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Abstract

Our purpose of this thesis is to study existence of nodal solutions to some classes of
Sturm-Liouville boundary value problems having unitegrable weights posed on bounded
and unbounded intervals .

The global bifurcation theory of Rabinowitz constitute the principal tool of this thesis.

Resumé

L’ objet de cette these est de démontrer 1'existence de solutions nodales pour cer-
taines classes de problemes aux limites de Sturm-Liouville avec des poids non inte-
grables et définis sur des intervalles bornés et non bornés. La théorie globale de bifur-

cation de Rabinowitz constitue l'outil principal de cette these.
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Notations

The aim of this chapter is to introduce some basic concepts and elementary results

which will be used further.

C([¢/ 1))

[

[Jull4
C* (g, 7))
C,([8, 7]

LY([g,7])

A&

N(A)
B(xo, 1)
bup(s)

evp

Space of continuous functions on [¢, 77].

= supy e,y (D).

=SUP¢te(o,1] u'(t)] -

Space of k-times continuously differentiable functions on|¢, 77].
Space of continuously differentiable functions on [¢,#] with
SUP; (e ‘u/ (t)‘ < o0,

space of all measurable functions on [¢, ] and satisfying

lull = f2 Ju (£)] dt < oo.

The dual space ofS’ = {f : & — R}.

Duality between S'and &',

The null space of A.

the open ball of radius r and centered at xo.

That is.

almost everywhere.

Boundary value problem(s).

Eigenvalue problem.
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Introduction

This thesis is devoted to study some classes of Sturm-Liouville boundary value prob-

lems (SLP) on bounded and unbounded intervals.

C. Sturm and J. Liouville published in the period of 1836 to 1837, a series of papers
on second order differential equations including boundary value problems. The impact
of these papers went well beyond their subject matter to general linear and nonlinear
differential equations and to analysis generally. Prior to this time, the study of differ-
ential equations was largely limited to the search for solutions as analytic expressions
[60, 61, ?]. Sturms papers on differential equations are characterized by the general and
qualitative nature of the problems. He discussed a general classes of equations not a spe-
cific one, and he asked questions about the qualitative properties of the solution, instead
to gave the analytic expression of that one. Many authors contribute to the development
of the theory of Sturm-Liouville since 1900, for example Herman Weyl (1910) published
one of the most widely quoted papers in analysis , just as Sturm and Liouville started
the study of regular SLP.

This paper initiated the investigation of singular SLP. Dixon (1912), was the first who
replaced the continuity condition of the coefficients by the integrability condition. The
proof of general spectral theorem for unbounded self adjoint operators in Hilbert space
by Neumann and Stone (1932). The fundamental works of Titchmarsh (1962) provided

some results into the spectral theory of Sturm-Liouville opertors.

The main goal of this thesis is to study existence of nodal solutions for some classes of

Sturm-Liouville boundary value problems having unintegrable weights. Such a tematic
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hasn’t studied before. This work is organized as follows.

The first chapter is devoted to preliminaries and abstract background, we recall in
the concepts of compact operators, positivity as well as Riesz-Schauder Theory. Mainly,
a subsection of this chapter is devoted to the global bifurcation of P.H. Rabinowitz [51)
52] which is the tool used to prove the existence and multiplicity results in this work.
At the end of this chapter , we present some recent results about element of Sturm-
Liouville boundary value problems in integrable case, mainly, the result of Berestycki
[11] concerning the existence of half eigenvalue and the result of Benmezai-Esserhane
[7] which extends the result of Berestycki. We, also give the principal work of Zettl [64]
concerning the existence of eigenvalues .

In the second chapter, We investigate the existence of nodal solution of the following

boundary value problem

{ —u"(8) + q(u(t) = u(t) f(tu(t)), >0,

u(0) = limy 400 u(t) =0,

1)

where ¢ € C(R",R") is such that q(t) > 0forallt > Tand f : Rt xR »Risa
continuous function. The first result of this chapter concerns the spectrum of the linear

eigenvalue problem associated to the problem

—u""(t) + g(t)u(t) = um(t)u(t), t>0, )
u(0) = 0,lim; 0o u(t) =0,

where y is a real parameter and m € C (R, R) is such that lim;_, o m(t) = 0, m(t) >
Oae. t€R".

We prove that this spectrum consists of an unbounded increasing sequence (i (1) )x>1
of eigenvalues and the corresponding eigenfunctions have nodal properties. The main
result of this work concerns the existence and multiplicity result for nodal solutions,
witch is obtained by means of Rabinowitz global bifurcation theory. It claims that if
there is two integers i,j with 1 < i < j such that p;(f(t, o)), ui(f(t,0)) are oppositely
located relatively to 1, then the problem (1) admits a nodal solution.

In the third chapter, we extend the results of second chapter on the real line. We

consider the linear eigenvalue problem :

{ —u"(t) + q(t)u(t) = pm(t)u(t), t € R, (3)

viil



and the perturbed problem associated to the problem

(4)

limt_>_oo u(t) = limt_>+oo l/l(t) = 0,

{ —u () + q(O)u(t) = pu(t) f(tu(t), t € R,

where p is real parameter, g € C(R,R") is such that q(t) > 0 for all |{| > T, m €
C(R,R) is such that limy_, o m(t) = limy_, om(t) = 0,m(t) > 0a.e. t € Rand f :
R x R —IR is a continuous function.

The first result concerns the spectrum of problem (3), we prove that this spectrum
consists of an unbounded increasing sequence (py(m))x>1 of eigenvalues and the corre-
sponding eigenfunctions have nodal properties. The main result of this work concerns
the existence and multiplicity result for nodal solutions, witch is obtained by means
of Rabinowitz global bifurcation theory. It claims that if there is two integers i,j with
1 <i < jsuch that p;(f(t 0)),pi(f(t,0)) are oppositely located relatively to y, then the
problem (4) admits a nodal solutions .

In the last chapter, we prove existence of nodal solutions to the following nonlinear

boundary value problem

{ —u” +qu = puf(t/ u)/ in (0’1)’ )

u(0) = limy_q u(t) =0,

where p is a positive real parameter, g € C([0,1),R), is such that fol g = +oo and
f:00,1] x (R~ {0}) = R is continuous. Nodal solutions appear as eigenfunctions to
the half eigenvalue problem
—u" 4+ qu =omu +aut — pu—, in (0,1), ©
u(0) = lim; 1 u(t) =0,
where 0 is a real parameter, m, «, € C ([0,1],R) such thatm > 0in (0,1), and m(ty) > 0
for some t € [0,1].

We prove in the first that the Berestycki’s result holds true for the problem (6), that
the problem (6) admits two unbounded increasing sequences of simple half-eigenvalues
(AL (g, m,a,B))k>1) and (A (q,m,a, B))k>1) and the corresponding eigenfunctions have
nodal properties..

The main results of this work concerns existence of nodal solutions to the problem

in the cases where the nonlinearity uf (¢, u) is respectively asymptotically linear, sub-
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linear and superlinear. All are obtained by means of the global bifurcation theory due

to P. H. Rabinowitz.



Introduction

On s’intéresse dans cette these a I’étude des problémes aux limites de Sturm-Liouville

posés sur des intervalles bornées et non bornées. L'origine des problemes de Sturm-
Liouville remonte a 1'époque de 1836 a 1837 quand C. Sturm en collaboration avec J.
Liouville publierent une série d’articles sur les équations différentielles linéaires et non-
linéaires du second ordre [60, 61, ?].
La contribution de Sturm et de Liouville a permis de donner une nouvelle méthodolo-
gie concernant les propriétés qualitatives de la solution, non I'expression exacte de cette
derniere. Plusieurs auteurs ont contribué au développement de la théorie de Sturm-
Liouville de 1900 a 1950, on citera Hermann Weyl (1910) qui a considéré le probléme
linéaire de Sturm-Liouville dans le cas singulier, Dixon (1912) était le premier a rem-
placer la continuité des coefficients par une condition d’intégrabilité; M.H. Stone (1932)
dans son livre [49] étudia le probléme de Sturm-Liouville dans les espaces de Hilbert.
Le travail principal de Titchmarch (1962) concerne certains résulats de la théorie spéctral
sur les opérateurs de Sturm-Liouville.

L’ objet de cette these est d” étudier 1" existence de solutions nodales pour certaines
classes de problemes aux limites avec des poids non intégrables. Le travail est organisé
de la maniere suivante:

Le premier chapitre est consacré aux préliminaires. Nous rappelons les notions des
opérateurs compacts, la positivité et la théorie de Riesz-Schauder. Nous présentons la
théorie de bifurcation globale de Rabinowitz; on terminera ce chapitre par quelques

éléments sur les probléemes de Sturm-Liouville dans le cas intégrable.
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Dans le deuxiéme chapitre, on considere le probleme au limites suivant

W (8) + gOu(t) = u(Of(Lue), >0, o
u(0) = limy— 400 u(t) =0,
o g € C(RT,R") avec g(t) > 0 pour tout t > T et f : RT x R =R est continue.

Le premier résultat concerne le spéectre du probléme linéaire associé au probléeme

—u"'(t) +q(t)u(t) = um(t)u(t), t>0,
u(0) = 0,lim; oo u(t) =0,

(8)

ou u est un parametre reel, et m € C (R™, R) tel que limy_, 4o m(t) = 0,m(t) >0ae. t €
R*. On montre que le spéctre consiste en une suite croissante des valeurs propres
(ur(m))x>1 associés a des vecteurs propres admettant des propriétés nodales. Le résultat
principal de ce travail concerne l'existence et la multiplicité de solutions nodales en
utilisant la théorie de bifurcation globale de Rabinowitz. On montre que s’il existe deux
entiers i,j avec 1 < i < j tels que p;(f(t,00)), i(f(t,0)) sont opposés par rapport a 1,
alors le probleme (7)) admet des solutions nodales.

Dans le troisieme chapitre, on étend le résultat de deuxiéme chapitre sur la droite réelle.

On considere le probleme linéaire suivant:

—u"(£) +q(t)u(t) = um(t)u(t), t € R,

limt_>_oo Ll(t) = limt_>+oo M(t) = 0,

©)

" (8) + g(t)u(t) = pu(B)f(Lu(b)), t € R, o)
limy oo u(t) = limy 0o u(t) =0,
ol y est un parametre reel, g € C (R,R") avec g(t) > 0 pour tout [t| > T, m € C (R, R)
avec lim;,_com(t) = limj,yoom(t) = 0,m(t) > Oae.t € Ret f : RxR —R est
continue.
On montre que le spectre consiste en une suite croissante de valeurs propres (pi(m))x>1
associées a des vecteurs propres admettant des propriétés nodales. Le résultat principal
de ce travail concerne 'existence et la multiplicité de solutions nodales en utilisant la
théorie de bifurcation globale de Rabinowitz. On montre que s’il existe deux entiers
i,javec 1 < i < jtels que p;(f(t,o0)),ui(f(t,0)) sont opposés par rapport a y, alors le
probléme admet des solutions nodales.
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Dans le dernier chapitre on montre 1'existence de solution nodales pour le probleme aux

limites suivant:
—u" +qu = puf(t,u), in (0,1),
u(0) = limy_ u(t) =0,

(11)

olt p est un parametreréel, g € C([0,1),R), fol g=+ooetf:[0,1] x (R~ {0}) = Rest
continue. Les solutions nodales apparaissent comme des fonctions propres du probléme
de demi valeurs propres suivant:

—u" +gqu =omu+aut —Bu—, in (0,1),
q p (0,1) 12)

u(0) = limy_ u(t) =0,
olt 0 est un paramétre reel, q,m, a, p € C ([0,1],R) tels que m > 0 dans [0, 1] et m(ty) >0
pour certain ty € [0,1]. Au début de ce travail on montre que le résultat de Berestycki
reste valide pour le probleme (12). Le résultat principal concerne I'existence et la multi-
plicité de solution nodales du probléme dans le cas ot la nonlinéarité
uf(t, u) est respectivement asymptotiquement linéaire, sous-linéaire et super-linéaire.

Dans tous les cas, on utilise la théorie de bufircation globale de Rabinowitz.
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Chapter 1

Preliminaries

1.1 Abstract background

1.1.1 The compactness

We start this section by some definitions about compactness.

Let £, 7 be two Banach spaces

Definition 1.1 ([27]). A subset M of £ is said to be compact, iff every sequence (Xn),eny C M

has a convergent subsequence with limit in M.
Let Q) C £ be an open set.
Definition 1.2. Let A : Q) — F be continuous mapping. A is said to be:
e compact, if A(Q) is compact.
* completely continuous mapping if maps bounded sets into relatively compact sets.

Clearly, all compact mapping are completely continuous mapping, if (2 is a bounded

set we have the equivalent.

properties

¢ A linear combination of compact mappings is compact.

* The product of a compact mapping with a linear bounded mapping is compact.
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¢ If the sequence mappings A, : 3 — F are compact and A : 3 — F such that

A = lim, 4o Ay uniformly in any bounded set of (), Then A is a compact map-

ping.

In this thesis we use the following compactness criteria.

Ascoli-Arzéla compactness criterion

Let (X, d) be a compact metric space and Y a Banach space; then C(X,Y) is a Banach
space equipped with the sup norm || f|| = sup,.y [|f(x)||y-

Definition 1.3. Let H C C(X,Y) be a family of continuous functions. H is said to be equicon-
tinuous if the set H(xg) := {f(xo0), f € H} is equicontinuous for all xy € X, i.e.

Ve > 0,36 > 0,Vx € X,d(x,x9) <= ||f(x) — f(x0)]| <e€,Vf € H. (1.1)

Lemma 1.4. (Ascoli-Arzéla Theorem) [28]] Let (X, d) be a compact metric space and Y a Banach
space; and let H a subset in C(X,Y). H is said to be relatively compact if and only if

* H is equicontinuous,
e Vx € X theset {f(x),f € H} is relatively compact in Y.

Corollary 1.5. Vk € N, C**1([a, b],R) can be embedded compactly in C*([a,b], R).

Compactness criteria on noncompact intervals

In this section we present Corduneanu ’s compactness criterion, extending the Ascoli-
Arzéla lemma.
Let I be a bounded or unbounded interval, and let C, =: C,(I,IR) denote the vector

space of all bounded and continuous function, equipped with the sup norm ||f| =

sup ey |f(x)]

Definition 1.6. A family H C Cy, is called equicontinuous on every compact interval I of R if it

satisfies

Ve > 0,30 >0,V th € I, |1 — ]| <6 = |x(t1) — x(t2)| < €, forallx € H. (1.2)
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Definition 1.7. A family H C Cy, is called equiconvergent if it satisfies

Ve >0,3T =T(e) > 0,Vty, tp € L |t11] > T, |t2| > T = |x(t1) — x(t2)| <€, Vx € H.
(1.3)

Theorem 1.8. (Corduneanau Theorem)[5l] A family H C C,, is relatively compact if and only if

the following conditions are satisfied:
* H is uniformly bounded in Cy,
* H is equicontinuous on every compact of I,

* H is equiconvergent.

1.1.2 The Riesz Schauder Theory

Let € be a Banach space and £(€) be the Banach space of all bounded linear opera-
tors.

Let A € £(&), we consider the linear operator.
Ay = AT — A, (1.4)

where 7 is the identity operator and A € C is a complex number. The distribution of the
value A for which A, has an inverse and the properties of this inverse when it exists, are

called the spectral theory of the operator A,.

Definition 1.9 ([13]). Let A € £(&). The set
p(A) ={A € C,AZT — A is bijective} (1.5)

is called the resolvent set of A and the inverse operator R(A; A) = (AL — A)~! is called the

resolvent operator of A at A.
Definition 1.10.  ® The spectrum of A, o(.A), is the complementary set of p(A) in C.

* A complex number A is an eigenvalue of A if the equation Ax — Ax = 0 has a solution
x # 0, this solution x is said to be an eigenvector of A corresponding to A. The null
space N'(AZ — A) is the eigenspace associated with A, and its dimension is the geometric

multiplicity of A .



Chapter 1. Preliminaries

Proposition 1.11. The spectrum o (.A) is a compact set included in the ball B(0; || A||).

Definition 1.12. For every operator A € £(E), we define
r(A) =sup{|r|, Aec(A)}
the spectral radius of A.

Theorem 1.13. Let A € £(E), the spectral radius of A is given by

r(A) = lim [A"[7 = inf [|A4"]"
n

n—r+o00

and we have

r(A) < [lA]

We denote by K(&) the space of compact operators from £ to £, which is a closed
subspace in £(€). In the case of a compact operator, one has a more precise description

of the spectrum. This result known as the Riesz-Schauder Theory.
Theorem 1.14. [13] Let A € K(&), where £ is infinite dimensional space. Then
1. 0 e o(A).
2. Each numbers A # 0 in the spectrum o(.A) is an eigenvalue.
3. We are in one (and only one) of the following cases
e cither 0(A) = {0},

e cither o(\A) is finite,

e or 0(A) — {0} may be described as a sequence of distincts points tending to 0.
Theorem 1.15 ([28, Theorem 11.3.3]). For A € o(.A)\{0} there exists m € IN such that
N (AT =A)") =N (A2 —4)")

and this subspace is finite dimensional.

Since N'(\T = A) € N (AT = A)?) € N ((AN)?) € -+ then
rY ((/\Z— A)f> = N ((AZ — A)™)

j>1

and it’s finite dimensional. This dimension is called the algebraic multiplicity of A.

4
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1.1.3 Positivity

Let £ be a real Banach space.
Definition 1.16. A nonempty closed convex subset P of £ is called a cone if
i) tx € Pforallx € Pandt >0
ii) x € P, —x € P implies x = 0. ( 0 denote de zero element of £)

A cone P is called solid if it contains interior points (i.e. P # @). A cone P is called generating

if £ =P —P. Moreover if P —P = & then the cone P is said to be total.

Every cone P in £ defines a partial order relation < in £ as follows: for x,y € &,
xysy—xeP.

We shall write x < y to indicate that x < y and x # y, while x << y will always stand
for y — x € P if P is solid.

Definition 1.17. A cone P is said to be normal if there exists a positive constant N such that
0=x=y=|xlle <Nlylle- (1.6)

Example 1.18. Let & = C![a,b], the space of continuously differentiable functions on
[0, 2TT] with the norm

| u ||= max |u(t)] + max |u'(t)] (1.7)
tea,b] te(a,b]

and let P; = {x(t) € Cl[a,b],x(t) > 0a < t < b}. Clearly P is a solid cone in C![a, b].

Py is not normal. In fact, if P; is normal, then there exist an N > 0 such that
0=x=y=|xlle <Nyl (1.8)

Let x,(t) = 1 — cosnt, y,(t) = 2. Then we have 0 < x =<y, ||xx|| =2+ n, and ||y|| = 2.
Consequently, 2+n < 2N (n =1,2,3,...), which is impossible.

Example 1.19. Let E = LP(Q)), where QO C R", 0 < mesQ) < +o0and 1 < p < +00, and
Py = {x(t) € LP(Q),x(t) >0, a.e t € Q}. Itis easy to know that P, is a normal cone

and its normal constant N = 1. Clearly, intP, = &. Thus P, is not a solid cone.
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The main interest concerning the positive operator, in what follow, is the existence
of positive eigenvector. More precisely the condition under which the spectral radius of
a positive operator is an eigenvalue.

From now we consider an ordered Banach space £ with respect to a cone P and denote

the partial ordering by 7 < 7.
Definition 1.20. Let A : £ — £ be an operator. A is said to be
e Positive if A(P) C P,

* Increasing if for u,v € P

u < v implies Au =< Av.

Remark 1.21. The concept of positive operator and increasing operator coincide when the

operator A is a bounded linear operator.

Definition 1.22. Let A € £(&) be a positive operator. A real number A is said to be positive
eigenvalue of A if A > 0 and there is x € P\{0} such that

Ax = Ax

The following theorem is known as Krein-Rutman Theorem. This result presents the
situation where the spectral radius r(.A) of a positive linear compact operator A, is a

positive eigenvalue of A.

Theorem 1.23. [63] Assume that the cone P is total and A € £(&) is compact and a positive
operator with r (A) > 0. Then r (A) is a positive eigenvalue of A.

1.1.4 Global bifurcation theory

The Bifurcation theory is the mathematical study of changes in the qualitative or
topological structure of a given family, such as the solutions of family of differential
equations. A bifurcation occurs when a small smooth change made to the parameter
value of a system causes a sudden qualitative or topological change in its behavior. The
name "bifurcation" was first introduced by Henri Poincaré in 1885.

Let £ be a real Banach space and F : R x £ — £ is a continuous mapping. Suppose the

equation F (A, u) = 0, possesses a simple curve of solutions given by

6
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Z = {(A\(),u(7)), Tell.

If for some T € I. F possesses zeroes not lying on Z in every neighborhood of
(A(T),u(T)), then (A(T),u(T)) is said to be a bifurcation point for F with respect to
the curve Z.

The global theory of bifurcation concerns the equation
u=Au+H(Au), (1.9)

where £ : £ — £ is a compact linear operator and H : R x & — & is completely
continuous with: H = o(||u||¢) near u = 0 uniformly on a bounded interval of A.

The equation possesses a curve of solutions {(y,0), p € R}, which is called curve
of trivial solutions.

A bifurcation point with respect to the set of trivial solutions is a point (y,0) such that
there is a sequence of nontrivial solutions of (1.9), (yn, 1tx),, which converges to (j,0) in
R x E. It was established that a necessary condition for (y,0) to be a bifurcation point is
that y is a characteristic value of £ (i.e. u ! is a non zero eigenvalue of £), however this

condition is not sufficient as illustrated by the example

E=TR> u=(xy)

b))+ ()

The linear part of equation has y = 1 as a characteristic value but the equation does not
have solutions (A, u) with u # 0. The sufficient condition for (u,0) to be a bifurcation

point is due to Krasnoselskii [36, 51] as we will see in Theorem m

Theorem 1.24 ([36] 51, 52, Krasnoselskii]). If u is a characteristic value of L with an odd
algebraic multiplicity, (y,0) is a bifurcation point.

The bifurcation phenomenon ( which can be local phenomenon or global) gives us
informations concerns the structure of the set of nontrivial solutions. If we denote by
S the closure of the set of nontrivial solutions of (I.9), Theorem implies that the
intersection of S with any neighborhood of (y, 0) is nonempty when y is of odd multi-

plicity. For the same hypothesis, Rabinowitz in [51} 52] shows a global phenomenon of
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bifurcation from a (u,0), more precisely Rabinowitz gives an alternative as we will see

in Theorem

Definition 1.25. A component of a topological space is a closed connected subset maximal with

respect to inclusion.

Theorem 1.26 ([51} 52, Rabinowitz]). If u is a characteristic value of L with an odd multiplicity

, then S possesses a component of nontrivial solutions C,, such that (u,0) € C,, and C,, either :
* meets infinity in R x E (i.e. C,, is unbounded ); or
* meets (f1,0), where fi is a characteristic value of L with fi # .

A stronger result has been obtained by Rabinowitz in [52], when y is a simple charac-
teristic value of £ (i.e. of multiplicity 1). To describe it, let v € E denote the eigenvector
of L corresponding to y normalized so ||v||z = 1. | € E be the eigenvector of the trans-
pose of £, normalized so that < [,v >=1,E={u € E/, <l,u >=0},then E = Ro®¢,
so for u € £ we have u = tv + w where t =< I,u > and w € €. For ¢, k¥ € R such that
0<¢, 0<y <1, wedefine

Key = {(Au) ERxE/|A—p| < &< Lu>>qylul}.

Key is an open set of R x £ and consists of two disjoint convex component ICSFW and

ngﬂ such that for v = + or —:
K%, = {(Au) e RxE/|A—ul <& < Lvu>>n|ul|g}
For { > 0, we denote by B; the ball of radius { and centred at (y,0).

Lemma 1.27 ([52, Lemma 1.24]). There exists {o > 0 such that for all { < o (S — (1,0)) N
B; C Key. If (A, u) € (S — (1,0)) N By), then u = tu + w where t > n|ul|g or t < —n|luls
and |A — u| = 0(1), [|[w||g = O(|t|) for t near 0.

The next Theorem shows that near (y,0), Cy, consists of two subcontinua which

meet only at (y,0).

Theorem 1.28 ([52, Theorem 1.25]). C, possesses a subcontinuum in ngﬂ7 U (u,0) and in
Kz, U (1,0) each of which meet (y,0) and 0B; for all { > 0 sufficiently small.
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Theorem 1.29 ([52, Theorem 1.40]). C, can be decomposed into two component C; and Cﬁ
such that each of them satisfied the alternative :

* meets infinity in R x & (i.e. C; is unbounded ); or
* meets (f1,0), where fI is a characteristic value of L with fI # .

For a precise definition of C}ll and Cﬁ see [52].

1.1.5 Elements of Sturm-Liouville boundary value problem

In mathematics and its application a classical Sturm-Liouville theory, named after
Jacques Charles Frongois Sturm (1803-1855) and Joseph Liouville (1809-1882), is the the-

ory of real second order linear differential equation of the form

d d .

—lp(x) 2] +a(x)y = —Aw(x)y, in (a,b), (1.10)
where y is a function of the free variable. Here the functions p, g and w > 0 are specified
at the outset. In the simple of cases all coefficients are continuous on the finite closed
interval [a, ], and p has continuous derivative. The function w > 0 is called the weight

function, with separated boundary conditions of the form
amy(a) — by’ (a) =0, au(b)+byy'(b) =0, (1.11)

where 4;, b; are real numbers such that |b;| + |¢;| #0,i = 1,2.
In this case the function y is a solution if it is continuously differentiable on (a,b) and
satisfies the equation at every point in (a,b).
The value of A is not specified in the equation; finding the value of A for which there
exists a non trivial solution of satisfying the boundary conditions is part of the
Sturm-Liouville problem.
Such values of A, when they exist, are called the eigenvalues, and the corresponding
solutions (for each such A) are the eigenfunctions of this problem.

Now we recall some recent results concerning the Sturm-Liouville boundary value

problem theory in the integrable case.
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The half linear eigenvalue problem

In this section we investigate the half linear eigenvalue problem

—(pu!)'(t) +q(t)u(t) = pm(t)u(t) +au® —pu=, te(gn),
au(g) —bp(&)u' () =0, (1.12)
cu(ny) +dp(n)u'(n) =0,

where

* uis a real parameter.

—00 < ¢ <5 < Hoo.

p: (&) — RT is a measurable function with p > 0 a.e on (&, 7),

g,m,ua,pB:(¢,1) — R are measurable functions.

Noted that u™, (u™) the positive part (resp the negative part). The bvp (1.12) is called
half-linear since it is linear and positively homogeneous in the cone u# > 0 and u < 0.
Noted that if « = p = 0 the bvp (1.12) coincide with the linear eigenvalue problem.

In the first, we introduce the concept of the half-eigenvalue.

Definition 1.30. We say that A is a half-eigenvalue of if there exists a nontrivial solution
(A, up) of (L.12). In this situation, {(A,tu,), t > 0} is a half-line of nontrivial solutions of
and A is said to be simple if all solutions (A,v) of with v and u having the same
sign on a deleted neighborhood of ¢ are on this half-line. There may exist another half-line of
solutions {(A,tvy), t > 0}, but then we say that A is simple if uy and v, have different signs
on a deleted neighborhood of & and all solutions (A,v) of lie on these two half lines.

Let m,« and B be three continuous functions on [, 7] such that —co < § < 57 < 400
with m > 0.

Berestycki proved in ([11]) the following theorem

Theorem 1.31. Assume that p € C1[¢,n] and p > 0in [&,1]. Then the set of half eigenvalues of
bop consists of two increasing sequences of simple half-eigenvalues (A )x>1 and (AL )i>1,
such that for all k > 1 and v = + or —, the corresponding half-lines of solutions are in {A]} x
S;.

10
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Benmezai and Esserhane [7] proved that the Berestycki result holds for the integrable

case in the following lemma .

Lemma 1.32. [/, lemma 3.7] Assume that %,q, m,a, B € LY(&n) with % > 0and m > 0 a.e.
on (&,1n). Then the set of half eigenvalues of bup consists of two increasing sequences of
simple half-eigenvalues (A )g>1 and (A )g>1, such that for all k > 1 and v = + or —, the
corresponding half-lines of solutions are in {A}'} x S}. Furthermore, aside this solutions and the

trivial ones, there are no other solution of .

In the same paper Benmezai and Esserhane [7], proved the existence of half eigenval-
ues on Theorem when they relaxed the condition m > 0 a.e on (&, #7) to the condition

m >0 a.e. on (¢,77) and m > 0 on a subset of positive measure.

Theorem 1.33. Assume that %,q, m,u, B e LY(&, 1) with % > 0and m > 0a.e. on (¢, 1) with
m > 0 on a subset of positive measure. Then the bup admits two increasing sequences of
simple half-eigenvalues (A, (q,m,a, B))i>1 and (A, (q,m, &, B))x>1, such that for all integers
k > 1and v = +, —, the corresponding half-line of solutions lies in {A}(q,m,a, )} x S} and
limg 4o /\}g(q, m,n, B) = +oo. Furthermore, aside from these solutions and the trivial one,

there are no other solutions of . Moreover,

e For m fixed in LY(&,7) such that m > 0 a.e. on (&, 1) and m > 0 on a subset of posi-
tive measure and q,uq, a2, B1, P2 € LY(&,7), the mapping A} (q,m,.,.) has the following

properties:

1. Ifay < wapae. in (C,1), then AY(q,m, a1, B1) > A{(q,m, a2, B2), for all k > 1 and
v=+or—.
2. If B1 < Bpae. on (C, 1), then Aj(q,m, a1, B1) > AL(q,m, a1, B2), for all k > 1 and

v =+ or—.

o Let m,qq,q2,&, B € LY(&n) such that m > 0 a.e. on (&,n) and m > 0 in a subset
of positive measure. The mapping A} (m,.,«, B) has the following properties: If q1,q2 €
LY(&,n) such that g1 < qp a.e. on (&7) then AM(qi,m,a, B) < Al(q2,m,a,B), for

all k > 1 and v = +,—. Moreover, if g1 < g on a subset of positive measure, then

AL, B) < A (q2,m, ., ).

11
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 Let my,qn,m,q € LY(& 1) such that m,, m > 0 a.e. on (&,17) and m,, m > 0 on a subset
of positive measure and if g, — q and m, — m in L'. Then for all a, € L'(¢,7), k > 1

and v = +, —, we have limy, o A} (g, Mu, &, B) = A} (g, m, &, B).

e For a, B fixed in L' (¢, ) and my, my two functions such that m; > 0 a.e. on (&, 1) and
m; > 0 in a subset of positive measure for i = 1,2, then the mapping A/(q, ., «, B) has the
following properties: If m; < my a.e. in (¢, 1), my < my in a subset of positive measure If
either A} (g, my, o, B) > 0 or Aj(q,mp, &, ) > 0, then A} (q,my,a, B) > Al(q,ma, a, B),
and if either A(q,m1, &, B) < 0or Aj(q,ma, &, B) <O, then Aj(q,my,a, B) < Al(q,m2, &, B),
forallk >1and v =+ or —.

