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Notation
The following notation will be used throughout this thesis.

1. N : the set of all natural numbers.

2. p : denotes a fixed prime.

3. Z : the ring of integers.

4. Zp : the ring of integers modulo p.

5. Fq : finite field of size q.

6. Fq[X] : polynomials over Fq in the variable X.

7. Vn(Fq) : set of n-tuples over Fq.

8. Fq[X]/〈f(X)〉 : equivalence classes in Fq[X] under congruence modulo the poly-

nomial f(X).

9. f(X) : generator matrix of a cyclic code.

10. 0 : all zero vector.

11. I : identity matrix.

12. a | b : a divided b.

13. a mod b : remainder of a when divided by b.

14. a ≡ b( mod c) : a is congruent to b modulo c.

15. |S| : size of a set S.

16. |〈a〉| : order of a field element.

17. (n,M)-code : code of length n and M codewords.

18. [n,M ]-code : linear code of length n and M codewords.

19. [n, k, d]-code : linear code of length n and dimension k with minimum distance d.
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20. C⊥ : orthogonal element of linear code C.

21. gcld : greatest common left divisor.

22. gcrd : greatest common right divisor.

23. lclm : least common left multiple.

24. lcrm : least common right multiple.

25. LCD : linear complementary dual.

26. ACD : Additive complementary dual.
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Abstract
The overarching theme of this thesis is an algebraic coding and rings. At the beginning,

we improve our knowledge in the field of skew polynomial ring F4R[x, θ] where θ is an

automorphism of ring F4R. We denote by R the commutative ring, with 16 elements,

F4 + vF4 := {a+ vb : a, b ∈ F4} where v2 = v.

We merge the topic of skew cyclic codes with that of codes over a new alphabet

set F4R. In the first aspect, if θ is identity, we then derive the systematic form of the

respective generator matrices in the standard form of the codes and their dual codes. In

three examples, we provide F4R-linear code under the Gray map is an optimal F4-linear

code. We wrap the concept up by proving the MacWilliams identity for linear codes

over F4R.

In the other aspect, we progress to classify all F4R-skew cyclic codes, by proposing

a method to determine a generator polynomial and establish interesting results that

relate these codes to cyclic and quasi-cyclic (QC) codes over F4R. We highlight several

ways of obtaining F4-linear codes with good parameters from F4R-skew cyclic codes.

Our setup provides a natural connection to DNA codes. We present a characterization

of R-skew cyclic codes which are reversible complement.

Key-words : Linear codes, Codes over rings, Mixed alphabets, Skew cyclic
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Résumé
Les codes algébriques ont un lien avec les anneaux finis dans différents concepts. Cette

thèse a pour objetif d’améliorer les performances des codes correcteurs d’erreurs con-

struits à partir des polynômes tordus "skew polynomial" F4R[X, θ] où θ est un automor-

phisme de l’anneau FqR. On note R l’anneau commutatif contenant 16 éléments,

F4 + vF4 = {a+ vb : a, b ∈ F4} avec v2 = v.

Nous donnons le concept des codes θ-cycliques avec celui des codes sur un nouvel en-

semble d’alphabets F4R. Dans le premier aspect, si θ est l’automorphisme identité, nous

dérivons alors la forme systématique des matrices génératrices respectives des codes et

de leurs codes duaux. Ensuite, nous avons construit trois F4R-codes linéaires en util-

isant l’image de Gray, qui sont des F4-codes linéaires optimaux. De plus, nous avons

présenté l’identité de MacWilliams pour les codes linéaires sur F4R.

Dans le second aspect, nous avons classifié tous les codes cycliques tordus sur l’anneau

F4R, aboutissant à l’identification de leurs générateurs. Nous avons montré que, sous

certaines conditions sur la longueur de ces codes, ils sont équivalents à des codes cy-

cliques ou bien à des code 2-quasi-cycliques sur le même anneau. Nous avons procédé

de différentes manières pour obtenir des codes F4-linéaires avec de bons paramètres

comme images de codes. Cycliques tordus sur F4R sous l’application Gray. A la fin de

cette de nos travaux, nous avons appliqué les codes construits au DNA computing.

Mots-clés : Codes linéaires, Codes sur les anneaux, Alphabets mixtes, Codes θ-

cyclique .



Introduction

Theory of non-commutative polynomial rings were introduced in 1933 by Oystein Ore

?. He gave fundamental properties of them. Since then, many mathematicians have

studied the structural theory of the skew polynomial rings, that was developed by N.

