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Abstract

Our purpose of this thesis is to study existence of nodal solutions to some classes of

Sturm-Liouville boundary value problems having unitegrable weights posed on bounded

and unbounded intervals .

The global bifurcation theory of Rabinowitz constitute the principal tool of this thesis.

Resumé

L’ objet de cette thèse est de démontrer l’existence de solutions nodales pour cer-

taines classes de problèmes aux limites de Sturm-Liouville avec des poids non inte-

grables et définis sur des intervalles bornés et non bornés. La théorie globale de bifur-

cation de Rabinowitz constitue l’outil principal de cette thèse.
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Notations

The aim of this chapter is to introduce some basic concepts and elementary results

which will be used further.
C([ξ, η]) Space of continuous functions on [ξ, η].

‖u‖ = supt∈[ξ,η] |u(t)| .

‖u‖1 = supt∈[0,1] |u′(t)| .

Ck([ξ, η]) Space of k-times continuously differentiable functions on[ξ, η].

C1
b([ξ, η] Space of continuously differentiable functions on [ξ, η] with

supt∈[ξ,η)

∣∣∣u′ (t)∣∣∣ < ∞.

L1([ξ, η]) space of all measurable functions on [ξ, η] and satisfying

‖u‖ =
∫ η

ξ |u (t)| dt < ∞.

=′ The dual space of=′ = { f : = → R}.

< ., . > Duality between =′and =′ .

N(A) The null space of A.

B(x0, r) the open ball of radius r and centered at x0.

i.e That is.

a.e. almost everywhere.

bvp(s) Boundary value problem(s).

evp Eigenvalue problem.
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Introduction

This thesis is devoted to study some classes of Sturm-Liouville boundary value prob-

lems (SLP) on bounded and unbounded intervals.

C. Sturm and J. Liouville published in the period of 1836 to 1837, a series of papers

on second order differential equations including boundary value problems. The impact

of these papers went well beyond their subject matter to general linear and nonlinear

differential equations and to analysis generally. Prior to this time, the study of differ-

ential equations was largely limited to the search for solutions as analytic expressions

[60, 61, ?]. Sturms papers on differential equations are characterized by the general and

qualitative nature of the problems. He discussed a general classes of equations not a spe-

cific one, and he asked questions about the qualitative properties of the solution, instead

to gave the analytic expression of that one. Many authors contribute to the development

of the theory of Sturm-Liouville since 1900, for example Herman Weyl (1910) published

one of the most widely quoted papers in analysis , just as Sturm and Liouville started

the study of regular SLP.

This paper initiated the investigation of singular SLP. Dixon (1912), was the first who

replaced the continuity condition of the coefficients by the integrability condition. The

proof of general spectral theorem for unbounded self adjoint operators in Hilbert space

by Neumann and Stone (1932). The fundamental works of Titchmarsh (1962) provided

some results into the spectral theory of Sturm-Liouville opertors.

The main goal of this thesis is to study existence of nodal solutions for some classes of

Sturm-Liouville boundary value problems having unintegrable weights. Such a tematic
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hasn’t studied before. This work is organized as follows.

The first chapter is devoted to preliminaries and abstract background, we recall in

the concepts of compact operators, positivity as well as Riesz-Schauder Theory. Mainly,

a subsection of this chapter is devoted to the global bifurcation of P.H. Rabinowitz [51,

52] which is the tool used to prove the existence and multiplicity results in this work.

At the end of this chapter , we present some recent results about element of Sturm-

Liouville boundary value problems in integrable case, mainly, the result of Berestyckï

[11] concerning the existence of half eigenvalue and the result of Benmezai-Esserhane

[7] which extends the result of Berestyckï. We, also give the principal work of Zettl [64]

concerning the existence of eigenvalues .

In the second chapter, We investigate the existence of nodal solution of the following

boundary value problem −u′′(t) + q(t)u(t) = u(t) f (t, u(t)), t > 0,

u(0) = limt→+∞ u(t) = 0,
(1)

where q ∈ C (R+, R+) is such that q(t) > 0 for all t ≥ T and f : R+ ×R →R is a

continuous function. The first result of this chapter concerns the spectrum of the linear

eigenvalue problem associated to the problem (1) −u′′(t) + q(t)u(t) = µm(t)u(t), t > 0,

u(0) = 0, limt→+∞ u(t) = 0,
(2)

where µ is a real parameter and m ∈ C (R+, R) is such that limt→+∞ m(t) = 0, m(t) >

0 a.e. t ∈ R+.

We prove that this spectrum consists of an unbounded increasing sequence (µk(m))k≥1

of eigenvalues and the corresponding eigenfunctions have nodal properties. The main

result of this work concerns the existence and multiplicity result for nodal solutions,

witch is obtained by means of Rabinowitz global bifurcation theory. It claims that if

there is two integers i, j with 1 ≤ i ≤ j such that µj( f (t, ∞)), µi( f (t, 0)) are oppositely

located relatively to 1, then the problem (1) admits a nodal solution.

In the third chapter, we extend the results of second chapter on the real line. We

consider the linear eigenvalue problem :

 −u′′(t) + q(t)u(t) = µm(t)u(t), t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0,
(3)
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and the perturbed problem associated to the problem (3) −u′′(t) + q(t)u(t) = µu(t) f (t, u(t)), t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0,
(4)

where µ is real parameter, q ∈ C (R, R+) is such that q(t) > 0 for all |t| ≥ T, m ∈

C (R, R) is such that limt→−∞ m(t) = limt→+∞ m(t) = 0, m(t) > 0 a.e. t ∈ R and f :

R×R→R is a continuous function.

The first result concerns the spectrum of problem (3), we prove that this spectrum

consists of an unbounded increasing sequence (µk(m))k≥1 of eigenvalues and the corre-

sponding eigenfunctions have nodal properties. The main result of this work concerns

the existence and multiplicity result for nodal solutions, witch is obtained by means

of Rabinowitz global bifurcation theory. It claims that if there is two integers i, j with

1 ≤ i ≤ j such that µj( f (t, ∞)), µi( f (t, 0)) are oppositely located relatively to µ, then the

problem (4) admits a nodal solutions .

In the last chapter, we prove existence of nodal solutions to the following nonlinear

boundary value problem  −u′′ + qu = ρu f (t, u), in (0, 1) ,

u(0) = limt→1 u(t) = 0,
(5)

where ρ is a positive real parameter, q ∈ C ([0, 1) , R) , is such that
∫ 1

0 q = +∞ and

f : [0, 1]× (Rr {0}) → R is continuous. Nodal solutions appear as eigenfunctions to

the half eigenvalue problem−u′′ + qu = σmu + αu+ − βu−, in (0, 1) ,

u(0) = limt→1 u(t) = 0,
(6)

where σ is a real parameter, m, α, β ∈ C ([0, 1] , R) such that m ≥ 0 in (0, 1), and m(t0) > 0

for some t0 ∈ [0, 1].

We prove in the first that the Berestycki’s result holds true for the problem (6), that

the problem (6) admits two unbounded increasing sequences of simple half-eigenvalues

(λ+
k (q, m, α, β))k≥1) and (λ−k (q, m, α, β))k≥1) and the corresponding eigenfunctions have

nodal properties..

The main results of this work concerns existence of nodal solutions to the problem

(5) in the cases where the nonlinearity u f (t, u) is respectively asymptotically linear, sub-
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linear and superlinear. All are obtained by means of the global bifurcation theory due

to P. H. Rabinowitz.
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Introduction

On s’intéresse dans cette thèse à l’étude des problèmes aux limites de Sturm-Liouville

posés sur des intervalles bornées et non bornées. L’origine des problèmes de Sturm-

Liouville remonte à l’époque de 1836 à 1837 quand C. Sturm en collaboration avec J.

Liouville publièrent une série d’articles sur les équations différentielles linéaires et non-

linéaires du second ordre [60, 61, ?].

La contribution de Sturm et de Liouville a permis de donner une nouvelle méthodolo-

gie concernant les propriétés qualitatives de la solution, non l’expression exacte de cette

dernière. Plusieurs auteurs ont contribué au développement de la théorie de Sturm-

Liouville de 1900 à 1950, on citera Hermann Weyl (1910) qui a considéré le problème

linéaire de Sturm-Liouville dans le cas singulier, Dixon (1912) était le premier à rem-

placer la continuité des coefficients par une condition d’intégrabilité; M.H. Stone (1932)

dans son livre [49] étudia le problème de Sturm-Liouville dans les espaces de Hilbert.

Le travail principal de Titchmarch (1962) concerne certains résulats de la théorie spéctral

sur les opérateurs de Sturm-Liouville.

L’ objet de cette thèse est d’ étudier l’ existence de solutions nodales pour certaines

classes de problèmes aux limites avec des poids non intégrables. Le travail est organisé

de la manière suivante:

Le premier chapitre est consacré aux préliminaires. Nous rappelons les notions des

opérateurs compacts, la positivité et la théorie de Riesz-Schauder. Nous présentons la

théorie de bifurcation globale de Rabinowitz; on terminera ce chapitre par quelques

éléments sur les problèmes de Sturm-Liouville dans le cas intégrable.
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Dans le deuxième chapitre, on considère le problème au limites suivant

 −u′′(t) + q(t)u(t) = u(t) f (t, u(t)), t > 0,

u(0) = limt→+∞ u(t) = 0,
(7)

où q ∈ C (R+, R+) avec q(t) > 0 pour tout t ≥ T et f : R+ ×R →R est continue.

Le premier résultat concerne le spèctre du problème linéaire associé au problème (7) −u′′(t) + q(t)u(t) = µm(t)u(t), t > 0,

u(0) = 0, limt→+∞ u(t) = 0,
(8)

où µ est un paramètre rèel, et m ∈ C (R+, R) tel que limt→+∞ m(t) = 0, m(t) > 0 a.e. t ∈

R+. On montre que le spèctre consiste en une suite croissante des valeurs propres

(µk(m))k≥1 associés à des vecteurs propres admettant des propriétés nodales. Le résultat

principal de ce travail concerne l’existence et la multiplicité de solutions nodales en

utilisant la théorie de bifurcation globale de Rabinowitz. On montre que s’il existe deux

entiers i, j avec 1 ≤ i ≤ j tels que µj( f (t, ∞)), µi( f (t, 0)) sont opposés par rapport a 1,

alors le problème (7) admet des solutions nodales.

Dans le troisième chapitre, on étend le résultat de deuxième chapitre sur la droite réelle.

On considère le problème linéaire suivant: −u′′(t) + q(t)u(t) = µm(t)u(t), t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0,
(9)

 −u′′(t) + q(t)u(t) = µu(t) f (t, u(t)), t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0,
(10)

où µ est un paramètre rèel, q ∈ C (R, R+) avec q(t) > 0 pour tout |t| ≥ T, m ∈ C (R, R)

avec limt→−∞ m(t) = limt→+∞ m(t) = 0, m(t) > 0 a.e. t ∈ R et f : R × R →R est

continue.

On montre que le spèctre consiste en une suite croissante de valeurs propres (µk(m))k≥1

associées à des vecteurs propres admettant des propriétés nodales. Le résultat principal

de ce travail concerne l’existence et la multiplicité de solutions nodales en utilisant la

théorie de bifurcation globale de Rabinowitz. On montre que s’il existe deux entiers

i, j avec 1 ≤ i ≤ j tels que µj( f (t, ∞)), µi( f (t, 0)) sont opposés par rapport a µ, alors le

problème (10) admet des solutions nodales.
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Dans le dernier chapitre on montre l’existence de solution nodales pour le problème aux

limites suivant:  −u′′ + qu = ρu f (t, u), in (0, 1) ,

u(0) = limt→1 u(t) = 0,
(11)

où ρ est un paramètre réel , q ∈ C ([0, 1) , R) ,
∫ 1

0 q = +∞ et f : [0, 1]× (Rr {0})→ R est

continue. Les solutions nodales apparaissent comme des fonctions propres du problème

de demi valeurs propres suivant:−u′′ + qu = σmu + αu+ − βu−, in (0, 1) ,

u(0) = limt→1 u(t) = 0,
(12)

où σ est un paramétre rèel, q, m, α, β ∈ C ([0, 1] , R) tels que m ≥ 0 dans [0, 1] et m(t0) > 0

pour certain t0 ∈ [0, 1]. Au début de ce travail on montre que le résultat de Berestycki

reste valide pour le problème (12). Le résultat principal concerne l’existence et la multi-

plicité de solution nodales du problème (11) dans le cas où la nonlinéarité

u f (t, u) est respectivement asymptotiquement linéaire, sous-linéaire et super-linéaire.

Dans tous les cas, on utilise la théorie de bufircation globale de Rabinowitz.
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Chapter 1
Preliminaries

1.1 Abstract background

1.1.1 The compactness

We start this section by some definitions about compactness.

Let E ,F be two Banach spaces

Definition 1.1 ([27]). A subset M of E is said to be compact, iff every sequence (xn)n∈N ⊂ M

has a convergent subsequence with limit in M.

Let Ω ⊂ E be an open set.

Definition 1.2. Let A : Ω→ F be continuous mapping. A is said to be:

• compact, if A(Ω) is compact.

• completely continuous mapping if maps bounded sets into relatively compact sets.

Clearly, all compact mapping are completely continuous mapping, if Ω is a bounded

set we have the equivalent.

properties

• A linear combination of compact mappings is compact.

• The product of a compact mapping with a linear bounded mapping is compact.

1



Chapter 1. Preliminaries

• If the sequence mappings An : Ω → F are compact and A : Ω → F such that

A = limn→+∞An uniformly in any bounded set of Ω, Then A is a compact map-

ping.

In this thesis we use the following compactness criteria.

Ascoli-Arzéla compactness criterion

Let (X, d) be a compact metric space and Y a Banach space; then C(X, Y) is a Banach

space equipped with the sup norm ‖ f ‖ = supx∈X ‖ f (x)‖Y.

Definition 1.3. Let H ⊂ C(X, Y) be a family of continuous functions. H is said to be equicon-

tinuous if the set H(x0) := { f (x0), f ∈ H} is equicontinuous for all x0 ∈ X, i.e.

∀ε > 0, ∃δ > 0, ∀x ∈ X, d(x, x0) ≤ δ =⇒ ‖ f (x)− f (x0)‖ ≤ ε , ∀ f ∈ H. (1.1)

Lemma 1.4. (Ascoli-Arzéla Theorem) [28] Let (X, d) be a compact metric space and Y a Banach

space; and let H a subset in C(X, Y). H is said to be relatively compact if and only if

• H is equicontinuous,

• ∀x ∈ X the set { f (x), f ∈ H} is relatively compact in Y.

Corollary 1.5. ∀k ∈N, Ck+1([a, b], R) can be embedded compactly in Ck([a, b], R).

Compactness criteria on noncompact intervals

In this section we present Corduneanu ’s compactness criterion, extending the Ascoli-

Arzéla lemma.

Let I be a bounded or unbounded interval, and let Cb =: Cb(I, R) denote the vector

space of all bounded and continuous function, equipped with the sup norm ‖ f ‖ =

supx∈I | f (x)|.

Definition 1.6. A family H ⊂ Cb is called equicontinuous on every compact interval I of R if it

satisfies

∀ε > 0, ∃δ > 0, ∀t1, t2 ∈ I, |t1 − t2| ≤ δ =⇒ |x(t1)− x(t2)| ≤ ε, f orallx ∈ H. (1.2)

2



Chapter 1. Preliminaries

Definition 1.7. A family H ⊂ Cb is called equiconvergent if it satisfies

∀ε > 0, ∃T = T(ε) > 0, ∀t1, t2 ∈ I, |t1| > T, |t2| > T =⇒ |x(t1)− x(t2)| ≤ ε, ∀x ∈ H.

(1.3)

Theorem 1.8. (Corduneanau Theorem)[5] A family H ⊂ Cb is relatively compact if and only if

the following conditions are satisfied:

• H is uniformly bounded in Cb,

• H is equicontinuous on every compact of I,

• H is equiconvergent.

1.1.2 The Riesz Schauder Theory

Let E be a Banach space and L(E) be the Banach space of all bounded linear opera-

tors.

Let A ∈ L(E), we consider the linear operator.

Aλ = λI −A, (1.4)

where I is the identity operator and λ ∈ C is a complex number. The distribution of the

value λ for which Aλ has an inverse and the properties of this inverse when it exists, are

called the spectral theory of the operator Aλ.

Definition 1.9 ([13]). Let A ∈ L(E). The set

ρ(A) = {λ ∈ C, λI −A is bijective} (1.5)

is called the resolvent set of A and the inverse operator R(λ;A) = (λI − A)−1 is called the

resolvent operator of A at λ.

Definition 1.10. • The spectrum of A, σ(A), is the complementary set of ρ(A) in C.

• A complex number λ is an eigenvalue of A if the equation λx −Ax = 0 has a solution

x 6= 0, this solution x is said to be an eigenvector of A corresponding to λ. The null

space N (λI −A) is the eigenspace associated with λ, and its dimension is the geometric

multiplicity of λ .
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Proposition 1.11. The spectrum σ(A) is a compact set included in the ball B(0; ‖A‖).

Definition 1.12. For every operator A ∈ L(E), we define

r (A) = sup{|λ|, λ ∈ σ(A)}

the spectral radius of A.

Theorem 1.13. Let A ∈ L (E), the spectral radius of A is given by

r(A) = lim
n→+∞

‖An‖ 1
n = inf

n∈N
‖An‖ 1

n

and we have

r (A) ≤ ‖A‖

.

We denote by K(E) the space of compact operators from E to E , which is a closed

subspace in L(E). In the case of a compact operator, one has a more precise description

of the spectrum. This result known as the Riesz-Schauder Theory.

Theorem 1.14. [13] Let A ∈ K(E), where E is infinite dimensional space. Then

1. 0 ∈ σ(A).

2. Each numbers λ 6= 0 in the spectrum σ(A) is an eigenvalue.

3. We are in one (and only one) of the following cases

• either σ(A) = {0},

• either σ(A) is finite,

• or σ(A)− {0} may be described as a sequence of distincts points tending to 0.

Theorem 1.15 ([28, Theorem 11.3.3]). For λ ∈ σ(A)\{0} there exists m ∈N such that

N
(
(λI −A)m) = N ((λI −A)m+1

)
and this subspace is finite dimensional.

Since N (λI −A) ⊂ N
(
(λI −A)2

)
⊂ N

(
(λN )3

)
⊂ · · · then

⋃
j≥1

N
(
(λI −A)j

)
= N

(
(λI −A)m)

and it’s finite dimensional. This dimension is called the algebraic multiplicity of λ.
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1.1.3 Positivity

Let E be a real Banach space.

Definition 1.16. A nonempty closed convex subset P of E is called a cone if

i) tx ∈ P for all x ∈ P and t ≥ 0

ii) x ∈ P , −x ∈ P implies x = 0. ( 0 denote de zero element of E )

A cone P is called solid if it contains interior points (i.e. Ṗ 6= ∅). A cone P is called generating

if E = P −P . Moreover if P −P = E then the cone P is said to be total.

Every cone P in E defines a partial order relation � in E as follows: for x, y ∈ E ,

x � y⇔ y− x ∈ P .

We shall write x ≺ y to indicate that x � y and x 6= y, while x ≺≺ y will always stand

for y− x ∈ Ṗ if P is solid.

Definition 1.17. A cone P is said to be normal if there exists a positive constant N such that

0 � x � y⇒ ‖x‖E ≤ N‖y‖E . (1.6)

Example 1.18. Let E = C1[a, b], the space of continuously differentiable functions on

[0, 2Π] with the norm

‖ u ‖= max
t∈[a,b]

|u(t)|+ max
t∈[a,b]

|u′(t)| (1.7)

and let P1 = {x(t) ∈ C1[a, b], x(t) ≥ 0 a ≤ t ≤ b}. Clearly P is a solid cone in C1[a, b].

P1 is not normal. In fact, if P1 is normal, then there exist an N > 0 such that

0 � x � y⇒ ‖x‖E ≤ N‖y‖E . (1.8)

Let xn(t) = 1− cosnt, yn(t) = 2. Then we have 0 � x � y, ‖xn‖ = 2 + n, and ‖y‖ = 2.

Consequently, 2 + n ≤ 2N (n = 1, 2, 3, ...), which is impossible.

Example 1.19. Let E = Lp(Ω), where Ω ⊂ Rn, 0 < mesΩ < +∞ and 1 ≤ p < +∞, and

P2 = {x(t) ∈ Lp(Ω), x(t) ≥ 0, a.e t ∈ Ω}. It is easy to know that P2 is a normal cone

and its normal constant N = 1. Clearly, intP2 = ∅. Thus P2 is not a solid cone.
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The main interest concerning the positive operator, in what follow, is the existence

of positive eigenvector. More precisely the condition under which the spectral radius of

a positive operator is an eigenvalue.

From now we consider an ordered Banach space E with respect to a cone P and denote

the partial ordering by ” � ” .

Definition 1.20. Let A : E → E be an operator. A is said to be

• Positive if A(P) ⊂ P ,

• Increasing if for u, v ∈ P

u � v implies Au � Av.

Remark 1.21. The concept of positive operator and increasing operator coincide when the

operator A is a bounded linear operator.

Definition 1.22. Let A ∈ L(E) be a positive operator. A real number λ is said to be positive

eigenvalue of A if λ > 0 and there is x ∈ P\{0} such that

Ax = λx

.

The following theorem is known as Krein-Rutman Theorem. This result presents the

situation where the spectral radius r(A) of a positive linear compact operator A, is a

positive eigenvalue of A.

Theorem 1.23. [63] Assume that the cone P is total and A ∈ L(E) is compact and a positive

operator with r (A) > 0. Then r (A) is a positive eigenvalue of A.

1.1.4 Global bifurcation theory

The Bifurcation theory is the mathematical study of changes in the qualitative or

topological structure of a given family, such as the solutions of family of differential

equations. A bifurcation occurs when a small smooth change made to the parameter

value of a system causes a sudden qualitative or topological change in its behavior. The

name "bifurcation" was first introduced by Henri Poincaré in 1885.

Let E be a real Banach space and F : R× E → E is a continuous mapping. Suppose the

equation F (λ, u) = 0, possesses a simple curve of solutions given by

6
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Z = {(λ(τ), u(τ)), τ ∈ I}.

If for some τ̄ ∈ I. F possesses zeroes not lying on Z in every neighborhood of

(λ(τ̄), u(τ̄)), then (λ(τ̄), u(τ̄)) is said to be a bifurcation point for F with respect to

the curve Z .

The global theory of bifurcation concerns the equation

u = λLu +H(λ, u), (1.9)

where L : E → E is a compact linear operator and H : R × E → E is completely

continuous with: H = o(‖u‖E ) near u = 0 uniformly on a bounded interval of λ.

The equation (1.9) possesses a curve of solutions {(µ, 0), µ ∈ R}, which is called curve

of trivial solutions.

A bifurcation point with respect to the set of trivial solutions is a point (µ, 0) such that

there is a sequence of nontrivial solutions of (1.9), (µn, un)n which converges to (µ, 0) in

R× E. It was established that a necessary condition for (µ, 0) to be a bifurcation point is

that µ is a characteristic value of L (i.e. µ−1 is a non zero eigenvalue of L), however this

condition is not sufficient as illustrated by the example

E = R2, u = (x, y)x

y

 = λ

x

y

+

−y3

x3

 .

The linear part of equation has µ = 1 as a characteristic value but the equation does not

have solutions (λ, u) with u 6= 0. The sufficient condition for (µ, 0) to be a bifurcation

point is due to Krasnoselskii [36, 51] as we will see in Theorem 1.24

Theorem 1.24 ([36, 51, 52, Krasnoselskii]). If µ is a characteristic value of L with an odd

algebraic multiplicity, (µ, 0) is a bifurcation point.

The bifurcation phenomenon ( which can be local phenomenon or global) gives us

informations concerns the structure of the set of nontrivial solutions. If we denote by

S the closure of the set of nontrivial solutions of (1.9), Theorem 1.24 implies that the

intersection of S with any neighborhood of (µ, 0) is nonempty when µ is of odd multi-

plicity. For the same hypothesis, Rabinowitz in [51, 52] shows a global phenomenon of

7
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bifurcation from a (µ, 0), more precisely Rabinowitz gives an alternative as we will see

in Theorem 1.26.

Definition 1.25. A component of a topological space is a closed connected subset maximal with

respect to inclusion.

Theorem 1.26 ([51, 52, Rabinowitz]). If µ is a characteristic value of L with an odd multiplicity

, then S possesses a component of nontrivial solutions Cµ such that (µ, 0) ∈ Cµ and Cµ either :

• meets infinity in R× E (i.e. Cµ is unbounded ); or

• meets (µ̂, 0), where µ̂ is a characteristic value of L with µ̂ 6= µ.

A stronger result has been obtained by Rabinowitz in [52], when µ is a simple charac-

teristic value of L (i.e. of multiplicity 1). To describe it, let v ∈ E denote the eigenvector

of L corresponding to µ normalized so ‖v‖E = 1. l ∈ È be the eigenvector of the trans-

pose of L, normalized so that < l, v >= 1, Ẽ = {u ∈ E/, < l, u >= 0}, then E = Rv⊕ Ẽ ,

so for u ∈ E we have u = tv + w where t =< l, u > and w ∈ Ẽ . For ς, κ ∈ R such that

0 < ξ, 0 < η < 1, we define

Kξ,η = {(λ, u) ∈ R× E/|λ− µ| < ξ,< l, u >≥ η‖u‖}.

Kξ,η is an open set of R× E and consists of two disjoint convex component K+
ξ,η and

K−ξ,η such that for ν = + or −:

Kν
ξ,η = {(λ, u) ∈ R× E/|λ− µ| < ξ,< l, νu >≥ η‖u‖E}.

For ζ > 0, we denote by Bζ the ball of radius ζ and centred at (µ, 0).

Lemma 1.27 ([52, Lemma 1.24]). There exists ζ0 > 0 such that for all ζ < ζ0 (S− (µ, 0)) ∩

Bζ ⊂ Kξ,η. If (λ, u) ∈ (S− (µ, 0)) ∩ Bζ), then u = tu + w where t > η‖u‖E or t < −η‖u‖E
and |λ− µ| = 0(1), ‖w‖E = 0(|t|) for t near 0.

The next Theorem shows that near (µ, 0), Cµ, consists of two subcontinua which

meet only at (µ, 0).

Theorem 1.28 ([52, Theorem 1.25]). Cµ possesses a subcontinuum in K+
ξ,η ∪ (µ, 0) and in

K−ξ,η ∪ (µ, 0) each of which meet (µ, 0) and ∂Bζ for all ζ > 0 sufficiently small.

8
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Theorem 1.29 ([52, Theorem 1.40]). Cµ can be decomposed into two component C1
µ and C2

µ

such that each of them satisfied the alternative :

• meets infinity in R× E (i.e. Cµ is unbounded ); or

• meets (µ̂, 0), where µ̂ is a characteristic value of L with µ̂ 6= µ.

For a precise definition of C1
µ and C2

µ see [52].

1.1.5 Elements of Sturm-Liouville boundary value problem

In mathematics and its application a classical Sturm-Liouville theory, named after

Jacques Charles Fronçois Sturm (1803-1855) and Joseph Liouville (1809-1882), is the the-

ory of real second order linear differential equation of the form

d
dx

[p(x)
dy
dx

] + q(x)y = −λω(x)y, in (a, b), (1.10)

where y is a function of the free variable. Here the functions p, q and ω > 0 are specified

at the outset. In the simple of cases all coefficients are continuous on the finite closed

interval [a, b], and p has continuous derivative. The function ω > 0 is called the weight

function, with separated boundary conditions of the form

a1y(a)− b1y′(a) = 0, a2u(b) + b2y′(b) = 0, (1.11)

where ai, bi are real numbers such that |bi|+ |ci| 6= 0, i = 1, 2.

In this case the function y is a solution if it is continuously differentiable on (a, b) and

satisfies the equation (1.10) at every point in (a, b).

The value of λ is not specified in the equation; finding the value of λ for which there

exists a non trivial solution of (1.10) satisfying the boundary conditions is part of the

Sturm-Liouville problem.

Such values of λ, when they exist, are called the eigenvalues, and the corresponding

solutions (for each such λ) are the eigenfunctions of this problem.

Now we recall some recent results concerning the Sturm-Liouville boundary value

problem theory in the integrable case.
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The half linear eigenvalue problem

In this section we investigate the half linear eigenvalue problem
−(pu′)′(t) + q(t)u(t) = µm(t)u(t) + αu+ − βu−, t ∈ (ξ, η),

au(ξ)− bp(ξ)u′(ξ) = 0,

cu(η) + dp(η)u′(η) = 0,

(1.12)

where

• µ is a real parameter.

• −∞ ≤ ξ < η ≤ +∞.

• p : (ξ, η)→ R+ is a measurable function with p > 0 a.e on (ξ, η),

• q, m, α, β : (ξ, η)→ R are measurable functions.

Noted that u+, (u−) the positive part (resp the negative part). The bvp (1.12) is called

half-linear since it is linear and positively homogeneous in the cone u ≥ 0 and u ≤ 0.

Noted that if α = β = 0 the bvp (1.12) coincide with the linear eigenvalue problem.

In the first, we introduce the concept of the half-eigenvalue.

Definition 1.30. We say that λ is a half-eigenvalue of (1.12) if there exists a nontrivial solution

(λ, uλ) of (1.12). In this situation, {(λ, tuλ), t > 0} is a half-line of nontrivial solutions of

(1.12) and λ is said to be simple if all solutions (λ, v) of (1.12) with v and u having the same

sign on a deleted neighborhood of ξ are on this half-line. There may exist another half-line of

solutions {(λ, tvλ), t > 0}, but then we say that λ is simple if uλ and vλ have different signs

on a deleted neighborhood of ξ and all solutions (λ, v) of (1.12) lie on these two half lines.

Let m, α and β be three continuous functions on [ξ, η] such that −∞ < ξ < η < +∞

with m > 0.

Berestycki proved in ([11]) the following theorem

Theorem 1.31. Assume that p ∈ C1[ξ, η] and p > 0 in [ξ, η]. Then the set of half eigenvalues of

bvp (1.12) consists of two increasing sequences of simple half-eigenvalues (λ+
k )k≥1 and (λ−k )k≥1,

such that for all k ≥ 1 and ν = + or −, the corresponding half-lines of solutions are in {λν
k} ×

Sν
k .
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Benmezai and Esserhane [7] proved that the Berestycki result holds for the integrable

case in the following lemma .

Lemma 1.32. [7, lemma 3.7] Assume that 1
p , q, m, α, β ∈ L1(ξ, η) with 1

p > 0 and m > 0 a.e.

on (ξ, η). Then the set of half eigenvalues of bvp (1.12) consists of two increasing sequences of

simple half-eigenvalues (λ+
k )k≥1 and (λ−k )k≥1, such that for all k ≥ 1 and ν = + or −, the

corresponding half-lines of solutions are in {λν
k} × Sν

k . Furthermore, aside this solutions and the

trivial ones, there are no other solution of (1.12).

In the same paper Benmezai and Esserhane [7], proved the existence of half eigenval-

ues on Theorem 1.33 when they relaxed the condition m > 0 a.e on (ξ, η) to the condition

m ≥ 0 a.e. on (ξ, η) and m > 0 on a subset of positive measure.

Theorem 1.33. Assume that 1
p , q, m, α, β ∈ L1(ξ, η) with 1

p > 0 and m ≥ 0 a.e. on (ξ, η) with

m > 0 on a subset of positive measure. Then the bvp (1.12) admits two increasing sequences of

simple half-eigenvalues (λ+
k (q, m, α, β))k≥1 and (λ−k (q, m, α, β))k≥1, such that for all integers

k ≥ 1 and ν = +,−, the corresponding half-line of solutions lies in {λν
k(q, m, α, β)} × Sν

k and

limk→+∞ λν
k(q, m, α, β) = +∞. Furthermore, aside from these solutions and the trivial one,

there are no other solutions of (1.12). Moreover,

• For m fixed in L1(ξ, η) such that m ≥ 0 a.e. on (ξ, η) and m > 0 on a subset of posi-

tive measure and q, α1, α2, β1, β2 ∈ L1(ξ, η), the mapping λν
k(q, m, ., .) has the following

properties:

1. If α1 ≤ α2 a.e. in (ξ, η) , then λν
k(q, m, α1, β1) ≥ λν

k(q, m, α2, β2), for all k ≥ 1 and

ν = + or −.

2. If β1 ≤ β2 a.e. on (ξ, η), then λν
k(q, m, α1, β1) ≥ λν

k(q, m, α1, β2), for all k ≥ 1 and

ν = + or −.

• Let m, q1, q2, α, β ∈ L1(ξ, η) such that m ≥ 0 a.e. on (ξ, η) and m > 0 in a subset

of positive measure. The mapping λν
k(m, ., α, β) has the following properties: If q1, q2 ∈

L1(ξ, η) such that q1 ≤ q2 a.e. on (ξ, η) then λν
k(q1, m, α, β) ≤ λν

k(q2, m, α, β), for

all k ≥ 1 and ν = +,−. Moreover, if q1 < q2 on a subset of positive measure, then

λν
k(q1, m, α, β) < λν

k(q2, m, α, β).

11
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• Let mn, qn, m, q ∈ L1(ξ, η) such that mn, m ≥ 0 a.e. on (ξ, η) and mn, m > 0 on a subset

of positive measure and if qn → q and mn → m in L1. Then for all α, β ∈ L1(ξ, η), k ≥ 1

and ν = +,−, we have limn→∞ λν
k(qn, mn, α, β) = λν

k(q, m, α, β).

• For α, β fixed in L1(ξ, η) and m1, m2 two functions such that mi ≥ 0 a.e. on (ξ, η) and

mi > 0 in a subset of positive measure for i = 1, 2, then the mapping λν
k(q, ., α, β) has the

following properties: If m1 ≤ m2 a.e. in (ξ, η), m1 < m2 in a subset of positive measure If

either λν
k(q, m1, α, β) ≥ 0 or λν

k(q, m2, α, β) ≥ 0 , then λν
k(q, m1, α, β) > λν

k(q, m2, α, β),

and if either λν
k(q, m1, α, β) ≤ 0 or λν

k(q, m2, α, β) ≤ 0, then λν
k(q, m1, α, β) < λν

k(q, m2, α, β),

for all k ≥ 1 and ν = + or −.

The linear eigenvalue problem

For the particular case of the problem (1.12) where α = β = 0, namely for the

problem 
−(pu′)′(t) + q(t)u(t) = µm(t)u(t), t ∈ (ξ, η),

au(ξ)− bp(ξ)u′(ξ) = 0,

cu(η) + dp(η)u′(η) = 0,

(1.13)

we obtain from Lemma 1.32 the following theorem of Zettl, concerns the basic exis-

tence result of eigenvalue for the linear eigenvalue problem (1.13)

Theorem 1.34 ([64, Theorem 4.3.1]). Assume that p > 0 , 1
p , q, m ∈ L1(ξ, η) and m > 0 a.e.

on (ξ, η).

Then the Sturm-Liouville Problem (1.13) has an infinite but countable number of real eigen-

value and they can be ordred to satisfy

−∞ < µ1 < µ2 < · · · and lim
k→+∞

µk = ∞

. If uk is an eigenvalue of µk, then uk is unique up to constant multiples. Let nk denote the

number of zeros of uk in the open interval (ξ, η), then for k ≥ 1,

nk+1 = nk + 1.

Zettl proved the existence of eigenvalue on theorem 4.3.2. when they relaxed the

condition m > 0 a.e. in (ξ, η) to the condition m ≥ 0 in (ξ, η) and
∫ η

ξ m > 0.

12
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Theorem 1.35 ([64, Theorem 4.3.2]). Assume that p > 0 , 1
p , q, m ∈ L1(ξ, η) and m ≥ 0 on

(ξ, η) and
∫ η

ξ m > 0.

Then the Sturm-Liouville Problem (1.13) has an infinite but countable number of real eigen-

value and they can be ordred to satisfy

−∞ < µ1 < µ2 < · · · and lim
k→+∞

µk = ∞

. If uk is an eigenvalue of µk, then uk is unique up to constant multiples. Let nk denote the

number of zeros of uk in the open interval (ξ, η), then for k ≥ 1

nk+1 = nk + 1.

Moreover the sufficient but not necessary condition to have n1 = 0 is that m > 0 a.e. in (ξ, η).

The integral condition on m eliminate the case when m is identically zero on (ξ, η).

Zettl proved the monotonicity of eigenvalue in theorem 4.9.1.

Theorem 1.36 ([64, Theorem 4.9.1]). For 1
p > 0, 1

p , q, m ∈ L1(ξ, η) and m > 0 a.e. in (ξ, η).

Then the problem (1.12) admits an unbounded increasing sequence of eigenvalues (µk(p, q, m), k ≥

1) such that eigenfunctions associated with µk(p, q, m) belong to Sk. Moreover,

• Fix p, m. Suppose Q ∈ L1(ξ, η) and assume that Q ≥ q a.e. on (ξ, η). Then for all k ≥ 1,

µk(p, Q, m) ≥ (µk(p, q, m). If Q > q on a subset of positive measure, then for all k ≥ 1,

µk(p, Q, m) > (µk(p, q, m)

• Fix p, m. Suppose 1
P ∈ L1(ξ, η) and 0 < P ≤ p a.e. on (ξ, η). Then for all k ≥ 1,

µk(P, q, m) ≥ (µk(p, q, m). If 1
P < 1

p on a subset of positive measure, then for all k ≥ 1,

µk(P, q, m) < µk(p, q, m).

• Fix p, q. Suppose M ∈ L1(ξ, η) and M ≥ m > 0 a.e. on (ξ, η). Let k ≥ 1, then

µk(p, q, M) ≥ µk(p, q, m) if µk(p, q, M) < 0 and µk(p, q, m) < 0; but µk(p, q, M) ≤

µk(p, q, m) if µk(p, q, M) > 0 and µk(p, q, m) > 0. Furthermore, if strict inequality holds

in the hypothesis on a set of positive measure, then strict inequality holds in the conclusion.

Zettl proved the dependence of eigenvalue on the problem in theorem 4.4.1.

Let J = (ξ ′, η′) such that −∞ ≤ ξ ′ < ξ < η < η′ ≤ +∞, they study the variation of

the eigenvalues with respect to the end point ξ, η as they vary within the interval J.
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Theorem 1.37 ([64, Theorem 4.4.1]). Assume that 1
p > 0 , 1

p , q, m ∈ L1
loc(ξ

′, η′). with m > 0

a.e. on (ξ ′, η′). For each n ∈ N. Let µn be the set of the eigenvalue of (1.12) . Then For each

n ∈N, µn is a continuous function of the equation. In particular:

• For each n ∈N, µn(
1
p ) is a continuous function of 1

p ∈ L1(ξ ′, η′).

• For each n ∈N, µn(q) is a continuous function of q ∈ L1(ξ ′, η′).

• For each n ∈N, µn(m) is a continuous function of m ∈ L1(ξ ′, η′).

• For each n ∈N, µn(ξ) is a continuous function of ξ, λn(η) is a continuous function of η.
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Chapter 2
Nodal solutions for asymptotically linear

second-order BVPs on the half line

2.1 Introduction

Often motivated by a physical interest, study of existence of solutions to boundary

value problems (BVPs for short) associated with second-order ordinary differential equa-

tions posed on infinite intervals and their qualitative properties has been the thematic

of many articles, see for instance [1, 3, 5, 15, 19, 24, 25, 30, 29, 34, 35, 48] and references

therein. Such a study is developed in the papers [24, 25, 30, 29, 48] for the class of BVPs: −u′′ + a(t)u = F(t, u), t > T,

BC,
(2.1)

where F ∈ C ((T,+∞)×R, R) , a ∈ C ([T,+∞) , R+) does not vanish identically and BC

are boundary conditions at T and +∞.