The linear eigenvalue problem

For the particular case of the problem where & = B = 0, namely for the
problem
—(p')'(t) +q(O)u(t) = pm(t)u(t), te(En),
au(g) — bp(5)u'(§) =0, (1.13)
cu(ip) +dp(n)u'(n) =0,
we obtain from Lemma the following theorem of Zettl, concerns the basic exis-

tence result of eigenvalue for the linear eigenvalue problem (1.13)

Theorem 1.34 ([64, Theorem 4.3.1]). Assume that p >0 %,q,m € LY(&n)and m > 0 a.e.

on (¢, 1).
Then the Sturm-Liouville Problem has an infinite but countable number of real eigen-

value and they can be ordred to satisfy
—0o <y < pp < .- and lim pp = oo

k——+o0

. If uy is an eigenvalue of uy, then uy is unique up to constant multiples. Let ny denote the

number of zeros of uy in the open interval (&, 1), then for k > 1,
Mgy = N+ 1.

Zettl proved the existence of eigenvalue on theorem 4.3.2. when they relaxed the

condition m > 0 a.e. in (¢, 7) to the condition m > 0 in (&,7) and fg m > 0.

12
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Theorem 1.35 ([64, Theorem 4.3.2]). Assume that p >0 , %,q,m € LY (& n)and m > 0 on

(&,n) and fg m > 0.
Then the Sturm-Liouville Problem has an infinite but countable number of real eigen-

value and they can be ordred to satisfy

—00 <y < Yg < ---and lim pp = o0
k—+o0

. If uy is an eigenvalue of uy, then uy is unique up to constant multiples. Let ny denote the

number of zeros of uy in the open interval (&, 1), then for k > 1
Mg = ng+ 1.
Moreover the sufficient but not necessary condition to have ny = 0 is that m > 0 a.e. in (&, 7).

The integral condition on m eliminate the case when m is identically zero on (¢, 77).

Zettl proved the monotonicity of eigenvalue in theorem 4.9.1.

Theorem 1.36 ([64, Theorem 4.9.1]). For % > 0, %,q,m € LY(¢&,n) and m > O ace. in (&, 7).

Then the problem admits an unbounded increasing sequence of eigenvalues (yur(p,q,m), k >

1) such that eigenfunctions associated with yy(p,q, m) belong to Sx. Moreover,

e Fix p,m. Suppose Q € L' (¢, 1) and assume that Q > q a.e. on (&,n). Then for all k > 1,
wk(p, Q,m) > (up(p,q,m). If Q > g on a subset of positive measure, then for all k > 1,

uk(p, Q,m) > (ur(p,q,m)

e Fix p,m. Suppose 5 € LY(&y) and 0 < P < p a.e. on (& n). Then for all k > 1,
ue(P,q,m) > (up(p,q,m). If 5 < % on a subset of positive measure, then for all k > 1,

ur(P,q,m) < ur(p,q,m).

e Fix p,q. Suppose M € LY(&,n) and M > m > 0 ae. on (&n). Let k > 1, then
m(p, g, M) = puep, q,m) if pi(p, g, M) < 0 and p(p,q,m) < 0; but p(p,g, M) <
ur(p,q,m) if up(p,q, M) > 0and ur(p,q,m) > 0. Furthermore, if strict inequality holds

in the hypothesis on a set of positive measure, then strict inequality holds in the conclusion.

Zettl proved the dependence of eigenvalue on the problem in theorem 4.4.1.
Let ] = (&', ') such that —oo < &' < & < 57 < 1/ < 400, they study the variation of

the eigenvalues with respect to the end point ¢, # as they vary within the interval J.

13
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Theorem 1.37 ([64, Theorem 4.4.1]). Assume that % >0 , %,q,m e L} (&,4"). withm >0

loc

a.e. on (¢',n"). For each n € IN. Let p, be the set of the eigenvalue of . Then For each

n € N, uy, is a continuous function of the equation. In particular:

Foreachn € N, ‘un(%) is a continuous function of% e LY(&, 7).

For each n € IN, uy(q) is a continuous function of g € LY(&,4").

For each n € N, py(m) is a continuous function of m € LY (&', 7).

For each n € N, uy, (&) is a continuous function of §, An(1) is a continuous function of .

14



Chapter 2

Nodal solutions for asymptotically linear

second-order BVPs on the half line

2.1 Introduction

Often motivated by a physical interest, study of existence of solutions to boundary
value problems (BVPs for short) associated with second-order ordinary differential equa-
tions posed on infinite intervals and their qualitative properties has been the thematic
of many articles, see for instance [1}, 3 5] [15} 19, 24, 25, 30, 29, 34} 35| 48] and references
therein. Such a study is developed in the papers [24), 25, 30, 29, 48] for the class of BVPs:

{ —u" +a(t)u=F(t,u), t > T, (2.1)

BC,
where F € C((T,+) x R,R),a € C([T,+o),R") does not vanish identically and BC
are boundary conditions at T and +-co.

In [24] and [25] is considered the case of BVP where the weight a is a positive
constant, BC takes the form u(T) = lim;_, 1 u(t) = 0 and the nonlinearity F is positive.
Notice that for such a weight 4, the Green’s function associated with BVP is given
explicitly. This particularity allowed authors to construct a favourable framework to
the use of Krasnoselskii’s fixed point theorem in a cone, and so to obtain existence and
multiplicity results for positive solutions to this particular case of BVP (2.1).

Inspired by the works in [24] and [25], Ma and Zhu investigate in [48], existence and
multiplicity of positive solutions for the case of BVP where the weight a is bounded

from below and above by positive constants, BC takes the form u(T) = lim¢_, yo u(t) =0

15
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and the nonlinearity F is semipositone. They proved that such a weighted BVP has a
Green’s function whose properties allowed them to construct an appropriate framework
to the use of Krasnoselskii’s fixed point theorem in a cone.

In [30] and [29], is considered BVP under the conditions that the weight a is
bounded from below by a positive constant (2 may be unbounded from above) and BC
takes the form u(T) = up and u is bounded. Combining the method of upper and lower
solutions and sequential arguments, authors obtained existence and multiplicity results.

Many old and recent works, see for instance [6, 7] and references therein, show that
under suitable conditions, existence of nodal solutions to BVPs associated with second
order ordinary differential equations usually occurs. For this reason, we investigate in
this chapter existence of such solutions to BVP when a(t) > 0 for all t > T and
inf;>,a(f) > 0 for some Ty > T (a may be unbounded from above) and BC takes
the form u(T) = lim; 4o u(t) = 0. The first main result of this work concerns the
spectrum of the linear eigenvalue problem associated with our case of BVP .I). It
claims that this spectrum consists in an unbounded increasing sequence of eigenvalues
and the coresponding eigenfunctions have nodal properties. The second main result of
this work is obtained by means of Rabinowitz global bifurcation theory. It claims that
if the nonlinearity F has linear approximations at 0 and oo satisfying eigenvalue criteria

then our version of BVP (2.1) admits nodal solutions.

2.2 Main results

This work deals with existence of nodal solutions to the BVP,

—u"(t) +q(t)u(t) = u(t)f(t,u(t)) t>0, (2.2)
0

u(0) = lim;— 400 u(t) =0,

where f : RT x R =R is a continuous function and g € C (RT,R™).

Statements of the main results of this paper need to introduce some notations. In

16
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what follows, we let
I'={meC(R"R):lim_0om(t) =0},
I*={meTl:m(t) >0ae. t R},
Q={g9€ C(R*,R"): 3T > 0 such that inf;>7q(t) >0},
W={uecC(R",R):u(0)=lim o u(t) =0},
Wi = WN CF (R, R) for all integers k > 1.
Hereafter, the linear space W is equipped with the norm ||-||, defined for u € W by
[u]| = sup;~q [u(t)]. Obviously, (W, [|-||) is a Banach space.
For an integer k > 1, S]j denotes the set of all the functions u € W; having exactly
(k —1) zeros in (0, +o0), all are simple and u is positive in a right neighbourhood of
0, S, = — S and Sy = S US, . For u € S, the unique sequence (z])ﬁzg such that
0=120<2z <..<z=+coand u(zj) =0forj=1,..,k—1,1is said to be the sequence

of zeros of u.

First, we focus our attention on the linear eigenvalue problem associated with BVP
(2.2); Namely, we consider for (q,m) € Q x I'" the problem of existence of eigenvalues
to the eigenvalue problem (EVP for short):

{ —u"(t) + q(D)u(t) = pm()u(t) >0, (2.3)
0,

u(0) = 0,limy— 400 u(t) =
where y is a real parameter.
Theorem 2.1. For all pairs (q,m) in Q x T'", the set of eigenvalues of the EVP consists in
an unbouded increasing sequence of simple eigenvalues (pix(q,m));~ such that eigenfunctions
associated with yy(q, m) belong to Sy. Moreover, for q fixed in Q, the mapping uy(q, -) has the

following properties:

1. If my,my € T are such that my < my, then up(my) > ur(my). In addition, uy(my) >
px(my) whenever my < my in a subset of positive measure.

2. Ifm e Tt and (my,) C I'" are such that lim m, = m uniformly on R, then
limy,—c0 pi (g, Mn) = pr(q, m).

Concerning BVP (2.2)), we obtain under the assumptions on the nonlinearity f

(2.4)

|f(t,0)| € T and for all r > 0, there exists ¢, € I'" such that
|f(t,u) — f(t,0)| < Pp(t) |u—ov| forallt > 0and u,v € [—r,71],

17
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there exists w € I'" such that
(2.5)

f(bu)+w(t) >0forallt >0and u € R,

limy, o f(t,u) = mo(t) and
My oo f(1 1) = Moo(t) (2.6)
uniformly in R™ with mg, me € T,

the following existence and multiplicity result for nodal solutions:

Theorem 2.2. Let q € Q and assume that in addition to Hypotheses (2.4)-(2.6), there exist two
integers 1, j with 1 < i < j such that one of the following situations holds:

1i(q,meo) <1 < p(q,mo)

or
ui(g,mo) <1< pi(q,mes).

Then BVP admits a solution in S}, for all integers k € {i,...,j} and v = + or —.

Now, consider the case of the BVP (2.2) where the nonlinearity f is a separable
variables function; Namely the case where the BVP (2.2) takes the form

—u" +g(tHhu = m(Hug(u), t >0,
a1y = m(t)ug(u) o
u(0) = limy— 40 u(t) =0,
where m € I'" and g : R — R™ is a continuously differentiable function such that
limg(u) =go>0and lim g(u) = geo > 0. (2.8)

u—0 U—r+00

We deduce, from Theorem the following corollary:

Corollary 2.3. Let q € Q and assume that in addition to Hypothesis (2.8), there exist two
integers 1, j with 1 < i < j such that one of the following situations holds:

Qo0 < pi(m) < yj(m) < oo, OF

8o < pi(m) < pj(m) < go-
Then BVP admits a solution in S} for all integers k € {i,...,j} and v = + or —.
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Proof .

Set f(t,u) = m(t)g(u) and notice that such a nonlinearity satisfies Hypotheses and

for
mo(t) = gom(t), Meo(t) = greom(t).

Since for all integers k > 1 and x = 0 or +oo, py(my) = pr(m)/gx, we have
pi(mo) <1 < pj(me) if geo < pi(m) < pj(m) < go
and
y](mo) <1< ;ti(moo) if 8o < “lli(Ton) < y](moo) < Qoo-

Therefore, Corollary [2.3|is obtained by a simple application of Theorem n

2.3 Preliminaries

2.3.1 The Green’s function and fixed point formulation

In all what follows, we let for g € Q, ¥, be the unique solution of the initial value

problem

—u"(t) +q(t)u(t) =0,
u(0) =0, u/'(0) = 1.

Lemma 2.4. Forall g € Q, the function ¥4 has the following properties:

i) ¥y(t) >0, Yy(t) > 0and Y7 (t) > 0 forall t € RT.

o d
ii) limy o ‘{’;(t) = 400, lim; 1o ‘ﬁq—ﬁ) = +oo, fi ¢—z < oo forall t > 0.
q

iii) The function ¥q/Y is bounded at +oo.

iv) lim;_ ¥, (t) f;roo % =1

V) limygoo ¥ () f,7 Tgfs) =0

Proof .

Letg € Qand T > 0 be such that « = inf;>7¢q(t) > 0.
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i)Suppose on the contrary that Y (o) = 0 for some # on (0, +-c0). By the boundary
condition ¥;(0) = 1, tp > 0 we may assume that ¥;(t) > 0 on [0,tp). Thus ¥, is
strictly increasing on [0, ). On the other hand we have from the equation that ¢ (to) =
q(t)y(to) > 0, and accordingly ¢y is a minimum value point. This is a contradiction.
Then we have for all t € R™, ¥ (t) > 0, by the boundary condition ¥;(0) = 0 we obtain
that p,(t) > 0 for all t € R™, and from the equation we have for all t € R™, 7 (t) > 0

ii) Now, we have forall t > T
t t
Yo (t) =¥ (T) + /T Yods =¥, (T) +/T q¥qds > ¥ (T) +ae(t—T),

where ¢ = infs>9 ¥4(s) > 0. The above inequality shows that lim;—, 1 ¥ (t) = +c0. By

L'Hopital’s rule, we have

et
tEr—Foo 1++ tgrfoo Py(t) = Foo.

This shows that lpg > (1+t)? for all + > 0. By comparaison principle, we have

ft+w$<ooforallt>0.

q
iii)
(¥,0) - (¥,m)" = z/Ttxyg(s)wg](s)ds:z/th(s)\Fq(s)w,;(s)ds
> ((2(0)" - (£(D)?),

which leads to

(¥, /1) < §+ (¥,(r)/¥y(0)"

From this and Property (ii), we deduce existence of T, > 0 such that

Fo(t) /¥, (1) < \/gfor all t > T,.

iv) We have by L'Hopital’s rule

+oo  _ 9
+oo ds
lim ¢, (1) ds _ lim w = lim !

F50 ¢ 1p_% 150 (%(t))*l t—0 Lp[](t)

v) Again by L'Hopital’s rule we get

, oo ds : 1
lim ®,(t) — = lim ——= =0.
t—+o0 ¢ lpq t—+o0 lpq(t)
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Proving v) and completing the proof of the lemma. =

Because of Assertions ii), iii), iv) and v) in Lemma the function

F(t) [ Yg;s), if >0,

D, (t) = (2.9)

1, if t=0
is well defined and it is the unique solution to the BVP
—u(£) +q(t)u(t) =0,
u(O) = 1, hl’l’lt_H_oo Ll(t) =0.

Lemma 2.5. For all g € Q, the function ¢, has the following properties:
a) ¢g(t) >0, ¢o(t) < O0and ¢ (t) >0 forall t >0,

b) lim¢— 0 ¢p(t) =0

o) Forallt >0, [,"™ ¢pyds < co.

d) Forall t >0, @4(t)¥;(t) — ¥q(t)Dy(t) = 1.

e) The function ¢/ ¢ is bounded at +oco.

Proof .
Letg € Qand T > 0 be such that « = inf;>7¢q(t) > 0.

a) Respectively from and ¢ = q¢;, we have ¢;(t) > 0 and ¢7(t) > 0 for all
t > 0. Since the function ¢y is increasing, we obtain from that

s ! < +oo¢—‘;ds—#:_—2<0
t l/%% ¢q(t) t 1/%% lpq(t) Pq .

b) It follows from Assertion (a) that the function CIDZ] is nondecreasing and the limit

Pg(t) = (1)

lim¢, 100 P (t) exist. Set I = limy—, 10 @y (t) and suppose that I < 0. We obtain then by

q
the L'Hopital’s rule
D, (t
lim @) _ lim ®/(t)=1<0,
t—4oo t—o0 1
leading to lim; ;1o ®4(t) = —co. This contradicts lim; 1 ®,4(t) = 0 and proves that

¢) We have for all s € (T, +o0)

S SCI)// 1 s 1 (I)/<T)
Odr= [ 14 <—/<I>”d:—<I>’ @ (T)) < -1
J@gr= [ Sar< o [Cejar= (@) @) <
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This proves that ft+°° @, (r)dr < oo for all t > 0.
d) We have from that for all £ > 0,

@y (¥5(1) — ¥, (1) = %()(%(t) e %1@) pOo) [ o =1
e) We have fort > T :

(~eyn) = 2/t+°°<1>{;(s) (—@;(s))ds:/t+ooq(s)®q(s) (~@)(s)) ds

q

leading to

2 2 1
‘cpq(t)/qu(t)] - (cp,,(t)/ - q>'q(t)) < forallt>T,
then to,
sup | D, ( /<I> (1) < —
sl <%
This completes the proof of (e) and ends the proof of the lemma. m
Setforge Qand 0 >0,

By (1) = 5 o Faa (1) = @4 (0) %4 (1)~ ¥, 0) @, 1) and

0 if min(¢,s) <0,
Gq(0,t,5) = § @y (s) ¥ge(t) if 6
if 6

<t<s, (2.10)
Dy (1) Fgp (s) s<t
We have then forg € Qand 6 > 0,
D@yo(t)¥p(t) — ¥g0(t)Ppp(t) =1 forall t >0, (2.11)
¥, (0)
G,(0,t,8) = Gy(t,s) — =1L, (s)D,(t), fort,s >0,
1(0,8:5) = Gylt3) — g Gr@(5) Py (1)

where

is the Green’s function associated with BVP (2.2).
Lemma 2.6. We have for all functions q in Q :
i) Cq,oo = sup; s+ Gy (t,5) < SUP )<< 100 Py (£) ¥y(t) < o0

ii) Goo = sUpy ; scr+ Gq (0,1,8) < o0,

iii) Gy = sup,~ fo Gy(t,s)ds < 0.

7
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Proof .
Letg € Qand T > 0 be such that « = inf;>7¢q(t) > 0.

i) Taking in consideration that ®, is nonincreasing, we obtain from li that for all
t,s e R,

Gylt,s) < Dp(H)¥,(t) = (izgg) (‘I’q(t)‘ff;(t) o0 ‘% )

¥, (t) teo Wi(s)ds\  [(F,(t)
: (Wﬂ) (W/t 0 ) - (‘PZ@)'

This together with assertion iii) in the lemma [2.4] leads to

Gyoo = sup Gylt,s) < sup@y(t)¥,(t) < 0.
t,s€eRT teR

ii) Because of ®; is decreasing and Y is increasing, we have for all s, > 6

¥4(6)

q
Gy(6,t,5) < Dy (1)¥,(t) + o6
By (£)Fy(t) + ¥, (0)D,(6)

< 2sup Py (t)Fy(t) < oo,
t>0

o
IN

D, (1) Dy (ts)

IN

proving (ii).

iii) We have forall t > T :

/OJroqu(t,s)ds — @,(1) /Ot‘I’q(s)der‘I’q(t) /tJrooCIDq(s)ds

= (1) /Ot‘I’q(s)der‘I’q(t) /thDq(s)ds+‘I’q(t)/T @, (s)ds

— o,(1) /Ot ‘%gdsnt‘i’q(t) /tT%Z’/deq(t) /T+°° %gds
< (1) (¥ (1) — ¥ (0)) — ¥y (1)
< L(@g0)F)(1) — D ()4 (t) — @1 F)(0)).

This together with (d) in lemma leads to

—+o00
/ Gy(t,s)ds <
0

<
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Sup;>g f0+oo Gq(t,s)ds < ;.

The proof is complete. m

The main result of this subsection consists in the following lemma providing a fixed

point formulation for BVP and EVP (2.3).

Lemma 2.7. For all functions q in Q, h in T and all nonnegative real numbers 0, u(t) =

f0+°° G4(0,t,5)h(s)ds is the unique solution in (6, +oo) to the BVP:
—u”(t) +q(t)u(t) = h(t), t > 6,
u(0) = limy_ 4o u(t) = 0.
Moreover, for all functions F € C (R x R,R) satisfying Hypothesis (2.4), the operator
Ty : W — W defined for u € W by

(2.13)

+o00
Tou (t) :/ Gq(0,t,5)u(s)F(s,u(s))ds
0
is completely continuous.

Proof .

Differentiating twice in the relation

+o0 t +o0
u(t) = /0 Gy(6,1,5)h(s)ds = Dy (£) /9 o (5) h(s)ds + o (1) [ Dy () h(s)ds,

we get
W' (8) = q(Du(t) + (cp'q,e (£) ¥ao (1) — Dy (1) ¥h g (t)) h(t) for all t > 6,
then by (d) in lemma 2.5/ we obtain
—u""(t) +q(t)u(t) = h(t) for all t > 6.

Because of G4(6,0,s) = 0 for s > 0, we have u(0) = 0+°° G4(6,0,s)h(s)ds = 0.
It remains to show that lim;_, ;o 1(t) = 0, we have for all t > 6 :

u(t) =@y (1) | ", (s)h(s)ds + ¥, (1 / ™ 0, (s)h(s)ds — izgggopq(t) / ™ o, (s)h(s)ds.

Because of (iv) in lemma we have lim; oo (1) 9+°° @, (s)h(s)ds = 0 and taking
in account (iii) in lemma and (i) in Lemma 2.6/ and lim;—, 4 /() = 0, we obtain by

means of the L'Hopital’s rule:

o0 )

tErBoqu(t)/t q)q(s)h(s)ds - tginoo (‘I’q(t))il
_ N A 10] —
= [Hm (% t))q)q(t)wq(t)h(t) 0
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For the limit of ®,(t) fgt Yy(s)h(s)ds, if f9+°° ¥,(s)h(s)ds < oo then (iv) in lemma [2.4
gives

limy s 400 Py (t) fgt Y,(s)h(s)ds = 0 and if f9+oo ¥, (s)h(s)ds = oo, then taking in consider-
ation (d) in lemma and (i) in Lemma and lim¢_, { h(t) = 0, we obtain again by

means of the L'Hopital’s rule:

. t
tgrfoo CI)q(t) /9 ‘Pq(s)h(s)ds - tEI}_loo (<I>q(t))_1

— lim (‘I’q—“)) (@, (£)¥F, (1)) h(t) = 0.

t—+o00 —d)%(t)

Uniqueness of u is due to the fact that 0 is the unique solution of BVP (2.13) within
h = 0. Thus, we have proved that u(t) = O+°° G4(0,t,5)h(s)ds is the unique solution of

BVP 2.13).

Now, we prove that Ty is a completely continuous operator, let () be a subset of W

bounded by a constant r.

o Let ¢, € T" such that |F(t,x)| < r,(t) + |F(t,0)] = ¢,(t) for all t+ > 0 and

x € [—r,r]. The following estimates hold for all u € Q)

+oo -
| Tou(t)| < r/o Gq(0,t,5)Pr(s)ds < r||Uyl| forall u € Q.

e Forany T > 0, and t3, f; € [0, T|, we have

+oo ~
| Tou(tp) — Tou(ty)]| < r/o 1G4 (6, t2,5) — Gg(6,t1,5)| Pr(s)ds, forallu € Q and t1,t, >0

* Since limy_, o Tyu(t) = 0, there exist T > 0, for all t > T, we have
| Tou(t)| < rUs(t)

hold for all u € ), where Uy(t) = 0+°° Gq(0,t,5)¢,(s)ds satisfies lim;_, 1o Ug(t) =
0.

Together with the Corduneanu criterion of compactness (Lemma 4.1 in [48]) they lead to

the compactness of the operator Ty. The proof is complete. m

2.3.2 Comparison results

The following lemma will play an important role in the proof of Theorem
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Lemma 2.8. Let (q,m) € Q x T'™ be such that yy(q,m) = 1 for some integer k > 1. Then there
exists g > 0 such that for all p € Tt with ||p — m|| < eo, ui(q,p) = 1 implies | = k.

Proof .
Let €9 > 0 be such that ey < min(puy1(g, m) — ur(q, m), ux(q, m) — px_1(q, m)), because
of Assertion 2 in Theorem there exists ey > 0 such that forall p € T'", ||p —m] < g9
implies

e-1(g9,m) — €0 < p-1(4, p) < p-1(q,m) + €9 (2.14)
and

M1 (,m) — €0 < i (q, p) < prsa(g,m) + €o. (2.15)

Let p € T'" with ||p — m|| < e and suppose that y;(q,p) = 1 for some integer [ > 1.

If I < k, we have then from the contradiction

L=p(q,p) < m-1(q,p) < p-1(g,m) + e < px(q,m)
and if [ > k, we have then from (2.15) the contradiction
1=w(q,p) = (g, p) = piy1(g,m) — €0 > px(q,m) = 1.
This shows that | = k and the lemma is proved. m

We will use extensively the following lemma:
Lemma 2.9 ([11]). Let j and k be two integers such that j > k > 2 and let (61)5216 , (171);2) be
two families of real numbers such that
Go=0<81<G<- <G-1<G&=1,
;70:§<171<1’]2<--'<17]‘_1<77]‘:11.

If ¢1 < 11, then there exist two integers m and n having the same parity, 1 < m < k —1 and
1 <n <j—1such that

Cm < M < g1 < Crmt1-

We end this section with the following lemma which is an adapted version of the

Sturm’s comparison result.
Lemma 2.10. Let fori = 1,2, m; € T and w; € C* (R™") satisfying
—wi (1) + q(Hw;(t) = mi(t)w;(t), t € (x1,x2)
and suppose that wy does not vanish identically and mq(t) > my(t) a.e. t > 0. If either
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1. xp < 400 and wy(x1) = wy(xz) =0, or
2. xp = 400 and wy(x1) = limy— 4o w;(t) =0fori=1,2
then there exists T € (x1,x7) such that w1(t) = 0.

Proof .

1) By the contrary suppose that w; > 0 in (x1,x2) and without loss of generality

assume that wy; > 0in (x1,x7), then we have the contradiction:

02wy (x2) wh (x2) —wy (x1) W) (x1) =
Joi wa(—wi + qui) — wi(—wy + quz) =
fxxlz(ml — mp)wywy > 0.
2) By the contrary suppose that w; > 0 in (x1, +o0) and without loss of generality
assume that w, > 0 in (x1,+00), because that w! (t) = (q(t) —m;(t)) w;(t) and q(t) —
m;(t) > 0 for t large, we have that w () > 0 for t large and lim;_, {  w}(t) = 0. Therefore,

we have for t large

(w1 (£) wy (£) — wy (£ wy (1)) — w1 (1) wy (1) =
Juy (=] + qun) — wi(—wf + gua) =
fxtl(ml — my)wiwy > 0.
Letting t — 400, we obtain the contradiction

—+o0
0> —wy (x1)wy (x1) = / (my — mp)wiwy, > 0.
X1

The proof is complete. m

2.3.3 On the linear eigenvalue problem

We will present in this subsection two lemmas related to linear eigenvalue problems
and needed for the proof of Theorem The first one is obtained from Theorem 4.3.2
and Theorem 4.4.1 in [64].

Lemma 2.11. For all pairs (q,m) € Q x I'" and all positive real number 6, the EVP

{ —u(t) + q(t)u(t) = pm(t)u(t), t € (0,0),
u(0) =u(f) =0,

(2.16)

admits an unbounded increasing sequence of simple eigenvalues (y;_ (6,4, m)) (> Such that:
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1. if ¢ is an eigenfunction associated with . (0,q,m) then ¢ admits (k — 1) zeros in (0, 6)

and all are simple.

2. Moreover, for (q,m) fixed in Q x T'*, the function 6 — u, () := u, (6,9, m) is contin-

uous and decreasing. We have also limg_,o pt, (6) = 0.

The next lemma concerns the existence of the positive eigenvalue on the unbounded

interval (6, +o0).

Lemma 2.12. For all pairs (q,m) € Q x I'" and all positive real numbers 6, the EVP

{u”<t>+q<t>u<> um(byu(t) >0,

u(0) =0,lim;_, 4o u(t) =0,

(2.17)

admits a unique positive eigenvalue ui (6,q,,m). Moreover, for (q,m) fixed in Q x I'", the
function 0 — ui (0) := ui (6,q,m) is continuous and increasing having limg_, , o pi (0) =

—+o0.

Proof .

Let for (g,m) fixed in Q X ', Ly : E — E be the linear compact operator defined by

+o00
Lou(t) = /0 Gy(0,t,5)m(s)u(s)ds

where the function Gy is that introduced by (2.10), and let 1y € K be the function defined

by

0 if t ¢ [20,30],
ug(t) =
(t—20)(30 — 1) ifte [20,360].

We have then Luy(t) > 0 = ug(t) for t € [0,20] U [30,+c0) and Lug(t), ug(t) > 0 for

€ (26,30) . This shows that Lyu > coug where cy = inf {Lug(t)/ug(t) : t € (26,30)} >0
and r(Ly) > 0. Since Lemma guarantees that Ly is compact, we have from the
Krein-Rutman theorem, that r(Ly) is a positive eigenvalue of Ly having a eigenvector
$p € K. By means of Lemma , we conclude that (6,9, m) = 1/r(Ly) is a positive
eigenvalue of EVP (2.17).

Now, for A a positive eigenvalue of EVP (2.17) having an eigenfunction ¢, we have

—+00
0= [T gl 4Ry — (4 R0 = (it 0,0 1) [ mbot,
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leading to A = p; (6,4, m). Thus, we have proved uniqueness of the positive eigenvalue
and that the function 6 — u; (6,4, m) is well defined.
Let 01,0, be positive real numbers such that 6; < 6, and set for i = 1,2, u; =

ui (6;,m) with the corresponding eigenfunction ;. We have by simple calculations

0> —1 (62) ¢ (62) f W+ qy1) 2 — (=93 +q¢2) 1)
1 — o) f92 mp1tpa,

leading to y1 < pp and proving that 6 — uq(6,9,m) is an increasing function. The
continuity of the function pi(-,gq,m) follows from that of the Green’s function G and
Lemma 2.13 in [10].
Let [, 6] be a compact interval and let 61,6, € [, ] be such that 6; < 6,: We have
forall u € W with || u ||=1
+o0 too
/9 Gy (02, t,5) muds —/ Gg (01,t,5) muds

2 1

|Lo,u (t) — Lo,u (t)| =

if t <61 <6y,
‘f(;lroo Gy (61, t,5) muds‘ if 0 <t <0,
f g (02,1, 5) muds — fg g (01,1,5) muds‘ if0; <6, <t

Set
(7)
—||m||[(/ " guds ) Q)+ G+ @ (1) Y30
then we have for 6, >t > 64

Uej""c (61,1, 5) muds‘ < llmll fy Gq (81, 1,5) ds
= [lmll (for™ Gy (t,5) ds = BiG5y(1) [y pyds)
= |[mll (fy, Gy (£, ds+ft+°° (t,5)ds
;{Z zi fel pqds ¢q 91 ‘Pq (t) J; yds)
= llm| (Jy, Gy (t,5) ds 4,(93 () Jo, ads) + g (1) f;" gyds — $455 04 (1) [, ¥yds)
= Jlm|| (J, Gq (t s)ds—iﬁZii (1) Jo 9ods) + [, gods (52655 — 5155 ) a(1))
< ]| (7 0uds) 248+ G+, (1) ¥3(6)| 102~ 01] < x 2 01
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and for 6; < 6, < t,

’ Gq (0o, t,5) muds — fe Gy (61, t, S)muds’ <
)f92 (Gq (62,t,5) — Gy (61,1,5)) muds g (01,1,5) muds‘

— ’(fez qmuds> <I£Zggi) - IZ gi > ‘ ‘ >Gq (01,15 muds‘

)
< ol | (7 guts) 423+ G| I02 - 1] < 62— 01

The above estimates show that the mapping 6 — Lg is locally Lipschitzian and so, it
is continuous. Let (6,) be a sequence converging to 6, and let 6_,0, be such that

(6n) C [0—,0+]. Therefore we have for all n > 1,

0 < p1(0+,q,m) < p1(0y,9,m) < p1(0-,4q,m)

and the sequence (y1(6,,9,m)) converges (up to a subsequence) to some py, > 0. We
conclude by Lemma 2.13 in [10] and by uniqueness of that p. = (6., 4, m). Thus, the
continuity of the mapping u1(-,q,m) is proved.

