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Abstract—Rapid and accessible performance evaluation of complex software systems requires two critical features: the ability to

specify useful performance metrics easily and the capability to analyze massively distributed architectures, without recourse to large

compute clusters. We present the unified stochastic probe, a performance specification mechanism for process algebra models that

combines many existing ideas: state and action-based activation, location-based specification, many-probe specification, and

immediate signaling. These features, between them, allow the precise and compositional construction of complex performance

measurements. The paper shows how a subset of the stochastic probe language can be used to specify common response-time

measures in massive process algebra models. The second contribution of the paper is to show how these response-time measures

can be analyzed using so-called fluid techniques to produce rapid results. In doing this, we extend the fluid approach to incorporate

immediate activities and a new type of response-time measure. Finally, we calculate various response-time measurements on a

complex distributed wireless network of Oð10129Þ states in size.

Index Terms—Performance modeling, performance evaluation tools, stochastic process algebra, measurement probes, fluid

approximation, passage-time analysis

Ç

1 INTRODUCTION

PERFORMANCE modeling of large and complex computer
systems has two significant aspects: specification of the

model and the performance measure to be captured and
evaluation of the often massive and sometimes intractable
computation.

Furthermore, with many performance modeling formal-
isms, the feature to be measured, timed, counted, or verified
has to be explicitly captured in the state space of the
underlying model to enable performance analysis to take
place. Examples of this include: the size of a buffer in a
queue, the number of messages in a protocol exchange, and
the number of times an energy cell has to cycle before it
needs replacing. Often modelers have to be prescient about
the features they wish to measure when constructing the
model to allow these features to be made explicit in the
model. Equally often, some performance measures only
become apparently useful once the model has been
constructed, by which time it can be harder to retrofit such
features and a new model has to be constructed and
verified. In this paper, we show that with the right query
mechanism, performance models can have complex queries
constructed about them which do not rely on key features
being explicitly present in the model.

Just as significantly, except in rare situations where an
analytic solution can be found, computing the actual

performance measure can be extremely computationally
expensive, requiring either massive numerical calculations
or huge cluster-based parallel simulations. The ability to
specify complex performance queries would be of only
limited use without a supporting framework to facilitate
their analysis in a timely fashion. We also show how probe-
based queries can be analyzed using the latest fluid
techniques based around differential equations. This allows
us to produce performance results for the combined model-
query specification using comparatively small computa-
tional resources.

We review how performance modeling of behavioral
systems can be enhanced by observer processes, called
unified stochastic probes, that probe for the start and finish of
key performance metrics, in a similar style to that suggested
by Wolf and Rosenblum [1].

In this paper, we bring together significant existing
stochastic probe mechanisms to create the unified stochastic
probe framework in Section 3. Although we base the unified
stochastic probe around an enhanced version of the PEPA
formalism (Section 2), it could be applied to any suitable
behavioral performance modeling formalism. Our approach
extends the original stochastic probe definition [2], which
uses a regular expression specification to define the start
and end events of a measure. Specifically, for the first time
we bring together the following features under a unified
measurement framework.

Immediate signaling permits measurements to be started
and terminated precisely with an immediate transition
extension to PEPA [3]. It also allows the modeler to have
many slave probes signaling to a master probe to permit
compound internal features to be measured.

Flexible location-based specification allows unified stochas-
tic probes to be placed precisely within a complex model
architecture using a pattern rewriting syntax [4].
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Combined action- and state-based enabling allows further
flexibility in defining both event-based and state-based
specifications for performance measures as well as combi-
nations of the two [5].

Finally, we provide a framework for the rapid analysis of
very large distributed systems using unified stochastic
probes, based on fast differential equation techniques. To
achieve this, we construct a new fluid analysis framework
for a stochastic process algebra that incorporates weighted
immediate transitions (Section 4). This specifically requires
new fluid action-counting and passage-time analysis that
can make use of immediate transitions. In Section 4.2, we
develop fluid passage-time analysis techniques which are
able to cope with the significant additional expressiveness
of the unified stochastic probe framework, providing a
more general fluid passage time analysis [6]. Furthermore,
for the first time we show how fluid techniques can be
applied to analyze a new class of transient individual passage
time (Section 4.2.2). Finally, in Section 5 we demonstrate the
unified stochastic probe and fluid analysis techniques on a
model of a massive distributed wireless network.

1.1 Related Work

Performance queries are often formed using logical speci-
fication languages such as continuous stochastic logic (CSL)
[7]. CSL, although powerful, expresses only state-based
measures based on the global state space of a model. With
stochastic probes we seek to express measures that are
defined by both state and event-based behavior. An
extension, aCSL [8], allows constraints based on state
predicates and sets of available actions in event-based
systems. Later variants incorporate the ability to specify
performance measures around both state-based and full
automata-governed behavior, in asCSL [9] or CSLTA [10]. In
all cases, the CSL languages permit steady-state and
passage time queries to be formed directly over labeled
stochastic state spaces. However, usually the whole global
state space of a model has to be explored (at least once)
before a performance measure can be extracted. The key
benefit of using fluid analysis is that we avoid the explicit
state space exploration of the entire model. A more detailed
comparison of the measure specification features of the
unified stochastic probe framework with those of asCSL
and CSLTA is made in Section 3.

A close performance-based analog to the stochastic probe
lies in Woodside and Shramm [11], who developed the NICE
system using finite state automata to observe trace data from
simulation and experiment. On observing particular se-
quences of events, measurements would be started or
terminated according to defined states in the observing
automaton. By contrast, a stochastic probe is applied to a
process algebraic model specification. So a probe can be
placed at particular locations within the model, replicated
many times across the model, and used to construct
compound measurements via interprobe communication.

Popular performance tools have means of expressing
performance queries. In particular, DNAmaca [12], PRISM
[13], and Möbius [14] use a combination of direct state
specification, CSL, and probabilistic logic-based specifica-
tion to express required measures. These approaches all
require full global state space exploration, although this can
be alleviated by use of symbolic state space representation.

With tools such as PRISM [13], CASPA [15], or Möbius [14]
(in symbolic mode) which use symbolic multiterminal binary
decision diagrams (MTBDDs) to store the stochastic transition
system, model sizes of up to 1011 states can be analyzed (for
steady-state measures). However, even this size can depend
heavily on the model being studied and on detailed
considerations such as the exact variable ordering in the
underlying MTBDD and is still potentially overextended by a
system of only 20 components with 10 states each.

1.2 Motivating Example

Consider a distributed application such as a wireless
network. There are Nc clients which transfer data to each
other, where Nc is potentially quite large. Each client is
autonomous and subject to failure or power outage.
Traditionally, verifying the performance properties of such
a system requires construction of an underlying continuous-
time Markov chain (CTMC) with an upper bound of
dNc states if each client has d local states. A lumping
aggregation [16] can be applied to reduce the size of the state
space; however, the number of aggregate states is bounded
below (generally very loosely) by expðdÞ for large enoughNc.
Even after state space aggregation, it is very easy to construct
models many orders of magnitude larger than 109 states,
which is typically too high to analyze explicitly.

There is clearly a requirement for analysis techniques
that can cope with many thousands of interacting compo-
nents in a complex performance model of, say, a wireless
network, PubSub architecture, or Cloud environment. We
present a new fluid analysis technique for a stochastic
process algebra which has been extended to incorporate
immediate activities in Section 4. The weighted immediate
transition model used is inspired by that of generalized
stochastic Petri nets (GSPNs) [17], which is sufficient for our
needs of permitting instantaneous signaling between probe
components. We recognize that immediate extensions to
process algebras exist (such as IMC [18]) that provide more
expressive bespoke scheduling of immediate activities but
we do not require that level of functionality for our
immediate signaling application.

It is possible to pick out response time measurements
between explicit model states using formalisms like CSL or
tool languages such as DNAmaca. Extracting derived
behavior from performance models is harder, often requiring
model modification to capture the behavior being measured.

An example of derived behavior can be seen in the
wireless network model above when asking for the
duration of four data transfers without a battery failure.
The battery failure condition is a path restriction of the sort
that is possible in CSL. However, the specification of four
data transfers events when only a single data transfer action
is explicitly defined in the process model is termed derived
behavior and is harder to do in a stochastic logic or simple
state specification formalism.

This is the type of more involved query that can be
captured using unified stochastic probes. The probe itself is
formally specified using a behavioral regular expression and
a location formula. The probe is translated into an automaton
and then to a process algebra component (in the target
process language) which is attached to a part of the model
(specified by the location formula) under model composition.
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2 IMMEDIATE GROUPED PEPA (GPEPA)

Grouped PEPA [19] is a simple extension of the stochastic
process algebra PEPA [20], which facilitates the application
of fluid-analysis techniques for massively parallel models.
Immediate GPEPA (iGPEPA) adds immediate action func-
tionality to the grouped PEPA formalism. A GPEPA model
consists of a number of labeled cooperating component
groups, each of which consists of a large number of
components operating together in parallel. We refer to
the components within these groups as f-components.1 The
f-components are those whose states are tracked explicitly by
an approximating system of differential equations.

2.1 F-Components in Immediate GPEPA

F-components are allowed to be any standard PEPA process
algebra component with the additional possibility of
immediate actions (not available in traditional PEPA). We
refer to this extension of PEPA as iPEPA. Immediate
actions are necessary to facilitate communication between
the measurement processes (defined in Section 3 by unified
stochastic probes) which help us to specify passage-time
measures of interest. Syntactically, an iPEPA component is
specified by the standard PEPA grammar [20], augmented
with immediate actions [3]:

S ::¼ ð�; rÞ:S j ½a; w�:S j S þ S j CCS

P ::¼ P ./
L
P j S j CCP ;

ð2:1Þ

where � 2 At is a timed action type, a 2 Ai is an immediate
action type, L � A, where A :¼ At [ Ai is the set consisting
of all action types. Also, r 2 IRþ [ fn>jn 2 QQ; n > 0g is a
rate parameter and w 2 IRþ, w 6¼ 0 is a weight parameter.

In line with (2.1), an iPEPA component can be a purely
sequential component, S, or a parallel component, P , with its
own internal parallelism. CCS and CCP represent constants
which denote sequential components or parallel compo-
nents, respectively. The effect of this syntactic separation
between constants is to allow cooperation between sequen-
tial components only.

We now introduce informally the intended semantics of
the iPEPA syntax introduced above.

Prefix. The basic mechanism for describing the behavior
of a system is to give a component a designated first action
using the prefix combinator, denoted by a full stop. ð�; rÞ:P
carries out an �-action whose duration is drawn from an
exponential distribution with rate parameter r. It subse-
quently behaves thereafter as P .

Immediate prefix. The component ½a; w�:P behaves like the
component ð�; rÞ:P ; however, activities enabled by an
immediate prefix are high priority and are always performed
instantaneously and before any timed activities that are
currently enabled. The question of how to proceed in states
with multiple concurrently enabled immediate actions is
resolved probabilistically using the weight parameter. As
mentioned, immediate prefix is particularly useful when
constructing unified stochastic probes in Section 3. We also
allow the syntax a:S as shorthand for ½a; 1�:S in situations
for which a weighting is not necessary.

Choice. The component P þQ represents a system which
may behave either as P or as Q. The activities of both P and
Q are enabled. If an activity in P completes first, the system
then proceeds by taking on the behavior of the derivative of
P following the completed action; and vice versa for Q.

Constant. It is convenient to be able to assign names to

patterns of behavior associated with components. Constants

are components whose meaning is given by a defining

equation. The notation for this is XX ¼def P . This allows the

recursive definition of components, for example, XX ¼def

ð�; rÞ:XX performs � at rate r forever.
Cooperation. We write P ./

L
Q to denote cooperation

between P and Q over L. The set which is used as the
subscript to the cooperation symbol, the cooperation set L,
determines those action types on which the components are
forced to synchronize. For action types not in L, the
components proceed independently and concurrently with
their enabled activities. We write PkQ as an abbreviation for
P ./

;
Q, where P and Q execute independently in parallel.

Fundamental to PEPA (and thus iPEPA) is the notion of
apparent rate, r�ðP Þ, which measures the observed rate that
an iPEPA component P executes a timed action �. This
defines the rate that a cooperating process sees and is
therefore integral to the speed of cooperation between
processes. It is defined by

r�ðð�; �Þ:P Þ :¼
� if � ¼ �
0 if � 6¼ �

�
r�ð½a; w�:P Þ :¼ 0

r�ðP þQÞ :¼ r�ðP Þ þ r�ðQÞ

r�ðP ./
L
QÞ :¼

minðr�ðP Þ; r�ðQÞÞ if � 2 L
r�ðP Þ þ r�ðQÞ if � 62 L:

�
ð2:2Þ

If a component enables an activity whose action type is in
the cooperation set, it is not able to proceed with that
activity until the other component also enables an activity of
that type. The two components then proceed together to
complete the shared activity. Once enabled, the rate of a
shared timed activity has to be altered to reflect the slower
component in a cooperation. Within the cooperation frame-
work, we assume bounded capacity, that is, a component
cannot be made to perform an activity faster by cooperation,
and the rate of a shared timed activity is defined as the
minimum of the apparent rates of the activity in the
cooperating components.

