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Abstract—The choice of test oracle—the artifact that determines whether an application under test executes correctly—can

significantly impact the effectiveness of the testing process. However, despite the prevalence of tools that support test input selection,

little work exists for supporting oracle creation. We propose a method of supporting test oracle creation that automatically selects the

oracle data—the set of variables monitored during testing—for expected value test oracles. This approach is based on the use of

mutation analysis to rank variables in terms of fault-finding effectiveness, thus automating the selection of the oracle data. Experimental

results obtained by employing our method over six industrial systems (while varying test input types and the number of generated

mutants) indicate that our method—when paired with test inputs generated either at random or to satisfy specific structural coverage

criteria—may be a cost-effective approach for producing small, effective oracle data sets, with fault finding improvements over current

industrial best practice of up to 1,435 percent observed (with typical improvements of up to 50 percent).

Index Terms—Testing, test oracles, oracle data, oracle selection, verification
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1 INTRODUCTION

THERE are two key artifacts to consider when testing
software: the test inputs and the test oracle, which

determines if the system executes correctly. Substantial
research has focused on supporting the creation of test
inputs but little attention has been paid to the creation
of oracles [1]. However, existing research indicates that
the choice of oracle has a significant impact on the effec-
tiveness of testing [2], [3], [4], [5]. Therefore, we are
interested in the development of automated tools that
support the creation of a test oracle.

Consider the following testing process: (1) the tester
selects inputs using some criterion—structural coverage,
random testing, or engineering judgement, among others;
(2) the tester then defines concrete, anticipated values for
these inputs for one or more variables (internal variables or
output variables) in the program. This type of oracle is
known as an expected value test oracle [3]. Experience with
industrial practitioners indicates that such test oracles are
commonly used in testing critical systems, such as avionics
or medical device systems.

Our goals here are twofold. First, the current practice
when constructing expected value test oracles is to
define expected values for only the outputs, a practice
that can be suboptimal when faults that occur inside the
system fail to propagate to these observed variables. Sec-
ond, manually defining expected values is a time-con-
suming and, consequently, expensive process. It is

simply not feasible to monitor everything.1 Even in situa-
tions where an executable software specification can be
used as an oracle—for instance, in some model-based
development scenarios—limited visibility into embedded
systems or the high cost of logging often make it highly
desirable to have the oracle observe only a small subset
of all variables.

To address these goals, we present and evaluate an
approach for automatically selecting oracle data—the set of
variables for which expected values are defined [4]—that
aims at maximizing the fault finding potential of the testing
process relative to cost. This oracle data selection process,
illustrated in Fig. 1, is completely automated. First, we gen-
erate a collection of mutants from the system under test.
Second, an externally generated test suite is run against the
mutants using the original system as the oracle and logs of
the values of a candidate set of variables are recorded after
certain points in execution (i.e., at a certain timing granular-
ity or after pre-defined execution points). Third, we use
these logs to measure how often each variable in the candi-
date set reveals a fault in a mutant and, based on this infor-
mation, we rank variable effectiveness. Finally, based on
this ranking, we estimate which variables to include in the
oracle data. The underlying hypothesis is that, as with
mutation-based test data selection, oracle data that is likely
to reveal faults in the mutants will also be likely to reveal
faults in the actual system under test. Once this oracle data
is selected, the tester defines expected values for each ele-
ment of the oracle data. Testing then commences with a
small, and potentially highly effective, oracle.

In previouswork, we proposed this approach and applied
it to a fixed number of mutants and test inputs generated to
satisfy two specific structural coverage criteria [6]. Although
the results were promising, the initial studywas limited, and

� G. Gay is with the Department of Computer Science & Engineering,
University of South Carolina. E-mail: greg@greggay.com.

� M. Staats is with Google, Inc. E-mail: staatsm@gmail.com.
� M. Whalen and M. Heimdahl are with the Department of Computer

Science and Engineering, University of Minnesota.
E-mail: {whalen, heimdahl}@cs.umn.edu.

Manuscript received 12 Aug. 2013; revised 20 Apr. 2015; accepted 25 Apr.
2015. Date of publication 21 May 2015; date of current version 13 Nov. 2015.
Recommended for acceptance by P. Tonella.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2436920

1. In some scenarios, such as regression testing, we can automate
definition of expected values. Comparing large numbers of expected
values is still potentially expensive, and our approach is still of value in
such a scenario.
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did not yield enough evidence to identify the specific condi-
tions in which our approach would be useful. Specifically,
we did not know how the use of structural coverage crite-
ria—as compared to, for example, tests generated to assess
compliance of a program to its specification—or the number
of mutants used during training impacted our results.

To better evaluate our hypothesis and find answers to
these additional questions, we have evaluated our approach
using four commercial sub-systems from the civil avionics
domain and two medical device systems, and using four
different types of test input data—tests generated to satisfy
two structural coverage metrics, tests generated to satisfy
coverage of the requirements, and tests generated purely at
random. We perform a comparison against two common
baseline approaches: (1) current practice, favoring the outputs
of the system under test as oracle data, and (2) random selec-
tion of the oracle data set. We also compare to an idealized
scenario where the seeded faults in the test suites and
mutants used for training are identical to the test suites and
mutants in the final evaluation set; thus, providing an esti-
mate of the maximum fault finding effectiveness we could
hope to achieve with a mutation-based oracle data selection
support method. We repeat the experiment using varying
numbers of mutants in order to determine the amount of
data needed to construct powerful, stable sets of oracle data.

We draw from our results three key conclusions:

� Our approach generally produces more effective test
oracles than the alternative methods explored—in
particular, outperforming output-based test oracles
with observed improvements in fault finding of up
to 1,435 percent, and consistent improvements of up
to 50 percent. Even in cases where our approach is
not effective, the results achieved are similar to using
output-based test oracles.

� Our approach is the most effective when paired with
test suites generated to exercise the internal structure
of the program under test. When our approach is
applied to randomly generated test inputs, improve-
ments are more subdued (3-43 percent), and
improvements are nearly non-existent when applied
to requirements-based tests.

� Finally, the choice of test inputs impacts the number
of mutants required to derive effective sets of oracle
data. In our study, for a given system, the oracle data
for structural test suites is improved by the use of a
large number of mutants (up to 125 mutants). For
requirements based tests suites, no improvements
are generally observed after the number of mutants
exceeds 50.

We therefore conclude that our approach may be a cost
effective method of supporting the creation of an oracle

data set—particularly in scenarios where test suites are gen-
erated to satisfy structural coverage criteria.

2 BACKGROUND & RELATED WORK

In software testing, a test oracle is the artifact used to deter-
mine whether the software is working correctly [7]. There
are many types of test oracles, ranging from program invari-
ants to “no crash oracles” [1]. In our experience with indus-
trial partners developing critical software systems, one
commonly used class of test oracles are expected value test
oracles—test oracles that, for each test input, specify concrete
values the system is expected to produce for one or more
variables (internal state and/or output). Thus, in designing
an expected value test oracle, two questions must be
answered: (1) “what variables should be monitored?” and (2),
“how often should the values of those variables be checked?”.

During testing, the oracle compares the actual values pro-
duced by the program against the expected values at the
selected points in execution. In current practice, testers gener-
ally must manually select these expected values without the
aid of automation; this process is naturally dependent on the
skill of the tester. Our goal is therefore to develop tools and
techniques to support and optimize the selection of the oracle
data. While others have focused on the latter question—how
often valuess should be checked [8]—we focus on the former
question: what variables should bemonitored for faults?

In Richardson et al.’s definition of a test oracle, an oracle is
composed of two parts—the oracle information and oracle pro-
cedure [7]. The oracle procedure renders a pass/fail verdict on
an executed test at selected points in execution using the data
collected in the oracle information. For expected value
oracles, the oracle information must contain two distinct sets
of information: the oracle value set and the oracle data set.
The oracle data set is the subset of variables (internal state
and outputs) for which expected values are specified; i.e.,
what variables the oracle must monitor. The oracle value set
is then the set of expected values for those variables [3], [6].

For example, an oracle may specify expected values for all
of the outputs; we term this an output-only oracle. This type of
oracle appears to be the most common expected value oracle
used in testing critical systems. Other types of test oracles
include, for example, output-base oracles, whose oracle data
set contains all the outputs, followed by some number of
internal state variables, and maximum oracles, whose oracle
data set contains all of the outputs and internal state variables.

It has been empirically shown that larger oracle data sets
are generally more powerful than smaller oracle data sets
[2], [3], [5]. (In the remainder of this paper the size of an oracle
is the number of variables used in the oracle data set.) This is
due to fault propagation—faults leading to incorrect states
usually propagate and manifest themselves as failures for
only a subset of program variables; larger oracle data sets
increase the likelihood that such a variable will be monitored
by the test oracle. This limited fault propagation is particu-
larly a concern in the avionics community, where complex
Boolean expressions can mask out faults and prevent incor-
rect values from affecting output variables. Common prac-
tice dictates focusing on the output variables, but the effects
of this masking can delay or prevent the propagation of
faults to these variables. It would be desirable to identify the

Fig. 1. Supporting expected value test oracle creation.
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variables whose definition creates the potential for masking
and check the behavior of these internal “bottleneck” points.