In [24] and [25] is considered the case of BVP (2.1) where the weight a is a positive

constant, BC takes the form u(T) = limt→+∞ u(t) = 0 and the nonlinearity F is positive.

Notice that for such a weight a, the Green’s function associated with BVP (2.1) is given

explicitly. This particularity allowed authors to construct a favourable framework to

the use of Krasnoselskii’s fixed point theorem in a cone, and so to obtain existence and

multiplicity results for positive solutions to this particular case of BVP (2.1).

Inspired by the works in [24] and [25], Ma and Zhu investigate in [48], existence and

multiplicity of positive solutions for the case of BVP (2.1) where the weight a is bounded

from below and above by positive constants, BC takes the form u(T) = limt→+∞ u(t) = 0
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and the nonlinearity F is semipositone. They proved that such a weighted BVP has a

Green’s function whose properties allowed them to construct an appropriate framework

to the use of Krasnoselskii’s fixed point theorem in a cone.

In [30] and [29], is considered BVP (2.1) under the conditions that the weight a is

bounded from below by a positive constant (a may be unbounded from above) and BC

takes the form u(T) = u0 and u is bounded. Combining the method of upper and lower

solutions and sequential arguments, authors obtained existence and multiplicity results.

Many old and recent works, see for instance [6, 7] and references therein, show that

under suitable conditions, existence of nodal solutions to BVPs associated with second

order ordinary differential equations usually occurs. For this reason, we investigate in

this chapter existence of such solutions to BVP (2.1) when a(t) ≥ 0 for all t ≥ T and

inft≥T0 a(t) > 0 for some T0 ≥ T (a may be unbounded from above) and BC takes

the form u(T) = limt→+∞ u(t) = 0. The first main result of this work concerns the

spectrum of the linear eigenvalue problem associated with our case of BVP (2.1). It

claims that this spectrum consists in an unbounded increasing sequence of eigenvalues

and the coresponding eigenfunctions have nodal properties. The second main result of

this work is obtained by means of Rabinowitz global bifurcation theory. It claims that

if the nonlinearity F has linear approximations at 0 and ∞ satisfying eigenvalue criteria

then our version of BVP (2.1) admits nodal solutions.

2.2 Main results

This work deals with existence of nodal solutions to the BVP, −u′′(t) + q(t)u(t) = u(t) f (t, u(t)) t > 0,

u(0) = limt→+∞ u(t) = 0,
(2.2)

where f : R+ ×R→R is a continuous function and q ∈ C (R+, R+) .

Statements of the main results of this paper need to introduce some notations. In
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what follows, we let

Γ = {m ∈ C (R+, R) : limt→+∞ m(t) = 0} ,

Γ+ = {m ∈ Γ : m(t) > 0 a.e. t ∈ R} ,

Q = {q ∈ C(R+, R+) : ∃T ≥ 0 such that inft≥T q(t) > 0} ,

W = {u ∈ C (R+, R) : u(0) = limt→+∞ u(t) = 0} ,

Wk = W ∩ Ck (R+, R) for all integers k ≥ 1.

Hereafter, the linear space W is equipped with the norm ‖·‖ , defined for u ∈ W by

‖u‖ = supt≥0 |u(t)|. Obviously, (W, ‖·‖) is a Banach space.

For an integer k ≥ 1, S+
k denotes the set of all the functions u ∈ W1 having exactly

(k − 1) zeros in (0,+∞), all are simple and u is positive in a right neighbourhood of

0, S−k = − S+
k and Sk = S+

k ∪ S−k . For u ∈ Sk, the unique sequence
(
zj
)j=k

j=0 such that

0 = z0 < z1 < ... < zk = +∞ and u
(
zj
)
= 0 for j = 1, ..., k− 1, is said to be the sequence

of zeros of u.

First, we focus our attention on the linear eigenvalue problem associated with BVP

(2.2); Namely, we consider for (q, m) ∈ Q× Γ+ the problem of existence of eigenvalues

to the eigenvalue problem (EVP for short): −u′′(t) + q(t)u(t) = µm(t)u(t) t > 0,

u(0) = 0, limt→+∞ u(t) = 0,
(2.3)

where µ is a real parameter.

Theorem 2.1. For all pairs (q, m) in Q× Γ+, the set of eigenvalues of the EVP (2.3) consists in

an unbouded increasing sequence of simple eigenvalues (µk(q, m))k≥1 such that eigenfunctions

associated with µk(q, m) belong to Sk. Moreover, for q fixed in Q, the mapping µk(q, ·) has the

following properties:

1. If m1, m2 ∈ Γ+ are such that m1 ≤ m2, then µk(m1) ≥ µk(m2). In addition, µk(m1) >

µk(m2) whenever m1 < m2 in a subset of positive measure.

2. If m ∈ Γ+ and (mn) ⊂ Γ+ are such that lim mn = m uniformly on R+, then

limn→∞ µk(q, mn) = µk(q, m).

Concerning BVP (2.2), we obtain under the assumptions on the nonlinearity f

 | f (t, 0)| ∈ Γ+ and for all r > 0, there exists ψr ∈ Γ+ such that

| f (t, u)− f (t, v)| ≤ ψr(t) |u− v| for all t ≥ 0 and u, v ∈ [−r, r] ,
(2.4)
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 there exists ω ∈ Γ+ such that

f (t, u) + ω (t) ≥ 0 for all t ≥ 0 and u ∈ R,
(2.5)


limu→0 f (t, u) = m0(t) and

lim|u|→+∞ f (t, u) = m∞(t)

uniformly in R+ with m0, m∞ ∈ Γ+,

(2.6)

the following existence and multiplicity result for nodal solutions:

Theorem 2.2. Let q ∈ Q and assume that in addition to Hypotheses (2.4)-(2.6), there exist two

integers i, j with 1 ≤ i ≤ j such that one of the following situations holds:

µj(q, m∞) < 1 < µi(q, m0)

or

µj(q, m0) < 1 < µi(q, m∞).

Then BVP (2.2) admits a solution in Sν
k for all integers k ∈ {i, ..., j} and ν = + or −.

Now, consider the case of the BVP (2.2) where the nonlinearity f is a separable

variables function; Namely the case where the BVP (2.2) takes the form

 −u′′ + q(t)u = m(t)ug(u), t > 0,

u(0) = limt→+∞ u(t) = 0,
(2.7)

where m ∈ Γ+ and g : R→ R+ is a continuously differentiable function such that

lim
u→0

g(u) = g0 > 0 and lim
u→+∞

g(u) = g∞ > 0. (2.8)

We deduce, from Theorem 2.2 the following corollary:

Corollary 2.3. Let q ∈ Q and assume that in addition to Hypothesis (2.8), there exist two

integers i, j with 1 ≤ i ≤ j such that one of the following situations holds:

g0 < µi(m) < µj(m) < g∞, or

g∞ < µi(m) < µj(m) < g0.

Then BVP (2.7) admits a solution in Sν
k for all integers k ∈ {i, ..., j} and ν = + or −.
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Proof .

Set f (t, u) = m(t)g(u) and notice that such a nonlinearity satisfies Hypotheses (2.5) and

(2.6) for

m0(t) = g0m(t), m∞(t) = g+∞m(t).

Since for all integers k ≥ 1 and κ = 0 or +∞, µk(mκ) = µk(m)/gκ, we have

µi(m0) < 1 < µj(m∞) if g∞ < µi(m) < µj(m) < g0

and

µj(m0) < 1 < µi(m∞) if g0 < µi(m0) < µj(m∞) < g∞.

Therefore, Corollary 2.3 is obtained by a simple application of Theorem 2.2.

2.3 Preliminaries

2.3.1 The Green’s function and fixed point formulation

In all what follows, we let for q ∈ Q, Ψq be the unique solution of the initial value

problem  −u′′(t) + q(t)u(t) = 0,

u(0) = 0, u′(0) = 1.

Lemma 2.4. For all q ∈ Q, the function Ψq has the following properties:

i) Ψq(t) > 0, Ψ′q(t) > 0 and Ψ′′q (t) ≥ 0 for all t ∈ R+.

ii) limt→+∞ Ψ′q(t) = +∞, limt→+∞
Ψq(t)
1+t = +∞,

∫ +∞
t

ds
ψ2

q
< ∞ for all t > 0.

iii) The function Ψq/Ψ′q is bounded at +∞.

iv) limt→0 Ψq(t)
∫ +∞

t
ds

Ψ2
q(s)

= 1

v) limt→+∞ Ψq(t)
∫ +∞

t
ds

Ψ2
q(s)

= 0

Proof .

Let q ∈ Q and T > 0 be such that α = inft≥T q(t) > 0.
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i)Suppose on the contrary that Ψ′q(t0) = 0 for some t0 on (0,+∞). By the boundary

condition Ψ′q(0) = 1, t0 > 0 we may assume that Ψ′q(t) > 0 on [0, t0). Thus ψq is

strictly increasing on [0, t0). On the other hand we have from the equation that ψ′′q (t0) =

q(t)ψq(t0) ≥ 0, and accordingly t0 is a minimum value point. This is a contradiction.

Then we have for all t ∈ R+, Ψ′q(t) > 0, by the boundary condition Ψq(0) = 0 we obtain

that ψq(t) > 0 for all t ∈ R+, and from the equation we have for all t ∈ R+, ψ′′q (t) ≥ 0

ii) Now, we have for all t ≥ T

Ψ′q(t) = Ψ′q(T) +
∫ t

T
Ψ′′q ds = Ψ′q(T) +

∫ t

T
qΨqds ≥ Ψ′q(T) + αε (t− T) ,

where ε = infs≥0 Ψq(s) > 0. The above inequality shows that limt→+∞ Ψ′q(t) = +∞. By

L’Hopital’s rule, we have

lim
t→+∞

ψq(t)
1 + t

= lim
t→+∞

ψ′q(t) = +∞.

This shows that ψ2
q ≥ (1 + t)2 for all t > 0. By comparaison principle, we have∫ +∞

t
ds
ψ2

q
< ∞ for all t > 0.

iii) (
Ψ′q(t)

)2
−
(

Ψ′q(T)
)2

= 2
∫ t

T
Ψ′′q (s)Ψ

′
q(s)ds = 2

∫ t

T
q(s)Ψq(s)Ψ′q(s)ds

≥ α
((

Ψq(t)
)2 −

(
Ψq(T)

)2
)

,

which leads to (
Ψq(t)/Ψ′q(t)

)2
≤ 1

α
+
(

Ψ′q(T)/Ψ′q(t)
)2

.

From this and Property (ii), we deduce existence of Tα > 0 such that

Ψq(t)/Ψ′q(t) ≤
√

2
α

for all t ≥ Tα.

iv) We have by L’Hopital’s rule

lim
t→0

ψq(t)
∫ +∞

t

ds
ψ2

q
= lim

t→0

∫ +∞
t ψ−2

q ds(
ψq(t)

)−1 = lim
t→0

1
ψ′q(t)

= 1.

v) Again by L’Hopital’s rule we get

lim
t→+∞

Φq(t)
∫ +∞

t

ds
ψ2

q
= lim

t→+∞

1
ψ′q(t)

= 0.
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Proving v) and completing the proof of the lemma.

Because of Assertions ii), iii), iv) and v) in Lemma 2.4, the function

Φq(t) =


Ψq(t)

∫ +∞
t

ds
Ψ2

q(s)
, if t > 0,

1, if t = 0

(2.9)

is well defined and it is the unique solution to the BVP −u′′(t) + q(t)u(t) = 0,

u(0) = 1, limt→+∞ u(t) = 0.

Lemma 2.5. For all q ∈ Q, the function φq has the following properties:

a) φq(t) > 0, φ′q(t) < 0 and φ′′q (t) ≥ 0 for all t > 0.

b) limt→+∞ φ′q(t) = 0

c) For all t > 0,
∫ +∞

t φqds < ∞.

d) For all t > 0, Φq(t)Ψ′q(t)−Ψq(t)Φ′q(t) = 1.

e) The function φq/φ′q is bounded at +∞.

Proof .

Let q ∈ Q and T > 0 be such that α = inft≥T q(t) > 0.

a) Respectively from (2.9) and φ′′q = qφq, we have φq(t) > 0 and φ′′q (t) ≥ 0 for all

t > 0. Since the function ψ′q is increasing, we obtain from (2.9) that

φ′q(t) = ψ′q(t)
∫ +∞

t

ds
ψ2

q
− 1

ψq(t)
<
∫ +∞

t

ψ′q
ψ2

q
ds− 1

ψq(t)
=
−2
ψq

< 0.

b) It follows from Assertion (a) that the function Φ′q is nondecreasing and the limit

limt→+∞ Φ′q(t) exist. Set l = limt→+∞ Φ′q(t) and suppose that l < 0. We obtain then by

the L’Hopital’s rule

lim
t→+∞

Φq(t)
t

= lim
t→−∞

Φ′q(t) = l < 0,

leading to limt→+∞ Φq(t) = −∞. This contradicts limt→+∞ Φq(t) = 0 and proves that

limt→+∞ Φ′q(t) = 0.

c) We have for all s ∈ (T,+∞)∫ s

T
Φqdr =

∫ s

T

Φ′′q
q

dr ≤ 1
α

∫ s

T
Φ′′q dr =

1
α
(Φ′q(s)−Φ′q(T)) ≤ −

Φ′q(T)
α

.
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This proves that
∫ +∞

t Φq(r)dr < ∞ for all t > 0.

d) We have from (2.9) that for all t > 0,

Φq(t)Ψ′q(t)−Ψq(t)Φ′q(t) = ψq(t)

(
ψ′q(t)

∫ +∞

t

ds
ψ2

q
+

1
ψq(t)

)
− ψq(t)ψ′q(t)

∫ t

t

ds
ψ2

q
= 1.

e) We have for t ≥ T :(
−Φ′q(t)

)2
= 2

∫ +∞

t
Φ′′q (s)

(
−Φ′q(s)

)
ds =

∫ +∞

t
q(s)Φq(s)

(
−Φ′q(s)

)
ds

≥ α
(
Φq(t)

)2 .

leading to ∣∣∣Φq(t)/Φ′q(t)
∣∣∣2 =

(
Φq(t)/−Φ′q(t)

)2
≤ 1

α
for all t ≥ T,

then to,

sup
t≥T

∣∣∣Φq(t)/Φ′q(t)
∣∣∣ ≤ 1√

α
.

This completes the proof of (e) and ends the proof of the lemma.

Set for q ∈ Q and θ ≥ 0,

Φq,θ (t) =
Φq (t)
Φq (θ)

, Ψq,θ (t) = Φq (θ)Ψq (t)−Ψq (θ)Φq (t) and

Gq(θ, t, s) =


0 if min(t, s) ≤ θ,

Φq,θ (s)Ψq,θ (t) if θ ≤ t ≤ s,

Φq,θ (t)Ψq,θ (s) if θ ≤ s ≤ t.

(2.10)

We have then for q ∈ Q and θ ≥ 0,

Φq,θ(t)Ψ′q,θ(t)−Ψq,θ(t)Φ′q,θ(t) = 1 for all t > 0, (2.11)

Gq(θ, t, s) = Gq(t, s)−
Ψq (θ)

Φq (θ)
Φq(s)Φq(t), for t, s ≥ θ,

where

Gq (·, ·) = G (0, ·, ·) (2.12)

is the Green’s function associated with BVP (2.2).

Lemma 2.6. We have for all functions q in Q :

i) Gq,∞ = supt,s∈R+ Gq (t, s) ≤ sup0≤t<+∞ Φq (t)Ψq(t) < ∞,

ii) G∞ = supθ,t,s∈R+ Gq (θ, t, s) < ∞,

iii) G̃q = supt≥0
∫ +∞

0 Gq(t, s)ds < ∞.
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Proof .

Let q ∈ Q and T > 0 be such that α = inft≥T q(t) > 0.

i) Taking in consideration that Φq is nonincreasing, we obtain from (2.9) that for all

t, s ∈ R,

Gq(t, s) ≤ Φq(t)Ψq(t) =

(
Ψq(t)
Ψ′q(t)

)(
Ψq(t)Ψ′q(t)

∫ +∞

t

ds
Ψ2

q(s)

)

≤
(

Ψq(t)
Ψ′q(t)

)(
Ψq(t)

∫ +∞

t

Ψ′q(s)ds
Ψ2

q(s)

)
=

(
Ψq(t)
Ψ′q(t)

)
.

This together with assertion iii) in the lemma 2.4, leads to

Gq,∞ = sup
t,s∈R+

Gq(t, s) ≤ sup
t∈R

Φq(t)Ψq(t) < ∞.

ii) Because of Φq is decreasing and Ψq is increasing, we have for all s, t ≥ θ

0 ≤ Gq(θ, t, s) ≤ Φq(t)Ψq(t) +
Ψq(θ)

Φq(θ)
Φq(t)Φq(ts)

≤ Φq(t)Ψq(t) + Ψq(θ)Φq(θ)

≤ 2 sup
t≥0

Φq(t)Ψq(t) < ∞,

proving (ii).

iii) We have for all t ≥ T :∫ +∞

0
Gq(t, s)ds = Φq(t)

∫ t

0
Ψq(s)ds + Ψq(t)

∫ +∞

t
Φq(s)ds

= Φq(t)
∫ t

0
Ψq(s)ds + Ψq(t)

∫ T

t
Φq(s)ds + Ψq(t)

∫ +∞

T
Φq(s)ds

= Φq(t)
∫ t

0

Ψ′′q
q

ds + Ψq(t)
∫ T

t

Φ′′q
q

ds + Ψq(t)
∫ +∞

T

Φ′′q
q

ds

≤ Φq(t)
1
α
(Ψ′q(t)−Ψ′q(0))−

1
α

Ψq(t)Φ′q(t)

≤ 1
α
(Φq(t)Ψ′q(t)−Φ′q(t)Ψq(t)−Φq(t)Ψ′q(0)).

This together with (d) in lemma 2.5, leads to∫ +∞

0
Gq(t, s)ds ≤ 1

α
(1−Φq(t))

≤ 1
α

,
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supt≥0
∫ +∞

0 Gq(t, s)ds ≤ 1
α .

The proof is complete.

The main result of this subsection consists in the following lemma providing a fixed

point formulation for BVP (2.2) and EVP (2.3).

Lemma 2.7. For all functions q in Q, h in Γ and all nonnegative real numbers θ, u(t) =∫ +∞
0 Gq(θ, t, s)h(s)ds is the unique solution in (θ,+∞) to the BVP: −u′′(t) + q(t)u(t) = h(t), t > θ,

u(θ) = limt→+∞ u(t) = 0.
(2.13)

Moreover, for all functions F ∈ C (R+ ×R, R) satisfying Hypothesis (2.4), the operator

Tθ : W →W defined for u ∈W by

Tθu (t) =
∫ +∞

0
Gq(θ, t, s)u(s)F(s, u(s))ds

is completely continuous.

Proof .

Differentiating twice in the relation

u(t) =
∫ +∞

0
Gq(θ, t, s)h(s)ds = Φq,θ (t)

∫ t

θ
Ψq,θ (s) h(s)ds + Ψq,θ (t)

∫ +∞

t
Φq,θ (s) h(s)ds,

we get

u′′(t) = q(t)u(t) +
(

Φ′q,θ (t)Ψq,θ (t)−Φq,θ (t)Ψ′q,θ (t)
)

h(t) for all t ≥ θ,

then by (d) in lemma 2.5 we obtain

−u′′(t) + q(t)u(t) = h(t) for all t ≥ θ.

Because of Gq(θ, θ, s) = 0 for s > 0, we have u(θ) =
∫ +∞

0 Gq(θ, θ, s)h(s)ds = 0.

It remains to show that limt→+∞ u(t) = 0, we have for all t > θ :

u(t) = Φq(t)
∫ t

θ
Ψq(s)h(s)ds + Ψq(t)

∫ +∞

t
Φq(s)h(s)ds−

Ψq(θ)

Φq(θ)
Φq(t)

∫ +∞

θ
Φq(s)h(s)ds.

Because of (iv) in lemma 2.4, we have limt→+∞ Φq(t)
∫ +∞

θ Φq(s)h(s)ds = 0 and taking

in account (iii) in lemma 2.4, and (i) in Lemma 2.6 and limt→+∞ h(t) = 0, we obtain by

means of the L’Hopital’s rule:

lim
t→+∞

Ψq(t)
∫ +∞

t
Φq(s)h(s)ds = lim

t→+∞

∫ t
θ Φq(s)h(s)ds

(Ψq(t))
−1

= lim
t→+∞

−
(

Ψq(t)
Ψ′q(t)

)
Φq(t)Ψq(t)h(t) = 0.

24



Chapter 2. Nodal solutions for asymptotically linear second-order BVPs on the half line

For the limit of Φq(t)
∫ t

θ Ψq(s)h(s)ds, if
∫ +∞

θ Ψq(s)h(s)ds < ∞ then (iv) in lemma 2.4

gives

limt→+∞ Φq(t)
∫ t

θ Ψq(s)h(s)ds = 0 and if
∫ +∞

θ Ψq(s)h(s)ds = ∞, then taking in consider-

ation (d) in lemma 2.5 and (i) in Lemma 2.6 and limt→+∞ h(t) = 0, we obtain again by

means of the L’Hopital’s rule:

lim
t→+∞

Φq(t)
∫ t

θ
Ψq(s)h(s)ds = lim

t→+∞

∫ t
θ Ψq(s)h(s)ds

(Φq(t))
−1

= lim
t→+∞

(
Φq(t)
−Φ′q(t)

) (
Φq(t)Ψq(t)

)
h(t) = 0.

Uniqueness of u is due to the fact that 0 is the unique solution of BVP (2.13) within

h = 0. Thus, we have proved that u(t) =
∫ +∞

0 Gq(θ, t, s)h(s)ds is the unique solution of

BVP (2.13).

Now, we prove that Tθ is a completely continuous operator, let Ω be a subset of W

bounded by a constant r.

• Let ψr ∈ Γ+ such that |F(t, x)| ≤ rψr(t) + |F(t, 0)| = ψ̃r(t) for all t ≥ 0 and

x ∈ [−r, r]. The following estimates hold for all u ∈ Ω

|Tθu(t)| ≤ r
∫ +∞

0
Gq(θ, t, s)ψ̃r(s)ds ≤ r ‖Uθ‖ for all u ∈ Ω.

• For any T > 0, and t1, t2 ∈ [0, T], we have

|Tθu(t2)− Tθu(t1)| ≤ r
∫ +∞

0

∣∣Gq(θ, t2, s)− Gq(θ, t1, s)
∣∣ ψ̃r(s)ds, for all u ∈ Ω and t1, t2 ≥ 0

• Since limt→+∞ Tθu(t) = 0, there exist T > 0, for all t ≥ T, we have

|Tθu(t)| ≤ rUθ(t)

hold for all u ∈ Ω, where Uθ(t) =
∫ +∞

0 Gq(θ, t, s)ψ̃r(s)ds satisfies limt→+∞ Uθ(t) =

0.

Together with the Corduneanu criterion of compactness (Lemma 4.1 in [48]) they lead to

the compactness of the operator Tθ. The proof is complete.

2.3.2 Comparison results

The following lemma will play an important role in the proof of Theorem 2.2.
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Lemma 2.8. Let (q, m) ∈ Q× Γ+ be such that µk(q, m) = 1 for some integer k ≥ 1. Then there

exists ε0 > 0 such that for all p ∈ Γ+ with ‖p−m‖ ≤ ε0, µl(q, p) = 1 implies l = k.

Proof .

Let ε0 > 0 be such that ε0 < min(µk+1(q, m)− µk(q, m), µk(q, m)− µk−1(q, m)), because

of Assertion 2 in Theorem 2.1, there exists ε0 > 0 such that for all p ∈ Γ+, ‖p−m‖ ≤ ε0

implies

µk−1(q, m)− ε0 ≤ µk−1(q, p) ≤ µk−1(q, m) + ε0 (2.14)

and

µk+1(q, m)− ε0 ≤ µk+1(q, p) ≤ µk+1(q, m) + ε0. (2.15)

Let p ∈ Γ+ with ‖p−m‖ ≤ ε0 and suppose that µl(q, p) = 1 for some integer l ≥ 1.

If l < k, we have then from (2.14) the contradiction

1 = µl(q, p) ≤ µk−1(q, p) ≤ µk−1(q, m) + ε0 < µk(q, m)

and if l > k, we have then from (2.15) the contradiction

1 = µl(q, p) ≥ µk+1(q, p) ≥ µk+1(q, m)− ε0 > µk(q, m) = 1.

This shows that l = k and the lemma is proved.

We will use extensively the following lemma:

Lemma 2.9 ([11]). Let j and k be two integers such that j ≥ k ≥ 2 and let (ξl)
l=k
l=0 , (ηl)

l=j
l=0 be

two families of real numbers such that

ξ0 = ξ < ξ1 < ξ2 < · · · < ξk−1 < ξk = η,

η0 = ξ < η1 < η2 < · · · < ηj−1 < ηj = η.

If ξ1 < η1, then there exist two integers m and n having the same parity, 1 ≤ m ≤ k− 1 and

1 ≤ n ≤ j− 1 such that

ξm < ηn ≤ ηn+1 ≤ ξm+1.

We end this section with the following lemma which is an adapted version of the

Sturm’s comparison result.

Lemma 2.10. Let for i = 1, 2, mi ∈ Γ and wi ∈ C2 (R+) satisfying

−w′′i (t) + q(t)wi(t) = mi(t)wi(t), t ∈ (x1, x2)

and suppose that w2 does not vanish identically and m1(t) > m2(t) a.e. t > 0. If either
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1. x2 < +∞ and w2(x1) = w2(x2) = 0, or

2. x2 = +∞ and w2(x1) = limt→+∞ wi(t) = 0 for i = 1, 2

then there exists τ ∈ (x1, x2) such that w1(τ) = 0.

Proof .

1) By the contrary suppose that w1 > 0 in (x1, x2) and without loss of generality

assume that w2 > 0 in (x1, x2) , then we have the contradiction:

0 ≥ w1 (x2)w′2 (x2)− w1 (x1)w′2 (x1) =∫ x2
x1

w2(−w′′1 + qw1)− w1(−w′′2 + qw2) =∫ x2
x1
(m1 −m2)w1w2 > 0.

2) By the contrary suppose that w1 > 0 in (x1,+∞) and without loss of generality

assume that w2 > 0 in (x1,+∞) , because that w′′i (t) = (q(t)−mi(t))wi(t) and q(t)−

mi(t) > 0 for t large, we have that w′′i (t) > 0 for t large and limt→+∞ w′i(t) = 0. Therefore,

we have for t large

(w1 (t)w′2 (t)− w1 (t)w′2 (t))− w1 (x1)w′2 (x1) =∫ t
x1

w2(−w′′1 + qw1)− w1(−w′′2 + qw2) =∫ t
x1
(m1 −m2)w1w2 > 0.

Letting t→ +∞, we obtain the contradiction

0 ≥ −w1 (x1)w′2 (x1) =
∫ +∞

x1

(m1 −m2)w1w2 > 0.

The proof is complete.

2.3.3 On the linear eigenvalue problem

We will present in this subsection two lemmas related to linear eigenvalue problems

and needed for the proof of Theorem 2.1. The first one is obtained from Theorem 4.3.2

and Theorem 4.4.1 in [64].

Lemma 2.11. For all pairs (q, m) ∈ Q× Γ+ and all positive real number θ, the EVP −u′′(t) + q(t)u(t) = µm(t)u(t), t ∈ (0, θ) ,

u(0) = u(θ) = 0,
(2.16)

admits an unbounded increasing sequence of simple eigenvalues
(
µ−k (θ, q, m)

)
k≥1 such that:
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1. if φ is an eigenfunction associated with µ−k (θ, q, m) then φ admits (k− 1) zeros in (0, θ)

and all are simple.

2. Moreover, for (q, m) fixed in Q× Γ+, the function θ → µ−k (θ) := µ−k (θ, q, m) is contin-

uous and decreasing. We have also limθ→0 µ−k (θ) = +∞.

The next lemma concerns the existence of the positive eigenvalue on the unbounded

interval (θ,+∞) .

Lemma 2.12. For all pairs (q, m) ∈ Q× Γ+ and all positive real numbers θ, the EVP −u′′(t) + q(t)u(t) = µm(t)u(t) t > θ,

u(θ) = 0, limt→+∞ u(t) = 0,
(2.17)

admits a unique positive eigenvalue µ+
1 (θ, q, , m) . Moreover, for (q, m) fixed in Q × Γ+, the

function θ → µ+
1 (θ) := µ+

1 (θ, q, m) is continuous and increasing having limθ→+∞ µ+
1 (θ) =

+∞.

Proof .

Let for (q, m) fixed in Q× Γ+, Lθ : E→ E be the linear compact operator defined by

Lθu(t) =
∫ +∞

0
Gq(θ, t, s)m(s)u(s)ds

where the function Gq is that introduced by (2.10), and let uθ ∈ K be the function defined

by

uθ(t) =

0 if t /∈ [2θ, 3θ] ,

(t− 2θ)(3θ − t) if t ∈ [2θ, 3θ] .

We have then Luθ(t) ≥ 0 = uθ(t) for t ∈ [0, 2θ] ∪ [3θ,+∞) and Luθ(t), uθ(t) > 0 for

t ∈ (2θ, 3θ) . This shows that Lθu ≥ cθuθ where cθ = inf {Luθ(t)/uθ(t) : t ∈ (2θ, 3θ)} > 0

and r(Lθ) > 0. Since Lemma 2.7 guarantees that Lθ is compact, we have from the

Krein-Rutman theorem, that r(Lθ) is a positive eigenvalue of Lθ having a eigenvector

φθ ∈ K. By means of Lemma (2.7), we conclude that µ+
1 (θ, q, m) = 1/r(Lθ) is a positive

eigenvalue of EVP (2.17).

Now, for λ a positive eigenvalue of EVP (2.17) having an eigenfunction ψ, we have

0 =
∫ +∞

θ
(−φ′′θ + k2φθ)ψ− (−ψ′′ + k2ψ)φθ = (µ+

1 (θ, q, m)− λ)
∫ ξ

θ
mφθψ,
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leading to λ = µ+
1 (θ, q, m). Thus, we have proved uniqueness of the positive eigenvalue

and that the function θ → µ+
1 (θ, q, m) is well defined.

Let θ1, θ2 be positive real numbers such that θ1 < θ2 and set for i = 1, 2, µi =

µ+
1 (θi, m) with the corresponding eigenfunction ψi. We have by simple calculations

0 > −ψ′2 (θ2)ψ1 (θ2) =
∫ +∞

θ2
((−ψ′′1 + qψ1)ψ2 − (−ψ′′2 + qψ2)ψ1)

= (µ1 − µ2)
∫ +∞

θ2
mψ1ψ2,

leading to µ1 < µ2 and proving that θ → µ1(θ, q, m) is an increasing function. The

continuity of the function µ1(·, q, m) follows from that of the Green’s function G and

Lemma 2.13 in [10].

Let [γ, δ] be a compact interval and let θ1, θ2 ∈ [γ, δ] be such that θ1 < θ2: We have

for all u ∈W with ‖ u ‖= 1

∣∣Lθ2u (t)− Lθ1u (t)
∣∣ =

∣∣∣∣∫ +∞

θ2

Gq (θ2, t, s)muds−
∫ +∞

θ1

Gq (θ1, t, s)muds
∣∣∣∣

=



0 if t ≤ θ1 < θ2,∣∣∣∫ +∞
θ1

Gq (θ1, t, s)muds
∣∣∣ if θ1 < t ≤ θ2,

∣∣∣∫ +∞
θ2

Gq (θ2, t, s)muds−
∫ +∞

θ1
Gq (θ1, t, s)muds

∣∣∣ if θ1 < θ2 < t.

Set

χ = ‖m‖
[(∫ +∞

γ
φqds

)
φq(γ)

φ2
q(δ)

+ Gq,∞ + Φq (γ)Ψq(δ)

]
then we have for θ2 ≥ t > θ1∣∣∣∫ +∞

θ1
Gq (θ1, t, s)muds

∣∣∣ ≤ ‖m‖ ∫ +∞
θ1

Gq (θ1, t, s) ds

= ‖m‖
(∫ +∞

θ1
Gq (t, s) ds− ψq(θ1)

φq(θ1)
φq(t)

∫ +∞
θ1

φqds
)

= ‖m‖ (
∫ t

θ1
Gq (t, s) ds +

∫ +∞
t Gq (t, s) ds

−ψq(θ1)
φq(θ1)

φq(t)
∫ t

θ1
φqds− ψq(θ1)

φq(θ1)
φq(t)

∫ +∞
t φqds)

= ‖m‖ (
∫ t

θ1
Gq (t, s) ds− ψq(θ1)

φq(θ1)
φq(t)

∫ t
θ1

φqds) + ψq (t)
∫ +∞

t φqds− ψq(θ1)
φq(θ1)

φq(t)
∫ +∞

t Ψqds)

= ‖m‖ (
∫ t

θ1
Gq (t, s) ds− ψq(θ1)

φq(θ1)
φq(t)

∫ t
θ1

φqds) +
∫ +∞

t φqds
(

ψq(t)
φq(t)
− ψq(θ1)

φq(θ1)

)
φq(t))

≤ ‖m‖
[(∫ +∞

γ φqds
)

φq(γ)

φ2
q(δ)

+ Gq,∞ + Φq (γ)Ψq(δ)

]
|θ2 − θ1| ≤ χ |θ2 − θ1|
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and for θ1 < θ2 < t,∣∣∣∫ +∞
θ2

Gq (θ2, t, s)muds−
∫ +∞

θ1
Gq (θ1, t, s)muds

∣∣∣ ≤∣∣∣∫ +∞
θ2

(
Gq (θ2, t, s)− Gq (θ1, t, s)

)
muds

∣∣∣+ ∣∣∣∫ θ2
θ1

Gq (θ1, t, s)muds
∣∣∣

=
∣∣∣(∫ +∞

θ2
φqmuds

) (
ψq(θ1)
φq(θ1)

− ψq(θ2)
φq(θ2)

)
φq(t)

∣∣∣+ ∣∣∣∫ θ2
θ1

Gq (θ1, t, s)muds
∣∣∣

≤ ‖m‖
[(∫ +∞

γ φqds
)

φq(γ)

φ2
q(δ)

+ Gq,∞

]
|θ2 − θ1| ≤ χ |θ2 − θ1| .

The above estimates show that the mapping θ → Lθ is locally Lipschitzian and so, it

is continuous. Let (θn) be a sequence converging to θ∗ and let θ−, θ+ be such that

(θn) ⊂ [θ−, θ+] . Therefore we have for all n ≥ 1,

0 < µ1(θ+, q, m) ≤ µ1(θn, q, m) ≤ µ1(θ−, q, m)

and the sequence (µ1(θn, q, m)) converges (up to a subsequence) to some µ∗ > 0. We

conclude by Lemma 2.13 in [10] and by uniqueness of that µ∗ = µ1(θ∗, q, m). Thus, the

continuity of the mapping µ1(·, q, m) is proved.

It remains to prove that limθ→+∞ µ+
1 (θ, m) = limθ→+∞(1/r(Lθ)) = +∞. We have for

all u ∈W with ‖u‖ = 1

|Lθu(t)| ≤
∫ +∞

θ
Gq (θ, t, s)m(s)ds

≤
∫ +∞

θ
Gq (t, s)m(s)ds +

Ψq (θ)

Φq(θ)

∫ +∞

θ
Φq(t)Φq(s)m(s)ds

≤
∫ +∞

θ
Gq (t, s)m(s)ds + Ψq (θ)

∫ +∞

θ
Φq(s)m(s)ds.

As in the proof of Lemma 2.7, we have limθ→+∞ Ψq (θ)
∫ +∞

θ Φq(s)m(s)ds = 0 and since

limt→+∞ m(t) = 0, for ε > 0, there exists θε > 0 such that m(s) ≤ ε for all s ≥ θε. Hence,

we have for all θ ≥ θε ∫ +∞

θ
Gq (t, s)m(s)ds ≤ G̃ε for all t ≥ 0

proving that limθ→+∞
∫ +∞

θ Gq (t, s)m(s)ds = 0 uniformly on R+. Therefore, we have

proved that limθ→+∞ r(Lθ) = limθ→+∞ ‖Lθ‖ = 0, ending the proof.

2.4 Proof of Theorem 2.1

Step 1. Fix (q, m) in Q × Γ+ and let k ≥ 1 be an integer. Obviously, if k = 1

then µ1(q, m) = µ+
1 (0, q, m) is a positive eigenvalue of the EVP (2.3) where µ+

1 (0, q, m)
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is that of Lemma 2.12. If k ≥ 2, then we deduce from Lemmas 2.11 and 2.12 existence

of a unique positive real number θ∗k such that µ+
1 (θ

∗
k , q, m) = µ−k−1(θ

∗
k , q, m). Therefore,

if φ1,θ∗k
and ψk−1,θ∗k

are respectively the eigenfunctions associated with µ+
1 (θ

∗
k , q, m) and

µ−k−1(θ
∗
k , q, m), then the function

φk(t) =

ψk−1,θ∗k
(t), in

[
0, θ∗k

]
,(

ψ′k−1,θ∗k

(
θ∗k
)

/φ′1,θ∗k

(
θ∗k
))

φ1,θ∗k
(t), in

[
θ∗k ,+∞

)
,

belongs to Sk and is the eigenfunction associated with the eigenvalue µk(q, m) = µ+
1 (θ

∗
k , q, m) =

µ−k−1(θ
∗
k , q, m) of the EVP (2.3).

Now, let us prove that µk(q, m) is the unique eigenvalue of the EVP (2.3), having an

eigenfunction in Sk. To this aim, let for i = 1, 2, φi ∈ S+
k be an eigenfunction associated

with the eigenvalue µi and let
(

zi
j

)j=k

j=0
be the sequence of zeros of φi. Without loss

of generality, suppose that z1
1 ≤ z2

1, we deduce then from Lemma 2.9 existence of two

integers 0 ≤ n1, m1 ≤ k− 1 having the same parity such that z1
n1
≤ z2

m1
< z2

m1+1 ≤ z1
n1+1.

Notice that the fact n1, m1 have the same parity means that the functions φ1 and φ2 have

the same sign on the interval
(

z2
m1

, z2
m1+1

)
and after simple calculations, yields

0 ≤
∫ z1

1

0
φ2(−φ′′1 + qφ1)− φ1(−φ′′2 + qφ2) = (µ1 − µ2)

∫ z1
1

0
mφ1φ2 and

0 ≥
∫ z2

m1+1

z2
m1

φ2(−φ′′1 + qφ1)− φ1(−φ′′2 + qφ2) = (µ1 − µ2)
∫ z2

m1+1

z2
m1

mφ1φ2.

proving that µ1 = µ2 and µk(q, m) is the unique eigenvalue of the EVP (2.3), having an

eigenfunction in Sk.

At this stage, we need to prove that for all integers k ≥ 1, µk(q, m) has the geomet-

ric multiplicity equal to 1. Indeed, if φ, ψ are two eigenfunctions associated with the

eigenvalue µ and W = W(φ, ψ) = φψ′ − φ′ψ is their corresponding Wronksian, then we

have

W ′ = (φψ′ − φ′ψ)′ = φψ′′ − φ′′ψ

= φ(q− µm)ψ− (q− µm)φψ = 0.