In some cases, when the rate of a shared timed activity is
determined by only one component in the cooperation, then
the other component is defined as passive with respect to that
activity. This means that the rate of the activity is left
unspecified (denoted >) and is determined upon coopera-
tion by the rate of the activity in the other component. In
defining f-components, we require that all passive actions
are synchronized so as not to allow passive cooperation
between component groups (as discussed in Section 2.2).
Also, an iPEPA component is not allowed to offer the same
timed action type both passively and actively (this is a
standard restriction in PEPA). More information on the exact
behavior of passive cooperation is given in Appendix A.1.

When immediate and timed actions are combined it is
important to understand how they may interact. In
particular, cooperation between timed and immediate
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activities is not a well-defined concept. Therefore, we have
disallowed cooperation between them by drawing their
types from two disjoint sets, At and Ai, respectively.

The formal structured operational semantics for PEPA
without immediate actions can be found in [20, Chapter 3].
We present an explicit structured operational semantics for
iPEPA which combines both timed and immediate actions
in Appendix A.1. Our approach explicitly considers the
removal of vanishing states at the level of f-components
(Section 2.1.1), which is necessary if ordinary differential
equation (ODE) techniques are to be applied. The opera-
tional semantics determines a transition relation on iPEPA
components, consisting of both immediate and timed
transitions. For an iPEPA component P , we define its set
of derivative states dsðP Þ to be all components reachable from
it by either timed or immediate transitions according to the
operational semantics.

2.1.1 Vanishing State Removal

Assuming that an iPEPA component satisfies two natural
regularity conditions, its transition system has a straightfor-
ward translation to a continuous-time Markov chain, as in
the case of PEPA without immediate actions. When an
iPEPA component satisfies both of these conditions, we
refer to it as well behaved. Specifically, the two regularity
conditions are:

. freedom from immediate cycles, meaning that there are
no cycles of immediate transitions in a well-behaved
iPEPA component’s transition system;

. deterministic initial behavior, meaning that there may
be at most one path of immediate transitions
emanating from a well-behaved iPEPA component’s
initial state.

We require that all f-components are well behaved. A more
formal treatment of these conditions can be found in [22].

If an iPEPA component enables an immediate transition,
then any timed transitions also enabled are ignored. If more
than one immediate transition is enabled, the one to
proceed is selected probabilistically according to the
distribution as above. Otherwise, if a component enables
only timed transitions, they are raced in the usual manner
by sampling from exponential distributions according to the
rates of the timed transitions.

This interpretation gives rise to a continuous-time
Markov chain, but the state space of a well-behaved
iPEPA component P is not dsðP Þ, rather it is the set of
nonvanishing derivative states, ds�ðP Þ � dsðP Þ, the set of
derivative states of P which do not enable any immediate
actions. The immediate transitions emanating from vanish-
ing derivative states can be removed if we replace paths of
immediate transitions with the timed transition they
determine between elements of ds�ðP Þ. The resulting
transition system on ds�ðP Þ is referred to as the derived
transition system of P and is constructed formally in
Appendix A.2.1. Note that this transition system consists
only of timed transitions.

2.2 Immediate Grouped PEPA Models

A component group is a parallel cooperation of a normally
large number of f-components. Syntactically, a component
group, D, is specified by the following grammar:

D ::¼ D oo D j P; ð2:3Þ

where P is an f-component. The combinator oo represents

unsynchronized parallelism between f-components.
A grouped PEPA model is formed by combining multiple

labeled component groups together. Syntactically, the

grammar for a grouped PEPA model G is

G ::¼ G./
L
G j Y fDg; ð2:4Þ

where Y is a group label, unique to each component group.

The term G ./
L
G represents synchronization over action

types in the set L, where L � At is a set of timed action

types. This component group structure defines a class of

models to which fluid analysis is naturally applicable.
We illustrate more clearly how component groups and

f-components are used together by constructing a standard

PEPA model of a simple massively parallel client/server

system with server initialization and failure phases.

CClliieenntt0 ¼
def ðfetch; rtÞ:CClliieenntt1 CClliieenntt1 ¼

def ðreset; rsÞ:CClliieenntt0
SSeerrvv0 ¼

def ðinitialize; riÞ:SSeerrvv1 SSeerrvv1 ¼
def ðfetch; rtÞ:SSeerrvv0

SSeerrvv2 ¼
def ðrecover; rrÞ:SSeerrvv0 þðfail; rfÞ:SSeerrvv2

SSCCðn;mÞ ¼def

ðCClliieenntt0k � � � kCClliieenntt0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

./
ffetchg

ðSSeerrvv0k � � � kSSeerrvv0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m

:

This model captures the scenario of n clients cooperating on

a fetch action with m servers. Each server has to initialize

before synchronizing and a fetch may fail at the server end

throwing it into a failure mode, from which it can recover.

The natural representation of this situation as an iGPEPA

model has the structure

SSCCðn;mÞ ¼def ClientsfCClliieenntt0½n�g ./
ffetchg

ServersfSSeerrvv0½m�g;

where

P ½k� :¼ ðP oo � � � oo P Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k

:

This grouping unambiguously determines the compo-

nents to be approximated using fluid analysis, CClliieenntti and

SSeerrvvj. So in this case, the fluid approximation is given by

five coupled differential equations each of which counts the

number of each type of component active in the model.
The combinator oo has the same meaning as k. However,

the two distinct combinators are necessary to resolve

possible ambiguity in the case of component groups which

contain f-components with their own internal parallelism.

That is, the purpose of the additional level of model structure

afforded by iGPEPA models is to define the granularity at

which the fluid approximation is performed, as is described

in Section 4.1.
We have defined an operational semantics for iPEPA

components in terms of an underlying CTMC in the

previous section. The semantics for a complete iGPEPA

model is a simple extension of this and is given formally in

Appendix B.
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3 UNIFIED STOCHASTIC PROBES

Stochastic probes [2], [5] are a query mechanism for
stochastic process algebras. They are used to specify events
which determine the start and end of a desired passage-
time measure.2 That is, the stochastic probe specifies a set of
source states and a set of target states in the state space of the
underlying stochastic process. The passage time being
measured is the delay in reaching any target state from a
source state.

Unified stochastic probes are formalism independent and
use a regular expression syntax, based on the complete action
label set A of the model, combined with a state-based
predicate to define the probe itself (similar to the asCSL [9] or
CSLTA [10] automaton). Traditionally, a stochastic probe is
translated into a fragment of stochastic process algebra that
can be composed with a stochastic process algebra model.

Unlike asCSL or CSLTA, however, a unified stochastic
probe also contains a placement specification which locates
the probe at a particular point in the compositional structure
of the model. This allows the probe to be activated precisely
by the exact component that the modeler is interested in
measuring. Unified stochastic probes also permit many
separate probes to be created and distributed over the model
structure; the results of these local probes can in turn be
observed via immediate signals by a global probe which
defines a more sophisticated passage-time measure.

One particular benefit of stochastic probes over a
stochastic logic like CSL [7] is that they allow the capture
of derived behavior in a measure. Derived behavior is
behavior that is not expressed directly in the state space of
the original model, but is available in the product probe-
model state-space.

As an example, the following is a probe that could be
attached to the SSCCðn;mÞ model of Section 2.2 that emits,
among others, initialize, fetch, and fail actions:

PPrroobbee ¼def initialize : start; ðfetch½3�=failÞ : stop:

This specifies a probe that starts a measurement after
seeing an initialize action and terminates it on seeing three
fetch actions without seeing any fail actions. The start and
stop labels are reserved signals that start and stop the
measurement.

3.1 Probe Syntax

In this paper, we use stochastic probes inspired by the
definitions of [5] augmented with the unique iGPEPA
component group labels. These are not available in the
standard PEPA syntax, but they provide a convenient
mechanism by which to identify specific components and to
locate measurement probes. We build on and extend the
notions of local and global probes as discussed in [5] to
facilitate the application of fluid-analysis techniques.

For our purposes, local probes are probes which can be
attached to f-components or their subcomponents and a
global probe is a probe which observes the entire iGPEPA
model. Local probes may communicate with other local

probes and, ultimately, with a global probe by means of
signals. In order to support this, we assume the existence of
a set S of signal labels contained in the set of immediate
action types Ai. In Section 3.3, we introduce location
specifications for local probes which define exactly which
f-component or subcomponent they observe, that is, where
they are placed within a model. Every probed model must
include exactly one global probe but may utilize zero or
many local probes.

3.1.1 Local Probes

A local probe is specified formally in terms of action
observations and signal transmissions Rs

l and whether or
not it is repeating, denoted by a  - superscript:

Probel ::¼ Rs
l j Rs

l
 -: ð3:1Þ

A repeating local probe simply loops back and repeats its
measurement, transmitting a signal for each time it observes
the same local pattern of behavior. The grammar Rs

l allows
for signals (signal 2 S) to be transmitted in sequence
following observations made by regular expressions:

Rs
l ::¼ Rs

l ; R
s
l sequence

j Rl : signal transmitted signal:
ð3:2Þ

Transmitted signals can be observed by another local or a
global probe. Indeed, sophisticated measurements can be
specified by many probes attached to a system, in which
case the signals can be used to start and stop measurements
in higher level probes. The grammar Rl allows the full
power of an extended regular-expression-based language,
suited to passage-time specification:

Rl ::¼ Rl;Rl sequence
j Rl j Rl choice
j Rl;Rl both
j Rl½n� iterate n times
j Rl½m;n� iterate m to n times
j R?

l zero or one
j Rþl one or more
j R�l zero or more
j Rl=Rl reset
j Rl�Rl fail
j R!

l not
j : any action or signal
j action eventual specific action or signal
j action subsequent specific action or signal
j � empty action or signal sequence;

ð3:3Þ

where action 2 A is an action (or signal) type.
Since we are interested in capturing passage-time

measurements which are started and stopped by signals,
we wish to know as soon as the observed component has
satisfied a regular expression which transmits a signal
(Rl : signal in (3.2)). For this reason, we interpret regular
expressions preceding signals in a lazy or minimal manner—
for a given trace of the observed component, we are only
interested in how long it takes for the first match to occur, at
which time the signal is transmitted. We are not interested in
any subsequent matches, so, after a signal transmission, we
start to match the next regular expression in the sequence
Rs
l ; R

s
l (3.2) independently of the previous one.
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The atoms of our regular expression grammar are the
observed actions. We provide two ways to specify observed
actions. A subsequent specific action or signal, written action,
matches action only—the usual approach to specifying the
atoms of a regular expression. On the other hand, an
eventual specific action or signal, written action, matches any
sequence of actions which includes an observation of an
action of the given type. This is shorthand for

:�; action; :�

where . is shorthand for ða1 j a2 j � � � j ajAðP ÞjÞ and a1; . . .;

ajAðP Þj 2 AðP Þ is an enumeration of the set of action types
AðP Þ performed by the component to be observed, say P

(the details of how probes are attached to f-components
follow in later sections).

We provide the shorthand for eventual observations
since this is very often how passage-time queries are
specified. The modeler may wish to state the key actions
which are required for a passage to complete but is often
not concerned further about the details of how this might
come about. By way of example, the local probe specified by
fetch : end only transmits the end signal if the first action it
observes is fetch. Otherwise, it never matches and thus
never transmits the end signal. On the other hand, the local
probe specified by fetch : end matches and transmits the
end signal as soon as it sees a fetch action, irrespective of
the number of intervening actions it may have seen while
waiting for it.

We have also introduced a few other nonstandard
regular expression shorthands, particularly useful for
succinct expression of passage-time measures. The both
construction Rl; Rl matches if both constituent regular
expressions match. The reset construction Rl=Rl matches
when the left-hand regular expression matches, subject to
restarting the matching process every time the right-hand
regular expression matches. Finally, the fail construction
Rl�Rl is similar to the reset construction, but if the right-
hand regular expression matches before the left-hand
expression, the matching process fails entirely and the
whole expression never matches.

A formal semantics is given for this regular expression
language in Section 3.2 by means of the translation from
probes to iPEPA components.

