1, \ldots, S_{\alpha-4}$ et $S_{\alpha-2}$ sont supposés être de type S_1 , tous les autres cas étant similaires). L'application $g_{\alpha-2}$ est un broadcast indépendant sur L, avec

$$\sigma(g_{\alpha-2}) = \sigma(f) - \alpha - \beta + 3 + 2(\alpha - 4) + 3 + 3 = \sigma(f) + (\alpha - \beta) + 1 > \sigma(f),$$

ce qui contredit l'optimalité de f.

Donc, chaque feuille de $S_{\alpha-2}$ est f-dominée par $\ell_{\alpha-3}$ et par (au moins) un autre sommet x. De plus, nous avons nécessairement $f(\ell_{\alpha-3}) - 1 \leq f(x) \leq f(\ell_{\alpha-3})$ si $S_{\alpha-2}$ est de type S_1 , ou $f(x) = f(\ell_{\alpha-3})$ si $S_{\alpha-2}$ est de type S_2 . Par conséquent, $f(x) \geq f(\ell_{\alpha-3}) - 1 = \beta - 1 \geq 4$. Cela implique l'unicité de x, puisque une 2-feuille de $S_{2\alpha-6}$ et une 1-feuille de $S_{2\alpha-5}$ sont à distance 4 l'une de l'autre, et d'après le Corollaire 4.6, le sommet épine $v_{2\alpha-4}$ ne peut pas être un sommet f-broadcast.

Nous considérons deux sous-cas, selon que x est une 1-feuille de $S_{2\alpha-5}$ ou une 2-feuille de $S_{2\alpha-6}$.

(d) Cas 4, 5 $\leq \beta < \alpha$ and $\ell_{\alpha-2}$ est f-dominée uniquement par $\ell_{\alpha-3}$

FIGURE 4.5 – Les broadcasts indépendants pour la preuve de la Proposition 4.15 : cas 4

(a) x est une 1-feuille de $S_{2\alpha-5}$.

Considérons l'application g_x définie par $g_x(\ell) = g_x(\ell_{\alpha-3}) = 3$, $g_x(x) = 2$, $g_x(\ell_j) = 2$ pour une feuille ℓ_j de chaque sous-arbre épine S_j , $j \in \{1, \ldots, 2\alpha - 6\} \setminus \{\alpha - 3\}$, et $g_x(v) = f(v)$ pour tout autre sommet v de L (voir Figure 4.6(a)). L'application g_x est un *broadcast* indépendant sur L, avec

$$\sigma(g_x) = \sigma(f) - \alpha + 3 + 2(\alpha - 4) - \beta + 3 + 2(\alpha - 3) - f(x) + 2$$

= $\sigma(f) + 3\alpha - \beta - f(x) - 6.$

Nous obtenons ainsi une contradiction sur la minimalité de α ou l'optimalité de f quand $\alpha \ge 6$ (puisque $f(x) \le \beta \le \alpha$) ou $\beta = \alpha - 1$, ou $f(x) = \beta - 1$.

Il reste donc à considérer le cas $f(x) = \beta = \alpha = 5$. Nous utilisons la même raisonnement que dans le cas 3 ci-dessus, mais nous donnerons les détails par souci d'exhaustivité. Notons que puisque $S_{2\alpha-5}$ est de type S_1 , nous avons nécessairement $2\alpha - 5 < k$.

Supposons d'abord que le sous-arbre épine $S_{2\alpha-4}$ contient une feuille $\ell_{2\alpha-4}$ qui est fdominée uniquement par $\ell_{2\alpha-5}$ (Observons que c'est notamment le cas si $S_{2\alpha-4}$ est de type S_2). Considérons l'application g'_x dont la définition est similaire à la définition de g_x ci-dessus, en remplaçant simplement $2\alpha - 5$ par $2\alpha - 4$. L'application g'_x ainsi obtenue est un *broadcast* indépendant sur L, avec

$$\sigma(g'_x) = \sigma(g_x) + 2 = \sigma(f) - 1 + 2 = \sigma(f) + 1,$$

ce qui contredit l'optimalité de f.

Par conséquent, $S_{2\alpha-4}$ est de type S_1 et chacune de ses 1-feuilles est f-dominée par $\ell_{2\alpha-5}$ et (au moins) par un autre sommet y. De plus, nous avons nécessairement f(y) = f(x) = 5, ce qui implique à nouveau l'unicité de y. Ensuite nous considérons l'application g_y définie par $g_y(y) = 4$ et $g_y(v) = g'_x(v)$ pour tout autre sommet v de L, où g'_x est l'application définie juste au-dessus. Ainsi, l'application g_y est un broadcast indépendant sur L, avec

$$\sigma(g_y) = \sigma(g'_x) - 1 = \sigma(f),$$

ce qui contredit la minimalité de α .

(b) x est une 2-feuille de $S_{2\alpha-6}$.

Considérons l'application g_x définie par $g_x(\ell) = g_x(\ell_{\alpha-3}) = g_x(x) = 3$, $g_x(\ell_j) = 2$ pour une feuille ℓ_j de chaque sous-arbre épine S_j , $j \in \{1, \ldots, 2\alpha - 7\} \setminus \{\alpha - 3\}$, et $g_x(v) = f(v)$ pour tout autre sommet v de L (voir Figure 4.6(b)). L'application g_x est un broadcast indépendant sur L, avec

$$\sigma(g_x) = \sigma(f) - \alpha + 3 + 2(\alpha - 4) - \beta + 3 + 2(\alpha - 4) - f(x) + 3$$

= $\sigma(f) + 3\alpha - \beta - f(x) - 7.$

Nous obtenons donc une contradiction sur la minimalité de α ou sur l'optimalité de f quand $\alpha \ge 7$ (puisque $f(x) \le \beta \le \alpha$) ou $\beta = \alpha - 1$ (cela implique $f(x) \le \alpha - 1$).

Par conséquent, il ne nous reste plus que deux cas à considérer, les cas $\alpha = \beta = 6$ et $\alpha = \beta = 5$. Si $S_{\alpha-2}$ est de type S_2 , l'application g définie par $g(\ell_{\alpha-3}) = 4$, $g(\ell_{\alpha-2}) = 4$ pour une 2-feuille de $S_{\alpha-2}$, g(x) = f(x) - 1, et g(v) = f(v) pour tout autre sommet v de L (voir Figure 4.6(c)) est un *broadcast* indépendant sur L, avec

$$\sigma(g) = \sigma(f) - \beta + 8 - 1 = \sigma(f) - \beta + 7 > \sigma(f),$$

ce qui contredit l'optimalité de f.

Nous supposons donc que $S_{\alpha-2}$ est de type S_1 et considérons deux sous-cas.

i. $\alpha = \beta = 5$.

Considérons l'application g définie par $g(\ell) = g(\ell_2) = g(x) = 3$, $g(\ell_1) = 3$ pour une feuille de S_1 , $g(\ell_3) = 3$ pour une feuille de S_3 et g(v) = f(v) pour tout autre sommet v de L. L'application g est un broadcast indépendant sur L, avec

$$\sigma(g) = \sigma(f) - 3 \times 5 + 5 \times 3 = \sigma(f),$$

ce qui contredit la minimalité de α (voir Figure 4.6(d)).

ii. $\alpha = \beta = 6.$

Dans ce cas, nous réitérons le processus, en donnant à x le rôle de $\ell_{\alpha-3}$. Par conséquent, soit nous construisons à un moment donné un *broadcast* indépendant sur L contredisant l'optimalité de f ou la minimalité de α , soit L est de longueur k = 3p pour un certain $p \ge 2$, chaque sous-arbre épine S_{3q} de L, $0 \le q \le p$, est de type S_2 et la valeur f-broadcast de l'une de ses 2-feuilles est 6 (voir Figure 4.6(e) pour un tel homard de longueur 9). Dans ce cas nous obtenons donc $\sigma(f) = 6(p+1)$. Comme diam(L) = 3p+4, nous déduisons que 2(diam(L)-1) = $6p + 6 = \sigma(f)$, ce qui contredit l'hypothèse du lemme.

En résumé, dans chacun des cas considérés, nous obtenons une contradiction. Nous concluons qu'il n'existe aucun contre exemple au lemme.

Ceci conclut la preuve.

Soit f un broadcast indépendant sur un homard localement uniforme. La proposition qui va suivre montre que si f est broadcast indépendant optimal sur un homard localement uniforme L de longueur $k \ge 1$, avec $\sigma(f) > 2(\operatorname{diam}(L) - 1)$, alors il existe un broadcast indépendant optimal \tilde{f} sur L pour lequel, tout sous-arbre épine S_i de L possède au moins une feuille qui est un sommet f-broadcast.

Proposition 4.16. Si L est un homard localement uniforme de longueur $k \ge 1$ et f est un broadcast indépendant optimal sur L avec $\sigma(f) > 2(\operatorname{diam}(L) - 1)$, alors il existe un broadcast indépendant optimal \tilde{f} sur L tel que, $\tilde{f}^*(S_i) > 0$ pour tout $i, 0 \le i \le k$.

Preuve. Nous allons considérer uniquement le cas k > 1, puisque si k = 1, le résultat est déduit directement du Lemme 4.7.

FIGURE 4.6 – Les broadcasts indépendants pour la preuve de la Proposition 4.15 : cas 4 (suite)

Supposons au contraire qu'un tel broadcast indépendant f n'existe pas et soit f un broadcast indépendant optimal sur L tel que, V_f^+ contient le maximum de feuilles. Soit i le plus petit indice tel que $f^*(S_i) = 0$ et soit ℓ_i une feuille de S_i .

Supposons d'abord que S_i est de type S_2 , ainsi ℓ_i est une 2-feuille. D'après le choix de S_i , nous savons que $f^*(S_{i-1}) > 0$. De plus, nous prétendons que S_{i-1} est de type S_2 et que, pour toute feuille ℓ_{i-1} de S_{i-1} , $f(\ell_{i-1}) \leq 4$. En effet, si i = 1 le résultat découle de la Proposition 4.15. Si $i \geq 2$, S_{i-1} ne peut pas être de type S_1 puisque autrement tout sommet qui f-domine ℓ_i devrait aussi f-dominer toutes les feuilles de S_{i-1} (un tel sommet f-dominant doit appartenir à un certain S_j avec j > i). Donc S_{i-1} est de type S_2 et le fait que $f^*(S_{i-2}) > 0$, alors $f(\ell_{i-1}) \leq 4$ pour toute feuille ℓ_{i-1} de S_{i-1} . Par conséquent, ℓ_i est nécessairement f-dominée par un sommet $y \in S_j$, pour un certain j > i. Considérons l'application g définie par g(y) = f(y) - 1, $g(\ell_i) = 1$, et g(v) = f(v) pour tout autre sommet v de L. L'application g est un broadcast indépendant sur L, avec $\sigma(g) = \sigma(f)$, ce qui contredit la maximalité sur le nombre de feuilles f-broadcast.

Supposons maintenant que S_i est de type S_1 , ainsi ℓ_i est une 1-feuille, et ℓ_i est f-dominée par un unique sommet y. Si $y \in S_{i-1}$ alors l'application g définie par g(y) = f(y) - 1, $g(\ell_i) = 1$, et g(v) = f(v) pour tout autre sommet v de L est un broadcast indépendant sur L, avec $\sigma(g) = \sigma(f)$, ce qui contredit la maximalité sur le nombre de feuilles f-broadcast. Si $y \in S_j$ pour un certain j > i, alors nous avons nécessairement soit $f(y) = d_L(y, \ell_i)$, si S_{i-1} est de type S_1 , soit $d_L(y, \ell_i) \leq f(y) \leq d_L(y, \ell_i) + 1$, si S_{i-1} est de type S_2 . Par conséquent, l'application gdéfinie par $g(y) = d_L(y, \ell_i) - 1$, $g(\ell_i) = 1 + f(y) - d_L(y, \ell_i)$ et g(v) = f(v) pour autre sommet v de L est un broadcast indépendant sur L, avec $\sigma(g) = \sigma(f)$, ce qui contredit encore la maximalité sur le nombre de feuilles f-broadcast.

Enfin, supposons que S_i est de type S_1 et que ℓ_i est f-dominée par deux sommets distincts y_1 et y_2 , avec $y_1 \in S_{i_1}$ et $y_2 \in S_{i_2}$. Notons que nous avons nécessairement et sans perte de généralité, $i_1 = i - 1$ et $i < i_2$. Nous affirmons que $f(y_1) \ge 3$ et $f(y_2) \ge 3$. En effet, si $f(y_1) = 2$, alors $y_1 = v_{i-1}$, ce qui contredit le Corollaire 4.6. Le cas $f(y_2) = 2$ est similaire. De plus, nous avons soit $f(y_1) = 3$ et $f(y_2) = d_L(y, \ell_i)$, si S_{i-1} est de type S_1 , soit $f(y_1) = 4$ et $d_L(y_2, \ell_i) \le f(y) \le d_L(y, \ell_i) + 1$, si S_{i-1} est de type S_2 . Nous considérons deux cas, en fonction de la valeur de $f(y_2)$.

1. $f(y_2) = d_L(y_2, \ell_i)$.

Dans ce cas, l'application g définie par $g(y_1) = f(y_1) - 1$, $g(y_2) = f(y_2) - 1$, $g(\ell_i) = 2$ et g(v) = f(v) pour tout autre sommet v de L est un broadcast indépendant sur L, avec $\sigma(g) = \sigma(f)$, ce qui contredit la maximalité sur le nombre de feuilles f-broadcast.

2. $f(y_2) = d_L(y_2, \ell_i) + 1.$

Dans ce cas, nous avons nécessairement d'une part, S_{i-1} de type S_2 et $f(y_1) = 4$ et d'autre part, $f(y_2) \ge 4$, ce qui implique que $f^*(S_{i_2+1}) = 0$, si $i_2 < k$.

Si y_2 n'est pas une 1-feuille de S_{i+1} , alors l'application g définie par $g(y_1) = 3$, $g(y_2) = d_L(y_2, \ell_i) - 1$, $g(\ell_i) = 2 + f(y_2) - d_L(y_2, \ell_i)$ et g(v) = f(v) pour tout autre sommet v de L est un broadcast indépendant sur L, avec $\sigma(g) = \sigma(f)$, ce qui contredit la maximalité sur

le nombre de feuilles *f*-broadcast.