It remains to prove that limg_, o p; (6, m) = limg_, y(1/7(Lg)) = +oc0. We have for

all u € W with |Juf| =1

+o0
ILou(t)| g/g Gy (6,1,5) m(s)ds
< /{;OOGq(t,S) (s)ds +Zq((g)) /+ooq)q(t)(1>q(s)m(s)ds

< /9+°°Gq(t,s)m(s)ds+tfq(9)/g+ @, (s)m(s)ds.

As in the proof of Lemma we have limg_, 1 ¥, (0) 9+°° ®;(s)m(s)ds = 0 and since

lim;_, oo m(t) = 0, for € > 0, there exists 6 > 0 such that m(s) < e for all s > 6. Hence,

we have for all 0 > 6,
+o0 .
/ Gq (t,s)m(s)ds < Ge forall t > 0
0

proving that limy . « f9+°° Gy (t,5) m(s)ds = 0 uniformly on R*. Therefore, we have

proved that limy_, | o 7(Lg) = limy_, 1« || Ly|| = 0, ending the proof. m

2.4 Proof of Theorem 2.1

Step 1. Fix (g,m) in Q x I'" and let k > 1 be an integer. Obv1ously, ifk =1
then (g, m) = u; (0,q,m) is a positive eigenvalue of the EVP (2.3) where y; (0,4, m)
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is that of Lemma If k > 2, then we deduce from Lemmas [2.11] and [2.12] existence

of a unique positive real number 6; such that uf (6},q,m) = p,_,(6;,q,m). Therefore,
if ¢1,: and i1 ¢: are respectively the eigenfunctions associated with ui (6f,q,m) and

i _1(6f,q,m), then the function
Pr—1,0: (1), in [0,6;],
(’701’(—1,9;; (6%) /471,9;; (%)) Pro:(t), in 65, +00),

belongs to S and is the eigenfunction associated with the eigenvalue j (g, m) = ui (65, q,m) =

1, 1(0¢,q,m) of the EVP (2.3).

Pr(t) =

Now, let us prove that (g, m) is the unique eigenvalue of the EVP (2.3), having an
eigenfunction in Sy. To this aim, let for i = 1,2, ¢; € S; be an eigenfunction associated
. . N\ /=K .
with the eigenvalue p; and let (zé) . be the sequence of zeros of ¢;. Without loss
]:
of generality, suppose that z} < z%, we deduce then from Lemma existence of two
integers 0 < ny,m; < k — 1 having the same parity such that 2,111 < 2%11 < 2%11+1 < z}qu.

Notice that the fact 11, m; have the same parity means that the functions ¢; and ¢, have

2

Zo, +1> and after simple calculations, yields

the same sign on the interval <z%1 iy

21

o< | T o (=g + ag1) — 1 (— ¢ +a) = (1 — 1) [ g an

2
Ziny+1

0> [ 9a(=94 + a1) — ¢1(~ % +092) = (1 — 2) [, meng

m Zim
proving that 1: o and py(gq,m) is the unique eigenvalue of the ElVP (.3), having an
eigenfunction in Sk.
At this stage, we need to prove that for all integers k > 1, (g, m) has the geomet-
ric multiplicity equal to 1. Indeed, if ¢, ¢ are two eigenfunctions associated with the
eigenvalue y and W = W(¢, ) = ¢y’ — ¢'¢p is their corresponding Wronksian, then we

have

W= oy —¢'p) = oy’ — 9"y
= 9(q —pm)yp —(q — pm)¢yp = 0.
This together with W(0) = 0, leads to W = 0 and ¢ = c¢ for some ¢ € R and the
geometric simplicity is proved.
Notice that geometric simplicity leads to u;(q,m) # p;(q,m) for i # j and the

sequence (px(q,m)) is infinite. Furtheremore, since for all integers k > 1, p(q,m)
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is a characteristic value of the compact operator L, : W — W given by L,u(t) =

f0+°° Gy(t,s)m(s)u(s)ds where G, is defined in (2.12), we have limy_,, p(q, m) = +o0.

In order to prove monotonicity of the sequence (yi(g,m)),letfori =1,2, ¢; € S,j; be
an eigenfunction associated with the eigenvalue ; of the EVP (2.3), having a sequence
of zeros <Z;)jj;l . Suppose that ko > ki, we distinguish then the following cases:

Case 1. z7 < zi, in this case we have

2

0> /021 4’2(_4)3/ +4q¢1) — (Pl(_cpé/ +q¢) = (p1 — ;1,[2)/0 ! mey¢a,

leading to y1 < yo.

Case 2. z% < z%, in this case, we deduce from Lemma existence of two integers

ny,my, with ny < k; —1, my < ky — 1 and such that z;, < z2, < zme < Z}zl—l—l' After
simple computations, yields
Z%11+1 17 1/ 25’114’1
0= [ ga(—g} + 1) = 1(~05 +a¢2) = (1 —pa) [, mrg,
inq my

leading to 1 < po. This together with u;(q,m) # u;(q,m) for i # j show that yy < po.
We end this step by proving that aside the sequence (px(gq,m)), the EVP has
no other eigenvalues. Let u be an eigenvalue of the EVP having an eigenfunction
¢ and by the contrary, suppose that y # (g, m) for all integers k > 1. Notice that if
for some zg > 0, ¢(z9) = ¢'(z9) = 0, the classical existence and uniqueness result for
ODEs leads to the contradiction ¢ = 0. This shows that all zeros of ¢ are simple and
isolated and necessarily, ¢ admits an infinite and increasing sequence of zeros, say (z,) .

Therefore, we have lim z,, = +o00; Indeed, if limz,, = Z < +oco0 then we obtain

u(zp) —u(Z

u(2) =limu(z,) =0and ' (2) = lim ) _ 0,
Zn— 2

leading to the contradiction ¢ = 0.
Let for the integer k > 1, ¢ € Sy be the eigenfunction associated with the eigenvalue
(g, m) and let (x]);j be the sequence of zeros of ¢. We deduce from Lemma [2.9

existence of two integers I, m having the same parity such that0 </ <k —1 and
Zm <X < X141 S Zp

Hence, we have

0< /:IH —¢1(¢5 +q¢2) — p2(—¢1 + 1) = (4 — p(q,m)) /x:”“ o

1
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leading to u > py(g,,m) for all integers k > 1 then to the contradiction p = limy_, pr(q, m) =

~+o0.

Step 2. Monotonicity: Fix g in Q and let my, m; be two functions in I't and suppose
that my < myp and my < mjy in a subset of positive measure. Set fori = 1,2, p; = ui(q, m;)
and let ¢; € S; be the eigenfunction associated with y; having a sequence of zeros
<z;)j:z By the contrary suppose that y; < pp, we claim that there exists jp such that
2]10 = 2]2.0. Indeed, if ¢; <z]2> =0forallj € {1,..,k— 1} then for j; € {1,..,k — 1} being
such that meas ({mz > my} N (z]zl,z]zﬁl)) > 0 we have since ¢1¢ > 0 in <z]2-1,z]21+1> ,

the contradiction

_ 11+ 1 " 2121+1
0 = —P2p1 T P12 = (mamy — pomz) 12

11 1

1 2
= /2]1+ (11 — p2)mip1¢2 + /2]1+ to (my — my) P12 < 0.
i i

]kkl

Now, let k{ = max I <k: z = 22 forall j <[} and (¢; and (7; ]::k_kl be the
Jj i) i)

families defined by ¢; = zk1 i and nj = We dlstmgulsh then two cases.

Zk 1+5°

i) &= 2111 g <m= z%l 4t In this case we have the contradiction

¢1
0 < —¢o (&)} (&) = /g — o} + P19
¢1
= / (u1my — pomy) P14

%o

1
= /gj (11— Vz)m14714>2+/ po (my — mz) p1¢po < 0.

ii) ¢ = Z}(l g >m= z%l .1 In this case Lemma [2.9 guarantees existence of two integers

m, n having the same parity such that

_ 2 _ 1 | 2
Mm = Zig,ym < Gn = Zkyan < Cnv1 = Ziytnt1 = Mmt1 = 2k o1

As above, we have the contradiction

gn-&-l

gn-&-l
0 < /{: —pop] + P10y = /{: (pimy — pomy) P12

n n

§n+1

§n+1
= /g (11 — p2)mip1¢2 +/ my —my) p1¢pp < 0.

The monotonicity is proved.
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Step 3. Continuity: Fix g in Q, m in T and let (m,) C T" such that limm, = m

uniformly on R*. Let L,, L € L(W) be defined by
Lou(t) = /O " Gt s)ma(s)u(s)ds and Lu(t) = /O ™ Gt s)ym(s)u(s)ds.

Notice that for all integers I,n > 1, u} = p;(q,my,) is a characteristic value of L,, y; =
(g, m) is a characteristic value of L and because of Assertion iii) in Lemma L, — L
in operator norm.

First, fix k > 1 and let us prove that if () admits a subsequence (J,) converging to
6 > 0, then 6 = iy Indeed, let ¢, € S;” be the normalized eigenfunction associated with
0y and let ¥, = L¢y,. Since L is compact and the sequence (¢,,) is bounded, we have up

to a subsequence ¢, — . Thus, we obtain the following estimates,

!I(¢n/5n)—¢|| = HLn‘Pn_EUH
< ||Ln¢n — Lon| + || Lpn — ||
< Lwe = Li + [0 — 9|

leading to
lim(¢,/0n) = ¢ and ||¢|| = lim ||¢pn]| /6n =1/6 > 0.

Also, we have

|Lngpn — OL|| = [[6nLn, ((¢n/6n)) — SLY||
< ||6nLn ((pn/0n)) — 6L ((Pn/6n)) |l + [|6Ln ((P1n/0n)) — OL ((pn/0n)) || + [|6L ((Pn/Sn)) — SLY||
< |60 = 8] 6 | Lull + % 1w = LI + 5 I|1LIl | (¢n/8n) — |

leading to
lim L, ¢, = 6L.

Thus, letting n — oo in equation L,¢, = (¢, /5,) we obtain Ly = /6 that is 1/4 is an
eigenvalue of L or 6 = y;(gq, m) for some integer I > 1. Then, because of lim d,m, = dm
uniformly on R, it follows from Lemma 2.8 that § = uy (g, m).

Then, fix T > 0 and set for all integers [,n > 1, y?’T = u; (T,q,my) and pl =
" (T,q,m). We have from Proposition 4.40 in [64] that lim,_ y?’T = ],LZT for all integers
[ > 1 and then there is ¢; > 0 such that u?’T < le +¢; for all n > 1. Fix k > 1 and denote
by ¢, € S;f the eigenfunction associated with y and suppose that ¢, admits (j — 1) zeros

in (0,T). Let ¢, 7 be the eigenfunction associated with y;l’T satisfying ¢/, +(0) > 0 and
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denote by (xs)zzé the sequence of zeros of ¢, 7 and by (Zs)zj) the sequence constituted
in zeros of ¢, contained in (0, T) and z; = T. We distinguish two cases:

Case 1. x; < z1, we have in this case

0> ¢n (xl)‘PnT( x1) :f ¢nT( /+Q4’n)—¢n(—4’ZT+q(Pn,T)
( ) 0 mn‘Pn,T‘Pn

leading to

n < T <« max < max +¢) < + max (¢
pi < g < max (") < max (uf +¢) < p + max (cy).

Case 2. z; < xq, in this case we deduce from Lemma [4.6| existence of two integers
rr,r having the same parity and such that z, < x,, < x,,41 < 2,41 and ¢, 7¢, > 0 in

(Xrp, Xy,4+1) . After simple computations yields

0> ¢n (xr41) ¢£1,T (Xr+1) — ¢n (xr) 4’n T (%) fxrﬂ ¢y +qPn) — u(—Pp7 + qPu,T)
= (‘uk - ‘u]' ) fxxrrﬂ n4)n,T47n

and we have again

,T
Me <y < max () h< max (i +c1) <y + max (c).

At this stage we have proved that the sequence (p}) is bounded, set then p;” =
limsup pf and y; = liminfyy. Since lim ||L,| = [|L||, we have |L,| > ||L| /2 for n
large enough and y} > 1/ ||L,|| > ||L|| /2 for n large enough. Therefore, passing to the
limit, we obtain p;” > p;- > ||L|| /2 > 0 and taking in account what is showed at the
beginning of this proof, we conclude that lim uf = y” = p = py. The continuity is

proved.

2.5 Proof of Theorem 2.2

Consider the BVP

—u" +q(t)u = pu(f(t,u) +2w(t)), t >0,
u(0) = limy 400 u(t) =0,

(2.18)

where y is a real parameter and § = g + 2w.
By a solution to BVP (2.18), we mean a pair (y, u) € R x W; satisfying the differential
equation in BVP (2.18). Notice that u € W, is a solution to BVP (2.2) if and only if (1,u)
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is a solution to BVP (2.18). For this reason, we will study the bifurcation diagram of
the BVP and by means of Rabinowitz global bifurcation theory, we will prove that
the set of solutions to BVP consists in an infinity of unbounded components, each
branching from a point on the line R x {0} (see Lemma[2.13), joining a point on R x {co}
(see Lemma [2.14). Obviously, each component having the starting point and the arrival
point oppositely located relatively to 1, carries a solution of BVP and Theorem
will be proved once we compute the number of such components. Thus, Theorem [2.2|is

the consequence of the following Lemma Lemma and Lemma

Lemma 2.13. Assume that Hypotheses (2.4)-(2.6) hold, then from each (g, mo) bifurcate two

unbounded components of nontrivial solutions §l+ and ;" , such that ] C R x §].

Proof .
It follows from Lemma that solutions of BVP (2.18) are those satisfying the fixed
point equation

u = uLou+ uTo(u) (2.19)
where Lo, Ty : W — W are defined as follows

Lou(t) = [y Gy(t,s)iitg(s)u(s)ds,
Tou(t) = [," Gg(t,5)u(s)go(s, u(s))ds,

and g = mgy + 2w, go(s,u) = f(s,u) —mp(s).

Let us prove now, that all characteristic values of L are of algebraic multiplicity
one. To this aim, let u € N ((px(q,79)Lo — I)?) and set v = (uk(q, o)Lou — u. Then
v € N(ur(q,mo)Lo — I) = Repy and p; (g, mo)Lou — u = n¢y for some 7 € R. In another
way, v satisfies the BVP

—u" +q(t)u = (g, mo)mo (t) u — nux(q, mo)mo(t)Pr, t >0,
u(0) = limy— 400 u(t) = 0.

Multiplying the differential equation in the above BVP by ¢ and integrating on (0, +o0)

we obtain
—+o0
Nk (q, 7710)/0 figpdt = 0,

leading to # = 0 and u = p (g, mp)Lu € Repy.
Now, we need to prove that To(u) = o(|ju||) near 0. Indeed, let (u,) C W with
lim ||u, || = 0. It follows from Hypothesis (2.6), that for e > 0 there exists § > 0 such that
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forall u € [—6,0] and s > 0, |go (s, u)| < €. Therefore, for n large enough
[Toun®)] /+°° Gt 5) |g(s, un(s)) | ds < €G
[1a o
proving that Ty(u) = o(||u||) near 0.
Let I; be the projection of W on R¢y, W = {u € W : [u = 0} and let for & > 0, 5 €
0,1), v==£

KY, = {(1u) € R X W s [t — (@, mo)| < & and vl >y |Ju]}.

Since Lemma 2.7| guarantees that the operators Ly and Tj are respectively compact and
completely continuous, we have from Theorem 1.40 and Theorem 1.25 in [52], that from
(ptk(q~, my),0) bifurcate two components ;" and {; of nontrivial solutions to Equation
9) such that there is {o > 0, {y N B(0,) C K, forall { < {o and if u = agy +w € §}
then |y — (g, mo)| = o (1), w = o (|a|) for a near 0.

We claim that there is { > 0 such that £ N B(0,{) C R x S{; Indeed, let (py, tn),~1 C
¢ be such that im (p,,, un) = (pi(q, mo),0), we have then lim p,, f (s, 1, (s)) = pr(q, mo)mo(s)
and Lemma (4.24 m guarantees that there is ng > 1 such that u,, € Sy for all n > ny. More-
over, if u, = ay¢r + wy then lim 22 = ¢ uniformly in [0, +-00) proving that vu,(t) > 0
for t in a right neighborhood of 0 and vuj,(0) > 0 (otherwise, if u;,(0) = 0 then by
Cauchy-Lipshitz theorem, u, = 0).

Also, if (ps, ux) € ¢} then for all sequence (pin, un),~q C ¢f being such that im (pn, un) =
(M, ux), we have from Hypothesis that lim py, f (s, un(s)) = ps«f (s, ux(s)) uniformly
in RT™ and Lemma guarantees existence of ny > 1 such that u, € S for all n > ny.

Moreover, we have

8G~
1,0) = O] < [po - pal [ \ () (5, 11 (5))ds
0 a ~
i /(f 20 (4,5)| o (5) 115, () — (5,10 (5))] |
o | dG~
o [ %(m) a(5) = 0. (9] 1505 .

Hence, we obtain by means of hypothesis (2.4) and Lebesgue dominated convergence
theorem that lim u,(0) = u/,(0) and for n sufficiently large, u},(0)u/ (0) > 0. This shows
that ¢ C R x S and (] is unbounded in R x W, ending the proof. m
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Lemma 2.14. Assume that Hypotheses (2.4)-(2.6) hold, then for all k > 1 and v = =, the

component (. rejoins the point (py (4, Meo) ,00).

Proof .
First, let us prove that for all k > 1 and v = =, the projection of ] onto the real axis is

bounded. Indeed, since 0 is the unique solution to the BVP

—u"+q(thu =0, t >0,
u(0) = limy 1o u(t) =0,

the projection of {; onto the real axis is contained in (0, +c0), namely, if (x,u) € }
then > 0. Moreover, if (x,u) € (} then we read from the BVP that y =
i (G, f(-,u(-) + 2w), then taking in consideration Hypothesis (2.4), we obtain from As-
sertion 4 in Theorem R.1]that p = py (7, f (-, u(+)) + 2w) < i (§, w) .

Uy

Now, let (y,, un) be sequence in } with lim, 1 o ||t || = 400 then v, = T satisfies

Too(14n)

Tua] (2.20)

Un = PnLooUn + pn
where L, T : E — E are defined as follows
Loott(t) = [o Ga(t, 5)ieo (s)u(s)ds,
Toott(t) = [,7 G(t,5)u(s)geo (s, u(s))ds,

and e = Moo + 2w, goo(S, 1) = f(s,u) — Mmoo (s). Note that Hypothesis implies that

Teo(tt) = o(||tt||e) at co. Combining this with the compactness of L., we obtain from

(2.20) existence of vy, v_ € W with ||vy|| = ||v—|| = 1 such that Lovy = pyv4 and
Lov— = p_v_ where y = limsup p, and p— = liminf y,,.
Consequently, we have pu = p; (§,me) and p— = p; (g, me) for some integers

I+,1_ and since each of v, and v_ is a limit of a subsequence of (v,) C S}, we obtain

Iy =1_=kand py = pu— = u(q,Moo). M

Lemma 2.15. Assume that there exist two integers i,j with 1 < i < j such that one of the

following situations holds

ni(g,mo) <1 < (g, meo) or pj(q,mo) <1< pi(q, Meo).

Then
ui(g,mo) <1< pi(q,meo) or ui(g,mo) <1 < (g, Mlco).
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Proof .

Let I > 1 be an integer and x = 0, o0, we have to prove, y;(g, m,) < 1 implies y;(q, my) <
1 and p;(gq,mc) > 1 implies p;(g,mc) > 1. We present the proof of the implication:
u1(g,me) < 1= (g, me) < 1, the other is checked similarly. Let ¢ € S; and ¢ € S;
be respectively the eigenfunctions associated respectively with u = u;(q,my) and g =

1;(q, 7y ) and let (zj);:é be the sequence of zeros of ¢. Each of the pairs (y, ¢) and (i, ¢)

satisfies

—u" + qu = pmyu in (0, +00), 4 —u" +qu = (fimy +2(ji — 1)w)u in (0, +0),
an
u(0) = u(+00) =0 u(0) = u(+c0) = 0.

By the contrary, suppose that y > 1, then we have
(ume +2(j —1)w) —umy = (i —pu) me +2(j —1)w > 0 ae. t > 0.

Thus, applying Lemma we get that in each interval (zj,zj11), j = 0,...,1 — 1,

there is a zero of ¢, contradicting ¢ € S;. This ends the proof. m
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Chapter 3

Nodal solutions for asymptotically linear

second-order BVPs on the real line

3.1 Introduction and main results

Because that boundary value problems (bvps for short) associated with second-order
ordinary differential equations posed on infinite intervals arise in modeling a variety of
physical phenomena, the study of existence of solutions and their qualitative properties
to such problems has received a great deal of attention and has been the subject of many
old and recent articles, see, for instance [2]-[5], [15]-[40], [59], [62] and references therein.
However, to the author’s knowledge, there are few papers considering existence of nodal
solutions for such type of bvps. The first goal of this chapter is then to fill the gap in this
area.

Nodal solutions appear as eigenfunctions to the eigenvalue problem (evp for short)

— (at) + Bu = oqyuin (1) ae.,
au(g) + blim; .z p(t)u'(t) =0, 3.1)

cu(n) +dlim; ., p(t)u'(t) =0,

where —c0 < ¢ < 57 < +00, 0 is a real parameter, a,b,c,d are real numbers with (a2 +
b?)(c?> +d?) #0and &, 8,7 : (&) — R are three functions.

Theorem 4.9.1 in [64] states that if «,7 > 0 in (&, 7) a.e. and 1/a,8,7 € L' (& 1),
the evp admits an increasing sequence of simple eigenvalues (0y);~; such that

limy_, 0x = 400 and if 9 is the eigenfunction associated with oy, then ¢, admits exactly
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(k—1) zeros in (¢, 77), all are simple. The condition v > 0 in (¢, 7) a.e. has been relaxed
in[7] toy >0in (§,7) a.e. and v > 0in [¢1,71] C ({,77) a.e..

The second goal of this article is to prove that the existence of nodal solutions holds
although the Ll-Carathéodory framework imposed in [64] and [7] is failed. Thus, we

consider in this paper the evp:

—u”"(t) +q(t)u(t) = um(t)u(t), t € R, (32)
limt_>_oo M(t) = limt_>+oo M(t) = 0, .
and the perturbed version of the evp (3.2):
(1) + q(u(t) = pu()f (1 u(t), 1€ R, o3
limy oo u(t) = limy— 400 u(t) =0, .

where p is a real parameter, the weights g and m belong to C (R,R"), 4 may be un-
bounded and f : R x R =R is a continuous function.

Notice that the evp is the version of the evp with ({,7) =R, a=c=1,
b=d =0theand a« = 1, B = g. Clearly, with such a weight « = 1 and a weight f = g
being unbounded, the evp do not satisfy L!-Caratheodory framework cited above.

Statements of main results in this paper need to introduce some notations. In what
follows, we let

Q = {q € C(R,IR™) : 3T > 0 such that |i‘nqu(t) > 0} ,
H>

W = {ueC(lR,lR): lim u(t) = lim u(t):O},

t——o0 f—+00

We = Wn Ck (R,R) for all integers k > 1,
Wt = {meW:m(t) >0ae. t € R}.

The linear space W is equipped with the norm |-||, defined for u € W by |ju| =
sup,c |u(t)|. Obviously, (W, ||-||) is a Banach space.

For an integer k > 1, S; denotes the set of all the functions u € W; having exactly
(k — 1) zeros in R, all are simple and u is positive in a right neighbourhood of —oo,
Sy = =S¢ and S = S US. Foru €Sy, (z7)/Zg with —eo =20 < 21 < ... < 7 = +o0
and u (z;) =0forj=1,...,k—1, is said to be the sequence of zeros of u.

Our first result concerns the evp (3.2), it states that the existence of a sequence of

eigenvalues as well as its properties hold for all pairs of functions (g,m) in Q x W+.
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Theorem 3.1. For all pairs (q,m) € Q x W, the set of eigenvalues of the evp consists in
an unbounded increasing sequence of simple eigenvalues (pux(q,m)),~q such that eigenfunctions
associated with yy(q, m) belong to Si. Moreover, for q fixed in Q, the mapping uy(q, -) has the

following properties:

1. If my, my € W are such that my < my, then ui(my) > yr(my). In addition, p(my) >

ux(my) whenever my < my in a subset of positive measure.

2. Ifm € Wt and (my,) C W™ are such that limm, = m in W, then lim,_c0 (g, my) =

pr(q,m).

Concerning the bvp (3.3), we obtain under the assumptions on the nonlinearity f :

|f(t,0)] € WT and for all r > 0, there exists ¢, € WT such that (3.4

|f(t,u) — f(t,0)| < Pp(t) |u —v| forallt € Rand u,v € [—r,7], .
there exists w € W such that (35)
f(t,u)+w(t) >0forall t,u € R, .

limy, 0 f(t,u) = mo(t) and
hm|u|a+oo f(t,u) = moo(t) (3'6)
in W with mg, me € WT,

the following existence and multiplicity result for nodal solutions:

Theorem 3.2. Let q € Q and assume that in addition to Hypotheses (3.4)-(3.6), there exist two
integers i,j with 1 < i < j such that one of the following situations holds:

(g, meo) <y < pi(g,mo)
or
pi(g,mo) < p < pi(q, meo).
Then for each integer k € {i,...,j} and v = +, the bup admits a solution in SJ.

Consider the case of the bvp where the nonlinearity f is a separable variables
function, namely the case where the bvp takes the form

(3.7)
limys o u(t) = limiy oo u(t) =0,

{ —u" +q(t)u = um(t)ug(u), t € R,
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where m € Wt and g : R — R™ is a continuously differentiable function such that

lim g(u) = go > 0 and ungg(u) = Qo0 > 0. (3.8)

u—0

We deduce, from Theorem 3.2] the following corollary:

Corollary 3.3. Let q € Q and assume that in addition to Hypothesis (3.8), there exist two

integers i, j with 1 < i < j such that one of the following situations holds:

Hgo < pi(q,m) < pj(g,m) < pgeo,
or
M8 < pilg,m) < pj(q,m) < pgo.
Then for each integer k € {i,...,j} and v = £, the bup admits a solution in SJ.

Proof .

Set f(t,u) = um(t)g(u) and note that such a nonlinearity satisfies Hypotheses
and with mg(t) = gom(t), me(t) = gieom(t). Since for all integers k > 1
and ¥ = 0 or +oo, pr(myc) = pp(m)/gx, we have p;(q,mo) < p < pj(q,me) if and
only if pgeo < pi(q,m) < pj(q,m) < ugo and p;(q,mo) < p < pi(q,Meo) if and only if
ngo < pi(q,mo) < pi(q,me) < pge. Therefore, Corollary (3.3 is obtained by a simple
application of Theorem n

3.2 Preliminaries

3.2.1 The Green’s function and fixed point formulation

Let for ¢,7 € R, Pg.cn be the unique solution of the initial value problem

—u" (t) +q(t)u(t) =0,

u(0) = ¢,

u'(0) =19.
It is proved in Section 3.1 in [6] that there is a unique 79 € R such that ¢, ,, satisfies
the bvp

u(0) =1, limy 40 u(t) =0,
with ¢g1,, (t) > 0 and ¢, , (1) < 0 for all t > 0. In all what follows, we let for
9€Q Pg =Py

{ —u"(t) + q(H)u(t) = 0,
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Lemma 3.4. Forall g € Q, the function ®; has the following properties:
i) @4(t) > 0and O(t) >0 forall t € R.
i) limy oo ®f(t) = —co0 and limy—, .00 Pp(t) = 0.
iii) @(t) <O0forallte R,
—+o00
iv) Forallt € R, / Dy(s)ds < oo.
t

Dy (t)

1t

v) lim; o

td
:+ooand/ooas§<ooforallt€]R.

“ 1 b ds
—c0 D2
ey 1 b ds
vii) limy s oo Dg(t) o7 +oo0.
—c0 2

viii) The function ®;/ CID’q is bounded at +-o0.

Proof .
Let g € Q and T > 0 be such that & = inf; > g(t) > 0.

i) By the way of contradiction, suppose that ®;(ty) < 0 for some ty < 0. In this
case, there is an interval (t,0) such that ®4(t) > 0 for all ¢ € (t,0) and @7 (£.) > 0.
Therefore, we have ®;(t) > 0 for all t € (t,0) and @7 is nondecreasing on (f,0) . This
leads to the contradiction 0 < @ () < @7 (0) < 0 and proves that ®y(t) > 0 for all
t € R. The equation 7 (t) = q(t)Py(t) shows that @7 (t) > 0 forall t € R.

ii) It follows from Assertion i) that the function ®; is nondecreasing and the limits
lim¢, oo @ () and limy—, o P7(t) exist. Set I} = limy—, 100 g (t) and suppose that I, #
0. We obtain then by the L'Hopital’s rule lim;, 4 d>qT(t) = 1y and lim; 4 oo Py(t) = Fo0.