This together with W(0) = 0, leads to W = 0 and ψ = cφ for some c ∈ R and the

geometric simplicity is proved.

Notice that geometric simplicity leads to µi(q, m) 6= µj(q, m) for i 6= j and the

sequence (µk(q, m)) is infinite. Furtheremore, since for all integers k ≥ 1, µk(q, m)

31



Chapter 2. Nodal solutions for asymptotically linear second-order BVPs on the half line

is a characteristic value of the compact operator Lm : W → W given by Lmu(t) =∫ +∞
0 Gq(t, s)m(s)u(s)ds where Gq is defined in (2.12), we have limk→∞ µk(q, m) = +∞.

In order to prove monotonicity of the sequence (µk(q, m)) , let for i = 1, 2, φi ∈ S+
ki

be

an eigenfunction associated with the eigenvalue µi of the EVP (2.3), having a sequence

of zeros
(

zi
j

)j=ki

j=0
. Suppose that k2 > k1, we distinguish then the following cases:

Case 1. z2
1 ≤ z1

1, in this case we have

0 ≥
∫ z2

1

0
φ2(−φ′′1 + qφ1)− φ1(−φ′′2 + qφ2) = (µ1 − µ2)

∫ z2
1

0
mφ1φ2,

leading to µ1 ≤ µ2.

Case 2. z1
1 ≤ z2

1, in this case, we deduce from Lemma 2.9 existence of two integers

n1, m1, with n1 ≤ k1 − 1, m1 ≤ k2 − 1 and such that z1
n1
≤ z2

m1
< z2

m1+1 ≤ z1
n1+1. After

simple computations, yields

0 ≥
∫ z2

m1+1

z2
m1

φ2(−φ′′1 + qφ1)− φ1(−φ′′2 + qφ2) = (µ1 − µ2)
∫ z2

m1+1

z2
m1

mφ1φ2,

leading to µ1 ≤ µ2. This together with µi(q, m) 6= µj(q, m) for i 6= j show that µ1 < µ2.

We end this step by proving that aside the sequence (µk(q, m)) , the EVP (2.3) has

no other eigenvalues. Let µ be an eigenvalue of the EVP (2.3) having an eigenfunction

φ and by the contrary, suppose that µ 6= µk(q, m) for all integers k ≥ 1. Notice that if

for some z0 ≥ 0, φ(z0) = φ′(z0) = 0, the classical existence and uniqueness result for

ODEs leads to the contradiction φ = 0. This shows that all zeros of φ are simple and

isolated and necessarily, φ admits an infinite and increasing sequence of zeros, say (zn) .

Therefore, we have lim zn = +∞; Indeed, if lim zn = ẑ < +∞ then we obtain

u (ẑ) = lim u (zn) = 0 and u′ (ẑ) = lim
u (zn)− u (ẑ)

zn − ẑ
= 0,

leading to the contradiction φ = 0.

Let for the integer k ≥ 1, φk ∈ Sk be the eigenfunction associated with the eigenvalue

µk(q, m) and let
(
xj
)j=k

j=1 be the sequence of zeros of φk. We deduce from Lemma 2.9,

existence of two integers l, m having the same parity such that 0 ≤ l ≤ k− 1 and

zm ≤ xl < xl+1 ≤ zm+1.

Hence, we have

0 ≤
∫ xl+1

xl

−φ1(φ
′′
2 + qφ2)− φ2(−φ′′1 + qφ1) = (µ− µk(q, m))

∫ xl+1

xl

mφ1φ2
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leading to µ ≥ µk(q, , m) for all integers k ≥ 1 then to the contradiction µ = limk→∞ µk(q, m) =

+∞.

Step 2. Monotonicity: Fix q in Q and let m1, m2 be two functions in Γ+ and suppose

that m1 ≤ m2 and m1 < m2 in a subset of positive measure. Set for i = 1, 2, µi = µk(q, mi)

and let φi ∈ S+
k be the eigenfunction associated with µi having a sequence of zeros(

zi
j

)j=k

j=0
. By the contrary suppose that µ1 < µ2, we claim that there exists j0 such that

z1
j0
6= z2

j0
. Indeed, if φ1

(
z2

j

)
= 0 for all j ∈ {1, ..., k− 1} then for j1 ∈ {1, ..., k− 1} being

such that meas
(
{m2 > m1} ∩

(
z2

j1
, z2

j1+1

))
> 0 we have since φ1φ2 > 0 in

(
z2

j1
, z2

j1+1

)
,

the contradiction

0 =
∫ z2

j1+1

z2
j1

−φ2φ′′1 + φ1φ′′2 =
∫ z2

j1+1

z2
j1

(µ1m1 − µ2m2)φ1φ2

=
∫ z2

j1+1

z2
j1

(µ1 − µ2)m1φ1φ2 +
∫ z2

j1+1

z2
j1

µ2 (m1 −m2) φ1φ2 < 0.

Now, let k1 = max
{

l ≤ k : z1
j = z2

j for all j ≤ l
}

and
(
ξ j
)j=k−k1

j=0 and
(
ηj
)j=k−k1

j=0 be the

families defined by ξ j = z1
k1+j and ηj = z2

k1+j. We distinguish then two cases.

i) ξ1 = z1
k1+1 < η1 = z2

k1+1: In this case we have the contradiction

0 < −φ2 (ξ1) φ′1 (ξ1) =
∫ ξ1

ξ0

−φ2φ′′1 + φ1φ′′2

=
∫ ξ1

ξ0

(µ1m1 − µ2m2)φ1φ2

=
∫ ξ1

ξ0

(µ1 − µ2)m1φ1φ2 +
∫ ξ1

ξ0

µ2 (m1 −m2) φ1φ2 ≤ 0.

ii) ξ1 = z1
k1+1 > η1 = z2

k1+1: In this case Lemma 2.9 guarantees existence of two integers

m, n having the same parity such that

ηm = z2
k1+m < ξn = z1

k1+n < ξn+1 = z1
k1+n+1 ≤ ηm+1 = z2

k1+m+1.

As above, we have the contradiction

0 <
∫ ξn+1

ξn
−φ2φ′′1 + φ1φ′′2 =

∫ ξn+1

ξn
(µ1m1 − µ2m2)φ1φ2

=
∫ ξn+1

ξn
(µ1 − µ2)m1φ1φ2 +

∫ ξn+1

ξn
µ2 (m1 −m2) φ1φ2 ≤ 0.

The monotonicity is proved.
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Step 3. Continuity: Fix q in Q, m in Γ+ and let (mn) ⊂ Γ+ such that lim mn = m

uniformly on R+. Let Ln, L ∈ L(W) be defined by

Lnu(t) =
∫ +∞

0
Gq(t, s)mn(s)u(s)ds and Lu(t) =

∫ +∞

0
Gq(t, s)m(s)u(s)ds.

Notice that for all integers l, n ≥ 1, µn
l = µl(q, mn) is a characteristic value of Ln, µl =

µl(q, m) is a characteristic value of L and because of Assertion iii) in Lemma 2.6, Ln → L

in operator norm.

First, fix k ≥ 1 and let us prove that if
(
µn

k
)

admits a subsequence (δn) converging to

δ > 0, then δ = µk. Indeed, let φn ∈ S+
k be the normalized eigenfunction associated with

δn and let ψn = Lφn. Since L is compact and the sequence (φn) is bounded, we have up

to a subsequence ψn → ψ. Thus, we obtain the following estimates,

‖(φn/δn)− ψ‖ = ‖Lnφn − ψ‖

≤ ‖Lnφn − Lφn‖+ ‖Lφn − ψ‖

≤ ‖Lnk − L‖+ ‖ψn − ψ‖

leading to

lim(φn/δn) = ψ and ‖ψ‖ = lim ‖φn‖ /δn = 1/δ > 0.

Also, we have

‖Lnφn − δLψ‖ = ‖δnLnk ((φn/δn))− δLψ‖

≤ ‖δnLn ((φn/δn))− δLn ((φn/δn))‖+ ‖δLn ((φn/δn))− δL ((φn/δn))‖+ ‖δL ((φn/δn))− δLψ‖

≤ |δn − δ| δn ‖Ln‖+ δn
δ ‖Ln − L‖+ 1

δ ‖L‖ ‖(φn/δn)− ψ‖

leading to

lim Lnφn = δLψ.

Thus, letting n → ∞ in equation Lnφn = (φn/δn) we obtain Lψ = ψ/δ that is 1/δ is an

eigenvalue of L or δ = µl(q, m) for some integer l ≥ 1. Then, because of lim δnmn = δm

uniformly on R+, it follows from Lemma 2.8 that δ = µk(q, m).

Then, fix T > 0 and set for all integers l, n ≥ 1, µn,T
l = µ−l (T, q, mn) and µT

l =

µ−l (T, q, m). We have from Proposition 4.40 in [64] that limn→∞ µn,T
l = µT

l for all integers

l ≥ 1 and then there is cl > 0 such that µn,T
l < µT

l + cl for all n ≥ 1. Fix k ≥ 1 and denote

by φn ∈ S+
k the eigenfunction associated with µn

k and suppose that φn admits (j− 1) zeros

in (0, T) . Let φn,T be the eigenfunction associated with µn,T
j satisfying φ′n,T(0) > 0 and
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denote by (xs)
s=j
s=0 the sequence of zeros of φn,T and by (zs)

s=j
s=0 the sequence constituted

in zeros of φn contained in (0, T) and zs = T. We distinguish two cases:

Case 1. x1 < z1, we have in this case

0 > φn (x1) φ′n,T (x1) =
∫ x1

0 φn,T(−φ′′n + qφn)− φn(−φ′′nT + qφn,T)

=
(

µn
k − µn,T

j

) ∫ x1
0 mnφn,Tφn

leading to

µn
k ≤ µn,T

j ≤ max
1≤l≤k

(µn,T
l ) ≤ max

1≤l≤k
(µT

l + cl) ≤ µT
k + max

1≤l≤k
(cl).

Case 2. z1 ≤ x1, in this case we deduce from Lemma 4.6 existence of two integers

rT, r having the same parity and such that zr ≤ xrT < xrt+1 ≤ zr+1 and φn,Tφn > 0 in

(xrT , xrt+1) . After simple computations yields

0 ≥ φn (xr+1) φ′n,T (xr+1)− φn (xr) φ′n,T (xr) =
∫ xr+1

xr
φn,T(−φ′′n + qφn)− φn(−φ′′nT + qφn,T)

=
(

µn
k − µn,T

j

) ∫ xr+1
xr

mnφn,Tφn

and we have again

µn
k ≤ µn,T

j ≤ max
1≤l≤k

(µn,T
l ) ≤ max

1≤l≤k
(µT

l + cl) ≤ µT
k + max

1≤l≤k
(cl).

At this stage we have proved that the sequence
(
µn

k
)

is bounded, set then µ+
k =

lim sup µn
k and µ−k = lim inf µn

k . Since lim ‖Ln‖ = ‖L‖, we have ‖Ln‖ ≥ ‖L‖ /2 for n

large enough and µn
k ≥ 1/ ‖Ln‖ ≥ ‖L‖ /2 for n large enough. Therefore, passing to the

limit, we obtain µ+
k ≥ µ−k ≥ ‖L‖ /2 > 0 and taking in account what is showed at the

beginning of this proof, we conclude that lim µn
k = µ+

k = µ−k = µk. The continuity is

proved.

2.5 Proof of Theorem 2.2

Consider the BVP −u′′ + q̃(t)u = µu( f (t, u) + 2ω(t)), t > 0,

u(0) = limt→+∞ u(t) = 0,
(2.18)

where µ is a real parameter and q̃ = q + 2ω.

By a solution to BVP (2.18), we mean a pair (µ, u) ∈ R×W2 satisfying the differential

equation in BVP (2.18). Notice that u ∈ W2 is a solution to BVP (2.2) if and only if (1, u)
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is a solution to BVP (2.18). For this reason, we will study the bifurcation diagram of

the BVP (2.18) and by means of Rabinowitz global bifurcation theory, we will prove that

the set of solutions to BVP (2.18) consists in an infinity of unbounded components, each

branching from a point on the line R×{0} (see Lemma 2.13), joining a point on R×{∞}

(see Lemma 2.14). Obviously, each component having the starting point and the arrival

point oppositely located relatively to 1, carries a solution of BVP (2.2) and Theorem 2.2

will be proved once we compute the number of such components. Thus, Theorem 2.2 is

the consequence of the following Lemma 2.13, Lemma 2.14 and Lemma 2.15.

Lemma 2.13. Assume that Hypotheses (2.4)-(2.6) hold, then from each µl(q̃, m0) bifurcate two

unbounded components of nontrivial solutions ζ+l and ζ−l , such that ζν
l ⊂ R× Sν

l .

Proof .

It follows from Lemma 2.7 that solutions of BVP (2.18) are those satisfying the fixed

point equation

u = µL0u + µT0(u) (2.19)

where L0, T0 : W →W are defined as follows

L0u(t) =
∫ +∞

0 Gq̃(t, s)m̃0(s)u(s)ds,

T0u(t) =
∫ +∞

0 Gq̃(t, s)u(s)g0(s, u(s))ds,

and m̃0 = m0 + 2ω, g0(s, u) = f (s, u)−m0(s).

Let us prove now, that all characteristic values of L are of algebraic multiplicity

one. To this aim, let u ∈ N
(
(µk(q̃, m̃0)L0 − I)2) and set v = (µk(q̃, m̃0)L0u − u. Then

v ∈ N(µk(q̃, m̃0)L0 − I) = Rφk and µl(q̃, m̃0)L0u− u = ηφk for some η ∈ R. In another

way, v satisfies the BVP −u′′ + q(t)u = µk(q̃, m̃0)m̃0 (t) u− ηµk(q̃, m̃0)m̃0(t)φk, t > 0,

u(0) = limt→+∞ u(t) = 0.

Multiplying the differential equation in the above BVP by φk and integrating on (0,+∞)

we obtain

ηµk(q̃, m̃0)
∫ +∞

0
m̃0φ2

k dt = 0,

leading to η = 0 and u = µk(q̃, m̃0)Lu ∈ Rφk.

Now, we need to prove that T0(u) = ◦(‖u‖) near 0. Indeed, let (un) ⊂ W with

lim ‖un‖ = 0. It follows from Hypothesis (2.6), that for ε > 0 there exists δ > 0 such that
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for all u ∈ [−δ, δ] and s ≥ 0, |g0 (s, u)| ≤ ε. Therefore, for n large enough

|T0un(t)|
‖un‖

≤
∫ +∞

0
Gq̃(t, s) |g(s, un(s))| ds ≤ εG̃

proving that T0(u) = ◦(‖u‖) near 0.

Let lk be the projection of W on Rφk, W̃ = {u ∈W : lku = 0} and let for ξ > 0, η ∈

(0, 1) , ν = ±

Kν
ξ,η = {(µ, u) ∈ R×W : |µ− µk(q̃, m0)| < ξ and νlku > η ‖u‖} .

Since Lemma 2.7 guarantees that the operators L0 and T0 are respectively compact and

completely continuous, we have from Theorem 1.40 and Theorem 1.25 in [52], that from

(µk(q̃, m0), 0) bifurcate two components ζ+k and ζ−k of nontrivial solutions to Equation

(2.19) such that there is ζ0 > 0, ζν
k ∩ B(0, ζ) ⊂ Kν

ξ,η for all ζ < ζ0 and if u = αφk + w ∈ ζν
k

then |µ− µk(q̃, m0)| = ◦ (1), w = ◦ (|α|) for α near 0.

We claim that there is ζ > 0 such that ζν
k ∩ B(0, ζ) ⊂ R× Sν

k ; Indeed, let (µn, un)n≥1 ⊂

ζν
k be such that lim (µn, un) = (µk(q̃, m0), 0), we have then lim µn f (s, un(s)) = µk(q̃, m0)m0(s)

and Lemma 4.24 guarantees that there is n0 ≥ 1 such that un ∈ Sk for all n ≥ n0. More-

over, if un = αnφk + wn then lim un
αn

= φk uniformly in [0,+∞) proving that νun(t) > 0

for t in a right neighborhood of 0 and νu′n(0) > 0 (otherwise, if u′n(0) = 0 then by

Cauchy-Lipshitz theorem, un = 0).

Also, if (µ∗, u∗) ∈ ζν
k then for all sequence (µn, un)n≥1 ⊂ ζν

k being such that lim (µn, un) =

(µ∗, u∗), we have from Hypothesis (2.4) that lim µn f (s, un(s)) = µ∗ f (s, u∗(s)) uniformly

in R+ and Lemma 2.8 guarantees existence of n0 ≥ 1 such that un ∈ Sk for all n ≥ n0.

Moreover, we have

∣∣u′n(0)− u′∗(0)
∣∣ ≤ |µ∗ − µn|

∫ +∞

0

∣∣∣∣∂Gq̃

∂t
(t, s)

∣∣∣∣ u∗(s) f (s, u∗(s))ds

+µn

∫ +∞

0

∣∣∣∣∂Gq̃

∂t
(t, s)

∣∣∣∣ |un(s)| |[ f (s, un(s))− f (s, u∗(s))]| ds

+µn

∫ +∞

0

∣∣∣∣∂Gq̃

∂t
(t, s)

∣∣∣∣ |un(s)− u∗(s)| | f (s, u∗(s))| ds.

Hence, we obtain by means of hypothesis (2.4) and Lebesgue dominated convergence

theorem that lim u′n(0) = u′∗(0) and for n sufficiently large, u′n(0)u′∗(0) > 0. This shows

that ζν
k ⊂ R× Sν

k and ζν
k is unbounded in R×W, ending the proof.
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Lemma 2.14. Assume that Hypotheses (2.4)-(2.6) hold, then for all k ≥ 1 and ν = ±, the

component ζν
k rejoins the point (µk (q̃, m∞) , ∞).

Proof .

First, let us prove that for all k ≥ 1 and ν = ±, the projection of ζν
k onto the real axis is

bounded. Indeed, since 0 is the unique solution to the BVP −u′′ + q̃(t)u = 0, t > 0,

u(0) = limt→+∞ u(t) = 0,

the projection of ζν
k onto the real axis is contained in (0,+∞), namely, if (µ, u) ∈ ζν

k

then µ > 0. Moreover, if (µ, u) ∈ ζν
k then we read from the BVP (2.18) that µ =

µk (q̃, f (·, u(·) + 2ω), then taking in consideration Hypothesis (2.4), we obtain from As-

sertion 4 in Theorem 2.1 that µ = µk (q̃, f (·, u(·)) + 2ω) ≤ µk (q̃, ω) .

Now, let (µn, un) be sequence in ζν
k with limn→+∞ ‖un‖ = +∞ then vn = un

‖un‖ satisfies

vn = µnL∞vn + µn
T∞(un)

‖un‖
(2.20)

where L, T : E→ E are defined as follows

L∞u(t) =
∫ +∞

0 Gq̃(t, s)m̃∞(s)u(s)ds,

T∞u(t) =
∫ +∞

0 Gq̃(t, s)u(s)g∞(s, u(s))ds,

and m̃∞ = m∞ + 2ω, g∞(s, u) = f (s, u)−m∞(s). Note that Hypothesis (2.6) implies that

T∞(u) = ◦(‖u‖∞) at ∞. Combining this with the compactness of L∞, we obtain from

(2.20) existence of v+, v− ∈ W with ‖v+‖ = ‖v−‖ = 1 such that L∞v+ = µ+v+ and

L∞v− = µ−v− where µ+ = lim sup µn and µ− = lim inf µn.

Consequently, we have µ+ = µl+(q̃, m∞) and µ− = µl−(q̃, m∞) for some integers

l+, l− and since each of v+ and v− is a limit of a subsequence of (vn) ⊂ Sν
k , we obtain

l+ = l− = k and µ+ = µ− = µk(q̃, m∞).

Lemma 2.15. Assume that there exist two integers i, j with 1 ≤ i ≤ j such that one of the

following situations holds

µi(q, m0) < 1 < µj(q, m∞) or µj(q, m0) < 1 < µi(q, m∞).

Then

µi(q̃, m̃0) < 1 < µj(q̃, m̃∞) or µj(q̃, m̃0) < 1 < µi(q̃, m̃∞).
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Proof .

Let l ≥ 1 be an integer and κ = 0, ∞, we have to prove, µl(q, mκ) < 1 implies µl(q̃, mκ) <

1 and µl(q, mκ) > 1 implies µl(q̃, mκ) > 1. We present the proof of the implication:

µl(q, mκ) < 1 ⇒ µl(q̃, mκ) < 1, the other is checked similarly. Let φ ∈ Sl and φ̃ ∈ Sl

be respectively the eigenfunctions associated respectively with µ = µl(q, mκ) and µ̃ =

µl(q̃, m̃κ) and let
(
zj
)j=l

j=0 be the sequence of zeros of φ. Each of the pairs (µ, φ) and
(
µ̃, φ̃

)
satisfies −u′′ + qu = µmκu in (0,+∞) ,

u(0) = u(+∞) = 0
and

 −u′′ + qu = (µ̃mκ + 2(µ̃− 1)ω)u in (0,+∞) ,

u(0) = u(+∞) = 0.

By the contrary, suppose that µ̃ ≥ 1, then we have

(µ̃mκ + 2(µ̃− 1)ω)− µmκ = (µ̃− µ)mκ + 2(µ̃− 1)ω > 0 a.e. t > 0.

Thus, applying Lemma 2.10 we get that in each interval
(
zj, zj+1

)
, j = 0, ..., l − 1,

there is a zero of φ̃, contradicting φ̃ ∈ Sl. This ends the proof.
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Chapter 3
Nodal solutions for asymptotically linear

second-order BVPs on the real line

3.1 Introduction and main results

Because that boundary value problems (bvps for short) associated with second-order

ordinary differential equations posed on infinite intervals arise in modeling a variety of

physical phenomena, the study of existence of solutions and their qualitative properties

to such problems has received a great deal of attention and has been the subject of many

old and recent articles, see, for instance [2]-[5], [15]-[40], [59], [62] and references therein.

However, to the author’s knowledge, there are few papers considering existence of nodal

solutions for such type of bvps. The first goal of this chapter is then to fill the gap in this

area.

Nodal solutions appear as eigenfunctions to the eigenvalue problem (evp for short)
− (αu′)′ + βu = σγu in (ξ, η) a.e.,

au(ξ) + b limt→ξ p(t)u′(t) = 0,

cu(η) + d limt→η p(t)u′(t) = 0,

(3.1)

where −∞ ≤ ξ < η ≤ +∞, σ is a real parameter, a, b, c, d are real numbers with (a2 +

b2)(c2 + d2) 6= 0 and α, β, γ : (ξ, η)→ R are three functions.

Theorem 4.9.1 in [64] states that if α, γ > 0 in (ξ, η) a.e. and 1/α, β, γ ∈ L1 (ξ, η),

the evp (3.1) admits an increasing sequence of simple eigenvalues (σk)k≥1 such that

limk→∞ σk = +∞ and if ϑk is the eigenfunction associated with σk, then ϑk admits exactly
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(k− 1) zeros in (ξ, η), all are simple. The condition γ > 0 in (ξ, η) a.e. has been relaxed

in [7] to γ ≥ 0 in (ξ, η) a.e. and γ > 0 in [ξ1, η1] ⊂ (ξ, η) a.e..

The second goal of this article is to prove that the existence of nodal solutions holds

although the L1-Carathéodory framework imposed in [64] and [7] is failed. Thus, we

consider in this paper the evp: −u′′(t) + q(t)u(t) = µm(t)u(t), t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0,
(3.2)

and the perturbed version of the evp (3.2): −u′′(t) + q(t)u(t) = µu(t) f (t, u(t)), t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0,
(3.3)

where µ is a real parameter, the weights q and m belong to C (R, R+) , q may be un-

bounded and f : R×R→R is a continuous function.

Notice that the evp (3.2) is the version of the evp (3.1) with (ξ, η) = R, a = c = 1,

b = d = 0 the and α = 1, β = q. Clearly, with such a weight α = 1 and a weight β = q

being unbounded, the evp (3.2) do not satisfy L1-Caratheodory framework cited above.

Statements of main results in this paper need to introduce some notations. In what

follows, we let

Q =

{
q ∈ C(R, R+) : ∃T ≥ 0 such that inf

|t|>T
q(t) > 0

}
,

W =

{
u ∈ C (R, R) : lim

t→−∞
u(t) = lim

t→+∞
u(t) = 0

}
,

Wk = W ∩ Ck (R, R) for all integers k ≥ 1,

W+ = {m ∈W : m(t) > 0 a.e. t ∈ R} .

The linear space W is equipped with the norm ‖·‖ , defined for u ∈ W by ‖u‖ =

supt∈R |u(t)|. Obviously, (W, ‖·‖) is a Banach space.

For an integer k ≥ 1, S+
k denotes the set of all the functions u ∈ W1 having exactly

(k − 1) zeros in R, all are simple and u is positive in a right neighbourhood of −∞,

S−k = − S+
k and Sk = S+

k ∪ S−k . For u ∈ Sk,
(
zj
)j=k

j=0 with −∞ = z0 < z1 < . . . < zk = +∞

and u
(
zj
)
= 0 for j = 1, . . . , k− 1, is said to be the sequence of zeros of u.

Our first result concerns the evp (3.2), it states that the existence of a sequence of

eigenvalues as well as its properties hold for all pairs of functions (q, m) in Q×W+.

41



Chapter 3. Nodal solutions for asymptotically linear second-order BVPs on the real line

Theorem 3.1. For all pairs (q, m) ∈ Q×W+, the set of eigenvalues of the evp (3.2) consists in

an unbounded increasing sequence of simple eigenvalues (µk(q, m))k≥1 such that eigenfunctions

associated with µk(q, m) belong to Sk. Moreover, for q fixed in Q, the mapping µk(q, ·) has the

following properties:

1. If m1, m2 ∈ W+ are such that m1 ≤ m2, then µk(m1) ≥ µk(m2). In addition, µk(m1) >

µk(m2) whenever m1 < m2 in a subset of positive measure.

2. If m ∈ W+ and (mn) ⊂ W+ are such that lim mn = m in W, then limn→∞ µk(q, mn) =

µk(q, m).

Concerning the bvp (3.3), we obtain under the assumptions on the nonlinearity f : | f (t, 0)| ∈W+ and for all r > 0, there exists ψr ∈W+ such that

| f (t, u)− f (t, v)| ≤ ψr(t) |u− v| for all t ∈ R and u, v ∈ [−r, r] ,
(3.4)

 there exists ω ∈W+ such that

f (t, u) + ω (t) ≥ 0 for all t, u ∈ R,
(3.5)


limu→0 f (t, u) = m0(t) and

lim|u|→+∞ f (t, u) = m∞(t)

in W with m0, m∞ ∈W+,

(3.6)

the following existence and multiplicity result for nodal solutions:

Theorem 3.2. Let q ∈ Q and assume that in addition to Hypotheses (3.4)-(3.6), there exist two

integers i, j with 1 ≤ i ≤ j such that one of the following situations holds:

µj(q, m∞) < µ < µi(q, m0)

or

µj(q, m0) < µ < µi(q, m∞).

Then for each integer k ∈ {i, . . . , j} and ν = ±, the bvp (3.3) admits a solution in Sν
k .

Consider the case of the bvp (3.3) where the nonlinearity f is a separable variables

function, namely the case where the bvp (3.3) takes the form

 −u′′ + q(t)u = µm(t)ug(u), t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0,
(3.7)
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where m ∈W+ and g : R→ R+ is a continuously differentiable function such that

lim
u→0

g(u) = g0 > 0 and lim
u→+∞

g(u) = g∞ > 0. (3.8)

We deduce, from Theorem 3.2 the following corollary:

Corollary 3.3. Let q ∈ Q and assume that in addition to Hypothesis (3.8), there exist two

integers i, j with 1 ≤ i ≤ j such that one of the following situations holds:

µg0 < µi(q, m) < µj(q, m) < µg∞,

or

µg∞ < µi(q, m) < µj(q, m) < µg0.

Then for each integer k ∈ {i, . . . , j} and ν = ±, the bvp (3.7) admits a solution in Sν
k .

Proof .

Set f (t, u) = µm(t)g(u) and note that such a nonlinearity satisfies Hypotheses (3.4)

(3.5) and (3.6) with m0(t) = g0m(t), m∞(t) = g+∞m(t). Since for all integers k ≥ 1

and κ = 0 or +∞, µk(mκ) = µk(m)/gκ, we have µi(q, m0) < µ < µj(q, m∞) if and

only if µg∞ < µi(q, m) < µj(q, m) < µg0 and µj(q, m0) < µ < µi(q, m∞) if and only if

µg0 < µi(q, m0) < µj(q, m∞) < µg∞. Therefore, Corollary 3.3 is obtained by a simple

application of Theorem 3.2.

3.2 Preliminaries

3.2.1 The Green’s function and fixed point formulation

Let for ξ, η ∈ R, φq,ξ,η be the unique solution of the initial value problem
−u′′(t) + q(t)u(t) = 0,

u(0) = ξ,

u′(0) = η.

It is proved in Section 3.1 in [6] that there is a unique η0 ∈ R such that φq,1,η0 satisfies

the bvp  −u′′(t) + q(t)u(t) = 0,

u(0) = 1, limt→+∞ u(t) = 0,

with φq,1,η0 (t) > 0 and φ′q,1,η0
(t) < 0 for all t ≥ 0. In all what follows, we let for

q ∈ Q, Φq = φq,1,η0 .
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Lemma 3.4. For all q ∈ Q, the function Φq has the following properties:

i) Φq(t) > 0 and Φ′′q (t) ≥ 0 for all t ∈ R.

ii) limt→−∞ Φ′q(t) = −∞ and limt→+∞ Φ′q(t) = 0.

iii) Φ′q(t) < 0 for all t ∈ R.

iv) For all t ∈ R,
∫ +∞

t
Φq(s)ds < ∞.

v) limt→−∞
Φq(t)
1− t

= +∞ and
∫ t

−∞

ds
Φ2

q
< ∞ for all t ∈ R.

vi) limt→−∞ Φq(t)
∫ t

−∞

ds
Φ2

q
= 0.

vii) limt→+∞ Φq(t)
∫ t

−∞

ds
Φ2

q
= +∞.

viii) The function Φq/Φ′q is bounded at ±∞.

Proof .

Let q ∈ Q and T > 0 be such that α = inf|t|≥T q(t) > 0.

i) By the way of contradiction, suppose that Φq(t0) ≤ 0 for some t0 < 0. In this

case, there is an interval (t∗, 0) such that Φq(t) > 0 for all t ∈ (t∗, 0) and Φ′q (t∗) > 0.

Therefore, we have Φ′′q (t) ≥ 0 for all t ∈ (t∗, 0) and Φ′q is nondecreasing on (t∗, 0) . This

leads to the contradiction 0 < Φ′q (t∗) ≤ Φ′q (0) < 0 and proves that Φq(t) > 0 for all

t ∈ R. The equation Φ′′q (t) = q(t)Φq(t) shows that Φ′′q (t) ≥ 0 for all t ∈ R.

ii) It follows from Assertion i) that the function Φ′q is nondecreasing and the limits

limt→+∞ Φ′q(t) and limt→−∞ Φ′q(t) exist. Set l+ = limt→+∞ Φ′q(t) and suppose that l+ 6=

0. We obtain then by the L’Hôpital’s rule limt→+∞
Φq(t)

t = l+ and limt→+∞ Φq(t) = ±∞.

This contradicts limt→+∞ Φq(t) = 0 and proves that limt→+∞ Φ′q(t) = 0. Now, we have

for all t ≤ −T,

Φ′q(t) = Φ′q(−T) +
∫ t

−T
Φ′′q ds = Φ′q(−T)−

∫ −T

t
qΦqds ≤ Φ′q(−T) + αε(t + T),

where ε = infs≤−T Φq(s) > 0.

Clearly, the above inequality proves that limt→−∞ Φ′q(t) = −∞.

iii) Since Φ′q is nondecreasing and limt→+∞ Φ′q(t) = 0, we have Φ′q(t) < 0 for all

t ∈ R.
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iv) We have for all s ∈ (T,+∞) ,∫ s

T
Φqdr =

∫ s

T

Φ′′q
q

dr ≤ 1
α

∫ s

T
Φ′′q dr =

1
α
(Φ′q(s)−Φ′q(T)) ≤ −

Φ′q(T)
α

.

This proves that
∫ +∞

t Φq(r)dr < ∞ for all t ∈ R.

v) By L’Hôpital’s rule, we have

lim
t→−∞

Φq(t)
1− t

= lim
t→−∞

−Φ′q(t) = +∞.

This shows that for Φ2
q(s) ≥ (1− s)2 for all s ∈ (−∞, s∗) with s∗ near −∞. By the

comparaison principle, we have
∫ t
−∞

ds
Φ2

q
< ∞ for all t ∈ R.

vi) We have by L’Hôpital’s rule

lim
t→−∞

Φq(t)
∫ t

−∞

ds
Φ2

q
= lim

t→−∞

∫ t
−∞ Φ−2

q ds(
Φq(t)

)−1 = lim
t→−∞

− 1
Φ′q(t)

= 0.

vii) Again by L’Hôpital’s rule we get

lim
t→+∞

Φq(t)
∫ t

−∞

ds
Φ2

q
= lim

t→+∞
− 1

Φ′q(t)
= +∞.

viii) We have for all t ∈ R, with t ≥ T,(
−Φ′q(t)

)2
= 2

∫ +∞

t
Φ′′q
(
−Φ′q

)
ds = 2

∫ +∞

t
qΦq

(
−Φ′q

)
ds ≥ α

(
Φq(t)

)2 ,

leading to ∣∣∣Φq(t)/Φ′q(t)
∣∣∣2 =

(
Φq(t)/−Φ′q(t)

)2
≤ 1

α
for all t ∈ R, with t ≥ T,

then to,

sup
t≥T

∣∣∣Φq(t)/Φ′q(t)
∣∣∣ ≤ 1√

α
.

In a similar way, we obtain that

sup
t≤−T

∣∣∣Φq(t)/Φ′q(t)
∣∣∣ ≤ 1√

α
,

proving viii) and completing the proof of the lemma.

Because of Assertions v), vi) and vii) in Lemma 3.4, the function

Ψq(t) = Φq(t)
∫ t

−∞

ds
Φ2

q
(3.9)

is well defined and it is a solution to the bvp −u′′(t) + q(t)u(t) = 0,

limt→−∞ u(t) = 0, limt→+∞ u(t) = +∞.
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Lemma 3.5. For all q ∈ Q, the function Ψq has the following properties:

a) Ψq(t) > 0, Ψ′q(t) > 0 and Ψ′′q (t) ≥ 0 for all t ∈ R.

b) limt→−∞ Ψ′q(t) = 0 and limt→+∞ Ψ′q(t) = +∞.

c) For all t ∈ R,
∫ t

−∞
Ψqds < ∞.

d) For all t ∈ R, Φq(t)Ψ′q(t)−Ψq(t)Φ′q(t) = 1.

e) The function Ψq/Ψ′q is bounded at ±∞.

Proof .

Let q ∈ Q and T > 0 be such that α = inf|t|≥T q(t) > 0.

a) Respectively from (3.9) and Ψ′′q = qΨq, we have Ψq(t) > 0 and Ψ′′q (t) ≥ 0 for all

t ∈ R. Since the function Φ′q is decreasing, we obtain from (3.9) that

Ψ′q(t) = Φ′q(t)
∫ t

−∞

ds
Φ2

q
+

1
Φq(t)

>
∫ t

−∞

Φ′q
Φ2

q
ds +

1
Φq(t)

= 0.

b) Because that Ψ′q is a nondecreasing function the limits limt→−∞ Ψ′q(t) and limt→+∞ Ψ′q(t)

exist. Set limt→−∞ Ψ′q(t) = l+ and notice that l+ ≥ 0. By the way of contradiction, sup-

pose that l+ > 0. We obtain then by means of the L’Hôpital’s rule that

lim
t→−∞

Ψq(t)
t

= lim
t→−∞

Ψ′q(t) = l+ > 0,

leading to limt→−∞ Ψq(t) = −∞ and contradicting limt→−∞ Ψq(t) = 0. Therefore, we

have proved that limt→−∞ Ψ′q(t) = 0.

Now, we have for all t ≥ T,

Ψ′q(t) = Ψ′q(T) +
∫ t

T
Ψ′′q ds = Ψ′q(T) +

∫ t

T
qΨqds ≥ Ψ′q(T) + αε (t− T) ,

where ε = infs≥s− Ψq(s) > 0. The above inequality shows that limt→+∞ Ψ′q(t) = +∞.

c) We have for all s ∈ (−∞,−T) ,∫ −T

s
Ψq(r)dr =

∫ −T

s

Ψ′′q
q

dr ≤ 1
α

∫ −T

s
Ψ′′q dr =

1
α
(Ψ′q(−T)−Ψ′q(s)) ≤

Ψ′q(−T)
α

.

This proves that
∫ t
−∞ Ψqdr < ∞ for all t ∈ R.

d) We have from (3.9) that for all t ∈ R,

Φq(t)Ψ′q(t)−Ψq(t)Φ′q(t) = Φq(t)

(
Φ′q(t)

∫ t

−∞

ds
Φ2

q
+

1
Φq(t)

)
−Φq(t)Φ′q(t)

∫ t

−∞

ds
Φ2

q
= 1.
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e) We have for all t ≥ T,(
Ψ′q(t)

)2
=

(
Ψ′q(T)

)2
+ 2

∫ t

T
Ψ′qΨ′′q ds =

(
Ψ′q(T)

)2
+ 2

∫ t

T
qΨqΨ′qds

≥
(

Ψ′q(T)
)2

+ α
((

Ψq(t)
)2 −

(
Ψq(T)

)2
)

,

from which we obtain that for all t ≥ T,

Ψq(t)
Ψ′q(t)

≤
√

1
α
+

Ψq(T)
Ψ′q(t)

.

This together with Assertion b), we conclude that there is T∗ ≥ T such that

Ψq(t)
Ψ′q(t)

≤
√

2
α

, for all t ≥ T∗.

We have for all t ≤ −T,(
Ψ′q(t)

)2
= 2

∫ t

−∞
Ψ′qΨ′′q ds = 2

∫ t

−∞
qΨqΨ′qds ≥ α

(
Ψq(t)

)2 ,

leading to
Ψq(t)
Ψ′q(t)

≤
√

1
α

, for all t ≤ −T.

This completes the proof of d) and ends the proof of the lemma.

Set for q ∈ Q and θ ∈ R,

Ψq,θ (t) =
Ψq (t)
Ψq (θ)

, Φq,θ (t) = Ψq (θ)Φq (t)−Φq (θ)Ψq (t) ,

and

Gq(θ, t, s) =


0, if max(t, s) ≥ θ,

Φq,θ (s)Ψq,θ (t) , if t ≤ s ≤ θ,

Φq,θ (t)Ψq,θ (t) , if s ≤ t ≤ θ.