Sinon, y_2 est une 1-feuille de S_{i+1} et $f(y_2) = 4$, donc nous ne pouvons pas attribuer à ℓ_i la valeur-broadcast $2 + f(y_2) - d_L(y_2, \ell_i) = 2 + 4 - 3 = 3$, puisque ℓ_i dominerait alors y_2 . Notons que puisque S_{i+1} est de type S_1 , nous avons i + 1 < k, de sorte que S_{i+2} existe. Si S_{i+2} est de type S_2 , alors les feuilles de S_{i+2} sont nécessairement f-dominées seulement par y_2 , car sinon tout autre sommet f-dominerait aussi y_2 . Soit ℓ_{i+2} une feuille de S_{i+2} . Dans ce cas, l'application g définie par $g(y_1) = 3$, $g(\ell_i) = 2$, $g(y_2) = 2$, $g(\ell_{i+2}) = 1$ et g(v) = f(v) pour tout autre sommet v de L est un broadcast indépendant sur L, avec $\sigma(q) = \sigma(f)$, ce qui contredit la maximalité sur le nombre de feuilles f-broadcast. Supposons enfin que S_{i+2} est de type S_1 et soit ℓ_{i+2} une 1-feuille de S_{i+2} . Notons que y_2 f-domine ℓ_{i+2} . Si ℓ_{i+2} est f-dominée uniquement par y_2 , l'application g définie par $g(y_1) = 3, g(\ell_i) = 2, g(y_2) = 2, g(\ell_{i+2}) = 2$ et g(v) = f(v) pour tout autre sommet v de Lest un broadcast indépendant sur L, avec $\sigma(g) > \sigma(f)$, ce qui contredit l'optimalité de f. Sinon, soit z un autre sommet de L qui f-domine ℓ_{i+2} . L'application g définie par $g(y_1) =$ 3, $g(\ell_i) = 2$, $g(y_2) = 2$, $g(\ell_{i+2}) = 2$, g(z) = g(z) - 1 et g(v) = f(v) pour tout autre sommet v de L est un broadcast indépendant sur L, avec $\sigma(q) = \sigma(f)$, ce qui contredit la maximalité sur le nombre de feuilles f-broadcast.

Ceci conclut la preuve.

Le corollaire suivant est une conséquence directe de la Proposition 4.16 et du Corollaire 4.6.

Corollaire 4.17. Si L est un homard localement uniforme de longueur $k \ge 1$, et f est un broadcast indépendant optimal sur L avec $\sigma(f) > 2(\operatorname{diam}(L) - 1)$, alors il existe un broadcast indépendant optimal \tilde{f} sur L tel que, pour tout sous-arbre épine S_i de L, $1 \le i \le k$, et tout sommet x de S_i , $\tilde{f}(x) \le 1$ si $x = v_i$, $\tilde{f}(x) \le 3$ si x est une 1-feuille de S_i , et $\tilde{f}(x) \le 4$ si x est une 2-feuille de S_i .

Preuve. Soit \tilde{f} un broadcast indépendant optimal sur L tel que $\tilde{f}^*(S_i) > 0$ pour tout $i, 0 \leq i \leq k$. L'existence de \tilde{f} est garantie par la Proposition 4.16. Si $x = v_i$, d'après le Corollaire 4.6 $\tilde{f}(x) \leq 1$. Sinon, en supposant que la borne revendiquée sur $\tilde{f}(x)$ n'est pas satisfaite cela impliquerait que $\tilde{f}^*(S) = 0$ pour un sous-arbre épine S voisin de S_i , ce qui contredit notre hypothèse sur \tilde{f} .

Ceci conclut la preuve.

Nous nous sommes attaquée dans cette section à l'étude d'une classe particulièrement difficile, il s'agit de la classe des homards localement uniformes. Cependant, et en dépit de tous les résultats obtenus, le problème de la détermination du nombre d'indépendance broadcast des graphes de cette classe est resté sans réponse. Malgré de nombreux efforts et de multiples tentatives, ce problème s'est avéré bien plus complexe que nous l'imaginions. C'est pourquoi nous avons préféré nous restreindre, dans la section suivante, à la sous-classe des homards localement uniformes sans sous-arbre épine de type \mathcal{F}_c , en particulier à la sous-classe des 2-homards localement uniformes. Notons que les Propositions 4.15 et 4.16 ainsi que le Corollaire 4.17 restent

valables aussi bien pour les 2-homards localement uniformes que pour les homards localement uniformes sans sous-arbre épine de type \mathcal{F}_c .

4.4 Homards localement uniformes sans sous-arbre épine de type \mathcal{F}_c

Cette section a pour objectif d'établir une formule qui détermine le nombre d'indépendance broadcast des 2-homards localement uniformes et des homards localement uniformes sans sousarbre épine de type \mathcal{F}_c . Les résultats de cette section sont une extension de ceux présentés dans l'article [3].

Rappelons qu'un sous-arbre épine de type \mathcal{F}_c est un sous-arbre épine de type \mathcal{S}_2 ayant une unique branche de type \mathcal{B}_2 , avec exactement trois 2-feuilles (voir la figure 4.2(c)).

Notre objectif est maintenant double. Nous allons d'abord construire, pour tout homard localement uniforme L, sans sous-arbre épine de type \mathcal{F}_c , un broadcast indépendant f^* sur Lavec $\sigma(f^*) = \beta^*(L)$, pour une certaine valeur $\beta^*(L)$, puis nous prouvons que la valeur $\beta^*(L)$ est le coût optimal d'un broadcast indépendant sur L, à chaque fois que L admet un broadcast indépendant f avec $\sigma(f) > 2(\operatorname{diam}(L) - 1)$.

Le broadcast indépendant f^* sera construit en six étapes, c'est-à-dire, nous construisons une séquence de broadcasts indépendants f_1, \ldots, f_6 , avec $\sigma(f_i) \leq \sigma(f_{i+1})$ pour tout $i, 1 \leq i \leq 5$, puis nous posons $f^* = f_6$. Chaque étape consistera à modifier les valeurs-broadcast de certains sommets, en fonction du type des sous-arbres épine, ou de la séquence de sous-arbres épine, auxquels ils appartiennent.

La valeur $\beta^*(L)$ sera exprimée comme une formule impliquant le nombre de 1-feuilles, de 2-feuilles, de 1-feuilles uniques, et de 2-feuilles uniques, ainsi que le nombre de sous-arbres épine, ou de séquences de sous-arbres épine spécifiques, apparaissant dans L.

Rappelons à ce stade, l'ensemble des types de sous-arbres épine d'un homard L localement uniforme sans sous-arbre épine de type \mathcal{F}_c (déjà définis dans 4.3.1) :

$$\{\mathcal{F}_a, \mathcal{F}_b, \mathcal{F}, \mathcal{X}_a, \mathcal{X}_b, \mathcal{X}_c, \mathcal{X}, \mathcal{Y}_a, \mathcal{Y}_b, \mathcal{Y}_c, \mathcal{Y}_d, \mathcal{Y}_e, \mathcal{Y}\},\$$

 $\mathcal{F} = \mathcal{F}_a \mid \mathcal{F}_b, \ \mathcal{X} = \mathcal{X}_a \mid \mathcal{X}_b \mid \mathcal{X}_c, \ \text{et} \ \mathcal{Y} = \mathcal{Y}_a \mid \mathcal{Y}_b \mid \mathcal{Y}_c \mid \mathcal{Y}_d \mid \mathcal{Y}_e.$

Nous utiliserons également les sous-ensembles de types de sous-arbres épine \mathcal{E}_0 , \mathcal{E}_2 et \mathcal{E}_2^1 , définis comme suit :

$$\mathcal{E}_0 = \{ \varnothing, \mathcal{F}_a, \mathcal{F}_b, \mathcal{G}, \mathcal{X}_a \}, \ \mathcal{E}_2 = \{ \mathcal{X}_c, \mathcal{Y}_d, \mathcal{Y}_e \} \text{ et } \mathcal{E}_2^1 = \{ \mathcal{Y}_d, \mathcal{Y}_e \},$$

et dont l'intérêt sera clarifié plus tard, dans la preuve du Lemme 4.21.

Enfin, rappelons que $\lambda_1^*(L)$, $\lambda_2^*(L)$, $\lambda_1(L)$ et $\lambda_2(L)$ désigne respectivement, le nombre de 1-feuilles uniques, de 2-feuilles uniques, de 1-feuilles et de 2-feuilles dans L.

Nous sommes maintenant en mesure de définir la valeur $\beta^*(L)$ pour tout homard localement uniforme L, sans sous-arbre épine de type \mathcal{F}_c , qui se révélera être le coût optimal d'un *broadcast* indépendant sur L.

4.4.1 Définition de $\beta^*(L)$

Définition 4.18. Soit L un homard localement uniforme sans sous-arbre épine de type \mathcal{F}_c . Posons

$$\beta^*(L) = \nu_1(L) + \nu_2(L) + \nu_3(L) + \nu_4(L) + \nu_5(L) + \nu_6(L).$$

оù

- $\nu_1(L) = \lambda_1(L) + \lambda_2(L) + \lambda_1^*(L) + \lambda_2^*(L)$ est le nombre total de feuilles dans L, chaque feuille unique est comptée deux fois.
- $\nu_2(L)$ est le nombre de branches dans L, appartenant à un sous-arbre épine de type S_2 (c'est-à-dire, de profondeur 2) avec au plus deux 2-feuilles.
- $\nu_3(L)$ est le nombre de sous-arbres épine de type \mathcal{X}_c ou \mathcal{Y}_d dans L.
- $\nu_4(L)$ est le nombre de sous-arbres épine de type \mathcal{Y}_e dans L.
- $\nu_5(L)$ est la somme, prise sur toutes les séquences de sous-arbres épine **S** dans L de type

$$\langle \overline{\mathcal{E}_2}.\mathcal{E}_0 | \varnothing \rangle \ \mathcal{F}.\{(\mathcal{X}|\mathcal{F}).\mathcal{F}\}^* \ \langle \mathcal{E}_0.\overline{\mathcal{E}_2} | \varnothing \rangle,$$

de la valeur

$$\frac{\ell(\mathbf{S})+1}{2} - \#_{\mathcal{X}_b,\mathcal{X}_c}(\mathbf{S}),$$

où $\ell(\mathbf{S})$ désigne le nombre de sous-arbres épine dans \mathbf{S} , et $\#_{\mathcal{X}_b,\mathcal{X}_c}(\mathbf{S})$ désigne le nombre de sous-arbres épine de type \mathcal{X}_b ou \mathcal{X}_c dans \mathbf{S} .

• $\nu_6(L)$ est le nombre de séquences de sous-arbres épine de type

$$\langle \overline{\mathcal{E}_2}.\mathcal{E}_0 | \varnothing \rangle \mathcal{F}. \{ \mathcal{F}.\mathcal{E}_2^1.\mathcal{F}.\mathcal{F} \}^+ \langle \mathcal{E}_0.\overline{\mathcal{E}_2} | \varnothing \rangle.$$

Afin de simplifier les notations pour la suite, nous désignerons par \mathcal{P}_5 et \mathcal{P}_6 respectivement, les séquences des types utilisés aux étapes 5 et 6 dans la Définition 4.18, c'est-à-dire,

$$\mathcal{P}_5 = \langle \overline{\mathcal{E}_2}.\mathcal{E}_0 | \varnothing \rangle \ \mathcal{F}.\{(\mathcal{X}|\mathcal{F}).\mathcal{F}\}^* \ \langle \mathcal{E}_0.\overline{\mathcal{E}_2} | \varnothing \rangle, \ \text{et} \ \mathcal{P}_6 = \langle \overline{\mathcal{E}_2}.\mathcal{E}_0 | \varnothing \rangle \ \mathcal{F}.\{ \ \mathcal{F}.\mathcal{E}_2^1.\mathcal{F}.\mathcal{F} \ \}^+ \langle \mathcal{E}_0.\overline{\mathcal{E}_2} | \varnothing \rangle.$$

De plus, nous dirons que deux séquences de sous-arbres épine distinctes *se chevauchent* si elles partagent un sommet en commun (en dehors de leurs bords). En raison de la structure spécifique des sous-arbres épine, ou des séquences de sous-arbres épine utilisées dans la formule ci-dessus en particulier, de la maximalité des séquences de sous-arbres épine, de type \mathcal{P}_5 ou \mathcal{P}_6 , nous avons l'observation suivante :

Observation 4.19. Pour tout homard localement uniforme L, sans sous-arbre épine de type \mathcal{F}_c et de longueur $k \geq 1$,

- 1. aucune séquence de sous-arbres épine de type \mathcal{P}_5 (resp. \mathcal{P}_6) ne peut chevaucher une séquence de même type,
- 2. aucune séquence de sous-arbres de type \mathcal{P}_5 ne peut chevaucher une séquence de type \mathcal{P}_6 .

4.4.2 Borne inférieure de $\beta_b(L)$

Nous allons prouver à travers le résultat qui suit, que tout homard localement uniforme L, sans sous-arbre épine de type \mathcal{F}_c , admet un *broadcast* indépendant f avec $\sigma = \beta^*(L)$. Par conséquent, $\beta_b(L) \geq \beta^*(L)$. Nous considérons séparément le cas des homards localement uniformes de longueur k = 0, puisque si k = 0, $L = S_0$ est nécessairement de type \mathcal{S}_2 et a au moins deux branches, et est donc sans sous-arbre épine de type \mathcal{F}_c (comme observé dans la Section 4.1).

Lemme 4.20. Si L est un homard localement uniforme de longueur k = 0, alors il existe un broadcast indépendant optimal f sur L avec $\sigma(f) = \beta^*(L)$.

Preuve. Rappelons que puisque k = 0, $L = S_0$ est nécessairement de type S_2 et a au moins deux branches, donc diam(L) = 4. Nous construisons alors un broadcast indépendant f sur L en considérant chaque branche séparément, comme suit : soit B une branche quelconque de L. Si B a au plus deux 2-feuilles, alors nous posons $f(\ell) = 3$ pour une 2-feuille ℓ de B et $f(\ell') = 0$ pour sa feuille jumelle ℓ' dans B, si elle existe. Si B a au moins trois 2-feuilles, alors nous posons $f(\ell) = 1$ pour chaque 2-feuille ℓ de B. De plus, si toutes les branches de L ont au moins trois feuilles, alors nous posons $f(v_0) = 1$. Nous obtenons donc

$$\sigma(f) = \nu_1(L) + \nu_2(L) + \nu_5(L) = \beta^*(L),$$

puisque tous les autres termes apparaissant dans β^* n'ont pas lieu d'exister dans L.

Ceci conclut la preuve.

Lemme 4.21. Tout homard localement uniforme L sans sous-arbre épine de type \mathcal{F}_c , de longueur $k \geq 1$ admet un broadcast indépendant f avec $\sigma(f) = \beta^*(L)$.

Preuve. Nous allons construire étape par étape, une séquence de six broadcasts indépendants f_1, \ldots, f_6 sur L, de sorte que $\sigma(f_6) = \beta^*(L)$. Chaque broadcast indépendant $f_i, 2 \le i \le 6$, est obtenu en modifiant éventuellement le broadcast indépendant f_{i-1} , et est tel que $\sigma(f_i) \ge \sigma(f_{i-1})$.

(d) de f_3 à f_4 (au moins un des sous-arbres épine voisins est de type S_2) FIGURE 4.7 – La preuve du Lemme 4.21 : de f_1 à f_4 .

De plus, pour chaque broadcast indépendant f_i , $1 \le i \le 4$, nous aurons $f_i(v_j) = 0$ pour tout sommet-épine v_j , $0 \le j \le k$, alors que nous pouvons avoir $f_5(v_j) = 1$ ou $f_6(v_j) = 1$.

Toutes ces modifications sont illustrées dans les Figures 4.7, 4.8, et 4.9 où les arêtes en pointillées représentent des arêtes optionnelles. Ces figures devraient aider le lecteur à voir que chaque application f_i est un *broadcast* indépendant valide sur L.