3.1.2 Global Probes

A global probe may observe actions and signals like a local
probe, but can also directly query the state of the iGPEPA
model to which it is attached. Furthermore, a global probe
has the role of transmitting the two reserved signals start
and stop, which serve to mark the beginning and end of the
passage-time measure of interest. It serves no purpose to
allow global probes to transmit any other signals so they are
not allowed to do so. Formally, a global probe has a similar
form to a local probe:

Probeg ::¼ Rg : start; Rg : stop j Rg : start; Rg : stop -; ð3:4Þ

where Rg has the same grammar as Rl except for the
addition of an optional state-based guard fpredgRg, defined
at the end of this section:

Rg ::¼ fpredgRg j Rg;Rg j � � � j action j action j �: ð3:5Þ

Note that the grammar of Probeg gives two possible
configurations. As in the case of local probes, a global probe
can also be repeating, which is again specified by the  -
superscript. In the nonrepeating case, for a given trace of
the probed model, both the start and stop signals are only
ever transmitted at most once. The passage time being
measured is then defined to be the difference between the
time instants at which these two signals were transmitted.

On the other hand, repeating global probes generally
transmit many pairs of start and stop signals in one trace of
a probed model. The distribution of the difference between
these two time instants is then conditional on the particular
time at which the start signal was transmitted. Therefore, it
makes sense to interpret repeating global probes as defining
a steady-state measurement since the difference between
the start and stop signal transmissions is identically
distributed in the steady-state regime.

Finally, the state guard predicate, pred, is given by

pred ::¼ true j false boolean
j :pred not
j pred _ pred disjunction
j b expr expression

b expr ::¼ r expr � r expr comparison
r expr ::¼ H : P component count

j int number
j r expr� r expr arithmetic

� ::¼ ¼j�j	 relational ops
� ::¼ þ j 
 binary ops;

ð3:6Þ

where, if G is the iGPEPA model to which the global probe
is to be attached, ðH;P Þ 2 BðGÞ.

The formal semantics for the predicate language for an
iGPEPA model in state s is given by

s � true for all s
s � false for no s
s � : iff s 6�  
s �  1 _  2 iff s �  1 _ s �  2

s � b expr evalðb expr; sÞ;

where b expr is, as above, a Boolean function of H : P
expressions, which reference a specific f-component deri-
vative state P in the component group H. The eval function
evaluates the Boolean function by dereferencing the H : P
expressions as the number of P components active in the
component group H in the particular state of the model s.

A guarded regular expression fpredgRg matches the
pattern of behavior specified by Rg subject to the state-based
guard fpredg being true when Rg starts to be matched.

3.2 Translating Probes to iPEPA

In this section, we describe how meaning is given to a probe-
specified measure by defining a translation from its regular-
expression specification to an iPEPA component. The
resulting component can then be attached at various points
within a performance model to extract the measure of
interest. Where traditional CTMC analysis techniques are to
be applied, all probes, both local and global, can be translated
into iPEPA components and composed with the original
iGPEPA model as specified. The resulting composite model
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can then be analyzed as a stand-alone model using
traditional techniques.

Where fluid analysis techniques are to be used, we
translate local probes directly into iPEPA components and
compose them with the model at the specified locations.
The translation of global probes directly into process
algebra components and their subsequent composition with
the model of interest is, in fact, technically prohibited by our
restriction that iGPEPA models may not cooperate on
immediate actions across component groups. Indeed, the
underlying reason for both decisions is the same. ODE
techniques cannot be applied directly to such models since
the synchronization on immediate actions at a global level
leads to ill-defined systems of differential equations (see the
discussion in [22, Section 3.2.1] for more details on this kind
of problem). Instead, global probes are interpreted directly
depending on the type of performance measure being
computed as is described in Section 4.2.

In this section, we discuss the probe-to-component
translation and how a probe is attached to an f-component.
In the next section, we introduce a mechanism which
describes the placement of the local probes in the context of
a complete iGPEPA model. We assume that P is the
f-component to which the local probe in question is to be
attached. Therefore, the set of atomic symbols over which
the regular expressions are defined is the set of action types
used by P , that is, AðP Þ.

The translation of local probes to iPEPA components
follows the standard approach of first converting the regular
expression to a deterministic finite automaton (DFA) (e.g., [23]).
A DFA is a labeled and directed graph with a single start state
and a set of accepting states, interpreted as a finite state machine
accepting finite strings of symbols. For each state, there is a
directed transition to another state for each atomic symbol.
Upon reading a symbol (that is, when a timed or immediate
action occurs), the DFA jumps from its current state to
another according to the transitions. The start state is where
the matching process begins and the accepting states define
when the DFA has successfully matched the regular
expression. This DFA can then be translated in a straightfor-
ward manner to an iPEPA component which can be
synchronized with the observed f-component. We begin by
showing how a regular expression Rl given by the grammar
of (3.3) may be translated to a DFA.

In fact, assuming that DFAs exist for regular expressions
R1
l and R2

l , the translation to DFAs of ðR1
l ; R

2
l Þ, ðR1

l j R2
l Þ,

R1
l ½n�, R1

l ½m;n�, R1
l

?
, R1

l
þ

, and R1
l
�

is standard and well
documented in the literature (e.g., [23]). This is also the case
for �, ., action, and action. The remaining cases R1

l ; R
2
l ,

R1
l =R

2
l , R

1
l �R

2
l , and R1

l
!
are less standard additional regular-

expression constructions which are particularly useful for
specifying certain types of passage-time measure. Their
translation to DFAs is also relatively straightforward and is
documented in Appendix C. By way of example, the local
probe regular expression:

ðfetch j failÞ; ðfetch½3�=failÞ;

can be translated to the following DFA, assuming that it is to
be attached to an f-componentP , whereAðP Þ ¼ ffetch; failg
and the single accepting state is denoted by its double edge:

At this stage, DFA minimization algorithms (e.g., [23])
could be applied to reduce its size if desired. The next stage
is the translation of the DFA to an iPEPA component,
which is straightforward. Each state of the DFA maps to a
derivative state of the iPEPA component. Each arc with a
timed action is translated to a passive enabling of that
action type in the iPEPA component, and each arc with an
immediate action is translated to an immediate enabling of
that action type. For the example above, the resulting iPEPA
component is

PPbb ¼def ðfetch;>Þ:PPbb1 þ ðfail;>Þ:PPbb1

PPbb1 ¼
def ðfail;>Þ:PPbb1 þ ðfetch;>Þ:PPbb2

PPbb2 ¼
def ðfail;>Þ:PPbb1 þ ðfetch;>Þ:PPbb3

PPbb3 ¼
def ðfail;>Þ:PPbb1 þ ðfetch;>Þ:PPbbAcc

PPbbAcc ¼
def ðfail;>Þ:PPbb1 þ ðfetch;>Þ:PPbbAcc:

A complete local probe may also transmit signals and
possibly be repeating according to the grammars of (3.1),
(3.2). Indeed, a general instance of the grammar of (3.2) has
the form R1

l : s1; . . . ; Rk
l : sk. We may construct iPEPA

components corresponding to each Ri
l following the

methodology outlined above. Then since, as mentioned
earlier, we wish for regular expressions directly preceding
signals to be matched lazily, for each i all accepting states in
the iPEPA component corresponding to Ri

l are merged into
a single absorbing accepting state. This is achieved simply
by choosing one accepting state (arbitrarily), then redirect-
ing all transitions ending in other accepting states so that
they instead end in the chosen one. Then, this single
accepting state is made absorbing. Next, in the single
accepting derivative state in the iPEPA component corre-
sponding to Ri

l , we enable an immediate action of type si,
which ends in the start state of the iPEPA component
corresponding to Riþ1

l . This causes the probe component to
emit an si signal before beginning to match the next regular
expression in the sequence.3

If the complete local probe is repeating in the single
accepting state in the iPEPA component corresponding to
Rk
l , we enable an immediate action of type sk which ends in

the start state of the iPEPA component corresponding to
R1
l . Otherwise, in the nonrepeating case, this immediate

action instead ends in a new derivative state which loops on
all actions in AðP Þ (so as not to block the observed
component under synchronization).

Now consider a slight modification of the earlier
example to transmit signals at certain points within the
matching process:
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ðfetch j failÞ : begin; ðfetch½3�=failÞ : end:

The complete iPEPA component corresponding to this local
probe is then:

PPbb ¼def ðfetch;>Þ:PPbbbegin þ ðfail;>Þ:PPbbbegin

PPbbbegin ¼
def

begin:PPbb1

PPbb1 ¼
def ðfail;>Þ:PPbb1 þ ðfetch;>Þ:PPbb2

PPbb2 ¼
def ðfail;>Þ:PPbb1 þ ðfetch;>Þ:PPbb3

PPbb3 ¼
def ðfail;>Þ:PPbb1 þ ðfetch;>Þ:PPbbend

PPbbend ¼
def

end:PPbbAcc

PPbbAcc ¼
def ðfail;>Þ:PPbbAcc þ ðfetch;>Þ:PPbbAcc:

After its construction, we compose the local probe with the

component to be observed using the standard iPEPA

cooperation combinator. For the above example, this results

in the f-component P ./
AðP Þ

PbPb. If the f-component P happens

to enable actions which might not be observed by the probe,

say, for the example above that AðP Þ ¼ ffetch; fail;
initializeg instead, then the translation of the probe may

involve a large number of self-loop transitions. If an action

type is only enabled as a self-loop and this happens in every

derivative state (apart from those just transmitting signals),

we may remove all of the self-loops if we drop the action

type in question from the cooperation set since this has

exactly the same effect.
In future, we write probe composition as P ./

� Pb, where
� is shorthand for cooperation over the intersection of AðP Þ
and the set of observed actions or signals enabled by the
probe iPEPA component, after self-loops have been
removed where possible. Note that it is important that
signals transmitted by the probe are not included in this
cooperation set or they will be blocked. Therefore, it is a
requirement that a single local probe cannot both observe
and transmit the same signal. This clearly does not impact
on the kinds of measurements we can specify since we can
simply rename signals if necessary.

For certain types of local probe, there are situations where
the f-component P enters a state from which it is no longer
possible for one of the regular expressions Ri

l to match. For
example, consider the local probe fetch : begin. If P does not
immediately perform a fetch action, the regular expression
never matches. If the local probe is repeating, we do not wish
for such a situation to block the probe indefinitely, rather, we
wish for the local probe to reset and repeat its (attempted)
measurement. Thus, for repeating local probes, it is
necessary to make a minor adjustment to the transition
system of the probed component.

Specifically, consider the probed component P ./
�
Pb

where Pb is the iPEPA component resulting from the
translation of some general repeating local probe
R1
l : s1; . . . ; Rk

l : sk
 -

. For each i, letRi be the set of derivative
states of Pb corresponding to the DFA states of Ri

l and write
PbiAcc for the corresponding accepting state of Ri

l . Then, we
must consider any derivative state Q ./

�
R 2 dsðP ./

�
PbÞ for

which R 2 Ri from which it is no longer possible to reach a
state where Ri

l has accepted, that is, to reach some S ./
�
PbiAcc

for S 2 dsðP Þ. Then, we modify the transition system so that
all transitions into such states Q ./

�
R are redirected to the

state Q ./
�
Pb in order to reset the probe.

We note that if P is an f-component and thus well
behaved, then so is P ./

�
Pb for any reasonable local probe

Pb. More formally, as long as the local probe is not a
repeating local probe which makes no observations of
actions or signals, P ./

�
Pb is free from immediate cycles and

has deterministic initial behavior.
Finally, we note that it is straightforward to automate the

translation process described above starting from the initial
regular expression specification of the local probe. There-
fore, the modeler need not interact with the evaluation
process further after specifying the regular expression
defining the measurement.

3.3 Locating a Local Probe

To locate a local probe, we use a modified version of the
model transformation language presented by Clark and
Gilmore [4], extended to use the component group labels for
the purpose of uniquely locating the probe. Thus, in the
SSCCðn;mÞ model of Section 2.2, which was defined by

SSCCðn;mÞ ¼def ClientsfCClliieenntt0½n�g ./
L

ServersfSSeerrvv0½m�g;

we might want to position a local probe, PPbb around one of
the CClliieenntt0 components in the Clients group. To do this we
can deploy a model transformation:

ClientsfCClliieenntt0½?n�g¼)
ClientsfðCClliieenntt0 ./

�
PPbbÞ oo CClliieenntt0½?n
 1�g:

This is used to pattern match against the definition of
SSCCðn;mÞ and transform the matching part from the form to
the left of the ¼) to the form on the right. In this case the
rule matches the Clientsf�g group structure in the system
and adds the probe in the relevant place. The formal
variable ?n matches whatever number or symbolic repre-
sentation of replicated CClliieenntt0 is specified. It permits
subsequent arithmetic operation to be performed on ?n in
the transformed model.

Formally, we draw the syntax of a location specification
term from the transformation language defined by rule
below:

rule ::¼ group¼)group replacement rule
group ::¼ Hfcptsg component group

j group ./
actions

group group cooperation

cpts ::¼ cpt f-component
j cpt oo cpt f-component parallelism
j cpt½expr� f-component array

cpt ::¼ P iPEPA component
j cpt ./

actions
cpt iPEPA cooperation

j ?p iPEPA component
variable

actions ::¼ L action set
j ?l action set variable

expr ::¼ int number
j ?n numeric variable
j expr� expr binary expression;
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where H 2 GðGÞ, P 2 BðG;H 0Þ for some H 0 2 GðGÞ, L � At,
int 2 ZZþ, and n and p are drawn from a set of variable
names.