Jacobson ?, A. Leroy ? and others. Since, algebraic codes and rings are closely con-

nected in at least two fundamental ways. The code alphabets often has a ring structure,

instead of just a set. The code itself can often be constructed and then studied as a

module over some rings. A recent book ? by Shi et al. highlights these facts. When the

rings are finite fields, numerous studies have been done and are still being carried out

actively on the constructions and properties of error-control codes since the pioneering

works of Shannon, Hamming, and their contemporaries in the 1940s ?. In terms of

error-correcting capabilities, most codes over general rings do not surpass the perfor-

mance of their finite fields cousins. Fortunately, useful applications remain abounds.

Many codes over rings lead to good pseudo-random sequences, for example. Studies

on codes over Galois rings are naturally built on results on the main structures of the

underlying rings. The latter can be found, for example, in the collection of lectures by

Z. X. Wan in ?. Extensions beyond Galois, for instance, to chain rings have also been

looked into.

Based on what Oystein Ore ? brought, Boucher et al. ? used this non-commutative

ring to generalize the linear cyclic codes to be called later the skew cyclic codes. They

identified skew cyclic codes of length n over a finite field Fq, and θ be an automorphism

of Fq with left ideal in the ring Fq[X, θ]/〈Xn−1〉. The richness of code theory came from

non-commutative rings that motivated many researchers to construct new codes with

good parameters. Abualrub et al. ?, and on the basis of Boucher et al. results ??, they

generalized the skew cyclic codes to skew quasi-cyclic codes under the property that, in
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all cases, θ is an automorphism of Fq must divide the length n of codes. In 2011, Siap et

al. ? studied skew-cyclic codes without any restrictions about the length. A linear code

of length n over Fq is skew cyclic codes if it is a left submodule of Fq[X, θ]/〈Xn − 1〉.

After that, Abualrub et al. in 2012 ?, they described skew-cyclic codes over the ring

F2 + vF2 = {0, 1, v, v + 1} where v2 = v. This is the only ring of order four and has a

non-trivial ring automorphism. On the other hand, topics of error-correcting codes are

additive codes over mixed alphabets. These codes were first introduced in 1997 ?. Two

rather recent works that provide some initial inspiration for our set up below are done

over Z2Z4 by Borges et al. ? and over Z2Z2[u] by Aydogdu et al. ?. This class generalizes

binary and quaternary linear codes. Later, an exhaustive description of Z2Z4-additive

codes was done ?, ?, ?, ? and ?. The structure and properties of Z2Z4-additive codes

have been intensively studied ??????. For example ?, we generalized the notion of LCD

codes to additive complementary dual (ACD) codes in Zα2Z
β
4 . We constructed infinite

families of codes that are ACD. We used the ACD codes to construct infinite families of

binary LCD codes via the Gray map. We gave conditions for the case when the image of

ACD code is a binary LCD code. see ?????. In 2020, Melakhessou et al. ? studied skew

constacyclic codes over the ring ZqR where R = Zq + uZq, q = ps for a prime p and

u2 = 0. By using the Gray images of skew constacyclic codes over ZqR they obtained

some new linear codes over Z4.

The aim of this thesis is to construct error control codes. We focus on linear codes over

finite rings. Our purpose is to merge the topic of skew cyclic codes with that of codes

over mixed alphabets. In particular, we study the structure of linear skew cyclic codes

over the ring F4R, where F4 is the field of four elements and R = {a + vb|a, b ∈ F4} is

the commutative ring with 16 elements where v2 = v. An F4R-linear code C is defined

to be a submodule of Fα4Rβ. If β = 0, then C is a quaternary linear code. If α = 0, then C

is an R-submodule of a finite non-chain ring. We classify all F4R-skew cyclic codes. This

thesis is divided into three chapters. Chapter 1 is divided into three sections. Firstly, we

give basic definitions related to linear codes over finite field Fq. We note that a code-

word x = (x1, x2, . . . , xn) of length n can be viewed as an n-dimensional vector over Fq.

An (n, k) linear code over Fq is a k-dimensional subspace of the n-dimensional vector

space

Vn(q) = {(x1, x2, . . . , xn) : xi ∈ Fq};
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where n is called the length of the code, k the dimension.

