
A Fluid Model for Layered Queueing Networks
Mirco Tribastone

Abstract—Layered queueing networks are a useful tool for the performance modeling and prediction of software systems that exhibit

complex characteristics such as multiple tiers of service, fork/join interactions, and asynchronous communication. These features

generally result in nonproduct form behavior for which particularly efficient approximations based on mean value analysis (MVA) have

been devised. This paper reconsiders the accuracy of such techniques by providing an interpretation of layered queueing networks as

fluid models. Mediated by an automatic translation into a stochastic process algebra, PEPA, a network is associated with a set of

ordinary differential equations (ODEs) whose size is insensitive to the population levels in the system under consideration. A

substantial numerical assessment demonstrates that this approach significantly improves the quality of the approximation for typical

performance indices such as utilization, throughput, and response time. Furthermore, backed by established theoretical results of

asymptotic convergence, the error trend shows monotonic decrease with larger population sizes—a behavior which is found to be in

sharp contrast with that of approximate mean value analysis, which instead tends to increase.

Index Terms—Modeling and prediction, Markov processes, PEPA, ordinary differential equations, queueing networks, mean value

analysis

Ç

1 INTRODUCTION

ENHANCED queueing networks are the subject of a large
body of literature concerned with the performance

modeling and prediction of software systems. The method of
surrogate delays by Jacobson is an early approach to the
description of simultaneous resource possession [1]. The
solution technique transforms the original model, which
presents nonproduct form features, into two distinct
networks which do enjoy a product form solution. These
are analyzed iteratively until the difference between the two
is less than a threshold. Mutatis mutandis, such a scheme is
featured by other variants such as the stochastic rendezvous
network model [2] and Rolia’s method of layers [3], both
concerned with the analysis of software systems with
synchronicity where a resource is blocked while it is
waiting for services from other resources.

More recently, the layered queueing network (LQN)
model has been presented in a unified manner and has been
shown to incorporate all of the aforementioned features, in
addition to being able to describe other forms of behavior
which typically arise in the modeling of distributed
computer systems, such as fork/join interaction and
asynchronous communication [4].

A common feature of enhanced networks is that the
analytical solution methods may present two orthogonal
forms of approximation. One arises from replacing the
recursive scheme of mean value analysis (MVA) [5] with a
fixed-point iterative algorithm which is fundamentally
insensitive to the customer population levels in the network
[6], [7], [8]. The other source of approximation is due to the

heuristic modifications applied to the MVA algorithm in
order to characterize and analyze nonproduct form beha-
vior. Establishing exactly the quality of the accuracy for
both kinds of error has proven to be difficult. Apart from a
theoretical study concerned with the former kind [9], the
most typical route is to perform thorough validation studies
which compare the approximate estimates against simula-
tion. For layered models, the studies reported in the
literature have shown good accuracy in general, with errors
within a few percent on average [3], [10], [11], [12].

The purpose of the present paper is to reconsider the
error behavior in LQNs in light of analogous developments
regarding scalable analytical techniques witnessed in the
context of stochastic process algebra, specifically PEPA [13].
Here, the approximation is derived by shifting from a
discrete-state characterization in terms of a Markov process
to a continuous-state representation based on a system of
ordinary differential equations (ODEs) [14]. Despite the
drastically different reasoning behind the nature of the
approximation, there are two points in common with
approximate mean value analysis (AMVA). The first is that
the problem size is independent of the population levels in
the system, as those only affect the initial condition of an
underlying initial value problem to be solved. The second
point in common is that the ODE solution can be
interpreted as an approximation to the expected value of
the original stochastic process [15].

On the other hand, there are characteristics which make
the ODE approach substantially different from AMVA.
First, the ODE solution gives an approximation to the entire
time-course evolution of the stochastic process under
scrutiny, thereby readily enabling transient analysis as well
as steady-state analysis, when the equilibrium point of the
ODE system is examined. Second, and most importantly, in
the case of PEPA the approximated stochastic process is a
population model where the state descriptor is a vector of
nonnegative integers which gives the number of compo-
nents in each of the possible local states of the system.
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A powerful result by Kurtz guarantees uniform conver-
gence in probability to the ODE solution as the initial
population levels in the model go to infinity [16]. In
practice, extensive experimental studies have shown that
the quality of the approximation increases quickly with
larger population sizes [14]. Using the same framework,
suitable functions of Markov chains may be shown to
converge to deterministic estimates, and typical perfor-
mance indices such as utilization, throughput, and average
response time have been shown to be encoded as such
functions [17].

The peculiar nonproduct form features of LQNs, which
necessitate ad hoc modifications to the AMVA algorithms,
find instead a more congenial modeling environment in
stochastic process algebra since these patterns of behavior
can be described naturally using standard compositional
operators. The main observation which motivates this paper
is that endowing an LQN-like description with a process
algebraic population-oriented semantics may improve the
accuracy of the estimation because the analysis technique
does not involve heuristic corrections.

Cross-fertilization between queueing networks and pro-
cess algebras has been exploited by other authors (e.g., see
[18] for an account). Hillston and Thomas find a class of
PEPA models that admits a product form solution [19]; a
general framework for product forms for PEPA is that of
Harrison’s Reversed Compound Agent Theorem [20]; Thomas
and Zhao define a class of queueing-network type PEPA
models that are amenable to MVA [21]. Interestingly, they
also provide an approximate solution based on a system of
ODEs that correspond to those that would be generated by
the encoding presented in this paper. However, as with all
the other aforementioned contributions, the PEPA model
must satisfy certain syntactical conditions which, in general,
are not met when a translation from LQNs is required.

This author has presented a preliminary study on the
relationship between PEPA and LQNs in [22] and [23]. The
present paper is a considerably extended version which
makes the following novel contributions:

. We develop a formal model of the LQN model (cf.,
Section 2.2). This will form the basis for a
systematic translation into a PEPA model that is
convenient for a population-oriented interpretation
(cf., Section 3). This is a significant deviation from
[22], where the translation was less formal, being
tailored to a case study.

. The accuracy of the approximation is thoroughly
studied. Unlike [22], which presented a numerical
assessment on a small number of cases, the error
behavior is analyzed on a large set of randomly
generated model instances for a more unbiased
evaluation. The results indicate that the ODE
approximation generally behaves better than AMVA
(cf., Section 4.2).

. Further, we test the hypothesis that the ODE
approximation yields a more controlled error beha-
vior: Layered queueing networks with increasingly
larger population sizes enjoy more precise ODE
estimates. Instead, the AMVA approximation error
generally shows a tendency to increase as a function
of the system size.

For the sake of self-containment, the paper is completed
by an overview of the LQN model, in Section 2.1, and an
introduction to PEPA, in Section 2.3, with emphasis on
the notions and notation that will be used throughout the
remainder.

2 BACKGROUND

2.1 Overview of Layered Queuing Networks

Fig. 1 shows a sample LQN of a distributed application. The
intent is not to provide a realistic model of a concrete
system; rather it serves the purpose of acting as the case
study that features all of the LQN elements considered in
this paper. The reader is referred to [4] (and the rich
bibliography therein) for a more detailed treatment. Servers
(called tasks) are drawn as stacked parallelograms and their
multiplicity is indicated within angular brackets alongside
the task’s name. For instance, File Server <1> denotes one
single thread of execution for the file server. A task is
deployed onto a processor, depicted as a circle connected to
the task. Concurrency levels for processors are denoted
similarly to tasks.