As a final example of probe placement, consider a situation
in which SSeerrvv0 components operate in pairs, synchronizing
on the fetch action, perhaps to deliver the service to the client,
represented by the following iGPEPA model:

SSCC0ðN;MÞ ¼def ClientsfCClliieenntt0½N �g
./
L

ServersfðSSeerrvv0 ./
ffetchg

ServServ0Þ½M�g:

Perhaps we are interested in monitoring the behavior of one
such pair. To do this, we need to employ nested local probes
to allow us to distinguish between actions performed by the
two partners in a pair. For example, we might use the
following model transformation to attach a local probe to
each server in a specific pair, and then a master probe to
combine their observations:

ServersfðSSeerrvv0 ./
ffetchg

SSeerrvv0Þ½?n�g¼)

ServersfðððSSeerrvv0 ./�
PPbb1Þ ./

ffetchg
ðSSeerrvv0 ./

�
PPbb2ÞÞ ./

�
PPbbmÞ

oo ðSSeerrvv0 ./
ffetchg

SSeerrvv0Þ½?n
 1�g:

Nested local probes are supported automatically since an
f-component becomes another f-component under probe
composition.

It is important to realize that the translation and
composition of local probes with an iGPEPA model as
described above simply results in another iGPEPA model.
In particular, existing techniques for the analysis of
iGPEPA models can then be directly applied to the
resulting probed model.

Finally, we discuss how a complete measure specifica-
tion consisting of a model, a set of zero or more local
probes, and a single global probe can be represented.
Formally, a probed model has the following grammar:

ProbedModel ::¼ Probeg observes fProbelg
where fLocationg
in G

j Probeg in G;

ð3:7Þ

where fProbelg is a list of local probes and fLocationg is a
list of location specifications used to place the local probes
within the iGPEPA model G.4 We assume that the location
specification transformations are applied in the order of
enumeration of this list.

3.4 Example Measure Specifications

In this paper, we focus on the analysis of two classes of
passage-time measure that are amenable to fluid analysis
and thus allow massive state space models to be analyzed.
The first is the individual passage time—what is the
probability that an individual component in a group has
completed some task by time t. The second is the global
passage time—what is the probability that, globally, the

model has completed some passage by time t. In this

section, we provide a few such example measurements,

specified in the language of unified stochastic probes. Then,

in the next section, we proceed to discuss how fluid-

analysis techniques may be applied for their analysis.
Recall the simple iGPEPA model from Section 2.2.

CClliieenntt0 ¼
def ðfetch; rtÞ:CClliieenntt1 CClliieenntt1 ¼

def ðreset; rsÞ:CClliieenntt0
SSeerrvv0 ¼

def ðinitialize; riÞ:SSeerrvv1 SSeerrvv1 ¼
def ðfetch; rtÞ:SSeerrvv0

SSeerrvv2 ¼
def ðrecover; rrÞ:SSeerrvv0 þðfail; rfÞ:SSeerrvv2

SSCCðn;mÞ ¼def ClientsfCClliieenntt0½n�g ./
ffetchg

ServersfSSeerrvv0½m�g:

A global passage-time query using state-based specification

on this model might ask how long before n of the servers are

simultaneously in state SSeerrvv1. This is captured by the probed

model specification:

PPMM1 ¼
def
� : start; fServers : SSeerrv1 � ng : stop

in SSCCðn;mÞ:

We might instead be interested in the related query how long

before n fail-actions have been performed by servers, which is

captured by the probed model specification:

PPMM2 ¼
def

� : start; fail½n� : stop

in SSCCðn;mÞ:

No local probes or location specifications are required in

either of the above cases. However, where derived behavior

needs to be captured, activity-based probes and location

specifications become key mechanisms. Assume now that

we are instead interested in the query how long before

n different servers each perform a fetch-action. In order to

capture this behavior, we need to employ a local probe

which is attached to each SSeerrvv0 component:

PPMM3 ¼
def

� : start; end½n� : stop

observes PPrroobbeel ¼
def

fetch : end

where ServersfSSeerrvv0½?n�g¼)
ServersfðSSeerrvv0 ./

�
PPrroobbeelÞ½?n�g

in SSCCðn;mÞ:

In this case, the local probe is necessary to extract the

derived behavior from each SSeerrvv0 component of having

already completed a fetch-action. After observing this it

signals to the global probe using the end signal.
Transferring our attention to individual passage-time

queries, we might simply be interested in how long it takes a

particular server to complete its first fetch-action. In order to

specify this measurement we may again use a local probe

similar to that above to capture the derived behavior of

having completed a fetch-action, but we apply it to only

one SSeerrvv0 component:
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PPMM4 ¼
def

begin : start; end : stop

observes PPrroobbeel ¼
def

� : begin; fetch : end

where ServersfSSeerrvv0½?n�g¼)
ServersfðSSeerrvv0 ./

�
PPrroobbeelÞ oo SSeerrvv0½?n
 1�g

in SSCCðn;mÞ:

Note that it is not true that the same measurement could be
specified with just the global probe � : start; fetch : stop
since this terminates on seeing any fetch-action from any
server. Thus, the local probe is necessary. If we were
looking to measure a more complicated individual pas-
sage-time such as how long it takes a particular server to
complete two fetch-actions without failing, we need a more
involved local probe, which again ensures that both of the
fetch-actions and any fail-actions are captured only from a
single SSeerrvv0 component:

PPMM5 ¼
def

begin : start; end : stop

observes PPrroobbeel ¼
def

� : begin; ðfetch½2�Þ=fail : end

where ServersfSSeerrvv0½?n�g¼)
ServersfðSSeerrvv0 ./

�
PPrroobbeelÞ oo SSeerrvv0½?n
 1�g

in SSCCðn;mÞ:

We might instead be interested in the same individual
passage-time measurement taken in the steady state and
starting after a server has recovered, in which case we could
use the following specification:

PPMM6 ¼
def

begin : start; end : stop -

observes

PPrroobbeel ¼
def

recover : begin; ðfetch½2�Þ=fail : end -

where ServersfSSeerrvv0½?n�g¼)
ServersfðSSeerrvv0 ./

�
PPrroobbeelÞ oo SSeerrvv0½?n
 1�g

in SSCCðn;mÞ:

The global probe begin : start; end : stop - used here is
repeating and thus specifies a steady-state measurement.
The local probe starts measuring when it sees a recover-
action and then times until the observation of two fetch-
actions without an intervening fail-action, as above.

In the next two sections, we investigate the fluid analysis
approximation of individual and global passage times
specified using unified stochastic probes. We use these
techniques to analyze both classes of passage-time measure
as applied to a worked example, in Section 5.

4 FLUID ANALYSIS OF IMMEDIATE GPEPA MODELS

In this section, we define a fluid analysis for iGPEPA
models. This entails generating a set of coupled ordinary
differential equations which count the number of
f-components in a given state. This is an extension of the
derivation of ordinary differential equations from standard
GPEPA models [19] to cope with immediate activities.
Also new to this paper, we require a set of ODEs that
count the number of times that a particular action has

occurred during the evolution of the system, so-called

action-counting ODEs.
All of these differential equations form the basis for the

fluid approximation of passage times from stochastic probe

definitions. In order to do this, we first define some key

functions on an iGPEPA model (Table 1).
The quantities which are subject to the fluid approxima-

tion are exposed formally through an aggregation of an

iGPEPA model’s nonvanishing state space. Considering

SSCCðn;mÞ again, we see there are n�m different ways the

initial shared fetch action can be performed. This is because

the fetch action involves exactly one CC0 and one SS0

component. Each of these transitions occurs at rate
rt
nmminðn;mÞ. The aggregation collects states together based

on the number of f-components in each derivative state in

each component group. In the case of SSCCðn;mÞ, we might

represent the initial aggregate state informally as “n� CC0,

0� CC1, m� SS0, 0� SS1, and 0� SS2 components.” All of the

n�m fetch-transitions then become a single transition from

the aggregate state “n� CC0, 0� CC1, m� SS0, 0� SS1, and 0�
SS2 components” to the aggregate state “ðn
 1Þ � CC0, 1� CC1,

ðm
 1Þ � SS0, 1� SS1, and 0� SS2 components” at an aggre-

gate rate of rtminðn;mÞ. The general extension of this

aggregation process constructs an underlying aggregated

CTMC from a given iGPEPA model (as originally con-

structed for PEPA [16] and GPEPA [19]).
In the case of GPEPA (i.e., without immediate actions), it

has been shown [19, Theorem 2.12] that the underlying

CTMC of a GPEPA model can always be aggregated in this

way. Each state of the underlying aggregated CTMC of a

GPEPA model, G, can be uniquely determined by the

model’s initial state and a function E 2 BðGÞ ! ZZþ. This

function counts the number of f-components in each

derivative state currently active in a given component group.
When f-components are allowed to perform immediate

actions, this aggregation result extends directly. This is

because cooperation on immediate actions between com-

ponent groups is not allowed, so no vanishing state of an

f-component can become nonvanishing under composition

as part of a grouped model and vice versa. Therefore,

when we later refer to transitions between f-component

derivative states, written as P 
!ð�;�Þ;� , we are referring to

the transition system obtained after vanishing states have

been removed (the derived transition system).
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TABLE 1
Frequently Used iGPEPA Notation, Where CCi Is Short for
CClliieenntti and SSj Is Short for SSeerrvvj from the SSCCðn;mÞ Model



4.1 Differential Equations Associated with an
iGPEPA Model

We require differential equations which describe the
evolution of large process models in order to evaluate
particular classes of unified stochastic probe query (as
described in Section 3.4). In particular, we need ODEs
which describe both the number of a particular component
at a time t and the number of actions of a particular type
that have occurred by a time t.

An iGPEPA model G has an integer-valued stochastic
process NH;P ðtÞ which counts the number of f-components
in the nonvanishing derivative state P , active at a given
time t � 0 within the component group H. We intend to
define, by means of a system of ODEs, real-valued
deterministic functions vH;P ðtÞ as approximations to the
stochastic processes NH;P ðtÞ.
Definition 4.1 (Component-counting ODEs for an
iGPEPA model). We define the evolution of the vH;P ðtÞ
over time for ðH;P Þ 2 BðGÞ for an iGPEPA model, G, by the
system of first-order coupled ODEs:

_vH;P ðtÞ ¼
X
�2At

X
Q2BðG;HÞ

p�ðQ;P Þ R�ðG; Vt;H;QÞ

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð1Þ



X
�2At
R�ðG; Vt;H; P Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð2Þ

;

ð4:1Þ

for all ðH;P Þ 2 BðGÞ and where for t 2 IRþ, Vt 2 BðGÞ !
IRþ is given by VtðH;P Þ :¼ vH;P ðtÞ. The initial conditions,
V0 2 BðGÞ ! IRþ are those naturally defined by the initial
state of G.

Part (2) of (4.1) specifies the total rate at which
P -components evolve in the group H. This is computed
by summing over all timed action types �, the overall rate
at which P components perform an �-action in H in the
model G using the other component counting differential
equations provided by Vt. Formally, this quantity is given
by the component rate function R�ðG; Vt;H; P Þ, whose
definition follows.

Definition 4.2 (Component rate). Let G be a iGPEPA model.
For ðH;P Þ 2 BðGÞ, timed action type � 2 At and Vt 2
BðGÞ ! IR, the component rate function is defined as follows:

R�ðM1 ./
L
M2; Vt;H; P Þ :¼

R�ðMi; Vt;H; P Þ
r�ðMi; VtÞ

minðr�ðM1; VtÞ; r�ðM2; VtÞÞ

if � 2 L and H 2 GðMiÞ; for i ¼ 1 or 2

R�ðMi; Vt;H; P Þ
if � 62 L and H 2 GðMiÞ; for i ¼ 1 or 2

8>>>>><
>>>>>:

R�ðY fDg; N;H; P Þ :¼
VtðH;P Þ r�ðP Þ if H ¼ Y and P 2 BðG;HÞ

0 otherwise:

�

Terms with zero-valued denominators are defined to be zero.

The component rate function requires an iGPEPA

version of the PEPA apparent rate function (2.2) defined

in terms of component counts.