Étape 1. Soit f_1 l'application définie par $f_1(u) = 2$ si u est une feuille unique, $f_1(u) = 1$ si u est une feuille qui n'est pas une feuille unique et $f_1(u) = 0$ sinon (voir Figure 4.7(a)). Il est clair que f_1 est un broadcast indépendant sur L avec

$$\sigma(f_1) = \nu_1(L).$$

Étape 2. Nous modifions f_1 pour obtenir f_2 comme suit : pour toute branche B_i^j de type $\mathcal{B}_2[\lambda_2 \leq 2], 0 \leq i \leq k, 1 \leq j \leq s_i$, tel que S_i est un sous-arbre épine de type \mathcal{S}_2 , nous posons $f_2(\ell) = 3$ pour une feuille ℓ de B_i^j et $f_2(\ell') = 0$ pour sa feuille jumelle ℓ' si elle existe (voir Figure 4.7(b)). Alors, f_2 est encore un *broadcast* indépendant sur L avec

$$\sigma(f_2) = \sigma(f_1) + \nu_2(L).$$

Étape 3. Nous modifions f_2 pour obtenir f_3 comme suit : pour tout sous-arbre épine S de type \mathcal{X}_c ou \mathcal{Y}_d , nous posons $f_3(\ell) = 3$ pour une feuille ℓ de S, et $f_3(\ell') = 0$ pour sa feuille jumelle ℓ' , si elle existe (voir Figure 4.7(c)). Notons ici que $f_3(\ell) = 3$ est autorisé, puisque L ne contient aucun sommet x avec $f_3(x) > 0$ qui soit à distance au plus 3 des feuilles de S, et $f_3(y) \leq 3$ pour toute 2-feuille y de L. Alors, f_3 est encore un *broadcast* indépendant sur L, et puisque la valeur-*broadcast* de tout sous-arbre épine S considéré a été augmenté de 1, nous obtenons

$$\sigma(f_3) = \sigma(f_2) + \nu_3(L).$$

Étape 4. Nous modifions f_3 pour obtenir f_4 comme suit : pour tout sous-arbre épine S de type \mathcal{Y}_e , nous posons $f_4(\ell) = 4$ pour une feuille ℓ de S, et $f_4(\ell') = 0$ pour sa feuille jumelle ℓ' , si elle existe (voir Figure 4.7(d)). Notons ici que S a au moins un sous-arbre épine voisin non vide, puisque autrement L ne serait pas un homard. De plus, le fait de poser $f_4(\ell) = 4$ est autorisé, puisque L ne contient aucun sommet x avec $f_4(x) > 0$ qui soit à distance au plus 4 des feuilles de S, et $f_4(y) \leq 4$ pour tout 2-feuille y de L. Alors, f_4 est encore un *broadcast* indépendant sur L, et puisque la valeur-*broadcast* du sous-arbre épine considéré a été augmentée de 1, nous obtenons

$$\sigma(f_4) = \sigma(f_3) + \nu_4(L).$$

Avant de décrire les deux dernières étapes, nous prouvons le fait suivant sur les f_4 -valeurs.

Fait 1. À l'étape 4, les f_4 -valeurs des sommets de L dépendant du type de sous-arbre épine auquel ils appartiennent, sont celles représentées dans la Figure 4.2 de (a) à (l).

FIGURE 4.8 – La preuve du Lemme 4.21 : de f_4 à f_5 , pour une séquence de type $\langle \varnothing \rangle \mathcal{F}_a.\mathcal{X}_c.\mathcal{F}_b.\mathcal{F}_a.\mathcal{F}_b \langle \mathcal{G}.\mathcal{X}_a \rangle$ (la valeur de σ augmente de 2).

FIGURE 4.9 – La preuve du Lemme 4.21 : de f_5 à f_6 , pour une séquence de type $\langle \varnothing \rangle \mathcal{F}_a.\mathcal{F}_b.\mathcal{Y}_d.\mathcal{F}_a.\mathcal{F}_b \langle \mathcal{G}.\mathcal{X}_a \rangle$ (la valeur de σ augmente de 1).

Preuve. Soit S un sous-arbre épine de L. Si S est de type S_1 , alors S a au moins trois 1-feuilles (type \mathcal{X}_a), ou S a deux 1-feuilles et un sous-arbre épine voisin de type S_1 (type \mathcal{G}) et n'a donc pas été modifié aux étapes 2, 3 et 4 dans les deux cas, ou S a deux 1-feuilles et aucun sous-arbre épine voisin de type S_1 (type \mathcal{X}_c), et a donc été modifié à l'étape 3, ou S a une 1-feuille unique et un sous-arbre épine voisin de type S_1 (type \mathcal{X}_c), et a donc été modifié à l'étape 3, ou S a une 1-feuille unique et un sous-arbre épine voisin de type S_1 (type \mathcal{X}_a), et n'a donc pas été modifié aux étapes de 2, 3 et 4, ou S a une 1-feuille unique et aucun sous-arbre épine voisin de type S_1 (type \mathcal{Y}_d), et a donc été modifié à l'étape 3. Dans tous ces cas, les f_4 -valeurs des sommets dans S sont celles représentées dans la Figure 4.2 (d), (e), (g), (h) ou (k).

Supposons maintenant que S est de type S_2 . Si S a une branche unique, alors soit S a au plus deux 2-feuilles et a donc été modifié à l'étape 2 s'il appartient au type \mathcal{Y}_b , ou aux étapes 2 et 4 s'il appartient au type \mathcal{Y}_e , ou S a au moins quatre 2-feuilles (type \mathcal{F}_b), et n'a donc pas été modifié aux étapes 2, 3 et 4. Dans tous ces cas, les f_4 -valeurs des sommets de S sont celles représentées dans la Figure 4.2 (b), (i) ou (l).

Enfin, si S a au moins deux branches, alors soit chacune de ces branches a au moins trois 2-feuilles (type \mathcal{F}_a), et n'a donc pas été modifié aux étapes 2, 3 et 4, soit S a exactement une branche avec au plus deux 2-feuilles (type \mathcal{X}_b), soit S a au moins deux branches avec au plus deux 2-feuilles (type \mathcal{Y}_c), et a donc été modifié à l'étape 2. Dans tous ces cas, les f_4 -valeurs des sommets de S sont celles représentées dans la Figure 4.2 (a), (f) ou (j).

Ceci conclut la preuve.

Avant de poursuivre la preuve du Lemme 4.21, introduisons une nouvelle terminologie.

Pour un entier $e \geq 1$, on dit qu'un sous-arbre épine S dépasse de e, si S contient une 1-feuille avec une valeur-broadcast égale à (e + 1), ou une 2-feuille avec une valeur-broadcast égale à (e + 2). Par conséquent, si un sous-arbre épine S_i , $0 \leq i \leq k$, d'un homard localement uniforme L sans sous-arbre épine de type \mathcal{F}_c , dépasse de $e \geq 1$, alors aucun des sommetsépines $v_{i-e}, \ldots, v_i, \ldots, v_{i+e}$ ne peut être un sommet broadcast. Nous pouvons alors partitionner l'ensemble $\mathcal{T} = \{\mathcal{F}_a, \mathcal{F}_b, \mathcal{G}, \mathcal{X}_a, \mathcal{X}_b, \mathcal{X}_c, \mathcal{Y}_a, \mathcal{Y}_b, \mathcal{Y}_c, \mathcal{Y}_d, \mathcal{Y}_e\}$ en trois sous-ensembles \mathcal{E}_0 , \mathcal{E}_1 et \mathcal{E}_2 , correspondants aux types de sous-arbres épine dépassant de 0, 1 et 2, respectivement. Pour être plus complet, nous dirons aussi que le « sous-arbre vide », de type \emptyset , dépasse de 0. Par conséquent, nous avons

$$\mathcal{E}_0 = \{ \varnothing, \mathcal{F}_a, \mathcal{F}_b, \mathcal{G}, \mathcal{X}_a \}, \ \mathcal{E}_1 = \{ \mathcal{X}_b, \mathcal{Y}_a, \mathcal{Y}_b, \mathcal{Y}_c \} \text{ et } \mathcal{E}_2 = \{ \mathcal{X}_c, \mathcal{Y}_d, \mathcal{Y}_e \}.$$

De plus, nous désignons par $\overline{\mathcal{E}_i}$ le complémentaire de \mathcal{E}_i pour tout $i, 0 \leq i \leq 2$, c'est-àdire, $\overline{\mathcal{E}_i} = (\mathcal{T} \cup \{\emptyset\}) \setminus \mathcal{E}_i$. Enfin, nous partitionnons l'ensemble \mathcal{E}_2 en deux sous-ensembles, en fonction de la valeur avec laquelle les sous-arbres épine dépassent si nous diminuons de 1 leur valeur (après l'étape 4, comme indiqué dans le Fait 1), c'est-à-dire, la valeur de leur (unique) feuille-*broadcast* : les types de sous-arbres épine dans \mathcal{E}_2^0 ne dépasseront plus, tandis que les types de sous-arbres épine dans \mathcal{E}_2^1 dépasserons encore de 1. Plus précisément, nous avons

$$\mathcal{E}_2^0 = \{\mathcal{X}_c\} ext{ et } \mathcal{E}_2^1 = \{\mathcal{Y}_d, \mathcal{Y}_e\},$$

Soit S un sous-arbre épine de type \mathcal{F} . En augmentant S de 1, nous donnons la valeur 1 à la racine de S (observons que seules les feuilles de S sont des sommets f_4 -broadcast et que $f_4(\ell) = 1$ pour chaque feuille ℓ).

Soit maintenant S un sous-arbre épine de type \mathcal{X}_b ou \mathcal{X}_c . En diminuant S de 1, nous signifions ce qui suit :

- Si S est de type \mathcal{X}_b , alors nous attribuons la valeur-*broadcast* 2 à une 2-feuille de l'unique branche de type $\mathcal{B}_2[\lambda_2 \leq 2]$ et la valeur-*broadcast* 0 à sa feuille jumelle si elle existe (d'après le Fait 1, $f_4(\ell) = 3$ pour une 2-feuille ℓ de S, et $f_4(\ell') = 0$ pour sa feuille jumelle ℓ' si elle existe).
- Si S est de type \mathcal{X}_c , alors nous attribuons la valeur-broadcast 1 à chacune des deux 1feuilles de S (d'après le Fait 1, $f_4(\ell) = 3$ pour une feuille ℓ de S, et $f_4(\ell') = 0$ pour sa feuille jumelle ℓ').

Observons qu'après avoir été diminué de 1, un sous-arbre épine de type \mathcal{X}_b ou \mathcal{X}_c ne dépasse plus.

Nous sommes maintenant en mesure de décrire les deux dernières étapes de la preuve. L'idée centrale de la cinquième étape est d'augmenter de 1 un sous-arbre épine de type \mathcal{F}_a ou \mathcal{F}_b et de diminuer de 1 un sous-arbre épine de type \mathcal{X}_b ou \mathcal{X}_c , à condition que cela se traduise par une augmentation stricte du coût du *broadcast* indépendant actuel sur L.

Étape 5. Nous modifions f_4 pour obtenir f_5 comme suit : pour toute séquence de sous-arbres épine $F_0X_1F_1 \ldots X_pF_p$, $p \ge 0$, de type

$$\langle \overline{\mathcal{E}_2}.\mathcal{E}_0 | \varnothing \rangle \ \mathcal{F}.\{(\mathcal{X}|\mathcal{F}).\mathcal{F}\}^* \ \langle \mathcal{E}_0.\overline{\mathcal{E}_2} | \varnothing \rangle,$$

nous diminuons de 1 chaque sous-arbre épine X_i de type \mathcal{X}_b ou \mathcal{X}_c , $1 \leq i \leq p$, et nous augmentons de 1 chaque sous-arbre épine F_j , $0 \leq j \leq p$ (voir Figure 4.8). Notons que cela peut se faire, puisqu'aucun des sous-arbres épine X_i , $1 \leq i \leq p$, ne dépasse et aucun sous-arbre épine en dehors de la séquence ne peut empêcher de le faire sur les sous-arbres épine extrêmes F_0 et F_p .

Il résulte clairement de tout ce qui précède, que la valeur-broadcast de toute la séquence \mathcal{P}_5 augmente d'une valeur égale au nombre de sous-arbres épine F_i de type \mathcal{F} , $0 \leq i \leq p$, moins le nombre de sous-arbres épine de type \mathcal{X}_b ou \mathcal{X}_c . (Rappelons que dans la séquence de sous-arbres épine $F_0X_1F_1\ldots X_pF_p$, $p \geq 0$, le nombre de sous-arbres épine F_i de type \mathcal{F} , $0 \leq i \leq p$, est égal à (p+1) et le nombre de sous-arbres épine de type \mathcal{X}_b ou \mathcal{X}_c est au plus égal à p). Par conséquent, cette valeur-broadcast augmente strictement.

En faisant les modifications ci-dessus pour chaque séquence de sous-arbres épine \mathcal{P}_5 dans L, le broadcast indépendant f_5 ainsi obtenu satisfait

$$\sigma(f_5) = \sigma(f_4) + \nu_5(L).$$

L'idée clé de la dernière étape est d'augmenter de 1 certains sous-arbres épine de type \mathcal{F}_a ou \mathcal{F}_b et de diminuer de 1 un sous-arbre épine de type \mathcal{Y}_d ou \mathcal{Y}_e . Cela se traduit par une augmentation du coût du *broadcast* indépendant sur *L* actuel, d'une unité. **Étape 6.** Nous modifions f_5 pour obtenir f_6 , comme suit : pour toute séquence de sous-arbres épine $F_0F'_1E_1F''_1F_1 \dots F'_pE_pF''_pF_p$, $p \ge 1$, de type

$$\langle \overline{\mathcal{E}_2}.\mathcal{E}_0 | \varnothing \rangle \ \mathcal{F}.\{ \ \mathcal{F}.\mathcal{E}_1^1.\mathcal{F}.\mathcal{F} \ \}^+ \langle \mathcal{E}_0.\overline{\mathcal{E}_2} | \varnothing \rangle,$$

nous diminuons d'une unité chaque sous-arbre épine E_i de type \mathcal{E}_2^1 , $1 \leq i \leq p$, et nous augmentons d'une unité chaque sous-arbre F_j , $0 \leq j \leq p$, (voir Figure 4.9). Notons que cela peut se faire puisqu'aucun des sous-arbres épine E_i , $1 \leq i \leq p$, ne dépasse de 2 (après avoir diminué leur valeur de 1), et les sous-arbres épine voisins de F_0 et F_p , s'il en existe, n'empêchent pas de le faire.

La valeur-broadcast de toute la séquence de sous-arbres épine \mathcal{P}_6 augmente de 1 et cela représente le nombre de F_j , $0 \leq j \leq p$ de type \mathcal{F} , moins le nombre de E_i de type \mathcal{E}_2^1 , puisque le nombre de F_j , $0 \leq j \leq p$ de type \mathcal{F} , est p + 1 et le nombre de E_i , de type \mathcal{E}_2^1 , est au plus p. Par conséquent, en faisant les modifications ci-dessus pour chaque séquence de sous-arbres de type \mathcal{P}_6 , le broadcast indépendant f_6 ainsi obtenu satisfait

$$\sigma(f_6) = \sigma(f_5) + \nu_6(L)$$

Nous obtenons finalement, $\sigma(f_6) = \beta^*(L)$. Ceci conclut la preuve.