Distinct kinds of services (called entries) exposed by a
task are represented by small parallelograms drawn inside
the task. Each entry is associated with an execution graph
consisting of atomic units of computation called activities,
drawn as rectangles. Activities are arranged through
operators for precedence (directed arrows), decision/merge
nodes (small circles with the + symbol, also called OR-fork
and OR-join, respectively) and fork/join synchronization
(small circles with the & symbol, also called AND-fork and
AND-join, respectively). Each activity is characterized by a
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Fig. 1. LQN model of a distributed application.



service time demand on the processor with which the task is
associated, indicated within square brackets. For the sake of
graphical convenience, execution graphs which consist of a
single activity are not explicitly drawn, and the activity’s
execution demand is directly shown within the associated
entry. In Fig. 1, only the execution graphs of entry visit and
buy are drawn. The former models an activity which
accesses some cached information, after which it performs
an internal activity with probability 0.95 or a more expensive
external activity with probability 0.05. In the entry buy, after
prepare is performed the two activities pack and ship are
executed in parallel. When they both finish, display is
executed.

Layering of services is modeled by means of requests
made from an activity to an entry in another task in the
network. Requests are indicated by directed arrows and may
be of two kinds: synchronous, with closed arrowheads, and
send-no-reply, with open arrowheads. The semantics of the
latter is that there is synchronization during the send action,
but the callee does not await a response. This is also called
asynchronous in the remainder because the caller progresses
independently from the callee after the send has occurred.

Each request is labeled with a number between par-
entheses which gives the number of requests per execution.
This can be interpreted deterministically or as the mean of a
geometric distribution. The total number of requests
performed by an activity determines the distribution of its
execution demand. The total demand is divided into slices
whose duration is drawn from independent exponential
distributions with mean equal to the ratio between total
execution demand and total number of requests. The
execution of one slice is interposed between successive
requests to other entries. For example, the total demand for
save is divided into two slices with mean duration 0.01 time
units, between which is interposed a synchronous call to
write. Reference tasks are tasks which do not accept requests;
they are used to model system workload.

For entries which accept synchronous requests, their
overall behavior may be subdivided into two phases. The
first phase models the computation carried out from the
receipt of the request until the reply to the caller. Such a
reply is denoted as a dashed arrow pointing to the activity’s
entry. To reduce clutter in the graphical notation of LQN,
synchronous entries which do not explicitly show a return
arrow are assumed to reply after the whole control flow has
been executed; thus, visit returns after internal or external,
while buy returns after display. All the activities in the
execution graph that follow the replying entry are part of
the second phase, indicating an autonomous continuation
during which the caller is not blocked. Execution graphs
consisting of two activities such that each represents the
behavior of one phase can be conveniently drawn in a
compact form, as illustrated by write in Fig. 1. The execution
demand for each phase is drawn inside the entry within
square brackets. The requests from multiphase entries are
labeled with pairs in which the ith element represents the
number of requests made by the activity in the ith phase.

By convention, we assume that this compact notation for
activities with second phases is systematically expanded
into an equivalent one with two distinct activities joined by

a precedence relation. For instance, write is transformed into
two activities, write0 and write00, as shown in Fig. 2. In
practice, this is no restriction as it can capture situations of
instantaneous duration, as in the LQN model, with
excellent accuracy (cf., Section 4.1). In addition, it offers
more flexibility in contexts where nonzero duration times
are desirable.

2.2 A Formal Model of a Layered Queuing Network

Although the LQN model is provided in [4] with a UML
metamodel which could be employed as the basis for the
transformation into PEPA, for the purposes of this paper we
find it more convenient to work with a more formal LQN
specification. The most notable peculiarity of such a setting
is the treatment of execution graphs. Each task entry is
associated with a single-rooted directed acyclic graph
(DAG) which models the main control flow. There may be
more than one control flow if the model contains fork/join
nodes. In this case, the main control flow resumes with the
behavior occurring after the fork.

For example, in Fig. 1, the main control flow of buy
executes prepare, then forks two other control flows, and
resumes after joining with display. Each of the forked flows
is modeled as a distinct DAG. The forking/forked relation-
ship is formally captured by having a fork node in the main
flow which is labeled with the set of DAGs which are forked
at that node. Any of such DAGs may contain other fork
nodes, which in turn are labeled with further DAGs, with
an arbitrary nesting. This scheme allows for rich forms of
interaction where any flow may fork further flows.

In the remainder, sets are indicated with calligraphic
letters and are ranged over by the corresponding Roman
upper case letters, e.g., A;D;E are elements of A;D; E,
respectively. All sets are assumed to be pairwise disjoint.
Our LQN model is defined by the following elements:

. A set of vertices V ¼ A [D [ F [M where

- A is the set of activities, e.g., A ¼ fbuy; save; . . .g;
- D is the set of decision nodes;
- F is the set of fork nodes; each node F 2 F is

labeled with a set of SF DAGs, f�iF j 1 � i �
SFg, each giving a distinct control flow forked
by F ; let ViF � V be the set of vertices of �iF ;

- M is the set of merge nodes.
. E is the set of entries, e.g., E ¼ fvisit; read; . . .g; it is

partitioned into two sets, denoted by Es and Ea, of
synchronous and asynchronous entries, respectively.
Let �E be the DAG associated with entry E, with
vertices denoted by VE � V. Fig. 3 shows the formal
interpretation of entry buy.
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Fig. 2. Treatment of activities with second phases. Recalling the
semantics of implicit activity invocation, write represents two distinct
activities, here denoted by write0 and write00.



. P is the set of processors, e.g.,

P ¼ fPClient; PServer; PDiskg:

Let MP 2 IN denote the multiplicity of processor P .
. T is the set of tasks, e.g.,

T ¼ fClient; Server; FileServer; Backupg:

Let NT 2 IN denote the multiplicity of task T .

The single-rooted DAGs �E , with E 2 E, and �iF , for F 2
F and 1 � i � SF , have arcs with labels in fl 2 IR : 0 < l �
1g [ f>g. The usual notation V1 !

l
V2 indicates a directed

arc from vertex V1 to vertex V2 labeled with l. Labels will be
used for the treatment of decision nodes, to assign a
probability to each outgoing arc. For other edges, the
don’t-care symbol > is used; however, V1 !

>
V2 is more

conveniently written V1 ! V2 (as is the case in Fig. 3). The
DAG roots are denoted by rootð�EÞ (or rootð�iF Þ), and the
leaves by leavesð�EÞ (or leavesð�iF Þ).
Definition 1. Given an entry E, a node V is said to belong to E if
E 2 VE , or if it is a vertex in any of the DAGs which are defined
through fork nodes in VE , with arbitrary nesting. Similarly, we
say that V belongs to T , where T is the task which exposes E.

The following functions on these sets will also be used.

. act : P ! 2A gives the set of activities executed on a
processor. (The obvious requirement is that at least
one activity be executed on a processor.)

. act�1 : A ! P gives the processor on which an
activity is executed.