Definition 4.3 (Count-oriented apparent rate). Let G be an

iGPEPA model. Let � 2 At be a timed action type and

Vt 2 BðGÞ ! IRþ. Then, the apparent rate is defined as

follows:

r�ðM1 ./
L
M2; VtÞ :¼

minðr�ðM1; VtÞ; r�ðM2; VtÞÞ if � 2 L
r�ðM1; VtÞ þ r�ðM2; VtÞ otherwise

�

r�ðY fDg; VtÞ :¼
X

P2BðY fDg;Y Þ
VtðY ; P Þ r�ðP Þ:

Part (1) of (4.1) specifies the total rate at which

components evolve into P -components in H. In order to

compute this, in addition to the component rate function we

require the derivative weighting function p�ðP;QÞ. This

computes the probability that on performing an �-action P

evolves into the componentQ. The formal definition follows.

Definition 4.4 (Derivative weighting function). Let G be an

iGPEPA model and H 2 GðGÞ a component group label. Let

P;Q 2 BðG;HÞ be f-component derivative states and let � 2
At be a timed action type. Then, p�ðP;QÞ :¼ 1

r�ðP Þ
P

P 
!
ð�;�Þ;�

Q
�.

This is defined to be zero when r�ðP Þ ¼ 0.

We need action-counting ODEs in order to evaluate

global probes which count the number of actions that have

occurred by time t. For some action type (timed or

immediate) a 2 A, let NaðtÞ count the number of

a-transitions which have occurred up to time t. The

following ODEs define deterministic approximations,

vaðtÞ, to the counting processes, NaðtÞ.
Definition 4.5 (Action-counting ODEs for an iGPEPA

model). We define the evolution of vaðtÞ for the iGPEPA

model G over time for a 2 A by the first-order coupled ODE:

_vaðtÞ ¼ raðG; VtÞ:

The initial conditions are v�ð0Þ :¼ 0 for all � 2 A. If initial

states of f-components in G are themselves vanishing, then we

must set vað0Þ to take any immediate transitions which occur

instantaneously into account.

The intuition behind Definition 4.5 is that the ODE

approximation of NaðtÞ should increase at the apparent rate

of a actions observed in the model G at time t.
Where a 2 At is a timed action, the count-oriented

apparent rate for an iGPEPA model was given above in

Definition 4.3. However, where a 2 Ai is an immediate

action, we have to extend the definition of count-oriented

apparent rate to cover immediate actions, a 2 Ai:

raðG; VtÞ :¼
X
�2At

X
k2ZZþ

k� r�;ðk;aÞðG; VtÞ;

where r�;ðk;aÞðG; VtÞ is the apparent rate at which k immediate

actions of type a instantaneously follow a timed �-action.
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Definition 4.6 (Count-oriented immediate apparent rate).
We define r�;ðk;aÞðG; VtÞ on an iGPEPA model G where � 2
At is a timed action type, k 2 ZZþ, a 2 Ai is an immediate
action type, and Vt 2 BðGÞ ! IRþ.

r�;ðk;aÞðM1 ./
L
M2; VtÞ :¼

X
iþj¼k

r�;ði;aÞðM1; VtÞ
r�ðM1; VtÞ

r�;ðj;aÞðM2; VtÞ
r�ðM2; VtÞ

minðr�ðM1; VtÞ; r�ðM2; VtÞÞ if � 2 L
r�;ðk;aÞðM1; VtÞ þ r�;ðk;aÞðM2; VtÞ otherwise

8>>>><
>>>>:

r�;ðk;aÞðY fDg; VtÞ :¼
X

P2BðY fDg;Y Þ
VtðY ; P Þ

X
P 
!ð�;�Þ;I

#ða2IÞ¼k:

�:

4.2 Fluid Analysis of Unified Stochastic Probe
Queries

In this section, we show how a selection of important
passage-time measures specified using unified stochastic
probes can be analyzed using the fluid-analysis techniques
developed for iGPEPA.

4.2.1 Steady-State Individual Passage Times

A steady-state individual passage-time measurement on the
model G is encoded by a probe specification of the form:

begin : start; end : stop -

observes Pb ¼def Rl : begin; Rl : end -

where HfP ½?n�g¼)HfðP ./
�
PbÞ oo P ½?n
 1�g

in G:

ð4:2Þ

The location specification applies the local probe Pb to the
first f-component in a group H of identical components
since we are interested in monitoring a single individual.
The global probe delegates control to the local probe by
means of the begin and end signals.

In order to compute the CDF associated with this
passage time, we need to consider two different probed
versions of G. ~G represents the model G in composition
with Pb after application of the location specification in
(4.2). Analysis of ~G captures the steady-state distribution
which is used to initialize the passage-time calculation.
Therefore, in order for this passage-time measure to be
meaningful, we assume further that the underlying CTMC
of the model ~G has a unique stationary distribution.5 ~G0 is
constructed in the same way as ~G but the composition is
with Pb0, an absorbing version of the local probe, thus
Pb0 ¼def Rl : begin; Rl : end. The model ~G0 is used to capture
the evolution of the passage time itself.

The computation of the passage time by fluid techniques
follows the mathematical development of [6] (see also
Hayden’s thesis [22]); however, the required structural
modifications (previously very tricky to specify even for
simple query specifications) as expressed more powerfully
using probes are completely new.

Performing fluid analysis on these models produces the
quantities ~vY ;QðtÞ for ~G and ~v0Y ;QðtÞ for ~G0 for each
component Q in each group Y . The steady-state quantities
~vY ;Q are given by the long-time limits limt!1 ~vY ;QðtÞ, which
are usually found by computing a fixed point.6 Note that
since we are interested in individual passage times, the
probed models ~G and ~G0 have only one copy of their
respective probed component. Therefore, the ODE solutions
~vH;QðtÞ and ~v0H;QðtÞ for probed component derivative states
Q 2 ds�ðP ./

�
PbÞ or Q 2 ds�ðP ./

�
Pb0Þ, respectively, capture

the probability that the observed individual is in state Q at
time t. At first glance this seems to contradict the
requirement for accurate fluid analysis that all components
be present in large numbers. However, as detailed in
Hayden’s thesis [22], fluid convergence still holds since the
probed component exists within a large population of
identically behaving (but unprobed) P components.

We are now in a position to write down the fluid
computation of the CDF for the steady-state individual
passage time of (4.2), obtained simply by summing over the
approximated probabilities of the absorbing probe being in
its accepting state, say PbAcc:

FsiðtÞ :¼
X

C2
 ./
�
PbAcc

~v0H;CðtÞ: ð4:3Þ

The initial conditions for the set of ODEs defining ~v0Y ;QðtÞ
are computed using the steady-state quantities given by
~vY ;Q. Specifically, in order to capture the passage-time
quantity of (4.2) correctly, we need to compute the steady-
state distribution of the probed f-component immediately
after the begin signal has fired. The probability that the probed
component is in state Q 2 ds�ðP ./

�
PbÞ immediately after a

begin signal fires, is the expected rate of transitions where a
begin signal fires which also result in the probed component
entering the state Q, divided by the total expected rate of all
transitions firing begin signals (e.g., [24, Definition 96 and
Proposition 97]). The fluid analysis approximation of this
quantity is therefore:

P
�2At ;C2ds�ðP ./

�
PbÞ;C









!ð�;�Þ;ð...;begin;...Þ

Q

R�ð ~G; ~V ;H;CÞ�
r�ðCÞ

� �
P

�2At;C2ds�ðP ./
�
PbÞ;C









!ð�;�Þ;ð...;begin;...Þ

R�ð ~G; ~V ;H;CÞ�
r�ðCÞ

� � ; ð4:4Þ

where ~V 2 Bð ~GÞ ! ZZþ is defined by ~V ðY ;QÞ :¼ ~vY ;Q for all
ðY ;QÞ 2 Bð ~GÞ.

So the initial condition ~v0H;Qð0Þ for a probed component
derivative state Q 2 ds�ðP ./

�
Pb0Þ is the conditioned

quantity computed above in (4.4) (and is zero if Q 62
ds�ðP ./

�
PbÞ). For all other ðY ;RÞ 2 Bð ~G0Þ, the initial value

~v0Y ;Rð0Þ is set to ~vY ;R.
Another interpretation of steady-state individual passage times.
In this section, we briefly discuss an alternative inter-

pretation of a measure specification of the form of (4.2). In
particular, instead of attaching the repeating local probe

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 1, JANUARY 2013

5. Note that this could be implied by irreducibility of the CTMC
underlying ~G or, alternatively, if it is reducible but has a single
communicating class.

6. This system of ODEs usually has infinitely many fixed points, but
normally only one that is meaningful in the context of the original model,
that is, for example, where the total component population at the fixed
point is correct. This is discussed in more detail in Hayden [22, Chapters 4
and 5].



Rl : begin; Rl : end - to the initial state of the model and
considering the stationary regime of the composed model
~G, we can instead attach the (nonrepeating) local probe Rl :
begin; Rl : end at some random time in the stationary regime
of the uncomposed model G and then compute the passage
time from this point. This is closer to how steady-state
passage times specified in CSLTA are interpreted [25].

To see that there can be a difference, consider the simple
f-component PP 0 given by

PP 0 ¼
def ða; rÞ:PP 1 PP 1 ¼

def ða; rÞ:PP 2

PP 2 ¼
def ðb; rÞ:PP 0:

Attaching the local probe a : begin; b : end - to PP 0 and

performing the analysis as in the last section means that the

passage we time is the evolution PP 1 !
a
PP 2 !

b
PP 0. If,

however, we allow PP 0 to evolve in its stationary regime

and then attach the local probe a : begin; b : end at some

random time, then depending on the state of the observed

component at this time, either the passage PP 1 !
a
PP 2 !

b
PP 0

or PP 2 !
b
PP 0 is timed, meaning that the resulting passage-

time distribution is a weighted combination of the two. The

reason for this difference is that in the interpretation

discussed in the previous section, the local probe evolves

concurrently with the observed component from the start

and the passage that is measured is thus potentially

dependent on the model’s initial state.

It turns out that we may adapt the fluid analysis method of

the last section straightforwardly to compute a steady-state

individual passage time under this alternative interpreta-

tion. In this case, we are interested in two iGPEPA models:

the unprobed model G and the model with the absorbing

local probe attached, say ~G. To begin, we compute the long-

time ODE limits of the stationary component counts ðY ;QÞ 2
BðGÞ of the unprobed model G, say ~vY ;Q. We can then

initialize the ODEs for the probed model, say ~G, as follows:

~v
H;R ./

�
Pb0 ð0Þ :¼ vH;R

SðG;HÞ

for R 2 ds�ðP Þ,7 ~vY ;Qð0Þ :¼ vY ;Q for ðY ;QÞ 2 BðGÞ, and all

other ODE components are set to zero. This captures the

state of the probed model at the instant that the local probe

is attached in the stationary regime.

Similarly to the last section, we then use the solutions to

these ODEs ~vY ;QðtÞ to approximate the steady-state distribu-

tion of the probed component immediately after the begin

signal has fired. Write P for the set of all probed component

derivative states Q 2 ds�ðR ./
�
Pb0Þ where R 2 ds�ðP Þ. Then,

forQ 2 P, this distribution can be computed by conditioning

on the time at which the begin signal fires:Z 1
0

SsðQÞ � dKðsÞ
ds

ds; ð4:5Þ

where SsðQÞ is the conditional distribution given that the
begin signal fired at time s > 0,8 defined similarly to (4.4) in
the previous section:

SsðQÞ :¼

P
�2At;C2P;C









!

ð�;�Þ;ð...;begin;...Þ
Q

R�ð ~G; ~Vs;H;CÞ�
r�ðCÞ

� �
P

�2At;C2P;C









!
ð�;�Þ;ð...;begin;...Þ

R�ð ~G; ~Vs;H;CÞ�
r�ðCÞ

� � ;

where ~Vs encodes the ~vY ;QðsÞ similarly to the previous
section. The function KðsÞ :¼

P
Q2Q ~vH;QðsÞ approximates

the probability that the probed component has begun the
passage by time s, where Q � P is the set of all states which
the probed component can be in after the begin signal has
been transmitted.

Finally, the passage-time CDF is given by the same
formula as in the previous section:

FsiðtÞ :¼
X

C2
 ./
�
PbAcc

~v0H;CðtÞ;

where the ODE solutions ~v0Y ;QðtÞ are again obtained from
the ODEs associated with the probed model ~G but this time
with the initial condition for Q 2 P, ~v0H;Qð0Þ given by the
conditioned quantity of (4.5). For all other ðY ;RÞ 2 BðGÞ,
the initial value ~v0Y ;Rð0Þ is set to vY ;R.

We consider just the interpretation of the previous
section in the remainder of this paper since it is the usual
one for stochastic probes [3].

4.2.2 Transient Individual Passage Times

A transient individual passage-time measurement on the
model G is encoded by a probe specification of the form:

begin : start; end : stop

observes Pb ¼def Rl : begin; Rl : end

where HfP ½?n�g ¼) HfðP ./
�
PbÞ oo P ½?n
 1�g

in G:

ð4:6Þ

This is identical to the steady-state individual passage-time
specification of the last section except that the global probe
is nonrepeating and thus specifies a transient measure.