(3.10)

We have then for all q ∈ Q and all θ ∈ R,

Φq,θ(t)Ψ′q,θ(t)−Ψq,θ(t)Φ′q,θ(t) = 1, for all t ∈ R, (3.11)

and

Gq(θ, t, s) = Gq(t, s)−
Φq (θ)

Ψq (θ)
Ψq(s)Ψq(t), for t, s ≤ θ,

where

Gq(t, s) = Gq(+∞, t, s) = lim
θ→+∞

Gq(θ, t, s) =

 Φq (t)Ψq (s) , if t ≤ s,

Φq (s)Ψq (t) , if s ≤ t,
(3.12)

is the Green’s function associated with bvp (3.3).
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Lemma 3.6. We have for all functions q in Q :

1) Gq,∞ = supt,s∈R Gq (t, s) ≤ supt∈R Φq (t)Ψq(t) < ∞,

2) Gq,∞ = supθ,t,s∈R Gq (θ, t, s) < ∞,

3) G̃q,θ = supt∈R

∫ +∞
−∞ Gq(θ, t, s)ds < ∞ for all θ ∈ (−∞,+∞] .

Proof .

Let q ∈ Q and T > 0 be such that α = inf|t|≥T q(t) > 0.

1) Taking in consideration that Φq is nonincreasing, we obtain from (3.9) that for all

t, s ∈ R,

Gq(t, s) ≤ Φq(t)Ψq(t) =

(
Φq(t)
−Φ′q(t)

)(
−Φ′q(t)Φq(t)

∫ t

−∞

ds
Φ2

q

)

≤
(

Φq(t)
−Φ′q(t)

)(
Φq(t)

∫ t

−∞

−Φ′q
Φ2

q
ds

)
=

(
Φq(t)
−Φ′q(t)

)
.

This together with Assertion viii) in Lemma 3.4, leads to

Gq,∞ = sup
t,s∈R

Gq(t, s) ≤ sup
t∈R

Φq(t)Ψq(t) < ∞.

2) Because of Φq is decreasing and Ψq is increasing, we have for all s, t ≤ θ,

0 ≤ Gq(θ, t, s) ≤ Φq(t)Ψq(t) +
Φq(θ)

Ψq(θ)
Ψq(t)Ψq(s)

≤ Φq(t)Ψq(t) + Ψq(θ)Φq(θ)

≤ 2 sup
t∈R

Φq(t)Ψq(t) < ∞,

proving 2).

3) Since for all θ ∈ R and t ∈ (−∞, θ) ,∫ +∞

−∞
Gq(θ, t, s)ds =

∫ θ

−∞
Gq(t, s)ds−

Φq(θ)

Ψq(θ)
Ψq(t)

∫ θ

−∞
Ψqds

≤
∫ +∞

−∞
Gq(t, s)ds + Φq(θ)

∫ θ

−∞
Ψqds,

we have to prove that supt∈R

∫ +∞
−∞ Gq(t, s)ds < ∞. Because of Assertions vi) in Lemma

3.4 and c) in Lemma 3.5, we have for all t ∈ R,∫ +∞

−∞
Gq(t, s)ds = Φq(t)

∫ t

−∞
Ψqds + Ψq(t)

∫ +∞

t
Φqds < ∞,
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and the function t→
∫ +∞
−∞ Gq(t, s)ds belongs C (R, R) .

Moreover, we have for all t ≥ T,∫ +∞

−∞
Gq(t, s)ds = Φq(t)

∫ t

−∞
Ψqds + Ψq(t)

∫ +∞

t
Φqds

= Φq(t)
(∫ −T

−∞
Ψqds +

∫ T

−T
Ψqds +

∫ t

T
Ψqds

)
+ Ψq(t)

∫ +∞

t
Φqds

= Φq(t)

(∫ −T

−∞

Ψ′′q
q

ds +
∫ T

−T
Ψqds +

∫ t

T

Ψ′′q
q

ds

)
+ Ψq(t)

∫ +∞

t

Φ′′q
q

ds

≤ Φq(t)
(

1
α

∫ −T

−∞
Ψ′′q ds + 2TΨq(T) +

1
α

∫ t

T
Ψ′′q ds

)
+

1
α

Ψq(t)
∫ +∞

t
Φ′′q ds

= Φq(t)
(

1
α

Ψ′q(−T) + 2TΨq(T) +
1
α
(Ψ′q(t)−Ψ′q(T)

)
− 1

α
Ψq(t)Φ′q (t)

= Φq(t)
1
α

Ψ′q(−T) + 2TΦq(t)Ψq(T)−Φq(t)Ψ′q(T) +
1
α

≤ 1
α

Φq(T)Ψ′q(−T) + 2TΨq(T)Φq(T) +
1
α

,

and for all t ≤ −T,∫ +∞

−∞
Gq(t, s)ds = Φq(t)

∫ t

−∞
Ψqds + Ψq(t)

∫ +∞

t
Φqds

= Φq(t)
∫ t

−∞

Ψ′′q
q

ds + Ψq(t)

(∫ −T

t

Φ′′q
q

ds +
∫ T

−T
Φqds +

∫ +∞

T

Φ′′q
q

ds

)

≤ 1
α

Φq(t)
∫ t

−∞
Ψ′′q ds + Ψq(t)

(
1
α

∫ −T

t
Φ′′q ds + 2TΦq(−T) +

1
α

∫ +∞

T
Φ′′q ds

)
≤ 1

α
Φq(t)Ψ′q (t) + Ψq(t)

(
1
α

(
Φ′q (−T)−Φ′q (t)

)
+ 2TΦq(−T)− 1

α
Φ′q (T)

)
=

1
α
+

1
α

Ψq(t)Φ′q (−T) + 2TΨq(t)Φq(−T)− 1
α

Ψq(t)Φ′q (T)

≤ 1
α
+ 2TΦq(−T)Ψq(−T)− 1

α
Ψq(−T)Φ′q(T).

The above estimates shows that the function t →
∫ +∞
−∞ Gq(t, s)ds is bounded at ±∞

and supt∈R

∫ +∞
−∞ Gq(t, s)ds < ∞. This achieves the proof of the lemma.

Lemma 3.7. For all q ∈ Q and θ ∈ (−∞,+∞], the operator Lθ : W → W where for h ∈ W

Lθh(t) =
∫ +∞
−∞ Gq(θ, t, s)h(s)ds is well defined and is continuous.

Proof .

Let θ ∈ R, h ∈ W and set uθ(t) = Lθh(t) =
∫ +∞
−∞ Gq(θ, t, s)hds. We have from the above

Assertion 3) that for all t ∈ R

|uθ(t)| =
∣∣∣∣∫ +∞

−∞
Gq(θ, t, s)hds

∣∣∣∣ ≤ ‖h‖ ∫ +∞

−∞
Gq(θ, t, s)ds ≤ ‖h‖

∫ +∞

−∞
Gq(θ, t, s)ds < ∞.

49



Chapter 3. Nodal solutions for asymptotically linear second-order BVPs on the real line

Because of limt→θ uθ(t) = uθ(θ) = 0, we conclude from the expression

uθ(t) =

 Φq (t)
∫ t

−∞
Ψqhds + Ψq (t)

∫ θ

t
Φqhds−

Φq(θ)

Ψq(θ)
Ψq(t)

∫ θ

−∞
Ψqhds, if t < θ,

0, if t ≥ θ,

that the function uθ belongs to C (R, R) .

Clearly, limt→+∞ uθ(t) = uθ(θ) = 0 and limt→−∞
Φq(θ)

Ψq(θ)
Ψq(t)

∫ θ
−∞ Ψqhds = 0. Thus,

taking in account Assertions viii) in Lemma 3.4, e) in Lemma 3.5, 1) in Lemma 3.6 and

limt→−∞ h(t) = 0, we obtain by means of the L’Hôpital’s rule

lim
t→−∞

Φq(t)
∫ t

−∞
Ψqhds = lim

t→−∞

∫ t
−∞ Ψqhds(
Φq(t)

)−1 = lim
t→−∞

−
(

Φq(t)
Φ′q(t)

)
Φq(t)Ψq(t)h(t) = 0,

lim
t→−∞

Ψq(t)
∫ θ

t
Φqhds = lim

t→−∞

∫ θ
t Φqhds(
Ψq(t)

)−1 = lim
t→−∞

(
Ψq(t)
Ψ′q(t)

) (
Φq(t)Ψq(t)

)
h(t) = 0,

leading to limt→+∞ Lθu(t) = 0. All the above show that for θ ∈ R, the operator Lθ is

well defined. We have also for all h ∈W,

|Lθh(t)| =
∣∣∣∣∫ +∞

−∞
Gq(θ, t, s)hds

∣∣∣∣ ≤ ∫ +∞

−∞
Gq(θ, t, s)ds ‖h‖ ≤

(
sup
t∈R

∫ +∞

−∞
Gq(θ, t, s)ds

)
‖h‖ .

This leads to ‖Lθh‖ ≤ G̃q,θ ‖h‖ for all h ∈W and proves that Lθ ∈ L (W).

We have for all θ ∈ R and h ∈W,

|L+∞h (t)− Lθh (t)| =


∣∣∣∣Φq (t)

∫ t

−∞
Ψqhds + Ψq (t)

∫ +∞

t
Φqhds

∣∣∣∣ , if t ≥ θ,∣∣∣∣Ψq (t)
∫ +∞

θ
Φqhds +

Φq(θ)

Ψq(θ)
Ψq(t)

∫ θ

−∞
Ψqhds

∣∣∣∣ , if t < θ,

≤


Φq (t)

∫ t

−∞
Ψq |h| ds + Ψq (t)

∫ +∞

t
Φq |h| ds, if t ≥ θ,

Ψq (θ)
∫ +∞

θ
Φq |h| ds + Φq(θ)

∫ θ

−∞
Ψq |h| ds, if t < θ.

Since

lim
θ→+∞

Ψq (θ)
∫ +∞

θ
Φq |h| ds + Φq(θ)

∫ θ

−∞
Ψq(s) |h| ds = 0,

for ε > 0 there is θ∗ > 0 such that

0 < Ψq (t)
∫ +∞

t
Φq |h| ds + Φq(t)

∫ t

−∞
Ψq |h| ds < ε, for all t > θ∗.

Therefore, we have for all θ > θ∗ supt∈R |L+∞h (t)− Lθh (t)| ≤ ε and L+∞h = limθ→+∞ Lθh

in W. This proves that L+∞h ∈ W and the operator L+∞ is well defined and because of

Assertion 3) in Lemma 3.6, we have for all h ∈ W, ‖L+∞h‖ ≤ G̃q,∞ ‖h‖ , showing that

L+∞ ∈ L (W) . The proof of the lemma is complete.
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Lemma 3.8. Let f̃ : R×R→ R be a continuous function satisfying Hypothesis (3.4), then for

all u ∈ W the function F̃u, with F̃u(t) = u(t) f̃ (t, u(t)) belongs to W. Moreover, the mapping

F̃ : W →W is continuous and bounded.

Proof .

Let u ∈ W, because of the continuity of the function f̃ , F̃u ∈ C (R, R) . Moreover, we

have from Hypothesis (3.4) for all t ∈ R :∣∣∣u(t) f̃ (t, u(t))
∣∣∣ ≤ ‖u‖2 ψ‖u‖ (t) + ‖u‖

∣∣∣ f̃ (t, 0)
∣∣∣ = ψ̃ (t) ,

with ψ̃ ∈W. Therefore lim|t|→+∞ F̃u(t) = 0 and F̃u ∈W.

Now, let R > 0 and u, v ∈ W be such that sup (‖u‖ , ‖v‖) ≤ R. We have from

Hypothesis (3.4) that∣∣∣F̃u(t)− F̃v(t)
∣∣∣ =

∣∣∣u(t) f̃ (t, u(t))− v(t) f̃ (t, v(t))
∣∣∣

≤
∣∣∣u(t) f̃ (t, u(t))− u(t) f̃ (t, v(t))

∣∣∣+ ∣∣∣u(t) f̃ (t, v(t))− v(t) f̃ (t, v(t))
∣∣∣

≤ RψR(t) |u(t)− v(t)|+ R
(

RψR +
∣∣∣ f̃ (t, 0)

∣∣∣) |u(t)− v(t)|

≤ R
(
‖ψR‖+ R ‖ψR‖+

∥∥∥ f̃ (t, 0)
∥∥∥) ‖u− v‖ ,

leading to ∥∥∥F̃u− F̃v
∥∥∥ ≤ R

(
‖ψR‖+ R ‖ψR‖+

∥∥∥ f̃ (t, 0)
∥∥∥) ‖u− v‖ ,

and proving that the mapping F̃ is locally Lipshitzian, consequently it is continuous and

bounded.

The main result of this subsection consists in the following lemma providing a fixed

point formulation for the evp (3.2) and the bvp (3.3).

Lemma 3.9. Let q be in Q and f̃ : R×R→ R be a continuous function satisfying Hypothesis

(3.4). Set for θ ∈ (−∞,+∞] , Tθ = Lθ ◦ F, then the operator Tθ is completely continuous and

u ∈W is a fixed point of Tθ if and only if u is a solution to the BVP −u′′(t) + q(t)u(t) = u(t) f̃ (t, u(t)), t ∈ (−∞, θ) ,

limt→−∞ u(t) = limt→θ u(t) = 0.
(3.13)

Proof .

First, we prove that fixed points of the operator Tθ are solutions to the bvp (3.13). To this

aim, let u ∈W be a fixed point of Tθ, from

u(t) = Φq,θ (t)
∫ t

−∞
Ψq,θu f̃ (s, u)ds + Ψq,θ (t)

∫ θ

t
Φq,θu f̃ (s, u)ds, for t < θ,
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we understand that u belongs to C1 ((−∞, θ) , R) and straightforward computations lead

to

u′(t) = Φ′q,θ (t)
∫ t

−∞
Ψq,θu f̃ (s, u)ds + Ψ′q,θ (t)

∫ θ

t
Φq,θu f̃ (s, u)ds, for t < θ.

Again we have u′ ∈ C1 ((−∞, θ) , R) and taking in account (3.11), we obtain for all

t ∈ (−∞, θ),

u′′(t) = Φ′′q,θ (t)
∫ t

−∞
Ψq,θu f̃ (s, u)ds + Ψ′′q,θ (t)

∫ θ

t
Φq,θu f̃ (s, u)ds

−
(

Φq,θ (t)Ψ′q,θ (t)−Φ′q,θ (t)Ψq,θ (t)
)

u(t) f̃ (t, u(t))

= q(t)
(

Φq,θ (t)
∫ t

−∞
Ψq,θu f̃ (s, u)ds + Ψ′q,θ (t)

∫ θ

t
Φq,θu f̃ (s, u)ds

)
− u(t) f̃ (t, u(t))

= q(t)uθ(t)− u(t) f̃ (t, u(t)).

Reciprocally, if u ∈W2 is a solution to the bvp (3.13) we have then∫ +∞

−∞
Gq(t, s)

(
−u′′ + qu

)
ds =

∫ +∞

−∞
Gq(t, s)u f̃ (s, u)ds, for all t ∈ R.

Integrating twice by parts the left integral, we obtain that u is a fixed point of Tθ.

Now, we prove that the mapping Tθ is completely continuous for all θ ∈ R. To this

aim, let Ω be a subset of W bounded by a constant r and ψr ∈W+ such that∣∣∣ f̃ (t, x)− f̃ (t, y)
∣∣∣ ≤ ψr(t) |x− y| , for all t ∈ R and x, y ∈ [−r, r] . (3.14)

Since each of the mapping Lθ and F̃ is continuous and bounded, the operator Tθ is

continuous and bounded. In particular, Tθ (Ω) is bounded and we obtain from (3.14):∣∣∣x f̃ (t, x)
∣∣∣ ≤ ψ̃r(t). for all t ∈ R and x ∈ [−r, r] ,

where ψ̃r(t) = r2ψr(t) + r
∣∣∣ f̃ (t, 0)

∣∣∣ .

Therefore, the following estimate hold for all u ∈ Ω,

|Tθu(t)| ≤ Uθ(t), for all t ∈ R, where Uθ = Lθψ̃r ∈W,

and proves that Tθ (Ω) is equiconvergent.

It remains to show that the subset is equicontinuous on compact intervals. Let [γ, δ]
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be a compact interval and let t1, t2 ∈ [γ, δ] be such that t1 < t2. We have for all u ∈ Ω :

Tθu(t2)− Tθu(t1) = 0, if θ ≤ t1 < t2,

Tθu(t2)− Tθu(t1) = Tθu(θ)− Tθu(t1)

=
(
Φq(θ)−Φq(t1)

) ∫ t1

−∞
Ψqu f̃ (s, u)ds + Φq(θ)

∫ θ

t1

Ψqu f̃ (s, u)ds

−
(
Ψq (θ)−Ψq (t1)

) Φq(θ)

Ψq(θ)

∫ θ

−∞
Ψqu f̃ (s, u)ds, if t1 < θ ≤ t2,

and

Tθu(t2)− Tθu(t1) =
(
Φq(t2)−Φq(t1)

) ∫ t1

−∞
Ψqu f̃ (s, u)ds

+
(
Ψq (t2)−Ψq (t1)

) ∫ θ

t2

Ψqu f̃ (s, u)ds + Φq(t2)
∫ t2

t1

Ψqu f̃ (s, u)ds

−Ψq (t1)
∫ t2

t1

Φqu f̃ (s, u)ds

−
(
Ψq (t2)−Ψq (t1)

) Φq(θ)

Ψq(θ)

∫ θ

−∞
Ψqu f̃ (s, u)ds, if t1 < t2 < θ.

In all cases, the above estimates lead to:

|Tθu(t2)− Tθu(t1)| ≤ ‖ψ̃r‖M |t2 − t1| , for all u ∈ Ω,

where

M =

(∣∣∣Φ′q(γ)∣∣∣+ Ψ′q(δ)
Φq(γ)

Ψq(γ)

) ∫ δ

−∞
Ψqds + Ψ′q(δ)

∫ δ

γ
Φqds + 2Φq(γ)Ψq(δ).

This shows that the subset Tθ (Ω) is equicontinuous on compact intervals and complete

the proof of the compactness of the mapping Tθ for θ ∈ R.

We end by proving that T+∞ is completely continuous. Let Λ be a subset in W with

Λ ⊂ B(0W , R) and and ψR ∈W+ such that∣∣∣ f̃ (t, x)− f̃ (t, y)
∣∣∣ ≤ ψR(t) |x− y| , for all t ∈ R and all x, y ∈ [−R, R] .

Therefore, we have:∣∣∣x f̃ (t, x)
∣∣∣ ≤ ψ̃r(t), for all t ∈ R and all x ∈ [−r, r] ,
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where ψ̃r(t) = r2ψr(t) + r
∣∣∣ f̃ (t, 0)

∣∣∣ and for all u ∈ Λ and t ∈ R,

|T+∞u (t)− Tθu (t)|

=


∣∣∣∣Φq (t)

∫ t

−∞
Ψqu f̃ (s, u)ds + Ψq (t)

∫ +∞

t
Φqu f̃ (s, u)

∣∣∣∣ , if t ≥ θ,∣∣∣∣Ψq (t)
∫ +∞

θ
Φqu f̃ (s, u) +

Φq(θ)

Ψq(θ)
Ψq(t)

∫ θ

−∞
Ψqu f̃ (s, u)ds

∣∣∣∣ , if t < θ,

≤


Φq (t)

∫ t

−∞
Ψqψ̃Rds + Ψq (t)

∫ +∞

t
Φqψ̃Rds, if t ≥ θ,

Ψq (θ)
∫ +∞

θ
Φqψ̃Rds + Φq(θ)

∫ θ

−∞
Ψqψ̃Rds, if t < θ.

Thus, arguing as in the end of the proof of Lemma 3.7, we obtain that T+∞ = lim Tθ in

Cb
(
Ω, W

)
and T+∞ is completely continuous.

3.2.2 Comparison results

The following lemma will play an important role in the proof of Theorem 3.2.

Lemma 3.10. Let (q, m) ∈ Q×W+ be such that µk(q, m) = 1 for some integer k ≥ 1. Then

there exists ε0 > 0 such that for all p ∈W+ with ‖p−m‖ ≤ ε0, µl(q, p) = 1 implies l = k.

Proof .

Let ε0 > 0 be such that ε0 < min(µk+1(q, m)− µk(q, m), µk(q, m)− µk−1(q, m)), because

of Assertion 2 in Theorem 3.1, there exists ε0 > 0 such that for all p ∈W+, ‖p−m‖ ≤ ε0

implies

µk−1(q, m)− ε0 ≤ µk−1(q, p) ≤ µk−1(q, m) + ε0, (3.15)

and

µk+1(q, m)− ε0 ≤ µk+1(q, p) ≤ µk+1(q, m) + ε0. (3.16)

Let p ∈W+ with ‖p−m‖ ≤ ε0 and suppose that µl(q, p) = 1 for some integer l ≥ 1.

If l < k, we have then from (3.15) the contradiction

1 = µl(q, p) ≤ µk−1(q, p) ≤ µk−1(q, m) + ε0 < µk(q, m),

and if l > k, we have then from (3.16) the contradiction

1 = µl(q, p) ≥ µk+1(q, p) ≥ µk+1(q, m)− ε0 > µk(q, m) = 1.

This shows that l = k and the lemma is proved.

We will use extensively the following lemma:
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Lemma 3.11 ([11]). Let j and k be two integers such that j ≥ k ≥ 2 and let (ξl)
l=k
l=0 , (ηl)

l=j
l=0 be

two families of real numbers such that

ξ0 = ξ < ξ1 < ξ2 < · · · < ξk−1 < ξk = η,

η0 = ξ < η1 < η2 < · · · < ηj−1 < ηj = η.

If ξ1 < η1, then there exist two integers m and n having the same parity, 1 ≤ m ≤ k− 1 and

1 ≤ n ≤ j− 1 such that

ξm < ηn ≤ ηn+1 ≤ ξm+1.

We end this section with the following lemma which is an adapted version of the

Sturmian comparison result.

Lemma 3.12. Let for i = 1, 2, mi ∈W and wi ∈ C2 (R) satisfying

−w′′i (t) + q(t)wi(t) = mi(t)wi(t), t ∈ (x1, x2) ,

and suppose that w2 does not vanish identically and m1(t) > m2(t) a.e. t > 0. If either

1. x1 > −∞ and w2(x1) = w2(x2) = 0, or

2. x1 = −∞, x2 < +∞ and w2(x1) = limt→−∞ wi(t) = 0, for i = 1, 2,

3. x1 > −∞, x2 = +∞ and w2(x1) = limt→+∞ wi(t) = 0, for i = 1, 2,

4. x1 = −∞, x2 = +∞ and limt→+∞ wi(t) = limt→−∞ wi(t) = 0, for i = 1, 2,

then there exists τ ∈ (x1, x2) such that w1(τ) = 0.

Proof .

We present the proofs of Assertions 1) and 4), the other assertions are checked similarly.

1) By the contrary suppose that w1 > 0 in (x1, x2) and without loss of generality

assume that w2 > 0 in (x1, x2) , then we have the contradiction

0 ≥ w1 (x2)w′2 (x2)− w1 (x1)w′2 (x1) =
∫ x2

x1

(
w2(−w′′1 + qw1)− w1(−w′′2 + qw2)

)
ds

=
∫ x2

x1

(m1 −m2)w1w2ds > 0.

4) By the contrary, suppose that w1 > 0 in R and without loss of generality assume

that w2 > 0 in R. Because that w′′i (t) = (q(t)−mi(t))wi(t) and q(t)−mi(t) > 0 for |t|
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large, we have that w′′i (t) > 0 for |t| large and lim|t|→∞ w′i(t) = 0. Therefore, we have for

all t > 0,

(
−w2 (t)w′1 (t) + w1 (t)w′2 (t)

)
+
(
w2 (−t)w′1 (−t)− w1 (−t)w′2 (−t)

)
=

∫ +t

−t

(
w2(−w′′1 + qw1)− w1(−w′′2 + qw2)

)
ds =

∫ t

−t
(m1 −m2)w1w2ds > 0.

Letting t→ +∞, we obtain the contradiction:

0 =
∫ +∞

−∞
(m1 −m2)w1w2ds > 0.

The proof is complete.

3.2.3 On the linear eigenvalue problem

We will present in this subsection two lemmas related to linear eigenvalue problems

and needed for the proof of Theorem 3.1. The following lemma and its assertions follows

from Theorem 2.1 and Lemma 3.7 in [6].

Lemma 3.13. For all pairs (q, m) ∈ Q×W+ and all real numbers θ, the evp −u′′(t) + q(t)u(t) = µm(t)u(t), t > θ,

u(θ) = limt→+∞ u(t) = 0,

admits an unbounded increasing sequence of simple eigenvalues
(
µ+

k (θ, q, m)
)

k≥1 such that:

1. If φ is an eigenfunction associated with µ+
k (θ, q, m) then φ admits (k− 1) zeros in (θ,+∞)

and all are simple.

2. If m1, m2 ∈ W+ are such that m1 ≤ m2, then µk(m1) ≥ µk(m2). In addition, µk(m1) >

µk(m2) whenever m1 < m2 in a subset of positive measure.

3. If m ∈ W+ and (mn) ⊂ W+ are such that lim mn = m in W, then limn→∞ µk(q, mn) =

µk(q, m).

4. Moreover, for (q, m) fixed in Q×W+, the function θ → µ+
k (θ) := µ+

k (θ, q, m) is contin-

uous and increasing. We have also limθ→+∞ µ+
k (θ) = +∞.

The next lemma concerns the existence of the positive eigenvalue on the unbounded

interval (−∞, θ) .
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Lemma 3.14. For all pairs (q, m) ∈ Q×W+ and all θ ∈ (−∞,+∞] , the evp −u′′(t) + q(t)u(t) = µm(t)u(t), t < θ,

limt→−∞ u(t) = 0, u(θ) = 0,
(3.17)

admits a unique positive eigenvalue µ−1 (θ, q, , m) . Moreover, for all θ ∈ R, µ−1 (θ, q, , m) is

geometrically simple and for (q, m) fixed in Q×W+, the function θ → µ−1 (θ) := µ−1 (θ, q, m)

is continuous and decreasing having limθ→−∞ µ−1 (θ) = +∞.

Proof .

Let for (q, m) fixed in Q×W+ and θ ∈ (−∞,+∞] , Lθ : W → W be the linear compact

operator defined by

Lθu(t) =
∫ +∞

−∞
Gq(θ, t, s)muds,

where the function Gq is that introduced by (3.10), and let uθ ∈ K be the function defined

by

uθ(t) =

0, if t /∈ [σ− (θ) , σ+ (θ)] ,

(t− σ− (θ))(σ+ (θ)− t), if t ∈ [σ− (θ) , σ+ (θ)] ,

where

σ− (θ) =

 inf
(

1
3 , θ

3

)
, if θ > 0,

3θ − 2, if θ ≤ 0
and σ+ (θ) =

 inf
(

1
2 , θ

2

)
, if θ > 0,

2θ − 1, if θ ≤ 0.

We have then Lθuθ(t) ≥ 0 = uθ(t) for t ∈ (−∞, σ− (θ)]∪ [σ+ (θ) , θ) and Luθ(t), uθ(t) > 0

for t ∈ (σ− (θ) , σ+ (θ)) . This shows that Lθu ≥ cθuθ where

cθ = inf {Luθ(t)/uθ(t) : t ∈ (σ− (θ) , σ+ (θ))} > 0,

and r(Lθ) > 0.

Since Lemma 3.9 guarantees that Lθ is compact, we have from the Krein-Rutman

theorem, that r(Lθ) is a positive eigenvalue of Lθ having an eigenvector φθ ∈ W+. By

means of Lemma 3.9, we conclude that µ−1 (θ, q, m) = 1/r(Lθ) is a positive eigenvalue of

evp (3.17).

Now, for λ a positive eigenvalue of evp (3.17) having an eigenfunction ψ, we have

0 =
∫ θ

−∞

(
(−φ′′θ + qφθ)ψ− (−ψ′′ + qψ)φθ

)
ds = (µ+

1 (θ, q, m)− λ)
∫ θ

−∞
mφθψds,

leading to λ = µ−1 (θ, q, m).
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Now we prove that for θ ∈ R, µ−1 (θ, q, m) is geometrically simple. Let φ ∈ W+ be

an eigenfunction associated with µ−1 (θ, q, m) and let wθ = W (φθ, φ) = φθφ′ − φ′θφ be the

Wronksian of φθ and φ. We have then

w′θ = W ′ (φθ, φ) = φθφ′′ − φ′′θ φ = 0,

and

wθ (θ) = φθ (θ) φ′ (θ)− φ′θ (θ) φ (θ) = 0,

proving that µ−1 (θ, q, m) is geometrically simple.

Let θ1, θ2 be real numbers such that θ1 < θ2 and set for i = 1, 2, µi = µ−1 (θi, m) with

the corresponding eigenfunction ψi. We have by simple calculations

0 < −ψ′1 (θ1)ψ2 (θ1) =
∫ θ1

−∞
((−ψ′′1 + qψ1)ψ2 − (−ψ′′2 + qψ2)ψ1)ds

= (µ1 − µ2)
∫ θ1

−∞
mψ1ψ2ds,

leading to µ1 > µ2 and proving that θ → µ1(θ, q, m) is an decreasing function.

For the continuity of the function µ1(·, q, m), follows from that of the Green’s function

G and Lemma 2.13 in [10].

Let [γ, δ] be a compact interval and let θ1, θ2 ∈ [γ, δ] be such that θ1 < θ2. We have

for all u ∈W with ‖u‖ = 1,

|Lθ2 u (t)− Lθ1 u (t)| =

∣∣∣∣∫ θ2

−∞
Gq (θ2, t, s)muds−

∫ θ1

−∞
Gq (θ1, t, s)muds

∣∣∣∣

=



0, if t ≥ θ2 > θ1,∣∣∣∣∫ θ2

−∞
Gq (θ2, t, s)muds

∣∣∣∣ , if θ2 > t ≥ θ1,

∣∣∣∣∫ θ2

−∞
Gq (θ2, t, s)muds−

∫ θ1

−∞
Gq (θ1, t, s)muds

∣∣∣∣ , if θ2 > θ1 > t.

Set

χ = ‖m‖
[(∫ δ

−∞
Ψqds

)
Ψq(δ)

Ψ2
q(γ)

+ Gq,∞ + Φq (γ)Ψq(δ)

]
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then we have for θ2 > t ≥ θ1∣∣∣∣∫ θ2

−∞
Gq (θ2, t, s)muds

∣∣∣∣ ≤ ‖m‖
∫ θ2

−∞
Gq (θ2, t, s) ds

= ‖m‖
(∫ θ2

−∞
Gq (t, s) ds−

Φq (θ2)

Ψq(θ2)
Ψq(t)

∫ θ2

−∞
Ψqds

)
= ‖m‖ (

∫ t

−∞
Gq (t, s) ds +

∫ θ2

t
Gq (t, s) ds

−
Φq (θ2)

Ψq(θ2)
Ψq(t)

∫ t

−∞
Ψqds−

Φq (θ2)

Ψq(θ2)
Ψq(t)

∫ θ2

t
Ψqds)

= ‖m‖ (Φq (t)
∫ t

−∞
Ψqds +

∫ θ2

t
Gq (t, s) ds

−
Φq (θ2)

Ψq(θ2)
Ψq(t)

∫ t

−∞
Ψqds−

Φq (θ2)

Ψq(θ2)
Ψq(t)

∫ θ2

t
Ψqds)

= ‖m‖
((∫ t

−∞
Ψqds

)(
Φq (t)
Ψq(t)

−
Φq (θ2)

Ψq(θ2)

)
Ψq(t) +

∫ θ2

t
Gq (t, s) ds

−
Φq (θ2)

Ψq(θ2)
Ψq(t)

∫ θ2

t
Ψqds

)

≤ ‖m‖
[(∫ δ

−∞
Ψqds

)
Ψq(δ)

Ψ2
q(γ)

+ Gq,∞ + Φq (γ)Ψq(δ)

]
|θ2 − θ1|

≤ χ |θ2 − θ1| ,

and for θ2 > θ1 > t,∣∣∣∣∫ θ2

−∞
Gq (θ2, t, s)muds−

∫ θ1

−∞
Gq (θ1, t, s)muds

∣∣∣∣
≤

∣∣∣∣∫ θ1

−∞

(
Gq (θ2, t, s)− Gq (θ1, t, s)

)
muds

∣∣∣∣+ ∣∣∣∣∫ θ2

θ1

Gq (θ2, t, s)muds
∣∣∣∣

=

∣∣∣∣(∫ θ1

−∞
Ψqmuds

)(
Φq (θ1)

Ψq(θ1)
−

Φq (θ2)

Ψq(θ2)

)
Ψq(t)

∣∣∣∣+ ∣∣∣∣∫ θ2

θ1

Gq (θ2, t, s)muds
∣∣∣∣

≤ ‖m‖
[(∫ δ

−∞
Ψqds

)
Ψq(δ)

Ψ2
q(γ)

+ Gq,∞

]
|θ2 − θ1|

≤ χ |θ2 − θ1| .

The above estimates show that the mapping θ → Lθ is locally Lipschitzian and so,

it is continuous. Let (θn) be a sequence converging to θ∗ and let θ−, θ+ be such that

(θn) ⊂ [θ−, θ+] . Therefore we have for all n ≥ 1,

0 < µ1(θ+, q, m) ≤ µ1(θn, q, m) ≤ µ1(θ−, q, m),

and the sequence (µ1(θn, q, m)) converges (up to a subsequence) to some µ∗ > 0. We
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conclude by Lemma 2.13 in [10] and by uniqueness of that µ∗ = µ1(θ∗, q, m). Thus, the

continuity of the mapping µ1(·, q, m) is proved.

It remains to prove that limθ→−∞ µ−1 (θ, m) = limθ→−∞(1/r(Lθ)) = +∞. We have for

all u ∈W with ‖u‖ = 1,

|Lθu(t)| ≤
∫ θ

−∞
Gq (θ, t, s)mds

≤
∫ θ

−∞
Gq (t, s)mds +

Φq (θ)

Ψq(θ)
Ψq(t)

∫ θ

−∞
Ψqmds

≤
∫ θ

−∞
Gq (t, s)mds + Φq (θ)

∫ θ

−∞
Ψqmds.

As in the proof of Lemma 3.9, we have limθ→−∞ Φq (θ)
∫ θ
−∞ Ψqmds = 0 and since limt→−∞ m(t)

= 0, for ε > 0, there exists θε > 0 such that m(s) ≤ ε for all s ≤ θε. Hence, we have for

all θ ≤ θε, ∫ θ

−∞
Gq (t, s)mds ≤ G̃q,+∞ε, for all t ≤ θ,

proving that limθ→−∞

(
supt≤θ

∫ θ
−∞ Gq (t, s)mds

)
= 0. Therefore, we have proved that

limθ→−∞ r(Lθ) = limθ→−∞ ‖Lθ‖ = 0, ending the proof.

3.3 Proof of Theorem 3.1

Step 1. Fix (q, m) in Q×W+ and let k ≥ 1 be an integer. Existence and uniqueness

of µ1(q, m) is guaranteed by Lemma 3.14. For k ≥ 2, we have from Lemmas 3.13 and 3.14

existence of a unique real number θ∗k such that µ−1 (θ
∗
k , q, m) = µ+

k−1(θ
∗
k , q, m). Therefore,

if φ1,θ∗k
and ψk−1,θ∗k

are respectively the eigenfunctions associated with µ−1 (θ
∗
k , q, m) and

µ+
k−1(θ

∗
k , q, m), then the function

φk(t) =

ψk−1,θ∗k
(t), in

[
θ∗k ,+∞

)
,(

ψ′k−1,θ∗k

(
θ∗k
)

/φ′1,θ∗k

(
θ∗k
))

φ1,θ∗k
(t), in

(
−∞, θ∗k

)
,

belongs Sk and is the eigenfunction associated with the eigenvalue µk(q, m) = µ−1 (θ
∗
k , q, m) =

µ+
k−1(θ

∗
k , q, m) of the evp (3.2).

Now, let us prove that µk(q, m) is the unique eigenvalue of the evp (3.2), having an

eigenfunction in Sk. To this aim, let for i = 1, 2, φi ∈ S+
k be an eigenfunction associated

with the eigenvalue µi and let
(

zi
j

)j=k

j=0
be the sequence of zeros of φi. Without loss of

generality, suppose that z1
1 ≤ z2

1, we deduce then from Lemma 3.11 existence of two
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integers 0 ≤ n1, m1 ≤ k− 1 having the same parity such that z1
n1
≤ z2

m1
< z2

m1+1 ≤ z1
n1+1.

Notice that the fact n1, m1 have the same parity means that the functions φ1 and φ2 have

the same sign on the interval
(

z2
m1

, z2
m1+1

)
and after simple calculations, yields

0 ≤
∫ z1

1

−∞

(
φ2(−φ′′1 + qφ1)− φ1(−φ′′2 + qφ2)

)
ds = (µ1 − µ2)

∫ z1
1

−∞
mφ1φ2ds,

and

0 ≥
∫ z2

m1+1

z2
m1

(
φ2(−φ′′1 + qφ1)− φ1(−φ′′2 + qφ2)

)
ds = (µ1 − µ2)

∫ z2
m1+1

z2
m1

mφ1φ2ds,

proving that µ1 = µ2 and µk(q, m) is the unique eigenvalue of the evp (3.2), having an

eigenfunction in Sk.

At this stage we need to prove that for all positives integers i, j with i 6= j, µi(q, m) 6=

µj(q, m). By the contrary, suppose that for two positive integers i 6= j we have µi(q, m) =

µj(q, m) = µ∗ and let φi ∈ S+
i and φj ∈ S+

j be their corresponding eigenfunctions. Let

ω = W(φi, φj) = φiφ
′
j − φ′jφj be the Wronksian of φi and φj, we have then

ω′ = (φiφ
′
j − φ′jφj)

′ = φiφ
′′
j − φ′′i φj

= (q− µ∗m)φiφj − φi(q− µ∗m)φj = 0,

leading to ω (t) = c with c ∈ R. Moreover, because that φi, φj, q − µ∗m are positive

at −∞, φ′′i = (q− µ∗m) φi and φ′′j = (q−m) φj, we have that φ′′i > 0, φ′′j > 0 at −∞,

φ′i , φ′j are increasing at −∞ and limt→−∞ φ′i(t) = limt→−∞ φ′j(t) = 0. Therefore, ω = c =

limt→−∞

(
φi (t) φ′j (t)− φ′i (t) φj (t)

)
= 0 and φj = αφj for some α ∈ R. This contradicts

φi ∈ S+
i and φj ∈ S+

j and proves that for i 6= j we have µi(q, m) 6= µj(q, m).

In order to prove monotonicity of the sequence (µk(q, m)) , let for i = 1, 2, φi ∈ S+
ki

be

an eigenfunction associated with the eigenvalue µi of the evp (3.2), having a sequence of

zeros
(

zi
j

)j=ki

j=0
. Suppose that k2 > k1, we distinguish then the following cases:

Case 1. z2
1 ≤ z1

1, in this case we have

0 ≥
∫ z2

1

−∞

(
φ2(−φ′′1 + qφ1)− φ1(−φ′′2 + qφ2)

)
ds = (µ1 − µ2)

∫ z2
1

−∞
mφ1φ2ds,

leading to µ1 ≤ µ2.

Case 2. z1
1 ≤ z2

1, in this case, we deduce from Lemma 3.11 existence of two integers

n1, m1, with n1 ≤ k1 − 1, m1 ≤ k2 − 1 and such that z1
n1
≤ z2

m1
< z2

m1+1 ≤ z1
n1+1. After

simple computations, yields

0 ≥
∫ z2

m1+1

z2
m1

(
φ2(−φ′′1 + qφ1)− φ1(−φ′′2 + qφ2)

)
ds = (µ1 − µ2)

∫ z2
m1+1

z2
m1

mφ1φ2ds,
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leading to µ1 ≤ µ2. This together with µi(q, m) 6= µj(q, m) for i 6= j show that µ1 < µ2.