. ctx : P ! IR>0 gives the rate of a context switch
between to successive requests to a processor. Here,
we assume that ctxðP Þ ¼ � for all P 2 P. In the
comparison with the LQN analysis by AMVA, � will
be set to a large value so as to approximate
instantaneous switches. This is discussed in more
detail in Section 4.1.

. del : E ! IR>0 gives the rate of propagation of an
entry invocation, i.e., the time it takes a task to receive
a service invocation. Similarly to ctxð�Þ, we assume
that delðEÞ ¼ 1=� for all E 2 E. For large � this
approximates instantaneous transfer of messages.

. dem : V ! IR�0 gives the total mean execution rate of
a node in an execution graph (e.g., demðprepareÞ ¼
1=0:01). As with delð�Þ, we assume for simplicity that
demðV Þ ¼ � if V 2 F [M.

. ent : T ! 2E gives the set of entries of a task.

. frk : T ! 2F returns the set of fork nodes which
belong to T .

. prc : E ! P gives the process on which the activities
of an entry are executed.

. rep : A [ F [M! E gives the entry to which a node
replies (may be ;). An extension of this model to allow
replies at decision nodes is straightforward, but it
would unnecessarily complicate the translation.

. req : A ! 2E�IN gives the set of requests made by an
activity with their multiplicity. The elements of this
set may be denoted by ðEi;NiÞ, with 1 � i � jreqðAÞj
(cf., Template 2).

. NðAÞ ¼
P
ðE;NÞ2reqðAÞN is the total number of requests

made during the execution of an activity A 2 A.

2.3 PEPA

A PEPA model consists of a composition of entities which
can perform actions sequentially (sequential components).
Actions may be performed autonomously (independent
actions) or in synchronization with other sequential compo-
nents of the system (shared actions). Similarly to the
reference book for the language [13], throughout this paper
process names are strings with uppercase initials, whereas
action types have lowercase initials. The language supports
the following operators.

Prefix ð�; rÞ:P constitutes the atomic unit of computation
of a PEPA model. It is a sequential component which may
perform an action of type �, subsequently behaving as P ,
which is said to be a local derivative (or local state) of the
component. The action duration is exponentially distributed
with mean 1=r time units. Every behavior that involves
precedence between two distinct activities will be captured
by a prefix in the remainder.

Choice P þQ indicates that the sequential component
may behave as P or Q. For instance, ð�; rÞ:P þ ð�; sÞ:Q is
said to enable actions � and �, which are executed with
probabilities r=ðrþ sÞ and s=ðrþ sÞ, respectively. Choice
between distinct action types will be used to model
different entries within the same task. With a slight abuse,
a PEPA choice between prefixes will be described using the
following sigma notation:X

fð�; rÞ:P j IPð�; r; P Þg;

where IPð�; r; P Þ is a predicate of the choice’s constituting
prefixes, e.g.,X

fð�; i � rÞ:Pi j 1 � i � 2Þg :¼ ð�; rÞ:P1 þ ð�; 2rÞ:P2:

Constant A ¼def P : is used to model cyclic behavior. For
instance, A ¼def ð�; rÞ:ð�; sÞ:A is a sequential component
with two local derivatives which performs sequences of �-
and �-activities forever. For instance, in the treatment of
LQNs, constants will be fundamental in modeling the cyclic
behavior of a thread which finishes work for a client and
goes back to its initial state where another client may be
served.

Cooperation P L
./
Q: is the synchronization operator of

the language. The processes P and Q are required to

synchronize over the action types in the set L. All the

other actions are performed autonomously. For instance,
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Fig. 3. The entry buy is modeled with three DAGs, with fprepare;
display; pack; shipg � A and fork 2 F . The vertex which is linked by the
fork node, i.e., display, gives the behavior of the process after all forked
flows have completed.



ð�; rÞ:ð�; sÞ:P f�g
./
ð�; tÞ:ð�; uÞ:Q is a cooperation between two

sequential components which may perform a shared activity

of type �, subsequently behaving as ð�; sÞ:P f�g
./
ð�; uÞ:Q.

Then, actions � and � are carried autonomously. By contrast,

in the cooperation ð�; rÞ:P f�g
./
ð�; sÞ:Q the process ð�; rÞ:P

does not progress because � is not available in the right hand

side of the cooperation. The set of all shared action types

between P and Q will be denoted by the symbol �.
Cooperation will be used in the translation of LQNs into

PEPA for two main modeling situations: 1) the definition of

synchronization point in forks and joins; 2) passing the focus

of control from one sequential component to another, e.g., a

request from an activity to an entry.
Let us introduce two compact notations for replicas of

many sequential components. We write C½N 	 for many
independent copies of C, i.e.,

C½N	 :¼
C; if N ¼ 1;

C ;
./
C ;

./
� � � ;

./
C|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

N times

; if N > 1:

8<
:

The following product notation is used for many distinct
sequential components. It is written in the formY

L

fC j IPðCÞg;

where L is an action set, C is a process term, and IPðCÞ is a
predicate on it. For instance,

Y
L

fCi½N 	 j 1 � i � 3g :¼ C1½N 	 L
./
C2½N 	 L

./
C3½N 	;

Y
L

fCi½N 	 j i ¼ 1g :¼ C1½N 	:

For completeness, we point out that PEPA also features
another operator, hiding, which is, however, not used in the
remainder of the paper.

It will be useful to indicate a set that represents all the
possible action types that a component P may engage in.
This is denoted by ActðP Þ and is defined recursively as

ActðP Þ ¼

f�g [ ActðQÞ; if P ¼ ð�; rÞ:Q;
ActðQÞ; if P ¼ A; with A ¼def Q;
ActðQ1Þ [ ActðQ2Þ; if P ¼ Q1 þQ2;

ActðQ1Þ [ ActðQ2Þ; if P ¼ Q1 L
./
Q2:

8>>><
>>>:

3 PEPA INTERPRETATION OF LQNs

The main rationale behind the PEPA interpretation of LQNs
is to model replicated tasks and processors as copies of
identical sequential components. Thus, if T is the sequential
component which describes the behavior of a task thread,
then the whole server will be described as T ½N 	, where N is
the multiplicity of the server in the LQN model. The empty
cooperation set between two copies of the same component
represents a reasonable assumption of independence
between the behavior of two distinct threads of execution.
Analogously, two distinct copies of the same processor will
be assumed to behave independently from each other. This
is consistent with the LQN interpretation of a processor as a

multiserver station in the network. Here, the main benefit in
using this form of replication of behavior is that the model
has a convenient population-based representation, which
makes the fluid approximation independent of the replica
sizes, but only dependent on the local states of the
replicated process.

3.1 Processor

Template 1. Translation of a processor.

P1 ¼
def ðgetP ; ctxðP ÞÞ:P2

P2 ¼
def X

A2actðP Þ;
demðAÞ>0

ðA; sðAÞÞ:P1

The template for the translation of a processor P is
illustrated in Template 1, showing a cyclic two-state
sequential component. The state P1 models a context-switch
activity which grants exclusive access to the processor.
The second state P2 enables all the actions corresponding to
the activities which are executed on P , by means of the
choice operator. Each activity phase is mapped onto a
distinct action type in PEPA and the rate of execution
reflects the fragmentation of the computation into slices. For
any activity A, the rate of execution of a slice is

sðAÞ ¼ ðNðAÞ þ 1ÞdemðAÞ:

Notice that this interpretation produces a concise descrip-

tion for a processor, whose number of sequential compo-

nents—which is always equal to two—does not depend

upon the distinct classes of service enabled. For example,

the translation of PDisk is shown in Example 1.