In the evaluation of this kind of passage time, we need
only consider one probed version of G since all calculations
here are transient. Like before, ~G represents the model G in
composition with Pb. ~G is used in two ways. First, analysis
of ~G captures the transient distribution at each time s � 0,
which is used to initialize the passage time calculation,
conditional on it starting at time s. Second, ~G is also used
to capture the evolution of the conditional passage time
itself. Finally, in (4.8), we average over all such conditional
passage-time computations to obtain the actual passage
time of interest.

We are interested in a number of different fluid-analysis
solutions to the ODEs constructed from ~G. The quantities
~vY ;QðtÞ are the solutions started from the initial conditions of
the model. On the other hand, for each s � 0, the quantities
~vsY ;QðtÞ are the solutions obtained by using appropriate
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7. For local probes of the form � : begin; Rl : end, R ./
�
Pb0 is vanishing, so

in such cases we set instead ~v
H;R ./

�
S
ð0Þ :¼ vH;R

SðG;HÞ , where S is the

nonvanishing state of Pb0 following the transmission of the begin signal.

8. The quantity S0ðQÞ only has an effect on the value of the integral for
local probes of the form � : begin; Rl : end. In such cases, it is given simply
by S0ðQÞ :¼ ~vH;Qð0Þ.



initial conditions derived from the values �vY ;QðsÞ, as is

discussed shortly.
We can now write down the fluid computation of the

CDF conditional on the passage having started at time s:

Fs
tiðtÞ :¼

X
C2
 ./

�
PbAcc

~vsH;CðtÞ: ð4:7Þ

Then, the unconditional CDF is recovered by normalizing
over all times s � 0:

FtiðtÞ :¼
Z 1

0

Fs
tiðtÞ �

dKðsÞ
ds

ds: ð4:8Þ

Like in the last section, the function KðsÞ :¼
P

Q2Q ~vH;QðsÞ
approximates the probability that the observed individual

has begun the passage by time s. Again,Q is the set of all states

P ./
� Pb can be in after the begin signal has been transmitted.
The initial conditions for the set of ODEs defining ~vsY ;QðtÞ

for each s � 0 are computed from the solutions ~vY ;QðsÞ in a

similar manner to the previous sections. Specifically, the

fluid approximation of the probability that the probed

component is in state Q 2 ds�ðP ./
�
PbÞ immediately after a

begin signal fires at time s > 0 is given by:9

P
�2At;C2ds�ðP ./

�
PbÞ;C









!ð�;�Þ;ð...;begin;...Þ

Q

R�ð ~G; ~Vs;H;CÞ�
r�ðCÞ

� �
P

�2At;C2ds�ðP ./
�
PbÞ;C









!ð�;�Þ;ð...;begin;...Þ

R�ð ~G; ~Vs;H;CÞ�
r�ðCÞ

� � ; ð4:9Þ

where ~Vs encodes the ~vY ;QðsÞ similarly to the previous
sections.

So the initial condition ~vsH;Qð0Þ for a probed component

derivative state Q 2 ds�ðP ./
�
PbÞ is the conditioned quantity

computed above in (4.9). For all other ðY ;RÞ 2 Bð ~GÞ, the

initial value ~vsY ;Rð0Þ is set to ~vY ;RðsÞ.

4.2.3 Global Passage Times

Global passage-time measurements consider the joint
behavior of an entire population of f-components. Local
behavior is picked out by first attaching local probes to
f-components and the evolution of many f-components in
the model is then considered by specifying a suitable global
probe. A transient global passage-time measurement on the
model G is encoded by a probe specification of the form:

� : start; Rg : stop

observes fProbelg
where fLocationg
in G;

ð4:10Þ

where fProbelg is a list of local probes and fLocationg is a
list of location specifications. There is no restriction on the
form of the local probes. However, while it is possible to
analyze the full expressiveness of individual passage-time
measures using fluid analysis, we are not in quite such a
fortunate position with global probes. Fluid analysis is
currently capable of analysing global probes Rg specifying
global passage-time measures of the form:

Rg ::¼fpredgRg j Rg;Rg j Rg j Rg

jRg;Rg j Ra
g ½n�;

ð4:11Þ

where

Ra
g ::¼ Ra

g j Ra
g j action;

and action 2 A is an action (or signal) type.
It should be noted that global passage times that fall

outside of this pattern can still be analyzed as long as the

state space is small enough. In such cases, a general global

probe (as defined by the complete grammar of (3.5)) can

be translated to an iGPEPA component following Sec-

tion 3.2 and then attached to the iGPEPA model to be

observed. Traditional Markov chain analysis or simulation

techniques can then be applied directly to the resulting

composite model.
The first step in the fluid analysis of a global passage

time is to apply the local probes in accordance with the

location specifications for the measurement. We assume this

has been done and that we are left with a model that

contains the integrated local probes ~G. In order to apply

fluid techniques to compute the global passage-time

measurement, we proceed by translating the global probe

to an equivalent symbolic mathematical expression in terms

of the fluid approximations to the action and component

counts, vaðtÞ and vH;P ðtÞ, respectively, over the integrated

model ~G. We deploy a function UðR; eÞ which calculates the

point-mass approximation to the distribution of a global

passage time specified by the probe R starting from time e.

So computing UðR; 0Þ in terms of the fluid approximations

gives the desired passage-time approximation.
Given R as a global regular expression of the type (4.11).

UðR; 0Þ is the equivalent mathematical expression we seek,

where UðR; eÞ is defined by

UððR1; R2Þ; eÞ :¼ UðR2;UðR1; eÞÞ
UððR1 j R2Þ; eÞ :¼ minðUðR1; eÞ;UðR2; eÞÞ
UððR1;R2Þ; eÞ :¼ maxðUðR1; eÞ;UðR2; eÞÞ
UðfpredgR; eÞ :¼ UðR; infft � e : predðtÞgÞ;

where predðtÞ is simply the state guard predicate where

each component count expression, say H : P for ðH;P Þ 2
BðGÞ, is replaced with the corresponding sum of potentially

probed component counts at time t,
P

Q2P ./
�

 vH;QðtÞ.

Finally, we have

UðRa½n�; eÞ :¼ infft � e : U0ðRa; e; tÞ � ng;

for U0ða1 j � � � j ak; e; tÞ :¼
Pk

i¼1 vaiðtÞ 

Pk

i¼1 vaiðeÞ.

4.3 Example Fluid Passage-Time Calculation

Before proceeding to investigate a more complicated

worked example in the next section, we illustrate here an

example probe specification and its associated fluid analysis

for a simple passage-time measure on the client-service

model of Section 2.2.
Specifically, we consider the example measurement

specification PMPM6 given earlier in Section 3.4:
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9. Like in the last section, the quantity of (4.9) evaluated at s ¼ 0 only has
an effect on the value of the integral for local probes of the form
� : begin; Rl : end. In such cases, it is given simply by ~vH;Qð0Þ.



PPMM6 ¼
def

begin : start; end : stop -

observes

PPrroobbeel ¼
def

recover : begin; ðfetch½2�Þ=fail : end -

where ServersfSSeerrvv0½?n�g¼)
ServersfðSSeerrvv0 ./

�
PPrroobbeelÞ oo SSeerrvv0½?n
 1�g

in SSCCðn;mÞ:
ð4:12Þ

This is the steady-state individual passage-time measure-
ment of how long, after recovery, it takes a particular server to
complete two fetch-actions without failing.

Following Section 4.2.1, the first step in the analysis is to
translate the local probe PPrroobbeel to an iPEPA component,
say PPbbS , following Section 3.2:

PPbbS ¼
def ðfetch;>Þ:PPbbS þ ðfail;>Þ:PPbbS þ ðrecover;>Þ:PPbbSr

PPbbSr ¼
def

begin:PPbbF

PPbbF ¼
def ðfetch;>Þ:PPbbFf þ ðfail;>Þ:PPbbF þ ðrecover;>Þ:PPbbF

PPbbFf ¼
def ðfetch;>Þ:PPbbFff þ ðfail;>Þ:PPbbF þ ðrecover;>Þ:PPbbFf

PPbbFff ¼
def

end:PPbbS:

In order to perform the fluid approximation, we follow
Section 4.2.1 and construct the probed iGPEPA modelsgSSCCðn;mÞ and gSSCC0ðn;mÞ as follows:

gSSCCðn;mÞ ¼def ClientsfCClliieenntt0½n�g
./
ffetchg

ServersfðSSeerrvv0 ./
K
PPbbSÞ oo SSeerrvv0½m
 1�g; ð4:13Þ

and

gSSCC0ðn;mÞ ¼def ClientsfCClliieenntt0½n�g
./
ffetchg

ServersfðSSeerrvv0 ./
K
PPbb0SÞ oo SSeerrvv0½m
 1�g; ð4:14Þ

where K ¼ ffetch; fail; recoverg and PPbb0S is the translation
of the absorbing version of PPrroobbeel. We then proceed by
performing vanishing state removal as in Section 2.1.1 to
obtain the derived transition systems of the probed
f-components SSeerrvv0

./
K
PbPbS and ServServ0

./
K
PPbb0S . We note that

the probes identify the beginning of the passage by the
derived transition:

SSeerrv2 ./
K
PPbbS 









!

ðrecover;�Þ;ðbeginÞ
SSeerrvv0 ./

K
PPbbF ;

and the passage is complete when the observed component
is in any of the states SSeerrvv0 ./

K
PPbbAcc, SSeerrvv1 ./

K
PPbbAcc or

SSeerrvv2 ./
K
PPbbAcc, that is, where the absorbing probe PPbb0S is in

its accepting state PPbbAcc.

As described in Section 4.2.1, fluid analysis of the

passage time requires us to derive the system of 14 coupled

ODEs corresponding to the probed iGPEPA model of

(4.13). These are then solved to obtain an approximation to

the stationary component count expectations, say ~vY ;Q for

ðY ;QÞ 2 BðgSSCCðn;mÞÞ. This can be performed either by

numerical integration for a sufficiently long period of time,

or, often much more efficiently, by algebraic means to find

their meaningful fixed point.

The final step, the computation of the CDF itself, requires
us to derive the system of 17 coupled ODEs corresponding
to the iGPEPA model of (4.14). The ODE approximation to
the CDF is obtained in terms of the solutions to these ODEs,
say ~v0Y ;QðtÞ, by evaluating (4.3). For this measure, (4.3) is

~v0
SSeerrvv0

./
K
PPbbAcc
ðtÞ þ ~v0

SSeerrvv1
./
K
PPbbAccðtÞ

þ ~v0
SSeerrvv2

./
K
PPbbAcc
ðtÞ;

where the ODEs are initialized suitably with the quantities

~vY ;Q computed above as specified by the formula of (4.4).10

For this measure, the initialization is fairly straightforward:

~v0CClliieenntt0ð0Þ :¼ ~vCClliieenntt0 ~v0CClliieenntt1ð0Þ :¼ ~vCClliieenntt1
~v0SSeerrvv0

ð0Þ :¼ ~vSSeerrvv0
~v0SSeerrvv1

ð0Þ :¼ ~vSSeerrvv1

~v0SSeerrvv2
ð0Þ :¼ ~vServServ2

~v0
SSeerrvv0

./
K
PPbbF
ð0Þ :¼ 1;

with all other initial values set to zero.
Integrating these ODEs for the approximate CDF gives

the results depicted in Fig. 1. The actual CDFs are also given

for increasing component population size (n and m), and, as

expected, we see that in this limit the accuracy of the

approximation increases.11 The simulated CDFs are com-

puted to a maximum error of 0.01 with at least 95 percent

confidence (as explained in Section 5.1).

5 WORKED EXAMPLE: DISTRIBUTED WIRELESS

NETWORK

A distributed wireless network is composed of clients

operating over a fixed bandwidth network. The clients are

autonomous in so far as they have their own battery which

can be recharged from their surroundings once the battery

has discharged. The client is out of action until the battery is

recharged. The wireless clients send data and control
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10. For brevity, we drop the group names in the ODE quantities in this
section.

11. It is a straightforward property of the approximating ODE systems
that their solution is sensitive only to the initial relative component
proportions, and not to their actual magnitude. This is why there is only one
ODE-derived CDF depicted in Fig. 1 and in later figures.

Fig. 1. Passage-time CDFs computed by simulation for the steady-state

individual passage time specified by (4.12) compared with the ODE-

derived approximation. Rates: rt ¼ 0:4, rs ¼ 0:15, ri ¼ 0:6, rr ¼ 0:35,

and rf ¼ 0:1.



messages to each other over the network, drawing on their
batteries each time they do so.

The aim of this model is to investigate the high-level
dynamics of intermittently available wireless clients as
driven by a power-supply model. We show that despite the
mass parallelism of the model and the many component
states in the client state space, we can model and analyze
this system to observe interesting features, as picked out by
stochastic probes.