Naturally, one solution is to use the maximum oracle, an
oracle that observes and checks the behavior of all variables
in the system. This is always the most effective expected
value test oracle, but using it is often prohibitively expensive.
This is particularly the case when (1) expected values must
be manually specified—a highly labor intensive process,
especially when results are checked at multiple execution
points or time steps during a single test—or (2) when the cost
of monitoring a large oracle data set is prohibitive, e.g., when
testing embedded software on the target platform.

One might ask at this point if a “fault” is really a fault if it
fails to propagate to an output variable? Frequently the sys-
temunder testmay be capable of absorbing the fault, as the cor-
rupt program state fails to impact the final behavior of the
software. Indeed, in some cases these “faults” cannot ever
propagate to an output. However, in practice (as we will see
later in Section 5) such faults typically dopropagate to the out-
put under some circumstance, and thus these faults should
still be identified and corrected. This is particularly true for
safety-critical systems, such as avionic or medical devices,
where undiscovered faults can lead to loss of equipment or
harm to human operators. This motivates the use of internal
variables,which allow testers to correctmore issues in the sys-
temwithout incurring the cost of themaximumoracle.

2.1 Related Work

Work on test oracles often focuses onmethods of constructing
oracles from other software engineering artifacts, such as for-
mal software requirements [1]. In our work, we are not con-
structing the entire oracle; rather, we are identifying effective
oracle data sets, from which effective expected value oracles
can be built.We are not aware of anywork proposing or eval-
uating alternativemethods of selecting the oracle data.

Voas and Miller have proposed the PIE approach, that—
like our work—relies on a form of mutation analysis [9].
Their approach could be used to select internal variables for
monitoring, though evaluation of this idea is lacking. More
recent work has demonstrated how test oracle selection can
impact the effectiveness of testing, indicating a need for
effective oracle selection techniques [3], [4].

Memon and Xie have applied mutation testing in order to
optimize the oracle procedure in an expected value test oracle
for event-driven graphical user interfaces [8]. The authors’
goal was to construct cheaper—but still effective—test oracles
by considering how often to invoke the potentially expensive
oracle procedure (i.e., to compare expected and actual val-
ues). The authors found that (1) transient faults are as com-
mon as persistent ones, and (2) the majority of transient faults
were linked to two event types. Thus, by comparing values
only after those events, the oracle can catch the majority of
faults while remaining computationally affordable.

Memon and Xie’s goals are similar to ours—they are sup-
porting the construction of efficient expected value test
oracles. However, our respective domains require different
approaches to this task. In the avionics systems that we have
studied, complexity stems from the hundreds or thousands
of variables that can potentially be monitored, and there are
not necessarily discrete events that we can choose to ignore
(especially when considering critical systems). Thus, even if

we could execute the oracle procedure less often, we are still
left with the question of which variables tomonitor.

Several tools exist for automatically generating invariant-
based test oracles for use in regression testing, including Eclat
[10], DiffGen [11], and work by Evans and Savoia [12]. How-
ever, Briand et al. demonstrate for object-oriented systems
that expected value oracles outperform state-based invari-
ants, with the former detecting faultsmissed by the latter [2].

Fraser andZeller usemutation testing to generate both test
inputs and test oracles [13] for Java programs. The test inputs
are generated first, followed by generation of post-conditions
capable of distinguishing themutants from the programwith
respect to the test inputs. Unlike our work, the end result of
their approach is a complete test case, with inputs paired with
expected results (in this case, assertions). Such tests, being
generated from the program under test, are guaranteed to
pass (except when the program crashes). Accordingly, the
role of the user in their approach is to decide, for each input
and assertion pair, if the program is working correctly. Thus,
in some sense their approach is more akin to invariant gener-
ation than traditional software testing. The most recent ver-
sion of this work attempts to generalize the result of their
approach to simplify the user’s task [14]. However, this cre-
ates the possibility of producing false positives, where a result-
ing parameterized input/assertion can indicate faults when
none exist—further changing the user’s task.

With respect to evaluation, no comparisons against base-
line methods of automated oracle selection are performed;
Generated tests and assertions are compared against devel-
oper-produced tests and assertions, but the cost—i.e., num-
ber of developer tests/assertions—is not controlled. Thus,
relative cost-effectiveness cannot accurately be assessed.
Additionally, their approach selects enough tests and asser-
tions to detect all generated mutations, and thus allows no
method of controlling for the human cost.

Our work chiefly differs from other approaches in that
we are trying to support creation of a test oracle, rather than
automate it. Oracle creation support can be considered an
approach to addressing the human oracle cost problem—that
is, the problem of alleviating the burden on the human tes-
ter when no means exist to completely automate the genera-
tion of a test oracle [1]. Other approaches to addressing the
human oracle problem include the automated generation of
human-readable test inputs [15], test suite reduction aimed
at reducing human workload [16], and incorporating
knowledge from project artifacts in order to generate test
cases that human testers can easily understand [17].

This report is an extension of previously published work
[6], and improves upon it in two key ways. First, we explore
the effectiveness of our approach with respect to a variety
of test input types. Second, we investigate how the number
of mutants generated impacts the process. These analyses
help us to better understand the effectiveness of our
approach in different testing contexts—in particular, how
structural coverage may be helped by good oracle data
selection—and the cost and scalability of our approach.

3 ORACLE DATA SELECTION

Our approach for selecting the oracle data set is based on
the use of mutation testing [18]. In mutation testing, a large
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set of programs—termed mutants—are created by seeding
faults (either automatically or by hand) into a system. Test
input capable of distinguishing the mutant from the original
is said to kill the mutant. In our work, we adopt this
approach for oracle creation support. Rather than generate
test inputs that kill the mutants, however, we use mutants
to automatically generate an oracle data set that—when
used in an expected value oracle, and with a fixed set of test
inputs—kills the mutants. To construct this data set, we per-
form the following:

1) Generate several mutants, called the training set,
from our system under test.

2) Run test inputs over the training set and the original
system, collecting logs of the values of a set of candi-
date variables at pre-defined observation points.

3) Use these logs to determine which variables distin-
guish each mutant from the original system.

4) Process this information to create a list of variables
ordered in terms of apparent fault finding effective-
ness, the variable ranking.

5) Examine this ranking, along with the mutants and
test inputs, to estimate (as x) how large the oracle
data set should be. Alternatively, the tester can spec-
ify x based on the testing budget.

6) Select the top x variables in the ranking for use in the
final oracle data set.

While conceptually simple, there are several relevant
parameters to be considered for each step. The following
sections will outline these parameters, as well as the ratio-
nale for the decisions that we have made.

3.1 Mutant Generation and Test Input Source

During mutation testing, mutants are created from an imple-
mentation of a system by introducing a single fault into the
program. Each fault results from either inserting a new oper-
ator into the system or by replacing an operator or variable
with a different operator or variable. This mutation genera-
tion is designed such that no mutant will “crash” the system
under test. Themutation testing operators used in this exper-
iment include changing an arithmetic operator, changing a
relational operator, changing a Boolean operator, introduc-
ing the Boolean : operator, using the value of a variable
from the previous computation cycle, changing a constant
expression by adding or subtracting 1 from int and real con-
stants (or by negating Boolean constants), and substituting a
variable referencewith another variable of the same type.

The type of faults used to create mutants may impact the
effectiveness of the selected oracle data when used to test
the actual system under test. Note that the type of mutants
used in the evaluation in this report are similar to those
used by Andrews et al., where the authors found that gener-
ated mutants are a reasonable substitute for actual failures
in testing experiments [19]. Additionally, recent work from
Just et al. suggests a significant correlation between mutant
detection and real fault detection [20]. This offers evidence
that mutation-based techniques will be useful for support-
ing the creation of oracles for real-world systems.

Our approach can be used with any set of test inputs. In
this work, we assume the tester is equipped with an existing
set of test inputs and wishes to determine what oracle data is

likely to be effective with said test inputs. This assumption
allows the numerous existing methods of test input selection
to be paired with our approach for oracle data selection. This
scenario is likely within our domain of interest.

3.2 Variable Ranking

Once we have generated mutants, we then run suites of test
inputs over both the mutants and the original program
(with the execution over the original program serving as a
golden run [21]). The user chooses a set of internal and out-
put variables to serve as candidates for oracle data selection.
Then, during execution of these inputs, we collect the value
of every variable in that candidate set at various points dur-
ing execution. A variable has detected a fault when the vari-
able value in the original “correct” system differs from the
variable value produced by a mutant, for some test. We
track the mutants killed by each variable.

In order to form an oracle data set, snapshots of the state of
the candidate variables must be collected.When and how often
those snapshots are logged will help determine what data is
available to our variable ranking approach. Options can gen-
erally be divided into event-driven logging or time-driven log-
ging. In the event-driven case, the state of the candidate
variablesmight be logged at certain pre-defined points in exe-
cution. This could include, for example, after discrete compu-
tational cycles, when new input is passed to the system, when
new output is issued from the system, or when certain types
of events occur. In a time-driven process, snapshots could be
taken at a certain timing granularity—say, everyX seconds.