4.4.3	Borne	supérieure	de	$\beta_b($	(L))
-------	-------	------------	----	------------	-----	---

En plus des résultats obtenus dans la Section 4.3 et la Sous-section 4.3.2, sur les propriétés d'un broadcast indépendant optimal f sur un homard L localement uniforme, de longueur $k \ge 1$ avec, $\sigma(f) > 2(\operatorname{diam}(L)-1)$, (qui restent valables pour notre sous-classe), nous présentons deux nouveaux lemmes. Nous allons d'abord prouver que si f est un broadcast indépendant optimal sur un homard L localement uniforme, sans sous-arbre épine de type \mathcal{F}_c , de longueur $k \ge 1$, avec $\sigma(f) > 2(\operatorname{diam}(L)-1)$, alors, il existe un broadcast indépendant optimal \tilde{f} sur L tel que la \tilde{f} -valeur de tout sous-arbre épine S de L est bornée supérieurement par une valeur dépendante du type de S.

Rappelons que si f est un broadcast indépendant optimal sur un homard L localement uniforme, sans sous-arbre épine de type \mathcal{F}_c , de longueur $k \geq 1$ avec $\sigma(f) > 2(\operatorname{diam}(L) - 1)$, alors il existe un broadcast indépendant optimal \tilde{f} sur L tel que, d'une part, les \tilde{f} -valeurs des feuilles des sous-arbres S_0 et S_k sont au plus 4 et d'autre part, $\tilde{f}^*(S_i) > 0$ pour tout sous-arbre S_i de L.

Rappelons aussi que \mathcal{P}_5 et \mathcal{P}_6 désignent les séquences des types utilisés aux étapes 5 et 6 dans la preuve du Lemme 4.21, respectivement,

$$\mathcal{P}_5 = \langle \overline{\mathcal{E}_2}.\mathcal{E}_0 | \varnothing \rangle \ \mathcal{F}.\{(\mathcal{X}|\mathcal{F}).\mathcal{F}\}^* \ \langle \mathcal{E}_0.\overline{\mathcal{E}_2} | \varnothing \rangle, \text{ et } \mathcal{P}_6 = \langle \overline{\mathcal{E}_2}.\mathcal{E}_0 | \varnothing \rangle \ \mathcal{F}.\{ \ (\mathcal{F}).\mathcal{E}_2^1.(\mathcal{F}).\mathcal{F} \ \}^+ \langle \mathcal{E}_0.\overline{\mathcal{E}_2} | \varnothing \rangle.$$

109

Nous disons que le sous-arbre épine S_i apparaît comme un \mathcal{F} -sous-arbre dans une séquence de type \mathcal{P}_5 (resp. \mathcal{P}_6), si $S_i = F_j$ pour un certain $j, 0 \leq j \leq p$, dans la séquence correspondante $F_0X_1F_1 \dots X_pF_p$ (resp. $F_0F'_1E_1F''_1F_1 \dots F'_pE_pF''_pF_p$). De même, un sous-arbre épine S_i apparaît comme un \mathcal{X} -sous-arbre dans une séquence de type \mathcal{P}_5 , si $S_i = X_j$ pour un certain $j, 1 \leq j \leq p$, dans la séquence correspondante $F_0X_1F_1 \dots X_pF_p$.

Lemme 4.22. Si L est un homard localement uniforme sans sous-arbre épine de type \mathcal{F}_c , de longueur $k \geq 1$ et f est un broadcast indépendant optimal sur L avec $\sigma(f) > 2(\operatorname{diam}(L) - 1)$, alors il existe un broadcast indépendant optimal \tilde{f} sur L tel que, pour tout sous-arbre S_i de L, $0 \leq i \leq k$, \tilde{f} satisfait les propriétés suivantes :

1. $\tilde{f}^*(S_i) > 0$

2. Si
$$\tilde{f}^*(S_i) = \lambda_1(S_i)$$
, ou $\tilde{f}^*(S_i) = \lambda_2(S_i)$, alors $\tilde{f}(\ell) = 1$ pour toute feuille de S_i .

- 3. Si S_i est de type S_1 , alors
 - (a) $\tilde{f}^*(S_i) \leq \lambda_1(S_i)$ si S_i est de type \mathcal{G} ou \mathcal{X}_a ,
 - (b) $\tilde{f}^*(S_i) \leq 2 \ si \ S_i \ est \ de \ type \ \mathcal{Y}_a$,
 - (c) $\tilde{f}^*(S_i) \leq 3 \ si \ S_i \ est \ de \ type \ \mathcal{X}_c \ ou \ \mathcal{Y}_d$,
 - (d) $\tilde{f}^*(S_i) \leq 2$ si S_i est de type \mathcal{X}_c et S_i appartient à la séquence de type \mathcal{P}_5 ,
 - (e) $\tilde{f}^*(S_i) \leq 2$ si S_i est de type \mathcal{Y}_d et S_i appartient à la séquence de type \mathcal{P}_6 ,
- 4. Si S_i est de type S_2 , alors
 - (a) $f^*(S_i) \leq \lambda_2(S_i) + 1$ si S_i est de type \mathcal{F}_a ou \mathcal{F}_b ,
 - (b) $\tilde{f}^*(S_i) \leq 3 \ si \ S_i \ est \ de \ type \ \mathcal{Y}_b$,
 - (c) $\tilde{f}^*(S_i) \leq 4 \text{ si } S_i \text{ est de type } \mathcal{Y}_e$,
 - (d) $\tilde{f}^*(S_i) \leq 3$ si S_i est de type \mathcal{Y}_e et S_i appartient à la séquence de type \mathcal{P}_6 ,
 - (e) $\tilde{f}^*(S_i) \leq \lambda_2(S_i) + \lambda_2^*(S_i) + \alpha_2^*(S_i)$ si S_i est de type \mathcal{X}_b ou \mathcal{Y}_c ,
 - (f) $\tilde{f}^*(S_i) \leq \lambda_2(S_i) + \lambda_2^*(S_i) + \alpha_2^*(S_i) 1$ si S_i est de type \mathcal{X}_b et S_i appartient à la séquence de type \mathcal{P}_5 .
- 5. Si S_i n'est pas de type \mathcal{F} , alors $\tilde{f}(v_i) = 0$.

Preuve. Grâce à la Proposition 4.16, nous savons que nous pouvons choisir un broadcast indépendant \tilde{f} sur L qui satisfait l'item 1. D'après le Corollaire 4.17, nous obtenons que la f-valeur d'une 1-feuille est au plus 3, et que la f-valeur d'une 2-feuille est au plus 4. Cette observation sera utilisée tout au long de la preuve. Notons également que si $\tilde{f}^*(S_i) = \lambda_1(S_i)$ ou $\tilde{f}^*(S_i) = \lambda_2(S_i)$, alors nous pouvons évidemment modifier \tilde{f} , afin de satisfaire l'item 2, sans modifier son coût.

Nous allons prouver que \tilde{f} peut être choisi de sorte que tous les autres items du lemme soient satisfaits. Soit S_i un sous-arbre épine quelconque de L.

Notons d'abord que l'observation ci-dessus prouve déjà les items 3c, 4b et 4c. De plus, nous avons nécessairement $\tilde{f}^*(S_i) \leq \lambda_1(S_i)$ si S_i est de type \mathcal{G} ou \mathcal{X}_a , et $\tilde{f}^*(S_i) \leq 2$ si S_i est de type \mathcal{Y}_a , puisque dans chacun de ces cas, la seule façon d'atteindre la valeur $\tilde{f}^*(S_i)$ est d'avoir une feuille ℓ de S_i avec $\tilde{f}(\ell) = \tilde{f}^*(S_i)$, ce qui impliquerait qu'un sous-arbre épine voisin de S_i n'a aucun sommet \tilde{f} -broadcast, et contredirait l'item 1. Ceci prouve les items 3a, 3b.

Supposons maintenant que S_i est de type \mathcal{F}_a ou \mathcal{F}_b . Si la valeur-broadcast d'une 2-feuille est 2, alors au moins deux de ses feuilles jumelles ne peuvent pas être des sommets \tilde{f} -broadcast puisque cela contredirait l'optimalité de \tilde{f} (car en attribuant la valeur broadcast 1 à chaque 2-feuille de toute branche B de S_i , nous obtenons $\tilde{f}^*(B) \geq \lambda_2(B)$). Par conséquent, la valeur maximum de $\tilde{f}^*(S_i)$ est obtenue lorsque le sommet-épine v_i et toutes les 2-feuilles de S_i ont leur \tilde{f} -valeur égale à 1. Cela donne $\tilde{f}^*(S_i) \leq \lambda_2(S_i) + 1$, et prouve l'item 4a.

Supposons maintenant que S_i est de type \mathcal{X}_b ou \mathcal{Y}_c . Observons d'abord que, si $f(v_i) = 1$, alors la valeur-broadcast de chaque feuille de S_i est égale à 1. L'optimalité de f implique alors que S_i a une unique branche B avec deux 2-feuilles, et aucune branche avec une 2-feuille unique, car sinon nous pourrions attribuer la valeur 0 à la valeur-broadcast de v_i et attribuer la valeur 3 à la valeur-broadcast d'une feuille appartenant à de telles branches, et donc augmenter le coût de f. (Notons également que, pour un même coût, nous pouvons poser $f(v_i) = 0$ et attribuer la valeur 0 et la valeur 3 à la valeur-broadcast des deux feuilles de cette branche. Cette remarque sera utile dans le paragraphe suivant). Dans ce cas, nous avons donc $\tilde{f}^*(S_i) = \lambda_2(S_i) + 1 \leq \lambda_2(S_i) + \lambda_2^*(S_i) + \alpha_2^*(S_i)$, cela prouve l'item 4e. Supposons maintenant $f(v_i) = 0$ et soit B une branche quelconque de S_i . L'optimalité de f implique alors ce qui suit. Si B a une ou deux 2-feuilles, la f-valeur de l'une de ces feuilles est égale à 3 (sinon, nous aurions $\tilde{f}^*(B) < 2$). Si B a au moins trois feuilles, la valeur maximum de $\tilde{f}^*(B)$ est $\lambda_2(B)$, puisque dès qu'une 2-feuille a une valeur-broadcast supérieure ou égale à 2, aucune de ses feuilles jumelles ne peut être un sommet broadcast. (Notons que si B a trois 2-feuilles, alors soit l'une d'entre elles a une f-valeur égale à 3, soit pour le même coût, chacune d'elles a une \hat{f} -valeur égale à 1). Par conséquent, $\hat{f}^*(S_i) \leq \lambda_2(S_i) + \lambda_2^*(S_i) + \alpha_2^*(S_i)$, cela prouve l'item 4e.

Supposons maintenant que S_i est de type \mathcal{X}_b ou \mathcal{X}_c et appartient à une certaine séquence de type \mathcal{P}_5 . Dans une telle séquence, tout sous-arbre épine de type \mathcal{X} est associé à un de ses sous-arbres épine voisins de type \mathcal{F} , de sorte qu'aucun sous-arbre épine de type \mathcal{F} n'est associé à deux sous-arbres épine distincts de type \mathcal{X} . Soit S'_i le sous-arbre épine associé à S_i (on a $S'_i \in \{S_{i-1}, S_{i+1}\}$). D'après ce qui précède, nous savons d'une part que la valeur-broadcast maximum d'un sous-arbre épine de type \mathcal{F} n'est atteinte que si la valeur-broadcast de sa racine est égale à 1, et d'autre part, que la valeur-broadcast maximum d'un sous-arbre épine de type \mathcal{X}_b ou \mathcal{X}_c n'est atteinte que si une feuille ℓ de l'unique branche B de S_i avec au plus deux 2-feuilles, ou exactement deux 1-feuilles, a une valeur-broadcast égale à 3. Par conséquent, les deux sous-arbres épine S_i et S'_i ne peuvent obtenir leur valeur-broadcast maximum en même temps. Il faudra donc soit supprimer la valeur-broadcast de la racine de S'_i , soit donner la valeur-broadcast 2 à ℓ , si ℓ est une 2-feuille unique, ou 1 à chacune des 2-feuilles de B sinon. Cette seconde possibilité prouve que l'on peut choisir un broadcast indépendant optimal \tilde{f} afin de satisfaire les items 4f et 3d.

Enfin, supposons que S_i est de type \mathcal{Y}_d ou \mathcal{Y}_e et appartient à une certaine séquence de type \mathcal{P}_6 . Comme dans le cas précédent, tout sous-arbre épine de type \mathcal{Y}_d (resp. de type \mathcal{Y}_e) est associé à ses deux sous-arbres épine voisins S_{i-1} et S_{i+1} , tous deux de type \mathcal{F}_a ou \mathcal{F}_b , de sorte qu'aucun sous-arbre épine de type \mathcal{F}_a ou \mathcal{F}_b n'est associé à deux sous-arbres épine de type \mathcal{Y}_d (resp. de type \mathcal{Y}_e). Notons également que les deux sous-arbres épine S_{i-2} et S_{i+2} sont de type \mathcal{F} . D'après la discussion ci-dessus sur les sous-arbres épine de type \mathcal{F} , nous savons que leur valeur-broadcast maximum n'est atteinte que si la valeur-broadcast du sommet-épine (racine) est égale à 1. De même, d'après la discussion ci-dessus sur les sous-arbres épine de type \mathcal{Y}_d (resp. de type \mathcal{Y}_e), nous savons que la valeur-broadcast maximum n'est atteinte que si sa 1-feuille unique (resp. une de ses deux 2-feuilles ou sa 2-feuille unique) a une valeur-broadcast égale à 3 (resp. égale à 4). Par conséquent, les sous-arbres épine S_{i-2} , S_{i-1} , S_i , S_{i+1} et S_{i+2} ne peuvent pas obtenir leur valeur-broadcast maximum en même temps. Si nous donnons à S_i sa valeur-broadcast maximum, nous devons donné aux sommets-épine s_{i-2} , s_{i-1} , s_{i+1} et s_{i+2} la valeur-broadcast 0. Le choix optimal est donc de poser $f(s_{i-2}) = f(s_{i+2}) = 1$, $f(s_{i-1}) = f(s_{i+1}) = 0$ et $f(\ell) = 2$ (resp. $\tilde{f}(\ell) = 3$) pour l'unique 1-feuille de S_i (resp. pour une des deux 2-feuilles) si S_i est de type \mathcal{Y}_d (resp. de type \mathcal{Y}_e). Cette possibilité prouve que l'on peut choisir un broadcast indépendant optimal f qui satisfait les items 3e et 4d.

Il reste à prouver l'item 5. Si S_i est de type S_1 , le résultat découle directement du Lemme ??. Il suffit donc de considérer le cas où S_i est de type \mathcal{X}_b , \mathcal{Y}_b , \mathcal{Y}_c ou \mathcal{Y}_e . Supposons que $\tilde{f}(v_i) = 1$ (car d'après le Corollaire 4.6, on ne peut pas avoir $\tilde{f}(v_i) > 1$).

Si S_i est de type \mathcal{X}_b ou \mathcal{Y}_b , alors nous pouvons poser $\tilde{f}(v_i) = 0$, $\tilde{f}(\ell) = 3$ pour une 2-feuille ℓ de S_i appartenant à l'unique branche de S_i ayant au plus deux 2-feuilles et $\tilde{f}(\ell') = 0$ pour la feuille jumelle ℓ' de ℓ , si elle existe. Une telle modification ne diminue pas le coût \tilde{f} , c'est ce qu'il fallait démontrer.