A wireless client has three states: hibernate, standby, and
radio-in-use. Each state has a power usage profile. To send
a data transfer, a client initializes the wireless radio with
radio init and then issues a data tfr message. To send a
control message, the client issues a cont tfr message. The
following f-component is used to model the wireless client:

CClliieennttHHiibbeerrnnaattee ¼def ðclt on; ronÞ:CClliieennttSSttaannddbbyy
þ ðclt shutdown;>Þ:CClliieennttHHiibbeerrnnaattee

CClliieennttSSttaannddbbyy ¼def ðclt off; roffÞ:CClliieennttHHiibbeerrnnaattee
þ ðradio init; rinitÞ:CClliieennttRRaaddiiooUUssee
þ ðcont tfr; rcontÞ:CClliieennttSSttaannddbbyy
þ ðclt shutdown;>Þ:CClliieennttHHiibbeerrnnaattee

CClliieennttRRaaddiiooUUssee ¼def ðdata tfr; rradioÞ:CClliieennttSSttaannddbbyy
þ ðclt shutdown;>Þ:CClliieennttHHiibbeerrnnaattee:

The battery has Nb charge levels and discharges probabil-
istically from level i to i
 1. With probability !�

1þ!� , the
battery drops a charge level with the !� determined by the
exact action that is causing it to discharge. On reaching the
zero level, the battery forces the wireless client into a
hibernation mode by sending a clt shutdown signal. Alter-
natively, the battery may be recharged a level at any point.
The following f-component is used to model the battery:

BBaatttteerryyEEmmppttyy ¼def ðclt charge; rchargeÞ:BBaatttteerryy1

BBaatttteerryy0 ¼
def ðclt shutdown; rshutdownÞ:BBaatttteerryyEEmmppttyy

BBaatttteerryyi ¼
def ðdata tfr; !tfr �>Þ:BBaatttteerryyi
1

þ ðdata tfr;>Þ:BBaatttteerryyi
þ ðcont tfr; !tfr �>Þ:BBaatttteerryyi
1

þ ðcont tfr;>Þ:BBaatttteerryyi
þ ðradio init; !init �>Þ:BBaatttteerryyi
1

þ ðradio init;>Þ:BBaatttteerryyi
þ ðclt off;>Þ:BBaatttteerryyi
þ ðclt on;>Þ:BBaatttteerryyi
þ ðclt charge; rchargeÞ:BBaatttteerryyminðNb;iþ1Þ

: for 1 	 i 	 Nb:

We then compose the CClliieennttHHiibbeerrnnaattee and BBaatttteerryyNb

components together to form an f-component which models
the combined client-battery interaction:

CCBB ¼def CClliieennttHHiibbeerrnnaattee ./
L1[L2

BBaatttteerryyNb
:

The client cannot switch on again until the battery is
recharged via the clt charge-action. Once this has happened

the clt on-action is available and the client can come into
operation for another charge cycle. The action set L1 ¼
fclt on; clt off; clt shutdowng represents the control actions
between the battery and the wireless client and L2 ¼
fradio init; data tfr; cont tfrg is the set of actions that
discharge the battery.

The network consists of Nh channels which facilitate the
transfer of data and control signals between wireless clients.
Each channel is modeled using the following f-component:

CChhaann ¼def ðdata tfr; rradioÞ:CChhaannBBuussyy1

þ ðcont tfr; rcontÞ:CChhaannBBuussyy2

CChhaannBBuussyy1 ¼
def ðdata tfr; rradioÞ:CChhaannþ ðtmt; rtmtÞ:CChhaann

CChhaannBBuussyy2 ¼
def ðcont tfr; rcontÞ:CChhaannþ ðtmt; rtmtÞ:CChhaann:

The final system is composed of the Nh channel network
and Nc wireless clients which communicate using the
actions in M ¼ fdata tfr; cont tfrg to form the final
iGPEPA model:

DDWWNNðNc;NhÞ ¼
def

ClientsfCCBB½Nc�g ./
M

NetfCChhaann½Nh�g:

In the next section, we present some example probe-

specified passage-time measurements on this model along-

side their approximate computations using the techniques

detailed in this paper.

5.1 Example Measurements and Results

In this section, we provide example probe-specified
passage-time measurements on the distributed wireless
network model described above. For all of our examples,
we let Nb ¼ 3. We give examples for each of the types of
passage time introduced above alongside comparisons of
the fluid approximation and the actual corresponding
cumulative distribution functions (CDFs) as computed by
stochastic simulation. For all figures, the maximum error at
each point of a simulated CDF is bounded above by 0.01
with at least 95 percent confidence. Confidence intervals
were computed exactly using binomial proportion confidence
intervals [26]. All numerical results were generated using
the Grouped PEPA Analyser (GPA) tool [27], [28].

5.1.1 Steady-State Individual Passage Time

In order to provide an example of this kind of individual
passage time, assume that we are interested in the time for a
client’s battery to discharge measured from immediately
after it has performed at least one data transmission and
one control interaction. A measure specification expressing
this is

PPMM ¼def begin : start; end : stop -

observes PPrroobbeel ¼
def

ðdata tfr; cont tfrÞ=clt shutdown : begin;

clt shutdown : end -

where ClientsfCCBB½?n�g¼)
ClientsfðCCBB./

�
PPrroobbeelÞ oo CCBB½?n
 1�g

in DDWWNNðNc;NhÞ:

ð5:1Þ
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In order to perform the fluid approximation, we follow
Section 4.2.1 and construct the probed iGPEPA modelsgDDWWNNðNc;NhÞ and gDDWWNN 0ðNc;NhÞ as follows:

gDDWWNNðNc;NhÞ ¼
def

ClientsfðCCBB./
K
PPbbSÞ oo CCBB½Nc 
 1�g ./

M
NetfCChhaann½Nh�g;

ð5:2Þ

and

gDDWWNN 0ðNc;NhÞ ¼
def

ClientsfðCCBB./
K
PbPb0SÞ oo CCBB½Nc 
 1�g ./

M
NetfCChhaann½Nh�g;

ð5:3Þ

where the local probe PPrroobbeel has been translated to the
iPEPA component PPbbS according to Section 3.2 as follows:

PPbbS ¼
def ðclt shutdown;>Þ:PPbbS þ ðdata tfr;>Þ:PPbbSd
þ ðcont tfr;>Þ:PPbbSc

PPbbSd ¼
def ðclt shutdown;>Þ:PPbbS þ ðdata tfr;>Þ:PPbbSd
þ ðcont tfr;>Þ:PPbbScd

PPbbSc ¼
def ðclt shutdown;>Þ:PPbbS þ ðdata tfr;>Þ:PPbbScd
þ ðcont tfr;>Þ:PPbbSc

PPbbScd ¼
def

begin:PPbbF

PPbbF ¼
def ðclt shutdown;>Þ:PPbbFs þ ðdata tfr;>Þ:PPbbF
þ ðcont tfr;>Þ:PPbbF

PPbbFs ¼
def

end:PPbbS;

and K ¼ fclt shutdown; data tfr; cont tfrg. Note that PPbb0S is
the translation of the absorbing version of PPrroobbeel. We then
proceed by performing vanishing state removal as in
Section 2.1.1 to obtain the derived transition systems of
the probed f-components CCBB ./

K
PPbbS and CCBB ./

K
PPbb0S .

The next stage of the analysis as described in
Section 4.2.1 requires us to derive the system of 56 coupled
ODEs corresponding to the probed iGPEPA model of
(5.2). These are then solved to obtain an approximation to
the stationary component count expectations, say ~vY ;Q for
ðY ;QÞ 2 Bð gDDWWNNðNc;NhÞÞ. As before, this can be per-
formed either by numerical integration or algebraically to
find their meaningful fixed point.

The final stage of the analysis requires us to derive the

system of 68 coupled ODEs corresponding to the iGPEPA

model of (5.3). The ODE approximation to the CDF is

obtained in terms of the solutions to these ODEs, say

~v0Y ;QðtÞ, as the quantity
P

C2
./
�
PPbbAcc

~v0H;CðtÞ, where PPbbAcc is

the accepting state of the local probe PPbb0S , and the ODEs are

initialized suitably with the quantities ~vY ;Q computed above

as specified by the formula of (4.4).
Fig. 2 compares the actual CDF for increasing numbers of

f-components with the ODE approximation. As expected,

we see that the accuracy of the approximation increases as

the component populations (Nc and Nh) are scaled up.

5.1.2 Transient Individual Passage Time

Consider a scenario where a data session begins after a

cont tfr-action and ends after four data tfr-actions. We

might be interested in the duration of such a data session. A

measure specification expressing this is:

PPMM ¼def begin : start; end : stop

observes PPrroobbeel ¼
def

cont tfr : begin; data tfr½4� : end

where ClientsfCCBB½?n�g¼)
ClientsfðCCBB./

�
PPrroobbeelÞ oo CCBB½?n
 1�g

in DDWWNNðNc;NhÞ:

ð5:4Þ

Note that due to the global probe being nonrepeating,

this passage-time measurement is made from the model’s

deterministic initial state DDWWNNðNc;NhÞ, rather than in the

steady-state regime. It thus measures the duration of the

first data session.
In order to perform the ODE approximation, we follow

Section 4.2.2 and construct the probed iGPEPA modelgDDWWNNðNc;NhÞ as follows:

gDDWWNNðNc;NhÞ ¼
def

ClientsfðCCBB./
K
PPbbSÞ oo CCBB½Nc 
 1�g ./

M
NetfCChhaann½Nh�g:

ð5:5Þ

In this case, the local probe is translated to the iPEPA

component PPbbS :
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Fig. 2. Passage-time CDFs for the steady-state individual passage time
specified by (5.1) compared with the ODE-derived approximation.
Rates: ron ¼ 0:3, roff ¼ 0:6, rinit ¼ 0:5, rcont ¼ 0:85, rradio ¼ 0:16,
rcharge ¼ 0:02, rshutdown ¼ 1:5, and rtmt ¼ 0:2; and weights: !init ¼ 0:07
and !tfr ¼ 0:15.



PPbbS ¼
def ðcont tfr;>Þ:PPbbSc þ ðdata tfr;>Þ:PPbbS

PPbbSc ¼
def

begin:PPbbF

PPbbF ¼
def ðdata tfr;>Þ:PPbbF1d þ ðcont tfr;>Þ:PPbbF

PPbbF1d ¼
def ðdata tfr;>Þ:PPbbF2d þ ðcont tfr;>Þ:PPbbF1d

PPbbF2d ¼
def ðdata tfr;>Þ:PPbbF3d þ ðcont tfr;>Þ:PPbbF2d

PPbbF3d ¼
def ðdata tfr;>Þ:PPbbF4d þ ðcont tfr;>Þ:PPbbF3d

PPbbF4d ¼
def

end:PPbbAcc

PPbbAcc ¼
def ðdata tfr;>Þ:PPbbAcc þ ðcont tfr;>Þ:PPbbAcc;

and K ¼ fdata tfr; cont tfrg. Like in the last section, we
proceed by performing vanishing state removal to obtain
the derived transition system of the probed f-component
CCBB ./

K
PPbbS . Next, we derive the system of 83 coupled ODEs

corresponding to the probed iGPEPA model of (5.5). The
CDF fluid approximation is then given by (4.8) expressed
in terms of the particular ODE solutions ~vY ;QðtÞ and ~vsY ;QðtÞ
for ðY ;QÞ 2 Bð gDDWWNNðNc;NhÞÞ computed as described in
Section 4.2.2.

Fig. 3 compares the actual CDF for increasing numbers of
f-components with the ODE approximation. As expected,
we see that the accuracy of the approximation increases as
the component populations (Nc and Nh) are scaled up.

5.1.3 Global Passage Time

In order to provide an example of a global passage-time
measurement, we consider the time for half of the clients to
have exhausted their battery at least once, starting from the
model’s initial state DDWWNNðNc;NhÞ. Initially, it might seem
that no local probes are necessary and that an appropriate
global probe specifying this is

� : start; clt shutdown½Nc=2� : stop: ð5:6Þ

However, this does not specify the correct quantity since if a
single individual performs clt shutdown more than once,
the global probe should only count it the first time. The

situation is easily resolved however by attaching an
appropriate local probe. A complete measure specification
for this passage-time quantity is

PPMM ¼def � : start; end½Nc=2� : stop

observes PPrroobbeel ¼
def

clt shutdown : end

where ClientsfCCBB½?n�g¼)
ClientsfðCCBB./

�
PPrroobbeelÞ½?n�g

in DDWWNNðNc;NhÞ:

ð5:7Þ

This is now correct because the local probe is nonrepeating
and thus the end signal is only transmitted at most once for
each CCBB component.