Notice that the sequence (µk(q, m)) is infinite and for all integers k ≥ 1, µk(q, m)

is a characteristic value of the compact operator Lm : W → W given by Lmu(t) =∫ θ
−∞ Gq(t, s)m(s)u(s)ds where Gq is defined in (3.12). Therefore, we have limk→∞ µk(q, m) =

+∞.

We prove now that aside the sequence (µk(q, m)) , the evp (3.2) has no other eigen-

values. By the contrary, suppose that the evp (3.2) has an eigenvalue µ having an eigen-

function φ and µ 6= µk(q, m) for all k ≥ 1. Hence, φ has an infinite sequence of simple

zeros (zn) with lim zn = ±∞. Indeed, if for some zi, φ(zi) = φ′(zi) = 0 then the stan-

dard existence and uniqueness result for ODEs leads to the contradiction φ = 0. Also, if

lim zn = ẑ ∈ R then

u (ẑ) = lim u (zn) = 0 and u′ (ẑ) = lim
u (zn)− u (ẑ)

zn − ẑ
= 0,

leading again to the contradiction φ = 0. This shows that the limit of (zn) may be equal

to +∞ or −∞.

Let for the integer k ≥ 1, φk ∈ Sk be the eigenfunction associated with the eigenvalue

µk(q, m) and let
(
xj
)j=k

j=1 be the sequence of zeros of φk. We deduce from Lemma 3.11,

existence of two integers l, m having the same parity such that 0 ≤ l ≤ k − 1 and

0 ≤ m ≤ k− 1,

xl ≤ zm < zm+1 ≤ xl+1.

Hence, we have

0 ≤ −φk (zm+1) φ′ (zm+1) + φk (zm) φ′ (zm)

=
∫ zm+1

zm

(
−φk(φ

′′ + qφ)− φ(−φ′′k + qφk)
)

ds

= (µ− µk(q, m))
∫ zm+1

zm
mφφkds,

leading to µ ≥ µk(q, , m) for all integers k ≥ 1, then to the contradiction µ = limk→∞ µk(q, m)

= +∞. Thus, we have proved that aside the sequence (µk(q, m)) there are no other eigen-

values.

At the end of this step we have for all integer k ≥ 1, µk(q, m) is geometrically simple.

Indeed, if for some integer i ≥ 1, µi(q, m) has two eigenfunctions φ and ψ with φ ∈ S+
i ,

then necessarily ψ ∈ S+
i . Otherwise, if ψ has an infinite sequence of zeros then we obtain

as above the contradiction µ = limk→∞ µk(q, m) = +∞, and if ψ ∈ S+
j for some integer
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j 6= i then because the uniqueness we have the contradiction µi(q, m) = µj(q, m). Set then

v = W(φ, ψ) = φψ′ − φ′ψ be the Wronksian of φ and ψ, we have then

v′ = (φψ′ − φ′ψ)′ = φψ′′ − φ′′ψ

= (q− µk(q, m)m)φψ− (q− µk(q, m)m)φψ = 0,

leading to v (t) = c with c ∈ R. Moreover, because that φ, ψ, q− µk(q, m)m are positive

at −∞, φ′′ = (q− µk(q, m)m) φ and ψ′′ = (q− µk(q, m)m)ψ, we have that φ′′ > 0, ψ′′ > 0

at −∞, φ′, ψ′ are increasing at −∞ and limt→−∞ φ′(t) = limt→−∞ ψ′(t) = 0. Therefore,

v = c = limt→−∞ (φ (t)ψ′ (t)− φ′ (t)ψ (t)) = 0 and ψ = δφ for some δ ∈ R.

Step 2. Monotonicity: Fix q in Q and let m1, m2 be two functions in W+ and suppose

that m1 ≤ m2 and m1 < m2 in a subset of positive measure. Set for i = 1, 2, µi = µk(q, mi)

and let φi ∈ S+
k be the eigenfunction associated with µi having a sequence of zeros(

zi
j

)j=k

j=0
. By the contrary, suppose that µ1 < µ2, then there exists j0 such that z1

j0
6= z2

j0
.

Indeed, if φ1

(
z2

j

)
= 0 for all j ∈ {1, . . . , k− 1} then for j1 ∈ {1, . . . , k− 1} being such

that meas
(
{m2 > m1} ∩

(
z2

j1
, z2

j1+1

))
> 0, we have since φ1φ2 > 0 in

(
z2

j1
, z2

j1+1

)
, the

contradiction

0 =
∫ z2

j1+1

z2
j1

(
φ2
(
−φ′′1 + qφ1

)
− φ1

(
−φ′′2 + qφ2

))
ds

=
∫ z2

j1+1

z2
j1

(µ1m1 − µ2m2)φ1φ2ds

= (µ1 − µ2)
∫ z2

j1+1

z2
j1

m1φ1φ2ds + µ2

∫ z2
j1+1

z2
j1

(m1 −m2) φ1φ2ds < 0.

Now, let k1 = max
{

l ≤ k : z1
j = z2

j for all j ≤ l
}

and
(
ξ j
)j=k−k1

j=0 and
(
ηj
)j=k−k1

j=0 be the

families defined by ξ j = z1
k1+j and ηj = z2

k1+j. We distinguish then two cases.

i) ξ1 = z1
k1+1 < η1 = z2

k1+1: In this case we have the contradiction

0 < −φ2 (ξ1) φ′1 (ξ1) =
∫ ξ1

ξ0

(
φ2
(
−φ′′1 + qφ1

)
− φ1

(
−φ′′2 + qφ2

))
ds

=
∫ ξ1

ξ0

(µ1m1 − µ2m2)φ1φ2ds

= (µ1 − µ2)
∫ ξ1

ξ0

m1φ1φ2ds + µ2

∫ ξ1

ξ0

(m1 −m2) φ1φ2ds ≤ 0.

ii) ξ1 = z1
k1+1 > η1 = z2

k1+1: In this case Lemma 3.11 guarantees existence of two integers

m, n having the same parity such that

ηm = z2
k1+m < ξn = z1

k1+n < ξn+1 = z1
k1+n+1 ≤ ηm+1 = z2

k1+m+1.
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Again, we have the contradiction

0 <
∫ ξn+1

ξn

(
φ2
(
−φ′′1 + qφ1

)
− φ1

(
−φ′′2 + qφ2

))
ds

=
∫ ξn+1

ξn
(µ1m1 − µ2m2)φ1φ2ds

= (µ1 − µ2)
∫ ξn+1

ξn
m1φ1φ2ds + µ2

∫ ξn+1

ξn
(m1 −m2) φ1φ2ds ≤ 0.

The monotonicity is proved.

Step 3. Continuity: Fix q in Q, m in W+ and let (mn) ⊂ W+ such that lim mn = m

in W. Let Ln, L ∈ L(W) be defined by

Lnu(t) =
∫ +∞

−∞
Gq(t, s)mn(s)u(s)ds and Lu(t) =

∫ +∞

−∞
Gq(t, s)m(s)u(s)ds.

Notice that for all integers l, n ≥ 1, µn
l = µl(q, mn) is a characteristic value of Ln, µl =

µl(q, m) is a characteristic value of L and Ln → L in operator norm.

First, fix k ≥ 1 and let us prove that if
(
µn

k
)

admits a subsequence (δn) converging to

δ > 0, then δ = µk. Indeed, let φn ∈ S+
k be the normalized eigenfunction associated with

δn and let ψn = Lφn. Since L is compact and the sequence (φn) is bounded, we have up

to a subsequence ψn → ψ in W. Thus, we obtain the following estimates,

‖(φn/δn)− ψ‖ = ‖Lnφn − ψ‖

≤ ‖Lnφn − Lφn‖+ ‖Lφn − ψ‖

≤ ‖Lnk − L‖+ ‖ψn − ψ‖ ,

leading to

lim(φn/δn) = ψ in W and ‖ψ‖ = lim ‖φn‖ /δn = 1/δ > 0.

Also, we have

‖Lnφn − δLψ‖ = ‖δnLnk ((φn/δn))− δLψ‖

≤ ‖δnLn ((φn/δn))− δLn ((φn/δn))‖+ ‖δLn ((φn/δn))− δL ((φn/δn))‖

+ ‖δL ((φn/δn))− δLψ‖

≤ |δn − δ| δn ‖Ln‖+
δn

δ
‖Ln − L‖+ 1

δ
‖L‖ ‖(φn/δn)− ψ‖ ,

leading to lim Lnφn = δLψ in W.
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Thus, letting n → ∞ in equation Lnφn = (φn/δn) we obtain Lψ = ψ/δ that is 1/δ is

an eigenvalue of L or δ = µl(q, m) for some integer l ≥ 1. Then, because of lim δnmn = δm

in W, it follows from Lemma 3.10 that δ = µk(q, m).

Then, fix T in R, and set for all integers l, n ≥ 1, µn,T
l = µ+

l (T, q, mn) and µT
l =

µ+
l (T, q, m). We have from Assertion 3) in Lemma 3.13 that limn→∞ µn,T

l = µT
l for all

integers l ≥ 1 and then there is cl > 0 such that µn,T
l < µT

l + cl for all n ≥ 1. Fix

k ≥ 1 and denote by φn ∈ S+
k the eigenfunction associated with µn

k and suppose that

φn admits (j− 1) zeros in (T,+∞) and φn > 0 in a left neightborhood of T. Let φn,T be

the eigenfunction associated with µn,T
j satisfying φ′n,T(T) > 0 and denote by (xs)

s=j
s=0 the

sequence of zeros of φn,T and by (zs)
s=j
s=0 the sequence constituted in zeros of φn contained

in (T,+∞) with z0 = T and zj = +∞. We distinguish two cases:

Case 1. x1 < z1, we have in this case

0 > φn (x1) φ′n,T (x1)− φn (T) φ′n,T (T) =
∫ x1

T

(
φn,T(−φ′′n + qφn)− φn(−φ′′nT + qφn,T)

)
ds

=
(

µn
k − µn,T

j

) ∫ x1

T
mnφn,Tφnds,

leading to

µn
k ≤ µn,T

j ≤ max
1≤l≤k

(µn,T
l ) ≤ max

1≤l≤k
(µT

l + cl) ≤ µT
k + max

1≤l≤k
(cl).

Case 2. z1 ≤ x1, in this case we deduce from Lemma 4.6 existence of two integers

rT, r having the same parity and such that zr ≤ xrT < xrT+1 ≤ zr+1 and φn,Tφn > 0 in

(xrT , xrT+1) . After simple computations yields

0 ≥ φn (xrT+1) φ′n,T (xrT+1)− φn (xrT) φ′n,T (xrT)

=
∫ xrT+1

xrT

(
φn,T(−φ′′n + qφn)− φn(−φ′′nT + qφn,T)

)
ds

=
(

µn
k − µn,T

j

) ∫ xrT+1

xrT

mnφn,Tφnds,

and we have again

µn
k ≤ µn,T

j ≤ max
1≤l≤k

(µn,T
l ) ≤ max

1≤l≤k
(µT

l + cl) ≤ µT
k + max

1≤l≤k
(cl).

At this stage we have proved that the sequence
(
µn

k
)

is bounded, set then µ+
k =

lim sup µn
k and µ−k = lim inf µn

k . Since lim ‖Ln‖ = ‖L‖, we have ‖Ln‖ ≥ ‖L‖ /2 for n

large enough and µn
k ≥ 1/ ‖Ln‖ ≥ ‖L‖ /2 for n large enough. Therefore, passing to the

limit, we obtain µ+
k ≥ µ−k ≥ ‖L‖ /2 > 0 and taking in account what is showed at the

beginning of this proof, we conclude that lim µn
k = µ+

k = µ−k = µk. The continuity is

proved.
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3.4 Proof of Theorem 3.2

Consider the bvp −u′′ + q̃(t)u = λµu( f (t, u) + 2ω(t)), t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0,
(3.18)

where λ is a real parameter and q̃ = q + 2µω.

By a solution to the bvp (3.18), we mean a pair (λ, u) ∈ R×W2 satisfying the differ-

ential equation in the bvp (3.18). Notice that u ∈ W2 is a solution to the bvp (3.3) if and

only if (1, u) is a solution to the bvp (3.18). For this reason, we will study the bifurcation

diagram of the bvp (3.18) and by means of Rabinowitz’s global bifurcation theory, we

will prove that the set of solutions to the bvp (3.18) consists in an infinity of unbounded

components, each branching from a point on the line R× {0} (see Lemma 3.15), joining

a point on R× {∞} (see Lemma 3.16). Obviously, each component having the starting

point and the arrival point oppositely located relatively to 1, carries a solution of the bvp

(3.3) and Theorem 3.2 will be proved once we compute the number of such components.

Thus, Theorem 3.2 is the consequence of the following Lemma 3.15, Lemma 3.16 and

Lemma 3.17. First, let us introduce some notations. In all this section, we let

m̃0 = µ (m0 + 2ω) , m̃∞ = µ (m∞ + 2ω) ,

g0(s, u) = µ ( f (s, u)−m0(s)) , g∞(s, u) = µ ( f (s, u)−m∞(s)) ,

and for ν = 0 or ∞, Lν, Tν : W →W are defined as follows:

Lνu(t) = µ
∫ +∞

−∞
Gq̃(t, s)m̃νuds,

Tνu(t) = µ
∫ +∞

−∞
Gq̃(t, s)ugν(s, u)ds.

Lemma 3.15. Assume that Hypotheses (3.4)-(3.6) hold, then from each µl(q̃, m̃0) bifurcate two

unbounded components of nontrivial solutions ζ+l and ζ−l , such that ζν
l ⊂ R× Sν

l .

Proof .

It follows from Lemma 3.9 that solutions to the bvp (3.18) are those satisfying the fixed

point equation

u = λL0u + λT0(u). (3.19)

Let us prove now, that all characteristic values of L0 are of algebraic multiplicity

one. To this aim, let u ∈ N
(
(µk(q̃, m̃0)L0 − I)2) and set v = (µk(q̃, m̃0)L0u − u. Then
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v ∈ N(µk(q̃, m̃0)L0 − I) = Rφk and µl(q̃, m̃0)L0u− u = ηφk for some η ∈ R. In another

way, v satisfies the bvp −u′′ + q(t)u = µk(q̃, m̃0)m̃0 (t) u− ηµk(q̃, m̃0)m̃0(t)φk, t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0.

Multiplying the differential equation in the above bvp by φk and integrating on R, we

obtain

ηµk(q̃, m̃0)
∫ +∞

−∞
m̃0φ2

k dt = 0,

leading to η = 0 and u = µk(q̃, m̃0)L0u ∈ Rφk.

Now, we need to prove that T0(u) = ◦(‖u‖) near 0. Indeed, let (un) ⊂ W with

lim ‖un‖ = 0. It follows from Hypothesis (3.6), that for ε > 0 there exists δ > 0 such that

for all u ∈ [−δ, δ] and s ≥ 0, |g0 (s, u)| ≤ ε. Therefore, for n large enough

|T0un(t)|
‖un‖

≤
∫ +∞

−∞
Gq̃(t, s) |g0(s, un)| ds ≤ G̃q̃,+∞ε,

proving that T0(u) = ◦(‖u‖) near 0.

Let lk be the projection of W on Rφk, W̃ = {u ∈W : lku = 0} and let for ξ > 0, η ∈

(0, 1) , ν = ±

Kν
ξ,η = {(λ, u) ∈ R×W : |λ− µk(q̃, m̃0)| < ξ and νlku > η ‖u‖} .

Since Lemma 3.9 guarantees that the operators L0 and T0 are respectively compact and

completely continuous, we have from Theorem 1.40 and Theorem 1.25 in [52], that from

(µk(q̃, m̃0), 0) bifurcate two components ζ+k and ζ−k of nontrivial solutions to Equation

(3.19) such that there is ζ0 > 0, ζν
k ∩ B(0, ζ) ⊂ Kν

ξ,η for all ζ < ζ0 and if u = αφk + w ∈ ζν
k

then |λ− µk(q̃, m̃0)| = ◦ (1), w = ◦ (|α|) for α near 0.

We claim that there is δ > 0 such that ζν
k ∩ B(0, ζ) ⊂ R× Sν

k ; Indeed, let (λn, un)n≥1 ⊂

ζν
k be such that lim (λn, un) = (µk(q̃, m̃0), 0), we have then lim λn f (s, un(s)) = µk(q̃, m̃0)m̃0(s)

and Lemma 3.10 guarantees that there is n0 ≥ 1 such that un ∈ Sk for all n ≥ n0. More-

over, if un = αnφk + wn then lim un
αn

= φk in W, proving that νun(t) > 0 for t in a right

neighborhood of −∞.

Also, if (λ∗, u∗) ∈ ζν
k then for all sequence (λn, un)n≥1 ⊂ ζν

k being such that lim (λn, un) =

(λ∗, u∗), we have from Hypothesis (3.4) that lim λn f (s, un(s)) = λ∗ f (s, u∗(s)) in W and

Lemma 3.10 guarantees existence of n0 ≥ 1 such that un ∈ Sk for all n ≥ n0. This shows

that ζν
k ⊂ R× Sν

k and ζν
k is unbounded in R×W, ending the proof.
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Lemma 3.16. Assume that Hypotheses (3.4)-(3.6) hold, then for all k ≥ 1 and ν = ±, the

component ζν
k rejoins the point (µk (q̃, m̃∞) , ∞).

Proof .

First, let us prove that for all k ≥ 1 and ν = ±, the projection of ζν
k onto the real axis is

bounded. Indeed, since 0 is the unique solution to the bvp −u′′ + q̃(t)u = 0, t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0,

the projection of ζν
k onto the real axis is contained in (0,+∞), namely, if (µ, u) ∈ ζν

k

then µ > 0. Moreover, if (µ, u) ∈ ζν
k then we read from the bvp (3.18) that µ =

µk (q̃, f (·, u(·) + 2ω), then taking in consideration Hypothesis (3.4), we obtain from As-

sertion 4 in Theorem 3.1 that µ = µk (q̃, f (·, u(·)) + 2ω) ≤ µk (q̃, ω) .

Now, let (µn, un) be sequence in ζν
k with limn→+∞ ‖un‖ = +∞ then vn = un

‖un‖ satisfies

vn = λnL∞vn + λn
T∞(un)

‖un‖
. (3.20)

Notice that Hypothesis (3.6) implies that T∞(u) = ◦(‖u‖∞) at ∞. Combining this with

the compactness of L∞, we obtain from (3.20) existence of v+, v− ∈ W with ‖v+‖ =

‖v−‖ = 1 such that L∞v+ = µ+v+ and L∞v− = µ−v− where µ+ = lim sup µn and

µ− = lim inf µn.

Consequently, we have µ+ = µl+(q̃, m̃∞) and µ− = µl−(q̃, m̃∞) for some integers

l+, l− and since each of v+ and v− is a limit of a subsequence of (vn) ⊂ Sν
k , we obtain

l+ = l− = k and µ+ = µ− = µk(q̃, m̃∞).

Lemma 3.17. Assume that there exist two integers i, j with 1 ≤ i ≤ j such that one of the

following situations holds

µi(q, m0) < µ < µj(q, m∞) or µj(q, m0) < µ < µi(q, m∞).

Then

µi(q̃, m̃0) < 1 < µj(q̃, m̃∞) or µj(q̃, m̃0) < 1 < µi(q̃, m̃∞).

Proof .

Let l ≥ 1 be an integer and κ = 0, ∞, we have to prove, µl(q, mκ) < µ implies µl(q̃, m̃κ) <

1 and µl(q, mκ) > µ implies µl(q̃, m̃κ) > 1. We present the proof of the implication:

µl(q, mκ) < µ ⇒ µl(q̃, m̃κ) < 1, the other is checked similarly. Let φ ∈ Sl and φ̃ ∈ Sl
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be respectively the eigenfunctions associated respectively with µl = µl(q, mκ) and µ̃l =

µl(q̃, m̃κ) and let
(
zj
)j=l

j=0 be the sequence of zeros of φ. Each of the pairs (µ, φ) and
(
µ̃, φ̃

)
satisfies −u′′ + qu = µlmκu, t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0,
and

 −u′′ + qu = (µ̃lµmκ + 2(µ̃l − 1)µω)u, t ∈ R,

limt→−∞ u(t) = limt→+∞ u(t) = 0.

By the contrary, suppose that µ̃ ≥ 1, then we have

(µ̃lmκ + 2(µ̃l − 1)ω)− µlmκ = (µ̃lµ− µl)mκ + 2(µ̃− 1)µω > 0 a.e. t ∈ R.

Thus, applying Lemma 3.12 we get that in each interval
(
zj, zj+1

)
, j = 0, . . . , l − 1,

there is a zero of φ̃, contradicting φ̃ ∈ Sl. This ends the proof.

Remark 3.18. Let q and c be two positive constants and notice that the solution of the

ordinary differential equation −u′′ + qu = c is φ(t) = c
q + αe−

√
qt + βe

√
qt where α, β are

real numbers. Since limt→−∞ φ(t) = limt→+∞ φ(t) = c
q , the bvp −u′′ + qu = c in R,

limt→−∞ u(t) = limt→+∞ u(t) = 0,

admits no solution. This shows that Hypothesis (3.4) is indispensable for existence of

solutions.
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Chapter 4
A class of Sturm-Liouville BVPs with an

unintegrable weight

4.1 Introduction

Sturm-Liouville boundary value problems (bvp for short) have been the subject of

hundreds of articles during the previous five decades, where existence and multiplicity

of solutions have been investigated. Many of these articles concern existence of nodal

solutions for second order differential equations subject to various boundary conditions;

see, for example, [11], [12], [20], [31], [32], [33] [42], [41], [43], [44], [45], [46], [49], [50],

[52], [53] [54], [55], [56], [57], [58] and references therein.

Nodal solutions appear as eigenfunctions to the half eigenvalue problem−u′′ + qu = σmu + αu+ − βu− in (0, 1) ,

u(0) = limt→1 u(t) = 0,
(4.1)

where σ is a real parameter, q, m, α, β ∈ C ([0, 1] , R) and m > 0 in [0, 1] .

To the author’s knowledge, such a bvp has been studied for the first time in [11],

where H. Berestycki introduced the concept of half-eigenvalue. He proved that the bvp

(4.1) admits two increasing sequences of half-eigenvalues
(
σ+

k

)
k≥1 and

(
σ−k
)

k≥1 such that

ϑk,ν, the eigenfunction associated with σν
k , admits exactly (k− 1) zeros in (0, 1), all are

simple and νϑ′k,ν(0) > 0. The conditions q, m, α, β ∈ C ([0, 1] , R) and m > 0 in [0, 1]

have been relaxed in [8] to q, m, α, β ∈ L1 ([0, 1] , R), m ≥ 0 a.e. in (0, 1) m > 0 a.e. in a

subinterval (ξ, η) of [0, 1]. Notice that the concept of half-eigenvalue generalizes that of
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eigenvalue and for the role played by this notion, we refer the reader to [11], [14], [32],

[55], [56], and [57].

In this chapter, we consider the case of the bvp (4.1) where m, α, β ∈ C ([0, 1] , R) ,

m ≥ 0 in (0, 1), m(t0) > 0 for some t0 ∈ [0, 1] , and q ∈ C ([0, 1) , R) with
∫ 1

0 q(t)dt = +∞.

Notice that the results obtained in [11] and in [8] do not cover such a situation. However,

we prove in Section 3 that the Berysticki’s result holds true for such a version of the bvp

(4.1).

In Section 4, we investigate existence and multiplicity of nodal solutions to the bvp−u′′ + qu = g(t, u) in (0, 1) ,

u(0) = limt→1 u(t) = 0,
(4.2)

where q ∈ C ([0, 1) , R) with
∫ 1

0 q(t)dt = +∞ and g : [0, 1]×R → R is continuous. The

nonlinearity g is supposed to be sublinear, assymptotically linear and superlinear. This

interest is mainly motivated by that in [49], [46] , [45] and [44] where is considerd the

version of the bvp (4.1) with q = 0 and the nonlinearity g is separable variable; Namely −u′′ (t) = a (t) g(u (t)), t ∈ (0, 1) ,

u(0) = u(1) = 0,
(4.3)

with a : [0, 1]→ [0,+∞) is continuous and does not vanish identically and f : R→ R is

continuous.

Let g0 = lims→0 g(s)/s, g∞ = lim|s|→∞ g(s)/s and (µk)k≥1 be the sequence of eigen-

values of the bvp  −u′′ (t) = µa (t) u (t) , t ∈ (0, 1) ,

u(0) = u(1) = 0.

Authors of the paper [49] under the assumptions that

(A) a > 0 in [0, 1],

(B) a is continuously differentiable,

(C) g(−s) = −g(s) for all s ∈ R,

(D) g(s)s > 0 for all s 6= 0,

(E) g is locally Lipschitzian,

(F) in the case where g0 = ∞, g is nondecreasing and g(s)/s is nonincreasing on

(0, s0] for some s0 > 0,

proved by means of a shooting method, that if for some integer k, λk < g(s)/s < λk+1 for
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all s 6= 0, then except the trivial function the bvp (4.3) has no solution and if g0 < λk < g∞

or g∞ < λk < g0, then the bvp (4.3) has a solution having exactly k− 1 zeros in (0, 1) ,

all are simple.

In [45], R. Ma and B. Thompson improved the existence result in [49]. Just under

Hypotheses (A) and (D), they proved that if 0 < g0 < λk < g∞ < ∞ or 0 < g∞ < λk <

g0 < ∞, then the bvp (4.3) has two solution u+ and u−, each having exactly k− 1 zeros

in (0, 1) , all are simple and for ν = + or −, νu′ν (0) > 0. In [46], where Hypothesis (A)

relaxed to:

(A’) a ≥ 0 in [0, 1] and does not vanish identically on any subinterval of [0, 1],

they obtained the same result.

As it is mentioned in [45], we conclude from the above result that if Hypotheses (A’)

and (D) hold and if there are integers k, i such that 0 < g0 < λk ≤ λk+i < g∞ < ∞ or

0 < g∞ < λk ≤ λk+i < g0 < ∞, then for each j ∈ {0, 1, ..i} the bvp (4.3) has two solutions

u+,j and u−, j, each having exactly k + j− 1 zeros in (0, 1) , all are simple and for ν = +

or −, νu′ν,j (0) > 0.

In [44], authors consider the cases where the nonlinearity f is superlinear and sub-

linear. They proved that if Hypotheses (A), (D) hold and g0 = 0, g∞ = ∞ or Hypotheses

(A), (D), (F) hold and g∞ = 0, then for each j ∈ N = {1, ...} the bvp (4.3) has two solu-

tion uj,+ and uj,−, each having exactly j− 1 zeros in (0, 1) , all are simple and for ν = +

or −, νu′j,ν (0) > 0.

Main results of Section 4 concern nodal solutions to the bvp (4.2) in the cases where

the nonlinearity g is respectively asymptotically linear, superlinear and sublinear. All

are obtained by means of the global bifurcation theory due to P. H. Rabinowitz and they

provide existence and multiplicity of nodal solutions with less conditions relatively to

that obtained in the above cited papers.
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4.2 Preliminaries

4.2.1 General setting

Statements of main results in this chapter need to introduce some notations: in what

follows, we let

E = C ([0, 1], R) , E+ = {m ∈ E : m ≥ 0 in [0, 1]} ,

Γ+ = {m ∈ E+ : m > 0 in a subinterval of [0, 1]} ,

Γ++ = {m ∈ Γ+ : m > 0 in [0, 1]} ,

Q =
{

q ∈ C([0, 1), R) :
∫ 1

0 q(s)ds = +∞
}

,

Q+ = {q ∈ Q : q(t) ≥ 0 for all t ∈ (0, 1)} ,

Q# =
{

q ∈ Q :
∫ 1

0 (1− s)q(s)ds < ∞
}

,

W = {u ∈ C([0, 1), R) : u(0) = limt→1 u(t) = 0} ,

C1
b ([0, 1), R) =

{
u ∈ C1 ([0, 1), R) : supt∈[0,1)

∣∣∣u′ (t)∣∣∣ < ∞
}

W1 = W ∩ C1
b ([0, 1), R) , W2 = W1 ∩ C2 ([0, 1), R) .

The linear spaces W and W1 are respectively equipped with the norms ‖·‖ and ‖·‖1

defined by ‖u‖ = supt∈[0,1] |u(t)| and ‖u‖1 = supt∈[0,1] |u′(t)|. Obviously, (W, ‖·‖) and

(W1, ‖·‖1) are Banach spaces.

For an integer k ≥ 1, S+
k denotes the set of all the functions u in W1 having exactly

(k − 1) zeros in (0, 1), all are simple and u is positive in a right neighbourhood of 0,

S−k = − S+
k and Sk = S+

k ∪ S−k . For u ∈ Sk,
(
zj
)j=k

j=0 with 0 = z0 < z1 < ... < zk = 1 and

u
(
zj
)
= 0 for j = 1, ..., k− 1, is said to be the sequence of zeros of u.

Throughout this paper, for q ∈ Q the operator Lq : C2 ([0, 1) , R) → C ([0, 1) , R) is

defined by Lqu = −u′′ + qu.

For ν = + or −, let Iν : W → W be the operator defined for u ∈ W by Iνu(x) =

max(νu(x), 0) = uν(x). We have for all u ∈W

u = I+u− I−u and |u| = I+u + I−u.

This implies that, for all u, v ∈W,

|I+u− I+v| ≤
( |u−v|

2 + ||u|−|v||
2

)
≤ |u− v| ,

|I−u− I−v| ≤
( |u−v|

2 + ||u|−|v||
2

)
≤ |u− v|,

(4.4)

and the operators I+, I− are continuous.
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4.2.2 The Green’s function and fixed point formulation

In all what follows, we let for q ∈ Q+, Ψq be the unique solution of the initial value

problem  Lqu = 0,

u(0) = 0, u′(0) = 1.

Lemma 4.1. For all q ∈ Q+, the function ψq has the following properties:

i) Ψq(t) > 0, Ψ′q(t) > 0 and Ψ′′q (t) ≥ 0 for all t ∈ (0, 1].

ii) limt→1 Ψ′q(t) = +∞.

iii) The function Ψq/Ψ′q is bounded at t = 1.

iv) limt→0 Ψq(t)
∫ 1

t
ds

Ψ2
q(s)

= 1.

v) limt→1 Ψq(t)
∫ 1

t
ds

Ψ2
q(s)

= 0.

vi) If q ∈ Q# then Ψq(1) = limt→1 Ψq(t) < ∞.

Proof .

Let q ∈ Q+ and let a ∈ (0, 1) be such that $ = infs∈(a,1) Ψq (s) > 0.

i) Suppose on the contrary that Ψ′q(t0) = 0 for some t0 on (0, 1) . By the boundary

condition Ψ′q(0) = 1, t0 > 0 we assume that Ψ′q(t) > 0 on [0, t0). Thus ψq is strictly

increasing on [0, t0). On the other hand we have from the equation −u′′(t)+ q(t)u(t) = 0

that Ψ′′q (t0) = q(t)Ψq(t0) > 0, and accordingly t0 is a minimum value point. This is a

contradiction, then Ψq > 0 thus Ψ′′q (t) ≥ 0 and since Ψ′q(0) = 1, we obtain Ψ′q > 0.

ii) We have for all t ∈ (a, 1)

Ψ′q(t) =

(
Ψ′q(a) +

∫ t

a
Ψ′′q (s) ds

)
=

(
Ψ′q(a) +

∫ t

a
q(s)Ψq (s) ds

)
≥

(
Ψ′q(a) + $

∫ t

a
q (s) ds

)
leading to limt→1 Ψ′q(t) = +∞.
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iii) We have for all t ≥ a(
Ψ′q(t)

)2
−
(

Ψ′q(a)
)2

= 2
∫ t

a
Ψ′′q (s)Ψ

′
q(s)ds = 2

∫ t

a
q(s)Ψq(s)Ψ′q(s)ds

≥ $
((

Ψq(t)
)2 −

(
Ψq(a)

)2
)

,

leading to (
Ψq(t)/Ψ′q(t)

)2
≤ 1

$
+
(

Ψ′q(a)/Ψ′q(t)
)2

for all t ≥ a.

Hence, we deduce from Assertion ii), existence of a∗ ∈ (a, 1) such that

Ψq(t)/Ψ′q(t) ≤
√

2
$

for all t ≥ a∗.

iv) By means of L’Hopital’s rule we obtain

lim
t→0

Ψq(t)
∫ 1

t

ds
Ψ2

q(s)
= lim

t→0

∫ 1
t Ψ−2

q ds(
Ψq(t)

)−1 = lim
t→0

1
Ψ′q(t)

= 1.

v) Again by means of L’Hopital’s rule we obtain

lim
t→1

Ψq(t)
∫ 1

t

ds
Ψ2

q(s)
= lim

t→1

1
Ψ′q(t)

= 0.

vi) First, notice that if q ∈ Q# then for all t ∈ (a, 1)∫ t

a

∫ s

a
q (τ) dτds ≤

∫ t

0

∫ s

0
q (τ) dτds

= −(1− t)
∫ t

0
q (s) ds +

∫ t

0
(1− s)q (s) ds

≤ 2
∫ 1

0
(1− s)q (s) ds.

Then, for all s ∈ (a, 1)

Ψ′q(s) =

(
Ψ′q(a) +

∫ t

a
Ψ′′q (s) ds

)
=

(
Ψ′q(a) +

∫ s

a
q(s)Ψq (s) ds

)
≤

(
Ψ′q(a) + Ψq (s)

∫ s

a
q (τ) dτ

)
leading to

Ψ′q(s)
Ψq(s)

≤
Ψ′q(a)
Ψq(s)

+
∫ s

a
q (τ) dτ ≤

Ψ′q(a)
Ψq(a)

+
∫ s

a
q (τ) dτ.

Integrating on (a, t), we obtain

ln
(

Ψq(t)
Ψq(a)

)
≤

Ψ′q(a)
Ψq(a)

+
∫ t

a

∫ s

a
q (τ) dτds ≤

Ψ′q(a)
Ψq(a)

+ 2
∫ 1

0
(1− s)q (s) ds,
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leading to

Ψq(t) ≤ Ψq(a) exp

(
Ψ′q(a)
Ψq(a)

+ 2
∫ 1

0
(1− s)q (s) ds

)
.

As Ψq is increasing, we have Ψq(1) = limt→1 Ψq(t) < +∞.

The proof of Lemma 4.1 is complete.

Because of Properties (ii), (iii), (iv) and (v) in Lemma 4.1, the function

Φq(t) =


1, if t = 0,

Ψq(t)
∫ 1

t
ds

Ψ2
q(s)

, if t ∈ (0, 1),

0, if t = 1,

(4.5)

is well defined and it is the unique solution of the bvp Lqu = 0, in (0, 1) ,

u(0) = 1, limt→1 u(t) = 0.

Lemma 4.2. For all q ∈ Q+, the function Φq has the following properties:

a) Φq(t) > 0, Φ′q(t) < 0 and Φ′′q (t) ≥ 0 for all t ∈ (0, 1),

b) For all t ∈ [0, 1], Φq(t)Ψ′q(t)−Ψq(t)Φ′q(t) = 1,

c) The function Φq/Φ′q is bounded at 1.

Proof .

Let q ∈ Q+ and a ∈ (0, 1) be such that α = inft≥a q(t) > 0.

a) We have respectively from (4.5) and Φ′′q = qΦq, that Φq(t) > 0 and Φ′′q (t) ≥ 0

for all t ∈ (0, 1). Since the function Ψ′q is increasing, we obtain from (4.5) that for all

t ∈ (0, 1) ,

Φ′q(t) = Ψ′q(t)
∫ 1

t

ds
Ψ2

q
− 1

Ψq(t)
<
∫ 1

t

Ψ′q
Ψ2

q
ds− 1

Ψq(t)
< − 1

limt→1 Ψq(t)
≤ 0.

b) We have from (4.5) that for all t ∈ [0, 1]

Φq(t)Ψ′q(t)−Ψq(t)Φ′q(t) = Ψq(t)Ψ′q(t)
∫ 1

t

ds
Ψ2

q
−Ψq(t)

(
Ψ′q(t)

∫ 1

t

ds
Ψ2

q
− 1

Ψq(t)

)
= 1.

c) We have for t ≥ a :(
−Φ′q(t)

)2
= 2

∫ 1

t
Φ′′q (s)

(
−Φ′q(s)

)
ds =

∫ 1

t
q(s)Φq(s)

(
−Φ′q(s)

)
ds

≥ α
(
Φq(t)

)2 .
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This leads to∣∣∣Φq(t)/Φ′q(t)
∣∣∣2 =

(
Φq(t)/−Φ′q(t)

)2
≤ 1

α
for all t ≥ T,

and so,

sup
t≥T

∣∣∣Φq(t)/Φ′q(t)
∣∣∣ ≤ 1√

α
.

The proof of Lemma 4.2 is complete.

Set for q ∈ Q+ and 0 ≤ θ < η < 1

Ψq,θ (t) = Φq (θ)Ψq (t)−Ψq (θ)Φq (t) ,

Φq,θ,η (t) =
Ψq (η)Φq (t)−Φq (η)Ψq (t)

Ψq,θ (η)
,

Φq,θ (t) = lim
η→1

Φq,θ,η (t) =
Φq (t)
Φq (θ)

,

Gq(θ, η, t, s) =



0, if min(t, s) ≤ θ,

Φq,θ,η (s)Ψq,θ (t) , if θ ≤ t ≤ s ≤ η,

Φq,θ (t)Ψq,θ (s) , if θ ≤ s ≤ t ≤ η

0 if min(t, s) ≥ η,

Gq(θ, t, s) = lim
η→1

Gq(θ, η, t, s) =


0, if min(t, s) ≤ θ,

Φq,θ (s)Ψq,θ (t) , if θ ≤ t ≤ s,

Φq,θ (t)Ψq,θ (s) , if θ ≤ s ≤ t.

Φq,θ (t) =
Φq (t)
Φq (θ)

, Ψq,θ (t) = Φq (θ)Ψq (t)−Ψq (θ)Φq (t) and

Gq(θ, t, s) =


0, if min(t, s) ≤ θ,

Φq,θ (s)Ψq,θ (t) , if θ ≤ t ≤ s,

Φq,θ (t)Ψq,θ (s) , if θ ≤ s ≤ t.

We have then for all q ∈ Q+ and all θ, η ∈ [0, 1]

Φq,θ,ηΨ′q,θ −Φ′q,θ,ηΨq,θ = Φq,θΨ′q,θ −Φ′q,θΨq,θ = 1 in [0, 1] (4.6)

and

Gq(θ, t, s) = Gq(t, s)−
Ψq (θ)

Φq (θ)
Φq(s)Φq(t) for t, s ≥ θ.

where

Gq(t, s) = Gq(0, t, s) =

 Φq (t)Ψq (s) , if 0 ≤ t ≤ s < 1,

Φq (s)Ψq (t) , if 0 ≤ s ≤ t < 1.
(4.7)
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Lemma 4.3. We have for all q ∈ Q+ and θ, η ∈ [0, 1) with θ < η :

1. Gq(θ, η, t, s) ≤ Gq(θ, η, s, s) for all t, s ∈ [θ, η] ,

2. Gq(θ, t, s) ≤ Gq(θ, s, s) for all t, s ∈ [θ, 1] ,

3. Gq(θ, η, t, s) ≥ ρθ,η (t) Gq(θ, η, s, s) for all t, s ∈ [θ, η] where ρθ,η (t) = min (t− θ, η − t) /Ψq,θ (η) .

Moreover, if q ∈ Q# then Ψq (1) = limt→1 Ψq (t) < ∞ and Gq(θ, η, t, s) ≥ ρ∗θ,η (t) Gq(θ, η, s, s)

for all t, s ∈ [θ, η] where ρ∗θ,η (t) = min (t− θ, η − t) /Ψq,θ (1) .