Themore often snapshots are taken, themore data the var-
iable ranking algorithm has to work with. However, this log-
ging also incurs a computational overhead on the execution
of the system. Therefore, the selection of logging frequency
depends on the project that an oracle is being produced for.

Once we have collected these traces, we can produce a set
of variables ranked according to effectiveness. One possible
method of producing this ranking is simply to order varia-
bles by the number of mutants killed. However, the effec-
tiveness of individual variables can be highly correlated.
For example, when a variable va is computed using the
value of a variable vb: if vb is incorrect for some test input, it
is highly probable that va is also incorrect. Thus, while va or
vb may be highly effective when used in the oracle data set,
the combination of both is likely to be only marginally more
effective than the use of either alone.

To avoid selecting a set of dependent variables that are
individually effective—but duplicative as a group—we
make use of a greedy algorithm for solving the set covering
problem [22] to produce a ranked set of variables. In the set
covering problem, we are given several sets with some ele-
ments potentially shared between the sets. The goal is then
to select the minimum set of elements such that one element
from each set has been selected. In this problem, each set
represents a mutant, and each element of the set is a vari-
able capable of detecting the mutant for at least one of the
test inputs. Calculating the smallest possible set covering is
an NP-complete problem [23]. Thus, we employ a well-
known effective greedy algorithm to solve the problem [24]:
(1) select the element covering the largest number of sets,
(2) remove from consideration all sets covered by said ele-
ment, and (3) repeat until all sets are covered.
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In our case, each element removed corresponds to a vari-
able. These variables are placed in a ranking in the order
they were removed (with the most effective variables being
removed first). The resulting ranking can then be used to
produce an oracle data set of size n by simply selecting the
top n variables from the list.

In the case examples studied, all variables are scalar and
cannot be a heap object or pointers. Thus, comparison is
straightforward. As our approach requires only that expected
and actual values differ (rather than how they differ), muta-
tion-based oracle optimization should be effective when
making comparisons of anydata structure, as long as an accu-
rate and efficient method of comparing for equality exists.

Additionally, the systems explored in this work contain
no nested loops. For a “step” of the system, every variable is
declared and assigned exactly once. Thus conceptually, there
exists no difference between output variables and internal
variables in terms of how expected values should be defined.

3.3 Estimating Useful Oracle Data Size

If the testers would—by default—use the output variables
of the system as their oracle data set, then a natural use of
this mutation-based technique would be to select a new ora-
cle data set of the same size. That is, if the testers would
have used n output variables in their oracle data set, then
they could use our technique to select n variables from the
full set of internal and output variables.

However, one potential strength of our technique is that
it can produce oracle data sets of any size, granting freedom
to testers to choose an oracle data set to fit their budget,
schedule, monitoring limitations, or other testing concerns.
Once we have calculated the ranked list of variables, we can
select an oracle data set of size 1, 2, 3, etc. up to the maxi-
mum number of variables in the system.

In some scenarios, the tester may have little guidance as
to the appropriate size of the oracle data. In such a scenario,
it would be ideal to offer a recommendation to the tester.
One would like to select an oracle data set such that the size
of the set balances cost and effectiveness—that is, not so
small that potentially useful variables are omitted, and not
so large that a significant number of variables contribute lit-
tle to performance.

To accomplish this, testers could examine the fault finding
effectiveness of oracle data sets of size 1, 2, 3, etc. The effective-
ness of these oracles will increase with the oracle’s size, but
the increases will likely diminish as the oracle size increases.
As a result, it is generally possible to define a natural cutoff
point for recommending an oracle size; if the fault finding
improvement between an oracle of size n and size nþ 1 is less
than some threshold, we recommend an oracle of size n.

In practice, establishing a threshold will depend on fac-
tors specific to the testing process. In our evaluation, we
examine oracle sizes up to maxð10; ð2 �# output variablesÞÞ
and explore two potential thresholds: 5 and 2:5 percent.

4 EVALUATION

We wish to evaluate whether our approach yields effective
oracle data sets.While it would be preferable to directly com-
pare against existing algorithms for selecting oracle data, to
the best of our knowledge, no such methods exist. We

therefore compare our technique against two baseline
approaches for oracle data set selection, detailed later, as well
as against an idealized best case application of our own
approach.

We also would like to determine the impact of the choice
of test input generation criteria on our approach. In particu-
lar, we are interested if the effectiveness varies when mov-
ing from tests generated to satisfy structural coverage
criteria—which tend to be short and targeted at specific
code constructs—to requirements-based test inputs, which
tend to be longer and are directly concerned with showing
the relationship between the inputs and outputs (i.e., they
attempt to cause values to propagate through the system).
Finally, we are interested in cost and scalability, specifically
how the number of mutants used to select the oracle data
impacts the effectiveness of the resulting oracle.

We have explored the following research questions:
Research Question 1 (RQ1): Is our approach more effective
in practice than baseline approaches to oracle data selection?
Research Question 2 (RQ2): What is the maximum poten-
tial effectiveness of the mutation-based approach, and how
effective is the realistic application of our approach in
comparison?
Research Question 3 (RQ3): How does the choice of test
input data impact the effectiveness of our approach?
Research Question 4 (RQ4): What impact does the number
of training mutants have on the effectiveness of our approach?
Research Question 5 (RQ5): What is the ratio of output to
internal variables in the generated oracle data sets?

4.1 Experimental Setup Overview

We have used four industrial systems developed by
Rockwell Collins Inc. engineers and two additional sub-
systems of an infusion pump created for medical device
research [25]. The Rockwell Collins systems were mod-
eled using the Simulink notation from Mathworks Inc.
[26] and the remaining systems using Stateflow [26],
[27]. The systems were automatically translated into the
Lustre programming language [28] to take advantage of
existing automation. In practice, Lustre would then be
automatically translated to C code. This translation is a
simple transformation, and if applied to C, the case
study results would be identical.

The four Rockwell Collins systems represent sizable,
operational modules of industrial avionics systems. Two
systems, DWM1 and DWM2, represent distinct subsystems
of a display window manager (DWM) for a commercial
cockpit display system. Two other systems, Vertmax_Batch
and Latctl_Batch, describe the vertical and lateral mode logic
for a flight guidance system. The remaining two systems,
Infusion_Mgr and Alarms, represent the prescription man-
agement and alarm-induced behavior of an infusion pump.
Both systems come with a set of real faults that we can use
to assess real-world fault-finding.

Information related to these systems is provided in
Table 1. Subsystems indicates the number of Simulink sub-
systems presents, while blocks represents the number of
blocks used. Outputs and internals indicates the number of
output and internal variables present. For the examples
developed in Stateflow, we list the number of Stateflow
states, transitions, and internal and output variables. As we
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have both faulty and corrected versions of Infusion_Mgr and
Alarms, we list information for both.

For the purposes of the study conducted in this work, we
automatically generate tests—both randomly and with a
coverage-directed search algorithm—that are effectively
unit tests for modules of synchronous reactive systems.
Computation for synchronous reactive systems takes place
over a number of execution “cycles.” That is, when input is
fed to the system, there is a corresponding calculation of the
internal variables and outputs. A single cycle can be consid-
ered a sequence of assignments of values to variables. A
loop would be considered as a series of computational
cycles. This naturally answers the question of “when” to log
variable values for oracle generation—after each computa-
tional cycle, we can log or check the current value of the
candidate variables.

For each case example, we performed the following
steps:

1) Generated test input suites. We created 10 test suites
satisfying decision coverage, and 10 test suites satis-
fying MC/DC coverage, and—for systems with
known requirements—10 test suites satisfying UFC
(requirements) coverage using automatic counterex-
ample-based test generation. We also produced ran-
domly constructed test suites of increasing size.
(Section 4.2).

2) Generated training sets. We randomly generated 10
sets of 125 mutants to be used to construct oracle
data sets, each containing a single fault. (Section 4.3.)

3) Generated evaluation sets. For each training set, we
randomly generated a corresponding evaluation set
of 125 mutants, each containing a single fault. Each
mutant in a evaluation set is guaranteed to not be in
the training set. (Section 4.3.)

4) Ran test suite on mutants. We ran each mutant (from
both training and evaluation sets) and the original
case example using every test suite and collected
the internal state and output variable values pro-
duced after each computation cycle. This yields
raw data used for the remaining steps of our study.
(Section 4.5.)

5) Generated oracle data sets. We used the information
gathered to generate oracle data sets using the algo-
rithm detailed in Section 3. Data sets were generated
for each training set and for each evaluation set

(in order to calculate an idealized ceiling perfor-
mance). We also generated random and output-
based baseline rankings. These rankings are used to
generate oracles of various sizes. (Section 4.5.)

6) Assessed fault finding ability of each oracle and test suite
combination.We determined howmany mutants were
detected by every oracle, using each test suite. For
oracles generated using a training set, the correspond-
ing evaluation set was used; for oracles generated
using an evaluation set, the same evaluation set was
used. For the Infusion_Mgr and Alarms systems, we
also assess the performance of each oracle and test
suite combination on the set of real faults (Section 4.6.)