Like for previous examples, we proceed by constructing
the probed iGPEPA model’s derived transition system and
the associated system of 26 ODEs—one each whose solution
counts the number of f-components in each of their
nonvanishing derivative states, and one whose solution,
vendðtÞ, corresponds to the end-counting process, NendðtÞ. In
line with Section 4.2.3, the deterministic approximation to
the global passage time of interest is then given by

infft � 0 : vendðtÞ � Nc=2g:

Although outside the explicit scope of this paper, it is
possible to derive similar systems of ODEs approximating
higher order moments as detailed in [19] for GPEPA and
[22] for iGPEPA. These can then be combined with well-
known inequalities such as Chebyshev’s inequality or other
general techniques for bounding distributions based on
moment information (e.g., [29]) to obtain accurate bounds
on the global passage-time CDF. These are particularly
useful for smaller populations where the deterministic
approximation is far too coarse. See [22], [6] for more details
and discussion on this approach.

Fig. 4 compares the actual CDF for increasing numbers of
f-components with the deterministic ODE approximation
and with an example of approximate CDF bounds derived
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Fig. 3. Passage-time CDFs for the transient individual passage time
specified by (5.4) compared with the ODE-derived approximation.
Rates: ron ¼ 0:3, roff ¼ 0:6, rinit ¼ 0:5, rcont ¼ 0:85, rradio ¼ 0:35,
rcharge ¼ 0:05, rshutdown ¼ 1:5, and rtmt ¼ 0:2; and weights: !init ¼ 0:07
and !tfr ¼ 0:15.

Fig. 4. Passage-time CDFs for the global passage time specified by
(5.7) compared with the ODE-derived point-mass approximation (the
dashed line). Also shown are ODE-derived approximate CDF bounds for
the case Nc ¼ 20, Nh ¼ 12. Rates: ron ¼ 0:3, roff ¼ 0:6, rinit ¼ 0:5,
rcont ¼ 0:85, rradio ¼ 0:4, rcharge ¼ 0:1, rshutdown ¼ 1:5, and rtmt ¼ 0:2; and
weights: !init ¼ 0:07 and !tfr ¼ 0:15.



using the second-order Chebyshev’s inequality. As ex-
pected, we see that the accuracy of the deterministic
approximation increases as the component populations
(Nc and Nh) are scaled up.

6 CONCLUSION

In this paper, we have introduced the unified stochastic

probe mechanism for efficiently specifying complex pas-

sage-time performance measures. We have shown that, in

its most general form, many stochastic probes can be placed

on a process model in order to capture precise behavior

from distinct components of the model and that these can in

turn signal to a master measurement probe which can start

and stop key passage-time measures. Other probe mechan-

isms are also supported, such as state-based activation to

provide a flexible mechanism for the modeler and for easy

comparison with other techniques and tools. In order to

support the unified stochastic probe mechanism, we have

formally extended the stochastic process algebra GPEPA

with immediate transitions and presented a fluid transla-

tion to a set of differential equations for this formalism.

Additionally, we have selected a subset of the unified

stochastic probe formalism and shown how popular

passage-time measures can be specified, so-called global

and individual passage times, useful for SLAs. We have

shown how these passage-time queries can be implemented

using fluid ODE analysis, which permits very rapid

analysis of massively parallel models. Where fluid techni-

ques cannot be used to tackle a particular unified probed

query, then traditional CTMC analysis techniques and tools

can be deployed [5], [13], [14]. Finally, we have demon-

strated the combined techniques on an Oð10129Þ state

stochastic model of a distributed wireless network.

APPENDIX A

PEPA WITH IMMEDIATE ACTIONS

A.1 Structured Operational Semantics

Before we present the operational semantics for iPEPA, we
discuss in more detail the exact behavior of passive
cooperation. Recall that the rate of a timed action can be
any element of IRþ [ fn>jn 2 QQ; n > 0g, where n> is short-
hand for n�> and > represents the passive action rate that
inherits the rate of the coaction from the cooperating
component. > requires the following arithmetic rules:

m> < n> : for m < n and m;n 2 QQ

r < n> : for all r 2 IR; n 2 QQ

m>þ n> ¼ ðmþ nÞ> : m;n 2 QQ

m>
n> ¼

m

n
: m;n 2 QQ:

Note that rates of the form ðrþ n>Þ are disallowed for all
r 2 IR, r 6¼ 0, n 2 QQ, n 6¼ 0 in iPEPA. This is in line with the
requirement that iPEPA components are not allowed to
enable both active and passive actions in the same action type
at the same time, e.g., ð�; �Þ:P þ ð�;>Þ:P 0 is not allowed.

Fig. 5 gives the operational semantics for iPEPA. It
requires the definition of the total weight function wðP Þ,

which computes the sum of the weights of concurrently

enabled immediate activities for an iPEPA component P :

wðð�; �Þ:P Þ :¼ 0, wð½a; w�:P Þ :¼ w, wðP þQÞ :¼ wðP Þ þ wðQÞ
and wðP ./

L
QÞ :¼ wðP Þ þ wðQÞ. We also require the total

probability function, which computes the sum of the

probabilities of concurrently-enabled immediate activities

of a given immediate action type, for a given iPEPA

component: ZaðP Þ :¼
P

P
!
ða;�;zÞ z.

We may now give a formal definition of the set of

derivative states of an iPEPA component: dsðP Þ is the

smallest set of iPEPA components such that P 2 dsðP Þ and

if, for any P1 2 dsðP Þ, P1 
!
ð�;�Þ

P2 or P1 
 !
ð�;�;�Þ

P2, then

P2 2 dsðP Þ. Immediate transitions have three parameters.
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The first is the corresponding immediate action type. The

second is the weight of the transition, which is only used for

sequential components and is thus suppressed in Fig. 5 for

model components. Finally, the third parameter is a prob-

ability value determining a probability distribution over all

concurrently enabled immediate transitions. This distribu-

tion is used to decide which of these immediate transitions

actually completes. This probability is recomputed at each

structural level by the operational semantics in a similar

fashion to the computation of the rate of a timed action under

cooperation.

The evolution of a composed model enabling immediate

transitions depends on the ratio of the sums of enabled

weights between the constituent sequential components.

This affords the modeler more flexibility. Specifically, it

allows the modeler to have control both over the local

probabilistic choice arising due to multiply enabled im-

mediate actions in sequential components, and, if desired,

over the choice arising due to multiply enabled immediate

actions in model components.

A.2 Vanishing State Removal

A.2.1 The Derived Transition System of an iPEPA

Component

When viewed as a CTMC, the state space of a well-behaved
iPEPA component P is the set of nonvanishing derivative
states, ds�ðP Þ � dsðP Þ. That is, the set of derivative states of
P which do not enable any immediate actions:

ds�ðP Þ :¼ fP 0 2 dsðP Þ : P 0 6 
 ! g:

The immediate transitions emanating from vanishing
derivative states can be removed if we replace paths of
immediate transitions with the timed transition they
determine between elements of ds�ðP Þ. Specifically, for
each P 0 2 ds�ðP Þ, we consider every distinct path from P 0

to other nonvanishing derivative states P 00 2 ds�ðP Þ where
the first transition is timed and the remaining transitions
are immediate:

P 0 
!ð�;rÞ Pð1Þ 
 !
ða1;�;z1Þ � � � 
 !ðaK
1;�;zK
1Þ

PðKÞ 
 !
ðaK ;�;zKÞ

P 00;

where K � 1. This path can be replaced by a single new

timed �-transition of rate R, P 0 
!ð�;RÞ;I P 00, where R :¼
r�

QK
i¼1 zi and I :¼ ða1; . . . ; aKÞ. The extra sequence para-

meter I extends the transition system so that it is still

possible to determine when immediate actions are per-

formed and in which order.12

In the case that the initial derivative state P of a well-
behaved iPEPA component is itself vanishing, the well-
behaved condition guarantees that there is a unique
nonvanishing derivative state reachable by following
immediate transitions from P . This nonvanishing derivative

state is taken to be the initial state of the iPEPA component
in the derived transition system.

APPENDIX B

IMMEDIATE GROUPED PEPA OPERATIONAL

SEMANTICS

We define the operational semantics of an iGPEPA model
to be identical to that of the equivalent iPEPA model which
is obtained syntactically by removing the group labels and
replacing the oo combinators with k. We call this operation
flattening and a formal flattening function is given in
Definition B.1. We may thus define the equivalent opera-
tional semantics on iGPEPA models by composing the
flattening function with the operational semantics of
iPEPA, given in Fig. 5 of Appendix A.1.

Formally, for any two iGPEPA models, G1 and G2, we

say G1 
!
ð�;rÞ

G2 or G1 
 !
ða;w;zÞ

G2 if and only if FðG1Þ 
!
ð�;rÞ FðG2Þ

or FðG1Þ 
 !
ða;w;zÞ FðG2Þ, respectively, also counting the multi-

plicity of such transitions. We may thus extend the notion of

(nonvanishing) derivative states to iGPEPA models in the

analogous way. Removing the vanishing states of an

iGPEPA model exactly as in the case of iPEPA components

gives rise to the underlying CTMC of an iGPEPA model,

which is trivially isomorphic to that of the corresponding

equivalent iPEPA model obtained through flattening.
It is important to note at this stage that we have explicitly

disallowed cooperation on immediate actions over compo-
nent groups by restricting the cooperation set in (2.4) to
elements of At. Moreover, cooperation on timed activities
enabled passively is also not allowed to occur across
component groups. This requirement has already been
stated implicitly since we required that all passive actions
enabled in f-components were synchronized. Both of these
requirements are necessary to ensure a class of model which
is amenable to fluid analysis.

Definition B.1 (Flattening function). For any iGPEPA model
G, the corresponding iPEPA model, FðGÞ, can be recovered
from the grouped model. Fð�Þ is defined by FðM1 ./

L
M2Þ :¼

FðM1Þ ./
L
FðM2Þ and FðY fDgÞ :¼ F0ðDÞ, where for

component groups F0ðD1 oo D2Þ :¼ F0ðD1Þ k F 0ðD2Þ and
F0ðP Þ :¼ P .

APPENDIX C

TRANSLATION OF NONSTANDARD REGULAR

EXPRESSIONS TO DFAS

Let R1
l and R2

l be two regular expressions according to the
grammar of (3.3). Let M1 ¼ ðQ1;�; �1; q1

0; F
1Þ and M2 ¼

ðQ2;�; �2; q2
0; F

2Þ be their respective DFAs, where:

. Q1 and Q2 are the finite sets of states;

. � is the input alphabet (for our purposes, this is, AðP Þ
where P is the f-component to which the local probe
is to be applied);

. �1 : Q1 � �! Q1 and �2 : Q2 � �! Q2 are the tran-
sition functions;

. q1 2 Q1 and q2 2 Q2 are the start states;

. F 1 � Q1 and F 2 � Q2 are the sets of accepting states.
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12. In the derived transition system, where a timed transition does not
originate from the removal of immediate transitions we set I :¼ ðÞ, the
empty sequence.



We now show how to construct DFAs for the regular
expressions R1

l ; R
2
l , R

1
l =R

2
l , and R1

l �R
2
l .

C.1 Both (R1
l ; R

2
l )

The DFA corresponding to R1
l ; R

2
l is M ¼ ðQ;�; �; q0; F Þ,

where:

. Q :¼ Q1 �Q2;

. For all x 2 Q1, y 2 Q2, and a 2 �, �ððx; yÞ; aÞ :¼
ð�1ðx; aÞ; �2ðy; aÞÞ;

. q0 :¼ ðq1
0; q

2
0Þ;

. F :¼ F 1 � F 2.

C.2 Reset (R1
l =R

2
l )

The DFA corresponding to R1
l =R

2
l is M ¼ ðQ;�; �; q0; F Þ,

where:

. Q :¼ Q1 �Q2;

. For all x 2 Q1, y 2 Q2, and a 2 �, �ððx; yÞ; aÞ :¼
ð�1ðx; aÞ; �2ðy; aÞÞ if �2ðy; aÞ 62 F 2, or �ððx; yÞ; aÞ :¼ q0

otherwise.
. q0 :¼ ðq1

0; q
2
0Þ;

. F :¼ F 1 � ðQ2 n F 2Þ.

C.3 Fail (R1
l �R

2
l )

The DFA corresponding to R1
l �R

2
l is M ¼ ðQ;�; �; q0; F Þ,

where:

. Q :¼ Q1 �Q2;

. For all x 2 Q1, y 2 Q2 n F 2, and a 2 �, �ððx; yÞ; aÞ :¼
ð�1ðx; aÞ; �2ðy; aÞÞ, and for all x 2 Q1, y 2 F 2, and
a 2 �, �ððx; yÞ; aÞ :¼ ðx; yÞ;

. q0 :¼ ðq1
0; q

2
0Þ;

. F :¼ F 1 � ðQ2 n F 2Þ.
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