This contradicts lim;—, ;e ®4(t) = 0 and proves that lim;—, 1 P3(t) = 0. Now, we have

forallt < —T,
/ / By / -7 /
) (1) = O (~T) + /Tcpqu — ®/(~T) —/t gDyds < B (—T) + ae(t+T),

where ¢ = inf;<_7 Py(s) > 0.
Clearly, the above inequality proves that lim;—, —co @} (t) = —c0.
iii) Since @ is nondecreasing and lim;, 1 ®g(f) = 0, we have P} (t) < 0 for all

teR.
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iv) We have for all s € (T, +o0),

(T
/ Qqur—/ P4 < i/ odr = —(q>'( ) — B! (T)) < — ‘7: )
This proves that [,"* ®,(r)dr < co for all t € R.
v) By L'Hopital’s rule, we have
. Dy(t) Vi
tEI—noo 1—t tLI—noo —Py(t) = foo

This shows that for @%(s) > (1—5)? for all s € (—co,s,) with s, near —oo. By the

d
comparaison principle, we have [ ioo 552 < ooforallt € R.

9
vi) We have by L'Hopital’s rule
t -2
f ds . f—oo q)q ds . 1
tllm (I)q() @:thl}l —*1:t11131 —q)/—(t):()
——00 —oo P ——00 (qu(t)) ——00 q
vii) Again by L'Hopital’s rule we get
tds 1
Am @) [ gz = Mm gy = T

viii) We have for allt € R, witht > T,
2 —+00 —+00 D)
(—q>;(t)> = z/t ! (—@Q) ds = 2/t 4@, (—cbﬁ,) ds > o (®4())?,
leading to
/ 2 / 2 1 .
‘qu(t)/cbq(t)‘ - (CIDq(t)/ —qu(t)) < forallt € R, witht > T,

then to,

sop [o4(0/94(0)] <

-

In a similar way, we obtain that

o o040 =

proving viii) and completing the proof of the lemma. m

Because of Assertions v), vi) and vii) in Lemma the function

tds

¥y =) [ 5 (3.9)
o B2

is well defined and it is a solution to the bvp

{ u (1) + q(E)u(t) =

limy, o u(t) =0, 11mH+oou(t) = +o0.
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Lemma 3.5. Forall g € Q, the function ¥4 has the following properties:
a) ¥q(t) >0, ¥o(t) > 0and Y7 (t) > 0forall t € R.
b) lim;, oo ¥p (t) = 0 and lim;—, 00 ¥ (t) = +o0.
t
c¢) Forallt € R, / Yyds < oo,
d) Forallt € R, ®g(t)¥;(t) — ¥o(t)Pg(t) = 1.
e) The function ¥/} is bounded at +oco.

Proof .
Let g € Q and T > 0 be such that & = inf; > q(t) > 0.

a) Respectively from (3.9) and ¥ = q%¥,, we have ¥,(t) > 0 and ¥/ (t) > 0 for all
t € R. Since the function ®; is decreasing, we obtain from 1} that

tds 1 t P! 1
!/ . / = _q —
() = @)1 | 3 tam cI}Z_dw 0 0.

b) Because that ¥, is a nondecreasing function the limits lim;—, —o '¥7(#) and lim¢—, o0 ‘¥ (#)
exist. Set lim;—, o ¥ () = I4 and notice that [, > 0. By the way of contradiction, sup-

pose that [, > 0. We obtain then by means of the L'Hopital’s rule that

Yq(t)
. q o . / .
thIEl — = t11131 Yo(t) =1+ >0,
leading to lim;_, oo Tq(t) = —oo and contradicting lim;, Tq(t) = 0. Therefore, we

have proved that lim;—, 0 ¥ (#) = 0.

Now, we have forall t > T,
t t
W (1) = ¥ (T) + /T ¥/ds = ¥, (T) +/T q¥yds > ¥ (T) +ace (t—T),

where e = infs>5 ¥;(s) > 0. The above inequality shows that lim;—, o ¥g (f) = +c0.
c) We have for all s € (—oo, —T),

-T ~TY) 1 T 1 ¥ (=T)
_ 9 < = ", _ 2l (_ ! < q
/S ¥, (r)dr / T < a/s Fydr = —(¥i(~T) = ¥y(s)) < —L .

This proves that [*_¥,dr < co forall € R.
d) We have from that for all t € R,

D, (1)) (1) — ¥y ()P} (1) = Dy (1) (cpg,(t) _too % + %) — @, (1)) (1) _:o C%S% ~1
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e) We have forall t > T,
2
(‘PZI(t)> - ‘I”
> (wxm)-+auwﬂwf—wwﬂT»ﬂ,
from which we obtain that forall t > T,

(1) 1 ¥,(T)
v =\ w0

=

This together with Assertion b), we conclude that there is T, > T such that

Tq(t) < \/2, forall t> T..
Yo () o

We have for all t < —T,

t
11;/ _ 2/ ‘Y"P”ds = 2/ q‘Fq‘F;dS Z lé (‘Pq(t))z,

¥y(t) \/T
</ - < -T.
v =V forall t<-T

This completes the proof of d) and ends the proof of the lemma. m

leading to

Set forg € Qand 0 € R,

¥a0 (1) = g (g5 @00 1) = ¥, 0) 8, ()~ 2, 0¥, (1),
and
0, if max(t,s) > 6,
Gq(0,t,8) = § Pgo(s) Yo (t), ift<s<6,

qu,g (t) qug (t) , ifs<t<@.
We have then for allg € Qand all 6 € R,

Dpo(t)¥oo(t) — ¥eo(t)Ppp(t) =1, forall teR,
and

Gy(0,t,5) = Gy(t,s) — ?;Z—E?;‘I’q(s)?’q(t), for t,5s <9,

where

Gy(t,s) = Gg(+oo,t,5) = lim Gy(60,t,5) =

60— o0
is the Green’s function associated with bvp (3.3).
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Lemma 3.6. We have for all functions q in Q :

1) Gyeo = SUp; ;e Gy (,5) < sup,cp P (1) ¥y(t) < oo,

2) Ggeo = SUpPg; g Gq (0,1,5) < o0,

3) Gy = sup,cg [t Gy(0,t,5)ds < oo forall § € (—oo,+00].
Proof .

Let g € Q and T > 0 be such that & = inf; > q(t) > 0.

1) Taking in consideration that ®, is nonincreasing, we obtain from 1) that for all
t,s € R,

Gy(tys) < Dy(t)¥y(t) = <——q)qu§2)) (—q>£7(t)<bq(f) /_too %)

(1) t -] (1)
< (S (00 ) ae) = (San )

This together with Assertion viii) in Lemma 3.4} leads to

Gyo = sup Gg(t,s) < sup @, (t)¥,(t) < oco.
t,seR telR

2) Because of @, is decreasing and Y is increasing, we have for all s, < 6,

%m%w+%%ﬁwww)

D ()F,(£) + ¥, (8) D, (6)

< 2sup Oy(t)¥,(t) < oo,
teR

0 < Gy(0,t,9)

IN

IN

proving 2).
3) Since forall # € Rand t € (—o0,0),

!fm@wmggzz/:@@g%—%gbwn[:%%

—00 —

+o00 0
g/ GN@%+%@/ ¥, ds,

we have to prove that sup, fj;o Gy(t,5)ds < oo. Because of Assertions vi) in Lemma
and c) in Lemma we have for all t € R,

+o0 t +o00
/ GN@%:%m/w%%+%@t O,ds < o,

—00
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and the function t — | _Jr;o Gg4(t,5)ds belongs C (R, R) .

Moreover, we have forall t > T,
+o0 t +o0
/ Gy(t,s)ds = @ (1) / ¥, ds + ¥, (t) / D,ds
—00 t

-T T t +0c0
= @) ( | tyds+ [ s+ [ ‘qus> FE() [ dyds
11;// q)//
ds—|—/ ‘I’qu—i—/ qu> (¢ )/ —1 s

o (/] q

< ( / ‘I’”ds+2T‘{’q(T)+i /T ‘P’q’ds) +E‘I’q(t) /t " oras
(i‘?; ) +2TY¥,(T) + %(‘f;(t) —\PQ(T)) — %‘I’q(t)q); (t)
= @y(0) W () + 2Ty (1) ¥ (T) — @ ()¥)(T) +

%q>q(T)‘{’;(—T) + 2T, (T)®,(T) + %

IN

and for all t < —T,

+oo t +o0
- t

¢ 1{{// -T q)// T +oo q)//
= qu(t)/ T ds +¥,(t) / —ds +/ D,ds +/ —ds
o { t q -T T q

< %cbq(t)/_t Yo ds 4 Fy(t) G /t_TCngs—l—ZT(IDq(—T) +%/T+ooc1>;’ds
< Ly (%) (1) + ¥4 (1) (% (@ (=)~ @} (1)) + 2Ty (~T) — @, <T>)
_ % n %Tq(t)cpfi (=T) + 2T, (£)®y(~T) — %‘Yq(t)% (T)

1 1

S 2T (~T)¥(—T) = ¥q(~T)®;(T).

The above estimates shows that the function ¢t — fj;o Gy(t,s)ds is bounded at oo

and sup, . [ e Gy(t,s)ds < co. This achieves the proof of the lemma. =

Lemma 3.7. Forall g € Q and 0 € (—oo, 40|, the operator Ly : W — W where for h € W
Loh(t) f+°° G4(0,t,5)h(s)ds is well defined and is continuous.

Proof .
Let 0 € R, h € W and set ug(t) = Lgh(t) f+°° G4(0,t,5)hds. We have from the above
Assertion 3) that for all t € R

lug(t)] = ‘/ Gy(0,t,5)hds| < ||h||/ 2(6,1,5)ds < ||h||/ 2(0,1,5)ds < co.

49



Chapter 3. Nodal solutions for asymptotically linear second-order BVPs on the real line

Because of lim;_,g uy(t) = ug(0) = 0, we conclude from the expression

t 0 D, (6
i) — 0 [ ¥ghds+ ¥, (t)/t Qthds—%

0, ift>o,

0
() [ Wohds, ift<e,

that the function uy belongs to C (R, R).
Clearly, lim;_, 1o ug(t) = ug(6) = 0 and lim;_,_« ?EG) f Y hds = 0. Thus,
taking in account Assertions viii) in Lemma e) in Lemma [3.5, 1) in Lemma 3.6/ and

lim¢_, o h(t) = 0, we obtain by means of the L'Hopital’s rule

lim CDq(t)/_too‘I’qhds: lim M:gp& ( (t)) (D (DR(t) =0,

f——o0 f——o0 (q)q(t)>_1 (t)
0 [ ®,hds
lim ¥,(t) | Pyhds = lim Tl < ) )) h(t) =0,
t——o00 ¢ qHas t——o0 (‘Pq(t)) t—> o0

leading to lim; ;e Lou(t) = 0. All the above show that for § € R, the operator Ly is
well defined. We have also forall h € W,

+o00 +o0
_/ Gq(G,t,s)dsHhHg(sup Gq(G,t,s)ds> 1]

Loh(t |_‘/ /(6,1 5)hds

teR /=
This leads to || Lgh|| < G, ||| for all h € W and proves that Ly € £ (W).
We have forall@ €e Rand h € W,

r t +oo
[ ghds ¥, () [ Qqhds‘, ift>0,
|Lyooh () — Lok (t)| = " oo y q)q(g)t " " (o
¥, (¢ <I>s+—‘I’t/‘P s|, ift<e,
\ q 0 q ‘Fq(Q) q oo 1

(

t +oo
o, (1) /w‘fq|h|ds+‘1’q(t)/t O, |h|ds, ift >0,

IN

+o00 0
¥, (9)/9 g || ds+y(8) [ Wy lhlds, ift <.

{ _
Since

+00 0
lim ¥, (9)/ <I>q|h|ds+<1>q(6)/ ¥, (s) k| ds =0,

0—+o0 0 oo

for € > 0 there is 0, > 0 such that
+o00 t
0<¥, (t)/ o, |h|ds+<I>q(t)/ ¥, |h|ds <e, forall t>,.
t —0

Therefore, we have for all 6 > 0, sup, . |L1coh (t) — Loh (t)| < €and Lycoh = limg_, o, Loh
in W. This proves that L h € W and the operator L, is well defined and because of
Assertion 3) in Lemma we have for all h € W, ||Lioh|| < Gy ||h]|, showing that

Liw € L (W). The proof of the lemma is complete. m
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Lemma 3.8. Let f : R x R — R be a continuous function satisfying Hypothesis , then for
all u € W the function Fu, with Fu(t) = u(t) f (t,u(t)) belongs to W. Moreover, the mapping

F: W — W is continuous and bounded.

Proof .
Let u € W, because of the continuity of the function f, FuecC (R,R) . Moreover, we
have from Hypothesis (3.4) for all t € R :

(B F (b u(t)] <l gy () + [ull [F(£,0)] = §(2),

with ¢ € W. Therefore limyy 4o Fu(t) =0and Fu € W.
Now, let R > 0 and u,v € W be such that sup (||u|,|v]]) < R. We have from

Hypothesis that
Fu(t) = Fo(t)| = [u()f (t,u(t) ~o()f (1,0(1)]
u(BF (L u(t) = u()f (t,0(8)| + [u(BF (L o(5) = o(OF (£, 0(1))
Ryr (1) [u(t) = o(8)| + R (Ryr + |7 (£,0)| ) u(t) = ()]
< R(|lyxll +Rligxll + | F (£,0)|) llu =],

IN

IA

leading to

|Fu—Fol| < R (llgxll + R [l + ||F 0 ) 1 =],
and proving that the mapping F is locally Lipshitzian, consequently it is continuous and
bounded. m

The main result of this subsection consists in the following lemma providing a fixed

point formulation for the evp and the bvp (3.3).

Lemma 3.9. Let g be in Q and f : R x R — R be a continuous function satisfying Hypothesis
(B.4). Set for 6 € (—oo,+00], Ty = Lg o F, then the operator Ty is completely continuous and
u € W is a fixed point of Ty if and only if u is a solution to the BVP

{ —u”(t) + q(D)u(t) = u(t)f(t,u(t)), t € (—o0,8),
=0.

limy oo u(t) = limy g u(t)

(3.13)

Proof .
First, we prove that fixed points of the operator Ty are solutions to the bvp (3.13). To this

aim, let u € W be a fixed point of Ty, from
t - 0 -
u(t) = D0 (t)/ ‘i’qrguf(s,u)ds + Y0 (t)/ ®q,9uf(s,u)ds, fort <0,
o t
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we understand that u belongs to C! ((—o0,0),R) and straightforward computations lead

to

t 0
u'(t) = CDZI,G (1) /oo Yo ouf(s u)ds +‘I’;,9 (t)/t O, puf(s,u)ds, fort <.

Again we have u’ € C!((—o0,0),R) and taking in account (3.11), we obtain for all
te (—o0,0),

t ~ 6 ~
u'(t) = @4 (t) /_Oo‘quguf(s,u)ds—i—‘I’g,@ (t)/t D, guf (s, u)ds

— (P (1) ¥g (1) — @l (1) Ty (1) ) (b F(t,u(t)
= q(t) <<I>q,9 (1) /_too ‘I’q,guj?(s,u)ds—k‘lfgle (1) /te qu,gu]?(s,u)ds) — u(t)f(t,u(t))

= q()ug(t) —u(t)f(t,u(t)).

Reciprocally, if u € W is a solution to the bvp (3.13) we have then

+o00 400
/ Gy(t,s) (—u" +qu) ds = / Gy(t,s)uf(s,u)ds, forallte R.

—00

Integrating twice by parts the left integral, we obtain that u is a fixed point of Tj.
Now, we prove that the mapping Ty is completely continuous for all 6 € RR. To this

aim, let Q) be a subset of W bounded by a constant r and ¢, € W' such that

f(t,x) —f(t,y)‘ <Y (t)|lx—y|, forall teR and x,y€ [—717]. (3.14)

Since each of the mapping Lg and F is continuous and bounded, the operator Ty is

continuous and bounded. In particular, Ty (Q)) is bounded and we obtain from (3.14):

‘x (t,x)‘ < ,(t). forall tc R and x € [—7,7],

where ¢, (t) = r2¢,(t) +r ’f(t,O)‘ .
Therefore, the following estimate hold for all u € (),

ITou(t)| < Ug(t), forallt € R, where Uy = Lot € W,

and proves that Ty (Q)) is equiconvergent.

It remains to show that the subset is equicontinuous on compact intervals. Let [, ¢]
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be a compact interval and let f1,tp € [7,J] be such that t; < t,. We have forall u € Q) :
Tou(ty) — Tou(ty) = 0, if 0 <t; <t

Tou(tz) — Tou(t1) = Tou(6) — Tou(ts)

t - 0 _
_ (CIDq(H)—CIDq(tl))/_OO‘I’quf(s,u)ds-l—CDq(G) /tl ¥, uf(s, u)ds

— (¥, (0) =¥, (1)) 3323; /900 ‘I’quf(s,u)ds, if /<0<t

and

f ~

Tou(t) — Tou(t1) = (Pg(t2) — Py(t1)) /oo‘}[q”f(sfu)ds

0 - t ~
+ (¥, (k) — ¥, (1)) /tz ¥ uf (s, u)ds + Oy (t) /tl ¥, uf (s, u)ds

—Y¥, (1) /tt2 Douf(s,u)ds

1

D, (0) o ~
— (¥ () — ¥ (1)) 2(6) / Youf(s,u)ds, if t; <t <9.
In all cases, the above estimates lead to:
‘Tgl/l(tz) — Tgu(tl)’ < ||1’EVHM ‘tz — t1’ , forall u e Q,

where

M= (‘@;(7)‘ +TQ(5)$ZE”;§) /_‘Soo‘qusqL‘Y;((s) /7‘5¢qu+2®,7(7)?,7(5).

This shows that the subset Ty (Q)) is equicontinuous on compact intervals and complete
the proof of the compactness of the mapping Ty for 6 € IR.

We end by proving that T, is completely continuous. Let A be a subset in W with
A C B(Ow, R) and and ¢g € W such that

‘f(t,x) —f(t,y)’ <yr(t)|x—y|, forall teR andall x,y€[-RR].
Therefore, we have:

‘xf(t,x)‘ < ¢,(t), forall t€R andall x € [—r,7],
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where ¢, (t) = r2,(t) +r ‘j?(t,O)‘ and forallu € Aand t € R,

| Ty oot (t) — Tou ()|

4 t — “+o00 -
@, (1) / $ouf(s,u)ds + ¥, (1) [ ouf(s,u)l, if t>0,
—00 t

+oo ~ D, (0) 0 = :
¥, (1) [ @uf(s,u)+ ¥, (1) / Y,uf(s,u)ds|, if t<6,
( t . +o00 N
@, (1) /_Oo‘qudes-l—Tq (1) [ @girds, if t>0,

IN

~+o00 _ 0 "
) (0) [ Dyids + 2y 0) | adeds, it t<e.

\

Thus, arguing as in the end of the proof of Lemma we obtain that Te = lim T in

Cp (0, W) and T4 is completely continuous. m

3.2.2 Comparison results
The following lemma will play an important role in the proof of Theorem

Lemma 3.10. Let (q,m) € Q x W be such that yu(q,m) = 1 for some integer k > 1. Then
there exists g > O such that for all p € W with ||p — m|| < eo, ui(q,p) = 1 implies | = k.

Proof .
Let €9 > 0 be such that ey < min(ug.1(g, m) — ur(q, m), up(q, m) — px_1(q, m)), because
of Assertion 2 in Theorem [3.1] there exists ¢g > 0 such that forall p € W, ||p — m| < &
implies

He—1(q,m) — €0 < pe-1(q, p) < H-1(q,m) + €, (3.15)
and

Hira(g,m) — € < preya(q, p) < preya(q,m) + €o. (3.16)

Let p € WT with ||p — m|| < ¢y and suppose that j;(g, p) = 1 for some integer [ > 1.
If I < k, we have then from (3.15) the contradiction

L=w(qp) < pr1(9,p) < p-1(q,m) +eo < px(q,m),

and if I > k, we have then from (3.16) the contradiction

1=w(q,p) > m1(q,p) > pr1(q,m) —eg > pr(q,m) = 1.

This shows that | = k and the lemma is proved. m

We will use extensively the following lemma:
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Lemma 3.11 ([11]). Let j and k be two integers such that j > k > 2 and let (Cl)ig , (nl)ié be

two families of real numbers such that

Co=0<81 <@ < - <G1<G=1,
Ho=¢ <m << <ij1<1;=1.
If &1 < 11, then there exist two integers m and n having the same parity, 1 < m < k —1 and
1 <n <j—1such that
Sm < Mn < M1 < Cmt1-

We end this section with the following lemma which is an adapted version of the

Sturmian comparison result.
Lemma 3.12. Let fori = 1,2, m; € W and w; € C? (R) satisfying
! (8) + g(t)wi(t) = mi(H)wi(h), £ € (x1,%2),
and suppose that wy does not vanish identically and mq(t) > my(t) a.e. t > 0. If either
1. xq1 > —ocoand wy(x1) = wa(x2) =0, or
2. xp = —09, Xy < +ooand wy(x1) = limy_ w;(t) =0, fori =1,2,
3. x1 > —o0, xp = 400 and wy(x1) = lim¢—, 4o w;(t) =0, fori = 1,2,
4. x1 = —o00, X = H00 and lim;_ 4o w;(t) = limy—_co w;(t) =0, fori =1,2,
then there exists T € (x1,x7) such that w1(t) = 0.

Proof .
We present the proofs of Assertions 1) and 4), the other assertions are checked similarly.
1) By the contrary suppose that w; > 0 in (x1,x2) and without loss of generality
assume that wy > 0in (x1, ), then we have the contradiction
X2
0 > w(x2)wh(x2) —wy (x1) W) (x1) = / (wo (—w! + quy) — wy (—wy + quwy)) ds

X1
X3

= / (ml — mz)wlwzds > 0.
X1
4) By the contrary, suppose that w; > 0 in R and without loss of generality assume

that w, > 0 in R. Because that w/ (t) = (q(t) — m;(t)) w;(t) and q(t) — m;(t) > 0 for |¢]
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large, we have that w;(t) > 0 for [¢| large and lim;_,, w;(t) = 0. Therefore, we have for

allt > 0,

(—w2 )+ wr () wy (1) + (w2 (=) wy (—t) —wy (=) wy (—))
+t t
/t —wi + qw;) — wy (—wh + qwy)) ds = /_t(ml — my)wiwyds > 0.

Letting t — +o0, we obtain the contradiction:

+oo
0= / (my — mp)wywods > 0.

—00

The proof is complete. m

3.2.3 On the linear eigenvalue problem

We will present in this subsection two lemmas related to linear eigenvalue problems
and needed for the proof of Theorem The following lemma and its assertions follows

from Theorem 2.1 and Lemma 3.7 in [6].

Lemma 3.13. For all pairs (q,m) € Q x W and all real numbers 6, the evp
—u(t) +q()ult) = pm(t)u(t), t > 6,
u(f) = limy_ 400 u(t) =0,

such that:

admits an unbounded increasing sequence of simple eigenvalues (" (0,q,m)) 1

1. If ¢ is an eigenfunction associated with ;" (6,q, m) then ¢ admits (k — 1) zeros in (6, 4o0)

and all are simple.

2. If my,my € W are such that my < my, then u(my) > pr(my). In addition, px(my) >

ux(my) whenever my < my in a subset of positive measure.

3. Ifm € W+ and (m,) C W™ are such that limm,, = m in W, then lim,_,c0 i (q, my) =

pr(q,m).

4. Moreover, for (q,m) fixed in Q x W, the function 8 — u; (0) := p;" (6,4, m) is contin-

uous and increasing. We have also limg_, |  pii (6) = —+o00.

The next lemma concerns the existence of the positive eigenvalue on the unbounded

interval (—oo,0).
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Lemma 3.14. For all pairs (q,m) € Q x W and all 6 € (—oo,+o0], the evp

{ —u"(t) + q(u(t) = pm(thu(t), t<0, (3.17)

limy_, e u(£) = 0, (8) = 0,

admits a unique positive eigenvalue y; (6,q,,m). Moreover, for all 6 € R, uy (0,q,,m) is
geometrically simple and for (q,m) fixed in Q x W™, the function 6 — uy (0) := uy (6,q,m)

is continuous and decreasing having limg_, o py (6) = +oo.

Proof .
Let for (g,m) fixed in Q x W' and 6 € (—co,4o0], Lg : W — W be the linear compact
operator defined by

Lou(t) = /+oo Gy(0,t,5)muds,

where the function G, is that introduced by (3.10), and let uy € K be the function defined
by
0, if t¢[o-(8),0+(9)],

(E—0(0))(o4 (0) —t), if telo (0),04(0)],

where

We have then Lguy(t) > 0 = ug(t) for t € (—oo,0— (0)] U [0+ (0),0) and Lug(t), ug(t) >0
fort € (o— (0),04 (0)). This shows that Lou > cgug where

cog = inf {Lug(t)/ug(t) : t € (- (0),04(0))} >0,

and r(Lg) > 0.

Since Lemma guarantees that Ly is compact, we have from the Krein-Rutman
theorem, that r(Lg) is a positive eigenvalue of Ly having an eigenvector ¢y € WT. By
means of Lemma we conclude that p; (6,9,m) = 1/r(Lg) is a positive eigenvalue of
evp (3.17).

Now, for A a positive eigenvalue of evp having an eigenfunction ¢, we have

6

0
0= /_ (=98 +age)y — (=9" + qp)go) ds = (1 (0,q,m) = A) / _ mdgipds,

leading to A = u; (60,9, m).
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Now we prove that for 6 € R, u; (6,9, m) is geometrically simple. Let ¢ € W be
an eigenfunction associated with yi; (6,9, m) and let wg = W (¢g, ¢) = po¢’ — Pj¢p be the
Wronksian of ¢y and ¢. We have then

wy = W' (P9, 9) = po¢” — P = 0,

and
wp (6) = o (0) ¢ (6) — 9 (6) ¢ (6) = O,
proving that y; (6,g,m) is geometrically simple.
Let 61, 6, be real numbers such that 6; < 6, and set for i = 1,2, y; = py (6;, m) with
the corresponding eigenfunction ;. We have by simple calculations

61

0< 91 @)= (0) = [ (=9 +qp)— (—94 +qp2)n)ds
6

= (m —P‘Z)/oomllhllhds,

leading to p11 > uy and proving that 6 — u1(6,g,m) is an decreasing function.

For the continuity of the function 1 (-, g, m), follows from that of the Green'’s function
G and Lemma 2.13 in [10].

Let [, 4] be a compact interval and let 01,0, € [v,d] be such that 6; < 6,. We have
for all u € W with ||u|| =1,

0 0
|Lo,u (t) — Lo,u (t)| = ‘/ ’ Gy (f)z,if,s)muds—/l Gg (01,t,5) muds

—0 —o0

0, ift292>91,

[
/2 Gy (02,1, 5) muds|, if 0, > 1> 6,

, if 0y > 01 > t.

o 6
/2 Gy (02,t,5) muds — / ' Gy (01,t,5) muds

—0o0 —00

Set

x= I [( [ LX) g + Cum t @y (v)‘I’q(fS)]
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then we have for 6, >t > 6;
/:

0
Gy (62, t,5) muds| < ||m||/2 Gy (02, t,5)ds

= |m| (/_9; Gq (t,5)ds — ‘I’q 92 / b4 ds)
:|mm/tcns@+/

) [ g8 QZ;W o
— m|| (@ / %@+/ %ts
(92) (62)
Yﬁﬂ% / ¥, ds ﬂ%mt ¥, ds)

D, (6 02
ﬁéﬁ%wﬂiﬂﬁ)
Y. (0
< |m) [( [ ¥os) iy + Gt 0y wm(a)] 6 — 6y
< xl62—64],

and for 6, > 67 > t,

0 0
/2 Gy (02, t,5) muds —/1 Gy (01,t,5) muds

0
< /1(Gq(()z,t,s)—Gq(()l,ts))muds ‘/ g (02,t,5) muds
_ o Dy (61)  Dq(62)
= ( ‘I’qmuds) (Tq(el)_‘Fq(92))Tq ‘ ‘/ Gy (02, t,5) muds
5 ¥, (5)
< |m /‘Pds) N 4+ Goeo| 62— 6
l ||[(_wq ) q]u |
< Xxl6—01].

The above estimates show that the mapping 6 — Ly is locally Lipschitzian and so,
it is continuous. Let (6,) be a sequence converging to 6. and let 6_,60, be such that

(6n) C [0—,0+]. Therefore we have for all n > 1,

0 <p1(64,9,m) < p1(0n,q,m) < p1(0-,9,m),
and the sequence (y1(6,,9,m)) converges (up to a subsequence) to some py, > 0. We
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conclude by Lemma 2.13 in [10] and by uniqueness of that y. = p1(6, ¢, m). Thus, the
continuity of the mapping u1(-,q,m) is proved.
It remains to prove that limg_, o pt; (6, m) = limg_, _(1/7(Lg)) = +co. We have for
all u € W with |Ju|| =1,
0
|Lou(t)| < /OO G4 (0,t,5) mds

- /900 Gy (t,s) mds + 32—((99))‘1’5,@) /_900 Y, mds

0 0
< / Gy (t,5) mds + Py (9)/ Y, mds.

As in the proof of Lemma we have limgy_, _,, ®; (6) ffoo Y,mds = 0 and since lim; , o m(t)
= 0, for € > 0, there exists 6. > 0 such that m(s) < € for all s < 6. Hence, we have for
all 0 <6,
9 ~
/Oo Gy (t,s) mds < Gg40€, forall t <0,

proving that limg_, o <supt <0 f_eoo Gq (t,s) mds) = 0. Therefore, we have proved that

limg, o 7(Lg) = limg_, _« ||Lg|| = 0, ending the proof. m

3.3 Proof of Theorem 3.1

Step 1. Fix (gq,m) in Q x W and let k > 1 be an integer. Existence and uniqueness
of y1(g, m) is guaranteed by Lemma For k > 2, we have from Lemmas and
existence of a unique real number 6; such that u; (6,9, m) = ;" ,(6f,q,m). Therefore,
if ¢1,- and ¢Py_q; are respectively the eigenfunctions associated with - (6¢,9,m) and

u (6,9, m), then the function

Y107 (1), in [0}, +00),

Pr(t) = .
(W10 (6) /@0 (67)) e (), in (—0,67),

belongs Sy and is the eigenfunction associated with the eigenvalue (g, m) = py (65,9, m) =

w1 (0,q,m) of the evp .
Now, let us prove that j(q,m) is the unique eigenvalue of the evp (3.2), having an

eigenfunction in Si. To this aim, let fori = 1,2, ¢; € S]j be an eigenfunction associated

with the eigenvalue y; and let (z})J be the sequence of zeros of ¢;. Without loss of

generality, suppose that z} < z2, we deduce then from Lemma existence of two
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2 1

integers 0 < n1,m; < k — 1 having the same parity such that 2,111 < zzm1 < Zy. 41 < Zy 41

Notice that the fact n1, m; have the same parity means that the functions ¢; and ¢, have
the same sign on the interval (zi 1,sz1 +1> and after simple calculations, yields
7

me1¢ods,

0< [ (4ol + ar) — n (08 + ) ds = (s — o) |

and

0= /zm1+1 (2(=¢1 +a¢1) — ¢1(—¢3 +q¢2)) ds = (41 — p2) /zm1+1 meypods,

2 Ziny
proving that y11 = py and (g, m) is the unique eigenvalue of the evp (3.2), having an
eigenfunction in Sy.

At this stage we need to prove that for all positives integers i, j with i # j, u;(q,m) #
u;i(q,m). By the contrary, suppose that for two positive integers i # j we have p;(q,m) =
ui(g,m) = p. and let ¢; € S and ¢; € S;r be their corresponding eigenfunctions. Let
w = W(¢i, §;) = ¢ip; — ¢i¢p; be the Wronksian of ¢; and ¢;, we have then

W' = (g — i) = hid] — PP
= (9= pam)dig; — ¢i(q — pum); =0,

leading to w (t) = c with ¢ € R. Moreover, because that ¢;, ¢;, § — p.m are positive
at —oo, ¢ = (q— pum) ¢; and ¢ = (q —m)¢;, we have that ¢/ > 0, ¢ > 0 at —oco,
¢, (,b; are increasing at —oo and lim;_, o ¢/ (t) = limy, (p]’(t) = 0. Therefore, w = ¢ =
lim; oo (qb,- () @7 (£) — ¢; (t) ¢ (t)) = 0 and ¢; = a¢; for some « € RR. This contradicts
¢i € S and ¢; € S;” and proves that for i # j we have ;(q,m) # p;(q,m).