In this section, we present generator, parity check matrix and dual of an [n, k]-linear

code. Also, we define the Hamming distance between any codewords. In the next

section, we generalize the notion of cyclic codes from commutative to non-commutative

ring. A linear code C over Fq is a left Fq-submodule of Vn(Fq). Also, is said to be Fq-skew

cyclic codes if

(c0, c1, . . . , cn−1) ∈ C =⇒ (θ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C. (1)

Where θ is an automorphism over Fq. Finally, we extend the above concepts from finite

field Fq to finite ring R = Fq + vFq = {a + vb|a, b ∈ Fq} with q elements where v2 = v.

A subset C of Rn is a linear code over R if C is an R-submodule. For any codeword

c = (a0, a1, . . . , an−1) ∈ Rn can be identified by polynomial such that

c(X) = a0 + a1X + . . .+ an−1X ∈ R[X]/〈Xn − 1〉

This identification gives a one-to-one correspondence between Rn and

Rn := R[X]/〈Xn − 1〉

The product of c(X) = a0 + a1X + . . .+ an−1X
n−1 and r(X) = b0 + b1X + . . .+ bn−1X

n−1

in Rn is given by

c(X).r(X) mod (Xn − 1). (2)

The interested reader may consult ?, ?, ? and ?.

In chapter 2, we consider codes whose alphabets come from a finite non-chain ring that

we call F4R, with R soon to be formally defined. We obtain results on the structure of

linear codes over the ring, define a suitable inner product to derive the dual codes, and

obtain the systematic form of their respective generator matrices. The followings are

our contributions.

1. We construct the respective generator matrices for any F4R-linear code C.

2. We derive the parity-check matrices for an FqR-linear code C.

3. We provide the MacWilliams identity for linear codes over F4R.
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In chapter 3, we consider a new alphabet set, which is a ring that we call F4R, to con-

struct linear error-control codes. Skew cyclic codes over this ring are then investigated

in details. We define a nondegenerate inner product and provide a criteria to test for

self-orthogonality.
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Results on the algebraic structures lead us to characterize F4R-skew cyclic codes.

Interesting connections between the image of such codes under the Gray map to linear

cyclic and skew-cyclic codes over F4 are shown. These allow us to learn about the

relative dimension and distance profile of the resulting codes. Our setup provides a

natural connection to DNA codes where additional biomolecular constraints must be

incorporated into the design. We present a characterization of R-skew cyclic codes

which are reversible complement. The followings are our contributions ?,? and ?.

1. We show that the dual of a skew cyclic code over F4R is also a skew cyclic

code. In fact, skew cyclic codes over F4R are left R[X, θ]-submodules of Rα,β :=

F4[X]/〈Xα − 1〉 ×R[X, θ]/
〈
Xβ − 1

〉
.

2. We determine their generator polynomials and establish interesting results that

relate these codes to cyclic and quasi-cyclic (QC) codes over F4R. First, we show

that a skew cyclic code over F4R is equivalent to an F4R-cyclic code if α and β are

both odd integers. Second, we establish that if α and β are both even integers,

then an F4R-skew cyclic code C is equivalent to an F4R quasi-cyclic code of index

2.

3. Conditions for skew cyclic codes over F4R to be self-orthogonal are studied.

4. We use the Gray mapping to associate these codes to codes over F4 of length α+2β

and exhibit a nice relationship between these codes and their images over F4. The

Gray image of any skew cyclic code over F4R is the product of a cyclic code over

F4 of length α and two skew cyclic codes, each of length β, over F4. We supply

examples of good skew cyclic codes over F4R and their respective Gray images for

different lengths.

5. We construct optimal linear codes over F4 as images of skew cyclic code over F4R

under the Gray mapping.

6. Applications of these codes to DNA computing are included in our treatment.

This thesis has been the subject of publications [chap 2 ?, chap 4 ?] and results

submitted [chap 3 ?].
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Chapter 1

Fundamental background

In this chapter, we provide basic definitions and results to linear codes over Fq, and

then, we generalize them to linear codes over the ring Fq + vFq.

Let Fq be the finite fields with q elements. Let n be a nonnegative integers, and

Vn(Fq) be the set of n-tuples over Fq, i.e.,

Vn(Fq) = {(x1, . . . , xn)|xi ∈ Fq for i = 1, . . . , n}

This set is an n-dimensional vector space over Fq. If q is a prime, Fq accords with Zq
which is the ring of integer residues modulo q.

Let In be the identity n × n matrix. Let 0 denote either the zero vector or the all-zero

matrix whose dimension is clear from the context. A nonempty subset C of Fnq is called

a q-ary code or, easily and more accurately, a code over Fq or a Fq-code, and n is called

the length of the code. This code is also denoted by (n,M)-code, where M is the size of

Vn(Fq), and the elements of the code are called codewords.