Proof .

Assertions 1 and 2 are obtained from the monotonicity of the functions Φq,θ,η, Φq,θ and

Ψq,θ. We have

Gq(θ, η, t, s)
Gq(θ, η, s, s)

=


Ψq,θ(t)
Ψq,θ(s)

, if θ ≤ t ≤ s ≤ η,
Φq,θ,η(t)
Φq,θ,η(s)

, if θ ≤ s ≤ t ≤ η,
(4.8)

≥


Ψq,θ(t)
Ψq,θ(η)

, if θ ≤ t ≤ s ≤ η,

Φq,θ,η (t) , if θ ≤ s ≤ t ≤ η.

Since

Ψq,θ (t) =
∫ t

θ
Ψ′q,θ (s) ds ≥

∫ t

θ
Ψ′q,θ (θ) ds = t− θ

and

Φq,θ,η (t) =
∫ η

t

(
−Φ′q,θ,η (s)

)
ds ≥

∫ η

t

(
−Φ′q,θ,η (η)

)
ds =

η − t
Ψq,θ (η)

,

we obtain from (4.8),

Gq(θ, η, t, s)
Gq(θ, η, s, s)

≥


t−θ

Ψq,θ(η)
, if θ ≤ t ≤ s ≤ η,

η−t
Ψq,θ(η)

, if θ ≤ s ≤ t ≤ η.
≥ ρθ,η (t) .

This ends the proof.

Lemma 4.4. We have for all q ∈ Q+

i) Gq = sups,t∈[0,1] Gq(t, s) = sup0≤t≤1 Φq (t)Ψq(t) < ∞,

ii) G̃q = supθ,t,s∈[0,1] Gq(θ, t, s) < ∞.
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Proof .

Let q ∈ Q+ and T ∈ (0, 1) be such that α = inft≥T q(t) > 0.

i) Taking in consideration that Ψq is increasing, we obtain from (4.5), that for all

t, s ∈ [0, 1]

Gq(t, s) ≤ Φq(t)Ψq(t) =

(
Ψq(t)
Ψ′q(t)

)(
Ψq(t)Ψ′q(t)

∫ 1

t

ds
Ψ2

q(s)

)

≤
(

Ψq(t)
Ψ′q(t)

)(
Ψq(t)

∫ 1

t

Ψ′q(s)ds
Ψ2

q(s)

)
≤
(

Ψq(t)
Ψ′q(t)

)
.

This together with iii) in lemma 4.1 leads to

Gq = sup
t,s∈[0,1]

Gq(t, s) ≤ sup
t∈[0,1]

Φq(t)Ψq(t) < ∞.

ii) Because of Φq is decreasing and Ψq is increasing we have for all s, t ≥ θ

0 ≤ Gq(θ, t, s) ≤ Φq(t)Ψq(t) +
Ψq(θ)

Φq(θ)
Φq(t)Φq(s)

≤ Φq(t)Ψq(t) + Ψq(θ)Φq(θ)

≤ 2 sup
t∈[0,1]

Φq(t)Ψq(t) < ∞.

The proof of Lemma 4.4 is complete.

Lemma 4.5. For all q ∈ Q+, θ ∈ [0, 1) and h ∈ W, Lq,θh(t) =
∫ 1

0 Gq(θ, t, s)h(s)ds is the

unique solution in (θ, 1) to the bvp: Lqu = h(t), θ < t < 1,

u(θ) = limt→1 u(t) = 0

and the operator Lq,θ : W →W1 is continuous. Moreover, if F : [0, 1]×R→ R is a continuous

function such that F(0, 0) = F(1, 0) = 0, then the operator Tq,θ : W →W defined for v ∈W by

Tq,θu (t) =
∫ 1

0
Gq(θ, t, s)F(s, v(s))ds

is completely continuous and u ∈ W is a fixed point of Tq,θ if and only if u is a solution to the

bvp  Lqv = F(t, v(t)), θ < t < 1,

v(θ) = v(1) = 0.
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Proof .

Let h ∈W and set H (t) = Lq,θh(t). We have

H(θ) =
∫ 1

0
G(θ, θ, s)h(s)ds = 0

and differentiating twice in the relation

H(t) =
∫ 1

0
G(θ, t, s)h(s)ds = Φq,θ (t)

∫ t

θ
Ψq,θ (s) h(s)ds + Ψq,θ (t)

∫ 1

t
Φq,θ (s) h(s)ds

we obtain

H′′(t) = q(t)H(t) +
(

Φ′q,θ (t)Ψq,θ (t)−Φq,θ (t)Ψ′q,θ (t)
)

h(t) for all t ≥ θ.

This together with (4.6) lead to

LqH(t) = h(t) for all t ≥ θ.

We have for all t > θ :

H(t) = Φq(t)
∫ t

θ
Ψq(s)h(s)ds + Ψq(t)

∫ 1

t
Φq(s)h(s)ds−

Ψq(θ)

Φq(θ)
Φq(t)

∫ 1

θ
Φq(s)h(s)ds.

Let us prove that limt→1 H(t) = 0. Clearly, if
∫ 1

θ Ψq(s)h(s)ds < ∞ then

limt→1 Φq(t)
∫ t

θ Ψq(s)h(s)ds = 0 and if
∫ 1

θ Ψq(s)h(s)ds = ∞ then taking in consideration

Assertions d) in lemma 4.2, i) of Lemma (4.4) and limt→1 h(t) = 0, we obtain by means

of the L’Hopital’s rule

lim
t→1

Φq(t)
∫ t

θ
Ψq(s)h(s)ds = lim

t→1

∫ t
θ Ψq(s)h(s)ds

(Φq(t))
−1

= lim
t→1

(
Φq(t)
−Φ′q(t)

) (
Φq(t)Ψq(t)

)
h(t) = 0.

Similarly, if limt→1 Ψq(t) < ∞ then limt→1 Ψq(t)
∫ 1

t Φq(s)h(s)ds = 0 and if limt→1 Ψq(t) =

+∞ then taking in consideration iii) in lemma 4.1, i) of Lemma 4.4 and limt→1 h(t) = 0,

we obtain by means of the L’Hopital’s rule

lim
t→1

Ψq(t)
∫ 1

t
Φq(s)h(s)ds = lim

t→1

∫ 1
t Φq(s)h(s)ds

(Ψq(t))
−1

= lim
t→1

(
Ψq(t)
Ψ′q(t)

)Φq(t)Ψq(t)h(t) = 0.

Now, for any h ∈W, we have∥∥Lq,θh
∥∥ = sup

t∈[0,1]

∣∣Lq,θh(t)
∣∣ = sup

t∈[0,1]

∣∣∣∣∫ 1

0
G(θ, t, s)h(s)ds

∣∣∣∣ ≤ Gq ‖h‖
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and taking in consideration (4.6) we obtain∥∥∥(Lq,θh
)′∥∥∥ = sup

t∈(0,1)

∣∣∣(Lq,θh
)′
(t)
∣∣∣ = sup

t∈(0,1)

∣∣∣∣Φ′q,θ (t)
∫ t

θ
Ψq,θ (s) h(s)ds + Ψ′q,θ (t)

∫ 1

t
Φq,θ (s) h(s)ds

∣∣∣∣
≤ sup

t∈(0,1)

(
−Φ′q,θ (t)

∫ t

θ
Ψq,θ (s) |h(s)| ds + Ψ′q,θ (t)

∫ 1

t
Φq,θ (s) |h(s)| ds

)
≤ sup

t∈(0,1)

(
−Φ′q,θ (t)Ψq,θ (t)

∫ t

θ
ds + Ψ′q,θ (t)Φq,θ (t)

∫ 1

t
ds
)
‖h‖

≤ ‖h‖ .

The above estimates prove that the operator Lq,θ is well defined and is continuous.

Now, We proof that Tq,θ is completely continuous. Notice that Tq,θ = I ◦ Lq,θ ◦ F

where F : W → W is defined by Fu(t) = F(t, u(t)) and I is the compact embeding of

W1 in W. Because that the mapping F is continuous and bounded, the operator Tq,θ is

completely continuous.

At the end, if u is a fixed point of Tq,θ and h = Fu, then u = Lq,θh and Lqu(t) = h(t) = F(t, v(t)), θ < t < 1,

u(θ) = limt→1 u(t) = 0.

In the reminder of this chapter, for q ∈ Q+ and m ∈ E, we let Lq,m, L+
q,m,L−q,m : W →W

the operators defined by

Lq,mu(t) =
∫ 1

0 Gq(t, s)m(s)u(s)ds,

L+
q,mu(t) =

(
Lq,m ◦ I+

)
u(t) = Lq,mu+(t),

L−q,mu(t) =
(

Lq,m ◦ I−
)

u(t) = Lq,mu−(t).

It follows from Lemma 4.5 that Lq,m is compact and for ν = + or −, Lν
q,m is completely

continuous.

4.2.3 Comparison results

The following three lemmas will play important roles in this work.

Lemma 4.6 ([8]). Let j and k be two integers such that j ≥ k ≥ 2 and let (ξl)
l=k
l=0 , (ηl)

l=j
l=0 be

two families of real numbers such that

ξ0 = ξ < ξ1 < ξ2 < · · · < ξk−1 < ξk = η,

η0 = ξ < η1 < η2 < · · · < ηj−1 < ηj = η.
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If ξ1 < η1, then there exist two integers m and n having the same parity, 1 ≤ m ≤ k− 1 and

1 ≤ n ≤ j− 1 such that

ξm < ηn ≤ ηn+1 ≤ ξm+1.

Lemma 4.7. For i = 1, 2 let φi ∈ Ski,ν
ρ ∩W2 having a sequence of zeros

(
zi

j

)j=ki

j=0
. If for some

integers m, n with m ≤ k1 − 1 we have n ≤ k2 − 1 z1
m ≤ z2

n < z2
n+1 ≤ z1

m+1 and φ1φ2 > 0,

then ∫ z2
n+1

z2
n

φ1Lqφ2 − φ2Lqφ1

 > 0, if z1
m < z2

n or z2
n+1 < z1

m+1,

= 0, if z1
m = z2

n < z2
n+1 = z1

m+1.

Proof .

Let Wr = φ1φ′2 − φ2φ′1 be the Wronksian of φ1 and φ2 and without loss of generality,

suppose that φ1, φ2 > 0 in
(
z2

n, z2
n+1
)

. We have then Wr(0) = limt→1 Wr(t) = 0 and

∫ z2
n+1

z2
n

φ1Lqφ2 − φ2Lqφ1 = Wr
(

z2
n

)
− lim

t→z2
n+1

Wr (t) .

Therefore, we distinguish the following cases:

i) z1
m ≤ z2

n < z2
n+1 = z1

m+1: In this case we have

φ1

(
z2

n

)
= φ2

(
z1

m

)
= φ1

(
z2

n+1

)
= φ1

(
z2

m+1

)
= 0,

leading to

∫ z2
n+1

z2
n

φ1Lqφ2 − φ2Lqφ1 = Wr
(

z2
n

)
− lim

t→z2
n+1

Wr (t)

= Wr
(

z1
m

)
− lim

t→z2
m+1

Wr (t) = 0.

ii) z1
m ≤ z2

n < z2
n+1 < z1

m+1: In this case we have

z2
n+1 < 1, φ1

(
z2

n+1

)
> 0, φ2

(
z2

n

)
= φ2

(
z2

n+1

)
= 0, φ1

(
z2

n+1

)
> 0 and φ

′
2

(
z2

n+1

)
< 0,

leading to

∫ z2
n+1

z2
n

φ1Lqφ2 − φ2Lqφ1 = Wr
(

z2
n

)
−Wr

(
z2

n+1

)
≥ −Wr

(
z2

n+1

)
= −φ1

(
z2

n+1

)
φ′2

(
z2

n+1

)
> 0.
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iii) z1
m < z2

n < z2
n+1 ≤ z1

m+1: In this case we have φ1
(
z2

n
)
> 0, φ′2

(
z2

n
)
> and

lim
t→z2

n+1

Wr (t) =

 0, if z2
n+1 = 1,

φ1
(
z2

n+1
)

φ′2
(
z2

n+1
)

, if z2
n+1 < 1.

Thus, we obtain∫ z2
n+1

z2
n

φ1Lqφ2 − φ2Lqφ1 = Wr
(

z2
n

)
− lim

t→z2
n+1

Wr (t)

≥ Wr
(

z2
n

)
= φ1

(
z2

n

)
φ′2

(
z2

n

)
> 0.

This ends the proof.

We end this section with the following lemma which is an adapted version of the

Sturmian comparison result.

Lemma 4.8. Let q ∈ Q and for i = 1, 2, mi ∈ Γ+ and wi ∈ C2 ([0, 1) , R) satisfying

Lqwi = miwi in (x1, x2)

and suppose that w2 does not vanish identically, m1 ≥ m2 and m1 ≥ m2 in a subset of positive

measure. If either

i) x2 < 1 and w2(x1) = w2(x2) = 0, or

ii) x2 = 1 and w2(x1) = limt→1 wi(t) = 0 for i = 1, 2

then there exists τ ∈ (x1, x2) such that W1(τ) = 0.

Proof .

i) By the contrary suppose that w1 > 0 in (x1, x2) and without loss of generality

assume that w2 > 0 in (x1, x2) , then we have the contradiction:

0 ≥ w1 (x2)w′2 (x2)− w1 (x1)w′2 (x1) =∫ x2
x1

w2Lqw1 − w1Lqw2 =
∫ x2

x1
(m1 −m2)w1w2 > 0.
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ii) By the contrary suppose that w1 > 0 in (x1, 1) and without loss of generality

assume that w2 > 0 in (x1, 1) , we have for t > x1 that

(w1 (t)w′2 (t)− w1 (t)w′2 (t))− w1 (x1)w′2 (x1) =∫ t
x1

w2Lqw1 − w1Lqw2 =
∫ t

x1
(m1 −m2)w1w2 > 0.

Since from lemma 4.5, w1, w2 ∈W1, we have

lim
t→1

(
w1 (t)w′2 (t)− w′1 (t)w2 (t)

)
= 0 (4.9)

and so, the contradiction

0 ≥ −w1 (x1)w′2 (x1) =
∫ 1

x1

(m1 −m2)w1w2 > 0.

The proof is complete.

4.2.4 The positive eigenvalue

The main result of this subsection concerns the existence of positive eigenvalue on

the bounded interval [θ, 1].

Theorem 4.9. For all q ∈ Q, m ∈ Γ++ and θ ∈ [0, 1) , the eigenvalue problem Lq = µmu, in (θ, 1) ,

u(θ) = limt→1 u(t) = 0,
(4.10)

admits a unique positive eigenvalue µ+
1 (q, m, θ) . Moreover for q, m fixed, the function θ →

µ1 (θ) := µ1 (q, m, θ) is continuous increasing and we have limθ→1 µ1(θ) = +∞.

Proof .

Let q ∈ Q, m ∈ Γ++, θ ∈ [0, 1) and let v be a positive constant such that q̂ = q + vm ≥ 0

in [0, 1] . Consider the eigenvalue problem Lq̂u = µmu, in (θ, 1)

u(θ) = limt→1 u(t) = 0
(4.11)

and notice that µ0 is a positive eigenvalue of the bvp (4.11) if and only if µ0 − v is a

positive eigenvalue of the bvp (4.10).

We have from Lemma 4.5 that µ is a positive eigenvalue of (4.11) if and only if µ−1

is a positive eigenvalue of the linear compact operator Lq̂,θ : W →W where

Lq̂,m,θu(t) =
∫ 1

0
Gq̂(θ, t, s)m(s)u(s)ds.
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Let uθ ∈W be the function defined by

uθ(t) =

0, if t /∈
[

2θ+1
3 , 2+θ

3

]
,

(t− 2θ+1
3 )(2+θ

3 − t), if t ∈
[

2θ+1
3 , 2+θ

3

]
,

we have then Lq̂,m,θuθ(t) ≥ 0 = uθ(t) for t ∈
[
0, 2θ+1

3

]
∪
[

2+θ
3 , 1

]
and Lq̂,m,θuθ(t), uθ(t) > 0

for t ∈
(

2θ+1
3 , 2+θ

3

)
.

This shows that Lq̂,m,θuθ ≥ cθuθ where cθ = inf
{

Lq̂,θuθ(t)/uθ(t) : t ∈
(

2θ+1
3 , 2+θ

3

)}
> 0

and r(Lq̂,m,θ) > 0. We have from the Krein-Rutman theorem, that r(Lq̂,θ) is a positive

eigenvalue of Lθ having a positive eigenvector φθ. Obviously, µ̂1(θ, q̂, m) = 1/r(Lq̂,m,θ) is

a positive eigenvalue of the eigenvalue problem (4.11) and µ1(θ, q, m) = µ̂1(θ, q̂, m)− v

is a positive eigenvalue of the eigenvalue problem (4.10).

Now, let us prove uniqueness of the positive eigenvalue. Suppose that λ is a positive

eigenvalue of the eigenvalue problem (4.10) having an eigenfunction ψ, we have then

0 =
∫ 1

θ
ψLq̂φθ + φθLq̂ψ = (µ1(θ, q, m)− λ)

∫ 1

θ
mφθψ

leading to λ = µ1(θ, q, m).

Let now θ1, θ2 ∈ (0, 1) be such that θ1 < θ2 and set for i = 1, 2, µi = µ1(θi, q, m) with

the corresponding eigenfunction ψi. We have

0 > −ψ′2 (θ2)ψ1 (θ2) =
∫ 1

θ2
ψ2Lq̂ψ1 − ψ1Lq̂ψ′′2

= (µ1 − µ2)
∫ 1

θ2
mψ1ψ2

leading to µ1 < µ2, proving that the function θ → µ1(·) is increasing.

At this stage let us prove the continuity of the function θ → µ1(·). Let [γ, δ] ⊂ [0, 1]

and θ1, θ2 ∈ [γ, δ] be such that θ1 < θ2. We have for all u ∈W with ‖ u ‖= 1

∣∣Lq̂,m,θ2u (t)− Lq̂,m,θ1u (t)
∣∣ =

∣∣∣∣∫ 1

θ2

Gq̂ (θ2, t, s)muds−
∫ 1

θ1

Gq̂ (θ1, t, s)muds
∣∣∣∣

=



0, if t ≤ θ1 < θ2,∣∣∣∫ 1
θ1

Gq̂ (θ1, t, s)muds
∣∣∣ , if θ1 < t ≤ θ2,

∣∣∣∫ 1
θ2

Gq̂ (θ2, t, s)muds−
∫ 1

θ1
Gq̂ (θ1, t, s)muds

∣∣∣ , if θ1 < θ2 < t.

Set

χ = ‖m‖
[(∫ 1

γ
φq̂ds

)
φq̂(γ)

φ2
q̂(δ)

+ Gq̂ + Φq̂ (γ)Ψq̂(δ)

]

85



Chapter 4. A class of Sturm-Liouville BVPs with an unintegrable weight

then we have for θ2 ≥ t > θ1,∣∣∣∫ 1
θ1

Gq̂ (θ1, t, s)muds
∣∣∣ ≤ ‖m‖ ∫ 1

θ1
Gq̂ (θ1, t, s) ds

= ‖m‖
(∫ 1

θ1
Gq̂ (t, s) ds− ψq(θ1)

φq(θ1)
φq̂(t)

∫ 1
θ1

φq̂ds
)

= ‖m‖ (
∫ t

θ1
Gq̂ (t, s) ds +

∫ 1
t Gq̂ (t, s) ds

−ψq̂(θ1)

φq̂(θ1)
φq̂(t)

∫ t
θ1

φq̂ds− ψq̂(θ1)

φq̂(θ1)
φq̂(t)

∫ 1
t φq̂ds)

= ‖m‖ (
∫ t

θ1
Gq̂ (t, s) ds− ψq̂(θ1)

φq̂(θ1)
φq̂(t)

∫ t
θ1

φq̂ds) + ψq̂ (t)
∫ 1

t φq̂ds− ψq̂(θ1)

φq̂(θ1)
φq̂(t)

∫ 1
t Ψq̂ds)

= ‖m‖ (
∫ t

θ1
Gq̂ (t, s) ds− ψq̂(θ1)

φq̂(θ1)
φq̂(t)

∫ t
θ1

φq̂ds) +
∫ 1

t φq̂ds
(

ψq̂(t)
φq̂(t)
− ψq̂(θ1)

φq̂(θ1)

)
φq̂(t))

≤ ‖m‖
[(∫ 1

γ φq̂ds
)

φq̂(γ)

φ2
q̂(δ)

+ Gq̂ + Φq̂ (γ)Ψq(δ)

]
|θ2 − θ1| ≤ χ |θ2 − θ1|

and for θ1 < θ2 < t,∣∣∣∫ 1
θ2

Gq̂ (θ2, t, s)muds−
∫ 1

θ1
Gq̂ (θ1, t, s)muds

∣∣∣ ≤∣∣∣∫ 1
θ2

(
Gq̂ (θ2, t, s)− Gq̂ (θ1, t, s)

)
muds

∣∣∣+ ∣∣∣∫ θ2
θ1

Gq̂ (θ1, t, s)muds
∣∣∣

=
∣∣∣(∫ 1

θ2
φq̂muds

) (
ψq̂(θ1)

φq̂(θ1)
− ψq̂(θ2)

φq̂(θ2)

)
φq̂(t)

∣∣∣+ ∣∣∣∫ θ2
θ1

Gq̂ (θ1, t, s)muds
∣∣∣

≤ ‖m‖
[(∫ 1

γ φq̂ds
)

φq̂(γ)

φ2
q̂(δ)

+ Gq̂

]
|θ2 − θ1| ≤ χ |θ2 − θ1| .

The above estimates show that the mapping θ → Lq̂,m,θ is locally Lipschitzian and so,

it is continuous. Let (θn) be a sequence converging to θ∗ and let θ−, θ+ be such that

(θn) ⊂ [θ−, θ+] . Therefore we have for all n ≥ 1,

0 < µ1(θ+) ≤ µ1(θn) ≤ µ1(θ−)

and the sequence (µ1(θn, q̂, m)) converges (up to a subsequence) to some µ∗ > 0. We

conclude by Lemma 2.13 in [10] and by uniqueness of the positive eigenvalue that µ∗ =

µ1(θ∗). Thus, the continuity of the mapping µ1(·) is proved.

It remains to prove that

lim
θ→1

µ+
1 (θ) = lim

θ→1

1
r(Lq̂,m,θ)

= +∞.

We have for all u ∈W with ‖u‖ = 1,

∣∣Lq̂,m,θu(t)
∣∣ ≤ ∫ 1

θ
Gq̂ (θ, t, s)m(s)ds

≤
∫ 1

θ
Gq̂ (t, s)m(s)ds +

Ψq̂ (θ)

Φq̂(θ)

∫ 1

θ
Φq̂(t)Φq̂(s)m(s)ds

≤
∫ 1

θ
Gq̂ (t, s)m(s)ds + Ψq̂ (θ)

∫ 1

θ
Φq̂(s)m(s)ds.

86



Chapter 4. A class of Sturm-Liouville BVPs with an unintegrable weight

Arguing as in the proof of Lemma 4.5, we obtain limθ→1 Ψq̂ (θ)
∫ 1

θ Φq̂(s)m(s)ds = 0 and

because of
∫ 1

θ Gq̂ (t, s)m(s)ds ≤ Gq̂
∫ 1

θ m(s)ds, we have limθ→1
∫ 1

θ Gq̂ (t, s)m(s)ds = 0 uni-

formely on [0, 1]. Therefore, we have proved that limθ→1 r(Lq̂,m,θ) = limθ→+∞
∥∥Lq̂,m,θ

∥∥ =

0 and this ends the proof.

4.3 The half-eigenvalue problem

Consider for q ∈ Q, m ∈ Γ+ and α, β ∈ E the bvp: Lq = λmu + αu+ − βu−, in (0, 1)

u(0) = limt→1 u(t) = 0,
(4.12)

where λ is a real parameter.

Because that the function u→ λmu+ αu+− βu− is linear on the cones {u ∈ E : u ≥ 0

in [0, 1]} and {u ∈ E : u ≤ 0 in [0, 1]}, the bvp (4.12) is said to be half-linear.

Definition 4.10. We say that λ0 is a half-eigenvalue of (4.12) if there exists a nontrivial solu-

tion (λ0, u0) of (4.12). In this situation, {(λ0, tu0), t > 0} is a half-line of nontrivial solu-

tions of (4.12) and µ0 is said to be simple if all solutions (λ0, u) of (4.12), with uu0 > 0 in

a right neighborhood of 0, are on this half-line. There may exist another half-line of solutions

{(λ0, tv0), t > 0}, but then we say that λ0 is simple, if u0v0 < 0 in a right neighborhood of 0

and all solutions (λ0, v) of (4.12) lie on these two half lines.

The case of the bvp (4.12) where q ∈ E has been considered by Berestycki in [11].

He has proved that the bvp (4.12) admits two increasing sequences of half-eigenvalues.

So, the main goal of this section is to prove that the Berestycki’s result holds true for the

case q ∈ Q. We begin with the following list of lemmas.

Proposition 4.11. Let q ∈ Q, m ∈ Γ+ and α, β ∈ E. If (λ, φ) is a nontrivial solution to the bvp

(4.12), then φ ∈ Sν
k for some integer k ≥ 1 and ν = + or −.

Proof .

Let ε > 0 be small enough and let A > 0 be such that µ1(q− α, m + ε) > −A. Consider

the bvp Lq+Amu = λmu + αu+ − βu− in (0, 1),

u (0) = limt→1 u (t) = 0,
(4.13)
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and notice that λ is a half-eigenvalue of the bvp (4.13) if and only if (λ− A) is a half-

eigenvalue to the bvp (4.12). Thus, we have to prove that if (λ, φ) is a nontrivial solution

to the bvp (4.13), then φ ∈ Sν
k for some integer k ≥ 1 and ν = + or −. To this aim,

let (λ, φ) is a nontrivial solution to the bvp (4.13), we claim first that all zeros of φ in

[0, 1) are simple. Indeed, noticing that the right hand-side in (4.13) is lipschitzian, if

φ (x∗) = φ′ (x∗) = 0 for some x∗ ∈ [0, 1) then the standard existence and uniqueness

result of a solution to initial value problem leads to φ = 0. This contradicts the fact that

(λ, φ) is a nontrivial solution to the bvp (4.13).

Now, we claim that φ has a finite number of zeros. By the contrary, assume that φ

has an infinite sequence of zeros, say (zn) such that lim zn = z∗, we distinguish then the

following two cases:

i. z∗ ∈ [0, 1), in this situation we have

φ (z∗) = lim φ (zn) = 0 and φ′ (z∗) = lim
φ (zn)− φ (z∗)

zn − z∗
= 0.

This contradicts the simplicity of zeros of φ in [0, 1) .

ii. z∗ = 1, in this case φ satisfies for all n ≥ 1Lq+Amu = λmu + αu+ − βu− in (0, 1),

u (zn) = limt→1 u (t) = 0.

Let for all n ≥ 1 µn = µ1(q + Am − α, m + ε, zn) the positive eigenvalue given by

Theorem 4.9 and let ψn the normalized positive eigenfunction associated with µn. Notice

that

µn = µ1(q + Am− α, m + ε, zn) ≥ µ1(q + Am− α, m + ε) = µ1(q− α, m + ε) + A > 0.

We claim now that for all integers n ≥ 1, λ > µn. Indeed, let l ≥ n be such that φ > 0 in

(zl, zl+1), we obtain Lemma 4.7 that

0 <
∫ zl+1

zl

−ψnLqφ + φLqψn + µnε
∫ zl+1

zl

φψn = (λ− µn)
∫ zl+1

zl

mφψn

leading to λ > µn.

Therefore, we obtain from Theorm 4.9 the contradiction

λ ≥ lim µn = lim µ1(q + Am− α, m + ε, zn) = +∞.

This completes the proof of the lemma.
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Proposition 4.12. For q ∈ Q, m ∈ Γ+, α, β ∈ E, k ≥ 1 and ν = + or − the bvp (4.12) admits

at most one half eigenvalue having an eigenfunction in Sν
k .

Proof .

Let (λ1, φ1) and (λ2, φ2) be two nontrivial solutions to the bvp (4.12) such that λ1 6= λ2

and φ1, φ2 ∈ Sν
k for some integer k ≥ 1 and ν = +,−, and denote for i = 1, 2

(
zi

j

)j=k

j=0
the sequence of zeros of φi. First, we claim that there exists j0 such that z1

j0
6= z2

j0
;

indeed, assume that φ1

(
z2

j

)
= 0 for all j ∈ {1, ..., k− 1} and λ1 < λ2 and note that there

exists j1 ∈ {1, ..., k− 1} such that meas
(
{m > 0} ∩

(
z2

j1
, z2

j1+1

))
> 0 and φ1φ2 > 0 in(

z2
j1

, z2
j1+1

)
. Applying Lemma 4.8, we conclude that there is τ ∈

(
z2

j1
, z2

j1+1

)
such that

φ1 (τ) = 0 and this contradicts φ1 ∈ Sν
k .

Now, let k1 = max
{

l ≤ k : z1
j = z2

j for all j ≤ l
}

and
(
ξ j
)j=k−k1

j=0 and
(
ηj
)j=k−k1

j=0 be the

families defined by ξ j = z1
k1+j and ηj = z2

k1+j and without loss of generality, assume

that ξ1 = z1
k1+1 < η1 = z2

k1+1. We obtain from Lemma 4.6 that there exist two integers

m, n ≥ 1 having the same parity such that

ξm = z1
k1+m < ηn = z2

k1+n < ηn+1 = z2
k1+n+1 ≤ ξm+1 = z1

k1+m+1

and we have from Lemma 4.7 that

0 <
∫ ξ1

ξ0

φ2Lqφ1 − φ1Lqφ2 = (λ1 − λ2)
∫ ξ1

ξ0

mφ1φ2 (4.14)

0 <
∫ ηn+1

ηn
φ1Lqφ2 − φ2Lqφ1 = (λ2 − λ1)

∫ ηn+1

ηn
mφ1φ2. (4.15)

Therefore, we obtain from (4.14) that λ1 > λ2, and from (4.15) the contradiction λ1 < λ2.

This ends the proof.

Proposition 4.13. Let q ∈ Q, m ∈ Γ+, α, β ∈ E and assume that (λ1, φ1), (λ2, φ2) are two

solutions of the bvp (4.12) such that φi ∈ Ski,ν
ρ for i = 1, 2. If k2 > k1 then λ2 > λ1.

Proof .

By the way of contradiction assume that λ2 ≤ λ1 and let for i = 1, 2,
(

zi
j

)j=k

j=0
be the se-

quence of zeros of φi. Set k∗ = max
{

l ≤ k : z1
j = z2

j for all j ≤ l
}

and consider
(
ξ j
)j=k−k1

j=0

and
(
ηj
)j=k−k1

j=0 the families defined by ξ j = z1
k∗+j and ηj = z2

k∗+j. We distinguish then two

cases.
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i) ξ1 = z1
k∗+1 > η1 = z2

k∗+1. In this case we have from Lemma 4.7

0 <
∫ η1

η0

φ1Lqφ2 − φ2Lqφ1 = (λ2 − λ1)
∫ η1

η0

mφ1φ2

leading to the contradiction λ1 < λ2.

ii) ξ1 = z1
k∗+1 < η1 = z2

k∗+1. In this case, Lemma 4.6 guarantees existence of two integers

m, n having the same parity such that

ξm = z1
k1+m < ηn = z2

k1+n < ηn+1 = z2
k1+n+1 ≤ ξm+1 = z1

k1+m+1,

and we have from Lemma 4.7

0 <
∫ ηn+1

ηn
φ1Lqφ2 − φ2Lqφ1 = (λ2 − λ1)

∫ ηn+1

ηn
mφ1φ2,

leading also to the contradiction λ1 < λ2.

This ends the proof.

Proposition 4.14. Let q ∈ Q, m ∈ Γ+ and α, β ∈ E. If λ is a half-eigenvalue of the bvp (4.12),

then λ is simple.

Proof .

Let λ be a half-eigenvalue of the bvp (4.12) having two eigenfunctions φ1, φ2 and without

loss of generality, assume that φ1, φ2 > 0 in a right neighborhood of 0. Because of

Proposition 4.13 we have that φ1, φ2 ∈ S+
k for some integer k ≥ 1. For i = 1, 2, let

(zi
j)

j=k−1
j=0 be the sequence of zeros of φi. We have that z1

j = z2
j for all j = 0, . . . , k. By

induction, clearly z1
0 = z2

0 = 0 and if z1
j = z2

j then z1
j+1 = z2

j+1. Indeed, if for example

z1
j+1 < z2

j+1, then Lemma 4.7 leads to the contradiction

0 <
∫ z1

j+1

z1
j

φ2Lqφ1 − φ1Lqφ2 = 0.

Because of the positive homogeneity of (4.12) and φ1, φ2 ∈ S+
k , φ′1(0) > 0, φ′2(0) > 0

and ψ1 = (φ′1(0))
−1

φ1, ψ2 = (φ′2(0))
−1

φ2 are eigenfunctions associated with λ satisfying

ψ1(0) = ψ2(0) = 0 and ψ′1(0) = ψ′2(0) = 1.

Therefore, ψ = ψ1 − ψ2 satisfies Lqψ = µmψ + αψ+ − βψ− in (0, z1
j ),

ψ(0) = ψ′(0) = 0,
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proving that ψ1 = ψ2 in [0, 1]. This completes the proof.

In what follows and when for functions q ∈ Q, m ∈ Γ+ and α, β ∈ E the half-

eigenvalue of the bvp (4.12) associated with an eigenfunction in Sν
k exists, this will be

denoted by λν
k(q, m, α, β).

Proposition 4.15. Let q1, q2 ∈ Q, m ∈ Γ+, α1, α2, β1, β2 ∈ E and assume that for some k ≥ 1

and ν = ±, λν
k(q1, m, α1, β1), λν

k(q2, m, α1, β1), λν
k(q1, m, α2, β1) and λν

k(q1, m, α1, β2) exist.

1. If α1 ≤ α2 a.e. in (0, 1), then λν
k(q1, m, α1, β1) ≥ λν

k(q1, m, α2, β1).

2. If β1 ≤ β2 a.e. in (0, 1), then λν
k(q1, m, α1, β1) ≥ λν

k(q1, m, α1, β2).

3. If q1 ≤ q2 a.e. in (0, 1), then λν
k(q1, m, α1, β1) ≤ λν

k(q2, m, α1, β1).

Proof .

We present the proof of Assertion 1, Assertion is checked similarly and Assertion 3

is a consequence of Assertions 2 and 3. Suppose that α1 ≤ α2 and for i = 1, 2, set

λi = λν
k(m, αi, β1). Let φi be the eigenfunction associated with λi having a sequence of

zeros (zi
j)

j=k
j=0. We distinguish two cases:

i). z1
j = z2

j for all j ∈ {1, . . . , k− 1}. Let j1 ∈ {1, . . . , k− 1} be such that meas({m >

0} ∩ (z2
j1

, z2
j1+1)) > 0, we have

0 =
∫ z2

j1+1

z2
j1

φ2Lqφ1 − φ1Lqφ2 = (λ1 − λ2)
∫ z2

j1+1

z2
j1

mφ1φ2

+
∫ z2

j1+1

z2
j1

(
α1φ+

1 φ2 − α2φ+
2 φ1

)
+
∫ z2

j1+1

z2
j1

(
β1φ−1 φ2 − β1φ−2 φ1

)
= (λ1 − λ2)

∫ z2
j1+1

z2
j1

mφ1φ2 +
∫ z2

j1+1

z2
j1

(
α1φ+

1 φ2 − α2φ+
2 φ1

)
.

(4.16)

Thus, from (4.16) in both the case φ1, φ2 > 0 in (z2
j1

, z2
j1+1) and the case φ1, φ2 < 0 in

(z2
j1

, z2
j1+1), we obtain λ1 ≥ λ2.

ii) z1
j0
6= z2

j0
for some j0: In this case set k1 = max{l ≤ k : z1

j = z2
j for all j ≤ l}. If

z1
k1+1 < z2

k1+1, then

0 <
∫ z1

k1+1

z1
k1

φ2Lqφ1 − φ1Lqφ2 = (λ1 − λ2)
∫ z1

k1+1

z1
k1

mφ1φ2 +
∫ z1

k1+1

z1
k1

(α1 − α2)φ1φ2

proving that µ1 > µ2 and if z2
k1+1 < z1

k1+1 then considering the families (ξ j)
j=k−k1
j=0 and

(ηj)
j=k−k1
j=0 with ξ j = z1

k1+j and ηj = z2
k1+j, we obtain from Lemma 4.6 that there exist two
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integers m, n ≥ 1 having the same parity such that

ξm = z2
k1+m < ηn = z1

k1+n < ηn+1 = z1
k1+n+1 ≤ ξm+1 = z2

k1+m+1.

Therefore, we obtain from Lemma 4.7

0 <
∫ ηn+1

ηn
φ2Lqφ1 − φ1Lqφ2 = (λ1 − λ2)

∫ ηn+1

ηn
mφ1φ2 +

∫ ηn+1

ηn
(α1 − α2)φ1φ2,

leading to λ1 > λ2.

This completes the proof.

Proposition 4.16. Let q ∈ Q, m1, m2 ∈ Γ+ and α, β ∈ E. Assume that m1 ≤ m2 in (0, 1),

m1 < m2 in a subset of positive measure and λν
k(q, m1, α, β), λν

k(q, m2, α, β) exist for some

integer k ≥ 1 and ν = + or −. If either λν
k(q, m1, α, β) ≥ 0 or λν

k(q, m2, α, β) ≥ 0, then

λν
k(q, m1, α, β) > λν

k(q, m2, α, β) and if either λν
k(q, m1, α, β) ≤ 0 or λν

k(q, m2, α, β) ≤ 0, then

λν
k(q, m1, α, β) < λν

k(q, m2, α, β).

Proof .

Assume that for i = 1, 2 λi = λν
k(m1, α, β) exists and has an eigenfunction φi having

a sequence of zeros (zi
j)

j=k
j=0. First, we claim that there exists j0 such that z1

j0
6= z2

j0
.

Indeed, if φ1(z2
j ) = 0 for all j ∈ {1, . . . , k − 1} and j1 ∈ {1, . . . , k − 1} is such that

meas({m2 > m1} ∩ (z2
j1

, z2
j1+1)) > 0, then taking in account that φ1φ2 > 0 in (z2

j1
, z2

j1+1),

we obtain by means of Lemma 4.8 in the case λ1 ≤ λ2 (the other caes is checked similarly)

that there exists τ ∈ (z2
j1

, z2
j1+1) such that φ1(τ) = 0. Obviously, this contradicts φ1 ∈ Sν

k .