Example 1. Processor PDisk.

PDisk1 ¼
def ðgetPDisk; �Þ:PDisk2

PDisk2 ¼
def ðread; 1=0:01Þ:PDisk1

þ ðwrite0; 1=0:001Þ:PDisk1

þ ðwrite00; 3=0:04Þ:PDisk1 þ ðget; 1=0:01Þ:PDisk1

þ ðupdate; 1=0:01Þ:PDisk1

3.2 Nodes of an Execution Graph

3.2.1 Activity and Request

An LQN activity subsumes a PEPA prefix with a sequence of
action types whose length is determined by the number of
outgoing requests and their synchronicity. A synchronous
call is described by two activities which model the request
and the reply. The PEPA action type for the request has the
form reqA;E , where A is the activity from which the request
originates andE is the entry called byA. Similarly, the action
type for the reply has the form repA;E . An asynchronous call
is represented with a single prefix of type reqA;E .

The PEPA process corresponding to the LQN activity
interposes executions of slices of A between requests. The
following snippets of PEPA syntax will be useful for the
translation of an activity:

AcqA :¼
ðgetP ; ctxðP ÞÞ:ðA; s Að ÞÞ; if sðAÞ > 0;

�; if sðAÞ ¼ 0;

�

SycA;E :¼ reqA;E; delðEÞ
� �

: repA;E; delðEÞ
� �

:AcqA;

AscA;E :¼ reqA;E; demðEÞ
� �

:AcqA;
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with P ¼ act�1ðAÞ. We treat � as the empty string, with the
understanding that �:Q 
 Q for all process terms Q.

The string AcqA models the access to a processor and the
execution of a slice of activity A. It is an empty string � if the
activity has no execution demand. SycA;E and AscA;E model
the sequences of prefixes for synchronous and asynchro-
nous requests (followed by slice executions), respectively.

We also make use of RepV , which links the behavior of a
vertex V in the execution graph to that of its potential
children. This abbreviation is defined in Table 1 and differs
according to the nature of the successor node and whether a
vertex performs a reply action. If the vertex is a leaf with no
replies (for instance, the leaf for an entry with asynchronicity,
such as notify), then the successor behaves as T1. This is the
initial state of a task which makes all its possible entries
available to other tasks (cf., Section 3.3). If V has a successor,
then the process simply behaves as the initial state of the
successor node. If the vertex is a leaf of a DAG which models
a forked control flow, then the behavior of a synchronizing
join activity is performed and then the component behaves as
the initial state in that flow, denoted by the process definition
Forkrootð�i

F
Þ. The cases when repðV Þ 6¼ ; are similar except

that the process performs the reply actions (cf., RepV ;P )
before behaving as its successor node.

The translation of an LQN activity is shown in Template 2.

Template 2. Translation of an activity.
Let ðEi;NiÞ be the ith element of reqðAÞ.

A1 ¼
def

Acqa:A2

Aiþ1 ¼
def

SycA;Ei : � � � :SycA;Ei|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ni times

:Aiþ2 if Ei 2 Es;

AscA;Ei : � � � :AscA;Ei|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ni times

:Aiþ2 if Ei 2 Ea;

8>>><
>>>:

for all 1 � i � jreqðAÞj,
AjreqðAÞjþ2 ¼

def
RepA

The first process definition A1 models the first slice
execution. If the activity replies to a synchronous request,
then the last constant models the replies. The corresponding
action types are given by all LQN activities which make
requests to the entry in which A is executed.

Example 2. Activity write.

FIRST PHASE

Write01 ¼
def ðgetPDisk; �Þ:ðwrite0; 1=0:001Þ:Write02

Write02 ¼
def ðrepsave;write0 ; �Þ:Write001

SECOND PHASE

Write001 ¼
def ðgetPDisk; �Þ:ðwrite00; 3=0:04Þ:Write002

Write002 ¼
def ðreqwrite00;get; �Þ:ðrepwrite00;get; �Þ.
ðgetPDisk; �Þ:ðwrite00; 3=0:04Þ:Write003

Write003 ¼
def ðreqwrite00;update; �Þ:ðrepwrite00;update; �Þ.
ðgetPDisk; �Þ:ðwrite00; 3=0:04Þ:Write004

Write004 ¼
def

FileServer1

As a concrete application, the translation of write is given
in Example 2, recalling the pretransformation applied to
activities with second phases shown in Fig. 2. The process
definition Write02 is obtained by evaluating Repwrite0 in the
case when repðwrite0Þ 6¼ ; and write0 ! write00. Instead,
Write004 is obtained as the leftmost case of Table 1,
i.e., when the node is a leaf which does not reply. The
latter fact captures the property that this phase is autono-
mous with respect to the caller’s behavior.

3.2.2 Decision/Merge Nodes

The case of probabilistic branching D 2 D is treated as a
PEPA choice between prefixes with action type orD. As
shown in Template 3, the total rate for a process in stateD1 is
demðDÞ since the sum across the weights of the outgoing arcs
from Dmust be equal to 1. A merge node is treated similarly
to the final state of an activity, via the definition RepM .

Template 3. Translation of decision/merge nodes.

DECISION: D1 ¼
def PfðorD; p demðDÞÞ:V1 j D!

p
V g

MERGE: M1 ¼
def

RepM

Example 3. Decision/merge nodes in Fig. 1.

O1 ¼
def ðorO; 0:95 �Þ:Internal1 þ ðorO; 0:05 �Þ:External1

3.2.3 Fork/Join Nodes

Fork/join synchronization is rendered by assigning a
distinct sequential component to each concurrent control
flow. Such flows perform the activities autonomously and
synchronize over the action types corresponding to fork and
join nodes in the execution graph. Notice that activities in
distinct control flows may be not completely independent
since they may access the same processor on which the task
is deployed, which is shared.

Template 4 treats fork/join nodes.

Template 4. Translation of fork/join nodes.

F1 ¼
def ðforkF ; demðF ÞÞ:J1

J1 ¼
def ðjoinF ; demðF ÞÞ:RepF

ForkV i ¼def ðforkF ; demðF ÞÞ:V i
1

with V i ¼ rootð�iF Þ, for all 1 � i � SF .
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The forking component in local state F1 starts the forked
processes, each of which is in state ForkV . This is obtained
by a suitable composition between the sequential compo-
nent of F1 and all ForkV in the system equation (cf.,
Section 3.4). The forking process goes into state J1 where it
waits for all the forked processes to end their computations.
The other synchronizing activities are obtained by the
evaluation of RepV for all nodes V that are leaves in the
DAG which labels a fork node (cf., Table 1).

Example 4. Fork/join nodes in Fig. 1.