Si S_i est de type \mathcal{Y}_c ou \mathcal{Y}_e , alors nous ne pouvant pas avoir $\tilde{f}(v_i) = 1$, puisque cela contredirait l'optimalité de \tilde{f} . En effet, la modification précédente peut être effectuée sur au moins deux branches de S_i ayant au plus deux 2-feuilles, si S_i est de type \mathcal{Y}_c , et si S_i est de type \mathcal{Y}_e , alors nous pouvons poser $\tilde{f}(v_i) = 0$, $\tilde{f}(\ell) = 4$ pour une 2-feuille ℓ de S_i et $\tilde{f}(\ell') = 0$ pour sa feuille jumelle ℓ' , si elle existe.

Ceci conclut la preuve.

Lemme 4.23. Si L est un homard localement uniforme sans sous-arbre épine de type \mathcal{F}_c , de longueur $k \geq 1$, et f est un broadcast indépendant optimal sur L, avec $\sigma(f) > 2(\operatorname{diam}(L) - 1)$, alors il existe un broadcast indépendant optimal \tilde{f} sur L tel que, pour tout sous-arbre S_i de L, $0 \leq i \leq k$, \tilde{f} satisfait les propriétés,

- 1. \tilde{f} satisfait tous les items du Lemme 4.22,
- 2. $\tilde{f}^*(S_i) \leq \lambda_2(S_i)$ si S_i est de type \mathcal{F}_a ou \mathcal{F}_b et S_i n'apparaît pas comme un \mathcal{F} -sous-arbre dans une séquence de type \mathcal{P}_5 ou \mathcal{P}_6 .

Preuve. D'après le Lemme 4.22, nous savons que l'on peut choisir un broadcast indépendant optimal sur L qui satisfait l'item 1. Considérons un tel broadcast \tilde{f} sur L. Rappelons que d'après

l'item 5 du Lemme 4.22, $\tilde{f}(v_i) = 0$ pour tout sous-arbre épine S_i qui n'est pas de type \mathcal{F} . De plus, d'après l'item 4a du Lemme 4.22, si S_i est un sous-arbre épine de L de type \mathcal{F}_a ou \mathcal{F}_b , alors $\tilde{f}^*(S_i) \leq \lambda_2(S_i) + 1$ et comme observé dans la preuve du lemme, le seul moyen d'atteindre cette valeur, c'est d'attribuer la valeur-*broadcast* 1 à la racine et à chaque 2-feuille de S_i .

Supposons qu'il existe dans L, un sous-arbre épine S_i de type \mathcal{F}_a ou \mathcal{F}_b , qui n'apparaît pas comme un \mathcal{F} -sous-arbre épine dans une séquence de type \mathcal{P}_5 ou \mathcal{P}_6 , tel que $\tilde{f}(v_i) = 1$. Puisque \tilde{f} est optimal, nous déduisons que $\tilde{f}(\ell) = 1$ pour chaque feuille ℓ de S_i . Un tel sous-arbre épine sera appelé un mauvais sous-arbre épine. De plus, supposons que S_i est le mauvais sous-arbre épine de L le plus à gauche. Nous affirmons que le broadcast \tilde{f} peut être modifié, sans diminuer son coût, de sorte que soit le nombre de mauvais sous-arbres épine dans L diminue strictement, soit ce nombre reste inchangé, mais l'indice du mauvais sous-arbre épine de L le plus à gauche augmente strictement, ce qui va prouver l'item 2.

Tout au long de cette preuve, nous modifierons le broadcast \tilde{f} indépendant sur certains sous-arbres épine, en fonction de leur type. En appliquant la modification standard de \tilde{f} sur un sous-arbre épine S_j de L, nous signifions ce qui suit :

- Si S_j est un mauvais sous-arbre épine, alors nous posons $\tilde{f}(v_j) = 0$.
- Si S_j est de type \mathcal{F}_a ou \mathcal{F}_b et n'est pas un mauvais sous-arbre épine, alors nous posons $\tilde{f}(v_j) = 1$.
- Si S_j est de type \mathcal{X}_b , alors nous posons $\tilde{f}(\ell) = 3$ pour une 2-feuille ℓ de l'unique branche de S_j ayant au plus deux feuilles et $\tilde{f}(\ell') = 0$ pour sa feuille jumelle ℓ' , si elle existe.
- Si S_j est de type \mathcal{X}_c , alors nous posons $\tilde{f}(\ell) = 3$ pour une 1-feuille ℓ de S_j , et $\tilde{f}(\ell') = 0$ pour la feuille jumelle de ℓ .
- Si S_j est de type \mathcal{Y}_a , alors nous posons $\tilde{f}(\ell) = 2$ pour la 1-feuille unique ℓ de S_j
- Si S_j est de type \mathcal{Y}_b , alors nous posons $\tilde{f}(\ell) = 3$ pour une 2-feuille ℓ de S_j et $\tilde{f}(\ell') = 0$ pour sa feuille jumelle ℓ' , si elle existe.
- Si S_j est de type \mathcal{Y}_c , alors nous posons $\tilde{f}(\ell) = 3$ pour une 2-feuille ℓ de chaque branche de S_j ayant au plus deux 2-feuilles et $\tilde{f}(\ell') = 0$ pour sa feuille jumelle ℓ' , si elle existe.
- Si S_j est de type \mathcal{Y}_d , alors nous posons $f(\ell) = 3$ pour la 1-feuille unique ℓ de S_j ,
- Si S_j est de type \mathcal{Y}_e , alors nous posons $\tilde{f}(\ell) = 4$ pour une 2-feuille ℓ de S_j , et $\tilde{f}(\ell') = 0$ pour sa feuille jumelle ℓ' , si elle existe.

Nous considérons d'abord le cas où S_i appartient à une certaine séquence de type \mathcal{P}_5 ou \mathcal{P}_6 (mais n'apparaît pas comme un \mathcal{F} -sous-arbre).

1. S_i appartient à une séquence de type \mathcal{P}_5 .

Considérons un sous-arbre épine S_i appartenant à une certaine séquence de type \mathcal{P}_5 , mais qui n'apparaît pas comme un \mathcal{F} -sous-arbre. Cela implique que la longueur de la séquence est au moins 3. Soit $F_0X_1F_1 \dots X_pF_p$, $p \geq 1$, la séquence correspondante. Tout sous-arbre épine correspondant à un certain X_j , $1 \leq j \leq p$, est entouré par deux sous-arbres épine de type \mathcal{F}_a ou \mathcal{F}_b . Si un tel sous-arbre épine S_α (correspondant à un certain X_j) est de type \mathcal{F}_a ou \mathcal{F}_b , alors en ayant $\tilde{f}(s_\alpha) = 1$, cela impliquerait qu'aucun des sommets $s_{\alpha-1}$ et $s_{\alpha+1}$ n'est un sommet \tilde{f} -broadcast. Nous pouvons donc appliquer la modification standard de f à tous les sous-arbres épine $F_0, X_1, F_1, \ldots, X_p, F_p$, sans diminuer le coût de f.

2. S_i appartient à une séquence de type \mathcal{P}_6 .

Considérons maintenant un sous-arbre épine S_i appartenant à une certaine séquence de type \mathcal{P}_6 , mais qui n'apparaît pas comme un \mathcal{F} -sous-arbre. Soit $F_0F'_1E_1F''_1F_1\ldots F'_pE_pF''_pF_p$, $p \geq 1$, la séquence correspondante. Supposons $S_i = F'_j$ pour un certain $j, 1 \leq j \leq p$ (le cas $S_i = F''_j$ est obtenu par symétrie). Notons que le sous-arbre épine S_{i+1} est de type \mathcal{E}_2^1 , c'est-à-dire, soit de type \mathcal{Y}_d soit de type \mathcal{Y}_e et le sous-arbre épine S_{i+2} est de type \mathcal{F}_a ou \mathcal{F}_b . Si $\tilde{f}(s_i) = 1$ ou $\tilde{f}(s_{i+2}) = 1$, nous obtenons $\tilde{f}(\ell) \leq 1$ ou $\tilde{f}(\ell) \leq 2$ pour la 1-feuille unique de S_{i+1} ou pour une 2-feuille de S_{i+1} , respectivement. On peut donc appliquer la modification standard de \tilde{f} aux sous-arbres épine S_i, S_{i+1} et S_{i+2} en posant $\tilde{f}(s_i) = \tilde{f}(s_{i+2}) = 0$ et $\tilde{f}(\ell) = 3$ ou $\tilde{f}(\ell) = 4$, respectivement (si S_{i+1} est de type \mathcal{Y}_e et à deux 2-feuilles, nous posons $\tilde{f}(\ell') = 0$ pour sa feuille jumelle ℓ' , si elle existe) sans diminuer le coût de \tilde{f} .

Supposons maintenant que S_i n'appartient ni à une séquence de type \mathcal{P}_5 ni à une séquence de type \mathcal{P}_6 . Les quelques faits suivants seront utiles pour la suite de la preuve.

Fait 2. Si un mauvais sous-arbre épine S_i , n'appartenant à aucune séquence de type \mathcal{P}_5 ou \mathcal{P}_6 , a un sous-arbre épine voisin de type \mathcal{Y}_c , alors on peut modifier \tilde{f} , sans diminuer son coût, de sorte que le nombre de mauvais sous-arbres épine diminue strictement.

Preuve. Supposons que S_{i+1} existe et est de type \mathcal{Y}_c (le cas où S_{i-1} existe et est de type \mathcal{Y}_c est similaire). Si S_{i+2} n'existe pas, ou si S_{i+2} existe et $\tilde{f}(v_{i+2}) = 0$, alors nous pouvons appliquer la modification standard de \tilde{f} sur S_i et S_{i+1} , sans diminuer le coût \tilde{f} . Enfin, si S_{i+2} existe et $\tilde{f}(v_{i+2}) = 1$, nous obtenons que S_{i+2} est aussi un mauvais sous-arbre de L. Dans ce cas, nous pouvons appliquer la modification standard de \tilde{f} sur S_i , S_{i+1} et S_{i+2} , sans diminuer le coût de \tilde{f} puisque S_{i+1} a au moins deux branches avec au plus deux feuilles.

Fait 3. Si un mauvais sous-arbre épine S_i , n'appartenant à aucune séquence de type \mathcal{P}_5 ou \mathcal{P}_6 , a un sous-arbre épine voisin de type \mathcal{Y}_a , ou \mathcal{Y}_b , alors on peut modifier \tilde{f} , sans diminuer son coût, de sorte que le nombre de mauvais sous-arbres épine diminue strictement.

Preuve. Supposons que S_{i+1} existe et est de type \mathcal{Y}_a ou \mathcal{Y}_b (le cas où S_{i-1} existe et est de type \mathcal{Y}_a ou \mathcal{Y}_b est similaire). Puisque S_{i+2} existe et est de type \mathcal{S}_1 avec $\tilde{f}(v_{i+2}) = 0$, alors nous pouvons appliquer la modification standard de \tilde{f} sur S_i et S_{i+1} , sans diminuer le coût \tilde{f} .

Fait 4. Soit S_i le mauvais sous-arbre épine le plus à gauche dans L, qui n'appartient à aucune séquence de type \mathcal{P}_5 ou \mathcal{P}_6 . Si S_{i+1} est de type \mathcal{F}_a ou \mathcal{F}_b et S_{i+2} est de type \mathcal{G} , \mathcal{X}_a ou \mathcal{X}_c , alors on peut modifier \tilde{f} , sans diminuer son coût, de sorte que l'indice du mauvais sous-arbre épine le plus à gauche dans L augmente strictement.

Preuve. Puisque $f(v_i) = 1$, nous obtenons $f^*(S_{i+2}) = \lambda_1(S_{i+2})$ (la valeur \hat{f} -broadcast de toute feuille dans S_{i+2} est 1), donc nous pouvons appliquer la modification standard de \tilde{f} sur S_i et S_{i+1} (rappelons que $\tilde{f}(\ell) = 1$ pour toute feuille de S_{i+2} d'après l'item 2 du Lemme 4.22), sans diminuer le coût de \tilde{f} , mais en augmentant strictement l'indice du mauvais sous-arbre épine le plus à gauche dans L.

Fait 5. Si S_i est le mauvais sous-arbre épine le plus à gauche dans L, qui n'appartient à aucune séquence de type \mathcal{P}_5 ou \mathcal{P}_6 , alors on peut supposer que soit S_{i+1} est de type \mathcal{X}_b ou \mathcal{X}_c , soit S_{i+1} est de type \mathcal{F} et S_{i+2} est de type \mathcal{Y}_d ou \mathcal{Y}_e .

Preuve. Si S_{i-1} est de type \mathcal{X}_c , alors, puisque $\hat{f}(v_i) = 1$, nous obtenons $\hat{f}(\ell) = 1$ pour toute 1-feuille de S_{i-1} . De même, si S_{i-1} est de type \mathcal{X}_b , alors $\tilde{f}(\ell) \leq 2$ pour toute 2-feuille de S_{i-1} . Dans les deux cas, nous pouvons donc appliquer la modification standard de \tilde{f} sur S_i et S_{i-1} , sans diminuer le coût de \tilde{f} . D'après le Fait 2 et le Fait 3, nous pouvons supposer que, soit S_{i-1} n'existe pas, soit S_{i-1} existe et est de type \mathcal{F} , \mathcal{X}_a ou \mathcal{G} (ces deux derniers cas impliquent que S_{i-2} ne peut être de type \mathcal{X}_c , et est donc nécessairement de type \mathcal{G} ou \mathcal{X}_a). Si S_{i-1} est de type \mathcal{F} et S_{i-2} est de type \mathcal{X}_c , alors comme ci-dessus, nous pouvons appliquer la modification standard de \tilde{f} sur S_i et S_{i-2} , sans diminuer le coût de \tilde{f} .

Dans tous les cas restants, S_i est de type $\langle \overline{\mathcal{E}_2}.\mathcal{E}_0 \rangle (\mathcal{F}_a|\mathcal{F}_b)$, de sorte que nous aurions nécessairement S_{i+1} est de type \mathcal{X}_b ou \mathcal{X}_c , ou S_{i+1} est de type \mathcal{F} et S_{i+2} est de type \mathcal{X}_c , ou S_{i+1} est de type \mathcal{F} et S_{i+2} est de type \mathcal{Y}_d ou \mathcal{Y}_e , puisque autrement S_i serait une séquence de type \mathcal{P}_5 . Le cas où S_{i+1} est de type \mathcal{F} et S_{i+2} est de type \mathcal{X}_c est couvert par le Fait 4.

D'après les Faits 2, 3 et 5, nous pouvons supposer que S_{i-1} n'est pas de type $\mathcal{Y}_a, \mathcal{Y}_b, \mathcal{Y}_c$, ou \mathcal{Y}_d . De plus, si S_{i+1} est de type soit \mathcal{X}_b ou \mathcal{X}_c , nous considérons ces deux cas séparément si S_{i+2} n'est pas un mauvais sous-arbre épine, et ensemble sinon.