In order to prove monotonicity of the sequence (yi(g,m)),letfori =1,2, ¢; € S,: be
an eigenfunction associated with the eigenvalue y; of the evp (3-2), having a sequence of
Zeros (zi-)]._ki . Suppose that k» > k;, we distinguish then the following cases:

]
Case 1. Z% < z%, in this case we have

2 2

0> /; (P2(—97 +q1) — p1 (=5 +q¢)) ds = (u1 — 2) /_; 1 dads,

leading to uq1 < yo.
Case 2. z% < z%, in this case, we deduce from Lemma existence of two integers

ny,my, with ny < k; —1, my < ky — 1 and such that z;, < z3, < z%ﬁH <zl . After

nq —+ 1
simple computations, yields

2

0= [ (9291 +a90) ~ r(— 5 + ) ds = (= i) [, mengads,

mq Zml
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leading to 1 < po. This together with u;(g,m) # u;(q,m) for i # j show that py < po.
Notice that the sequence (pi(g,m)) is infinite and for all integers k > 1, ux(gq, m)

is a characteristic value of the compact operator L,, : W — W given by L,u(t) =

ffoo Gy (t,s)m(s)u(s)ds where G, is defined in (3.12). Therefore, we have limy_,«, p(q, m) =
—+00.

We prove now that aside the sequence (p(gq,m)), the evp has no other eigen-
values. By the contrary, suppose that the evp has an eigenvalue u having an eigen-
function ¢ and u # (g, m) for all k > 1. Hence, ¢ has an infinite sequence of simple
zeros (z) with limz, = +co. Indeed, if for some z;, ¢(z;) = ¢'(z;) = 0 then the stan-
dard existence and uniqueness result for ODEs leads to the contradiction ¢ = 0. Also, if

limz, = Z € R then

u(2) =limu(z,) =0and v’ (2) = Hmw — 0,
0 —

leading again to the contradiction ¢ = 0. This shows that the limit of (z,) may be equal
to 400 or —oo.

Let for the integer k > 1, ¢, € Sy be the eigenfunction associated with the eigenvalue

1 (g,m) and let (x]);j be the sequence of zeros of ¢. We deduce from Lemma [3.11

existence of two integers /,m having the same parity such that 0 < |/ < k—1 and
0<m<k-1,

X1 < Zm < Zm41 < X4

Hence, we have

0 < =@k (zms1) @' Zms1) + P (zm) @' (zm)
= [ (04" + 09) — 94 +ag0)) ds

= (= melgm) [ mogas

leading to u > py(g,,m) for all integers k > 1, then to the contradiction p = limy .« px(g, m)
= +o0. Thus, we have proved that aside the sequence (px(g,m)) there are no other eigen-
values.

At the end of this step we have for all integer k > 1, (g, m) is geometrically simple.
Indeed, if for some integer i > 1, ;(g,m) has two eigenfunctions ¢ and ¢ with ¢ € S;,
then necessarily i € S;. Otherwise, if ¢ has an infinite sequence of zeros then we obtain

as above the contradiction y = limy ., (g, m) = +oo0, and if ¢ € S;r for some integer

62



Chapter 3. Nodal solutions for asymptotically linear second-order BVPs on the real line

j # i then because the uniqueness we have the contradiction y;(q,m) = p;(q,m). Set then
@ = W(¢,p) = ¢y’ — ¢'¢p be the Wronksian of ¢ and i, we have then
@ = (p9' —9'p) = pp" — 9"y

= (9= g m)m)¢p — (g — p(q mym)¢yp =0,
leading to @ (t) = ¢ with ¢ € R. Moreover, because that ¢, ¥, ¢ — pr(g, m)m are positive
at —oo, ¢"" = (q — px(q, m)m) ¢ and ¢ = (g — ux(q, m)m) i, we have that ¢” > 0, " > 0
at —oo, ¢', ¢’ are increasing at —oo and lim;_,_« ¢ () = lim;—_« ¢’(t) = 0. Therefore,
@=c=limy,_o (&)Y (t)—¢' (1) (t)) =0and ¢ = d¢ for some § € R.

Step 2. Monotonicity: Fix g in Q and let mq, m; be two functions in W' and suppose
that m; < my and m; < my in a subset of positive measure. Set fori = 1,2, y; = (g, m;)
and let ¢; € S be the eigenfunction associated with y; having a sequence of zeros

 j=k

<Z;)j‘_0' By the contrary, suppose that ;1 < pp, then there exists jy such that Z}O #* 2]20.
Indeed, if ¢; <Z]2> =0forallje {1,...,k—1} then for j; € {1,...,k— 1} being such
that meas <{m2 > my} N (Z]Z1/Z]2'1+1>> > 0, we have since ¢1¢ > 0 in (z]z.l,zjzlﬂ) , the
contradiction

zi

0 = [ (e (91 +a01) — 91 (~98 + ) ds
i

2]21+1
= / (u1my — pamy) Py ¢ods

2
z*
Ji

ijlﬂ Z]2'1+1
= (11— p2) / myp1pads + pa /z2 (my — my) Pp1¢pads < 0.

2
z5
71 n

Now, let ky = max {I < k: 2} = 22 forall j < I} and (¢)/Z5 " and (y;)/Zy " be the

families defined by ¢; = 2111 4 and 7; = zil +j- We distinguish then two cases.

)¢ = 2111 G <m= z%l 4t In this case we have the contradiction
1
0 < 2@ #(E0) = [ (02 (~9{ + 1) — 91 (~44 +q92)) s
0
61
- /C (paimy — pomy)p1ods

0

61 61
= (p1— p2) /g mip1pads + #2/6 (my — my) ¢1¢ads < 0.
0 0

ii) ¢1 = 2,1(1 a>m= zil 41 In this case Lemma [3.11 guarantees existence of two integers

m,n having the same parity such that
_ .2 _ 1 S| _ .2
Mm = Zig,ym < Gn = Zkyan < Cn1 = Ziytnt1 = Mm+1 = 2k g1
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Again, we have the contradiction
€n+1 1 1
0 < [ (@2 (=41 +a91) — 91 (~ 95 +ag2)) ds

€n+1
= /g (uimy — pomy)p1¢ods

gn-&-l

gn-&-l
= (11— #2)/§ mip1¢ods + Vz/g (mq — my) p1¢ods < 0.

n n

The monotonicity is proved.

Step 3. Continuity: Fix g in Q, m in W+ and let (m,) C W™ such that limm, = m
in W. Let L, L € L(W) be defined by
Lou(t) = /+°° Gy (t,5)my(s)u(s)ds and Lu(t) = /+°° Gy (£, 5)m(s)u(s)ds.

Notice that for all integers [,n > 1, uj/ = 11(g, my) is a characteristic value of Ly, y; =
1;(g,m) is a characteristic value of L and L, — L in operator norm.

First, fix k > 1 and let us prove that if (¢}) admits a subsequence (J,) converging to
0 > 0, then 6 = yy. Indeed, let ¢, € Slj be the normalized eigenfunction associated with
0y and let i, = L¢,. Since L is compact and the sequence (¢,) is bounded, we have up

to a subsequence 1, — ¢ in W. Thus, we obtain the following estimates,

H(an/&i)_‘/]H = HLann_l/JH
< |ILupn — Lull + ILpn — 9|
< ||Ln = LI+ Ml — 9],

A\

leading to
lim(¢,/6n) = ¢ in W and ||¢|| = lim ||¢pn]| /6 =1/6 > 0.

Also, we have

ILngpn — OL || 100 L ((Pn/0n)) — OL|
< N16nLn ((n/0n)) = 0L ((@n/6n)) || + 16Ln ((¢n/6n)) = SL ((¢n/bn))l
+ I6L ((¢n/6n)) — OLY|

5 1
< (80 =01 8n | Lull + =5 [1Ln = LIl + 5 1L 1 (@n/8n) — 1l

leading to lim L,¢, = 6Ly in W.
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Thus, letting n — oo in equation L,¢, = (¢n/0n) we obtain L = /6 thatis 1/6 is
an eigenvalue of L or 6 = y;(q, m) for some integer I > 1. Then, because of lim 6,m, = ém
in W, it follows from Lemma that & = u(gq, m).

Then, fix T in R, and set for all integers I,n > 1, yl"’T = y;“(T, g, my) and ]/tlT =

;" (T, q,m). We have from Assertion 3) in Lemma [3.13 that lim;, ;e y?'T = u/ for all

integers | > 1 and then there is ¢; > 0 such that y?’T < ul +¢ for all n > 1. Fix

k > 1 and denote by ¢, € S the eigenfunction associated with ' and suppose that
¢n admits (j — 1) zeros in (T, +o0) and ¢, > 0 in a left neightborhood of T. Let ¢, 7 be
the eigenfunction associated with ]/t]’.l’T satisfying ¢, 1(T) > 0 and denote by (xs)zz{) the
sequence of zeros of ¢, T and by (z5);_} the sequence constituted in zeros of ¢, contained
in (T, +o00) with zg = T and z; = +oc0. We distinguish two cases:

Case 1. x1 < z1, we have in this case
0> ¢n (x1) 4’;14,T (x1) = ¢n (T) ¢y, 7 (T) = /T 1 (n, (= + qpn) — Pu(—Pu1 + qPn,)) ds
= (V}? - V?'T) /T 1 My Pu, TPnds,

leading to

< T < max (1T) < max (ul +¢;) < ul + max (¢;).
p < _1§l§k(uz )_1§Z§k(uz 1) < pi 1§l§k(l)

Case 2. z; < x1, in this case we deduce from Lemma existence of two integers
rr,r having the same parity and such that z, < x,, < x,,41 < 2,41 and ¢, 7, > 0 in

(Xrp, Xpp41) - After simple computations yields

0 > Pn (er—H) 4)1/1,T (xi’T—l—l) — ¢n (er> 4);1,7" (er)
- /x ™ (Pn,7 (=0 +aPn) — u(—Pur + qPu,1)) ds

T

Xrp+1
= () [ s,

T

and we have again

n,T n,T T T
e < w7 < max () < max (p + ) < py + max (cp).

At this stage we have proved that the sequence (p}) is bounded, set then p;,” =
limsup pf and y; = liminfyy. Since lim ||L,| = [|L||, we have |L,| > ||L| /2 for n
large enough and y} > 1/ ||L,|| > ||L|| /2 for n large enough. Therefore, passing to the
limit, we obtain p;” > p;- > ||L|| /2 > 0 and taking in account what is showed at the
beginning of this proof, we conclude that lim yf = y” = p. = py. The continuity is

proved.
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3.4 Proof of Theorem 3.2

Consider the bvp

{ —u (1) = Apu(f(t,u) +2w(t)), t € R, (3.18)

limy s o u(t) = limsyou(t) =0,
where A is a real parameter and § = g + 2pw.

By a solution to the bvp (3.18), we mean a pair (A, u) € R x W, satisfying the differ-
ential equation in the bvp (3.18). Notice that u € W, is a solution to the bvp if and
only if (1,u) is a solution to the bvp (3.18). For this reason, we will study the bifurcation
diagram of the bvp and by means of Rabinowitz’s global bifurcation theory, we
will prove that the set of solutions to the bvp consists in an infinity of unbounded
components, each branching from a point on the line R x {0} (see Lemma 3.15), joining
a point on R x {co} (see Lemma [3.16). Obviously, each component having the starting
point and the arrival point oppositely located relatively to 1, carries a solution of the bvp
and Theorem [3.2| will be proved once we compute the number of such components.
Thus, Theorem [3.2] is the consequence of the following Lemma Lemma and

Lemma First, let us introduce some notations. In all this section, we let

my = u (my +2w), Moo = Y (Moo +2w),
go(s,u) = u(f(su) —mo(s)),  goo(s,u) = p(f(s,u) —mel(s)),

and forv=0o0roo, L,, T, : W — W are defined as follows:
40 N
Lyu(t) = ]/l/ G;iv(t,s)mvuds,
+0o0
Tyu(t) = y/ Gg(t,s)ugy(s, u)ds.

Lemma 3.15. Assume that Hypotheses (3.4)-(3.6) hold, then from each (g, o) bifurcate two

unbounded components of nontrivial solutions {;* and {;”, such that {} C R x S}.

Proof .
It follows from Lemma 3.9 that solutions to the bvp (3.18) are those satisfying the fixed
point equation
u = ALou + ATo(u). (3.19)
Let us prove now, that all characteristic values of Ly are of algebraic multiplicity

one. To this aim, let u € N ((ux(g,79)Lo — I)?) and set v = (py(q, o) Lou — u. Then
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v € N(ur(q,mo)Lo — I) = Repy and p; (g, mo)Lou — u = ¢y for some 7 € R. In another

way, v satisfies the bvp

—u" +q(t)u = (g, mo)mo (£) u — (g, 7o) mo(t)¢x, t € R,
{ limy—, oo u(t) = limy— 4o t(t) = 0.
Multiplying the differential equation in the above bvp by ¢, and integrating on IR, we
obtain
g 0) [ moghdt =0,

leading to # = 0 and u = u (g, mp)Lou € Repy.

Now, we need to prove that To(u) = o(||u]|) near 0. Indeed, let (u,) C W with
lim ||u, | = 0. It follows from Hypothesis (3.6), that for e > 0 there exists § > 0 such that
forallu € [—6,6] and s > 0, |go (s,u)| < €. Therefore, for n large enough

T t Foo ~

% < / G5(t,8) 180(s, un)|ds < G 1o€,
n —00

proving that Ty(u) = o(||u||) near 0.

Let I; be the projection of W on R¢y, W = {u € W : [u = 0} and let for & > 0, 5 €

01), v==
Kz ={(Au) € Rx W |A—pu(q, fitg)| < ¢ and vigu > 1 ||ul[}.

Since Lemma [3.9| guarantees that the operators Ly and Ty are respectively compact and
completely continuous, we have from Theorem 1.40 and Theorem 1.25 in [52], that from
(1 (g, 1119),0) bifurcate two components ;" and {; of nontrivial solutions to Equation
such that there is {o > 0, {{ N B(0,{) C Kg, forall { < {p and if u = agy +w € {}
then [A — p(q,mg)| = o (1), w = o (|a|) for a near 0.

We claim that there is § > 0 such that {} N B(0,{) C R x S}; Indeed, let (A,, un)@l C
¢ be such that lim (A, u,) = (ux(q,10),0), we have then lim A, f (s, un(s)) = px(g, mo)mio(s)
and Lemma guarantees that there is ngp > 1 such that u,, € Sk for all n > ny. More-
over, if u, = ayPyr + wy then lim Z—Z = ¢ in W, proving that vu,(t) > 0 for t in a right
neighborhood of —co.

Also, if (A«, ux) € ¢} then for all sequence (A, ”n)nzl C (} being such that lim (A, u,) =
(As, x), we have from Hypothesis that lim A, f (s, un(s)) = Axf(s,ux(s)) in W and
Lemma guarantees existence of ny > 1 such that u, € Sk for all n > ng. This shows
that ¢ C R x S and (] is unbounded in R x W, ending the proof. =
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Lemma 3.16. Assume that Hypotheses (3.4)-(3.6) hold, then for all k > 1 and v = =, the

component (. rejoins the point (yy (4, M) ,00).

Proof .
First, let us prove that for all k > 1 and v = =, the projection of ; onto the real axis is

bounded. Indeed, since 0 is the unique solution to the bvp

—u"+q(t)u =0, t € R,

the projection of {; onto the real axis is contained in (0, +o0), namely, if (u,u) € g}
then u > 0. Moreover, if (y,u) € (] then we read from the bvp that p =
mi (G, f(-,u(-) + 2w), then taking in consideration Hypothesis (3.4), we obtain from As-
sertion 4 in Theorem B.1]that y = i (7, f (-, u(+)) + 2w) < g (G, w) .

Now, let (p,,, un) be sequence in {} with limy, o ||uy|| = 400 then v, =

[t |

satisfies

Too(14n)
[[vn |

Notice that Hypothesis implies that T (u) = o(||u]|e) at co. Combining this with

Un = AyLooUyn + Ay (3.20)

the compactness of L., we obtain from (3.20) existence of v, ,v_ € W with |jvy| =

|lv—|| = 1 such that Lev+ = p4v4+ and Lov— = p_v_ where py = limsup p, and
p— = liminf u,.
Consequently, we have y = p; (§,7M) and p— = p; (g, 7Me) for some integers

I,,1_ and since each of v, and v_ is a limit of a subsequence of (v,) C S}, we obtain

ly =1 =kand py = p— = (7, o). ®

Lemma 3.17. Assume that there exist two integers i,j with 1 < i < j such that one of the

following situations holds

pi(q,mo) < p < pj(q,meo) or pj(q,mo) < p < pi(q, Meo).
Then
pild, o) <1 < pj(q, 7o) or pj(q,1mo) <1 < pi(q, eo).
Proof .
Let ! > 1 be an integer and « = 0, 0o, we have to prove, y;(q, my) < p implies y;(q, my) <

1 and p;(q,mc) > p implies u;(q, M) > 1. We present the proof of the implication:
u1(g,me) < u = w(g,my) < 1, the other is checked similarly. Let ¢ € S; and ¢ € S;
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be respectively the eigenfunctions associated respectively with y; = u;(gq,my) and ji; =

1;(g, 71 ) and let (z]);:é be the sequence of zeros of ¢. Each of the pairs (y, ¢) and (i, ¢)

satisfies
—u" 4+ qu = wmeu, t € R, q —u" 4+ qu = (Iumye +2(f; — V)pw)u, t € R,
an
lim; o u(t) = limy 100 u(t) =0, limy, oo u(t) = limy— yoo u(t) = 0.

By the contrary, suppose that y > 1, then we have
(ymye +2(p; — Vw) — pymye = (pyp — py) me +2(f — 1)pw > 0 ace. t € R.

Thus, applying Lemma we get that in each interval (zj,zj+1), j =0,...,1 -1,
there is a zero of ¢, contradicting ¢ € S;. This ends the proof. m

Remark 3.18. Let q and c be two positive constants and notice that the solution of the

ordinary differential equation —u" + qu = cis ¢(t) = g + ae” VT + BeVit where a, B are

real numbers. Since lim;—, o ¢(t) = limy— 100 p(t) = 7, the bvp

—u"4+gqu=cinR,

admits no solution. This shows that Hypothesis (3.4) is indispensable for existence of

solutions.
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Chapter I

A class of Sturm-Liouville BVPs with an

unintegrable weight

41 Introduction

Sturm-Liouville boundary value problems (bvp for short) have been the subject of
hundreds of articles during the previous five decades, where existence and multiplicity
of solutions have been investigated. Many of these articles concern existence of nodal
solutions for second order differential equations subject to various boundary conditions;
see, for example, [11], [12], [20], [31], [32], [33] [42], [41], [43], [44], [45], [46], [49], [50],
[52], 53] [54], [55], [56], [57], [58] and references therein.

Nodal solutions appear as eigenfunctions to the half eigenvalue problem

—u" +qu=0omu+aut —Bu" in (0,1),
q B (0,1) @)

u(0) = lim; u(t) =0,
where 0 is a real parameter, q,m,a,f € C([0,1],R) and m > 01in [0,1].
To the author’s knowledge, such a bvp has been studied for the first time in [11],
where H. Berestycki introduced the concept of half-eigenvalue. He proved that the bvp
and (o)

li admits two increasing sequences of half-eigenvalues (o}") such that

k>1 k>1

Oy, the eigenfunction associated with ¢}/, admits exactly (k — 1) zeros in (0,1), all are
simple and v8; (0) > 0. The conditions g,m,a,f € C([0,1],R) and m > 0 in [0,1]
have been relaxed in [8] to g,m,a, B € L' ([0,1],R), m > 0 a.e. in (0,1) m > 0 a.e. in a

subinterval (¢, 77) of [0,1]. Notice that the concept of half-eigenvalue generalizes that of
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eigenvalue and for the role played by this notion, we refer the reader to [11], [14], [32],
[55]], [56], and [57].

In this chapter, we consider the case of the bvp where m,a, p € C([0,1],R),
m > 0in (0,1), m(tp) > 0 for some ty € [0,1],and g € C([0,1),R) with fol g(t)dt = +o0.
Notice that the results obtained in [11] and in [8] do not cover such a situation. However,
we prove in Section 3 that the Berysticki’s result holds true for such a version of the bvp
@1).

In Section 4, we investigate existence and multiplicity of nodal solutions to the bvp

—u" +qu = ¢(t,u) in (0,1),
qu = g(t,u) in (0,1) @2

u(0) = lim;; u(t) =0,
where g € C([0,1),R) with fol g(t)dt = +oc0 and ¢ : [0,1] x R — R is continuous. The
nonlinearity g is supposed to be sublinear, assymptotically linear and superlinear. This
interest is mainly motivated by that in [49], [46] , [45] and [44] where is considerd the
version of the bvp with g = 0 and the nonlinearity g is separable variable; Namely

{ “u" () =a(t)g(u (b)), te (0,1),
(0) =u(1) =0,

—~
~

(4.3)

with a : [0,1] — [0, +00) is continuous and does not vanish identically and f : R — R is
continuous.

Let go = lims—0g(s)/s, oo = limys|o0 §(5)/s and (pix )y~ be the sequence of eigen-
values of the bvp

—u" (t)=ua(t)u(t), te (0,1),
{ u(0) =u(l) =0.

Authors of the paper [49] under the assumptions that

(A)a>0in [0,1],

(B) a is continuously differentiable,

(C) g(—s) = —g(s) forall s € R,

(D) g(s)s > 0 forall s # 0,

(E) g is locally Lipschitzian,

(F) in the case where g9 = oo, ¢ is nondecreasing and g(s)/s is nonincreasing on
(0,s¢] for some sy > 0,

proved by means of a shooting method, that if for some integer k, Ay < g(s)/s < Ay for
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all s # 0, then except the trivial function the bvp has no solution and if gp < Ax < geo
Or oo < A < go, then the bvp has a solution having exactly k — 1 zeros in (0,1),
all are simple.

In [45], R. Ma and B. Thompson improved the existence result in [49]. Just under
Hypotheses (A) and (D), they proved that if 0 < ggp < A < goo < @ o0r 0 < goo < Af <
Qo0 < oo, then the bvp has two solution u and u_, each having exactly k — 1 zeros
in (0,1), all are simple and for v = + or —, vu,, (0) > 0. In [46], where Hypothesis (A)
relaxed to:

(A) a > 01in [0,1] and does not vanish identically on any subinterval of [0, 1],

they obtained the same result.

As it is mentioned in [45], we conclude from the above result that if Hypotheses (A’)
and (D) hold and if there are integers k,i such that 0 < gp < Ay < Apy; < oo < 0 OF
0 < goo < A < Mgy < Qo < 00, then for each j € {0,1,..i} the bvp has two solutions
uyjand u_,j, each having exactly k +j — 1 zeros in (0,1), all are simple and for v = +
or —, vuy, i (0) > 0.

In [44], authors consider the cases where the nonlinearity f is superlinear and sub-
linear. They proved that if Hypotheses (A), (D) hold and g9 = 0, go = o0 or Hypotheses
(A), (D), (F) hold and g« = 0, then for each j € IN = {1, ...} the bvp has two solu-
tion u; , and u; _, each having exactly j — 1 zeros in (0,1), all are simple and for v = +
or —, vu;/v (0) > 0.

Main results of Section 4 concern nodal solutions to the bvp in the cases where
the nonlinearity g is respectively asymptotically linear, superlinear and sublinear. All
are obtained by means of the global bifurcation theory due to P. H. Rabinowitz and they
provide existence and multiplicity of nodal solutions with less conditions relatively to

that obtained in the above cited papers.
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4.2 Preliminaries

4.2.1 General setting

Statements of main results in this chapter need to introduce some notations: in what

follows, we let

E=C([0,1,R), E*¥ ={me€E:m>0in [0,1]},
I ={m € E" :m > 0in a subinterval of [0,1]},
F++:{mer+'m>0in [O 1]},
0= {qecml L L +oo},
Qt={q€Q:q(t)>0forallt e (0,1)},
Q4 = {q €Q: fol(l —s)g(s)ds < 00} ,
W ={ueC(0,1),R) : u(0) = lim;_,q u(t) =0},
Ch (1), R) = {u & C (10,1),R) : supycipy) [ (1)] < oo}
wl=wnc}([0,1),R), W*=WINnc2([0,1),R).
The linear spaces W and W, are respectively equipped with the norms ||| and ||-||;
defined by ||u[| = SUPieo,1] [u(t)| and [ull, = SUPieo,1] |u'(t)|. Obviously, (W, ||-||) and
(WL, ||-||;) are Banach spaces.
For an integer k > 1, S,j denotes the set of all the functions u in W1 having exactly
(k —1) zeros in (0,1), all are simple and u is positive in a right neighbourhood of 0,
S =— S and Sy = S US . Foru € S, (z]) FWith0 =25 < 2y < ... < z = 1 and
u(zj) =0forj=1,..,k—1,1is said to be the sequence of zeros of u.
Throughout this paper, for ¢ € Q the operator £, : C2([0,1),R) — C([0,1),R) is
defined by Lyu = —u" + qu.
For v = + or —, let I : W — W be the operator defined for u € W by ['u(x) =

max(vu(x),0) = u¥(x). We have for all u € W
u=I"u—T"u and |u|=I"u+1I u

This implies that, for all u,v € W,

Ity —Ito| < (lugvl + Hulgl?)H) <|u-o|,

e e N (44)
I"u—1I"v| < (52 4+ 552 <ju—o),

and the operators I, I~ are continuous.
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4.2.2 The Green’s function and fixed point formulation

In all what follows, we let for g € Q, 'Y, be the unique solution of the initial value

Lyu =0,
u(0) =0, u'(0) =1.

Lemma 4.1. For all g € Q%, the function 1, has the following properties:

problem

i) ¥e(t) >0, ¥(t) > 0and ¥7(t) > 0 forall t € (0,1].
ii) lim;_,q ‘Ffi(t) = +o0.
iii) The function ¥,/ ‘FZI is bounded at t = 1.

!

vi) If g € Qg then ¥4(1) = lim;_,q ¥4(t) < 0.

Proof .

Let g € Q" and leta € (0,1) be such that ¢ = inf,c(,1) ¥4 (5) > 0.

i) Suppose on the contrary that ¥;(f) = 0 for some t on (0,1) . By the boundary
condition ¥;(0) = 1, fp > 0 we assume that ¥;(t) > 0 on [0,tp). Thus 1, is strictly
increasing on [0, £y). On the other hand we have from the equation —u" (t) + q(t)u(t) =0
that Y7 (to) = q(t)¥4(to) > 0, and accordingly t; is a minimum value point. This is a
contradiction, then ¥, > 0 thus ¥ (t) > 0 and since ¥;(0) = 1, we obtain ¥} > 0.

ii) We have for all t € (a,1)

ACIEN CHURY R HOTY

leading to lim;_,q ‘Féi(t) = +o0.
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iii) We have for all t > a
(qﬂq(t))z— (w;(a))z ~ 2 / Y (5) ¥ (5)ds = 2 / ()Y ()Y (5)ds
> o (1) - (¥4(0)%),

leading to
2 1 2
(Tq(t)/‘f;(t)) <+ (‘P;(a)/‘i’;(t)) for all t > a.

Hence, we deduce from Assertion ii), existence of a. € (a,1) such that

Y, (t )/‘I"(t) \/gfor all t > a,.

iv) By means of L'Hopital’s rule we obtain

ft Y245 1
lim ¥, ( =lim T — =1i =1.
150 3 / ‘I’Z t—>0 ‘I’q(t))fl 50 (1)

v) Again by means of L'Hopital’s rule we obtain

L ds 1
lim ¥ —limo =0,
im0 ), w2ty T i ¢

vi) First, notice that if g € Qg then for all f € (a,1)

// T)dtds < // T)dtds
_ —(1—t)/0 q(s)ds—i—/ot(l—s)q(s)ds

Then, for all s € (4,1)

Yo(s) = (‘I’;(a) +/ ¥ (s) ds) = (‘I’;(a) + asq(s)‘Fq (s)ds)
< (‘{’;(a) + ¥, (s) /:q (1) dr)
leading to

Y (s) ¥l(a) s
o< 1T 2y / T)dt <
Integrating on (a, ), we obtain

In (Tq(t)s Fy(@) +// 7)dtds < ,(”)+z (1= 5)q (s) ds,

Y, (a) (a)
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leading to
Y, (t) < ¥y(a)exp (‘I’;(a +2/1(1 —5)q(s) ds) :
Yy(a 0
As ¥, is increasing, we have ¥,(1) = lim;_,; ¥,(f) < +oco.
The proof of Lemma [4.1]is complete. m

~— | ~—

Because of Properties (ii), (iii), (iv) and (v) in Lemma the function

1, if t=0,
1 ds .

CI)q(t) = t) ft %, if te (0,1), (45)
0, i =1,

is well defined and it is the unique solution of the bvp
Lyu=0,in (0,1),
u(0) =1, lim;_,; u(t) = 0.

Lemma 4.2. For all g € Q, the function ®4 has the following properties:
a) ®y(t) >0, P(t) <0and @7 (t) >0 forallt € (0,1),

b) Forallt € [0,1], $q(t)¥;(t) — ¥a(H)Py(t) =1,

¢) The function @,/ ®} is bounded at 1.

Proof .
Letg € Q' and a € (0,1) be such that &« = inf;>, q(t) > 0.
a) We have respectively from and @7 = @y, that Py(t) > 0 and P7(t) > 0
for all t+ € (0,1). Since the function ‘I’ﬁi is increasing, we obtain from that for all
€(0,1),

1 ds 1 B 1 1
— — < dS — < —= <0.