1.1 Linear codes over Fq
Definition 1. A linear [n, k]-code over Fq is a k-dimensional subspace of Vn(Fq). The

parameter n is called the length of the code and k is the dimension of the code. Moreover,

|C| = M = qk.

Definition 2. Let C1 and C2 be two codes over Fq. C2 is equivalent to C1 if there exists a

fixed permutation of the positions to all codewords of C1 to obtain C2.
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An important parameter to take into account is the Hamming distance for (n, k)-

code. The Hamming distance between two codewords x and y in Fnq is defined by

d(x,y) := |{i | 1 ≤ i ≤ n, xi 6= yi}

For any codewords x,y and z in Fq, it is easy to confirm that the Hamming distance

satisfies the following properties of a metric.

• d(x,y) = 0 if and only if x = y

• d(x,y) ≥ 0

• Symmetry: d(x,y) = d(y,x)

• Triangle inequality: d(x, z) ≤ d(x,y) + d(y, z).

We will now describe the Hamming distance of a code.

Definition 3. Let C be an [n, k]-code. The minimum distance d of the code C is

d := min{d(x,y) : x,y ∈ C,x 6= y}. (1.1)

The Hamming weight of vector x ∈ Vn(Fq); denoted, wH(x) is the Hamming distance

between x and the zero vector, i.e.,

wH(x) := d(x,0)

Definition 4. ? The Hamming weight of an [n, k]-code C is

wH(C) = min{wH(x) : x ∈ C,x 6= 0}

From the Definition and , observe that for any two codewords x,y in Vn(Fq), we

have

d(x,y) = wH(x− y)

A close relationship has been demonstrated in ?.

Theorem 1. Let d be the distance in a linear code [n, k]-code. Then

d := wH(C) (1.2)
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Since C is a linear code, then the minimum distance and the minimum weight of any

non-zero codewords of C are similar. From now, we reserve the notation [n, k, d]-code

to refer a k-dimensional linear code of length n with minimum distance d. Next, we

derive the generator matrix of a linear code.

Definition 5. ? A generator matrix for an [n, k]-code C is any k× n-matrix G whose rows

form a basis for C.

In general, we introduce a standard form of a generator matrix of a linear code by

G = [Ik A], (1.3)

where A is a k × (n− k)-matrix. The difference n− k is called the redundancy of C.

Definition 6. ? Two [n, k]-codes C and C ′ over Fq are said to be equivalent codes if there

exist generator matrices G and G′ for C and C ′ respectively and an n × n permutation

matrix P such that

G′ = GP

The matrix P permutes the columns of G, and thus permutes the coordinate posi-

tions in C to produce the the code C ′. The above definition useful to the following

result.

Theorem 2. ? If C is an [n, k]-linear code over Fq, then there exists a generator matrix G

for C or for an equivalent code C ′ such that

G = [Ik A].

1.1.1 Dual code

Let C be a linear code [n, k, d]-code over Fq. The standard Euclidean inner product

of x and y in Vn(Fq), denoted by 〈x,y〉q, is given as usual by

〈x,y〉q :=
n∑
i=1

xiyi ∈ Fq.

From the definition of inner product we have the following properties.
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Proposition 1. ? Let x,y and z in Vn(Fq), then

• 〈x + y, z〉q := 〈x, z〉q + 〈y, z〉q

• For any λ ∈ Fq, 〈λx,y〉q = λ〈x,y〉q

If 〈y, z〉q = 0, we say that the vectors x and y are orthogonal to each other.

Definition 7. If C is a linear code over Fq, then the dual of C, denoted by C⊥, is

C⊥ := {y ∈ Vn(Fq)|〈x,y〉 = 0 for all x ∈ C}

If C = C⊥ then C is called a self-dual codes.

Theorem 3. ? If C is an [n, k]-linear code over Fq, then C⊥ is an [n, k]-linear code over Fq.

Corollary 1. ? If G = [Ik A] is a generator matrix for C, then H = [−AT In−k] is a

generator matrix for C⊥.

The following results construct the parity-check matrix for any Fq-linear code.

Definition 8. Let C be an [n, k]-linear code over Fq. If H is a generator matrix for C⊥,

then H is called a parity-check matrix for C.

The next theorem gives a description of the minimum distance of a linear via any

parity-check matrix of the code.

Theorem 4. ? Let H be a parity-check matrix of a linear code C 6= 0. The minimum

distance of C is the largest integer d such that every set of d − 1 columns in H is linearly

independent.