4.2 Test Suite Generation

As noted previously, we assume the tester has an existing
set of test inputs. Consequently, our approach can be used
with any method of test input selection. As we are studying
the effectiveness using avionics systems, two structural cov-
erage criteria are likely to be employed: decision coverage
and modified condition/decision coverage (MC/DC) [29].

Decision coverage is a criterion concerned with exercising
the different outcomes of the Boolean decisions within a pro-
gram. Given the expression, ((a and b) and (not c or

d)), tests would need to be produced where the expression
evaluates to true and the statement evaluated to false, caus-
ing program execution to traverse both outcomes of the deci-
sion point. Decision coverage is similar to the commonly-
used branch coverage. Branch coverage is only applicable to
Boolean decisions that cause program execution to branch,
such as that in “if” or “case” statements, whereas decision
coverage requires coverage of all Boolean decisions, whether
or not execution diverges. Improving branch coverage is a
common goal in automated test generation.

Modified Condition/Decision Coverage further strengthens
condition coverage by requiring that each decision evaluate
to all possible outcomes (such as in the expression used
above), each condition take on all possible outcomes (the
conditions shown in the description of condition coverage),
and that each condition within a decision be shown to inde-
pendently impact the outcome of the decision. Independent
effect is defined in terms of masking, which means that the
condition has no effect on the value of the decision as a
whole; for example, given a decision of the form x and y,
the truth value of x is irrelevant if y is false, so we state that
x is masked out. A condition that is not masked out has
independent effect for the decision.

Suppose we examine the independent affect of d in the
example; if (a and b) evaluates to false, than the decision
will evaluate to false, masking the effect of d; Similarly, if c
evaluates to false, then (not c or d) evaluates to true
regardless of the value of d. Only if we assign a, b, and c

true does the value of d affect the outcome of the decision.
MC/DCcoverage is often mandated when testing critical

avionics systems. Accordingly, we view MC/DC as likely
to be effective criteria, particularly for the class of systems
studied in this report. Several variations of MC/DC exist—
for this study, we use Masking MC/DC, as it is a common
criterion within the avionics community [30].

We are also interested in test suites designed to satisfy
criteria that are not focused on the internal structure of the

TABLE 1
Case Example Information

# Subsystems # Blocks # Output

Variables

# Internal

Variables

DWM_1 3,109 11,439 7 569

DWM_2 128 429 9 115
Vertmax 396 1,453 2 415

Latctl 120 718 1 128

# States # Transitions # Output

Variables

# Internal

Variables

Infusion_Mgr 27 50 5 107

Alarms 78 107 5 182

Infusion_Mgr (faulty) 30 47 5 86

Alarms (faulty) 81 101 5 155
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system under test, such as Unique First Cause (UFC)—a
black-box criterion that measures coverage of a set of
requirements encoded as temporal logic properties [31].
Adapted from MC/DC a test suite satisfies UFC coverage
over a set of requirements—encoded as LTL formulas—if
executing the test cases in the test suite guarantees that
every basic condition in each formula has taken on all possi-
ble outcomes at least once, and each basic condition in each
expression has been shown to independently affect the out-
come of the expression. As requirement were not available
for the Infusion_Mgr and Alarms systems, we only produce
UFC-satisfying tests for the four Rockwell Collins systems.

We used counterexample-based test generation to gener-
ate tests satisfying the three coverage criteria [32], [33]. In
this approach, each coverage obligation is encoded as a tem-
poral logic formula and the model checker can be used to
detect a counterexample (test case) illustrating how the cov-
erage obligation can be covered. By repeating this process
for each property of the system, we can use the model
checker to automatically derive test sequences that are
guaranteed to achieve the maximum possible coverage of
the model.

This coverage guarantee is why we have elected to use
counterexample-based test generation, as other directed
approaches (such as DSE/SAT-based approaches) do not
offer such a straightforward guarantee. In the context of avi-
onics systems, the guarantee is highly desirable, as achiev-
ing maximum coverage is required [29]. We have used the
JKind model checker [34], [35] in our experiments because
we have found that it is efficient and produces tests that are
easy to understand [36].

Counterexample-based test generation results in a sepa-
rate test for each coverage obligation. This results in a large
amount of redundancy in the tests generated, as each test
likely covers several coverage obligations. Such an unneces-
sarily large test suite is unlikely to be used in practice. We
therefore reduce each generated test suite while maintain-
ing coverage. We use a simple randomized greedy algo-
rithm. It begins by determining the coverage obligations
satisfied by each test generated, and initializing an empty
test set reduced. The algorithm then randomly selects a test
input from the full set of tests; if it satisfies obligations not
satisfied by test input already in reduced, it is added to the
set. The algorithm continues until all tests have been
removed from the full set of tests.

We produce 10 test suites for each combination of case
example and coverage criterion to control for the impact of
randomization.We also produced 10 suites of random tests—
increasing in size from 10 to 100 tests—in order to determine
the effectiveness of our approach when applied to test suites
thatwere not designed to fulfill a coverage criterion.

For the systems with real faults, we generate coverage-
satisfying tests twice. When calculating fault-finding effec-
tiveness on generated mutants, we generate tests using the
corrected version of the system (as the Rockwell Collins sys-
tems are free of known faults). However, when assessing
the ability of the test suites to find the real faults, we gener-
ate the tests using the faulty version of the system. This
reflects real-world practice, where—if faults have not yet
been discovered—tests have obviously been generated to
provide coverage over the code as it currently exists.

4.3 Mutant Generation

For each case example, 250 mutants are created by introduc-
ing a single fault into the correct implementation (using the
approach discussed in Section 3.1). We then produce 10
training sets by randomly selecting 10 subsets of 125
mutants. For each training set, the 125 mutants not selected
for the training set are used to construct an evaluation set.

Mutants can be divided into weak mutants—mutations
that infect the program state, but where the result of that
corruption does not propagate to a variable checked by the
oracle—and strong mutants—mutants where state is cor-
rupted and that corruption does propagate. The mutants as
they are generated are weak mutants, because there is no a-
priori way without analysis of determining whether a
mutant is functionally equivalent to the original program.
However, we perform a post-processing analysis (described
below) to remove functionally equivalent mutants, so the
mutants used for testing are strong mutants.

We remove functionally equivalent mutants from the eval-
uation set using the JKind model checker [34], [35]. This is
possible due to the nature of the systems in our study—
each system is finite; thus, determining equivalence is
decidable and fast.2 This removal is done for the evaluation
sets because equivalent mutants represent a potential threat
to validity in our evaluation. No mutants are removed from
the training sets.

In practice, one would only generate a training set of
mutants for use in building an oracle data set. We generate
both training and evaluation sets in order to measure the
performance of the proposed generation approach for
research purposes. Thus, while it is possible we select the
oracle data based partly on equivalent mutants which can-
not affect the output, our evaluation measures the ability of
the approach to detect provably faulty systems.

To address Question 4, we also produced four subsets of
each training set. These subsets, respectively, contained 10,
25, 50, and 75 percent of the training mutants. These subsets
allow us to determine the effectiveness of oracle data gener-
ated with fewer mutants.

4.4 Real Faults

For both of the infusion pump systems—Infusion_Mgr and
Alarms—we have two versions of each case example. One is
an untested—but feature-complete—version with several
faults, the second is a newer version of the systemwhere those
faults have been corrected. We can use the faulty version of
each system to assist in determining the effectiveness of each
test suite. As with the seeded mutants, effective tests should
be able to surface and alert the tester to the residing faults.

For the Infusion_Mgr case example, the older version of
the system contains seven faults. For the Alarms system,
there are three faults. Although there are a relatively small
number of faults for both systems, several of these are faults
that required code changes in several locations to fix. Most
are non-trivial faults—these were not mere typos or oper-
and mistakes, they require specific conditions to trigger,
and extensive verification efforts were required to identify
these faults.

2. Equivalence checking is fairly routine in the hardware domain; a
good introduction can be found in [37].
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A brief description of the faults can be seen in Table 2.

4.5 Oracle Data Set Generation

For each given case example, we ran the test suites against
each mutant and the original version of the program. For
each execution of the test suite, we recorded the value of
every internal variable and output at each step of every test
using an in-house Lustre interpreter. This raw trace data is
then used by our algorithm and our evaluation.

For each combination of set of mutants (training sets and
evaluation sets) and test suite, we generated an oracle rank-
ing using the approach described in Section 3. The rankings
produced from training sets reflect how our approach would
be used in practice; these sets are used in evaluating our
research questions. The rankings produced from evaluation
sets represent an idealized testing scenario, one in which we
already know the faults we are attempting to detect. Rank-
ings generated from the evaluations sets, termed idealized
rankings, hint at the maximum potential effectiveness of our
approach and are used to address Question 2.

Each ranking was limited to m variables (where m is 10
or twice the number of output variables, whichever was
larger) since oracles significantly larger than output-only
oracles were deemed unlikely to be used in practice. Note
that the time required to produce a single ranking—gener-
ate mutants, run tests, and apply the greedy set cover
algorithm—is less than one hour for each pairing of case
example and test suite.