Now, let k1 = max{l ≤ k : z1
j = z2

j for all j ≤ l}, and (ξ j)
j=k−k1
j=0 and (ηj)

j=k−k1
j=0 be

the families defined by ξ j = z1
k1+j and ηj = z2

k1+j. Assume that λ1 ≥ 0 or λ2 ≥ 0, we

distinguish then two cases.

i. ξ1 = z1
k1+1 < η1 = z2

k1+1: In this case we have from Lemma 4.7

0 <
∫ ξ1

ξ0

φ2Lqφ1 − φ1Lqφ2 =
∫ ξ1

ξ0

(λ1m1 − λ2m2)φ1φ2

= (λ1 − λ2)
∫ ξ1

ξ0

m1φ1φ2 + λ2

∫ ξ1

ξ0

(m1 −m2)φ1φ2

= (λ1 − λ2)
∫ ξ1

ξ0

m2φ1φ2 + λ1

∫ ξ1

ξ0

(m1 −m2)φ1φ2

and this proves that in both the cases λ1 ≥ 0 and λ2 ≥ 0, we have λ1 > λ2.

ii. ξ1 = z1
k1+1 > η1 = z2

k1+1: In this case Lemma 4.6 guarantees existence of two

integers m, n having the same parity such that

ηn = z2
k1+n < ξm = z1

k1+m < ξm+1 = z1
k1+m+1 ≤ ηn+1 = z2

k1+n+1.
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As above, we have from Lemma 4.7

0 <
∫ ξm+1

ξm
φ1Lqφ2 − φ2Lqφ1 =

∫ ξm+1

ξm
(λ2m2 − λ1m1)φ1φ2

= (λ2 − λ1)
∫ ξm+1

ξm
m2φ1φ2 + λ1

∫ ξm+1

ξm
(m2 −m1)φ1φ2

= (λ1 − λ2)
∫ ξm+1

ξm
m2φ1φ2 + λ1

∫ ξm+1

ξm
(m1 −m2)φ1φ2

and this proves that in both the cases λ1 ≥ 0 and λ2 ≥ 0, we have λ1 > λ2.

Assume that λ1 ≤ 0 or λ2 ≤ 0, we distinguish then two cases.

iii. ξ1 = z1
k1+1 > η1 = z2

k1+1: In this case we have from Lemma 4.7

0 >
∫ η1

η0

φ2Lqφ1 − φ1Lqφ2 =
∫ η1

η0

(λ1m1 − λ2m2)φ1φ2

= (λ1 − λ2)
∫ η1

η0

m1φ1φ2 + λ2

∫ η1

η0

(m1 −m2)φ1φ2

= (λ1 − λ2)
∫ η1

η0

m2φ1φ2 + λ1

∫ η1

η0

(m1 −m2)φ1φ2

and this proves that in both the cases λ1 ≤ 0 and λ2 ≤ 0, we have λ1 < λ2.

iv. ξ1 = z1
k1+1 < η1 = z2

k1+1: In this case Lemma 4.6 guarantees existence of two

integers m, n having the same parity such that

ξm = z1
k1+m < ηn = z2

k1+n < ηn+1 = z2
k1+n+1 ≤ ξm+1 = z1

k1+m+1.

As above, we have from Lemma 4.7

0 >
∫ ηn+1

ηn
φ1Lqφ2 − φ2Lqφ1 =

∫ ηn+1

ηn
(λ2m2 − λ1m1)φ1φ2

= (λ2 − λ1)
∫ ηn+1

ηn
m2φ1φ2 + λ1

∫ ηn+1

ηn
(m2 −m1)φ1φ2

= (λ1 − λ2)
∫ ηn+1

ηn
m2φ1φ2 + λ1

∫ ηn+1

ηn
(m1 −m2)φ1φ2

and this proves that in both the cases λ1 ≤ 0 and λ2 ≤ 0, we have λ1 < λ2. The proof is

complete.

Lemma 4.17. Let (φn) be a sequence in Sν
k converging in W1 to some φ ∈ Sκ

l , then l ≤ k and

κ = ν.

Proof .

On the contrary suppose that φ ∈ Sν
l for some l > k and let

(
zj
)j=l

j=0 be the sequence of
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zeros of φ. Let δ > 0 small enough, there exists an integer n∗ ≥ 1 such that φφn > 0 in

the intervals [δ, z1 − δ] and
[
zj + δ, zj+1 − δ

]
for j = 1, ...., l − 2.

Also, for each integer j ∈ {1, ...., l − 1} there exists nj ≥ n∗ such that the function

φn has exactly one zero in
[
zj + δ, zj+1 − δ

]
. Otherwise if there is a subsequence (φni)

such that for all i ≥ 1, φni has at least two zeros, then we can choose x1
ni

and x2
ni

in[
zj + δ, zj+1 − δ

]
such that

φ′ni

(
x1

ni

)
≤ 0 ≤ φ′ni

(
x2

ni

)
.

Let
x1

inf = lim inf x1
ni

, x1
sup = lim sup x1

ni
,

x2
inf = lim inf x2

ni
, x2

sup = lim inf x2
ni

.

Hence, we have since φ = lim φn in W1,

φ
(

x1
inf

)
= φ

(
x2

inf

)
= φ

(
x1

sup

)
= φ

(
x2

sup

)
= 0

leading to lim x1
ni
= lim x2

ni
= zj then to

φ′
(
zj
)
= lim φ

′
nl

(
x1

ni

)
= lim φ′nl

(
x2

ni

)
= 0.

Contradicting the simplicity of zj.

Now, we claim that there exists n0 ∈ N such that for all n ≥ n0, φφn > 0 in (0, δ) .

Indeed, if there a subsequence (φni) such that for all i ≥ 1, φni has at least a zero xni

with νφ′ni
(xni) < 0, then we obtain as above for x− = lim inf xni and x+ = lim sup xni

φ (x−) = φ (x+) = 0 and x− = x+ = 0. Therefore, we have

0 < νφ′ (0) = lim νφ
′
ni
(xni) ≤ 0,

contradicting the simplicity of the zero z0 = 0. The proof of the lemma is complete.

Proposition 4.18. Let q ∈ Q, m ∈ Γ+, α, β ∈ E and let (mn) be a sequence of functions in Γ+

such that lim mn = m in E. If for some integer k ≥ 1 and ν = + or −, λν
k (q, mn, α, β) exits for

all n ≥ 1 with limn→+∞ λν
k (q, mn, α, β) = λ ∈ R, then λ = λν

k (q, m, α, β) .

Proof .

Let for all integers n ≥ 1 φn ∈ Sν
k be the normalized eigenfunction associated with

λν
k,n = λν

k (q, mn, α, β) = λν
k (q

+, mn, α + q−, β + q−) . Therefore, we have for all integers

n ≥ 1

φn (t) = λν
k,nLq+,mn φn (t) + L+

q+,α+q−φn (t)− L−q+,β+q−φn (t) .
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Since all the operators in the above equation are compact and (φn) is bounded, up to a

subsequence, (φn) converges to some φ with ‖φ‖ = 1 and

φ (t) = λν
k Lq+,mφ (t) + L+

q+,α+q−φ (t)− L−q+,β+q−φ (t) .

This proves that λν
k is a half-eigenvalue of the bvp (4.12).

We have from Lemma 4.17 that φ ∈ Sν
l with l ≤ k. Let us prove that l = k. We claim

that there is an integer n+ ≥ 1 such that φφn > 0 in (zl−1 + δ, 1) . Indeed, if there a

subsequence (φni) such that for all i ≥ 1, φni has a zero xni ∈ (zl−1 + δ, 1) and φni does

not vanish in (xni , 1) then

λν
k,n = µ1(q + Am−ω, m + ε, xni) ≥ µ1(q + Am−ω, m + ε, xni)

where

ω =

 α, if φni > 0 in (xni , 1) ,

β, if φni < 0 in (xni , 1)

and ω = max (|α| , |β|) .

Passing to the limit, we obtain the contradiction

+∞ > λν
k ≥ lim µ1(q + Am−ω, m + ε, xni) = +∞.

From all the above, we obtain for all n ≥ max {n∗, n+, n1, ....nl−1} φni belongs to Sν
l ,

and l = k. The proof is complete.

Lemma 4.19. ([7]) Let q ∈ Q, m ∈ Γ++ and α, β ∈ E. For all θ ∈ (0, 1) the bvp Lqu = λmu + αu+ − βu−, in (0, θ) ,

u(0) = u(θ) = 0,

admits two increasing sequence of simple half eigenvalues
(
λ+

k (q, m, α, β, θ)
)

k≥1 and(
λ−k (q, m, α, β, θ)

)
k≥1 such that for all integers k ≥ 1 and ν = + or −, the corresponding

half-line of solutions lies on {λν
k(q, m, α, β, θ)} × Sν

k ,. Moreover, for all integers k ≥ 1 and

ν = + or −, the function θ → λν
k (θ) := λν

k (θ, q, m, α, β, θ) is continuous decreasing and

limθ→0 λν
k(θ) = +∞.

Lemma 4.20. For all functions q ∈ Q, m ∈ Γ++ and α, β ∈ E, the bvp (4.12) admits

two increasing sequences of half-eigenvalues
(
λ+

k (q, m, α, β)
)

k≥1 and
(
λ−k (q, m, α, β)

)
k≥1 such

that for all integers k ≥ 1 and ν = + or −, the corresponding half-line of solutions lies on

{µν
k(m, α, β)} × Sν

k .
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Proof .

Let q ∈, Q, m ∈ Γ++ and α, β ∈ E. Clearly for k = 1, we have λ+
k (q, m, α, β) = µ+

1 (q−

α, m, 0) and λ−k (q, m, α, β) = µ+
1 (q− β, m, 0) that existence is guaranteed by Theorem 4.9.

Fix k ≥ 2, ν = + or − and set ω1 = α and ω2 = β. Let for θ ∈ (0, 1), λν
k−1(θ) =

λν
k−1(q, , m, α, β, θ) and for i = 1, 2, µi(θ) = µν

l (q−ωi, m, θ) given respectively by Lemma

4.19 and Theorem 4.9. Because that the function λν
k−1(·) is decreasing, the functions µi(·)

are increasing and

lim
θ→0

λν
k−1(θ) = lim

θ→1
µi(θ) = +∞,

the equation λν
k−1(θ) = µi(θ) admits a unique solution θk,i ∈ (0, 1) .

Let for θ ∈ (0, 1) , ψθ be the eigenfunction associated with λν
k−1(θ) and for i = 1, 2

φθ,i be the eigenfunction associated with µi(θ). We distinguish the following cases:

a) ψ′θ (θ) > 0 for all θ ∈ (0, 1). In this case λν
k = λν

k−1(θk,1) = µi(θk,1) is the half-

eigenvalue having as an eigenfunction the function ψk ∈ Sν
k defined by

ψk(t) =

ψθk,1(t), for t ∈ [0, θk,1] ,

φθk,1,1(t)
(

ψθk,1 (θk,1) /φ′θk,1,1 (θk,1)
)

, for t ∈ [θk,1, 1] .

b) ψ′θ (θ) < 0 for all θ ∈ (0, 1). In this case λν
k = λν

k−1(θk,2) = µi(θk,2) is the half-

eigenvalue having as an eigenfunction the function ψk ∈ Sν
k defined by

ψk(t) =

ψθk,2(t), for t ∈ [0, θk,2] ,

φθk,2(t)
(

ψθk,2 (θk,2) /φ′θk,2
(θk,2)

)
, for t ∈ [θk,2, 1] .

This ends the proof.

Lemma 4.21. Let q ∈ Q, m ∈ Γ++ and set for all k ≥ 1

µk(q, m) = λ+
k (q, m, 0, 0) = λ−k (q, m, 0, 0).

Then for any interval [γ, δ] ⊂ (0, 1), µk(q, m) < µk(q, m, [γ, δ]) where (µk(q, m, [γ, δ])) is the

sequence of eigenvalues of the bvp Lqu = µmu, in (γ, δ) ,

u(γ) = u(δ) = 0.

Proof .

Fix k ≥ 1 and set µ1 = µk(q, m) and µ2 = µk(q, m, [γ, δ]). Let for i = 1, 2, φi be an
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eigenfunction associated with µi, having a sequence of zeros
(

zi
j

)j=k

j=0
, and without loss

of generality, suppose that φ1φ2 > 0 in a right neighborhood of γ. We distinguish two

cases.

i) φ2 > 0 in (γ, δ) (i.e. k = 1): In this case we obtain by Lemma 4.7

0 <
∫ δ

γ
φ1Lqφ2 − φ2Lqφ1 = (µ2 − µ1)

∫ δ

γ
mφ1φ2

leading to µ2 > µ1.

ii) φ2 (t0) = 0 for some t0 ∈ (γ, δ): In this case consider the family
(
ξ j
)j=k0

j=0 defined by

ξ0 = γ, ξk0 = δ and φ1
(
ξ j
)
= 0 for j ∈ {1, ..., k0 − 1} and note that k0 ≤ k. Thus,

we have from Lemma 4.6 that there exist two integers m, n having the same parity,

such that ξm < z2
n < z2

n+1 ≤ ξm+1. Therefore, we have φ1, φ2 > 0 in
(
z2

n, z2
n+1
)

and

we obtain by Lemma 4.7

0 <
∫ z2

n+1

z2
n

φ1Lqφ2 − φ2Lqφ1

= (µ2 − µ1)
∫ z2

n+1

z2
n

mφ1φ2

leading to µ2 > µ1.

This ends the proof.

Theorem 4.22. For all q ∈ Q, m ∈ Γ+ and α, β ∈ E the bvp (4.12) admits two increasing

sequences of simple half-eigenvalues
(
λ+

k (q, m, α, β)
)

k≥1 and
(
λ−k (q, m, α, β)

)
k≥1 such that for

all integers k ≥ 1, the corresponding half-line of solutions lies on {µν
k(m, α, β)} × Sν

k , ν = +,−

with limk→∞ µν
k(q, m, α, β) = +∞, aside from these solutions and the trivial one, there are no

other solutions of (4.12). Furthermore, for k ≥ 1 and ν = + or−, the half-eigenvalue λν
k (·, ·, ·, ·)

has the following properties:

1. Let q ∈ Q, m ∈ Γ+ and α1, α2, β ∈ E. If α1 ≤ α2 in (0, 1), then λν
k(q, m, α1, β) ≥

λν
k(q, m, α2, β).

2. Let q ∈ Q, m ∈ Γ+ and α, β1, β2 ∈ E. If β1 ≤ β2 in (0, 1), then λν
k(q, m, α, β1) ≥

λν
k(q, m, α, β2).

3. Let q1, q2 ∈ Q, m ∈ Γ+ and α, β ∈ E. If q1 ≤ q2 in (0, 1), then λν
k(q1, m, α, β) ≤

λν
k(q2, m, α, β).
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4. Let m1, m2 ∈ Γ+, α, β ∈ E, with m1 ≤ m2 in (0, 1) and m1 < m2 in a subset of positive

measure. If λν
k(m1, α, β) ≥ 0 or λν

k(m2, α, β) ≥ 0, then λν
k(q, m1, α, β) > λν

k(q, m2, α, β)

and if λν
k(q, m1, α, β) ≤ 0 or λν

k(q, m2, α, β) ≤ 0, then λν
k(q, m1, α, β) < λν

k(q, m2, α, β).

5. If m ∈ Γ+ and (mn) ⊂ Γ+ are such that lim mn = m in E, then lim
n→∞

λν
k(q, mn, α, β) =

λν
k(q, m, α, β) for all α,β ∈ E.

Proof .

Let q ∈ Q, m ∈ Γ+, α, β ∈ E and (εn) be a decreasing sequence of real numbers con-

verging to 0 and let A > 0 be such that min (µ1(q− α, m + ε1), µ1(q− β, m + ε1)) > −A.

Consider the BVP Lq+Amu = λmu + αu+ − βu− in (0, 1),

u (0) = limt→1 u (t) = 0,
(4.17)

and notice that λ is a half-eigenvalue of the (4.17) if and only if (λ− A) is a half-

eigenvalue of the bvp (4.12). Let for k and ν fixed, λν
k,n = λν

k(q + Am, m + εn, α, β)

and let [γ, δ] ⊂ (ξ, η) be such that m > 0 a.e. in (γ, δ).

First, because of

λν
k,1 = λν

k(q + Am, m + ε1, α, β) ≥ λν
1(q, m + ε1, α, β) + A

≥ min (µ1(q− α, m + ε1), µ1(q− β, m + ε1)) + A > 0,

we have by Proposition 4.16 that for all n ∈N, λν
k,n+1 ≥ λν

k,n ≥ λν
k,1 > 0.

Set q̃ = q+ Am+ (|α|+ |β|) , Proposition 4.15, Lemma 4.21 and Proposition 4.16 lead

to

0 < λν
k,n ≤ µk(q̃, m + εn) ≤ µk(q̃, m + εn, [γ, δ]) ≤ µk(q̃, m, [γ, δ])

proving that lim λν
k,n = λν

k ∈ R. Thus, we conclude from Proposition 4.19 that λν
k =

λν
k(q + Am, m, α, β).

Now, we need to prove that limk→∞ λν
k(q + Am, m, α, β) = +∞. To this aim set ω =

|α|+ |β| and let B > 0 be such that q = q + Am− ω + B (m + ε1) > 0 in [0, 1) . We have

then from Propositions 4.15 and 4.16:

λν
k(q + Am, m, α, β) ≥ λν

k(q + Am, m + ε1, α, β)

≥ λν
k(q + Am, m + ε1, ω, ω)

≥ λν
k(q + Am, m + ε1, ω, ω)

= µk(q + Am−ω, m + ε1)

= µk(q, m + ε1)− B.
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Because that (µk(q, m + ε1)) is the sequence of characteristic-values of the positive com-

pact operator Lq,m+ε1 : W →W defined for u ∈W by

Lq,m+ε1u(t) =
∫ 1

0
Gq(t, s) (m (s) + ε1) u(s)ds,

we have that limk µk(q, m + ε1) = +∞, proving that limk λν
k(q + Am, m, α, β) = +∞.

At the end, Assertions 1, 2, 3, 4 and 5 follow from Propositions 4.11-4.18.

For the particular case of the bvp (4.12) where α = β = 0, namely for the bvp Lq = µmu, in (0, 1)

u(0) = limt→1 u(t) = 0,
(4.18)

we obtain from Theorem the following corollary.

Corollary 4.23. For all pairs (q, m) in Q× Γ+, the set of eigenvalues of the bvp (4.18) consists in

an unbounded increasing sequence of simple eigenvalues (µk(q, m))k≥1 such that eigenfunctions

associated with µk(q, m) belong to Sk. Moreover, the mapping µk(·, ·) has the following properties:

1. Let q ∈ Q, m1, m2 ∈ Γ+ with m1 ≤ m2 in (0, 1) and m1 < m2 in a subset of positive mea-

sure. If µk(q, m1) ≥ 0 or µk(q, m2) ≥ 0, then µk(q, m1) > µk(q, m2) and if µk(q, m1) ≤ 0

or µk(q, m2) ≤ 0, then µk(q, m1) < µk(q, m2).

2. If m ∈ Γ+ and (mn) ⊂ Γ+ are such that lim mn = m in E, then limn→∞ µk(q, mn) =

µk(q, m).

3. Let q1, q2 ∈ Q and m ∈ Γ+. If q1 ≤ q2 then , µk(q1, m) ≤ µk(q2, m) for all k ≥ 1.

The following proposition is a consequence of Assertion 2 in Corollary 4.23 and it

will be used in the following section.

Proposition 4.24. Let q ∈ Q and m ∈ Γ+ be such that µk(q, m) = 1 for some integer k ≥ 1.

Then there exists ε0 > 0 such that for all p ∈ Γ+ with ‖p−m‖ ≤ ε0, µl(q, p) = 1 implies

l = k.

Proof .

Let ε0 > 0 be such that ε0 < min(µk+1(q, m)− µk(q, m), µk(q, m)− µk−1(q, m)), because

of the continuity of the functions µk−1(q, m), µk+1(q, m), there exists ε0 > 0 such that for

all p ∈ Γ+, ‖p−m‖ ≤ ε0 implies

µk−1(q, m)− ε0 ≤ µk−1(q, p) ≤ µk−1(q, m) + ε0 (4.19)
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and

µk+1(q, m)− ε0 ≤ µk+1(q, p) ≤ µk+1(q, m) + ε0. (4.20)

Let p ∈ Γ+ with ‖p−m‖ ≤ ε0 and suppose that µl(q, p) = 1 for some integer l ≥ 1.

If l < k, we have then from (4.19) the contradiction

1 = µl(q, p) ≤ µk−1(q, p) ≤ µk−1(q, m) + ε0 < µk(q, m)

and If l > k, we have then from (4.20) the contradiction

1 = µl(q, p) ≥ µk+1(q, p) ≥ µk+1(q, m)− ε0 > µk(q, m) = 1.

This shows that l = k and the lemma is proved.

4.4 Nodal solutions to the nonlinear bvp

4.4.1 Main results

In all this section, ρ is a positive real parameter, q is a function in Q, m, α and β are

functions in E and f : [0, 1]× (Rr {0}) → R is a continuous function. Main results of

this section concern existence of nodal solutions to the bvp Lqu = ρu f (t, u) in (0, 1)

u(0) = limt→1 u(t) = 0,
(4.21)

where the function f is assumed to satisfy one of the following Hypotheses (4.22),

(4.23) and (4.24).


limu→0 f (t, u) = m(t),

limu→−∞ f (t, u) = β(t) and

limu→+∞ f (t, u) = α(t) in E.

(4.22)

 limu→0 f (t, u) = m(t) in E and

lim|u|→+∞

(
inft∈[0,1] f (t, u)

)
= +∞.

(4.23)



limu→0 u f (t, u) = 0,

limu→0

(
inft∈[0,1] f (t, u)

)
= +∞,

limu→−∞ f (t, u) = β(t) and

limu→+∞ f (t, u) = α(t) in E.

(4.24)
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Remark 4.25. Notice that if the nonlinearity f satisfies one of the Hypotheses (4.22), (4.24)

and (4.23), then there is ω0 ∈ Γ++ such that f (t, u) + ω0 (t) > 0 for all t ∈ [0, 1] and

u ∈ R.

The statement of the main results of this section and there proofs need to introduce

some notations. In all this section we let:

q̃ = q+ + ρ (m− + 2ω0) , m̃ = ρ (m+ + 2ω0) + q−, f̃ (t, u) = ρ ( f (t, u)−m) ,

α̃ = ρ (α−m) , β̃ = ρ (β−m) , ϕ = inf (α, β) and ψ = sup (α+, β+) ,

where ω0 is that in Remark 4.25.

Since in all this section the weight q is fixed in Q, we let for all χ ∈ Γ+ and all k ≥ 1,

µk (χ) = µk (q, χ) . In particular we let for all k ≥ 1 and ν = + or −,

µ̃k = µk (q̃, m̃) , λ̃ν
k = λν

k

(
q̃, m̃, α̃, β̃

)
.

The operators T0, T∞ : W →W are defined as follows

T0u(t) =
∫ 1

0 Gq̃(t, s)u(s) f̃ (s, u(s))ds,

T∞u(t) = T0u(t)− L+
q̃,α̃u(t) + L−

q̃,β̃
u(t)

=
∫ 1

0 Gq̃(t, s)u(s) f ∗(s, u(s))ds,

where f ∗(s, u) = u f̃ (s, u) − α̃u+ + β̃u−. We have from Lemma 4.5 that T0, T∞ are

completely continuous.

The following Theorems 4.26, 4.28 and 4.27 are the main results of this section. They

provide respectively existence and multiplicity results for the cases where the nonlinear-

ity f is asymptoticaly linear, sublinear and superlinear.

Theorem 4.26. Assume that Hypothesis (4.22) holds true.

1. Let i, j be two integers such that i ≥ j ≥ 1. The bvp (4.21) admits in each of S+
j , . . . , S+

i , S−j , , . . . , S−i
a solution if one of the following Hypothesis (4.25), (4.26), (4.27) and (4.28) holds true.

ϕ, m+ ∈ Γ+ and µi(ϕ) < ρ < µj(m+), (4.25)

 ϕ ∈ Γ+, m+ = 0, µi(ϕ) < ρ and

µj(χ0) > 0 for some χ0 ∈ Γ+
(4.26)
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ψ, m ∈ Γ+ and µi < ρ < µj(ψ), (4.27)

 m ∈ Γ+, ψ = 0, µi(m) < ρ and

µj(χ0) > 0 for some χ0 ∈ Γ+.
(4.28)

2. Let i, j be two integers such that i ≥ j ≥ 1 and i ≥ 2(j− 1). The bvp (4.21) admits in

each of S+
2j, . . . , S+

i , S−2j−1, . . . , S−i a solution if one of the following Hypothesis (4.29) and

(4.30) holds true.

m, β+ ∈ Γ+ and µi(m) < ρ < µj(β+), (4.29)

 m ∈ Γ+, β+ = 0, µi(m) < ρ and

µj(χ0) > 0 for some χ0 ∈ Γ+.
(4.30)

3. Let i, j be two integers such that i ≥ j ≥ 1 and i ≥ 2(j− 1). The bvp (4.21) admits in

each of S+
2j−1, . . . , S+

i , S−2j, . . . , S−i a solution if one of the following Hypothesis (4.31) and

(4.32) holds true.

m, α+ ∈ Γ+ and µi(m) < ρ < µj(α
+), (4.31)

 m ∈ Γ+, α+ = 0, µi(m) < ρ and

µj(χ0) > 0 for some χ0 ∈ Γ+.
(4.32)

Theorem 4.27. Assume that Hypothesis (4.23) holds true and let j ≥ 1. The bvp (4.21) admits

for all k ≥ j a solution in S+
k and in S−k if one of the following Hypotheses (4.33) and (4.34) holds

true.

m+ ∈ Γ+ and µj(m+) > ρ, (4.33)

m+ = 0 and µj(χ0) > 0 for some χ0 ∈ Γ+. (4.34)

Theorem 4.28. Assume that Hypothesis (4.24) holds true, q ∈ Q# and let j ≥ 1.

1. The bvp (4.21) admits for all k ≥ j a solution in S+
k and in S−k if one of the following

Hypotheses (4.35) and (4.36) holds true.

ψ ∈ Γ+ and µj(ψ) > ρ, (4.35)

ψ = 0 and µj(χ0) > 0 for some χ0 ∈ Γ+. (4.36)
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2. The bvp (4.21) admits a solution in S+
k for all k ≥ 2j and a solution in S−k for all k ≥ 2j− 1

if one of the following Hypotheses (4.37) and (4.38) holds true.

β+ ∈ Γ+ and µj(β+) > ρ, (4.37)

β+ = 0 and µj(χ0) > 0 for some χ0 ∈ Γ+. (4.38)

3. The bvp (4.21) admits a solution in S+
k for all k ≥ 2j − 1 and a solution in S−k for all

k ≥ 2j if one of the following Hypotheses (4.39) and (4.40) holds true.

α+ ∈ Γ+ and µj(α
+) > ρ, (4.39)

α+ = 0 and µj(χ0) > 0 for some χ0 ∈ Γ+. (4.40)

4.4.2 Related Lemmas

In this subsection we prove some intermediate results.

Lemma 4.29.

1. If m ∈ Γ+ and µl(m) < ρ for some l ≥ 1, then µ̃k < 1 for all k ≤ l.

2. If m+ ∈ Γ+ and µl (m+) > ρ for some l ≥ 1, then µ̃k > 1 for all k ≥ l.

3. If m = −m− and µl (χ0) > 0 for some l ≥ 1 and χ0 ∈ Γ+, then µ̃k > 1 for all k ≥ l.

Proof .

If m+ ∈ Γ+, we have then

µ̃k = µk (q+ + ρ (m− + 2ω0) , ρ (m+ + 2ρω0) + q−)

= µk (q+ + 2ρω0 + ρm− − µ̃k (2ρω0 + q−) , ρm+)

= µk (q + (1− µ̃l) (2ρω0 + q−) , ρm+)

= (µk (q + (1− µ̃l) (2ρω0 + q−) + ρm−, m+) /ρ) .

(4.41)

Suppose that m = m+ ∈ Γ+, µl (m) < ρ for some l ≥ 1 and µ̃k ≥ 1 for some k ≤ l. We

obtain from (4.41) and Assertion 3 in Proposition 4.15 the contradiction

1 ≤ µ̃k =
(
µk
(
q + (1− µ̃k)

(
2ρω0 + q−

)
, m
)

/ρ
)
≤ (µk (m) /ρ) ≤ (µl(m)/ρ) < 1.
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This proves Assertion 1.

Similarly, suppose that m+ ∈ Γ+, µl (m) < ρ for some l ≥ 1 and µ̃k ≤ 1 for some

k ≥ l. We obtain from (4.41) and Assertion 3 in Proposition 4.15 the contradiction

1 ≥ µ̃k =
(
µk
(
q + (1− µ̃k)

(
2ρω0 + q−

)
+ ρm−, m

)
/ρ
)
≤ (µk (m) /ρ) ≥ (µl(m)/ρ) > 1.

This proves Assertion 2.

Suppose that m = −m− (i.e. m+ = 0), µl (q, χ0) > 0 for some l ≥ 1 and χ0 ∈ Γ+ and

µ̃k ≤ 1 for some k ≥ l. We read from

µ̃k = µk
(
q+ + ρ

(
m− + 2ω0

)
, ρ
(
m+ + 2ω0

)
+ q−

)
= µk

(
q+ + ρ (m + 2ω0) , 2ρω0 + q−

)
that

µk
(
q + (1− µ̃k)

(
2ρω0 + q−

)
, χ
)
= 0 for all χ ∈ Γ+.

Therefore, Assertion 3 in Proposition 4.15 leads to the contradiction

0 = µk
(
q + (1− µ̃k)

(
2ρω0 + q−

)
, χ0
)
≥ µk (χ0) ≥ µl (χ0) > 0.

This Proves Assertion 3 and ends the proof.

Lemma 4.30. For all integers l ≥ 1 and ν = + or − :

1. If ϕ ∈ Γ+ and µl(ϕ) < ρ for some l ≥ 1, then λ̃ν
k < 1 for all k ≤ l.

2. If ψ ∈ Γ+ and µl(ψ) > ρ for some l ≥ 1, then λ̃ν
l > 1 for all k ≥ l.

3. If ψ = 0 and µl (χ0) > 0 for some l ≥ 1 and χ0 ∈ Γ+, then µ̃k > 1 for all k ≥ l.

Proof .

To prove Assertion 1, we have to show that λ̃ν
l > 1. By the way of contradiction, suppose

that µl(ϕ) < ρ and λ̃ν
l ≥ 1 and let u,v ∈ Sν

l be the eigenfunctions associated respectively

with µl(ρϕ) = (µl(ϕ)/ρ) and λ̃ν
l . Notice thatLqu = µl(ρϕ)ρϕu, in (0, 1),

u (0) = limt→1 u(t) = 0,Lqv =
(

λ̃+
l − 1

)
(ρm + 2ρω0 + q−)v + ραv+ − ρβv− in (0, 1),

v (0) = limt→1 v(t) = 0,
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Let
(
xj
)j=l

j=0 and
(
yj
)j=l

j=0 be respectively the sequences of zeros of u and v. We distin-

guish then the following two cases:

i) x1 ≤ y1: in this case we have the contradiction:

0 ≤
∫ x1

x0

vLqu− uLqv

≤
∫ x1

x0

µl(ρϕ)ρϕuv−
(
ραv+ − ρβv−

)
u

=
∫ x1

x0

(µl(ρϕ)ϕ− α) ρu+v+ + (µl(ρϕ)ϕ− β) ρu−v− < 0.

ii) y1 < x1: in this case Lemma 4.6 guarantees existence of two integers m, n hav-

ing the same parity such that ym < xn < xn+1 ≤ ym+1 and Lemma 4.7 leads to the

contradiction:

0 <
∫ xn+1

xn
vLqu− uLqv

≤
∫ xn+1

xn
µl(ρϕ)ρϕuv−

(
ραv+ − ρβv−

)
u

=
∫ xn+1

xn
(µl(ρϕ)ϕ− α) ρu+v+ + (µl(ρϕ)ϕ− β) ρu−v− < 0.

We prove Assertion 2 by the same way. Suppose that µl(ψ) > ρ and λ̃ν
l ≤ 1 and let

u,v ∈ Sν
l be the eigenfunctions associated respectively with µl(ρψ) = µl(ψ)/ρ and λ̃ν

l .

We have that Lqu = µl(ρψ)ρψu, in (0, 1),

u (0) = limt→1 u(t) = 0,Lqv =
(

λ̃ν
l − 1

)
(ρm + 2ρω0 + q−)v + ραv+ − ρβv− in (0, 1),

v (0) = limt→1 v(t) = 0.

Let
(
xj
)j=l

j=0 and
(
yj
)j=l

j=0 be respectively the sequences of zeros of u and v. We distin-

guish then the following two cases:

a) x1 ≤ y1: in this case we have the contradiction:

0 ≤
∫ x1

x0

vLqu− uLqv

≤
∫ x1

x0

µl(ρψ)ρψuv−
(
ραv+ − ρβv−

)
u

=
∫ x1

x0

(µl(ρψ)ψ− α) ρu+v+ + (µl(ρϕ)ϕ− β) ρu−v− < 0.
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b) y1 < x1: in this case Lemma 4.6 guarantees existence of two integers m, n hav-

ing the same parity such that ym < xn < xn+1 ≤ ym+1 and Lemma 4.7 leads to the

contradiction:

0 <
∫ xn+1

xn
vLqu− uLqv

≤
∫ xn+1

xn
µl(ρψ)ρψuv−

(
ραv+ − ρβv−

)
u

=
∫ xn+1

xn
(µl(ρψ)ψ− α) ρu+v+ + (µl(ρϕ)ϕ− β) ρu−v− < 0.

We have for all k ≥ 1 and ν = + or −,

λ̃ν
k = λν

k
(
q+ + ρ(m− + 2ω0) + q−, ρ(m+ + 2ω0) + q−, ρ (α−m) , ρ (β−m)

)
= λν

k
(
q+ + ρ(m+ + 2ω0) + q−, ρ(m+ + 2ω0) + q−, ρα, ρβ

)
.

This can be read that for all χ ∈ Γ+

0 = λν
k

(
q +

(
1− λ̃ν

k

) (
ρ(m+ + 2ω0) + q−

)
, χ, ρα, ρβ

)
.

Therefore, if ψ = 0, µl (χ0) > 0 for some l ≥ 1 and χ0 ∈ Γ+ and λ̃ν
k ≤ 1 for some k ≥ l,

Proposition 4.15 leads to the contradiction

0 = λν
k

(
q +

(
1− λ̃ν

k

) (
ρ(m+ + 2ω0) + q−

)
, χ0, ρα, ρβ

)
≥ λν

k (q, χ0, 0, 0) = µk (χ0) ≥ µl (χ0) > 0.

The proof is complete.

Lemma 4.31. 1. If α+ ∈ Γ+ and µl(α
+) > ρ for some l ≥ 1, then λ̃+

k > 1 for all k ≥ 2l− 1

and λ̃−k > 1 for all k ≥ 2l.

2. If α+ = 0 and µl(χ0) > ρ for some l ≥ 1 and χ0 ∈ Γ+, then λ̃+
k > 1 for all k ≥ 2l − 1

and λ̃−k > 1 for all k ≥ 2l.

3. If β+ ∈ Γ+ and µl(β+) > ρ for some l ≥ 1, then λ̃+
k > 1 for all k ≥ 2l and λ̃−k > 1 for

all k ≥ 2l − 1.

4. If β+ = 0 and µl(χ0) > ρ for some l ≥ 1 and χ0 ∈ Γ+, then λ̃+
k > 1 for all k ≥ 2l − 1

and λ̃−k > 1 for all k ≥ 2l.
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Proof .

To be brief, we present the proof of Assertions 1 and 2, the other assertions are obtained

similarly. Suppose that α+ ∈ Γ+ and µl(α
+) > ρ and let φ, ϑ, ψ be respectively the

eigenfunctions associated respectively with µl(α), λ̃+
2l−1 and λ̃−2l . Thus φ, ϑ, ψ satisfyLqφ = µl(ρα)ραφ, in (0, 1),

φ (0) = limt→1 φ(t) = 0,Lqϑ =
(

λ̃+
2l−1 − 1

)
(ρm + 2ρω0 + q−)ϑ + ραϑ+ − ρβϑ−, in (0, 1),

ϑ (0) = limt→1 ϑ(t) = 0,Lqψ =
(

λ̃−2l − 1
)
(ρm + 2ρω0 + q−)ψ + ραψ+ − ρβψ−, in (0, 1),

ψ (0) = limt→1 ψ(t) = 0.

Let
(
xj
)j=l

j=0,
(
yj
)j=2l−1

j=0 and
(
yj
)j=2l

j=0 be respectively the sequences of zeros of φ, ϑ and ψ.

Thus, if λ̃+
2l−1 ≤ 1, then(

λ̃+
2l−1 − 1

)
(ρm + 2ρω0 + q−) + ρα < ρα <

µl (α)

ρ
ρα = µl (ρα) ρα

and we obtain from Lemma 4.8 that in each interval
(
y2j, y2j+1

)
, j = 0, ..., l − 1, φ admits

a zero. This contradicts φ ∈ Sl.

Similarly, if λ̃−2l ≤ 1 then(
λ̃−2l − 1

)
(ρm + 2ρω0 + q−) + ρα < µl (ρα) ρα

and we obtain from Lemma 4.8 that in each interval
(
y2j+1, y2j+2

)
, j = 0, ..., l − 1, φ

admits a zero. This contradicts φ ∈ Sl.

Suppose that α+ = 0, µl(χ0) > 0 for some l ≥ 1 and χ0 ∈ Γ+ and let φ, ϑ, ψ be

respectively the eigenfunctions associated respectively with µl(χ0), λ̃+
2l−1 and λ̃−2l . Thus

φ, ϑ, ψ satisfy Lqφ = µl(χ0)χ0φ, in (0, 1),

φ (0) = limt→1 φ(t) = 0,Lqϑ =
(

λ̃+
2l−1 − 1

)
(ρm+ + 2ρω0 + q−)ϑ + ραϑ+ − ρβϑ−, in (0, 1),

ϑ (0) = limt→1 ϑ(t) = 0,

107



Chapter 4. A class of Sturm-Liouville BVPs with an unintegrable weight

Lqψ =
(

λ̃−2l − 1
)
(ρm + 2ρω0 + q−)ψ + ραψ+ − ρβψ−, in (0, 1),

ψ (0) = limt→1 ψ(t) = 0.

Let
(
xj
)j=l

j=0,
(
yj
)j=2l−1

j=0 and
(
yj
)j=2l

j=0 be respectively the sequences of zeros of φ, ϑ and ψ.

Thus, if λ̃+
2l−1 ≤ 1 then(

λ̃+
2l−1 − 1

)
(ρm + 2ρω0 + q−) + ρα < ρα <

µl (α)

ρ
ρα = µl (ρα) ρα

and we obtain from Lemma 4.8 that in each interval
(
y2j, y2j+1

)
, j = 0, ..., l − 1, φ admits

a zero. This contradicts φ ∈ Sl.

Similarly, if λ̃−2l ≤ 1 then(
λ̃−2l − 1

)
(ρm + 2ρω0 + q−) + ρα < µl (ρα) ρα

and we obtain from Lemma 4.8 that in each interval
(
y2j+1, y2j+2

)
, j = 0, ..., l − 1, φ

admits a zero. This contradicts φ ∈ Sl.

Lemma 4.32. Let (mn) be a sequence in Γ+ such that limn→+∞(inft∈[0,1] mn (t)) = +∞. Then

for all q ∈ Q and k ≥ 1, limn→+∞ µk (mn) = 0.

Proof .