- 1. S_{i+1} est de type \mathcal{X}_b et S_{i+2} n'est pas un mauvais sous-arbre épine. Dans ce cas, nous pouvons appliquer la modification standard de \tilde{f} sur S_i et S_{i+1} .
- 2. S_{i+1} est de type \mathcal{X}_c et S_{i+2} n'est pas un mauvais sous-arbre épine. Dans ce cas, S_{i+2} existe nécessairement et est de type S_2 . Si S_{i+3} n'est pas un mauvais sous-arbre épine, alors nous pouvons appliquer la modification standard de \tilde{f} sur S_i et S_{i+1} . Sinon, S_{i+2} doit être de type \mathcal{X}_b ou \mathcal{F} , d'après notre supposition basée sur le Fait 2. Nous aurons donc deux cas à considérer.
 - (a) S_{i+3} est un mauvais sous-arbre épine et S_{i+2} est de type \mathcal{X}_b . Dans ce cas, nous obtenons $\tilde{f}(\ell) \leq 2$ pour toute 2-feuille ℓ de S_{i+2} , de sorte que nous pouvons appliquer la modification standard de \tilde{f} sur S_i , S_{i+1} , S_{i+2} et S_{i+3} , sans diminuer le coût de \tilde{f} .
 - (b) S_{i+3} est un mauvais sous-arbre épine et S_{i+2} est de type \mathcal{F}_a ou \mathcal{F}_b . Dans ce cas, S_{i+4} doit exister et doit être de type \mathcal{X}_c , puisque autrement la séquence $S_i S_{i+4} S_{i+2}$ serait de type \mathcal{P}_c . Observons alors que S_{i+2} est en quelque sorte « dans

 $S_i S_{i+1} S_{i+2}$ serait de type \mathcal{P}_5 . Observons alors que S_{i+3} est en quelque sorte « dans la même situation que S_i ». Soit $L' = S'_1 S'_2 S'_3 S'_4 \dots S'_s$, $s \ge 5$, la sous-séquence maximale de L, commençant par

 S_i (c'est-à-dire, $S'_1 = S_i$), dont le type est le préfixe de $(\mathcal{F}.\mathcal{X}_c.\mathcal{F})^*$ (ici le préfixe est considéré comme un mot) et tel que S'_j est un mauvais sous-arbre épine si $j \equiv 1 \pmod{3}$. Selon la valeur de $(s \mod 3)$, nous avons à distinguer trois cas.

i. Si $s \equiv 1 \pmod{3}$, alors S_{i+s} n'est pas de type \mathcal{X}_c , et $S_i \dots S_{i+s-1}$ est une séquence de type \mathcal{P}_5 , ce qui est une contradiction.

- ii. Si $s \equiv 0 \pmod{3}$, alors S_{i+s} n'est pas un mauvais sous-arbre épine, nous pouvons appliquer la modification standard de \tilde{f} sur tous les sous-arbres épine S'_j de L'avec $j \not\equiv 0 \pmod{3}$, sans diminuer le coût de \tilde{f} .
- iii. Si $s \equiv 2 \pmod{3}$, alors S_{i+s} n'est ni de type \mathcal{F}_a , ni de type \mathcal{F}_b , et donc S_{i+s} de type \mathcal{X}_b . Si S_{i+s+1} n'est pas un mauvais sous-arbre épine, alors nous pouvons appliquer la modification standard de \tilde{f} sur tous les sous-arbres épine S'_j de L' avec $j \not\equiv 0 \pmod{3}$, sans diminuer le coût de \tilde{f} . Si S_{i+s+1} est un mauvais sous-arbre épine, alors nous pouvons appliquer la modification standard de \tilde{f} sur S_{i+s} , S_{i+s+1} et sur tout sous-arbre épine S'_j de L' avec $j \not\equiv 0 \pmod{3}$, sans diminuer le coût de \tilde{f} .
- 3. S_{i+1} est de type \mathcal{X}_b ou \mathcal{X}_c et S_{i+2} est un mauvais sous-arbre épine.

Dans ce cas, nous obtenons soit S_{i+3} est de type \mathcal{X}_b ou \mathcal{X}_c , soit S_{i+3} de type \mathcal{F}_a et S_{i+4} de type \mathcal{X}_c , puisque autrement $S_i S_{i+1} S_{i+2}$ serait une séquence de type \mathcal{P}_5 . Par conséquent, S_{i+2} est « dans la même situation que S_i ».

Soit $L' = S'_1 S'_2 S'_3 \dots S'_s$, $s \ge 4$, la sous-séquence maximale de L, commençant par S_i (c'està-dire, $S'_1 = S_i$), dont le type est le préfixe de $(\mathcal{F}.(\mathcal{X}_b[\mathcal{X}_c))^*$ (ici le préfixe est considéré comme un mot), tel que S'_j est un mauvais sous-arbre épine $j \equiv 1 \pmod{2}$. Selon la valeur de $(s \mod 2)$, nous avons à distinguer deux cas.

- (a) Si $s \equiv 1 \pmod{2}$, alors S_{i+s} n'est ni de type \mathcal{X}_b ni de type \mathcal{X}_c , et donc S_{i+s} est de type \mathcal{F}_a et S_{i+s+1} est de type \mathcal{X}_c , puisque autrement L' serait une séquence de type \mathcal{P}_5 . Dans ce cas, puisque S_{i+s-1} est un mauvais sous-arbre épine, nous obtenons $\tilde{f}^*(S_{i+s+1}) = 2$, de sorte que nous pouvons appliquer la modification standard de \tilde{f} sur les sous-arbres épine S_i, \ldots, S_{i+s} , sans diminuer le coût de \tilde{f} .
- (b) Si $s \equiv 0 \pmod{2}$, alors S_{i+s} n'est pas un mauvais sous-arbre épine. Nous considérons deux cas :

Si S_{i+s-1} est de type \mathcal{X}_b , alors nous pouvons appliquer la modification standard de \tilde{f} sur les sous-arbres épine S_i, \ldots, S_{i+s-1} , sans diminuer le coût de \tilde{f} .

Si S_{i+s-1} est de type \mathcal{X}_c , alors S_{i+s} est de type \mathcal{F}_a , \mathcal{F}_b (mais pas un mauvais sousarbre épine), \mathcal{X}_b ou \mathcal{Y}_c . Si S_{i+s+1} n'est pas un mauvais sous-arbre épine, alors, nous pouvons encore appliquer la modification standard de \tilde{f} sur les sous-arbre épine et S_i, \ldots, S_{i+s-1} , sans diminuer le coût de \tilde{f} . Si S_{i+s+1} est un mauvais sous-arbre épine et S_{i+s} n'est ni de type \mathcal{F}_a , ni de type \mathcal{F}_b , alors nous avons nécessairement $\tilde{f}(\ell) \leq 2$ pour toute 2-feuille ℓ de S_{i+s} , de sorte que nous pouvons appliquer la modification standard de \tilde{f} sur les sous-arbres S_i, \ldots, S_{i+s+1} , sans diminuer le coût de \tilde{f} . Si S_{i+s+1} est un mauvais sous-arbre épine et S_{i+s} est de type \mathcal{F} , alors, en appliquant la modification standard \tilde{f} sur S_{i+s} et S_{i+s+1} , nous obtenons une nouvelle sous-séquence L', dont la longueur a été augmentée de 1, de sorte que maintenant nous avons $s \equiv 1 \pmod{2}$ et donc on peut appliquer le cas précédent.

Il reste maintenant à considérer le cas où S_{i+1} est de type \mathcal{F} et S_{i+2} est de type \mathcal{Y}_d ou \mathcal{Y}_e . Si S_{i+2} est de type \mathcal{Y}_d , alors son sous-arbre épine voisin S_{i+3} existe et est de type \mathcal{S}_2 . Si S_{i+2} est de type \mathcal{Y}_e , alors soit S_{i+3} existe et est de type \mathcal{S}_2 , soit S_{i+3} n'existe pas (sous-arbre vide). Dans ce dernier cas, nous pouvons appliquer la modification standard de \tilde{f} sur les sous-arbres épine S_i et S_{i+2} sans diminuer le coût de \tilde{f} . De plus, si S_{i+3} est de type \mathcal{X}_b , \mathcal{Y}_b , \mathcal{Y}_c ou \mathcal{Y}_d , nous pouvons appliquer la modification standard de \tilde{f} sur les sous-arbres épine S_i et S_{i+2} sans diminuer le coût de \tilde{f} . Supposons maintenant que S_{i+3} est de type \mathcal{F} (\mathcal{F}_a ou \mathcal{F}_b) mais n'est pas un mauvais sous-arbre épine. Notons que S_{i+4} est de type \mathcal{S}_1 , \mathcal{S}_2 ou « sous arbre-vide ». Si S_{i+4} n'est pas un mauvais sous-arbre épine, nous pouvons appliquer la modification standard de \tilde{f} sur les sous-arbres épine S_i et S_{i+2} sans diminuer le coût de \tilde{f} . Sinon S_{i+4} est en quelque sorte « dans la même situation que le sous-arbre épine S_i ».

Soit $L' = S'_1 S'_2 S'_3 \dots S'_s$, $s \ge 5$, la sous-séquence maximale de L, commençant par S_i (c'est-àdire, $S'_1 = S_i$), dont le type est le préfixe de $\mathcal{F}.(\mathcal{F}.(\mathcal{Y}_d[\mathcal{Y}_e).\mathcal{F}.\mathcal{F})^*$ (ici le préfixe est considéré comme un mot), tel que S'_j est un mauvais sous-arbre épine, $j \equiv 1 \pmod{4}$. Selon la valeur de $(s \mod 4)$, nous avons à distinguer quatre cas.

- 1. Si $s \equiv 1 \pmod{4}$, alors S_{i+s} est un sous-arbre épine de type \mathcal{F} (mais n'est pas un mauvais sous-arbre épine) et S_{i+s+1} n'est ni de type \mathcal{Y}_d ni de type \mathcal{Y}_e , et donc S_{i+s+1} de type \mathcal{X}_b , \mathcal{X}_c , \mathcal{Y}_a , \mathcal{Y}_b , \mathcal{Y}_c ou \mathcal{F} , car sinon L' serait une séquence de type \mathcal{P}_6 . Dans ce cas, puisque S_{i+s-1} est un mauvais sous-arbre épine, nous obtenons $\tilde{f}(\ell) \leq 3$ pour toute 2-feuille ℓ de S_{i+s+1} et $\tilde{f}(\ell) = 1$ pour toute 2-feuille ℓ de S_{i+s+1} , de sorte que nous pouvons appliquer la modification standard de \tilde{f} sur les sous-arbres épine S_i, \ldots, S_{i+s-1} , sans diminuer le coût de \tilde{f} .
- 2. Si $s \equiv 2 \pmod{4}$, alors S_{i+s} est un sous-arbre épine de type \mathcal{Y}_d ou \mathcal{Y}_e . S_{i+s-1} est de type \mathcal{F} (mais n'est pas un mauvais sous-arbre épine) et S_{i+s+1} n'est pas de type \mathcal{F} . D'où S_{i+s+1} est de type \mathcal{S}_2 (autre que \mathcal{F}). Dans ce cas, puisque S_{i+s-2} est un mauvais sous-arbre épine, $\tilde{f}^*(S_{i+s}) = 2$ (resp. $\tilde{f}^*(S_{i+s}) = 3$) si S_{i+s} est de type \mathcal{Y}_d (rep. de type \mathcal{Y}_e) et $\tilde{f}(\ell) = 3$ (resp. $\tilde{f}(\ell) = 4$) pour une 2-feuille ℓ de S_{i+s+1} , de sorte que nous pouvons appliquer la modification standard de \tilde{f} sur les sous-arbres épine S_i, \ldots, S_{i+s} , sans diminuer le coût de \tilde{f} .
- 3. Si $s \equiv 3 \pmod{4}$, alors S_{i+s} est de type \mathcal{F} (mais n'est pas un mauvais sous-arbre épine) et S_{i+s+1} n'est pas de type \mathcal{F} . Nous pouvons appliquer la modification standard de \tilde{f} sur les sous-arbres épine S_i, \ldots, S_{i+s-1} , sans diminuer le coût de \tilde{f} .
- 4. Si $s \equiv 0 \pmod{4}$, alors S_{i+s} est un mauvais sous-arbre épine et S_{i+s+1} n'est pas de type \mathcal{F} . D'après les Faits 2 et 3, S_{i+s+1} n'est pas de type \mathcal{Y} . D'où S_{i+s+1} est de type \mathcal{X}_b ou \mathcal{X}_c , car sinon L' serait une séquence de type \mathcal{P}_6 . Nous allons traiter les deux cas séparement si S_{i+s+2} n'est pas un mauvais sous-arbre épine, et ensemble sinon.
 - (a) S_{i+s+1} est de type \mathcal{X}_b et S_{i+s+2} n'est pas un mauvais sous-arbre épine. Ce cas est similaire au Cas 1. Nous pouvons appliquer la modification standard de \tilde{f} sur les sous-arbres épine S_i, \ldots, S_{i+s+1} , sans diminuer le coût de \tilde{f} .
 - (b) S_{i+s+1} est de type \mathcal{X}_c et S_{i+s+2} n'est pas un mauvais sous-arbre épine. Ce cas est similaire au Cas 2, où S_{i+s} est « dans la même situation » que S_i . Soit $L' = S'_1 S'_2 S'_3 S'_4 \dots S'_p$, $p \ge 5$, la sous-séquence maximale de L, commençant par S_{i+s} (c'està-dire, $S'_1 = S_{i+s}$), dont le type est le préfixe de $(\mathcal{F}.\mathcal{X}_c.\mathcal{F})^*$. Nous pouvons appliquer

la modification standard de \tilde{f} sur les sous-arbres épine $S_i, \ldots, S_{i+s}S_{i+s+1}, \ldots, S_{i+s+p}$, $p \ge 5$, sans diminuer le coût de \tilde{f} .

(c) S_{i+s+1} est de type \mathcal{X}_b ou \mathcal{X}_c , et S_{i+s+2} est un mauvais sous-arbre épine. Ce cas est similaire au Cas 3 où S_{i+s} est « dans la même situation » que S_i . Une fois encore nous pouvons appliquer la modification standard de \tilde{f} sur les sous-arbres épine $S_i, \ldots, S_{i+s}S_{i+s+1}, \ldots, S_{i+s+p}, p \ge 5$, sans diminuer le coût de \tilde{f} .

Ceci conclut la preuve.

4.4.4 Résultat principal

Au vu des résultats obtenus précédemment, nous sommes en mesure de prouver le résultat principal de cette section.

Théorème 4.24. Pour tout homard L localement uniforme, sans sous-arbre épine de type \mathcal{F}_c , de longueur $k \geq 0$, nous avons

$$\beta_b(L) = \max\left\{2(\operatorname{diam}(L) - 1), \beta^*(L)\right\}.$$

Preuve. Si k = 0, le résultat découle directement du Lemme 4.20, en observant que le broadcast indépendant construit dans sa preuve atteint toutes les bornes supérieures sur les valeursbroadcast indiquées dans le Lemme 4.22. Nous pouvons donc supposer k > 1.

D'après l'Observation 4.2, nous savons que $\beta_b(L) \geq 2(\operatorname{diam}(L)-1)$. De plus, nous avons déjà mentionné qu'un broadcast indépendant canonique f_c sur L satisfait $\sigma(f_c) = 2(\operatorname{diam}(CT)-1)$. Donc, il suffit de prouver que pour tout broadcast indépendant optimal f sur L avec $\sigma(f) > 2(\operatorname{diam}(L)-1)$, nous avons $\sigma(f) \leq \beta^*(L)$.

D'après le Lemme 4.21, nous savons qu'il existe un *broadcast* indépendant f sur L avec $\sigma(f) = \beta^*(L)$. Soit f le *broadcast* indépendant sur L construit dans la preuve du Lemme 4.21. Nous affirmons que pour tout sous-arbre épine S_i de L, $f^*(S_i)$ est égale à la borne supérieure donnée dans le Lemme 4.22 ou 4.23, ce qui prouvera le théoreme.