To answer Questions 1 and 3, we compare against two
baseline rankings. First, to provide an unbiased ranking for
comparison, the random approach creates completely random
oracle rankings. The resulting rankings are simply a ran-
dom ordering of the output and internal variables. Second,
the output-base approach creates rankings by first selecting
output variables—ordered at random—and then randomly

selecting internal state variables until the size of the oracle
matches the pre-determined threshold. Thus, the output-
base rankings always lists the outputs first (i.e., more highly
ranked) followed by the randomly-selected internal state
variables. The output-based ranking reflects a common
industrial approach to oracle data selection: focus on the
output variables. However, there are two differences
between the output-base oracles used in our evaluation and
common practice: (1) we randomly vary the order of the
output variables to avoid any particular biasing of the
results (in the real world, no one order would typically be
favored), and (2), we add randomly chosen internal varia-
bles to the oracle data set after prioritizing the outputs so
that we can compare larger oracle sizes than would typi-
cally be employed.

4.6 Oracle Evaluation

To determine the fault finding effectiveness of a test suite t
and oracle o on a case example, we simply compare the val-
ues produced by the original case example against every
mutant using test suite t and the subset of variables corre-
sponding to the oracle data for oracle o (the original
“correct” system fulfills the role of the user in our approach,
specifying expected values for the oracle data).

For all six case examples, we measure the fault finding
effectiveness of oracles generated from the training sets
using the corresponding evaluation sets, and we measure
the effectiveness of the idealized oracles generated from
evaluation sets using the same evaluation sets. The fault
finding effectiveness of an oracle is computed as the per-
centage of mutants killed versus the total number of
mutants in the evaluation set. We perform this analysis for
each oracle and test suite for every case example, and use
the produced results to evaluate our research questions.

For Infusion_Mgr and Alarms, we also assess the fault-
finding effectiveness of each test suite and oracle combina-
tion against the version of the model with real faults by
measuring the ratio of the number of tests that fail to the
total number of tests for each test suite. We use the number
of tests rather than number of real faults because all of the
real faults are in a single model, and we do not know which
specific fault led to a test failure. However, we hypothesize
that the test failure ratio is a similar measure of the sensitiv-
ity of a test suite to the mutant kill ratio. Note that we do
not generate separate “idealized” oracles when evaluating
on real faults, as these would simply be oracles generated
from additional mutants, and do not represent the same
performance ceiling.

5 RESULTS & DISCUSSION

In this section, we discuss our results in the context of our
four research questions. We begin by plotting the median
fault finding effectiveness of the produced test oracles for
increasing oracle sizes in Figs. 2, 3, 4, and 5.3 Four ranking
methods are plotted: both baseline rankings, our mutation-
based approach, and an idealized mutation-based

TABLE 2
Real Faults for Infusion Pump Systems

Infusion_Mgr

1 When entering therapy mode for the first time,
infusion can begin if there is an empty drug reservoir.

2 The system has no way to handle a concurrent infusion
initiation and cancellation request.

3 If the alarm level is >¼ 2, no bolus should occur.
However, intermittent bolus mode triggers on alarm

<¼ 2.
4 Each time step is assumed to be one second.
5 When patient bolus is in progress and infusion is

stopped, the system does not enter the patient lockout.
Upon restart, the patient can immediately request an

additional dosage.
6 If the time step is not exactly one second, actions

that occur at specific intervals might be missed.
7 The system has no way to handle a concurrent

infusion initiation and pause request.

Alarms

1 If an alarm condition occurs during the initialization
step, it will not be detected.

2 The Alarms system does not check that the pump is in
therapy before issuing therapy-related alarms.

3 Each time step is assumed to be one second.

3. For readability, we do not state “median” relative improvement,
“median” fault finding, etc. in the text, though this is what we are refer-
ring to.
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approach. For each subfigure, we plot the number of out-
puts as a dashed, vertical line. This line represents the size
of an output-only oracle; this is the oracle size that would
generally be used in practice. We also plot the 5 and 2.5 per-
cent thresholds for recommending oracle sizes as solid lines
(see Section 3.3). Note that the 2.5 percent threshold is not
always met for the oracle sizes explored.

In Tables 3, 4, and 5, we list the median relative improve-
ment in fault finding effectiveness using our proposed ora-
cle data creation approach versus the output-base ranking.
In Tables 6 and 7, we list the median relative improvement
in fault finding effectiveness using the idealized mutation-
based approach (an oracle data set built and evaluated on
the same mutants) versus our mutation-based approach. As
shown in Figs. 2, 3, 4, and 5, random oracle data performs
poorly; thus, detailed comparisons were deemed uninterest-
ing and are omitted.

5.1 Statistical Analysis

Before discussing the implications of our results, we would
like to first determine which differences observed are statis-
tically significant. With regard to RQ1 and RQ2, we would
like to determine with significance at what oracle sizes, and
for which case examples, (1) the idealized performance of a
mutation-based approach outperforms the actual perfor-
mance of the mutation-based approach, and (2) the muta-
tion-based approach outperforms the baseline ranking
approaches. We evaluated the statistical significance of our

results using a two-tailed bootstrap permutation test. We
begin by formulating the following statistical hypotheses:4

H1: For a given oracle size m, the standard mutation-based
approach outperforms the output-base approach.
H2: For a given oracle size m, the standard mutation-based
approach outperforms the random approach.
H3: For a given oracle size m, the idealized approach out-
performs the standard mutation-based approach.

Towards RQ4, we would also like to quantify—with sig-
nificance—the number of mutants needed to train the oracle
data. We repeated the same experiment, varying the num-
ber of mutants used to train the oracle—making use of train-
ing sets containing 10, 25, 50, and 75 percent of the mutants
used to train oracles in the initial experiment. We have gen-
erated fault finding results using the same evaluation sets,
and formulated the following hypothesis.

H4�7: For a given oracle size m, the standard mutation-
based approach, generated using a full training set, outper-
forms the standard mutation-based approach, generated
with N% of the same training set.

The null hypothesisH0X for each hypothesisHX above is
that each set of values are drawn from the same distribution.
To evaluate our hypotheses without any assumptions on the

Fig. 2. Median effectiveness of various approaches to oracle data selection for DWM_1 and DWM_2. Yellow circles = Ideal; Green * = Ranked; Blue
+ = Output-base; Red squares = Random.

4. As we evaluate each hypothesis for each case example and oracle
size, we are essentially evaluating a set of statistical hypotheses.
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distribution of our data, we use the two-tailed bootstrap
paired permutation test (a non-parametric test with no distri-
bution assumptions [38]), with median as the test statistic.
Per our experimental design, each evaluation set has a paired

training set, and each training set has paired baseline
rankings (output-base and random). Thus, for each combina-
tion of case example and coverage criterion, we can pair each
test suite T + training set ranking with T + random or

Fig. 3. Median effectiveness of various approaches to oracle data selection for Latctl_Batch and Vertmax_Batch. Yellow circles = Ideal; Green * =
Ranked; Blue + = Output-base; Red Squares = Random.

Fig. 4. Median effectiveness of various approaches to oracle data selection for Infusion_Mgr and Alarms, evaluated on mutants. Yellow circles =
Ideal; Green * = Ranked; Blue + = Output-base; Red squares = Random.
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output-base ranking (H01; H02), each test suite T + idealized
ranking with T + training set ranking (for H03), and finally
each test suite T + training set with T + training set subset
ranking (H04 �H07). We then apply and evaluate our null
hypotheses for each case example, coverage criteria, and ora-
cle size with a ¼ 0:05.5 We discuss the results of our statisti-
cal tests below in the context of the questions they address.

5.2 Evaluation of Practical Effectiveness (Q1)

When designing a method of supporting oracle creation, the
obvious question to ask is, “Is this better than current best
practice?” In Tables 3 and 4, we list the median relative
improvement in fault finding effectiveness on seeded faults
using our proposed oracle data creation approach versus the
output-base ranking—the standard practice of checking the
values of the output variables, with additional randomvaria-
bles added to ensure the same number of variables across all
oracle types. Relative improvements not statistically signifi-
cant at a ¼ 0:05 level are marked with a �. Almost all of the
oracles generated outperform the randomapproachwith sta-
tistical significance, often by awidemargin.6

From these two tables, we can see that for both structural
coverage criteria, nearly every oracle generated for five of
six systems (Latctl_Batch, Vertmax_Batch, DWM_2, Infu-
sion_Mgr, and Alarms) outperforms the output-base
approaches with statistical significance. A common pattern
can be seen: for oracles smaller than the output-only oracle,
our approach tends to perform well compared to output-

base, with improvements of up to 1,435 percent. This
reflects the strength of prioritizing variables: we generally
select more effective variables for inclusion earlier than the
output-base approach. Even in cases where output variables
are the most effective, our approach is able to order them in
terms of effectiveness. As the test oracle size grows closer in
size to the output-only oracle, the relative improvement
decreases, but our approach often still outperforms the out-
put-only oracle, up to 45.2 percent. Finally, as the test oracle
grows in size beyond the output-only oracle incorporating
(by necessity) internal variables, our relative improvement
when using our approach again grows, with improvements
of 3.64-52.33 percent for the larger oracles.