1.1.2 Cyclic codes

Cyclic codes are the important classes of linear codes. Next, we introduce some

definitions and notations for the cyclic codes.

Definition 9. A subset C of Vn(Fq) is said to be an Fq-cyclic code of length n if two condi-

tions are satisfied.

1. C is an Fq-subspace of Vn(Fq).
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2. If c = (c0, c1, . . . , cn−1) ∈ C then the cyclic shift of c over Fq, denoted by

T (c) := (cn−1, c0, . . . , cn−2), is also in C

It is often convenient to associate a vector a = (a0, a1, . . . , an−1) with a polynomial

a(X) := a0 + a1X + . . .+ an−1X
n−1

in an indeterminateX. This allows for conditions of codes using results from the algebra

of polynomial rings. More formally, a code C is said to be a cyclic code of length n if it

is invariant under the cyclic shift implies that if c(X) ∈ C, then Xc(X) mod (Xn − 1)

is also in C. From now, we represent any vector (a0, a1, . . . , an−1) in Vn(Fq) by

a0 + a1X + . . .+ an−1X
n−1 mod (Xn − 1)

Theorem 5. ? Fq[X]/〈Xn − 1〉 is a principal ideal ring.

Proof. Let I be an ideal in Fq[X]/〈Xn − 1〉. If I = 〈0〉, then I is generated by 0. Else,

let f(X) be a monic polynomial of least degree in I. Let g(X) ∈ I, by the division

algorithm, we have

g(X) = q(X)f(X) + r(X),

where deg(r(X)) < deg(f(X)) or r(X) = 0. Since q(X)f(X) ∈ I, it follows that

r(X) = g(X)− q(Xf(X)) ∈ I

since g(X) is a polynomial of least degree in I, we must have r(X) = 0. Hence, f(X)

divides g(X), so I is generated by g(X).

The following result establishes a fundamental theorem of cyclic codes.

Theorem 6. ? A linear code C in Vn(Fq) is cyclic if and only if C is an ideal in Fq[X]/〈Xn−

1〉.

Proof. Suppose that C is cyclic, then for any codeword c(X) ∈ C the word X.c(X) is

also in C. Therefore, X i is in C for every i ≥ 0. By linearity, a(X)c(X) is in C for every

polynomial a(X). Hence, C is an ideal in the ring Fq[X]/〈Xn − 1〉.

Conversely, if C is an ideal in Fq[X]/〈Xn− 1〉. let c(X) be any codeword, then Xc(X) is

also codeword. Hence, by a linear code C is cyclic.
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1.2 Skew polynomial rings

Ore ring or skew polynomial ring is introduced by Oystein Ore ?. In this section, we

study a brief account of a particular kind of non-commutative ring. Let Fq be a finite

field with q = pr elements where p is prime number and r is a non-negative integer. Let

θ be an automorphism of Fq. i.e., θ ∈ Aut(Fq) := {Id, x 7→ xp, x 7→ xp
2
, . . . , x 7→ xp

r−1}.

Hence, |〈θ〉| = r, denoted, the order of automorphism θ. The skew polynomial ring

Fq[X, θ] is defined by

Fq[X, θ] := {a0 + a1X + . . .+ anX
n : ai ∈ Fq for all i = 0, 1, . . . , n},

where addition of these polynomials is defined in the usual way while multiplication is

defined using the distributive (associativity) laws and the rule

(aX i).(bXj) = aθi(b)X i+j

The ring Fq[X, θ] is not commutative. If θ is the identity automorphism we back to the

concept of commutative ring. In the next step, we derive some fundamental properties

of a non-commutative ring over Fq[X, θ]. Let P =
∑n

i=1 aiX
i and Q =

∑m
j=0 bjX

j in

Fq[X, θ], then the multiplication of P and Q defined by

PQ =
n∑
i=1

m∑
j=0

aiθ
i(bj)X

i+j

θi is the composition of θ i-times. We essential to state left or right divisibility, when

we talk about divisibility, and when discuss ideals we need to talk fixed a left, right or

two-sided i.e., a left and a right ideal.

Definition 10. The degree of skew polynomial is defined in the usual way as the largest

exponent of X appearing in the polynomial, and deg(0) := −∞. This does not depend on

the side where we place the coefficients because θ is an automorphism

The next proposition follows immediately from the definition.