F1 ¼
def ðforkF ; �Þ:J1

J1 ¼
def ðjoinF ; �Þ:Display1

Forkpack ¼
def ðforkF ; �Þ:Pack1

Forkship ¼
def ðforkF ; �Þ:Ship1

Example 4 shows the process definitions that arise from
the treatment of the fork and join nodes in the running
example. To give more insight into the overall algebraic
interpretation of this situation, it is interesting to consider
the complete set of definitions for one of the forked flows,
e.g., pack. These are, according to Template 2 and Table 1,

Pack1 ¼
def ðgetPServer; �Þ:ðpack; 1=0:03Þ:Pack2;

Pack2 ¼
def ðjoinF ; �Þ:Forkpack:

Overall, a compound model of kind

F1 L
./
ForkPack; L ¼ fforkF ; joinFg; ð1Þ

gives the desired behavior as it leads to the following
computation path, according to the semantics of PEPA:

F1 L
./
ForkPack ����!

ðforkF ;�Þ
J1 L

./
Pack1

������!ðgetPServer;�Þ
J1 L

./ ðpack; 1=0:03Þ:Pack2

������!ðpack;1=0:03Þ
J1 L

./
Pack2

����!ðjoinF ;�Þ
Display1 L

./
ForkPack:

This models that J1 does not change its local state until a
joinF action is observed. After this action, the control flow
which initiated F behaves as Display1, which is the first
activity after the join.

3.3 Task

A reference task is a task that describes the workload in the
model. It is identified by not having activities within other
network tasks which make requests to it. The following
definition formalizes this situation.

Definition 2. A task T 2 T in an LQN model is said to be a
reference task if there is no A 2 A such that there exists
ðE;NÞ 2 reqðAÞ such that E 2 entðT Þ. A task which is not a
reference task is said to be a layered task.

Template 5 shows the translation of tasks.

Template 5. Translation of a task.

REFERENCE TASK

T1 ¼
def

V1; V ¼ rootð�EÞ; with E ¼ entðT Þ.

LAYERED TASK

T1 ¼
def PfðreqA;E; 1=delðEÞÞ:R1 j 8E 2 entðT Þ,

8A 2 A : 9ðE;NÞ 2 reqðAÞ;with R ¼ rootð�EÞg
In case of a reference task, T1 is the initial state of its

unique entry. A layered task is a PEPA component which
initially enables the activities corresponding to the invoca-
tions of all its entries, modeled as an initial choice process.
When one of these activities is chosen, the process behaves
as the initial state of the main flow of the execution graph
corresponding to that entry.

An excerpt of the transformation of task Server is shown in
Example 5.

Example 5. Translation of task Server.

Server1 ¼
def ðreqthink;visit; �Þ:V isit1 þ ðreqthink;buy; �Þ:Buy1

þ ðreqthink;notify; �Þ:Notify1

þ ðreqthink;save; �Þ:Save1
..
.

Display1 ¼
def ðgetPServer; �Þ:ðdisplay; 1=0:001Þ:Display2

Display2 ¼
def ðrepthink;buy; �Þ:Server1

Notify1 ¼
def ðgetPServer; �Þ:ðnotify; 1=0:08Þ:Notify2

Notify2 ¼
def

Server1

The state Server1 shows that all requests come from
activity think. For a synchronous entry, e.g., buy, the final
activity display ends with a reply action, as per Table 1.
Instead, in the case of notify the component returns to state
Server1 without executing the single slice on PServer.

It is interesting to note that the overall definitions of a
task describe a single thread of execution. When the process
is not in state Server1, none of the synchronizing request
actions may be observed in the system. Therefore, other
clients have to wait before accessing the task. Multi-
threading levels in PEPA are simply obtained by defining
multiple copies of the same sequential component in the
system equation, as discussed next.

3.4 Network

Template 6 Translation of an LQN.

Define for T 2 T ; with frkðT Þ ¼ ;:
CT :¼ T1½NT 	

Otherwise, if frkðT Þ 6¼ ;, define

T1½NT 	 L1

./ Y
L1

�
ForkV ½NT 	 j V ¼ rootð�iF Þ,

for all F 2 frkðT Þ; with 1 � i � SF
�

,

where L1 ¼ � n ð
S
p2Pfgetpg [ frepA;E j 8A;EgÞ.

LQN : ¼
Y
L2

fCT j T 2 T g �./
Y
;
fP1½MP 	 j P 2 Pg,

with L2 ¼ � n
S
p2Pfgetpg.

The complete LQN is obtained according to Template 6. It is a
composition between the tasks, defined by the compound
processesCT , and the processors, defined by the processesP1.
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Each CT gives the overall behavior of a multientry multi-

threaded task with concurrency level NT . The process T1

subsumes the main control flow of all its entries, as

discussed in Section 5. It may be composed of a number

of other components with initial states ForkV , each

collecting the behavior of control flows arising from all

vertices V which are immediate successors of a fork node in

each execution graph within that task. These constants are

defined as per Template 4. This is the general case of the

situation illustrated in (1). Note that these flows inherit the

concurrency levels of the tasks in which they are deployed.

Example 6. Translation of the LQN in Fig. 1.

CClient: ¼ Client1½2	
CServer :¼ Server1½2	 L1

./
Forkprepare½2	 L1

./
Forkship½2	,

L1 ¼ fforkF ; joinFg

CFileServer :¼ FileServer1½1	
CBackup: ¼ Backup1½1	

LQN :¼
�
CClient L2

./
CServer L3

./
CFileServer L4

./
CBackup

�
L5

./ �
PClient½2	 ;

./
PServer½2	 ;

./
PDisk½2	

�
,

L2 ¼ freqthink;visit; repthink;visit; reqthink;buy; repthink;buy,
reqthink;notify; reqthink;save; repthink;save; reqthink;readg,

L3 ¼ frepthink;read; reqexternal;read; repexternal;read,
repsave;write; reqsave;writeg,

L4 ¼ frepwrite00;get; repwrite00;get; repwrite00;update; reqwrite00;updateg
L5 ¼ fthink; cache; internal; external; prepare; pack,

ship; display, read; write0; write00; get; updateg.
It is important to recall that � is a function of all the

possible actions performed by the operands of the synchro-

nization operator in which it appears, e.g.,

A �
./
B �

./
C 
 A K1

./
B K2

./
C;

with

K1 ¼ ActðAÞ \ ActðBÞ; K2 ¼ ActðA K1

./
BÞ \ ActðCÞ:

Therefore, in general it is not the case that K1 6¼ K2

(although, clearly, it holds that K2 � K1). In the action sets

identified by L1 and L2, however, the actions getP are

excluded to avoid a form of multiway synchronization for the

access to a processor whereby three or more constituting

components perform the same action simultaneously. In

other words, with respect to the model component LQN ,

each of the sequential components in the left-hand operand

of �
./

are independent processes which compete for the

shared processors, collectively represented as the right-

hand operand. Finally, all processors are composed over

empty synchronization sets because all the current actions

must be independent—one activity runs on one and only

one processor.

3.5 Properties of the Translation

This section is ended with a list of properties which are

enjoyed by the translation patterns herein examined.