A similar trend can be seenwhen random tests are used to
train the oracle, although the acutal improvements are more
subdued. For oracles smaller than the output-base approach,
improvements of up to 85.71 percent can be seen. As middle
sizes are approached, our approach performs between an
identical performance (plus or minus roughly 2 percent—
ourmethod does demonstrate a higher level of variance, as it
depends on both a set of training mutants and a particular
test suite) and improvements of up to 35.14 percent. For the
largest oracle sizes, modest improvements can be seen—up
to 38.46 percent for the Infusion_Mgr system.

In particular, the Infusion_Mgr and Alarms systems, we
see a large improvement in fault-finding effectiveness from
using our oracle creation method. This is explained by the
structure of these systems. Both systems work to determine
the behavior of an infusion pump by checking sensor read-
ings against a series of complex Boolean conditions. The
state spaces of these models are both deep and narrow, mean-
ing that to reach large portions of the state space, a specific
sequence of input values that meet certain combinations of
those conditions must occur. Thus, output-based oracles
may not detect faults due to masking—some expressions in
the systems can easily be prevented from influencing the
outputs. If masking prevents the effect of a fault from

Fig. 5. Median effectiveness of various approaches to oracle data selection for infusion_mgr and Alarms, evaluated on real faults. Yellow circles =
Ideal; Green * = Ranked; Blue + = Output-base; Red squares = Random.

5. Note that we do not generalize across case examples or coverage
criteria as the appropriate statistical assumption—random selection
from the population of case examples and coverage criteria—is not
met. Furthermore, we do not generalize across oracle sizes as it is possi-
ble our approach is statistically significant for some sizes, but not
others.

6. Exceptions being output-base vs random on Infusion_Mgr with
MC/DC and decision inputs at size 2 and Alarms with random inputs
at size 7.
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reaching an output variable, then the effectiveness of an out-
put-based oracle will naturally decrease. Our oracle creation
approach can select the important output variables and cer-
tain internal bottlenecks to observe.

For the structural criteria and random test suites, one key
exception can be seen when examining the DWM_1 system.
For this case example, mutation-based oracles tend to be
roughly equivalent in effectiveness to output-base oracles
(we generally cannot reject H01 at a ¼ 0:05), and at times
(particularly for oracles generated using MC/DC satisfying
test suites) produce results that are up to 20 percent worse.
It is only for small or large oracles (approximately +-6 varia-
bles from the output-only oracle) that our approach does
well, with up to a 66.67 percent improvement at smallest
sizes and 4.19-23.53 percent improvement at the largest
recorded oracle size. Examining the composition of these
oracles reveals why: the ranking generated using our
approach for this case example begins mostly with output
variables, and thus oracles generated using our approach
are very similar to those generated using the output-base
approach. The performance gain at small sizes suggest that
certain output variables are far more important than others,
but what is crucially important at all levels up to the total
number of outputs is to choose output variables.

As noted previously, in a small number of instances, our
approach in fact does worse than the output-base approach.

The issue appears to be that the greedy set-coverage algo-
rithm is overfitting to the training data. If the trace data indi-
cates that there is a highly effective internal state variable,
the algorithm will prevent a computationally-related output
variable from being selected later in the process. However,
it is possible that overall, faults occur more prevalently in
that output variable, and that the internal variable is only
more fault-prone for the selected set of training data. Given
a more optimal set cover algorithm or additional overfitting
avoidance improvements, this issue would likely be circum-
vented. However, for larger oracle sizes, this issue is gener-
ally corrected, with statistically significant improvements
again being demonstrated.

Very different results are observed when our technique is
applied with test inputs generated to satisfy the UFC
requirements coverage criterion. When these test suites are
used, our technique is, on occasion, modestly successful (up
to 9.55 percent improvement), but more often demonstrates
either no improvement (Vertmax_Batch and Latctl_Batch) or
worse results (for oracle sizes surrounding the number of
output variables on the DWM_1 system). We will elaborate
on reasons for this difference shortly.

In Table 5, we list the median improvement in fault find-
ing effectiveness on the set of real faults for the Infusion_Mgr
and Alarms systems. On the Infusion_Mgr system, we
observe the same trends that we saw when evaluating

TABLE 3
Median Relative Improvement Using Mutation-Based
Selection over Output-Base Selection for Structural

Coverage-Satisfying Tests

TABLE 4
Median Relative Improvement Using Mutation-Based

Selection over Output-Base Selection for
Randomly-Generated and UFC-Satisfying Tests
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against seeded mutations. At small oracle sizes, we see an
improvement in the percentage of the test suite that fails
from 0 percent of the tests with an output-base oracle up to
20 percent with a generated oracle. As we approach the
number of output variables, the two approaches converge.
Finally, at large oracle sizes, our approach improves on the
output-base oracle by up to 349 percent.

Examining the plots for Infusion_Mgr in Fig. 5 offers
insight into the importance of the outputs in finding the
real faults embedded into the system—and shows why
focusing on the output variables is not always a wise idea.
Only two of the five output variables are relevant for find-
ing any of the known faults. This can be seen in the plots,
as the median percentage of tests that fail rises exactly
twice for the output-base oracle for sizes 1-5. As a result,
for the structure-based test inputs, choosing oracle
completely at random sometimes results in a more effective
oracle. If some care is taken in selecting an oracle, time may
not be wasted in specifying the expected behavior of out-
puts that rarely, if ever, are useful for finding faults. Our
approach is able to select the important output variables
early and automatically suggest additional bottlenecks in
the state space.

The results on the version of Alarms with real faults are
more subdued. At size one, our approach typically outper-
forms the output-base approach by a large margain—from
no failing tests to failure results in a median of 86.78 percent
of the tests. However, from that point, the largest improve-
ment from our approach is by an additional 2.17 percent. The
reason for this can be clearly seen in Fig. 5—no matter what
variables are chosen, by an oracle of size 10, 90-100 percent of
the tests will have failed. This can be explained by examining

the faults listed in Table 2. In particular, the first fault—that if
an alarm condition occurs during the first initialization step
of execution, it will not be detected in the faulty version of
the system—explains the observed results. The majority of
the system outputs deal explicitly with signaling alarms in
the presence of particular input conditions. If a test triggers
that particular fault, then the results of that fault will be obvi-
ous at the output level. Our approach is able to select the
most important output first, while an unordered approach
may not. However, unlike on the Infusion_Mgr system, addi-
tional gains from observing internal variables are rare.

The major observations made when evaluating on
seeded mutations are confirmed by the evaluation against
the real faults, indicating the applicability of our approach
in practice. However, the performance benefits were more
subdued. A likely reason for this effect is due to the poten-
tially substantial differences between the faulty and cor-
rected models (or faulty system and any source of expected
values)—in the case of Alarms, fixing the model involved
adding 24 new transitions and changing the guard condi-
tions on time-related transitions, meaning that any expected
value oracle is very likely to detect a fault. Examining models
that are less substantially different would likely yield differ-
ent results—for instance, the fixes to the Infusion_Mgrmodel
only required two new transitions and changes to a small
number of guard conditions.

TABLE 5
Median Relative Improvement Using Mutation-Based
Selection over Output-Base Selection over Real Faults

Decision

Oracle Size Infusion_Mgr Alarms

1 Inf (0.00%! 7.14%) Inf (0.00%! 86.78%)
2-3 Inf (0.00%! 7.14%) 0.00%*
4 100% 2.17%
5-6 0.00%* 2.17%
7 0.00% 2.17%
8 9.09% 0.00%*
9-10 99.99% 0.00%*

MC/DC

Oracle Size Infusion_Mgr Alarms

1 Inf (0.00%! 4.25%) Inf (0.00%! 86.78%)
2-3 Inf (0.00%! 4.25%) 0.00%*
4 700.0% 0.00%*
5-7 0.00%* 0.00%*
8 700.0% 0.00%*
9-10 349.99% 0.00%*

Random

Oracle Size Infusion_Mgr Alarms
1 Inf (0.00%! 20.00%) 0.00%*
2-6 0.00%* 0.00%*
7-10 100.00% 0.00%*

“Inf” = output-base oracle failed no tests—we note the median percentage of
tests failed by the generated oracle.

TABLE 6
Median Relative Improvement in Idealized Performance over

Standard Performance of Mutation-Based Selection for
Structural Coverage-Satisfying Tests
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In addition, the changes imposed by the mutation opera-
tors may not be similar to the real mistakes made by the sys-
tem developers. In particular, mutations do not replicate
errors of omission—leaving out functionality is very differ-
ent from making a mistake in the implemented functional-
ity. While examining the traces of mutated systems may
help us discover important internal variables for identifying
faults caused by incorrect implementation, those bottle-
necks may not assist in observing errors that stem from
missing execution paths (as several of the real faults, listed
in Table 2, are). This indicates that—while the core tenants
of our mutation-based approach seem correct—there is
room for improvement in the sources of the traces used to
generate an oracle with our approach. For instance, in addi-
tion to seeded faults, it may be possible to train oracles
using past revisions of a system (as long as there is enough
overlap in the internal structure of the system). The combi-
nation of seeded mutations and corrected faults may yield
even more effective oracles.