- 1. Si S_i est de type \mathcal{G} ou \mathcal{X}_a , alors $f^*(S_i)$ est égale à $\lambda_1(S_i)$ à l'étape 1 et n'a pas été modifiée aux étapes suivantes.
- 2. Si S_i est de type \mathcal{X}_b , alors $f^*(S_i)$ est égale à $\lambda_2(S_i) + \lambda_2^*(S_i) + \alpha_2^*(S_i)$ aux étapes 1 et 2. De plus, si S_i appartient à une certaine séquence de type \mathcal{P}_5 , alors $f^*(S_i)$ a été diminuée de 1 à l'étape 5.
- 3. Si S_i est de type \mathcal{X}_c , alors $f^*(S_i)$ est égale à 3 aux étapes 1 et 3. De plus, si S_i appartient à une séquence de type \mathcal{P}_5 , alors $f^*(S_i)$ a été diminuée de 1 à l'étape 5.
- 4. Si S_i est de type \mathcal{Y}_a , alors $f^*(S_i)$ est égale à $\lambda_1(S_i) + \lambda_1^*(S_i)$ à l'étape 1 et n'a pas été modifiée aux étapes suivantes.
- 5. Si S_i est de type \mathcal{Y}_b , alors $f^*(S_i)$ est égale à $\lambda_2(S_i) + \lambda_2^*(S_i) + \alpha_2^*(S_i) = 3$ aux étapes 1 et 2 et n'a pas été modifiée aux étapes suivantes.

- 6. Si S_i est de type \mathcal{Y}_c , alors $f^*(S_i)$ est égale à $\lambda_2(S_i) + \lambda_2^*(S_i) + \alpha_2^*(S_i)$ aux étapes 1 et 2 et n'a pas été modifiée aux étapes suivantes.
- 7. Si S_i est de type \mathcal{Y}_d , alors $f^*(S_i)$ est égale à 3 aux étapes 1 et 3 et n'a pas été modifiée aux étapes suivantes.
- 8. Si S_i est de type \mathcal{Y}_e , alors $f^*(S_i)$ est égale à 4 aux étapes 1, 2 et 4. De plus, si S_i appartient à une séquence de type \mathcal{P}_6 , alors $f^*(S_i)$ a été diminuée de 1 à l'étape 6.
- 9. Enfin, si S_i est de type \mathcal{F}_a ou \mathcal{F}_b , alors $f^*(S_i)$ est égale à $\lambda_1(S_i)$ à l'étape 1. De plus, si S_i apparaît comme un \mathcal{F} -sous-arbre dans une séquence de type \mathcal{P}_5 ou \mathcal{P}_6 , alors $f^*(S_i)$ a été augmentée de 1 à l'étape 5 ou à l'étape 6.

Ceci conclut la preuve.

4.4.5 2-homards localement uniformes

Dans certains cas, la valeur de $\beta^*(L)$ a une expression simple. Considérons une sous-classe des homards localement uniformes sans sous-arbre épine de type \mathcal{F}_c , appelée 2-homards localement uniformes.

Définition 4.25. Un homard L est un 2-homard si tout sous-arbre épine de L a au moins deux branches.

Définition 4.26. Un 2-homard localement uniforme est un 2-homard qui est localement uniforme.

La Figure 4.10 représente un β_b -broadcast sur un 2-homard localement uniforme.

FIGURE 4.10 – Un β_b -broadcast sur un 2-homard localement uniforme.

Notons que pour un 2-homard localement uniforme, une feuille unique est nécessairement une 2-feuille et donc une 2-feuille unique et que l'ensemble des types de sous-arbres épine spécifiques aux 2-homards localement uniformes (définis dans 4.3.1) est :

$$\{\mathcal{F}_a, \mathcal{G}, \mathcal{X}_a, \mathcal{X}_b, \mathcal{X}_c, \mathcal{Y}_c\}.$$

Avant de présenter le résultat qui détermine le nombre d'indépendance broadcast des 2homards localement uniformes, nous allons montrer à l'aide de l'observation suivante que nous pouvons améliorer la borne inférieure du nombre d'indépendance broadcast des 2-homards localement uniformes de longueur $k \ge 1$, en raison de leur structure particulière.

Observation 4.27. Pour tout 2-homard localement uniforme L de longueur $k \ge 1$,

$$\beta_b(L) \ge 2(k-1) + 12 = 2(\operatorname{diam}(L) - 1) + 4.$$

Afin de vérifier cela, considérons la fonction f sur V(L) définie comme suit : attribuons à une seule feuille de chaque branche de S_0 et S_k une f-valeur-broadcast égale à 3, et si k > 1, attribuons à une seule feuille de chaque branche de chaque sous-arbre S_i , $1 \le i \le k - 1$, une f-valeur-broadcast égale à 1. Il est clair que l'application f ainsi définie est un broadcast indépendant sur L, et puisque les deux sous-arbres S_0 et S_k sont de de type S_2 et tout autre sous-arbre épine de L a au moins deux branches, nous obtenons $\sigma(f) = 2(k-1) + 12$.

D'après l'observation 4.27, nous obtenons $\beta_b(L) > 2(\operatorname{diam}(L) - 1)$ pour tout 2-homard localement uniforme L de longueur $k \ge 1$ (le cas particulier d'un 2-homard localement uniforme de longueur 0 a déjà été considéré dans le Lemme 4.20).

Corollaire 4.28. Pour tout 2-homard L localement uniforme de longueur $k \ge 0$, nous avons

$$\beta_b(L) = \beta^*(L),$$

avec $\beta^*(L) = \nu_1(L) + \nu_2(L) + \nu_3(L) + \nu_5(L).$

Conclusion

Nous avons abordé dans cette thèse l'aspect théorique d'un problème de recherche lié à la domination *broadcast*, et nous nous sommes proposée de répondre à la question suivante : peut-on déterminer la valeur exacte du nombre d'indépendance *broadcast* de quelques classes d'arbres?

Rappelons que les paramètres de domination sont en général difficiles à déterminer de façon exacte, mais l'introduction récente de ce paramètre et l'absence de travaux sur ce sujet nous a amenée à faire le choix d'une première direction de recherche, celle de l'étude de quelques classes de graphes avec des propriétés spécifiques. On comprendra aisément que beaucoup de concepts nouveaux « se confrontent » en premier lieu à la classe des arbres et s'inscrivent dans la tradition.

En se restreignant d'abord aux chenilles, nous avons présenté en plus de l'étude des *broadcasts* indépendants sur des chenilles en général, une formule explicite qui détermine le nombre d'indépendance *broadcast* des chenilles sans troncs adjacents. Ces résultats ont été publiés dans [2], et concernent une sous-classe assez restreinte de la classe des arbres, vu que le nombre de *broadcast* indépendance est difficile à déterminer pour les arbres, et probablement même pour les chenilles en général. Notons ici que pour des chenilles avec troncs adjacents, les résultats du Lemme 3.3 et du Lemme 3.4 du Chapitre 3 restent valables, alors que le Lemme 3.13 ne l'est plus.

En plus de la classe des chenilles, nous avons considéré une autre sous-classe d'arbres. Suite à cela, l'approche considérée pour les chenilles s'est avérée encore féconde pour la classe des homards localement uniformes ne contenant aucun sous-arbre de type \mathcal{F}_c (c'est-à-dire, sousarbre ayant une unique branche avec exactement trois 2-feuilles), en particulier pour la classe des 2-homards localement uniformes.

Les résultats obtenus pour les 2-homards localement uniformes ont fait l'objet d'un papier soumis pour publication dans Discrete Applied Mathematics et visible sur ArXiv :1902.02998 [cs.DM] (2019).

Une première question naturelle serait d'étendre notre résultat à l'ensemble de la classe des homards localement uniformes. En fait, nous pensons être capable de donner une formule explicite pour la classe des homards localement uniformes puisque nous avons tenté une étude mais nous n'avons pas pu poursuivre nos investigations plus en avant, malgré des propriétés encourageantes. En fait, le problème qui consiste à déterminer les cas où la valeur *broadcast* du sous-arbre de type \mathcal{F}_c est égale à 3 ou à 4 semble être difficile. Par conséquent, une question plus générale qui consiste à donner une formule explicite pour le nombre d'indépendance *broadcast* de la classe générale des homards est certainement plus problématique.

Nous sommes donc consciente de la difficulté qui existe pour examiner d'autres graphes et soulignons l'importance d'aller vers des solutions algorithmiques. Il convient de rappeler ici que la complexité algorithmique du problème de décision associé au nombre d'indépendance broadcast n'était pas encore connue même pour les arbres lorsque nous avions entrepris cette étude, bien que cette question ait déjà été posée dans [42] et dans [61]. Le seul résultat de complexité concernant un paramètre de domination *broadcast* parmi ceux introduits dans [61], est dû à Heggernes et Lokshtanov [57] qui ont prouvé que le calcul du nombre de domination broadcast $\gamma_b(G)$ d'un graphe quelconque peut être obtenu en un temps polynomial. Ce n'est que très récemment que Bessy et Rautenbach [13] ont prouvé que le calcul du nombre d'indépendance broadcast $\beta_b(G)$ d'un arbre est polynomial, mais leurs travaux n'explicitent pas la valeur exacte du paramètre en question. De plus, il est facile de voir que le problème de la détermination de la valeur $\beta^*(L)$ pour un homard L localement uniforme sans sous-arbre de type \mathcal{F}_c (et par conséquent, pour un 2-homard localement uniforme) de longueur k peut être résolu en un temps polynomial (linéaire), puisqu'il suffit de traiter simplement les sous-arbres S_0, \ldots, S_k dans cet ordre, ce qui améliore le résultat de Bessy et Rautenbach [13] pour cette sous-classe d'arbres particulière.

Ce document se présente comme un travail académique qui indique les aspects très techniques de notre raisonnement. Il relève l'importance de ces techniques, certes longues mais rigoureuses, qui ont conduit aux résultats que nous avons présentés.

Nous pensons avoir apporté certains progrès dans ce domaine et les quelques contributions dédiées à ce thème constituent le témoignage de notre profond intérêt pour ce travail. Cependant, beaucoup de questions sont encore non résolues. Souhaitons que cette thèse soit une base de travail pour des recherches futures.

Enfin, tout au long de cette étude, un certain nombre de questions non résolues ont été soulevées. Ces perspectives plutôt intéressantes sont résumées ici.

- 1. Déterminer le nombre d'indépendance broadcast pour une chenille quelconque.
- 2. Déterminer le nombre d'indépendance broadcast pour un homard quelconque.
- 3. Déterminer le nombre d'indépendance *broadcast* pour d'autres classes d'arbres. En particulier pour les arbres k-aires et les araignées généralisées.
- 4. Déterminer le nombre d'indépendance broadcast pour les arbres $S_{\times m}(n^k)$ obtenu à partir de m copies de l'araignée.
- 5. Caractériser les arbres T pour lesquels $\beta_b(T) = 2(diam(T) 1)$.

- 6. Caractériser les graphes G pour lesquels $\beta_b(G) = M(diam(G) 1)$, où M est la taille maximum d'un ensemble de sommets deux à deux antipodaux dans G.
- 7. Déterminer $\beta_b(G \circ H)$, où \circ est une opération sur les graphes G et H.
- 8. Ètablir de nouvelles bornes (inférieures et supérieures) sur le paramètre $\beta_b(G)$ pour un graphe G quelconque.
- 9. Caractériser les arbres T pour lesquels $\beta_b(T)$ est égal à un autre invariant de broadcast.
- 10. Discuter la relation du paramètre d'indépendance broadcast $\beta_b(G)$ avec d'autres paramètres, par exemple avec le nombre de k-domination broadcast $\beta_{b_k}(G)$.

Nous cloturons cette énumération en proposant d'explorer le cas des graphes orientés, en particulier les chenilles orientées, les homards orientés et plus généralement les arbres orientés.

Bibliographie

- D. Ahmadi, G.H. Fricke, C. Schroeder, S.T. Hedetniemi and R.C. Laskar. Broadcast irredundance in graphs. *Congr. Numer.* 224:17–31(2015).
- [2] M. Ahmane, I. Bouchemakh and E. Sopena. On the Broadcast Independence Number of Caterpillars. *Discrete Applied Math.* 244:20-35 (2018).
- [3] M. Ahmane, I. Bouchemakh and E. Sopena. On the Broadcast Independence Number of Locally Uniform 2-Lobsters. ArXiv:1902.02998 [cs.DM] (2019).
- [4] R.B. Allan and R.C. Laskar. On domination and independent domination numbers of graphs. Discrete Math. 23:73-76,(1978).
- [5] G. Aussielli, P.L. Cresenzi, G. Gambosi, V. kanm, A. Marchetti, Spaccamela, and M.Proçasi. Complexity and Approximations. Combinatorial Optimisation Problems and their Approximability. Springer (1999)
- [6] D.W. Bange, A.E. Barkauskas, and P.J. Slater. A constructive characterization of trees with disjoint minimum dominating sets. *Congr. Numer.* 21:101–112(1978).
- [7] D.W. Bange, A.E. Barkauskas, and P.J. Slater. Disjoint dominating sets in trees. Technical Report 78-1087J, Sandia Laboratories, (1978).
- [8] X. Baogen, E.J. Cockayne, S.T. Hedetniemi, and Z. Shangchao. Extremal graphs for inequalities involving domination parameters. *Discrete Math.* 214:1–10 (2000).
- [9] L. Beaudou, R.C. Brewster and F. Foucaud. Broadcast domination and multipacking : bounds and the integrality gap. *Australas. J. Combin.* 74(1):86–97 (2019).
- [10] L. Beaudou, and R.C. Brewster. On the multipacking number of grid graphs. Discrete Mathematics and Theoretical Computer Science. 2(3) (2019).
- [11] C. Berge. The Theory of graphs and its applications. Collection Universitaire de Mathématiques, vol.2, Dunod, Paris (1958).
- [12] C. Berge. *Graphs and Hypergraphs*. North Holland, Amsterdam, (1973).
- [13] S. Bessy and D. Rautenbach. Algorithmic aspects of broadcast independence. ArXiv:1809.07248 [math.CO] (2018).
- [14] S. Bessy and D. Rautenbach. Relating broadcast independence and independence. Discrete Math. 342 (12): (2019).
- [15] S. Bessy and D. Rautenbach. Girth, minimum degree, independence, and broadcast independence. Commun. Comb. Optim. 4(2):131–139 (2019).