For arbitrary A > 0, there is nA ≥ 1 such that mn ≥ A for all n ≥ nA. Thus, we obtain

by means of Assertion 1 in Corollary 4.23 that for all k ≥ 1 and n ≥ nA,

|µk (mn)| ≤ |µk (A)| = (|µk (1)| /A) ,

proving that limn→+∞ µk (mn) = 0.

Lemma 4.33. Assume that q ∈ Q# and let u be a nontrivial solution to the bvp (4.21), then

either u ∈ Sν
k for some k ≥ 1 and ν = +,− or u has an infinite monotone sequence of simple

zeros.

Proof .

We distinguish two cases:

i) u has a finite number of zeros
(
zj
)j=l

j=0, in this case we have for all j, 0 ≤ j ≤ l − 1,

|u(t)| ≥ ρ∗zj,zj+1
(t) sup

t∈[zj,zj+1]
|u(t)| , in

[
zj, zj+1

]
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leading to ∣∣∣∣∣ u(t)
t− zj

∣∣∣∣∣ ≥ sup
t∈[zj,zj+1]

|u(t)| /Ψq(1) for t near zj and

∣∣∣∣∣ u(t)
t− zj+1

∣∣∣∣∣ ≥ sup
t∈[zj,zj+1]

|u(t)| /Ψq(1).

Passing to the limits we obtain that
∣∣u′(zj)

∣∣ > 0 and
∣∣u′(zj+1)

∣∣ > 0. This proves that all

zeros of u are simple and u ∈ Sν
l for some ν = + or −.

ii) u has an infinite number of zeros, in this case there is z∗ ∈ [0, 1] such that u(z∗) =

u′(z∗) = 0. We claim that there is a monotone sequence of simple zeros (tn) such that

lim tn = z∗. Indeed, if this fails then there is an interval [a, b]  [0, 1] such that u = 0 in

[a, b] and z∗ ∈ [a, b]. Set then

t+ = sup {t ≥ b : u(s) = 0 for all s ∈ [b, t]} ,

t− = inf {t ≤ a : u(s) = 0 for all s ∈ [t, a]} .

Since u is a nontrivial solution, we have t− > 0 or t+ < 1. Without loss of generality,

suppose that t+ < 1 and u > 0 in (t+, t∗) where t∗ = sup {t > t+ : u(t) > 0}. In one

hand, we have

u′(t+) = lim
t <→t+

u(t)
t− t+

= 0.

In the other, we obtain from Lemma 4.3 the contradiction

u′(t+) = lim
t >→t+

u(t)
t− t+

≥
(

sup
t∈[t+,t∗]

u(t)/Ψq(1)

)
> 0.

This proves that there is a monotone sequence of zeros (tn) of u and the simplicity of tn

is obtained again by means of Lemma 4.3. This achieves the proof.

The following lemma is a adapted version of Corduneanu compacteness criterion:

Lemma 4.34. A nonempty bounded subset Ω is relatively compact in W if

(a) Ω is locally equicontinuous on [0, 1), that is, equicontinuous on every compact interval of

[0, 1) and

(b) Ω is equiconvergent at 1, that is, given ε > 0, there corresponds T(ε) ∈ (0, 1) such that

|x(t)| < ε for any t ≥ T(ε) and x ∈ Ω.
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4.4.3 Proofs of Theorems 4.26 and 4.27

An associated bifurcation bvp

Consider the bvp  Lq̃u = µm̃u + u f̃ (t, u) in (0, 1),

u(0) = limt→1 u(t) = 0,
(4.42)

where µ is real parameter.

By a solution to the bvp (4.42), we mean a pair (µ, u) ∈ R ×W2 satisfying the

differential equation in the bvp (4.42). Notice that u ∈ W2 is a solution to the bvp (4.21)

if and only if (1, u) is a solution to the bvp (4.42). For this reason, we will study the

bifurcation diagram of the bvp (4.42) and by means of Rabinowitz’s global bifurcation

theory, we will prove that the set of solutions to the bvp (4.42) consists in an infinity of

unbounded components, each branching from a point on the line R×{0} joining a point

on R× {∞}. Obviously, each component having the starting point and the arrival point

oppositely located relatively to 1, carries a solution of the bvp (4.21) and main results of

this section will be proved once we compute the number of such components.

Lemma 4.35. From each µ̃l bifurcate two unbounded components of nontrivial solutions to the

bvp (4.42) ζ+l and ζ−l , such that ζν
l ⊂ R× Sν

l .

Proof .

It follows from Lemma 4.5 that solutions to the bvp (4.42) are those satisfying to fixed

point equation

u = µLq̃,m̃u + T0(u). (4.43)

In order to use the global bifurcation theory, let us prove that all characteristic value

of Lq̃,m̃ are of algebraic multiplicity one. To this aim let u ∈ N
(
(I − µ̃kLq̃,m̃)

2
)

and set

v = u− µ̃kLq̃,m̃u, then v ∈ N(I − µ̃kLq̃,m̃) = Rφk and u− µ̃kLq̃,m̃u = ηφk for some η ∈ R.

In another way, v satisfies the bvp −v′′ + q̃v = µ̃km̃v− ηm̃φk, in (0, 1)

u(0) = limt→1 u(t) = 0.

Multiplying the differential equation in the above bvp by φk and integrating on (0, 1) we

obtain

ηµ̃k

∫ 1

0
m̃φ2

k dt = 0.
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leading to η = 0 and u = µ̃kLm̃u ∈ Rφk.

Now, we need to prove that T0(u) = ◦(‖u‖) near 0. Indeed, let (un) ⊂ W with

lim ‖un‖ = 0, we have

|T0un(t)|
‖un‖

≤
∫ 1

0
Gq̃(t, s)

∣∣∣ f̃ (s, un(s))
∣∣∣ ds ≤ Gq̃

∫ 1

0

∣∣∣ f̃ (s, un(s))
∣∣∣ ds

We have from Hypothesis (4.22) that f̃ (s, un(s))→ 0 as n→ +∞ for all s ∈ (0, 1) . Thus,

we conclude by the Dominated convergence Theorem that T0(u) = ◦(‖u‖) near 0.

Let lk be the projection of W on Rφk, W̃ = {u ∈W : lku = 0} and for ξ > 0, η ∈

(0, 1) and ν = + or −,

Kν
ξ,η = {(µ, u) ∈ R×W : |µ− µ̃k| < ξ and νlku > η ‖u‖} .

Since Lemma 4.5 guarantees that the operators Lm̃ and T0 are respectively compact and

completely continuous, we have from Theorem 1.40 and Theorem 1.25 in [52], that from

(µ̃k, 0) bifurcate two components ζ+k and ζ−k of nontrivial solutions to Equation (4.43)

such that there is ς0 > 0, ζν
k ∩ B(0, ς) ⊂ Kν

ξ,η for all ς < ς0 and if u = αφk + w ∈ ζν
k then

|µ− µ̃k| = ◦ (1), w = ◦ (|α|) for α near 0.

We claim that there is δ > 0 such that ζν
k ∩ B(0, ζ) ⊂ R× Sν

k ; for all ς < δ. Indeed,

let (µn, un)n≥1 ⊂ ζν
k be such that lim (µn, un) = (µ̃k, 0), we have from Hypothesis (4.22)

that f (s, un(s)) → m, that is lim µn f (s, un(s)) = µkm(s) and Lemma 4.24 guarantees

that there is n0 ≥ 1 such that un ∈ Sk for all n ≥ n0. Moreover, if un = αnφk + wn

then lim un
αn

= φk in E proving that νun(t) > 0 for t in a right neighborhood of 0 and

νu′n(0) > 0 (otherwise, if u′n(0) = 0 then the existence and uniqueness result for ODEs

leads to un = 0).

Also, if (µ∗, u∗) ∈ ζν
k then for all sequence (µn, un)n≥1 ⊂ ζν

k be such that lim (µn, un) =

(µ∗, u∗), we have lim µn f (s, un(s)) = µ∗ f (s, u∗(s)) in E and Lemma 4.24 guarantees ex-

istence of n0 ≥ 1 such that un ∈ Sk for all n ≥ n0. This shows that ζν
k ⊂ R× Sν

k and ζν
k is

unbounded in R×W. The lemma is proved.

Proof of Theorem 4.26

Step 1. In this step we prove that for all l ≥ 1 and ν = + or −, the projection of the

component ζν
l on the real axis is bounded. Since the nonlinearity f satisfies Hypothesis

(4.22), there is γ ∈ Γ++ be such that

−γ(t) ≤ f (t, u) ≤ γ(t) for all t ∈ [0, 1] and u ∈ R.
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Let for κ = + or −, ψk,κ ∈ Sν
k be the eigenfunction associated with µk,κ = µk(q̃− ρ(m +

κγ), m̃) and (µ, u) ∈ ζκ
k . It follows from Lemma 4.6 and Lemma 4.7 that there exist two

intervals (ξ1, η1) and (ξ2, η2) where uψk,κ ≥ 0 and such that

0 ≥
∫ η1

ξ1

ψk,+Lq̃u− uLq̃ψk,+ =
∫ η1

ξ1

(µ− µk,+) m̃ψk,+u + ( f (s, u) + γ) uψk,+

≥ (µ− µk,+)
∫ η1

ξ1

m̃ψk,+uds,

0 ≤
∫ η2

ξ2

ψk,−Lq̃u− uLq̃ψk,− =
∫ η2

ξ2

((µ− µk,−) m̃uψk,− + ( f (s, u)− γ) uψk,−) ds

≤ (µ− µk,−)
∫ η2

ξ2

m̃uψk,−ds.

The above inequalities lead to µk,+ ≤ µ ≤ µk,−.

Step 2. In this step we prove that for all l ≥ 1 and ν = + or −, the component ζν
l

rejoins the point (λ̃ν
l , ∞). Notice that (4.43) is equivalent to

u = µLm̃u + Lα̃−m̃ I+u− L
β̃−m̃ I−u + T∞u. (4.44)

We prove that K(un) = ◦(‖un‖) near ∞. Indeed; from lemma (4.4) in (i) we have

(|T∞un(t)| /‖un‖) ≤
∫ 1

0
Pn(s)ds,

where

Pn(s) = Gq̃

∣∣∣∣ f (s, un(s))
un(s)
‖un‖

− α̃(s)
u+

n (s)
‖un‖

+ β̃(s)
u−n (s)
‖un‖

∣∣∣∣ .

Therefore, we have to prove that
∫ 1

0 Pn(s)ds→ 0 as n→ ∞.

We distinguish the following three cases:

i) lim un(s) = +∞: In this case, from (4.22) we obtain

Pn(s) ≤ Gq̃| f̃ (s, un(s))− α̃(s)| → 0 as n→ +∞.

ii) lim un(s) = −∞: in this case, from (4.22) we obtain

Pn(s) ≤ Gq̃| f̃ (s, un(s))− β̃(s)| → 0 as n→ +∞.

iii) lim un(s) 6= ±∞ : in this case there may exist subsequences (un1
k
(s)) and (un2

k
(s))

such that (un1
k
(s)) is bounded and lim un2

k
(s) = ±∞. Arguing as in the above two cases

we obtain that lim Pn2
k
(s) = 0 and we have from (4.22)

Pn1
k
(s) ≤ Gq̃

(
f̃ (t, u(t)) + α̃(s) + β̃(s)

) (
|un1

k
(s)|/‖un1

k
‖
)
→ 0 as k→ +∞,
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proving that T∞(un) = ◦(‖un‖) at ∞.

Now, let (µn, un) be sequence in ζν
k with limn→+∞ ‖un‖ = +∞ then vn = (un/‖un‖)

satisfies

vn = µnLq̃,m̃vn + L+
q̃,α̃vn − L−

q̃,β̃
vn + (T∞(un)/‖un‖) (4.45)

with T∞(un) = o(‖un‖) at ∞. By the compactness of the operators Lm̃, Lα̃−m̃, L
β̃−m̃, we

obtain from (4.45) existence of v+, v− ∈W such that for κ = + or −, ‖vκ‖ = 1 and

vκ = µκ Lq̃,m̃vκ + L+
q̃,α̃vκ − L−

q̃,β̃
vκ,

where µ+ = lim sup µn and µ− = lim inf µn. We have from Lemma 4.17 that for κ = +

or −, vκ ∈ Sν
l with l ≤ k. We claim that there is an integer n+ ≥ 1 such that vκvn > 0 in

(zl−1 + δ, 1) . Indeed, if there a subsequence (vni) such that for all i ≥ 1, vni has at a zero

xni ∈ (zl−1 + δ, 1) and vni does not vanish in (xni , 1) then

µn = µ1(q̃− f̃ (s, un) , m̃, xni) ≥ µ1(q− γ̃, m̃, xni).

Passing to the limit, we obtain from Theorem 4.9 the contradiction

+∞ > µκ ≥ lim µ1(q− γ̃, m̃, xni) = +∞.

From all the above, we obtain that for all n ≥ n+, vni belongs to Sν
l and l = k.

Step 3. Notice that u ∈ W1 ∩ C2 ([0, 1) , R) is a solution to the bvp (4.21) if and

only if (1, u) is a solution to the bvp (4.42). This means that any component ζν
k having

the starting point (µ̃k, 0) and the arrival point (λ̃ν
k , ∞), oppositely located relatively to 1,

carries a solution of the bvp (4.21). Therefore, we have to compute in each of the cases

stated in Theorem 4.26 the number of such components. To be brief, we present only the

proofs of Assertions 1 and 3.

Suppose that there is two integers i and j such that i ≥ j ≥ 1 and max (µi(α), µi(β)) <

ρ < µj(m). We have then from Assertion 1 in Lemma 4.29 and Assertion 1 in Lemma

4.31 that µ̃j > 1 and λ̃ν
i < 1. Therefore, for all integers l ∈ {j, ..i} and ν = + or −, the

component ζν
l crosses the hyperplan {1} ×W.

Now, Suppose that there is two integers i and j such that i ≥ j ≥ 1, with i ≥ 2(j− 1)

and µi(m) < ρ < µj(β). We have then from Assertion 1 in Lemma 4.29 and Assertion 2 in

Lemma 4.30 that µ̃i < 1, λ̃−2j−1 > 1 and λ̃+
2j > 1. Therefore, for all integers l ∈ {2j− 1, ..i} ,

the component ζ−l crosses the hyperplan {1} ×W and for all integers l ∈ {2j, ..i} , the

component ζ+l crosses the hyperplan {1} ×W.
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ζ+j

ζ+i

ζ−j ζ−i

-
µ̃j µ̃i1

λ̃+
j λ̃+

i

λ̃−j λ̃−i

Fig. B: µi(ϕ) < ρ < µj(m+)

Proof of Theorem 4.27

Step 1. In this step we prove that for all l ≥ 1 and ν = + or −, the projection of

the component ζν
l on the real axis is upper bounded . Since the nonlinearity f satisfies

Hypothesis (4.23), there is γ ∈ Γ++ be such that

f (t, u) ≥ −γ(t) for all t ∈ [0, 1] and u ∈ R.

Because the nonlinearity f satisfies Hypothesis (4.23) there is γ ∈ Γ++ such that

f (t, u) ≥ −γ(t) for all t ∈ [0, 1] and u ∈ R.

Fix k and ν and let us prove first that if (µ, u) ∈ ζν
k then µ ≤ µk,− = µk(q̃− ρ(m− γ), m̃).

To this aim, let ψk ∈ Sν
k be the eigenfunction associated with µk,−, it follows from Lemma

4.6 and Lemma 4.7 that there exists an interval (ξ, η) where uψk ≥ 0 and we have

0 ≤
∫ η

ξ
ψkLq̃u− uLq̃ψk =

∫ η

ξ
((µ− µk,−) m̃uψk + ( f (s, u)− γ) uψk) ds

≤ (µ− µk,−)
∫ η

ξ
m̃uψkds

leading to µ ≤ µk,−.
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ζ+2j ζ+i

ζ−2j ζ−iζ−2j−1

-µ̃2j−1 µ̃2j
µ̃i 1 λ̃+

2j λ̃+
i

λ̃−2jλ̃−2j−1 λ̃−i

Fig. C: µi(m) < ρ < µj(α
+)

Step 2. In this step we prove that for all l ≥ 1 and ν = + or −, the component

ζν
l rejoins the point (−∞, ∞). Thus, we have to prove that for all µ < µk,−, there is a

positive constant Mν
k such that

ζν
k ∩ ([µ, µk,−]×W) ⊂ [µ, µk,−]× B(0, Mν

k ).

On the contrary, suppose that this fails and there is a sequence (µn, un)n≥1 in ζν
k ∩

([µ, µk,−]×W) such that liml→∞ ‖un‖ = +∞. That is for all n ≥ 1 Lq̃un = un

(
µn + f̃ (t, un)

)
, in (0, 1)

un(0) = limt→1 un(t) = 0,

from which we read that for all n ≥ 1

µk(q̃, wn) = 1, (4.46)

where wn (t) = µn + f̃ (t, un (t)).

Let
(

zn
j

)j=k

j=0
be the sequence of zeros of un, In

j =
[
zn

j−1, zn
j

]
, ρn

j = supt∈In
j
|un (t)| =∣∣∣un

(
yn

j

)∣∣∣ with yn
j ∈ In

j . Because limn→∞ ‖un‖ = +∞, there is jn such that lim ρn
jn = +∞.

We claim that there is a∗ ∈ (0, 1) such that if (ns) is a sequence of integers such that

lims→∞ ρns
jns

= +∞ then yn,ls
jn,ls
∈ (0, a∗). Indeed, if for any sequence (ls) of integers such
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that lims→∞ ρns
jns

= +∞ we have lims→∞ yns
jns

= 1, then (uns) is bounded on any interval

[0, a] ⊂ [0, 1) . Therefore, from the equation

un(t) =
∫ 1

0
Gq̃ (t, s) un(s)

(
µn + f̃ (s, un (s))

)
ds

we conclude that (uns) converges uniformly to u ∈W in all intervals [0, a] ⊂ [0, 1) and

u(t) =
∫ 1

0
Gq̃ (t, s) u(s) f̃ (s, un (s)) ds.

Since for all t ∈ [0, 1)

|un(t)− u(t)| ≤
∫ 1

0
Gq̃ (s, s)

∣∣∣un(s) f̃ (s, un (s))− u(s) f̃ (s, u (s))
∣∣∣ ds,

we obtain by means of the Lebesgue dominated convergence theorem that un → u in W,

leading to the contradiction ‖u‖ = limn→∞ ‖un‖ = +∞.

Set q∗ = supt∈[0,a∗] q(t) and let A∗ > 0 be such that f (t, u) > q∗ for all t ∈ [0, a∗] and

|u| > A∗. We prove now, that if In
j ⊂ [0, a∗] then lim ρn

j = +∞. On the contrary suppose

that lim ρn
jn−1 6= +∞ and lim ρn

jn+1 6= +∞, that is (un) is bounded in In
jn−1 ∪ In

jn+1 and let

v be such that max
(

ρn
jn−1, ρn

jn+1

)
≤ v. Let αn

jn ∈
(

zn
jn−1, yn

jn

)
and βn

jn ∈
(

yn
jn , zn

jn

)
be such

that
∣∣∣un

(
αn

jn

)∣∣∣ = ∣∣∣un

(
βn

jn

)∣∣∣ = A∗. Thus, we have

−u′′n (t) un (t) = u2
n (t) ( f (t, un(t))− q(t)) ≥ u2

n (t) (q∗ − q(t)) ≥ 0, in
(

αn
jn , βn

jn

)
leading to

∣∣∣u′n (αn
jn

)∣∣∣ = sup
t∈
(

αn
jn

,yn
jn

) |u′n (t)| and
∣∣∣u′n (βn

jn

)∣∣∣ = sup
t∈
(

yn
jn

,βn
jn

) |u′n (t)| .

-
zn

jn−2 zn
jn−1 zn

jn zn
jn+1yn

jn−1
yn

jn

yn
jn+1

αn
jn βn

jn

ρn
jn−1

ρn
jn

ρn
jn+1

A∗

Fig. D
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In one hand, we have

lim
∣∣∣u′n (αn

jn

)∣∣∣ = lim

 sup
t∈
(

αn
jn

,yn
jn

) ∣∣u′n (t)∣∣
 = lim

∣∣∣u′n (βn
jn

)∣∣∣
= lim

 sup
t∈
(

yn
jn

,βn
jn

) ∣∣u′n (t)∣∣
 = +∞.

Indeed, if for instance u′n is bounded by a constant A in
(

αn
jn , yn

jn

)
then

ρn
jn ≤ A∗ +

∫ yn
jn

αn
jn

∣∣u′n(s)∣∣ ds ≤ A∗ + A,

contradicting lim ρn
jn = +∞.

In the other hand, we have the contradiction∣∣∣u′n (αn
jn

)∣∣∣ = ∣∣∣∣∣
∫ αn

jn

yn
jn−1

un(s) ( f (s, un(s))− q(s)) ds

∣∣∣∣∣ ≤ max (v, AT) (q∗ + θ) < ∞,

∣∣∣u′n (βn
jn

)∣∣∣ = ∣∣∣∣∣
∫ yn

jn+1

βn
jn

un(s) ( f (s, un(s))− q(s)) ds

∣∣∣∣∣ ≤ max (v, AT) (q∗ + θ) < ∞,

where θ = sup {| f (s, u)| : s ∈ [0, 1] and u ∈ [−max (v, AT) , max (v, AT)]} . This shows

that all bumps of un contained in [0, a∗] are unbounded.

At this stage, for all n ≥ 1, there is an interval In
jn =

[
zn

jn−1, zn
jn

]
⊂ [0, a∗] such that

zn
jn − zn

jn−1 ≥
a∗
k and Lemma 4.3 leads to |un(t)| ≥

ρn
jn
4 for all t ∈

[
γn

jn , δn
jn

]
, where

γn
jn = zn

jn−1 +
zn

jn − zn
jn−1

4
and δn

jn = zn
jn −

zn
jn − zn

jn−1

4
.

Set γ0 = sup γn
jn and δ0 = inf γn

jn and notice that δ0 − γ0 = inf
(

δn
jn − γn

jn

)
≥ T

2k . Because

of

un(t) =
∫ zn

jn

zn
jn−1

G
(

zn
jn−1, zn

jn , t, s
)

u(s)n f̃ (s, un(s)) ds,

we obtain from Lemma 4.3 that

|un(t)| ≥
min

(
t− zn

jn−1, zn
jn − t

)
Ψq,θ

(
zn

jn

) ρn
jn ≥

min
(

t− zn
jn−1, zn

jn − t
)

Ψq,θ (T)
ρn

jn → +∞

for all t ∈ [γ0, δ0] . Thus, we obtain from Lemma 4.21 and (4.46) that

µk(q̃, wn, [γ0, δ0]) > µk(q̃, wn) = 1. (4.47)
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Let A > µk(q̃, 1, [γ0, δ0]), there is nA ≥ 1 such that wn (t) = µn + f̃ (t, un(t)) ≥ A, for

all n ≥ nA and t ∈ [γ0, δ0] . Hence, we obtain by Assertion 1 in Corollary 4.23 the

contradiction

1 < µk(q̃, wn, [γ0, δ0]) ≤ µk(q̃, A, [γ0, δ0]) =
µk(q̃, 1, [γ0, δ0])

A
< 1.

ζ+j

ζ+j+1

ζ−j ζ−j+1

-

µ̃j µ̃j+1
1

Fig. E
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Step 3. At this stage, we have only to compute components that crossing the hy-

perplane µ = 1. Assume that Hypothesis (4.33) holds, then we have from Assertion 2

in Lemma 4.29 that µ̃k > 1 for all k ≥ j. Since for all k ≥ 1 and ν = ± the component

ζν
k reachs (−∞, ∞) , ζν

k crosses the hyperplane µ = 1 for all k ≥ j. Thus, the bvp (4.21)

admits for all k ≥ j a solution in S+
k and in S−k . The case where m+ = 0 and µj(χ0) > 0

for some χ0 ∈ Γ+ is obtained by means of Assertion 3 in Lemma 4.29.

The proof of Theorem 4.27 is complete.

4.4.4 Proof of Theorem 4.28

Set for n ≥ 1

fn(t, u) =

 f (t, u), if |u| ≥ 1
n ,

f (t, n), if |u| < 1
n ,

and consider the bvp  −u′′ + qu = ρu fn(t, u), in (0, 1) ,

u(0) = limt→1 u(t) = 0.
(4.48)

We have then

lim
u→+∞

fn(t, u) = α (t) , lim
u→−∞

fn(t, u) = β (t) and lim
u→0

fn(t, u) = f (t,
1
n
) in E.

To be brief, we present the proof of Assertion 1, the other Assertions are checked simi-

larly. Because of limn→∞

(
inft∈[0,1] f̃ (t, 1

n )
)
= +∞, for all l ≥ 1 there exists nl ≥ 1 such

that for all n ≥ nl, µl(q̃, f̃ (t, 1
n )) < ρ.

Fix k ≥ j and ν = + or −. For all n ≥ nk Assertion 3 in Theorem 4.26 guarantees

existence of un ∈ Sν
k solution to the bvp (4.48).

Let ω0 be that in Remark 4.25,

q = q+ + 2ρω0 , f n(t, u) = ρ ( fn(t, u) + 2ω0) + q−

and observe that v is a solution to (4.48) if and only if v is a solution to the bvp −u′′ + qu = ρu f n(t, u) in (0, 1)

u(0) = limt→1 u(t) = 0.
(4.49)

We claim that there is a positive constant mν
k such that ‖un‖ ≥ mν

k . By the contrary,

suppose that (un) admits a subsequence (us) such that lim us = 0 in E and let A >

119



Chapter 4. A class of Sturm-Liouville BVPs with an unintegrable weight

µk(q, 1). There is γA > 0 such that for all u ∈ R, |u| < γA implies inft∈[0,1] f n (t, us) > A

and there is sA such that ‖us‖ < γA for all s > sA. Thus, for all s ≥ sup(1/γA, sA),

inft∈[0,1] f n (t, un(t)) > A and this leads to the contradiction

1 = µk(q, f n (t, un(t))) < µk(q, A) =
µk(q, 1)

A
< 1.

We prove now that there is positive constant Mν
k such that ‖un‖ ≤ Mν

k . By the con-

trary suppose that there is a subsequence (ur) of (un) such that lim ‖ur‖ = ∞. Arguing

as in Step 2 in the proof of Theorem 4.27, we obtain that (vr) = (ur/ ‖ur‖) converges,

up to a subsequence, to v ∈ Sν
k satisfying Lqv = ραv+ − ρβv−, in (0, 1) ,

v(0) = limt→1 v(t) = 0.

Let φ ∈ Sν
k be the eigenfunction associated with µk (ρψ) , that is φ satisfies Lqφ = µk (ρψ) ρψφ, in (0, 1) ,

φ(0) = limt→1 φ(t) = 0.

Let
(
xj
)j=l

j=0 and
(
yj
)j=l

j=0 be respectively the sequences of zeros of v and φ. We distinguish

then the following two cases:

i) x1 ≤ y1: in this case we have the contradiction:

0 ≤
∫ x1

x0

vLqφ− φLqv

≤
∫ x1

x0

µk(ρψ)ρψφv−
(
ραv+ − ρβv−

)
φ

=
∫ x1

x0

(µk(ρψ)ρψ− α) ρφ+v+ + (µk(ρψ)ρψ− β) ρφ−v− < 0.

ii) y1 < x1: in this case Lemma 4.6 guarantees existence of two integers m, n hav-

ing the same parity such that ym < xn < xn+1 ≤ ym+1 and Lemma 4.7 leads to the

contradiction:

0 <
∫ xn+1

xn
vLqφ− φLqv

≤
∫ xn+1

xn
µk(ρψ)ρψφv−

(
ραv+ − ρβv−

)
φ

=
∫ xn+1

xn
(µk(ρψ)ρψ− α) ρφ+v+ + (µk(ρψ)ρψ− β) ρφ−v− < 0.

At this stage by means of Theorem 4.34 we prove that the sequence (un) is relatively

compact. Let [0, a] ⊂ [0, 1) , t1, t2 ∈ [0, a] be such that t1 < t2 and
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Cν
k = sup

{∣∣∣u f (t, u)
∣∣∣ : t ∈ [0, 1] and u ∈

[
−Mν

k , Mν
k
]}

. We have

|un(t2)− un(t1)| ≤ Cν
k

∫ 1
0

∣∣Gq(t2, s)− Gq(t1, s)
∣∣ ds ≤ Cν

k (
∣∣Φq (t2)−Φq (t2)

∣∣ ∫ t1
0 Ψq (s) ds

+
∫ t2

t1

∣∣Φq (t2)Ψq (s)−Φq (s)Ψq (t1)
∣∣ ds +

∣∣Ψq (t2)−Ψq (t1)
∣∣ ∫ 1

t2
Φq (s) ds)

≤ Cν
k

(∣∣∣Φ′q̃ (0)∣∣∣ ∫ a
0 Ψq (s) ds + 2Ψq (a) + Ψ′q (a)

∫ 1
0 Φq (s) ds+

)
|t2 − t1| .

This proves that (un) is equicontinuous on any interval [0, a] contained in [0, 1) .

By the mean value theorem, for all n ≥ 1 and all t ∈ [0, 1) there is tn ∈ (t, 1) such

that ∣∣∣∣un(t)
1− t

∣∣∣∣ = ∣∣u′n (tn)
∣∣ = ∣∣∣∣∫ 1

0

∂Gq

∂t
(tn, s)un (s) f n (s, un(s)) ds

∣∣∣∣ ≤ Cν
k .

This proves that the sequence (un) is equiconvergente at t0 = 1.

Therefore, lim un = u (up to a subsequence) and u(t) =
∫ 1

0 Gq̃(t, s) f (s, u(s)) ds prov-

ing that u is a solution to the bvp (4.21). Furthermore, combining Lemma 4.33 with

Lemma 4.17 we see that u ∈ Sν
k . This ends the proof.

4.4.5 Separable variable case

Consider the case of the bvp (4.21) where the nonlinearity f is a separable variables

function, namely the case where the bvp (4.21) takes the form Lqu = ρκuh(u), t ∈ (0, 1),

u(0) = limt→1 u(t) = 0,
(4.50)

where κ ∈ Γ+ and h : Rr {0} → R is a continuous function satisfying

lim
u→0

h(u) = h0, lim
u→+∞

h(u) = h+, lim
u→−∞

h(u) = h−. (4.51)

We obtain from Theorems 4.26, 4.27 and 4.28 the following corollary:

Corollary 4.36. Assume that (4.51) holds.

1. Let i, j be two integers such that i ≥ j ≥ 1. The bvp (4.50) admits in each of S+
j , . . . , S+

i , S−j , , . . . , S−i
a solution if one of the following Hypotheses (4.52), (4.53), (4.54) and (4.55) holds true. h0, h+, h− ∈ (0,+∞) and(

µj(q,κ)/ min(h+, h−)
)
< ρ < (µi(q,κ)/h0) ,

(4.52)

 h0 ≤ 0, h+, h− ∈ (0,+∞) , (µi(q,κ)/ min(h+, h−)) < ρ

and µj(q, χ0) > 0 for some χ0 ∈ Γ+,
(4.53)
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 h0, h+, h− ∈ (0,+∞) and

(µi(q,κ)/h0) < ρ <
(
µj(q,κ)/ max(h+, h−)

)
,

(4.54)

 h0 ≤ 0, h+, h− ∈ (0,+∞) ,
(
µj(q,κ)/ max(h+, h−)

)
> ρ

and µj(q, χ0) > 0 for some χ0 ∈ Γ+.
(4.55)

2. Let i, j be two integers such that i ≥ j ≥ 1 and i ≥ 2(j− 1). The bvp (4.50) admits in each

of S+
2j, . . . , S+

i , S−2j−1, , . . . , S−i a solution if one of the following Hypotheses (4.56), (4.57)

holds true.  h0, h− ∈ (0,+∞) and

(µi(q,κ)/h0) < ρ <
(
µj(q,κ)/h−

)
,

(4.56)

 h0 > 0, h− ≤ 0, (µi(q,κ)/h0) < ρ

and µj(q, χ0) > 0 for some χ0 ∈ Γ+.
(4.57)

3. Let i, j be two integers such that i ≥ j ≥ 1 and i ≥ 2(j− 1). The bvp (4.50) admits in each

of S+
2j−1, . . . , S+

i , S−2j, , . . . , S−i a solution if one of the following Hypotheses (4.58), (4.59)

holds true.  h0, h+ ∈ (0,+∞) and

(µi(q,κ)/h0) < ρ <
(
µj(q,κ)/h+

)
,

(4.58)

 h0 > 0, h+ ≤ 0, (µi(q,κ)/h0) < ρ

and µj(q, χ0) > 0 for some χ0 ∈ Γ+.
(4.59)

4. The bvp (4.50) admits for all k ≥ j a solution in each of S+
k and S−k if one of the following

Hypotheses (4.60), (4.61), (4.62) and (4.63) holds true. h0 > 0, h− = h+ = +∞ and(
µj(q,κ)/h0

)
> ρ,

(4.60)

 h0 ≤ 0, h− = h+ = +∞ and

µj(q, χ0) > 0 for some χ0 ∈ Γ+,
(4.61)

 h−, h+ ∈ (0,+∞) , h0 = +∞ and(
µj(q,κ)/ max (h−, h+)

)
> ρ,

(4.62)

 h−, h+ ≤ 0, h0 = +∞ and

µj(q, χ0) > 0 for some χ0 ∈ Γ+,
(4.63)
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5. The bvp (4.50) admits a solution in S+
k for all k ≥ 2j and a solution in S−k for all k ≥ 2j− 1,

if one of the following Hypotheses (4.64), (4.65) holds true. h− > 0, h0 = +∞ and(
µj(q,κ)/h−

)
> ρ,

(4.64)

 h− ≤ 0, h0 = +∞ and

µj(q, χ0) > 0 for some χ0 ∈ Γ+,
(4.65)

6. The bvp (4.50) admits a solution in S+
k for all k ≥ 2j − 1 and a solution in S−k for all

k ≥ 2j, if one of the following Hypotheses (4.66), (4.67) holds true. h+ > 0, h0 = +∞ and(
µj(q,κ)/h+

)
> ρ,

(4.66)

 h+ ≤ 0, h0 = +∞ and

µj(q, χ0) > 0 for some χ0 ∈ Γ+.
(4.67)

4.4.6 Comments

1. Under one of the Hypotheses (4.22), (4.23) and (4.24), the set of solutions to the bvp

(4.21) is contained in ∪k≥1,ν=±Sν
k . Indeed, we have seen above that u is a solution

to the bvp (4.21) if and only if u satisfies Lq̃u = u f̃ (t, u), in (0, 1)

u(0) = limt→1 u(t) = 0,
(4.68)

where q̃ = q + ω1, f̃ (t, u) = f (t, u) + ω1 and ω1 ∈ Γ++ is that in Remark 4.25. We

read from (4.68) that u is a solution to bvp Lq̃v = v f̃ (t, u), in (0, 1) ,

v(0) = limt→1 v(t) = 0,

that is µl

(
q̃, f̃ (t, u)

)
= 1 for some l ≥ 1 and the associated eigenfunction u ∈ Sν

l .

2. Let u be a solution to the bvp (4.21); according to the above comment, there is k ≥ 1

such that u ∈ Sk. Let
(
zj
)j=k

j=0 be the sequence and tq ∈ (0, 1) be such that q(t) > 0
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for all t ≥ tq. Set t∗ = max(tq, zk−1) and let yj ∈ (zk−1, 1) be such that u′(yj) = 0.

We have then for all t ≥ t∗

−u′(t) +
∫ t

yj

q(s)u(s)ds =
∫ t

yj

u(s) f (s, u(s))ds (4.69)

leading to ∣∣∣∣∣
∫ t

yj

q(s)u(s)ds

∣∣∣∣∣ = ∣∣u′(t)∣∣+
∫ t

yj

|u(s) f (s, u(s))| ds < ∞.

We deduce from the above inequality for both the cases u > 0 in (zk−1, 1) and u < 0

in (zk−1, 1) that ∫ 1

yj

q(s)u(s)ds = lim
t→→1

∫ t

yj

q(s)u(s)ds < ∞.

This proves that if u is a solution to the bvp (4.21) then
∫ 1

0 q(s)u(s)ds converges.

Therefore, we obtain from (4.69) that

lim
t→1

u′(t) = lim
t→1

(∫ t

yj

q(s)u(s)ds−
∫ t

yj

u(s) f (s, u(s))ds

)

=
∫ 1

yj

q(s)u(s)ds−
∫ 1

yj

u(s) f (s, u(s))ds.

3. Let q ∈ Q, notice that if for some m ∈ Γ+ and l ≥ 1 µl(q, m) = 0, then µl(q, χ) = 0

for all χ ∈ Γ+. Therefore, if µl(q, m) > 0 (resp. < 0) for some m ∈ Γ+ and l ≥ 1 then

µl(q, χ) > 0 (resp. < 0) for all χ ∈ Γ+. Indeed, if µl(q, χ0) > 0 and µl(q, χ1) < 0 for

some χ0, χ1 ∈ Γ+ and l ≥ 1, then the continuity of the mapping

µl(q, ·) : {(1− r) χ0 + rχ1 : r ∈ [0, 1]} → R

leads to the existence of r0 ∈ (0, 1) such that µl(q, (1− r0) χ0 + r0χ1) = 0, then to

the contradiction µl(q, χ) = 0, for all χ ∈ Γ+.

4. Let q ∈ Q+ and χ0 ∈ Γ+. The operator Lq,χ0 is then positive and we have for all

l ≥ 1

µl(q, χ0) ≥ µ1(q, χ0) =
1

r(Lq,χ0)
> 0.

Therefore, q ∈ Q+ is a particular situation where Assertion 3 in Lemmas 4.29 and

4.30 and Assertions 2 and 4 in Lemma 4.31 are satisfied.
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Conclusion

This thesis was devoted to the investigation of some classes of nonlinear boundary

value problems having unintegrable weights posed on bounded and unbounded inter-

val.

In chapter 2 and chapter 3, we have obtained a new results concerns the existence of

eigenvalue associated to the linear eigenvalue problems. The main results of these chap-

ters concerns the existence and multiplicity of nodal solutions to the nonlinear boundary

value problems by means of Rabinowitz global bifurcation theory where the nonlinear-

ity is asymtotically linear. In chapter 4, we have obtained a new results concerns the

existence of half eigenvalue associated to the half linear eigenvalue problem. The main

results of this chapter concerns the existence and multiplicity for nodal solutions to the

nonlinear boundary value problems by means of Rabinowitz global bifurcation theory

where the nonlinearity is asymtotically linear, sublinear and superlinear.
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Conclusion

On s’intéresse dans cette thèse à l’étude de certaines classes de problèmes aux limites

avec des poids non intégrable posés sur des intervalles bornés et non bornés.

Dans le deuxième et troisième chapitre, nous avons obtenus des nouveaux résultats

concernant l’existence des valeurs propres pour les problèmes linéaires associés. Nous

avons fait recours à la théorie de bifurcation global de Rabinowitz pour obtenir les ré-

sultats d’existence et de multiplicité de solutions nodales des problèmes nons linéaires

où la non linéairité est asymptotiquement linéaire. Dans le quatrième chapitre, Nous

avons obtenus des nouveaux résultats concernant l’existence des demi valeurs propres

pour le problème linéaire associé. Nous avons fait recours à la théorie de bifurcation

global de Rabinowitz pour obtenir les résultats d’existence et de multiplicité de so-

lutions nodales de problème nons linéaire où la non linéairité est asymptotiquement

linéaire, souslinéaire et superlinéaire.
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