3.5.1 Multiway Synchronization for Fork/Join Actions

The definition of the cooperation set L1 in Template 6

guarantees that the model does not feature undesired forms

of synchronization. By the previous templates, the possible

action types that any sequential component may perform

are as follows:

. getP , for some P 2 P; notice that for sequential
components related to the same task, there is only
one such action, namely, that related to the processor
on which the task is deployed. Thus, if L1 contained
getP , then a synchronization could arise between the
main flow T1 and one or more secondary flows
ForkV . This does not correspond to the intended
behavior of the system, whereby the processor
implements a kind of mutual exclusion amongst all
competing flows.

. repA;E for some activity A and entry E; the same
action may be performed by two distinct flows, e.g.,
when one performs an early reply and the other one
does not. As in the previous case, these actions are
intended to be independent within the same task.

. reqA;E for some activity A and entry E; these actions
are all distinct because of the uniqueness of the
originating activity within the overall network.
Therefore, reqA;E is executed by only one kind of
sequential component in the overall PEPA model.

. A, with A 2 A; this case does not give rise to
unintended synchronized behavior because the
activity names are all distinct. A similar argument
applies to the orD actions arising from decision
nodes and to the actions reqA;E because at least A
will be distinct in the components.

. forkF and joinF , with F 2 F ; the action set L1 does
enforce synchronization between these actions. Each
sequential component must synchronize with all
flows such that the same forkF or joinF may be
executed. This is indeed a multiway synchronization
because more than two flows may be spawned from
a fork node.

3.5.2 Binary Communication for Requests and Replies

The action set L2 in Template 6 does permit synchronization

for the actions reqA;E and repA;E because activities within

one task may make calls to activities in other tasks. It is

possible to show that all such sets are pairwise disjoint,

thereby proving that at most two components CT synchro-

nize, i.e., the communication is binary.
In order to do so, observe that, by construction, all the

getP action types are not contained in the set L2. Any pair of

components of type CT does not exhibit the same action

type for the execution of a basic activity since each activity

belongs to only one task. The same fork/join action type

cannot be exhibited because these activities are executed

within the same task, and distinct fork/join nodes give rise

to distinct action types in the PEPA model. Thus, the only

potential elements of L2 are the action types for message

exchange reqA;E and repA;E . The fact that sets with such

action types are pairwise disjoint follows immediately from

the uniqueness of activity and entry names in the LQN and
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can be proven by structural induction. Let us consider an
arbitrary composition of three components CT , i.e.,

CT1
L2

./
CT2

L2

./
CT3

:

Component CT1 may enable request/reply actions with
subscripts ðA0; E0Þ, ðA00; A00Þ; . . . , where E0; E00; . . . 2 entðT1Þ
and A;A0; . . . are basic activities. If some action with
subscript ðA;EÞ was present in both cooperation sets then
it would mean that both CT2

and CT3
can perform the same

basic activity A, which is a contradiction. Then, assuming
that the property holds for a cooperation among n > 3
components:

CT1
L2

./
CT2

L2

./
CT3

L2

./ � � � L2

./
CTn

in order to prove that it holds for nþ 1 components:

CT1
L2

./
CT2

L2

./
CT3

L2

./ � � � L2

./
CTn L2

./
CTnþ1

;

it suffices to prove that the cooperation set L2 in position

� � �CTi L2

./
CTiþ1 � � � is disjoint from the cooperation set

� � �CTn L2

./
CTnþ1

, for all 1 � i � n� 1. Suppose that, for some

i; CTi L2

./
CTiþ1 has some action in common with the set in

CTn L2

./
CTnþ1. This implies that the action must be a

request/reply action with subscript ðA;EÞ, with E 2
entðTnþ1Þ, because it belongs to the set CTn L2

./
CTnþ1

, and

that E 2 entðTiþ1Þ, which is a contradiction because iþ 1 6¼
nþ 1 but one entry must belong to only one task.

3.5.3 Properties of RepV
The expansion RepV in Table 1 uses constants which are not
defined therein. However, observe that T1 is always defined
for every task by Template 5. The case V ! V 0 implies the
existence of a constant V 01 . In fact, the treatment of each
node V is such that the initial state is always denoted by V1.
Finally, let us consider case V 2 leavesð�iF Þ for some F 2 F
and 1 � i � SF . The target constant Forkrootð�i

F
Þ is well

defined according to Template 4. Finally, the treatment of
decision nodes is well defined by similar arguments to above.

3.5.4 Size of the PEPA Model

It is straightforward to see from an inspection of Tem-
plates 1-6 that the number of sequential components
generated by the translation algorithm is linear with the
number of activities and processors in the LQN model. Let
us remark that this also applies to reference tasks; therefore
each customer class adds a number of sequential compo-
nents which is linear with the number of processors and
activities that are needed to define that class. The size of
nonreference tasks is not affected by the number of
customer classes in the LQN.

The system of ODEs underlying a PEPA model is equal
to the total number of sequential components defined. As
discussed, task and processor multiplicities do not impact
on the ODE system size, but only affect the actual starting
point of the associated initial value problem.

3.6 Performance Measures

Another paper by this author and colleagues has discussed
a class of performance indices, namely, action throughput,

capacity utilization, and average response time, which can be
formally defined as Markov reward structures that enjoy
convergence in probability to a deterministic estimate [17].
The typical performance metrics for an LQN model can be
shown to be encoded in PEPA using suitable definitions of
action throughputs and average response times, as well as
using the ODE solutions directly. This section provides
sample performance indices for the running example. A
generalization of these specifications to arbitrary LQNs is
straightforward.

We use the following notation throughout this section:
For each PEPA sequential component Q, we denote by
NðQÞ the estimate of the mean number of components
which exhibit the local derivative Q in the steady state. This
is computed as an expected value if the analytical model is
the Markov process underlying the PEPA model, or as one
of the functions of the ODE problem in the fluid approx-
imation. Similarly, the notation fðNðQÞÞ specifies a reward
function f applied to the Markov process or to the fluid
approximation.

3.6.1 Utilization

In the LQN model, utilization measures the mean number
of busy processors at equilibrium. As such, it yields a value
between zero and their multiplicity, although it may be
similarly given a normalized fashion as the fraction of busy
processors. More fine-grained results can be obtained by
computing the distinct contributions from each of the
activities. In the PEPA model, the overall utilization for a
processor P , denoted by UðP Þ, is the mean number of
components which are in state P2 (cf., Template 1), i.e.,

UðP Þ :¼ NðP2Þ:

In order to obtain the utilization due to a given activity
A 2 actðP Þ, denoted by UAðP Þ, it is necessary to compute
the population levels of all the sequential components
which perform execution slices of A as defined by the
expansion AcqA. Then, the processor utilization due to the
execution of A is given as the sum across all such
population levels. If an activity has two phases, the total
contribution is the sum of the contributions of each phase.
For instance, the utilization of processor PDisk due to the
execution of write is obtained as

UwriteðPDiskÞ ¼ N
�
ðwrite0; 1=0:001Þ:Write02

�
þN

�
ðwrite00; 3=0:04Þ:Write002

�
þN

�
ðwrite00; 3=0:04Þ:Write003

�
þN

�
ðwrite00; 3=0:04Þ:Write004

�
:

It is worth noting that the estimation of processor
utilization is directly obtainable from the components of
the ODE solution and does not require the use of reward
structures.