While our approach is of little use when paired with
UFC-satisfying test inputs, it does seem clear that our
approach can be effective in practice when paired with
either randomly-generated test inputs or test suites gener-
ated to satisfy a structural coverage criterion. For those test
suites, we can consistently generate oracle data sets that are
effective over different faults, generally outperforming exist-
ing ranking approaches. Our approach is able to highlight
the most important variables, allowing developers to craft
smaller, more effective oracle data sets.

5.3 Potential Effectiveness of Oracle Selection (Q2)

In Tables 6 and 7, we list the median improvement in fault
finding effectiveness between the idealized performance
(oracle data set built and evaluated on the same mutants)
and the real-world performance of our approach. The
results which are not statistically significant at a ¼ 0:05 are
marked with a �.

As noted, there is limited empirical work on test oracle
effectiveness. Consequently, it is difficult to determine what
constitutes effective oracle data selection—clearly perform-
ing well relative to a baseline approach indicates our
approach is effective, but it is hard to argue the approach is
effective in the absolute sense. We therefore posed Q2: what
is the maximum potential effectiveness of a mutation-based
approach? To answer this question, we applied our
approach to the same mutants used to evaluate the oracles
in Q1 (as opposed to generating oracles from a disjoint
training set). This represents an idealized testing scenario in
which we already know what faults we are attempting to
find; thus, this scenario is used to estimate the maximum
potential of our approach.

The results can be seen in Figs. 2, 3, 4 and Tables 6 and 7.
We can observe from these results that while the potential
performance of a mutation-based oracle is (naturally)
almost always higher than the actual performance of our
method, the gap between the actual implementation of our
approach and the ideal scenario is often quite small. In
some cases, such as when using UFC-satisfying test inputs
with the Vertmax_Batch system or at small oracle sizes on
Infusion_Mgr, the difference in results is statistically insig-
nificant. Thus we can conclude that while there is clearly

room for improvement in oracle data selection methods,
our approach appears to often be quite effective in terms of
absolute performance.

5.4 Impact of Coverage Criteria (Q3)

Our technique relies onpre-existing suites of test inputs. It fol-
lows that we would like to investigate the impact of varying
the type of test suite on the effectiveness of oracle selection.

Intuitively, when examining the results of the oracle data
sets generated using the two structural coverage criteria,
using test suites satisfying the stronger criterion (MC/DC)
should have a lower potential for improving the testing pro-
cess via oracle selection, as the test inputs should do a better
job of exercising the code. However, as shown in Figs. 2, 3,
4, and 5 for each case example, the gap between the output-
base and generated oracles for both decision and MC/DC
test suites seems to be roughly the same. For example, for
the DWM_2 system, we can see that despite overall higher
levels of fault finding when using the MC/DC test suites,
the general relationships between the output-base baseline
approach, our approach, and the idealized approach remain
similar. We see a rapid increase in effectiveness for small
oracles, followed by a decrease in the improvement of our
approach versus the output-base baseline as we approach
oracles of size 10 (corresponding to an output-only oracle),
followed by a gradual increase in the improvement. In

TABLE 7
Median Relative Improvement in Idealized Performance
over Standard Performance of Mutation-Based Selection

for Random and UFC-Satisfying Tests
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some cases, relative improvements are higher for decision
coverage (Latctl_Batch) and in others they are higher for
MC/DC (Vertmax_Batch). Relative improvements even vary
between oracle sizes—as can be seen on Infusion_Mgr and
Alarms, where MC/DC-satisfying tests tend to lead to larger
improvements than decision-satisfying tests at small oracle
sizes, but decision-satisfying tests lead to larger improve-
ments at larger sizes.

The results in Tables 3, 4, 5 and Figs. 2, 3, 4, 5—particu-
larly those for DWM_2—reveal three key observations
about the oracles generated using random test inputs. First,
the oracles largely exhibit the same trends as the oracles
generated for the structure-based test suites—a sharp rise at
small sizes, performance comparable to the output-base ora-
cle around middle sizes, and further gains at the end.
Second—however, the improvements from using our
method over an output-base oracle are more modest.
Finally, On the Rockwell Collins systems, all oracle selection
methods achieve higher levels of fault finding over random
tests than they do when applied to test inputs generated to
satisfy structural coverage criteria.

Observations 2 and 3 can be partially explained by exam-
ining the individual tests. As seen in Table 8, the median
length of each randomly-generated test—as measured in
number of recorded test steps—is significantly longer than
the length of the tests in the coverage satisfying tests. In
fact, the random tests tend to be three to six times longer
than their structure-based counterparts. This addresses the
third observation in particular, because longer tests allow
more time for corrupted internal states to propagate to the
output variables. Tests generated to satisfy structural cover-
age criteria tend to focus on exercising particular syntactic
elements of the source code, and thus, tend to be short—just
long enough to exercise that particular obligation. As a
result, tests generated to satisfy structural coverage obliga-
tions may be very effective at locating faults, but may not be
long enough to propagate the fault to the output level.

The third observation is not true for Infusion_Mgr and
Alarms—coverage-satisfying tests outperform randomly-
generated tests. This is due to the complex structure of
these systems. Deep exploration of their state spaces
requires particular combinations of Boolean conditions,
and random tests are less likely to hit some of these
combinations. However, the second observation—that
the gains are more modest—is still true. Even if the state
space is less thoroughly explored, the longer test lengths
still allow more time for the effects of the triggered
faults to propagate to the output variables.

As shown in Figs. 2 and 3—despite different fault finding
numbers—the plots for test oracles that make use of test
suites generated to satisfy the UFC requirements coverage
criterion look very similar to the plots for the oracles that use
other test input types. However, as with random tests, (1) all
oracle selection methods tend to do very well, and (2), the
improvement from using ourmethod tends to be small.

There is some wisdom in the common approach of moni-
toring the output variables, as some faults will always be
caught by monitoring them. Ultimately, the recommenda-
tion of whether or not to make use of our oracle data selec-
tion method is biased by the choice of test input—more
specifically, the probability of a fault propagating to the output
variables. As UFC coverage obligations tend to take the form
of explicit relationships between inputs and outputs, it is
unsurprising that our approach often fails to outperform
the output-base oracle. While faults can still be masked in
UFC tests, they are far more likely to propagate to an output
variable than when running tests providing structural cov-
erage. Therefore, it is unlikely that much improvement will
be seen when working with test inputs that satisfy a require-
ments coverage criterion. On the other hand, when working
with tests that explicitly exercise the internal structure of
the software (as is mandated for certification for the avionics
domain), masking of faults is common and our approach
can significantly improve the effectiveness of the testing
process. Regardless of the differing level of fault finding,
the consistent trends across case examples exhibited for
generated oracles indicates that, perhaps more that the test
inputs used, characteristics of the system under test are the
primary determinant of the effectiveness of our approach.

5.5 Impact of Number of Training Mutants (Q4)

For our initial experiment, we chose to use 125 mutants for
training the oracle data. This number was chosen because
earlier studies yielded evidence that results tend to stabilize
after 100 mutants are used. That said, it may be possible to
train sufficiently powerful oracles with fewer mutants—in
fact, this would be an ideal situation, as examining fewer
mutants will save time in the oracle generation process.

In Fig. 6, we have summarized the results for statistical
testsH4�H7. We have omitted the full set of values, instead
opting to determine the smallest training set size where we
cannot reject the null hypothesis—the smallest training set
that produces test oracles of effectiveness not statistically dif-
ferent from the full training set. The selected training set for
each combination of case example, coverage criteria, and ora-
cle size is plotted in the figure. (Note small vertical and hori-
zontal offsets are present for readability. Points above
X% and below Y% should be interpreted as training set size
of exactly Y%. Point above oracle size X and Y should
be interpreted as oracle sizes of Y .) For example, for the
DWM_1 system, training set sizes of 50 percent of those typi-
cally used provided statistically equivalent performance for
oracle sizes between one to seven, while the full training set
is required for oracles of sizes eight and larger.

Each point represents the plateau at which we cease to
observe significant improvements from adding additional
mutants to the training process. Based on the figure, we con-
clude that, for the most part, our initial estimate of 125
mutants was reasonable. For several of the combinations of

TABLE 8
Median Number of Steps per Test

Decision MC/DC UFC Random

DWM_1 2.0 2.0 4.0 6.0
DWM_2 1.5 2.0 7.0 6.0
Vertmax_Batch 1.0 2.0 5.0 6.0
Latctl_Batch 1.0 2.0 5.0 6.0
Infusion_Mgr 3.0 3.0 6.0
Infusion_Mgr (real faults) 3.0 3.5 6.0
Alarms 2.0 2.0 6.0
Alarms (real faults) 2.0 3.0 6.0
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case example and test input, we fail to observe this plateau
for several oracle sizes—we can say with statistical certainty
that oracle effectiveness will diminish with fewer training
mutants. These points typically correspond to areas where
the ideal approach has a moderate (7-15 percent) and statis-
tically significant difference over our approach, for example
the DWM_1 system with random, MC/DC, and decision
coverage for oracle sizes between 7-13. For these systems,
our approach constructs test oracles that are effective, but
can clearly be improved.