D (1) = ¥ (t)

b) We have from that for all t € [0, 1]

1 ds

JGLHOREHOLACER FOLFCN -2 20 (‘1’3“) & %) -

c¢) We have fort > a:

(—q>;(t))2 - 2/ (s )) dsz/th(S)%(S) (—‘PQ(S)) ds
> a (Dt )) :
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This leads to
%bUV@%ﬂr:<®(ﬂ/—@%ﬂf<ﬁ1bMMt>T
q q q q ~ =

and so,

sep| /0] < 72

The proof of Lemma [4.2]is complete. m

Setforge QT and0<6<y <1

Yoo (t) = Pg(0)F,(t) —Fq(0) Dy (1),
Yy (1) Pq (t) — Py () ¥q (t)

P )y = ,
7071 ( ) Tq,@ (77)
_ _ % ()
( 0, if min(t,s) <9,

q)E]GU() ),if@ﬁtﬁsgiy,

- g0 (t
Gy(0,1,t,5) = 20 (D ¥p(s), if0<s<t<y
) >

01f min(t, s

Gy(0,t,5) = lim Gy(6,1,t,5) = o (1), 1f0 <t <s,
n—1

s),if(?gsgt.

1,
{ , if min t,s) <0,

®, (1)
Do (t) = q)q 6)’ s ¥oo(t) = @g(0) ¥y (t) — ¥y (0) Py (t) and
q
0, if min(¢,s) <0,
Gq(er tzs) = q)q,9 (S) qug (t) ,if0 <t <s,

CI)qlg (t) Tqﬁ (S) ,if0<s<t.
We have then for all ¢ € Q" and all 6,7 € [0, 1]

Dy 0,1 <I>q o ¥ g0 = q)q,g‘f’;,g — CIJZIIG‘I’L]/Q =1 in [0,1]
and
Gy(0,t,5) = Gy(t,s) — EZ—EZ;@E,(S)QJ(O for t,s > 6.
where

D, () ¥, (s), f0<t<s<1,
Gq(tls) - Gq(o, t,S) = q( ) q( ) I
g (s) ¥y (), fO<s<t<l

77

(4.6)

(4.7)
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Lemma 4.3. We have for all g € Qt and 6,17 € [0,1) with 6 < 1 :

1. Gy4(0,1,t,5) < Gy(0,1,s,s) forall t,s € [0,1],
2. G4(0,t,5) < Gy(0,s,s) forall t,s € [6,1],

3. G4(0,1,t,8) > 06,1 (1) Gq((),n,s,s)for all t,s € [0, n] where 06,1 (1) =min(t — 0,7 —t) /Y0 (n).
Moreover, if g € Qy then ¥q (1) = limy_,1 ¥y (t) < coand Gq(6,1,t,5) = pg, (t) G4(6,7,5,5)
forall t,s € [0, n] where Py, () =min (£ =0, —t) /¥g0(1).

Proof .
Assertions 1 and 2 are obtained from the monotonicity of the functions ®;4,, ®,¢ and

¥;,6- We have

Yoo(t) .
G0 ts) | vy ife<t<s<iy, s
Gq(8,7,5,s) imzlng, ife<s<t<p, '
.01
Vo(t)
. Fyo (1) fo<t<s<my,
D0, (1), if0 <s<t<m.
Since
t t
¥, (1) = /9 ¥ o (s)ds > /9 ¥, (6)ds =t — 6
and

_ U Y 1 & " —t
D 0, (1) —/t ( P, (S)> ds Z/t ( P 0, (’7)) ds = Tyo (1)’
we obtain from (4.8)),

> P8,y (£).

t—6 :
Gq(elﬂ/tls) > { W’ lfQStSS SW,

Gq(0,1,5,5) 1t <s<t<u.

Tq,e (77) ’
This ends the proof. m
Lemma 4.4. We have for all ¢ € Q%

i) Efi = SUP; te(o,1] Gq(t,s) = suppscq P (1) Fy(t) < oo,

ii) éq = SUPy s se(o,1] Gy(0,t,5) < oco.
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Proof .
Letg € QT and T € (0,1) be such that « = inf;>7¢(t) > 0.
i) Taking in consideration that Y, is increasing, we obtain from , that for all

t,s €[0,1]

Gy(t,s) < @q(t)¥y(t) = (3’7(?) (Tq(t)lf;(t) fl\%)

a(t)
¥, (t) 19/ (s)ds Y, (t)
< (an)) (qh(” t '?5@) ) . (TZO))'

This together with iii) in lemma leads to

Gy = sup Gy(t,s) < sup Dy(t)¥,(t) < co.
t,s€[0,1] te[0,1]

ii) Because of @, is decreasing and Y is increasing we have for all s,¢ > 6

o
IN

Gy(0,t,5) < Dy(t)¥y(t) + ;(e)cbq(t)@q(s)
D, ()Y, (t) +,(0)Dy(0)

< 2 sup Dy(t)¥,(t) < oo.
t€[0,1]

N

The proof of Lemma [4.4)is complete. m

Lemma 4.5. Forall g € QF, 0 € [0,1) and h € W, Ly gh(t) fo (6,t,5)h(s)ds is the
unique solution in (0,1) to the bup:

Lou=h(t), 6<t<l,
u(0) = lim;_,; u(t) =0

and the operator Ly : W — W1 is continuous. Moreover, if F : [0,1] x R — R is a continuous

function such that F(0,0) = F(1,0) = O, then the operator T, g : W — W defined for v € W by

1
TMMOZA(Mamﬁ@mw%

is completely continuous and u € W is a fixed point of T g if and only if u is a solution to the

bup

{EW—P@mm,9<t<L
v(0) =v(1) =0.
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Proof .
Let h € W and set H (t) = L, gh(t). We have

H(§) = /01 G(6,6,s)h(s)ds = 0

and differentiating twice in the relation

1
H(t):/o G(0,1,5)h(s)ds = Dy (¢ /qu (s)ds + ¥ (¢ /q>q9 (s) h(s)ds
we obtain

H' (1) = q(E)H(E) + (D)5 () g0 () = Dyo (1) ¥

” (t)) h(t) for all t > 6.

This together with lead to
L;H(t) = h(t) for all t > 6.

We have for all t > 0 :
1 ‘{’q (9) 1
= @t / ¥, (s)h(s)ds + ¥, (t) / @, (s)h(s)ds — ~1 2 D, (t) / @, (s)h(s)ds.
t cI)q (9) 0
Let us prove that lim;_,; H(t) = 0. Clearly, if fel Y;(s)h(s)ds < oo then
lim;_,; @y (t) fet Y;(s)h(s)ds = 0 and if fel ¥;(s)h(s)ds = oo then taking in consideration
Assertions d) in lemma [4.2} i) of Lemma and lim; 1 h(t) = 0, we obtain by means
of the L'Hopital’s rule

¢ t
o [ xiomons — py

= tim (<0 ) (@q(0% (1) () = 0.

t—1
Similarly, if lim; 3 ¥, (f) < oo then lim;_,1 ¥, (t) [ @4(s)h(s)ds = 0 and if lim, ,; ¥, (t) =
+o00 then taking in consideration iii) in lemma 4.1} i) of Lemma[4.4land lim; ,; h(t) = 0,

we obtain by means of the L'Hopital’s rule

1 1
lim ¥y (1) [ @y(s)i(s)ds = lim [N
t

t—1

¥y(t)
i a\b) _
- }E)I}(Tzl(t) )qDQ(t)IY‘J(t)h(t) 0
Now, for any h € W, we have
1
Lgsh] = st |Lyoh()] = sup | [ Gte sy < G,
tef0,1 tef0,1] 1/0
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and taking in consideration we obtain

1
H(qugh)/ = sup ‘( qgh ‘— sup CID /‘I’qg ds~|—‘I’ )/ D, g (s) h(s)ds
te(0,1) te(0,1) t
< sup (<@ () [ 40 6) I ds ¥y (1 / @0 (5) 1(5) )
te(0,1) 6 t

t 1
< sup <—<I>f,,e (1) o0 (1) /9 ds + ! g (1) Dy (1) /t ds) 1]

te(0,1)
< [IAll-

The above estimates prove that the operator L, 4 is well defined and is continuous.

Now, We proof that T, is completely continuous. Notice that T,y = IoL;90F
where F : W — W is defined by Fu(t) = F(t,u(t)) and I is the compact embeding of
W' in W. Because that the mapping F is continuous and bounded, the operator T, 4 is
completely continuous.

At the end, if u is a fixed point of T; 4 and h = Fu, then u = L, ph and

Lau(t) =h(t) = F(t,u(t)), 0 <t<1,
u(0) = limy_,; u(t) = 0.

In the reminder of this chapter, for g € Q* and m € E, we let Lg,m, Lq m,L’ W —=W

the operators defined by

Lgmu(t) fo ym(s)u(s)ds,
Lz u(t) = (Lq,m o I*) u(t) = Lgmu™ (1),
Lowt(t) = (Lgmo I~ ) u(t) = Lomu~(t).
It follows from Lemma {4.5| that L, is compact and for v = + or —, Ly ,, is completely

continuous.

4.2.3 Comparison results

The following three lemmas will play important roles in this work.

Lemma 4.6 ([8]). Let j and k be two integers such that j > k > 2 and let ((jl)tg, (171);3) be

two families of real numbers such that

Co=C<8 <& < - <G1<C=1,

MN=¢<m<m<---<nj_1<n=1.
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If &1 < 11, then there exist two integers m and n having the same parity, 1 < m < k —1 and
1 <n <j—1such that

Cm < M <My < Cmt1-

. kiv . N\ J=ki
Lemma 4.7. For i = 1,2 let ¢; € S,”" N W, having a sequence of zeros (z;.)j_o . If for some
integers m,n with m < ky —1 we have n < ky — 1z}, < z2 <22, <zl . and g1 > 0,

then
>0, ifz}, < z%orz2 1<zm+1,

Zi
/ . P1Lgp2 — 2L

Zi; =0, ifz}, =22 <Zn+1 zl+1.
Proof .
Let Wr = ¢1¢5 — ¢o¢] be the Wronksian of ¢; and ¢, and without loss of generality,
suppose that ¢1, ¢, > 0in (22,22 ;) . We have then Wr(0) = lim;_,; Wr(t) = 0 and
Za1
/Z% P1Lgpr — 2Ly = Wr (zﬁ) — lLim Wr(t).

2
1,‘%,%rl

Therefore, we distinguish the following cases:

N 2 2 1
i) z,, <z <z, =2z, In this case we have

$1 (Z§> = ¢ (Z}n) ¢1 (2 ( n+1> ¢1 (2 ( m+1) =0,

leading to

/?1 D1Los — Loy = Wr(z2) = lim Wr(t)

z5 t*)Z n+1

= Wr <z}n> — lim Wr(t) =0.

2
t_>zm+1

ii) z1 < z < an <zl In this case we have

m+1°
n+1 <1 $1 |z ( n+1> >0, $2 (Z%z> $2(z ( n+1) =0, $1 (2 ( n+1> > 0 and ¢2 ( n+1> <0,
leading to
/Z j“ $1 Lo — p2Lgpy = Wr (zi) Wr( 22 +1)
= —Wr( n+1> = —¢1(z ( )‘Pz ( n+1> > 0.
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n >
z z1
m m—+1

Fig. A P
iii) z}, <22 < Z%_H < Z;1n+1: In this case we have ¢, (Z%) >0, ¢ (Z%) > and
0, ifz2. =1,
lim Wr(t) = Do,
2 $1(z01) ¢ (2010) , i 2540 < 1.

Thus, we obtain
2

/2”+1 $1Lop2 — p2Lgpy = Wr (zi)— lim Wr (1)
Zin t—22 4

> Wr (zﬁ) = ¢ (zﬁ) ) (z,%) > 0.

This ends the proof.

We end this section with the following lemma which is an adapted version of the

Sturmian comparison result.
Lemma 4.8. Let g € Q and fori = 1,2, m; € T and w; € C?([0,1),R) satisfying
Lyw; = miw; in (x1,X2)
and suppose that wy does not vanish identically, my > my and my > my in a subset of positive
measure. If either
i) xp < 1and wy(x1) = wa(x2) =0, or
ii) xp = 1 and wp(x1) = lim;_y w;(t) =0fori=1,2

then there exists T € (x1,x2) such that W(t) = 0.

Proof .

i) By the contrary suppose that w; > 0 in (x1,x2) and without loss of generality

assume that wy > 0in (x1,x7), then we have the contradiction:

0 > w (x2) wy (x2) — wy (x1) W) (x1) =

fxxlz ZUQ,qul — wlﬁqZUz = fxxlz (m1 — MQ)ZU1ZU2 > 0.
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ii) By the contrary suppose that w; > 0 in (x3,1) and without loss of generality

assume that wp > 01in (x1,1) , we have for t > x; that

(w1 (1) wy () — wi (t) wy (1)) —wr (x1) wy (x1) =

t t
fxl ZUZ,qul — wlﬁqwz = fxl (m1 — mz)wle > 0.
Since from lemma w1, wp € W1, we have

lim (wy () wh (t) — wi () ws (t)) =0 (4.9)

t—1

and so, the contradiction

1
0> —wq (x1) wh (x1) = / (my — mp)wiwy > 0.

X1

The proof is complete. m

4.2.4 The positive eigenvalue

The main result of this subsection concerns the existence of positive eigenvalue on

the bounded interval [0, 1].

Theorem 4.9. Forallge Q, m € T and 6 € [0,1), the eigenvalue problem

{ Ly =pmu, in (6,1), (4.10)

u(0) = limy, u(t) =0,

admits a unique positive eigenvalue uy (q,m,0). Moreover for q,m fixed, the function 6 —

11 (0) := 1 (g,m,0) is continuous increasing and we have limy_,q p1(6) = +o0.

Proof .
Letge Q, me T ,0€[0,1) and let @ be a positive constant such that § = g+ @m > 0

in [0,1]. Consider the eigenvalue problem

{ Lou = pmu, in (6,1) @11)

u(0) =limy_,y u(t) =0
and notice that y is a positive eigenvalue of the bvp if and only if yp — @ is a
positive eigenvalue of the bvp (4.10).
We have from Lemma 4.5| that u is a positive eigenvalue of if and only if !

is a positive eigenvalue of the linear compact operator Lz : W — W where

Lo o (t) = /0 1 G(6,1,5)m(s)u(s)ds.
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Let uy € W be the function defined by

0, if ¢ ¢ |21, 240
ug(t) =
(= 2)(H0 - p), dfre |2, 240],

we have then Lz, gug(t) > 0 = ug(t) for t € [O, ZGTH] U [%,1] and Lz, gug(t), ug(t) >0
for t € (29+1 z;e) _

This shows that Lg,,gtg > coug where ¢y = inf{Lqugug(t)/Mg( )i teE (29“ 2;:9)} > 0
and r(Lg,,6) > 0. We have from the Krein-Rutman theorem, that r(Lgy) is a positive
eigenvalue of Ly having a positive eigenvector ¢g. Obviously, #1(6,g,m) = 1/1(Lg ) is
a positive eigenvalue of the eigenvalue problem and p1(0,9,m) = j1(6,q,m) —
is a positive eigenvalue of the eigenvalue problem (4.10).

Now, let us prove uniqueness of the positive eigenvalue. Suppose that A is a positive

eigenvalue of the eigenvalue problem (4.10) having an eigenfunction 1, we have then

0= [ Lo+ 9oLt = Gu(Oq.m) ) [ mguy

leading to A = p1(6,9,m).
Let now 01,0, € (0,1) be such that 6; < 0, and set for i = 1,2, y; = u1(0;,9, m) with

the corresponding eigenfunction ;. We have

0> —45(62) tpl (02) = Jo, ¥2Lth1 — 1 Ly¥
— H2) fgz mpn
leading to p11 < up, proving that the function 6 — p1(-) is increasing.
At this stage let us prove the continuity of the function 6 — p(-). Let [, 6] C [0,1]
and 01,0, € [, 0] be such that 6; < 6. We have for all u € W with || u ||=1

1 1
\ngm,gzu (t) — L m,p,u (t)| = ‘/92 GqA(Gz, t,s) muds — /91 GqA(Gl,t,s) muds

¢

0, if t <61 <6y,
’fe ;(01,t,8) muds|, if 0, <t <6,

fg 7 (02,t,5) muds — fe 5 (01,t,5) muds

Set

,if 01 < 0, < t.
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then we have for 6, > t > 04,
’fe 7 (01,18 muds’ < ||m|| fe 7 (61,t,8)ds
(61)
ﬂwMﬁG%ﬂ%—%l% k¢¢)
= ||m|| fe 5 (t,s) ds+ft ts)ds
459 fel pads — g (1) [} gads)

9 (6

_ ||mH fe - (t,s)ds — l”q 1) ) Jo, qts) + v (¢ fthmzs—giggi) (1) [
( ),

= ||ml| (fy, G;

¢
ST 7(0) Sy, 99d5) + I} ads (Gl — Giay) (1)
gwmﬂf¢ﬂ) W
and for 6; < 6, < t,

+¢<w AﬂWrWHSM%—%

‘fez (02, t,5) muds — f9 5 (01,5 muds’ <
)fe < (62,t,5) — Gz (61, t, s)) muds‘ + ‘fe
‘(fe QbAmuds) ( Ezlg ¥q(62) ) ‘ ‘

1 $:(62)

< o] | (o) S50+

5 (01,1, s)muds‘
91,t 5 muds‘
}!92—91| < X102 —04].

The above estimates show that the mapping 6 — Lz, is locally Lipschitzian and so

it is continuous. Let (6,) be a sequence converging to 6. and let 6_,60, be such that
(6n) C [0—,0+]. Therefore we have for all n > 1

0 < p1(0+) < pa(6n) < pa(6-)
and the sequence (y1(6,,4,m)) converges (up to a subsequence) to some py, > 0. We
conclude by Lemma 2.13 in [10] and by uniqueness of the positive eigenvalue that p, =
#1(0+). Thus, the continuity of the mapping 1 (+) is proved

It remains to prove that

elg}ul() elg}r(Lqmg) e

We have for all u € W with |ju|| =1,
1
Lompu(t)] < / Gy (0,t,5) m(s)ds

< / Gz (t,s) ds+T ©) /91 D5 (t)Dg(s)m(s)ds
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Arguing as in the proof of Lemma we obtain limg_,; Y7 f 0 (s)ds = 0 and
because of fe 7 (t,8)m(s)ds < Gz fg s)ds, we have 11m9ﬁ1 fe 7 (t, s) (s)ds = 0 uni-
formely on [0, 1]. Therefore, we have proved that limg 1 7(Lg 6) = limg_, 1o ||qum,9 || =

0 and this ends the proof. m

4.3 The half-eigenvalue problem

Consider for g € Q, m € I'* and a, § € E the bvp:

{ Ly = Amu+au™ —pu~, in (0,1) 12)

1(0) = limy_y; u(t) =0,

where A is a real parameter.
Because that the function u — Amu +au™ — Bu~ is linear on the cones {u € E: u >0

in [0,1]} and {u € E: u <0in [0,1]}, the bvp (4.12) is said to be half-linear.

Definition 4.10. We say that A is a half-eigenvalue of if there exists a nontrivial solu-
tion (Ao, uo) of @.12). In this situation, {(Ag, tug), t > 0} is a half-line of nontrivial solu-
tions of @.12) and yy is said to be simple if all solutions (Ag,u) of 4.12), with uug > 0 in
a right neighborhood of 0, are on this half-line. There may exist another half-line of solutions
{(Ao, tvg), t > 0}, but then we say that Ag is simple, if uyvg < 0 in a right neighborhood of 0
and all solutions (Ag,v) of lie on these two half lines.

The case of the bvp (4.12) where q € E has been considered by Berestycki in [11].
He has proved that the bvp (4.12) admits two increasing sequences of half-eigenvalues.
So, the main goal of this section is to prove that the Berestycki’s result holds true for the

case g € Q. We begin with the following list of lemmas.

Proposition 4.11. Let g € Q,m € T and a, B € E. If (A, ¢) is a nontrivial solution to the bup
, then ¢ € S| for some integer k > 1 and v = + or —.

Proof .
Let ¢ > 0 be small enough and let A > 0 be such that y1(q — a«,m +¢) > —A. Consider
the bvp

Lovami = Amu +aut — Bu~ in
g+Am B (0,1), 113)

u(0) =limyqu(t) =0,
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and notice that A is a half-eigenvalue of the bvp if and only if (A — A) is a half-
eigenvalue to the bvp (4.12). Thus, we have to prove that if (A, ¢) is a nontrivial solution
to the bvp (4.13), then ¢ € S for some integer k > 1 and v = + or —. To this aim,
let (A, ¢) is a nontrivial solution to the bvp (4.13), we claim first that all zeros of ¢ in
[0,1) are simple. Indeed, noticing that the right hand-side in is lipschitzian, if
¢ (x) = ¢' (xx) = 0 for some x, € [0,1) then the standard existence and uniqueness
result of a solution to initial value problem leads to ¢ = 0. This contradicts the fact that
(A, ) is a nontrivial solution to the bvp (4.13).

Now, we claim that ¢ has a finite number of zeros. By the contrary, assume that ¢
has an infinite sequence of zeros, say (z,) such that lim z,, = z,, we distinguish then the
following two cases:

i. z, € [0,1), in this situation we have

6 (2) = limg (2) = 0 and ¢ (z,) — lim £ Z) =9 () _ o

Z;fl - Z*
This contradicts the simplicity of zeros of ¢ in [0,1).

ii. z, = 1, in this case ¢ satisfies for all n > 1
Loramtt = Amu+au™ — pu~ in (0,1),
u(zy) = limy_y u (t) =0.
Let for all m > 1 yu, = p1(q + Am —a,m +¢,z,) the positive eigenvalue given by

Theorem 4.9/ and let i, the normalized positive eigenfunction associated with ;. Notice
that

pn=p1(g+Am—a,m+ezy) > p1(q+Am—a,m+e) =p1(g—a,m+e)+A>0.

We claim now that for all integers n > 1, A > ;. Indeed, let I > n be such that ¢ > 0 in
(z1,2141), we obtain Lemma [4.7] that

Z141

0< [ o+ pLoput e [ o= =) [ map

1
leading to A > .
Therefore, we obtain from Theorm @4.9| the contradiction

A>limuy, =limu(g+ Am —a,m+¢,z,) = +oo.

This completes the proof of the lemma. m
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Proposition 4.12. Forq € Q,m € T, a4, € E, k > 1 and v = + or — the bop admits

at most one half eigenvalue having an eigenfunction in Sy

Proof .

Let (A1, ¢1) and (Ay, ¢2) be two nontrivial solutions to the bvp (4.12) such that Ay # A,
j=k
and ¢, ¢, € S} for some integer k > 1 and v = +, —, and denote for i = 1,2 ( ]> .
]:
the sequence of zeros of ¢;. First, we claim that there exists jo such that z].0 # 2]20;

2) =0forallje {1,..,k—1} and A; < A; and note that there

indeed, assume that ¢, (z]

exists j; € {1,..,k—1} such that meas ({m >0} N (z /25, +1>> > 0 and ¢1¢o > 0 in
(Zh z; +1) Applymg Lemma we conclude that there is T € (z]zl,zjzl +1> such that

¢1 (T) = 0 and this contradicts ¢; € S;.

Now, let k1 = max {l <k: z = z2 forall j < l} and (C:f])J =k—k

j=k=k1
and (77]')]':0 be the
families defined by ¢; = zk1 +i and N = Zk1 +i and without loss of generality, assume
that ¢ = z}q g <m= zil 1~ We obtain from Lemma that there exist two integers

m,n > 1 having the same parity such that

1 2 ) 1
Cm = Zjy o < n = Zin < i1 = Zignt1 < Gmt1 = Zktmi1

and we have from Lemma 4.7 that

1 &1
0< /fj ¢2£q471 — 4)1,6(14)2 = ()\1 — )Lz) /(;K me1¢o (4.14)
0 0
Mn+1 Mn+1
0< / P1Lgpr — P2 Lgpr = (A2 — /\1)/ me1¢z. (4.15)
Mn Mn
Therefore, we obtain from (4.14) that A; > A,, and from (4.15) the contradiction A1 < Aj.

This ends the proof. m

Proposition 4.13. Let g € Q, m € I't, o, p € E and assume that (A1, 1), (A2, ¢2) are two
solutions of the bup (4.12) such that ¢; € Szi’v fori=1,2. Ifky > kq then Ay > Aj.

Proof .

By the way of contradiction assume that A; < A; and let fori = 1,2, (z})J be the se-
=0
quence of zeros of ¢;. Set k. = max {l <k:z} =z forallj < l} and consider (C])] =<k

]
)]kkl

and (7; the families defined by ¢; = zk* +i and 77; = We distinguish then two

Zk +j°
cases.
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i) ¢1 = Zi* a>m= Zi* .1 In this case we have from Lemma @

0< [" trLage— iaLgn = (2= 1) [ g

o

leading to the contradiction A; < As.

ii) ¢ = z,l* g <m= z%* +1- In this case, Lemma 4.6/ guarantees existence of two integers
m, n having the same parity such that
_ 1 _ 2 _ 2 _ 1
Cm = Zigyam < Mn = Zkj oy < Tnt1 = Zk1n41 < Cm+1 = Zi sms1s

and we have from Lemma 4.7]

Mn+1 Mn+1
0< /7 O1Lodr — Loy = (Ay— A7) [7 e

leading also to the contradiction A; < Aj.

This ends the proof. =

Proposition 4.14. Let g € Q, m € I and «, B € E. If A is a half-eigenvalue of the bup ,

then A is simple.

Proof .

Let A be a half-eigenvalue of the bvp having two eigenfunctions ¢, ¢, and without
loss of generality, assume that ¢,¢, > 0 in a right neighborhood of 0. Because of
Proposition we have that ¢1, ¢ € Slj for some integer k > 1. For i = 1,2, let

(z;.);zg*l be the sequence of zeros of ¢;. We have that 2]1. = 2]2 forall j = 0,...,k. By

induction, clearly z% = z% = 0 and if 2]1. = ZJZ then 2]1- = 2]2 IRE Indeed, if for example
2]1- 1 < 2]2- 1 then Lemma @ leads to the contradiction

Z}+1
0< . (PZ‘CQ(Pl — ¢1£q¢2 =0.

]
Because of the positive homogeneity of (4.12) and ¢1,¢, € S, ¢;(0) > 0, ¢5(0) > 0
and ¢; = (¢ 0)) Ly, = (gbé(O))_1 ¢, are eigenfunctions associated with A satisfying

¥1(0) = ¢2(0) = 0 and ¥} (0) = g5(0) = 1.

Therefore, ¢ = 11 — , satisties

$(0) = ¢'(0) =0,

90
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proving that ¢, = ¢, in [0, 1]. This completes the proof. m

In what follows and when for functions ¢ € Q, m € I'" and a, B € E the half-

eigenvalue of the bvp (4.12) associated with an eigenfunction in S/ exists, this will be

denoted by A}(g,m, a, B).

Proposition 4.15. Let 1,92 € Q, m € T, ay, a2, B1, B2 € E and assume that for some k > 1
and v = £, A{(q1,m, a1, B1), A (g2, m, &1, B1), AL(q1,m, a2, B1) and A} (q1,m, a1, B2) exist.

1. Ifay < wpae. in (0,1), then AY(q1,m, a1, B1) > AL(q1,m, a2, B1).
2. If B1 < Boace. in (0,1), then A} (g1, m, a1, B1) > AY(q1,m, a1, B2).
3. If g1 < goae. in (0,1), then Al (q1,m, a1, B1) < AJ(q2,m, a1, B1).

Proof .
We present the proof of Assertion 1, Assertion is checked similarly and Assertion 3
is a consequence of Assertions 2 and 3. Suppose that a1 < ap and for i = 1,2, set
Ai = /\V(m txi, B1). Let ¢; be the eigenfunction associated with A; having a sequence of
zeros (z ]) i= 0 We distinguish two cases:

i). z- = ZZ forallj € {1,...,k—1}. Let j; € {1,...,k— 1} be such that meas({m >

0} N (z2 )) > 0, we have

] ’ ]1+1

72

_ Z]Zl+1 _ ]17L
0=/, ¢Lgpr — p1Lgpo = (M1 — A2) [ 1 mprg

]1 11

+f”“wwmw—w%¢ﬁ+f”“mem—mﬁwo (4.16)
— A2) fzjzﬁ m12 + f,z]zlH (w191 P2 — a2, 1) -

Thus, from (4.16) in both the case ¢1,¢» > 0 in (z and the case ¢1,¢2 < 0 in

]’]+1)

2 .2
(Zj1’zj1+1)' we obtain A > Aj.

ii) 2]1.0 #* 2]20 for some jo: In this case set k; = max{l < k : z!

_ 2 ;
j =zjforallj <1} If

1 2
Zj 11 < Zgy 410 then

0 < /%“@g% BiLogr = (= 22) [ et [ (00— a2) g

z
kq

j=k—k

proving that yq > pp and if zk b < zk 41 then considering the families (c:,‘]) and

(17]); ]6 “ with gj= zk1 +i and 7; = zk1 +jr we obtain from Lemma . that there exist two
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integers m,n > 1 having the same parity such that

_ 2 . | _ 1 _ 2
Cm = Zhym < Mn = Zkjpn < Ml = Z g1 S Cmy1 = Zky+m+1-

Therefore, we obtain from Lemma

0< /’7’7”“ P2 Lop1 — P1Lor = (M1 — A2) /}7%+1 me1¢a + /;M (a1 — a2) P12,

leading to A1 > A,.
This completes the proof. m

Proposition 4.16. Let g € Q, my,my € 't and o, B € E. Assume that my < my in (0,1),
my < my in a subset of positive measure and A}(q,mq,a,B), AJ(q,my,a,B) exist for some
integer k > 1 and v = + or —. If either A} (q,my,a,B) > 0 or Aj(q,mp,a,B) > 0, then
AL(q,my, o, B) > A[(q,mo,«, B) and if either A} (g, my,«, B) < 0or Aj(q,mp,a,B) <0, then
Mg, my, ., B) < Aj(g,mo,a, B).

Proof .

Assume that for i = 1,2 A; = A{(my,a,B) exists and has an eigenfunction ¢; having
a sequence of zeros (z;);ig First, we claim that there exists jo such that z =+ z]0
Indeed, if 4)1(22.) =O0forallj e {1,...,k—1} and j; € {1,...,k—1} is such that

meas({my > my} N (z? )) > 0, then takmg in account that ¢1¢ > 0 in (z

J’J+1 J’h+1)

we obtain by means of Lemma [4.8]in the case A1 < A (the other caes is checked similarly)

that there exists T € (22 zi, %5, 2 1) such that ¢ (1) = 0. Obviously, this contradicts ¢; € S}.