An analogous definition of utilization may be given to
layered tasks. In this case, this is the mean number of tasks
that are occupied in the steady state. For a layered task
T 2 T its utilization is written UðT Þ and can be computed as

UðT Þ :¼ NT �NðT1Þ
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since the local state T1 is intended to be the only idle state of
the task. In other words, the task is assumed to be utilized
even when it is waiting for service from one of the lower-
layer calls.

3.6.2 Throughput

Throughput measures the frequency at which an activity is
performed in the steady state. For an activity A 2 A, the
throughput is computed in the PEPA model as the action
throughput of the that action as defined in [17]. Specifically,
due to the structure of an LQN model encoded in PEPA, it
is possible to show that the throughput of A 2 actðP Þ,
denoted by T ðAÞ, can be computed as

T ðAÞ :¼ demðAÞ min
X
ðB;sðBÞÞ:Q
B¼A

N
�
ðB; sðBÞÞ:Q

�
; NðP2Þ

8<
:

9=
;:

The summation across all sequential components which
execute a slice of A captures the fact that all slice executions
compete for the same processing resource, which is the
right-hand side of the minimum function in the expression.
For instance, it holds that

T ðcacheÞ
¼ 1=0:001 min

�
Nððcache; 1=0:001Þ:D1Þ; NðPServerÞ

�
:

3.6.3 Average Response Time

Little’s law is used for the evaluation of different
performance metrics of an LQN model.

The entry service time is defined to be the average
response time to execute an entry, including the service
time incurred for the execution of lower layer calls.
Therefore, it can be computed as the fraction of the
population of sequential components which model the
execution of the entry and the throughput of requests for
that entry. For entries which feature an early reply, the
sequential components which are associated with the
second phase are not taken into account in this computa-
tion. For instance, the entry service time for write, denoted
by WðwriteÞ, may be computed as

WðwriteÞ ¼
�
NðWrite01Þ þN

�
ðwrite0; 1=0:001Þ:Write02

�
þWrite02

�
� 1

� minfNðFileServer1Þ; NðSave2Þg
;

where the expression in the fraction denominator gives the
throughput of requests as a function of the number of
callers, NðSave2Þ, and available tasks, NðFileServer1Þ.

The mean delay for a join, expressed as the time to observe
a join after the corresponding fork has been executed, can
be computed in a similar manner. The expression for a
mean delay for a join corresponding to a fork F 2 F ,
denoted by W ðF Þ, is

WðF Þ :¼ NðJ1Þ demðF Þ�1

min NðF1Þ; fNðForkV Þ j V ¼ rootð�iFg
� � ;

where NðJ1Þ is the number of forking threads waiting for
the join, as per Template 4.

4 NUMERICAL EVALUATION

This section studies the nature of the PEPA interpretation of
an LQN model by means of an experimental assessment on
the model in Fig. 1. Section 4.1 briefly discusses the
treatment of the rate �, which is used to approximate
instantaneous service invocations, accesses to processing
resources and tasks, and fork/join activities. Section 4.2
presents numerical results on the comparison between the
fluid interpretation of the PEPA model and the approxima-
tion by AMVA.

4.1 Approximation of Instantaneous Activities

The instantaneous activities of an LQN model are
approximated by means of a rate � which is set to a much
larger value than that of all other activities in the system.
Table 2 shows the results of a sensitivity analysis on the
fluid approximation conducted for different values of �.
The slowest rate considered, i.e., 1:2� 104, is equal to
20 times the fastest individual rate in the LQN model
(i.e., one slice execution of external). The performance
metrics under observation are two utilization indices,
UðPServerÞ and UwriteðPDiskÞ, and the average response
time WðvisitÞ. The results in the table are reported as the
percentage relative differences with respect to the perfor-
mance results of the model with � ¼ 1:2� 108. This study
has motivated the choice of 1:2� 107 for all the tests
discussed in the remainder of this section as this did not
cause significant loss of accuracy up to the third decimal
digit of each performance metric.

From a computational viewpoint, it should be pointed
out that the presence of rates which are separated by many
orders of magnitude is a very likely source of stiffness in the
numerical integration of the underlying initial value
problem of the fluid approximation [24]. In practice,
however, the stiff solver ode15s from the Matlab ODE
suite (cf., [25]) turned out to be successful in dealing with
the models analyzed in this paper.

An alternative approach to dealing with the separation
between fast and slow rates in the model would be to cast
time-scale decomposition techniques for process algebra
(cf., [26]) into the ODE analysis. This is, however, outside
the scope of this paper.

4.2 Comparison of AMVA and Fluid Analysis

4.2.1 Experimental Set-Up

The comparison between the accuracy of the AMVA and that
of the fluid approximation is based on a set of 1,000 models
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with topology as in Fig. 1 and with randomly generated rate
parameters and concurrency levels. Rate values were drawn
from uniform distributions in ½0:01; 100	; concurrency levels
for processors were sampled from discrete uniform dis-
tributions in 1; . . . ; 10, whereas tasks and client populations
were sampled uniformly from 1; . . . ; 50. The larger values
for concurrency levels of tasks were motivated by the desire
to obtain model instances which exhibit contention for
shared processors.

The analysis of the LQN models was conducted using
the Layered Queueing Network Solver toolkit [27]; the PEPA
fluid analysis was performed using a combination of the
PEPA Eclipse Plugin [28], for the automatic derivation of the
underlying system of differential equations, and Matlab, for
the numerical solution by the ode15s solver, as discussed
above. The results obtained from the discrete-event simula-
tion of the LQN model by the lqsim tool were taken to be
the exact values. The simulations were stopped when the
radii of all confidence intervals at 95 percent confidence
level for the performance metrics under study were less
than 1 percent of the statistical averages. The analytical
solution by AMVA was obtained with the lqns tool
enabling the option stop-on-message-loss to deal with the
asynchronous requests at Server.1 The ODE integration
scheme was able to detect convergence to equilibrium based
on two criteria: an absolute criterion computed as the norm
of the derivatives at each integration step, and a relative one
based on the norm of the difference between the solution
vectors at two successive steps. In both cases, the conver-
gence threshold was set to 1� 10�6 for the L1 norm.

The performance metrics on which the comparison is
based are: UðPClientÞ, UðTBackupÞ, T ðcacheÞ, and W ðbuyÞ.
In fact, the analyses were performed using a larger set of
indices; however, a preprocessing phase showed that those
reported herein are representative of analogous indices
computed for other entities of the network. For instance, the
error behavior for the processor utilizations of PServer and
PDisk did not give statistically different results from those

of PClient. Similar trends were observed among the error
behaviors of throughputs and response times.

The accuracy of the approximation is quantified by
means of the usual notion of percentage relative error with
respect to the statistical mean obtained by simulation.
Aggregate statistics across all model instances are given by
the average error as well as the 5th and the 95th percentiles.
The median error was also calculated but is not reported
here to ease table layout and reading. It was found to be of
the same order of magnitude as the average but consistently
smaller, indicating that the error distribution is shifted
toward higher accuracy.

4.2.2 Results

The aggregate error statistics are collectively reported in
Table 3. The two rows labeled with 1x refer to the randomly
generated validation dataset discussed in the previous
section. Rows labeled with 2x and 5x refer to the same
validation dataset, where all rate parameters are kept fixed
but each model instance is initialized with concurrency
levels for processors and tasks which are two and five times
larger, respectively, than the original random values. This
respects the kind of scaling that is used in the framework of
asymptotic convergence for PEPA [14] and allows us to
assess the accuracy behavior of the approximation with
respect to increasing sizes.