Often, however, smaller training set sizes are sufficient.
We frequently observe a plateau in fault finding results after
75 or 50 percent of the training mutants are used to train the
oracle (though some improvement is often seen when using
the full training set). Thus, for the majority of combinations
of test input type and case example, we can conclude that 62
to 100mutants are needed to produce effective test oracles.

When using real faults as an evaluation criterion, dimish-
ing returns are seen at smaller training set sizes—often at
25 percent for Infusion_Mgr and 10 percent for Alarms. As
shown by our earlier results, ranking variables using infor-
mation learned from seeded faults leads to improvements
in effectiveness. However, when the mutation operators are
dissimilar to the real mistakes made by the developers, we
quickly exhaust what we can learn from the seeded faults.
This again indicates that—while our mutation-based
approach yields benefits—there is a need to expand the
sources of the traces used to generate the oracle data set.

Although results vary between case example, it seems
that one of the largest determinations of how many mutants
are needed is the choice of test input type. Test suites gener-
ated to satisfy a structural coverage metric tend to require a
large number of mutants. In fact, when using suites
designed to satisfy decision coverage, it may be possible to

improve results further by adding more mutants than we
did. Decision and MC/DC coverage obligations exercise
pieces of the internal structure of a system, and thus, it is
hard to predict exactly where a corrupt internal state will
propagate to. The more mutants we examine, the more evi-
dence there is for which specific internal variables we can
observe to catch faults.

In contrast, UFC test obligations are expressed in terms
of the relationship between inputs and outputs to the sys-
tem under test, and thus, the tests are very likely to propa-
gate faults to the output variables. As a side effect, our
oracle selection method reaches a plateau very quickly. For
two case examples, Vertmax_Batch and Latctl_Batch, as few
as 10 percent of the training mutants used are necessary to
reach stable conclusions. In fact, using more training
mutants with test suites that satisfy UFC coverage can occa-
sionally be slightly detrimental, as overfitting at larger train-
ing set sizes leads to worse median fault finding results at
certain oracle sizes.

5.6 Oracle Composition (Q5)

In addition to performance, we are also interested in the
composition of the generated data sets. Are they similar in
structure to the current industrial practice of favoring the
output variables, or, are they more heavily constructed
from the many internal variables of the examined systems?

The average composition of the generated oracle data
sets are listed in Table 9. For each system and test type, we
list the size of the oracle data, the average number of chosen
output variables, the total number of output variables, the
average number of chosen internal variables, and the total
number of internal variables. Recall that the oracle size was
chosen to be the larger of twice the number of output varia-
bles or 10 variables. Therefore, while a generated oracle

Fig. 6. Smallest effective training sets (V_B = Vertmax_Batch, L_B = Latctl_Batch, Al = Alarms, Inf = Infusion_Mgr, F = version with real faults).
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data set could be entirely composed of internal variables,
none of the generated data sets will be composed entirely of
output variables.

As with the performance of the generated oracle data, the
composition seems to be largely determined by the type of
test suite used to generate the data. The oracles created
from structure-based test suites saw a large efficacy
improvement from the oracle generation process because
faults did not tend to propagate to the output variables in
these tests. It follows, that the generated oracle data sets
favor internal variables and largely ignore the output varia-
bles—for every system except Vertmax_Batch, fewer than
half of the output variables are used in the oracles generated
from structure-based tests. The UFC tests, on the other
hand, are written specifically to propagate certain behaviors
to the output variables, and the oracle data generated from
the UFC tests tends to make use of more of those output var-
iables. The composition of the oracle data sets generated
from random tests varies depending on the case example—
for the Vertmax_Batch system, oracle data generated from
random tests only uses one of the two output variables. Sim-
ilarly, for the Alarms system, the oracles generated from ran-
dom tests made use of fewer output variables than those
generated from structure-based tests. However, for the
other systems, the oracle data sets generated from the ran-
dom tests did more commonly choose output variables.

If the majority of the selected variables are internal varia-
bles, the effort cost of producing expected values for those
variables must be considered. Not all variables can have
their values specified with equal difficulty. Two key factors
must be considered—how often the value of the variable is
checked and how the variable is used within the system.

When and how often correctness is checked will help
determine how effective the test oracle will be at catching
faults. It is common to check behaviors after particular events
or at regular points in time—for example, following the com-
pletion of a discrete computational cycle, as is the case with

the systems used in our evaluation. A reasonable hypothesis
might be that themore frequently values are checked, the eas-
ier it will be to spot problems. However, if expected values
must be specified manually, there will be an increase in the
required effort to produce the expected values for these result
checks. Balancing the effort-to-volume ratio is important.

How a variable is used within the structure of the system
may make specifying the value of those variables quite com-
plicated. For example, if a variable is assigned a value in a
triple-nested loop, unrolling the loops and selecting the
value may be difficult. Similarly, an assignment requiring a
complicated calculation might also require specifying the
values of other dependent variables.

Therefore, even if our approach suggests a particular
internal variable, testers may ignore the advice if specifying
values for that variable is too difficult. In such situations,
we recommend two courses of action—either remove diffi-
cult internal variables from consideration or weight those
variables by the difficulty of specification.

Our approach starts with a candidate set of oracle vari-
ables and prunes it down into a recommended subset.
While we have used all of the internal variables in our
candidate set, that is not required. Testers could simply
remove certain variables from consideration before gener-
ating an oracle. This is the easiest solution to the problem
of specifying expected values for more difficult internal
variables.

However, that solution does carry a risk of causing the
tester to miss out on valuable oracle information. Variables
that are difficult to specify expected values for might be
worth considering if they also correspond to valuable mon-
itoring points in the system. Therefore, another option is
that, before generating the oracle data set, the tester could
go through the list of variables in the system and apply
weights to some or all of them to represent the cost of pro-
ducing expected output for that variable. Weights can eas-
ily be incorporated into the set-covering algorithm used to
generate the oracle data—the weight can be factored
against the expected fault-finding improvement from the
use of that variable. Unless the improvement from using
that variable is quite high, an expensive to test internal var-
iable will not be chosen.

6 THREATS TO VALIDITY

6.1 External Validity

Our study is limited to six synchronous reactive critical sys-
tems. Nevertheless, we believe these systems are represen-
tative of the avionics systems in which we are interested
and our results are therefore generalizable to other systems
in the domain.

We have used Lustre [28] as our implementation
language rather than a more common language such as C or
C++. However, systems written in Lustre are similar to tra-
ditional imperative code produced in embedded systems
development. A simple syntactic transformation suffices to
translate Lustre code into C code.

We have generated approximately 250 mutants for each
case example, with 125 mutants used for training sets and
up to 125 mutants used for evaluation. These values are cho-
sen to yield a reasonable cost for the study. It is possible the

TABLE 9
Average Composition of Generated Oracles

RF = real faults.
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number of mutants is too low. Nevertheless, based on past
experience, we have found results using less than 250
mutants to be representative [39].

6.2 Internal Validity

We have used the JKind model checker to generate test
cases. This generation approach provides the shortest test
cases that provide the desired coverage. It is possible that
test cases produced through some other method would
yield different oracle data sets.

6.3 Construct Validity

We measure the fault finding of oracles and test suites over
seeded faults, rather than real faults encountered during
development of the software, for four of the examined sys-
tems. Given that our approach to selecting oracle data is
also based on the mutation testing, it is possible that using
real faults would lead to different results. As mentioned
earlier, Andrews et al. and Just et al. have shown that the
use of seeded faults leads to conclusions similar to those
obtained using real faults in similar fault finding experi-
ments [19], [20]. For the systems with real faults, our gen-
eral results held.

Yao et al. have found that certain mutation operators can
result in more equivalent mutants than other operators,
thus skewing the results of testing experiments [40]. While
we did remove equivalent mutants from the evaluation set
(about 3 percent of the mutants for each system), in practice,
these did not disproportionately result from particular
mutation operators. Therefore, we do not feel that our
results could have been impacted by biasing in the mutation
operators.

7 CONCLUSION

In this study, we have explored a mutation-based method
for supporting oracle creation. Our approach automates
the selection of oracle data, the set of variables monitored
by the test oracle—a key component of expected value
test oracles.

Experimental results indicate that our approach, when
paired with test suites generated to satisfy structural cover-
age criteria or random tests, is successful with respect to
alternative approaches for selecting oracle data, with
improvements up to 1,435 percent over output-base oracle
data selection and improvements of up to 50 percent rela-
tively common. Even in cases where our approach is not
more effective, it appears to be comparable to the common
practice of monitoring the output variables. We have also
found that our approach performs within an acceptable
range from the expected maximum performance.

However, we also found that our approach was not effec-
tivewhen pairedwith test inputs generated to satisfy require-
ments-based metrics. These tests, expressed in terms of the
relationships between inputs and outputs, are highly likely
to propagate faults to the output variables, reducing the
potential gains from selecting key internal states tomonitor.

Thus, we recommend the use of our approach when test
suites that exercise structures internal to the system under
test are employed in the testing process (such test suites are
required by standards in the avionics domain) [29].
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