Now, let k; = max{l < k : z = Z2 forall j < I}, and ((:])] “ki and (17])] K1 be
the families defined by (jj = zk1 i and N = zk1 i Assume that A; > 0 or A, > 0, we
distinguish then two cases.

i. 1= z,lc1 q<m= zil +1: In this case we have from Lemma @
&1 ¢1
0< /g G2 L1 — P1Lgr = /C (Aimy — Apma) o
0 0
61 &1
= (A — 7\2)/5 mip1 + AZ/C (my — ma) P12
0 0

41 1
= (M — 7\2)/ map1p2 + /\1/ (my — ma) P12
%o %o
and this proves that in both the cases A; > 0 and A, > 0, we have A1 > Aj.
ii. ¢1 = z,lcl > = z%l +1: In this case Lemma guarantees existence of two
integers m, n having the same parity such that
— 2 < E, =z < _ .1 < _ 2
Mn = Zk, 4n m = Zk +m m+1 = Zk 4m+1 S Mn4+1 = 2k 4pp1-
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As above, we have from Lemma [4.7]

Cm+1 Cerl
0< /g P1Lgp2 — P2 Ly = /(: (Aamy — Aymy) 12

€m+1

§m+1
= (A2 — A1) /Cm map1¢o + Aq /g (my — my)p1¢2

m

[:m-&-l (?m-&-l
= (M —A2) /C ma$1¢p2 + )\1/g (mq — my) P12

and this proves that in both the cases A; > 0 and A, > 0, we have A; > A,.
Assume that Ay < 0 or A, <0, we distinguish then two cases.

coe _ 1 _ 2 . .
iii. 1 = Zp 11 > M= Z 41 In this case we have from Lemma @

’71(

0> /171 G2Lgpr — P1Lgp = / Amy — Aot )p1¢pa
o U

= (M —A2) " mip1¢o + Ap /m(ml — ma) P12

1o Mo

0

= (A1 —Ap) " mad1¢r + Aq /;71 (mq — ma) P12

o o
and this proves that in both the cases A; < 0 and A, < 0, we have A1 < Aj.
iv. ¢ = Z,%l g <m= Z%l 4+1: In this case Lemma guarantees existence of two

integers m, n having the same parity such that

_ 1 _ 2 _ 2 1
Cm = Zjypm < Mn = Zign < Mnt1 = Zhpgnt1 < Cmt1 = Zijfmt1-

As above, we have from Lemma [4.7]

0> /%+1 P1Lgp2 — P2 Ly = /17%1()\2"12 — Amy ) pr1pa
= (A2 — A1) /W+1 map12 + M /%+1 (ma —my)P1¢2

n n
Mn41

= (M —A2) /77”+1 map1¢o + /\1/ (my — ma) 12

n

and this proves that in both the cases A; < 0 and A, < 0, we have Ay < A,. The proof is

complete. m

Lemma 4.17. Let (¢p,) be a sequence in S¥ converging in W' to some ¢ € S¥, then | < k and

K=".

Proof .

On the contrary suppose that ¢ € S} for some | > k and let (z]);j) be the sequence of
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zeros of ¢. Let § > 0 small enough, there exists an integer n, > 1 such that ¢¢,, > 0 in
the intervals [§,z; — 6] and [z]- +0,zj11 — 6] forj=1,..,1—-2
Also, for each integer j € {1,...,] — 1} there exists n; > n, such that the function
¢n has exactly one zero in [z +6,2j,1 — 6] . Otherwise if there is a subsequence (¢y,)
such that for all i > 1, ¢, has at least two zeros, then we can choose x}qi and x%i in
zj + 6,211 — 6] such that
(Pl/’ll' (x}li> S O S ¢:’Zl <x31,'> .

Let

1
sup

2 =
sup

T Timinf oyl 1 1
Xipe = liminfx, , xg,, = limsupx,,,

2 IR T . 2 . . 2
Xipe = liminfx; ,  x liminf x;, .

Hence, we have since ¢ = lim ¢,, in W1,

¢ (xilnf> =¢ (xiznf> = ¢ (xiup> — ¢ (xgup) _0

leading to lim x,lql, = lim x%i = z; then to
¢’ (z) = limgb;l (x,11i> = lim ¢}, <xfli> = 0.

Contradicting the simplicity of z;.

Now, we claim that there exists 1y € IN such that for all n > ng, ¢¢, > 0in (0,6).
Indeed, if there a subsequence (¢,,) such that for all i > 1, ¢,, has at least a zero xy,
with 1/(;5,’11, (x4;) < 0, then we obtain as above for x_ = liminfx,, and x; = limsup x,,

¢ (x-) =¢(xy) =0and x_ = x; = 0. Therefore, we have
0 < v’ (0) = limve,, (xs,) <O,
contradicting the simplicity of the zero zgp = 0. The proof of the lemma is complete. m

Proposition 4.18. Let g € Q, m € I'", o, € E and let (my,) be a sequence of functions in T'*
such that limm, = m in E. If for some integer k > 1 and v = + or —, A (g, my, «, B) exits for

all n > 1 with limy, yoo A} (g, My, &, B) = A € R, then A = A] (q,m, o, B) .

Proof .

Let for all integers n > 1 ¢, € S| be the normalized eigenfunction associated with
Mo =M (gm0, B) = A (g%, mp,a+q~,B+ g~ ). Therefore, we have for all integers
n>1

P (1) = MLy unn ()4 L o @ ()= Lo g (8).
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Since all the operators in the above equation are compact and (¢,) is bounded, up to a

subsequence, (¢, ) converges to some ¢ with ||¢|| =1 and

D) = MLy () + Ly oy @ () — L g ().

This proves that A} is a half-eigenvalue of the bvp (4.12).

We have from Lemma that ¢ € S}’ with | < k. Let us prove that | = k. We claim
that there is an integer n. > 1 such that ¢¢, > 0 in (z;_1+6,1). Indeed, if there a
subsequence (¢,,) such that for all i > 1, ¢, has a zero x,,, € (z;_1+6,1) and ¢, does

not vanish in (x,,,1) then
Ma=mg+Am—w,m+ex,) > ui(q+Am—w,m+¢ xy,)

where
a, if pp, > 0in (x,,1),
w =
B, if ¢pn, < 0in (xy,1)
and w = max (|a|,|B]) -

Passing to the limit, we obtain the contradiction
+oo > A > limpy (g + Am — w,m+¢,xy,,) = +oo0.

From all the above, we obtain for all # > max {n*,n4,ny,...n;_1} ¢, belongs to S,

and [ = k. The proof is complete. =
Lemma 4.19. ([7]) Let g € Q,m € T™" and a, p € E. For all 6 € (0,1) the bop

Lou = Amu +aut — pu—, in (0,6),
u(0) =u(f) =0,

d

admits two increasing sequence of simple half eigenvalues (A (q,m,a, B, 0)) >1 AN
(Ag (g,m,a,B,0)),~, such that for all integers k > 1 and v = + or —, the corresponding
half-line of solution; lies on {A}(q,m,a,B,0)} x S{,. Moreover, for all integers k > 1 and
v = + or —, the function 8 — A](0) := A](6,q9,m,«,B,0) is continuous decreasing and

limg 9 AY(6) = +oo.

Lemma 4.20. For all functions ¢ € Q, m € T'"" and a,p € E, the bop admits
two increasing sequences of half-eigenvalues (A} (q,m,a, B)),, and (A, (q,m,a,B)),-, such

that for all integers k > 1 and v. = + or —, the corresponding half-line of solutions lies on
{py (m,a, )} < Sy
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Proof .
Let g €,Q, m € T*" and a, B € E. Clearly for k = 1, we have A} (q,m,a, B) = pui (9 —
a,m,0) and A (q,m,a, B) = ui (g — B,m,0) that existence is guaranteed by Theorem
Fix k > 2, v = + or — and set w; = a and wp, = B. Let for § € (0,1), A} ,(0) =
AM_1(q,,ma,B,0)and fori =1,2, u;(0) = puj (9 — w;, m,0) given respectively by Lemma
and Theorem Because that the function A} _,(-) is decreasing, the functions ;(-)
are increasing and
lim AL 4(6) = lim p(6) = -+,
the equation A} ,(0) = u;(#) admits a unique solution 6;; € (0,1).

Let for 6 € (0,1), 1 be the eigenfunction associated with A} ;(#) and for i = 1,2
$o i be the eigenfunction associated with p;(0). We distinguish the following cases:

a) P, (0) > 0 for all & € (0,1). In this case A} = A} _;(6k1) = pi(6k1) is the half-

eigenvalue having as an eigenfunction the function ¢, € S defined by

lp@]ﬂ (t)/ for t € [0/ ek,l] ’
B0, (1) (o, (Ok1) /9%, 1 (k1)) for € [61,1].

b) ¢p (#) < 0 for all & € (0,1). In this case A} = A} (6x2) = pi(6k2) is the half-

() =

eigenvalue having as an eigenfunction the function ¢, € S/ defined by

lPekz(t), for t € 0,6y 5],
Pi(t) = '
Pz () (‘a"ﬁk,z (6k.2) / g, (9k,z)>/ for t € Bk, 1]

This ends the proof. m

Lemma 4.21. Let g € Q, m € T and set for all k > 1
‘uk(q’m) - A;(q,m,0,0) = Ak_(qlmlolo)

Then for any interval [y,6] C (0,1), up(q, m) < px(q,m, [y, 0]) where (ur(q,m,|[v,9])) is the

sequence of eigenvalues of the bup
Lou = pumu, in (v,9),
u(y) =u(d) =0.

Proof .

Fix k > 1 and set u; = px(q,m) and pp = ug(q,m,[v,9]). Let for i = 1,2, ¢; be an
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J
of generality, suppose that ¢1¢> > 0 in a right neighborhood of y. We distinguish two

. . . : : N\ .
eigenfunction associated with y;, having a sequence of zeros (zl-> - and without loss
]:

cases.

i) ¢ > 0in (7,d) (i.e. k = 1): In this case we obtain by Lemma

1) )
0< / P1Lgp2 — p2Lygpr = (p2 — Pll)/ me1¢o
Y Y
leading to po > ;.

ii) ¢ (to) = 0 for some tg € (7y,6): In this case consider the family (C;‘)iﬁo defined by
&0 =, Gk, = 6 and ¢y (&;) = O for j € {1,...,ko — 1} and note that kg < k. Thus,
we have from Lemma {4.6| that there exist two integers m, n having the same parity,
such that &, < z2 < z2 +1 < &my1- Therefore, we have ¢1, ¢ > 0 in (22,22 +1) and

we obtain by Lemma

2

Zn+1
0 < /22 471£q4)2 — 4)2»611471

n

72

= (2 —m) /Zzn+1 me1 2

leading to puo > py.
This ends the proof. =

Theorem 4.22. Forall g € Q, m € T" and w, B € E the bup admits two increasing

sequences of simple half-eigenvalues (A; (q,m, &, B)), ., and (A; (q,m, &, B)),- such that for

k>1
all integers k > 1, the corresponding half-line of solutions lies on {u} (m,a, B)} x S}, v =+, —
with limy_, o 1}(q, m, &, B) = oo, aside from these solutions and the trivial one, there are no
other solutions of . Furthermore, for k > 1 and v = + or —, the half-eigenvalue A} (-, -, -, -)

has the following properties:

1. Letqg € Q m € I'" and ay, a0, € E. If a1 < ap in (0,1), then A}(q,m,a1,B) >

A(q,m, a0, B).

2. Letqe Q m e Tt and a,B1,By € E. If 1 < B in (0,1), then A} (g, m,a,B1) >
A(gq,m,a, B).

3. Let q1,q0 € Q,m € T* and o, € E. If g1 < qp in (0,1), then A}(qq,m,a,B) <
/\}é(fh, m,a, B).
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4. Let my,my € TY, a, B € E, with my < my in (0,1) and my < my in a subset of positive
measure. If AJ(my, o, B) > 0 or Aj(mo,a, B) > 0, then A} (q,my,a, B) > Aj(q,ma, a, B)
and if A} (q,mq, &, B) < 0or Al(q,mp,a,B) <0, then Aj(q,my,«, B) < Al(q,ma,a,B).

5. Ifm e T" and (m,) C T'" are such that limm, = m in E, then lijn AL(g,my,a, B) =
n o0

Ay(g,m,a, B) forall a,p € E.

Proof .
Letgq e Q meTIT, apB € Eand (e,) be a decreasing sequence of real numbers con-
verging to 0 and let A > 0 be such that min (y1(q —a,m+e€1),u1(q — B, m+e€1)) > —A.

Consider the BVP

Lo pgmi = Amu +au™ — Bu~ in (0,1),
A puin (0.1) (4.17)

u(0) =limyqu(t) =0,

and notice that A is a half-eigenvalue of the if and only if (A —A) is a half-
eigenvalue of the bvp . Let for k and v fixed, A} = A{(q+ Am,m + €, a, )
and let [y, 0] C (¢, 77) be such that m > 0 a.e. in (7, 9).

First, because of

Afy = AM(q+Am,m~+e,a,B) > A{(gm+e,ap)+ A
> min (p1(g —a,m+e€1),p1(q — p,m+e1)) + A >0,

we have by Proposition that foralln € N, Ay ) > A > AL > 0.

Setj = q+ Am+ (|a| +|B|), Proposition[4.15) Lemma and Proposition [4.16|lead
to

0 < AL, < @ m+en) < (@ m+ e [7,0]) < @ m, [7,0))

proving that limA} = Ap € R. Thus, we conclude from Proposition that A} =
Mg+ Am,m,a, B).

Now, we need to prove that limy_,,, A} (q + Am,m,a, B) = +oo. To this aim set w =

la| + |B| and let B > 0 be such thatg =g+ Am —w+ B (m+e€1) > 0in [0,1). We have
then from Propositions and
Me(q + Am,m, o, B)

v

Mg+ Am,m+eq,a, B)
A

v

k(
g+ Am,m+e,w,w)
k(

v

Mg+ Am,m+ e, w,w)

g+ Am—w,m+eq)

I
=

K
(

Mk ﬁ,m—i—el) — B.
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Because that (px (g, m + €1)) is the sequence of characteristic-values of the positive com-

pact operator Lg 1, : W — W defined for u € W by
1
Lgmye u(t) = /0 Gg(t,s) (m(s) +e1) u(s)ds,
we have that limy (g, m + €1) = 0o, proving that lim; A} (g + Am, m,«, B) = +co.

At the end, Assertions 1, 2, 3, 4 and 5 follow from Propositions 4.1114.18, m

For the particular case of the bvp (4.12) where & = = 0, namely for the bvp

Ly = pmu, in (0,1)
u(0) = limy 7 u(t) =0,

(4.18)

we obtain from Theorem the following corollary.

Corollary 4.23. For all pairs (q,m) in Q x T'", the set of eigenvalues of the bop consists in
an unbounded increasing sequence of simple eigenvalues (pux(q,m) )~ such that eigenfunctions

associated with (g, m) belong to Sy.. Moreover, the mapping uy (-, -) has the following properties:
1. Letg € Q, my,my € T withmy < my in (0,1) and my < my in a subset of positive mea-
sure. If pie(q,my) = 0 or py(q,mz) = 0, then py(q,my) > pye(q, mz) and if p(q,m1) <0
or ux(q,ma) < 0, then px(q,m1) < px(q, my).
2. Ifm € TT and (my,) C T are such that limm, = m in E, then limy,_,c0 (g, my) =
pi (g, m).
3. Letq1,q2 € Qand m € TT. If q1 < qy then , ur(q1,m) < ux(ga2, m) forall k > 1.

The following proposition is a consequence of Assertion 2 in Corollary and it

will be used in the following section.

Proposition 4.24. Let q € Q and m € T be such that uy(q,m) = 1 for some integer k > 1.
Then there exists €9 > 0 such that for all p € T with ||p —m| < €, ui(q,p) = 1 implies
I =k

Proof .
Let g > 0 be such that ¢g < min(pyy1(g, m) — ur(g, m), ux(q, m) — ux_1(gq,m)), because
of the continuity of the functions yy_1(q, m), pri1(g, m), there exists g9 > 0 such that for

allp e TT, ||p — m| < g implies

Hr—1(q,m) —eo < pur—1(q,p) < px—1(q,m) +€o (4.19)
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and
Hrr1(g,m) —eo < upr1(q, p) < prs1(q, m) + eo. (4.20)

Let p € IT't with ||p — m|| < &g and suppose that y;(g, p) = 1 for some integer [ > 1.
If I < k, we have then from (4.19) the contradiction
1= p(q,p) < He-1(q,P) < pr—1(q,m) + €0 < px(g,m)

and If [ > k, we have then from (4.20) the contradiction

1=w(q,p) > ms1(q,p) > prr1(q,m) —eg > pur(q,m) = 1.

This shows that | = k and the lemma is proved. m

4.4 Nodal solutions to the nonlinear bvp

4.4.1 Main results

In all this section, p is a positive real parameter, g is a function in Q, m, a and p are
functions in E and f : [0,1] x (R~ {0}) — R is a continuous function. Main results of

this section concern existence of nodal solutions to the bvp

Lqu = puf(t,u)in (0,1) 421)
u(0) = lim; 7 u(t) =0,
where the function f is assumed to satisfy one of the following Hypotheses (4.22),

(E23) and (@E29).

limy, 0 f(t, u) = m(t),
limy o f(t,u) = B(t) and (4.22)
limy 4o f(t,u) = a(t) in E.

1%mu%0 f (t,bf) = m(t) in E and (4.23)
imyy) e (mfte[o,l] f(t,u)) = +o00.
( lim,, 0 Mf(t, u) =0,

lim,, o <infte[o,1] f (t,u)) = too, (4.24)

limy, oo f(t,u) = B(t) and

limy 40 f(t,u) = a(t) in E.
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Remark 4.25. Notice that if the nonlinearity f satisfies one of the Hypotheses (4.22), (4.24)
and (4.23), then there is wy € I'" such that f(t,u) + wp (t) > 0 for all t € [0,1] and
uelR.

The statement of the main results of this section and there proofs need to introduce

some notations. In all this section we let:
G=q" +p(m™ +2w), it =p(m*+2w)+q, f(t,u)=p(f(tu)—m),

i=p(a—m), p=p(p—m), ¢p=inf(e,p) and ¢ =sup(a’p’),
where wy is that in Remark
Since in all this section the weight g is fixed in Q, we let for all y € I'* and all k > 1,
1k (x) = pr (9, x) - In particular we let for all k > 1 and v = + or —,

o= s ), A =g (7.m,8B).
The operators Ty, Too : W — W are defined as follows

Tou(t) = [ Gy(t,5)u(s) F(s,u(s))ds

Tooti(t ) = Tou(t ) - Lilu(t) + L~Eu( )

= Jo Gilt,s)u(s)f*(s,u(s))ds

where f*(s,u) = uf(s,u) — &u" + pu~. We have from Lemma that Ty, Te are

completely continuous.

The following Theorems [4.26| 4.28 and |4.27| are the main results of this section. They

provide respectively existence and multiplicity results for the cases where the nonlinear-

ity f is asymptoticaly linear, sublinear and superlinear.

Theorem 4.26. Assume that Hypothesis holds true.

1. Leti,j be two integers such thati > j > 1. The bup (4.21) admits in each ofS;r, ...,S85, S;, ..., ST
a solution if one of the following Hypothesis (4.25), (4.26), (4.27) and holds true.

¢,m" €T and pi(¢) < p < pj(m™), (4.25)

EI‘+, +:0, i < d
{qv m Hi(p) < pan (4.26)

ui(xo) > 0 for some xo € I't

101



Chapter 4. A class of Sturm-Liouville BVPs with an unintegrable weight

p,m e T and pu; < p < pi(y), (4.27)
e, =0, uj(m) < pand
m e TP =0, j(m) < pan .
#i(xo0) > 0 for some xo € T*.
2. Let i,] be two integers such that i > j > 1and i > 2(j — 1). The bop admits in
each of SJ;., .St 52_]._1, ..., S; a solution if one of the following Hypothesis (4.29) and
holds true.

m, BT e T and pi(m) < p < pj(B"), (4.29)
meTT, Bt =0, uj(m) < p and
B pi(m) < p (4.30)
#i(xo0) > 0 for some xo € rt.
3. Let i,] be two integers such that i > j > 1and i > 2(j —1). The bup admits in
each of S;j_l, ..., St SZ_]., ..., S; a solution if one of the following Hypothesis (4.31) and
holds true.

m,a” € T" and pi(m) < p < pi(a™), (4.31)

{ meTT,at =0, pj(m) < pand (4.32)

ui(xo) > 0 for some xo € T'.
Theorem 4.27. Assume that Hypothesis holds true and let j > 1. The bup admits

forall k > j a solution in S;” and in S_ if one of the following Hypotheses and holds

true.

m™ e T and pj(m™) > p, (4.33)

m™ = 0and pj(xo) > 0 for some o € T (4.34)
Theorem 4.28. Assume that Hypothesis holds true, g € Qy and let j > 1.

1. The bup admits for all k > j a solution in S} and in S_ if one of the following
Hypotheses (4.35) and (4.36) holds true.

e T"and p;(y) > p, (4.35)

= 0and p;j(xo) > 0 for some xo € T™. (4.36)
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2. The bup admits a solution in S;” for all k > 2j and a solution in S_ for all k > 2j —1
if one of the following Hypotheses and holds true.

BT eI and ui(B*) > p, (4.37)

BT = 0and pj(xo) > 0 for some xo € T (4.38)

3. The bup admits a solution in S;" for all k > 2j — 1 and a solution in S_ for all
k > 2j if one of the following Hypotheses (4.39) and (4.40) holds true.

o € T" and pj(a™) > p, (4.39)

o™ = 0and pj(xo) > 0 for some xo € T (4.40)

4.4.2 Related Lemmas

In this subsection we prove some intermediate results.

Lemma 4.29.

1. Ifm € T and p;(m) < p for some | > 1, then jiy < 1 forall k <.
2. Ifm*t €T" and pu; (m™) > p for some | > 1, then pix > 1 for all k > 1.

3. Ifm=—m~ and y; (xo) > 0 for some ] > 1and xo € T, then pix > 1 forall k > 1.

Proof .

If m™ € '™, we have then

e = pi (g7 +p (m™ +2wo) , p (m™ +2pwo) +4q7)
= 1k (97 + 20wo + pm™ — iy (2pwo +q7), pm™)
= e (9 + (1 — 1) (20w0 +4q7) , pm™)
= (m (g + (1= 1) 2owo +q7) +pm~,m*) /p).

(4.41)

Suppose that m = m™ € T'", y; (m) < p for some I > 1 and jiy > 1 for some k < I. We
obtain from (4.41) and Assertion 3 in Proposition the contradiction

1< i = (e (q+ (1 —Hix) (2owo+q7) ,m) /p) < (px (m) /p) < (uu(m)/p) < 1.
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This proves Assertion 1.
Similarly, suppose that m™ € T'", u; (m) < p for some I > 1 and jiy < 1 for some
k > 1. We obtain from (4.41) and Assertion 3 in Proposition the contradiction

12> i = (e (g + (1= i) (2pw0 +q~) +pm~,m) /p) < (u (m) /o) > (w(m)/p) > 1.

This proves Assertion 2.
Suppose that m = —m~ (i.e. m™ = 0), u; (9, x0) > 0 for some I > 1 and xo € I'" and

i < 1 for some k > I. We read from

e = m (g™ +po(m +2wo),0 (m* +2wo) +47)
= (g7 +p (m+2wp), 2pwo +q7)

that
ur (g + (1 — i) (20wo+q~),x) =0forall y e TT.
Therefore, Assertion 3 in Proposition leads to the contradiction
0= p (q+ (1= ) (200 +47), x0) = px (x0) = p (x0) > 0.

This Proves Assertion 3 and ends the proof. m
Lemma 4.30. For all integers | > 1and v = + or —:

1. If o € T* and p(@) < p for some 1 > 1, then AY < 1 forall k < .

2. Ifp € T and y(y) > p for some | > 1, then AY > 1 for all k > 1.

3. Ifp =0and u; (xo0) > 0 for some 1l > 1and xo € T't, then jiy > 1 forall k > 1.

Proof .

To prove Assertion 1, we have to show that 7&‘{ > 1. By the way of contradiction, suppose
that y;(¢) < p and 7\ZV > 1 and let u,v € S} be the eigenfunctions associated respectively
with (o) = (1 (¢9)/p) and 7\‘{ Notice that

Lqu = pi(pp)ogu, in (0,1),
u(0) =limy_ u(t) =0,

Ly = (X;r _ 1) (pm + 2pwo + g~ )v + pav™ — ppo~ in (0,1),

v (0) = lim;_; v(t) =0,
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Let (x])] and (y]) be respectively the sequences of zeros of u and v. We distin-
guish then the following two cases:
i) x; < yy: in this case we have the contradiction:
X1
0 < /x vLgu —ulyo

0
X1

< / ui(pg)pguv — (pav™ —ppo~ ) u
0
X1

= / (11 (p@)p — &) pu 0" + (ui(p@) — B) pu— 0™ <O0.
0

ii) y1 < xp: in this case Lemma guarantees existence of two integers m,n hav-

ing the same parity such that y,, < x;, < x,11 < Ypy1 and Lemma [£.7] leads to the

contradiction:

Xn+1
0 < / vLgu —ulgo
Xn

IN

Xn+1
/x u(p@)ppuv — (pav™ — ppo~) u

= / o (11(09) 9 — &) pu o + (i (@) — B) pu~ v~ < 0.

We prove Assertion 2 by the same way. Suppose that y;(y) > p and 7\}/ <1 and let
u,v € SY be the eigenfunctions associated respectively with y;(oy) = p(1p)/p and AY.
We have that

Lou = w(py)ppu, in (0,1),
u(0) =limy_,qu(t) =0,

Lgv = </~\’l/ - 1) (pm + 2pwo + g~ )v + pav™ — ppo~ in (0,1),
v (0) = lim_,y v(t) = 0.
Let (x])] and (y]) be respectively the sequences of zeros of u and v. We distin-
guish then the following two cases:
a) x; < yj: in this case we have the contradiction:

X
0 < /1v£qu—u£qv
X

0

< / " ilpw)ppuo (pa0™ — ppv~) u

= / (o) — ) pu™ v + (1 (09) 9 — B) pu~ v~ < 0.

0
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b) y1 < x1: in this case Lemma guarantees existence of two integers m,n hav-
ing the same parity such that y,, < x; < x,41 < Ypmy1 and Lemma [£.7] leads to the

contradiction:

Xn+1
0 < / vﬁqu—uﬁqv
Xn

IN

/x o ui(py)ppuv — (pav™ — ppv~) u
= / " (o) — ) putot + (ulpg)g — B pu o <0,

We have forall k > 1and v = + or —,

Ay o= AL (g +p(m™ +2wo) +q, p(m* +2w) +q~,p (a —m),p (B—m))
= M (g7 +p(m* +2wo) + 47, 0(m™ +2w) + 47, px, pP) -

This can be read that for all y € T'"
0= (74 (1=27) (p(m* +2w0) +47) , x, P, 0B) -

Therefore, if = 0, ; (xo0) > 0 for some I > 1 and xo € I'" and 7\% < 1 for some k > I,
Proposition leads to the contradiction

0 = A (7+ (1=AF) (p(m™ +2w0) +47) , x0, o, 0B)
> A (q,%0,0,0) = p (xo) = p1 (xo0) > 0.
The proof is complete. m

Lemma4.31. 1 Ifa® € T and yy(a™) > p forsomel > 1, then A” > 1 forallk > 21 — 1
and Xk_ > 1 forall k > 2I.

2. Ifa™ = 0and u;(x0) > p for somel > 1and xo € T, then 7\; > 1forallk > 2] —1
and A > 1 for all k > 2I.

3. If Bt € Tt and yy(B+) > p for some 1 > 1, then A,” > 1 for all k > 21 and A, > 1 for
all k > 21 —1.

4. If B* = 0and wy(x0) > p for some | > 1and xo € I'*, then A > 1 for all k > 21 — 1
and Xk_ > 1forall k> 21.
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Proof .

To be brief, we present the proof of Assertions 1 and 2, the other assertions are obtained
similarly. Suppose that at € I't and y(at) > p and let ¢, 9, P be respectively the
eigenfunctions associated respectively with p;(«), 7\;71 and 7\2_1 Thus ¢, 0, P satisfy

Lqy¢ = pi(pa)pag, in (0,1),
¢ (0) = limy_y1 () =0,

L0 = (7\;1_1 — 1) (om +2pwo + g~ )8 + padt — ppd—, in (0,1),
#(0) = lim; 1 8(t) =0,

Lgp = (7\27 - 1) (om +2pwo + 497 )¢ + payp™ —ppyp~, in (0,1),
¥ (0) = lim;_,1 ¥(t) = 0.

Let (x]) o (y]); él "and (y]) ' be respectively the sequences of zeros of ¢, ® and 1.
Thus, if )L;l 1 <1, then
< pi(e)
Ay —1) (pm+2pwo+q-) +pa < pa < e i (o) pax

and we obtain from Lemma that in each interval (yzj, ]/2j+1), j=0,..,1—1, ¢ admits
a zero. This contradicts ¢ € S;.

Similarly, if 7\2_1 <1 then

(7\2_1 - 1) (om +20wo +q7) + pa < iy () pax

and we obtain from Lemma that in each interval (yoji1,¥2j42), j = 0,...,1 =1, ¢
admits a zero. This contradicts ¢ € S;.

Suppose that a™ = 0, p;(xo) > 0 for some [ > 1 and xo € I'" and let ¢, ¢, ¢ be
respectively the eigenfunctions associated respectively with u;(xo), 7\;[71 and 7\2_1 Thus

¢, 9, ¢ satisty
Ly¢ = mi(xo)xo¢, in (0,1),
$ (0) = lim;_; p(t) = 0,
,qu9— < 21-1 > (Pm+-|-2pr-|-q_)l9+ple9+—pﬁﬁ_, in (011)/
8 (0) = lim;_,1 8(¢) =0,
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Loy = (A3 =1) (om+ 2000 +q7)¢ +pag™ — ppy~, in (0,1),
¢ (0) = lim;_; $(t) = 0.

Let (xj);zé, (yj);zgl_l and (yj)iél be respectively the sequences of zeros of ¢, & and .

Thus, if A, | <1 then

Y _ o
()\5_1 - 1) (om +2pwo +q7) + pa < pa < WT()P“ = p (pa) pa

and we obtain from Lemma that in each interval (yzj, y2j+1), j=0,..,1—-1, ¢ admits
a zero. This contradicts ¢ € S;.

Similarly, if 7\2_1 < 1 then

<X2_1 - 1) (om +2pwo + g~ ) + pa < py (o) pa

and we obtain from Lemma @ that in each interval (y2j+1,y2]-+2), j=0,.,1-1,¢

admits a zero. This contradicts ¢ € S;. m

Lemma 4.32. Let (my) be a sequence in T such that limy,_, oo (infyc [ 1) mn (t)) = +00. Then

forallg € Qand k > 1, limy— oo pt (my) = 0.