The results clearly show that different kinds of indices
yield different qualities of the approximation, with proces-
sor utilizations and throughputs being generally more
accurate than task utilizations and response times. A
possible explanation for the latter may be a form of error
propagation due to the fact that steady-state average response
time is a derived measure. It is calculated by Little’s law as
the fraction of the number of users within some suitable
subset of local states and the related throughput, which are
both approximate estimates themselves. In the context of
PEPA, this phenomenon has already been observed [17].

Let us focus first on the 1x case. The error statistics
regarding the ODE approximation are consistently smaller
than those for the MVA approximation. The accuracy is
generally acceptable, with percentage errors of mostly
about 10 percent on average, although some particularly
inconvenient cases yield unsatisfactory accuracy, e.g., over
40 percent for the 95th error percentile of UðTBackupÞ. The
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TABLE 3
Comparison between the Fluid Approximation of PEPA (Rows Labeled with ODE) and the LQN Analytical Solver

(Rows Labeled with MVA) Using 1,000 Randomly Generated Model Instances with Topology as in Fig. 1

Rows 1x: baseline validation set, with parameters set as discussed in Section 4.2.1; rows 2x and 5x: baseline set, with all task and processor
multiplicities multiplied by 2 and 5, respectively. For each of the performance metrics the 5th and 95th percentile and the average error across all
model instances are plotted.

1. The use of a nonstandard solver option may raise the question
whether potential sources of inaccuracy may come from the treatment of
asynchronous messages. To investigate this issue, an analogous numerical
assessment was conducted on a slight variation of the model in Fig. 1 which
replaces the asynchronous call with a synchronous one. The numerical
results turned out to be not appreciably different, therefore they are not
presented here for the sake of conciseness.



error behavior is more problematic for the MVA approx-
imation, where the averages are often sensibly larger than
the ODE counterparts—for instance, it is one order of
magnitude larger for UðPClientÞ—and with 95 percent
percentiles as high as about 85 percent.

The remaining rows of the table highlight a monotonic
decrease of the error statistics for the ODE approximation as
a function of the population sizes in the model. This is
expected as per fluid limits theory, which guarantees
uniform convergence in probability of a sample path of
the stochastic process to the differential trajectory. Impor-
tantly, a similar trend could not be observed in the error
behavior of MVA. In fact, the results show that in general
the accuracy degrades with larger population levels. In
particular, the errors for the 5x case are on average larger
than 25 percent across all the performance indices con-
sidered in this study.

4.2.3 Runtime Comparison

The computational cost of both techniques was also
compared. This was done by recording the execution
runtimes of the software tools employed for the analysis.
For statistical significance, the average execution times over
30 independent runs were used for the comparison.

A completely fair evaluation is mainly hindered by the
fact that the solution of the fluid model gives a time-course
trajectory of the system’s behavior as a byproduct of
the numerical integration until equilibrium of the initial
value problem. In this respect, the analysis is more
informative in that it readily yields transient characteristics,
unlike AMVA which iterates for a steady-state solution. On a
more practical level, the runtime performance is also heavily
dependent on the relative quality of the implementations of
the supporting software tools. In order to allow for the most
objective comparison possible, the two implementations
were treated as black boxes. In particular, it was decided not to
apply some optimizations on the fluid analysis, despite the
availability of the source code of the toolkit for PEPA.

Table 4 shows the average runtimes, measured on an
ordinary desktop computer, across the validation dataset of
1,000 models used in this section. Because of the specific
scaling of the concurrency levels adopted herein, for a given
model in the baseline dataset its fluid model is the same as
that in the corresponding 2x and 5x model. Instead, the
runtimes for AMVA exhibit some dependency on the initial
population levels due to an increasingly larger number of
iterations needed to reach convergence to a fixed point.

5 CONCLUSION

This paper has studied the performance evaluation of
models of computer systems described as layered queueing

networks, using a scalable fluid-limit approach mediated
by an automatic translation into the stochastic process
algebra PEPA. The underlying mathematical representation
is a system of ordinary differential equations which can be
easily solved by means of standard numerical integrators.
Similarly to approximate mean value analysis, the solution
may be interpreted as a deterministic estimate of the
expected behavior of the stochastic process. On a side note,
we remark that this intertwinement between queueing
networks and process algebra goes beyond a more
conventional view which has considered the two methods
as being complementary but somewhat antithetic—the
former being amenable to fast analytical solutions, the
latter being endowed with a more expressive semantics, at
the cost of a more expensive computational effort [29].

The use of fluid models inspired by process algebra is
proposed here to significantly improve the accuracy of the
LQN approximation. This was demonstrated by means of a
numerical assessment over a large number of randomly
generated models, showing that the error statistics were
consistently superior to those referred to the AMVA
methods available for LQNs. These findings confirm early
observations on the same subject [22], [23] as well as recent
work by the same author on a restricted subclass of LQNs
on which numerical validation was also carried out by
means of stress tests [30].

More important is the study of the error behavior with
increasing problem sizes. Defining the system size N as a
multiple of some given configuration of an LQN—i.e., the
multiplicities of processors and tasks, and the client
populations—the fluid trajectory is proven to be indis-
tinguishable from a sample path of the stochastic process as
N !1. An implication of this property is that the larger
the N , the smaller the error may be expected to be.
Although theoretical error bounds are not practically usable
at present due to a doubly exponential dependence upon
time [31], this trend is confirmed more pragmatically by the
numerical study presented in this paper and, most crucially,
it strikingly contrasts the error behavior for AMVA, which
is instead at best (statistically) insensitive with respect to
increasing N , if not degrading. It is worth noting that, even
with small job populations (at most 250 across all models),
fluid analysis is capable of producing very accurate
estimates, especially of utilizations and throughputs.

The price to pay for such increased accuracy appears to
be a longer execution time on average for small-sized
models. Although fluid approximations behaved quantita-
tively well in these specific circumstances, it is important to
stress that those are not the models which are intended to
be the primary target of this form of analysis, as it
inherently requires large populations to yield accurate
results. We observe, however, that the computational cost
becomes increasingly more convenient with larger popula-
tion sizes, to which the solution of the system of differential
equations is insensitive as they only affect the initial
condition of the numerical integration. On the other hand,
we registered average runtimes which span two orders of
magnitude for AMVA.

Although the focus of this paper was on comparing the
approximation errors of average performance indices in the
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TABLE 4
Average Runtimes for the Fluid Analysis and the

MVA Approximation of the Validation Dataset

For a given model, the solution of differential equations is independent of
the scaling levels.



steady state, we note that fluid techniques enable further

scalable forms of analysis which are not available within a

mean value analysis framework. It has already been dis-

cussed that the solution to the system of differential equations

directly provides transient measures, i.e., performance

indices across the whole time-course evolution of the system.

These can be used on their own (cf., [17]) or to compute

cumulative rewards (i.e., time-averaged integrals of a perfor-

mance index, e.g., [32]) and passage-time distributions [33].
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