- [16] J.R.S. Blair, P. Heggernes, S. Horton, and F. Manne. Broadcast domination algorithms for interval graphs, series-parallel graphs and trees. *Congr. Num.* 169:55–77 (2004).
- [17] B. Bollobás and E.J. Cockayne. Graph theory parameters concerning domination, independence and irredundance. J. Graph theory. 3:241–250 (1979).
- [18] J. A. Bondy and U. S. R. Murty. Graph theory with applications. American Elsevier publishing (1976).
- [19] K.S. Booth and J.H. Johnson. Dominating sets in Chordal graphs. SIAM J. Comput. 11:191–199 (1982).
- [20] I. Bouchemakh and A. Boumali. Broadcast domination number of the cross product of paths. In:ODSA 2010 Conference, Universität Rostock, September 13–15 (2010).
- [21] I. Bouchemakh and N. Fergani. On the upper broadcast domination number. Ars Combin. 130:151–161 (2017).
- [22] I. Bouchemakh and R. Sahbi. On a conjecture of Erwin. Stud. Inform. Univ. 9(2):144–151 (2011).
- [23] I. Bouchemakh and M. Zemir. On the Broadcast Independence Number of Grid Graph. Graphs Combin. 30 :83–100 (2014).
- [24] S. Bouchouika, I. Bouchemakh and E. Sopena. Broadcasts on paths and cycles. ArXiv:1906.05089v1[cs.DM](2019). To appear.
- [25] B. Brešar and S. Špacapan. Broadcast domination of products of graphs. Ars Combin. 92:303–320 (2009).
- [26] R.C. Brewster, C.M. Mynhardt and L. Teshima. New bounds for the broadcast domination number of a graph. Cent. Eur. J. Math. 11(7):1334–1343 (2013).
- [27] R.C. Brewster, G. Mac Gillivray and F. Yang. Broadcast domination and multipacking in strongly chordal graphs. *Discrete Appl. Math.* 261:108–118 (2019).
- [28] Y. Caro and Y. Roditty. On the vertex-independence number and star decomposition of graphs. *Networks* 18:167–180 (1985).
- [29] Y. Caro and Y. Roditty. A note on the k-domination number of graph. Internat. J Math. Sci 13:205–206 (1985).
- [30] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas. Dominating 2-Broadcast in graphs, complexity, bounds and extremal graphs, *Applicable Analysis and Discrete Mathematics*. 12:205–223 (2019).
- [31] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas. General Bounds on Limited Broadcast Domination. Discrete Mathematics and Theoretical Computer Science. 20(2)(2018).
- [32] T.Y. Chang and W.E. Clark. The domination numbers of the $5 \times n$ and $6 \times n$ grid graphs. J.Graph Theory. 17:81–107 (1993).
- [33] E.J. Cockayne, O. Favaron, C.M. Mynhardt, and J. Puoch. A characterisation of (γ, i) -trees. J.Graph Theory. 34:277–292 (2000).

- [34] I. Charon, A. Germa et O. Hurdy. *Méthodes d'Optimisation Combinatoire*. Masson (1996).
- [35] E.J. Cockayne, S.E. Goodman, S.T. Hedetniemi. A linear algorithm for domination number of tree. *Inform. Process. Lett.* 4:41–44 (1975).
- [36] E.J. Cockayne, S.T. Hedetniemi and D.J. Miller. Properties of hereditary hypergraphs and middle graphs. *Canad. Math. Bull* 21:461–468 (1978).
- [37] E.J. Cockayne, S. Herke and C.M. Mynhardt. Broadcasts and domination in trees. Discrete Math. 311(13):1235–1246 (2011).
- [38] S. Cook. The complexity of theorem proving procedures. Proceedings of third annual ACM symposium on theory of computing, 22(1):151–158 (1971).
- [39] J. Dabney, B.C. Dean, and S.T. Hedetniemi. A linear-time algorithm for broadcast domination in a tree. *Networks* 53(2):160–169 (2009).
- [40] A.K. Dewdney. Fast Turning reductions between problems in NP; Chap 4; reductions between NP-complet problems. Tech. Rep.71, Dept. of Computer Science, University of West Ontario (1981).
- [41] J.E. Dunbar, S.M. Hedetniemi and S.T. Hedetniemi. Broadcasts in trees. Manuscript, (2003).
- [42] J.E. Dunbar, D.J. Erwin, T.W. Haynes, S.M. Hedetniemi and S.T. Hedetniemi. Broadcasts in graphs. *Discrete Appl. Math.* 154:59–75 (2006).
- [43] D.J. Erwin. Cost domination in graphs. PhD Thesis, Western Michigan University (2001).
- [44] D.J. Erwin. Dominating broadcasts in graphs. Bull. Inst. Combin. Appl. (ICA) 42 :89–105 (2004).
- [45] M. Farber and J.M. Keil. Domination in permutation graphs. J. Algorithm 6:309–321 (1985).
- [46] G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi, A. McRae, C.K. Wallis, M.S. Jacobson, H.W. Martin and W.D. Weakley. Combinatorial problems on chessboards, A brief survey in Graph Theory, Combinatorics and Applications. Proc. Seventh Quad. Internat. Conf. on the Theory and Applications of Graphs, vol. I. Y. Alavi and Schwenk, Eds. Wiley :507–528 (1995).
- [47] G.H. Fricke, T.W. Haynes, S.M. Hedetniemi and S.T. Hedetniemi, and R.C. Laskar. Excellent trees. Bull. Inst. Combin. Appl 34:27–38 (2002).
- [48] M.R. Garey and D.S. Johnson. Computers and Intractability : A Guide to theory of NP-Completness, W.H.Freeman and Co, (1978).
- [49] L. Gemmrich and C.M. Mynhardt. Broadcasts in Graphs : Diametrical Trees. Australas. J. Combin. 69(2):243–258 (2017).
- [50] F. Harary. *Graph Theory*. Addison-Wesley Reading (1969).
- [51] B.L. Hartnell and C.M. Mynhardt. On the Difference between Broadcast and Multipacking Numbers of Graphs. Utilitas Math. 94 (2014).
- [52] T.W. Haynes, S.T. Hedetniemi and P.J. Slater. *Domination in Graphs.* Volume 2: Advanced Topics-CRC Press book, (1998).

- [53] T.W. Haynes, S.T. Hedetniemi and P.J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker. New York, (1998).
- [54] S.T. Hedetniemi, R.C. Laskar and J. Pfaff. Irredundance in graphs. Congr. Numer. 48:183-193, (1985).
- [55] S.T. Hedetniemi and R.C. Laskar. Topics on domination. Noth Holland, (1990).
- [56] S.T. Hedetniemi. Unsolved algorithmic problems on trees. AKCE J. Graphs. Combin. 3(1):1–37 (2006).
- [57] P. Heggernes and D. Lokshtanov. Optimal broadcast domination in polynomial time. Discrete Math. 306(24):3267–3280 (2006).
- [58] P. Heggernes and S.H. Sæther. Broadcast domination on block graphs in linear time. Hirsch Edward. A. (ed) et al, Computer science-theory and applications. 7th international computer science symposium in Russia, CSR 2012, Nizhny Novgorod, Russia, July 3-7, 2012 Proceedings. Berlin : Springer (ISBN 978-3-642-30641-9/pbk). Lecture Notes in Computer Science 7353:172-183, (2012).
- [59] M.A. Henning, O.R. Oellermann and H.C Swart. Bounds on distance domination parameters. J. Comb. Inform. System. Sci. 16:11–18, (1991). Marcel Dekker. New York, (1998).
- [60] M.A. Henning. Distance domination in graphs. In *Domination in graphs : Advanced Topics* (T.W. Haynes, S.T. Hedetniemi and P.J. Slater, eds), Marcel Dekker. New York, (1998).
- [61] S. Herke. Dominating broadcasts in graphs. Master's dissertation, University of Victoria. (2009).
- [62] S. Herke and C.M. Mynhardt. Radial trees. *Discrete Math.* 309:5950–5962 (2009).
- [63] S.B. Horton, C.N. Meneses, A. Mukherjee and M.E Ulucakli. A computational study of the broadcast domination problem. Technical Report.2004-45, DIMACS Center for *Discrete Math and Theoretical Computer Sci.* 45: (2009).
- [64] C.F. De Jaenisch. Applications de l'analyse mathématique au jeu des échecs. Petrograde, (1862).
- [65] N. Jafari and F. Khosravi. Limited dominating broadcast in graphs. Discrete Math. Algorithms Appl. 5(4):1350025,9 pp, (2013).
- [66] C.L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill Book Co, New York-Toronto, Ont-London, (1968).
- [67] S. Lunney and C.M. Mynhardt. More trees with equal broadcast and domination numbers. Australas. J. Combin. 61:251–272 (2015).
- [68] C.M. Mynhardt and J. Wodlinger. A class of trees with equal broadcast and domination numbers. Australas. J. Combin. 56:3–22 (2013).
- [69] C.M. Mynhardt and A. Roux. Dominating and Irredundant Broadcasts in Graphs. Discrete Appl. Math. 220:80–90 (2017).
- [70] C.M. Mynhardt and L. Teshima. Broadcasts and multipackings in trees. Utilitas Math. 104:227–242 (2017).

- [71] C.M. Mynhardt and J. Wodlinger. A class of trees with equal broadcast and domination numbers. Australas. J. Combin. 56:3–22 (2013).
- [72] C.M. Mynhardt and J. Wodlinger. Uniquely radial trees. Comb. Math. and Comb. Comp. 93:31–152 (2015).
- [73] C.M. Mynhardt and L. Neilson. Boundary independent broadcasts in graphs. ArXiv:1906.10247v2[cs.DM] (2019).
- [74] O. Ore. *Theory of graphs*. American Mathematical Society Publications, Providence (1962).
- [75] C.H. Papadimitriou. *Computational complexity*. Addison-Wesley publishing company, (1994).
- [76] S.M. Seager. Dominating Broadcasts of Caterpillars. Ars Combin. 88:307–319 (2008).
- [77] P.J. Slater. R-Domination in graphs. J. Assoc. Comput. Mach. 23:446–450 (1976).
- [78] K.W. Soh and K.M. Koh. Broadcast domination in graph products of paths. Australas. J. Combin. 59:342–351 (2014).
- [79] V. Vazirani. Approximations Algorithms. Springer (2001).

Index

arête, 9 boucle, 10 multiple, 10 simple, 10araignée, 15 généralisée, 15 arbre, 14 enraciné, 14 branche, 85 de type \mathcal{B}_1 , 85 de type \mathcal{B}_2 , 85 broadcast, 24 σ -broadcast, 25 k-dominant, 42 de packing, 39 diamétral, 27 dominant, 26 indépendant, 37 efficace, 40 indépendant, 34 canonique, 55 maximal, 44 non-redondant, 38 optimal, 34 similaire, 55 maximal, 25 minimal, 25 non-redondant, 31 radial, 27 centre, 12 chaîne, 11 élémentaire, 11 diamétrale, 12 simple, 11

chenille, 15 sans troncs adjacents, 56 coût d'un broadcast, 25 cycle, 11 degré, 11 maximum, 11 minimum, 11 diamètre, 12 distance, 12 double-araignée, 49 ensemble f-broadcast, 24 f-frontière, 24 privée, 24 dominant, 17 distance-k, 20 efficace, 20 minimal, 17 indépendant, 18 non-redondant, 19 épine dorsale, 53 étoile, 15 excentricité, 12 feuille, 54 1-feuille, 82 unique, 82 2-feuille, 82 unique, 82 jumelle, 82 graphe, 9 biparti, 13 complet, 13 connexe, 13

fini, 9 stabilité, 18 planaire, 47 ordre d'un graphe, 9 radial, 28 simple, 10packing, 20 subdivisé, 14 trivial, 9 rayon, 12 vide, 9 séquence de sous-arbres épine, 85 grille, 15 sommet, 9 f-broadcast, 24 homard, 82 2-localement uniforme, 119 f-dominé, 24 f-voisin, 24 localement uniforme, 83 -épine, 82 longueur d' interne, 82 un homard, 82 adjacent, 10 une chaîne, 11 central, 12 une chenille, 53 isolé, 11 pendant, 11 motif, 56 support, 11 chevauche, 59 tronc, 54 voisin, 10 nombre d' sommets antipodaux, 12 efficacité broadcast, 41 sous-arbre supérieur, 41 épine, 83 indépendance broadcast, 34 épine inférieur, 34 voisin, 85 indépendance-non-redondance broadcast, 38 de type \mathcal{S}_1 , 83 supérieur, 38 de type S_2 , 83 nombre de sous-graphe, 13 k-domination broadcast, 42 induit, 13 supérieur, 42 domination, 17 taille d'un graphe, 9 stable, 18 voisinage supérieur, 17 f-broadcast, 24 domination broadcast, 26 f-voisinage privé, 24 supérieur, 26 k-voisinage domination-indépendance broadcast, 37 fermé, 11 supérieur, 37 ouvert, 11 non-redondance, 19 -broadcast, 24 supérieur, 19 fermé, 10 non-redondance broadcast, 32 ouvert, 10 supérieur, 32 privé, 11 packing broadcast, 39 inférieur, 39

Résumé :

Soit G un graphe simple non orienté. Un broadcast sur G est une fonction $f: V(G) \to \mathbb{N}$ telle que $f(v) \leq e_G(v)$ pour tout sommet v de G, où $e_G(v)$ est l'excentricité de v dans G, c'est à dire, la distance maximum de v à tout autre sommet de G. Le coût de f est la valeur $\sigma(f) = \sum_{v \in V(G)} f(v)$. Un broadcast f sur G est indépendant si pour chaque paire de sommets distincts u et v de G, $d_G(u, v) > \max\{f(u), f(v)\}$, où $d_G(u, v)$ désigne la distance entre u et vdans G. Le nombre d'indépendance broadcast de G est alors défini comme le coût maximum d'un broadcast indépendant sur G.

Une chenille est un arbre tel que, le sous-graphe induit par les sommets de degré supérieur ou égal à 2 est une chaîne simple non vide appelée *épine dorsale*. Un *homard* est un arbre tel que, le sous-graphe induit par les sommets de degré supérieur ou égal à 2 est une chenille.

Dans cette thèse, nous étudions les *broadcasts* indépendants sur des chenilles et nous donnons une formule explicite pour le nombre d'indépendance *broadcast* d'une famille de chenilles appelées chenilles sans paire de troncs adjacents. Un tronc étant un sommet interne de degré 2 de l'épine dorsale. Nous poursuivons cette ligne de recherche et nous considérons les *broadcasts* indépendants sur des *homards*. Nous donnons une formule explicite pour le nombre d'indépendance *broadcast* d'une famille de *homards* appelés 2-*homards* localement uniformes et d'une famille de *homards* localement uniformes sans sous-arbre épine ayant une unique branche avec exactement trois sommets pendants.

Mots Clés : Indépendance; distance; broadcast indépendant; chenille; homard.

Abstract :

Let G be a simple undirected graph. A broadcast on G is a function $f: V(G) \to \mathbb{N}$ such that $f(v) \leq e_G(v)$ holds for every vertex v of G, where $e_G(v)$ denotes the eccentricity of v in G, that is, the maximum distance from v to any other vertex of G. The cost of f is the value $\sigma(f) = \sum_{v \in V(G)} f(v)$. A broadcast f on G is independent if for every two distinct vertices u and v in G, $d_G(u, v) > \max\{f(u), f(v)\}$, where $d_G(u, v)$ denotes the distance between u and v in G. The broadcast independence number of G is then defined as the maximum cost of an independent broadcast on G.

A caterpillar is a tree such that, after the removal of all leaf vertices, the remaining graph is a non-empty path. A lobster is a tree such that, after the removal of all leaf vertices, the remaining graph is a caterpillar.

In this thesis, we study independent broadcasts of caterpillars and give an explicit formula for the broadcast independence number of caterpillars having no pair of adjacent trunks, a trunk being an internal spine vertex with degree 2. We carry on with this line of research and we consider independent broadcasts of lobsters. We give an explicit formula for the broadcast independence number of a family of lobsters called locally uniform 2-lobsters and lobsters called locally uniform having no spine-subtree with only one branch having exactly three leaves.

Keywords: Independence; Distance; Broadcast independence; Caterpillar; Lobster.