Proof .
For arbitrary A > 0, there is n4 > 1 such that m, > A for all n > ny4. Thus, we obtain
by means of Assertion 1 in Corollary that forallk > 1 and n > ny,,

[ (mn)| < [u (A)] = (I (D] 7 A),

proving that limy, 4o ptg (m,) =0. m

Lemma 4.33. Assume that q € Qg and let u be a nontrivial solution to the bup , then
either u € S for some k > 1 and v = +, — or u has an infinite monotone sequence of simple

zZeros.

Proof .
We distinguish two cases:

i) u has a finite number of zeros (z]-);.j), in this case we have forall j, 0 <j<[-—1,

W) 2 2. () sup u(t)], in [z;2j:1]
te [Zj,ZjJrl]
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leading to
u(t) > sup |u(t)| /¥4(1) for t near z; and
T te[z24]
2O wp )] /9,0)
o Z]+1 tE[Zj,Zj+1]

Passing to the limits we obtain that |u/(z;)| > 0 and |u/(zj;1)| > 0. This proves that all
zeros of u are simple and u € S} for some v = + or —.

ii) u has an infinite number of zeros, in this case there is z. € [0,1] such that u(z,) =
u'(z4) = 0. We claim that there is a monotone sequence of simple zeros (t,) such that
limt, = z,.. Indeed, if this fails then there is an interval [a,b] & [0,1] such that u = 0 in

[a,b] and z. € [a,]]. Set then

tr =sup{t>b:u(s) =0foralls e [bt]},
t_=inf{t <a:u(s)=0foralls e [tal}.

Since u is a nontrivial solution, we have t_ > 0 or t; < 1. Without loss of generality,
suppose that t+ < 1 and u > 0 in (t4,t.) where t, = sup {t > t; : u(t) > 0}. In one
hand, we have

u'(ty) = lim ) _ 0.
VIR 2l %

In the other, we obtain from Lemma 4.3| the contradiction

u'(ty) = lim u(t) > ( sup u(t)/‘Fq(l)> > 0.

EVIR S 5% te(ty b

This proves that there is a monotone sequence of zeros (t,) of u and the simplicity of ¢,
is obtained again by means of Lemma This achieves the proof. m

The following lemma is a adapted version of Corduneanu compacteness criterion:

Lemma 4.34. A nonempty bounded subset () is relatively compact in W if

(a) Q) is locally equicontinuous on [0,1), that is, equicontinuous on every compact interval of

[0,1) and

(b) Q is equiconvergent at 1, that is, given € > 0, there corresponds T(€) € (0,1) such that
|x(t)| < € forany t > T(e) and x € Q).
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4.4.3 Proofs of Theorems [4.26 and [4.27

An associated bifurcation bvp

Consider the bvp

Liu = pmu +uf(t,u) in (0,1), (442)
u(0) = lim;_; u(t) =0,
where y is real parameter.

By a solution to the bvp (#.42), we mean a pair (u,u) € R x W? satisfying the
differential equation in the bvp . Notice that u € W? is a solution to the bvp
if and only if (1,u) is a solution to the bvp (#.42). For this reason, we will study the
bifurcation diagram of the bvp and by means of Rabinowitz’s global bifurcation
theory, we will prove that the set of solutions to the bvp consists in an infinity of
unbounded components, each branching from a point on the line R x {0} joining a point
on R x {oo}. Obviously, each component having the starting point and the arrival point

oppositely located relatively to 1, carries a solution of the bvp (4.21) and main results of

this section will be proved once we compute the number of such components.

Lemma 4.35. From each i bifurcate two unbounded components of nontrivial solutions to the

bop ;" and 77, such that I C R x S}.

Proof .
It follows from Lemma |4.5| that solutions to the bvp (4.42) are those satisfying to fixed
point equation
u = ptqu,;zu + To(u). (443)
In order to use the global bifurcation theory, let us prove that all characteristic value
of Lg 7 are of algebraic multiplicity one. To this aim let u € N ( (I— ﬁkL’q“,ﬁ)2> and set
UV=U-— ﬁkL;mu, then v € N(I — ﬁkLl’?’,n'Tl) = R¢y and u — ﬁklﬁlfﬁu = ¢y for some 1 € R.
In another way, v satisfies the bvp
—v" + v = Jigmo — gy, in (0,1)
u(0) = lim;_,; u(t) = 0.
Multiplying the differential equation in the above bvp by ¢y and integrating on (0,1) we

obtain
1
ik || gt = 0.

110



Chapter 4. A class of Sturm-Liouville BVPs with an unintegrable weight

leading to 7 = 0 and u = pLju € Rey.
Now, we need to prove that To(u) = o(|ju]|) near 0. Indeed, let (u,) C W with

lim ||u,|| = 0, we have

% S /01 Golt,s) )f(s,un(s))‘ds Séq/ol )f(S,un(S))‘ds

We have from Hypothesis that f(s,u,(s)) — 0 as n — +oo forall s € (0,1). Thus,
we conclude by the Dominated convergence Theorem that Ty(u) = o(||u||) near 0.

Let I, be the projection of W on Rgy, W = {u € W: u =0} and for ¢ > 0, 17 €
(0,1) and v =+ or —,

e =1(wu) ERXW: |p— | <& and viu > 1 |lull}.

Since Lemma 4.5 guarantees that the operators L and Ty are respectively compact and
completely continuous, we have from Theorem 1.40 and Theorem 1.25 in [52], that from
(Jix, 0) bifurcate two components ;" and {; of nontrivial solutions to Equation
such that there is g > 0, { N B(0,¢6) C Kg,ﬂ for all ¢ < gp and if u = a¢y +w € } then
|l — x| = o (1), w = o (|a|) for a near 0.

We claim that there is § > 0 such that {{ N B(0,{) C R x S}; for all ¢ < 4. Indeed,
let (pn, n),>, C C§ be such that lim (pn, un) = (jix,0), we have from Hypothesis
that f(s,un(s)) — m, that is lim pu,f(s,un(s)) = prm(s) and Lemma guarantees
that there is n9p > 1 such that u, € S for all n > ng. Moreover, if u, = a,Pp + wy

u

then lim ;* = ¢y in E proving that vu,(t) > 0 for ¢ in a right neighborhood of 0 and
vu),(0) > 0 (otherwise, if u},(0) = 0 then the existence and uniqueness result for ODEs
leads to u,, = 0).

Also, if (p«, 1) € ] then for all sequence (py, un)n21 C ¢} be such that lim (p, uy) =
(4, us), we have lim p, f (s, un(s)) = p«f(s,u.(s)) in E and Lemma guarantees ex-
istence of ng > 1 such that u, € S for all n > ng. This shows that {; C R x S and (] is

unbounded in R x W. The lemma is proved. m

Proof of Theorem |4.26

Step 1. In this step we prove that for all / > 1 and v = + or —, the projection of the
component ;" on the real axis is bounded. Since the nonlinearity f satisfies Hypothesis

(4.22), there is v € '™ be such that
—y(t) < f(t,u) < (t) forall t € [0,1] and u € R.
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Let for x = + or —, ., € S{ be the eigenfunction associated with ., = (7 — p(m +
x7y),im) and (p,u) € Cf. It follows from Lemma [4.6| and Lemma [4.7 that there exist two
intervals (¢1,%1) and ({2, 72) where uiy, > 0 and such that

m

" _
0 > /é{ Y4 Lgt — ulgpy = /C (1 — pr 1) My yu+ (f(s,u) +7) upr 4
1

1

m _
> (l’l_.uk,—i—)/é, My, uds,
1

0 < {:’72 P Lgu — ulgpy - = /;2 (1 — i) mutp _ + (f(s,u) — ) upy ) ds
2

< (#—=m-) : mupy, ds.

2
The above inequalities lead to py < pu < py _.
Step 2. In this step we prove that for all / > 1 and v = + or —, the component
rejoins the point (7&’{, c0). Notice that 1} is equivalent to
u=puLszu+ Ly_zlTu— Lg sl u+ Teou. (4.44)

We prove that K(u,,) = o(||u||) near co. Indeed; from lemma in (i) we have

(Toin 1/ sl < [ Pa(o)es,

where

Pals) = Gy | (s, un(s) 22 _ i) 2 l8) | i) 1a 8] |

Therefore, we have to prove that fol P,(s)ds — 0 as n — oo.
We distinguish the following three cases:

i) lim uy, (s) = +oo: In this case, from we obtain

Pu(s) < Gglf(s,un(s)) —@(s)| = 0 asn — +oo.
ii) lim 1, (s) = —oo: in this case, from we obtain

Pu(s) < Gglf(s,un(s)) — B(s)] = 0 asn — —+oo.

iii) lim u,(s) # oo : in this case there may exist subsequences (un}( (s)) and (uni(s))

such that (u”i (s)) is bounded and lim un%(s) = Foo. Arguing as in the above two cases

we obtain that lim Pn]% (s) = 0 and we have from (4.22

Pa(s) < Gy (Flt,u() +&(s) +B(s)) (I (5)|/llug ) =0 ask— +oo,
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proving that Teo (1) = o(||un]|) at co.

Now, let (1, uy) be sequence in ] with limy, ;s yco |[|Un|| = 400 then v, = (uy/||unl|)
satisfies

Un = PnLgmvn + L%&vn — L%Evn + (Teo (t4n) / || n|]) (4.45)

with Teo(tty) = o(]|un||) at co. By the compactness of the operators L, Lz, Lgfﬁq, we

obtain from (4.45) existence of v, v_ € W such that for k = + or —, ||vc|| = 1 and

U = ‘]/[KLQ',"'UK + L%BZUK - L%BU;{,

where y, = limsup y, and p— = liminf u,. We have from Lemma that for xk = +
or —, vx € §) with I < k. We claim that there is an integer n, > 1 such that v,v, > 0 in
(zj—1+9,1). Indeed, if there a subsequence (vy,) such that for all i > 1, v,,, has at a zero

Xn, € (z1-1 +0,1) and v, does not vanish in (x,,,1) then
Pn = m(ﬁ—f(sf Un) , 1M, Xn;) > p1(q — 7,1, Xn;).
Passing to the limit, we obtain from Theorem |4.9|the contradiction
+00 >y > limpy(q — 7, M, x,,) = +o0.

From all the above, we obtain that for all n > n, vy, belongs to S; and [ = k.

Step 3. Notice that u € W' N C?([0,1),R) is a solution to the bvp if and
only if (1,u) is a solution to the bvp . This means that any component ¢; having
the starting point (jix,0) and the arrival point (7\%, c0), oppositely located relatively to 1,
carries a solution of the bvp [#21). Therefore, we have to compute in each of the cases
stated in Theorem the number of such components. To be brief, we present only the
proofs of Assertions 1 and 3.

Suppose that there is two integers i and j such thati > j > 1 and max (y; (), ui(B)) <
o < pj(m). We have then from Assertion 1 in Lemma and Assertion 1 in Lemma

4.31| that p1; > 1 and AV < 1. Therefore, for all integers | € {j,..i} and v = + or —, the

component {; crosses the hyperplan {1} x W.
Now, Suppose that there is two integers i and j such thati > j > 1, withi > 2(j — 1)
and p;(m) < p < p;(B). We have then from Assertion 1 in Lemma and Assertion 2 in

Lemma@4.30|that p1; < 1, Xz_j—l > 1and 7\2 > 1. Therefore, for all integers [ € {2j — 1, ..i},

the component {; crosses the hyperplan {1} x W and for all integers I € {2j,..i}, the
component ;" crosses the hyperplan {1} x W.
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Fig. B: ;(¢) < p < pj(m™)

Proof of Theorem 4.27

Step 1. In this step we prove that for all /| > 1 and v = + or —, the projection of
the component {; on the real axis is upper bounded . Since the nonlinearity f satisfies

Hypothesis (4.23), there is v € I'"* be such that
f(t,u) > —~(t) forall t € [0,1] and u € R.
Because the nonlinearity f satisfies Hypothesis there is y € T'™" such that
f(t,u) > —(t) forall t € [0,1] and u € R.

Fix k and v and let us prove first that if (u,u) € ¢} then u <y = (4 — p(m — ), m).
To this aim, let ¢ € S be the eigenfunction associated with i _, it follows from Lemma

and Lemma [4.7) that there exists an interval (¢,7) where uyp, > 0 and we have

0 < /; P Lgu — ulgp = /; (4 — ) Mg+ (f(s, 1) — ) ugpy) ds
< (p—pr-) /; muyds

leading to p < iy _.
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g;} ng

H2j1 2j

Fig. C: u;(m) < p < yj(oﬁ)
Step 2. In this step we prove that for all / > 1 and v = + or —, the component
(] rejoins the point (—oco,00). Thus, we have to prove that for all u < py _, there is a

positive constant M’ such that

Ty OV ([ ] X W) C [, iy, ] x B(0, MY).

On the contrary, suppose that this fails and there is a sequence (py, tn),~q in ¢ N

([, pr,—] x W) such that lim;_,«, ||ts|| = +oco. That is for all n > 1

{ £;7~un = u, (ptn + f(t, un)> ,in (0,1)

un(0) = lim; 1 up(t) =0,

from which we read that for all n > 1

(g, wn) =1, (4.46)

where wy, () = pn + f(t, un (1))

]_
Let <z7> » be the sequence of zeros of u,, II' = [27_1,2]’.’], i = SUPye \un (t)] =

]
o (3)

We claim that there is a, € (0,1) such that if (n;) is a sequence of integers such that

with yi' € II'. Because limy, o [|un || = 00, there is j, such that lim p7 = +-co.

limg_ye0 p;?ni = +o0 then y]”nllss € (0,a4). Indeed, if for any sequence (I5) of integers such
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that limg_seo p;?: = 400 we have lims_;c y;.’: = 1, then (u,,) is bounded on any interval

[0,a] C [0,1). Therefore, from the equation

() = /01 Gy (t,5) ttu(s) (yn + F (s, u (s))) ds

we conclude that (u,,,) converges uniformly to u € W in all intervals [0,4] C [0,1) and

1 ~
u(t) :/o Gg (t,s)u(s)f (s, un (s))ds.

Since forall t € [0,1)

an(t) ~ ()] < [ G o) ) (5100 (5)) — w(s)F (5,0 (51 s,

we obtain by means of the Lebesgue dominated convergence theorem that u, — uin W,
leading to the contradiction ||u|| = lim,—co ||ttn|| = +o0.

Set g = sup,(,,1q(t) and let A, > 0 be such that f(t,u) > g, for all t € [0,4.] and
|u| > A.. We prove now, that if I} C [0, 4] then lim pf' = +-c0. On the contrary suppose
that lim,ogﬁl # +oo and limp}fﬁl # 400, that is (1) is bounded in I].’:ﬁl U I].’;H and let
@ be such that max (p;?n_l,p;?nﬂ) < @. Let oc;f1 € <zﬁ_1,y;f1> and [37n € (yﬁ,zﬁ) be such

that |u, (lx]”n)‘ = |uy, (,3711)) = A.. Thus, we have
=ty () (1) = 1 () (F(ua(8) = 9() = w2 (1) (g —q(1)) = 0, in (af, B} )
leading to |u), (047”) = sup,_ (ar,2.) lu, (t)] and |u), (ﬁ?ﬂ)‘ =sup,_ (.6 lul, (£)] -

n

‘ n
Pin—1 Fig. D P+t
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In one hand, we have

tm [u (7 )] = tim o 01| =ims (8.)]
D‘fn’yfn
= lim sup }u;(t)! = +00.
e (v5)

Indeed, if for instance u), is bounded by a constant A in (zx;?n, y;?n> then

Yi,
ot
n

contradicting lim p7 = +oo.

In the other hand, we have the contradiction

uy (o) =
i (87,)

where 6 = sup {|f (s,u)| : s € [0,1] and u € [- max (@, A7), max (@, Ar)]}. This shows

< max (@, Ar) (g« +6) < oo,

/y;"?n un(s) (f (s,un(s)) —q(s))ds

<max (@, Ar) (g« +6) < oo,

/ﬁy;lwrl un(S) (f (S, Mn(S)) — q(s)) ds

n
In

that all bumps of u, contained in [0, a.] are unbounded.

At this stage, for all n > 1, there is an interval I]’.i = [z}“ﬂ_l,z”} C [0,a4] such that

j11
n n Ay p?ﬂ n n
z —zj > % and Lemmaleads to |u,(t)| > 4+ forallt € ,an/5j11 , where
zn n__n
no__ .n Jn Jn—1 no__on __ n jn—1
,an == Z]'nfl + T and 5]71 = Zjn T

Set y9 = sup ’)/]’.iZ and Jp = inf 'y;fq and notice that §y — yg = inf (5]’1 — 7711) > % Because
of

z' -
Un (1) = /Hm G (zyn_l,zyn,t,s> u(S)nf (5,1un(s)) ds,
Zjn—l
we obtain from Lemma [4.3] that

: _ -n n __ : _-n n __
min (t z]-n_l,z].n t) . min <t Zjn—l'zjn t)

wa(z) 0 T

|un ()] =

pzi—>—{—oo

for all t € [0, o] . Thus, we obtain from Lemma [4.21| and (4.46) that

:uk(ql Wn, [701 50]) > ‘uk((’,]vl wn) =1 (447)
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Let A > ui(q,1,[v0,60]), there is n4 > 1 such that w, (t) = un +f(t, un(t)) > A, for
all n > ny and t € [y0,00]. Hence, we obtain by Assertion 1 in Corollary the

contradiction

#(4,1, [70,60])
A

1< ,uk(a// Wh, [70/ 50]) S ,uk(q/ A/ [’)/O/ 50]) - <1

Hj ﬁj+1

\/
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Step 3. At this stage, we have only to compute components that crossing the hy-
perplane y = 1. Assume that Hypothesis holds, then we have from Assertion 2
in Lemma that yi > 1 for all k > j. Since for all k > 1 and v = + the component
{f reachs (—o0,00), {/ crosses the hyperplane u = 1 for all k > j. Thus, the bvp
admits for all k > j a solution in Sk+ and in S . The case where m™ = 0 and p;(xo) > 0
for some xo € I'" is obtained by means of Assertion 3 in Lemma

The proof of Theorem is complete.

4.4.4 Proof of Theorem {4.28

Set forn >1
(t,u), if |u| > 1,
fn(t,u> — f . | | ;Z
f(t,n), if Ju| <4,

and consider the bvp

(4.48)

—u" +qu = puf,(t,u), in (0,1),
u(0) = lim;_, u(t) = 0.

We have then

lim fu(tu) =a(t), lim_ fult,u) = () and lim f,(t,u) :f(t,%) in E.

U—r+00 U—»—00

To be brief, we present the proof of Assertion 1, the other Assertions are checked simi-
larly. Because of lim;, e (infte[o,l] j?(t, %)) = 400, for all | > 1 there exists n; > 1 such
that for all n > ny, u (3, f(t, 1)) < p.

Fix k > jand v = + or —. For all n > ny Assertion 3 in Theorem guarantees
existence of u, € S solution to the bvp (#.48).

Let wy be that in Remark

g=4q" +20wo , f,(t,u)=p(fult,u)+2wp)+q"

and observe that v is a solution to (4.48) if and only if v is a solution to the bvp

{ —u" +qu = puf,,(t,u) in (0,1) (4.49)
=0.

u(0) = limyq u(t)

We claim that there is a positive constant m] such that ||u,|| > m;. By the contrary,

suppose that (u,) admits a subsequence (u;) such that limu; = 0 in E and let A >
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#r(q,1). There is 4 > 0 such that for all u € R, [u| < 74 implies inf,c[g fo(tus) > A

and there is s4 such that |lus]| < vy for all s > s4. Thus, for all s > sup(1/y4,54),

inficp1) f, (t, un(t)) > A and this leads to the contradiction

1= @ Fy (b un(0))) < @ 4) = B0

We prove now that there is positive constant M such that ||u,|| < M}. By the con-
trary suppose that there is a subsequence (u,) of (u,) such that lim ||u,|| = co. Arguing
as in Step 2 in the proof of Theorem we obtain that (v,) = (u,/ ||u,||) converges,

up to a subsequence, to v € S} satisfying

Lyv = pav™ —ppv~, in (0,1),
v(0) = lim;_,1 v(t) = 0.

Let ¢ € S} be the eigenfunction associated with y (oY), that is ¢ satisfies

Lap = px (09) p9p¢, in (0,1),
¢(0) = limy 1 ¢(t) = 0.

j=I =l . .. .
Let (x;) ;‘:0 and (3/]');‘:0 be respectively the sequences of zeros of v and ¢. We distinguish
then the following two cases:
i) x1 < yq: in this case we have the contradiction:

0 < /1v£q¢—cp£qv

0

< / :l ulop)opdo — (pav™ —ppo™) ¢

= / (mk(op)oy — &) pp™ 0" + (ur(py)oy — B) pp~ v~ < 0.

0

ii) y1 < x;: in this case Lemma guarantees existence of two integers m,n hav-
ing the same parity such that y,, < x; < ¥,41 < Ypmy1 and Lemma [£.7] leads to the

contradiction:
0 < /x o vLyp — L
S / jw ue(pp)pypdpo — (pav™ — ppv~) ¢
= /X:M (o) oy — &) ppT o + (ur(p)py — B) pp v~ < 0.

At this stage by means of Theorem we prove that the sequence (1) is relatively
compact. Let [0,a] C [0,1), t1,t2 € [0,a] be such that t; < t; and
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Cy = sup {‘u]_‘(t,u)‘ :+€1[0,1] and u € [—M}, M| } . We have

‘un(tz) - I/ln(tl < CV fol |Gﬁ(t2,5) — Gg(tl,s)} ds < CZ(}@E (tz) — Cbﬁ(fz)’ fotl Y-
32 | (12) ¥y (5) — @ (3) ¥y (1) | ds + | ¥5 (12) -

SC}C“(‘CID%(O‘” 5) ds +2¥7 (a) + ¥} (a) [} @

This proves that (u,) is equicontinuous on any interval [0, 4] contained in [0,1).

By the mean value theorem, for all n > 1 and all ¢+ € [0,1) there is t, € (t,1) such

that
un(t)
1—t

Ty t1 ‘ftld)

ds+> Ity — t1|

it 0] = | [ )0 (97, (510 (5)

<cl.

This proves that the sequence (u;) is equiconvergente attp = 1.

Therefore, limu, = u (up to a subsequence) and u(

Lemma we see that u € ;. This ends the proof.

4.4.5 Separable variable case

fo ,u(s))ds prov-
ing that u is a solution to the bvp ({#.21). Furthermore, combmmg Lemma with

Consider the case of the bvp (4.21) where the nonlinearity f is a separable variables

function, namely the case where the bvp (4.21) takes the form

{ Lyu = preuh(u), t €

u(0) = limy;_,7 u(t)

(0,1),
=0,

where > € 't and h: R\ {0} — R is a continuous function satisfying

lim h(u) = hy, lim h(u) = hy,

u—0 U—>+00

11m h(u) =h_.

—00

We obtain from Theorems [4.26] [4.27| and [£.28] the following corollary:

Corollary 4.36. Assume that holds.

1. Leti,] be two integers such thati > j > 1. The bup

4.50

admits in each ofS]?L, e,

(4.50)

(4.51)

+ —
S8,

a solution if one of the following Hypotheses (4.52), (4.53), (4.54) and holds true.

{ o, by hi € (0, +00) and

(i(q, )/ min(hy, h-)) < p < (pi(q,)/ho),

ho <0, hy,h— € (0,4+), (pi(q,5)/ min(hy, h_)) <p
and pi(q, xo) > 0 for some xo € T,
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ho,hs,h— € (0,400) and (454)
(ni(g, ) /ho) < p < (uj(q, )/ max(hy, h-)),
ho <0, hy,h_ € (0,400), (yj(q, %)/max(th,h,)) >p (4.55)
and pi(q, xo) > 0 for some xo € T'". .

2. Let i,j be two integers such that i > j > 1and i > 2(j — 1). The bup admits in each

of Syiv---/ S8y 1s---,S; a solution if one of the following Hypotheses (4.56), (4.57)
holds true.
ho,h— € (0, +o0) and
0 (0, F-c0) (4.56)
(Hi(q,2) /ho) < o < (uj(q,5)/h-),
ho >0, h <0, (pi(q,)/ho) <
0 <0, (pilq,2)/ho) <p (4.57)
and 11;(q, xo) > 0 for some xo € I'".

3. Let i,] be two integers such thati > j > 1and i > 2(j —1). The bup admits in each

of S;j_l, ...,S85, Sz’j,, ..., S; a solution if one of the following Hypotheses (4.58), (4.59
holds true.
ho, hy € (0, + d
0,14 ( OO) an (458)
(ni(q,2)/ho) < p < (pj(4,2) /),
ho >0, hy <0, (ui(q,5)/ho) <
0 + <0, (ui(g,2)/ho) <p (4.59)
and p;(q, xo) > 0 for some xo € T'".

4. The bop admits for all k > j a solution in each of S;"” and S if one of the following
Hypotheses (4.60), (4.61), (4.62) and (4.63) holds true.

ho >0, ho =h,. =+ d
0 o e (4.60)
(mj(q, %) /ho) > p,
ho <0, h =hy =+ d
0= o (4.61)
1#i(4, xo) > 0 for some xo € T,
h_,hy € (0,+00), hg = + d
+ € (0 e0), o = oo an (4.62)
(wj(q,2)/ max (h—, h+)) > p,
h_,hy <0, hg = d
+ =0, /o = +ooan (4.63)
1i(q, xo) > 0 for some xo € T'F,
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5. The bup admits a solution in S' for all k > 2j and a solution in S forallk > 2j—1,
if one of the following Hypotheses , holds true.

h_ >0, hg = +ooand o)

(mj(q,2)/h-) > p, '
h_ <0, hg = d

=0 flo = oo (4.65)
1i(q, xo) > 0 for some xo € T'F,

6. The bup admits a solution in S;" for all k > 2j — 1 and a solution in S for all
k > 2j, if one of the following Hypotheses , holds true.

hy >0, hg = +o0 and
’ oo e (4.66)
(ni(q,2)/hy) > p,
P T (4.67)
;Mj(q,Xo) > 0 for some o € T'".

4.4.6 Comments

1. Under one of the Hypotheses (4.22), (4.23) and (4.24), the set of solutions to the bvp

(4.21) is contained in Uy>1,—+S]. Indeed, we have seen above that u is a solution

to the bvp (4.21) if and only if u satisfies

{ Lqu = uf(t,u), in (0,1) (4.68)

u(0) = limyq u(t) =0,

where § = g+ wy, f(t,u) = f(t,u) + w; and w; € Tt is that in Remark We
read from that u is a solution to bvp

Eqv = vf(t,u), in (0,1),
v(0) = lim;_,1 v(t) =0,

that is y; ((7, f(t,u)) =1 for some I > 1 and the associated eigenfunction u € §;.

2. Let u be a solution to the bvp (4.21); according to the above comment, there is k > 1
such that u € Sy. Let (z]);j) be the sequence and t; € (0,1) be such that g(t) > 0
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for all t > t,. Set t* = max(tg,zx—1) and let y; € (zx_1,1) be such that u'(y;) = 0.
We have then for all t > t*

t

—u'(t) + /y g(s)u(s)ds = /y u(s)f(s,u(s))ds (4.69)

leading to

= [W(0)] + [ fus) (s, uls))| ds < oo

y;

/tq(s)u(s)ds
y

i

We deduce from the above inequality for both the cases u > 0in (z;_1,1) and u <0
in (zg_1,1) that

1 t
/ g(s)u(s)ds = lim / g(s)u(s)ds < oo.
y y

. t——1

This proves that if u is a solution to the bvp (4.21) then f01 q(s)u(s)ds converges.

Therefore, we obtain from (4.69) that

limu'(t) = lim (/ytq(s)u(s)ds - /tu(s)f(s,u(s))ds>

t—1 t—1

1 1
= /q(s)u(s)ds—/ u(s)f(s,u(s))ds.
y

y;

. Let g € Q, notice that if for some m € Tt and I > 1 y;(q,m) =0, then u;(q,x) =0
forall x € I'". Therefore, if j1;(q,m) > 0 (resp. < 0) for some m € I'" and [ > 1 then
11(q,x) > 0 (resp. < 0) for all x € T". Indeed, if y;(g, xo) > 0 and p;(g, x1) < 0 for
some xo, x1 € I'" and [ > 1, then the continuity of the mapping

(g, ) {Q-=rxo+rxi:re0,1]} - R

leads to the existence of ry € (0,1) such that p;(g, (1 —79) xo + rox1) = 0, then to
the contradiction y;(g,x) =0, forall y e T™.

. Letg € Q" and xo € T'". The operator L, is then positive and we have for all
I>1

1
]/ll(q ) ]’ll(q ) ”(Lq,m)

Therefore, g € Q7 is a particular situation where Assertion 3 in Lemmas and

and Assertions 2 and 4 in Lemma are satisfied.
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Conclusion

This thesis was devoted to the investigation of some classes of nonlinear boundary
value problems having unintegrable weights posed on bounded and unbounded inter-
val.

In chapter 2 and chapter 3, we have obtained a new results concerns the existence of
eigenvalue associated to the linear eigenvalue problems. The main results of these chap-
ters concerns the existence and multiplicity of nodal solutions to the nonlinear boundary
value problems by means of Rabinowitz global bifurcation theory where the nonlinear-
ity is asymtotically linear. In chapter 4, we have obtained a new results concerns the
existence of half eigenvalue associated to the half linear eigenvalue problem. The main
results of this chapter concerns the existence and multiplicity for nodal solutions to the
nonlinear boundary value problems by means of Rabinowitz global bifurcation theory

where the nonlinearity is asymtotically linear, sublinear and superlinear.
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Conclusion

On s’intéresse dans cette these a I’étude de certaines classes de problémes aux limites
avec des poids non intégrable posés sur des intervalles bornés et non bornés.

Dans le deuxieme et troisieme chapitre, nous avons obtenus des nouveaux résultats
concernant l’existence des valeurs propres pour les problémes linéaires associés. Nous
avons fait recours a la théorie de bifurcation global de Rabinowitz pour obtenir les ré-
sultats d’existence et de multiplicité de solutions nodales des problémes nons linéaires
ol la non linéairité est asymptotiquement linéaire. Dans le quatriéme chapitre, Nous
avons obtenus des nouveaux résultats concernant 1'existence des demi valeurs propres
pour le probleme linéaire associé. Nous avons fait recours a la théorie de bifurcation
global de Rabinowitz pour obtenir les résultats d’existence et de multiplicité de so-
lutions nodales de probleme nons linéaire ou la non linéairité est asymptotiquement

linéaire, souslinéaire et superlinéaire.
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