Proposition 2. ? Let f and g two polynomials in Fq[X, θ], then

1. deg(f + g) ≤ max{deg(f), deg(g)}

2. deg(fg) = deg(f) + deg(g)
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The above Proposition implies that Fq[X, θ] is a domain which has non-zero divisors

different to zero. Next, we derive the right division algorithm in Fq[X, θ].

Theorem 7. ? Let f(X) and g(X) in Fq[X, θ] with g(X) 6= 0. There exist unique q(X) and

r(X) in Fq[X, θ] such that

f(X) = q(X)g(X) + r(X)

with deg(r(X)) < deg(g(X))

Proof. f(X) = a0 +a1X+ . . .+anX
n and g(X) = b0 +b1X+ . . .+bmX

m two polynomials

in Fq[X, θ] with bm 6= 0. If n < m then we have to take q(X) = 0 and r(X) = f(X).

Otherwise, we have

f(X)− anθn−m(b−1m )Xn−mg

By induction on n and the degree we get the existence, and the uniqueness of q(X) and

r(X).

If f = gh (resp. f = hg) for some h ∈ Fq[X, θ], then we say that g is a left multi-

plicative (resp. multiplication) of f , denoted, g|lf (resp. g|rf). For any two non-zero

polynomials f and g in Fq[X, θ], not boths zero, we have the following results.

The polynomial d = gcld(f, g) ∈ Fq[X, θ] is called the greatest common left divisor of f

and g, if d|lf , d|lg and for any polynomial h ∈ Fq[X, θ] satisfies h|lf and h|lg then h|ld.

The polynomial l = lclm(f, g) ∈ Fq[X, θ] is called the least common left multiple of f

and g, if f |rl, g|rl and for any polynomial h ∈ Fq[X, θ] satisfies f |rh and g|rh then l|rh.

For all non-zero f, g ∈ Fq[X, θ]

deg(gcrd(f, g)) + deg(lclm(f, g)) = deg(f) + deg(g). (1.4)

Theorem 8. ? Fq[X, θ] is a left and a right Euclidean ring.

In particular, we can also define a left (resp. a right) Bezout identity.

Theorem 9. ? Fq[X, θ] is a left (resp. right) principal ideal ring. Moreover, any two-sided

ideal must be generated by

f(X) = (a0 + a1X
r + a2X

2r + . . .+ anX
nr).X t

where |〈θ〉| = r and t are positive integer.
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1.2.1 Skew cyclic codes over Fq

Lemma 1. ? Xn − 1 is two-sided if and only if r |n.

Proof. If Xn − 1 is two-sided, then by definition Xn − 1 commutes with aXr, for any a

in Fq, this implies that (Xn − 1).aXr = aXr.(Xn − 1). Then

(Xn − 1).aXr = θ(a)nXn+r − aXr,

and

aXr.(Xn − 1) = aXn+r − aXr,

Thus, θ(a)n = a for all a in Fq, hence r |n.

Conversely, let f(X) = a0 + a1X + . . .+ arX
r ∈ Fq[X, θ]. Then

(Xn − 1).f(X) = Xn.f(X)− f(X)

= Xn.(a0 + a1X + . . .+ arX
r)− f(X)

= θ(a0)
nXn + θ(a1)

nXn+1 + . . .+ θ(ar)
nXn+r − f(X)

If r |n then θ(a)n = a for all a ∈ Fq, we have

(Xn − 1).f(X) = (a0 + a1X + . . .+ arX
r).Xn − f(X)

= f(X).(Xn − 1)

This concludes the proof.

The previous lemma shows that the quotient Fq[X, θ]/〈Xn − 1〉 is a ring.

Lemma 2. ? If r |n. Then the ring Fq[X, θ]/〈Xn − 1〉 is a principal left ideal ring.

Now, if r - n then we need to verify that Sn := Fq[X, θ]/〈Xn − 1〉 is a left Fq[X, θ]-

module under the multiplication

d(X).(f(X) + 〈Xn − 1〉) = d(X).f(X) + 〈Xn − 1〉 (1.5)

Where f(X) ∈ Sn and for all d(X) ∈ Fq[X, θ].

Theorem 10. ? Sn is a left Fq[X, θ]-module with respect to the multiplication in Equation

(??).

Proof. It is clear that the properties of a left module are satisfied over Sn.
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The following results establish a fundamental theorem of θ-cyclic codes. For the

proof of the next results see ?, ?.

Theorem 11. Let C = 〈f(X)〉 be a linear code over Fq of length n, where f(X) is the

generator polynomial of C.

1. If r |n, then C is a θ-cyclic code if and only if C = 〈f(X)〉 is a left ideal of Fq[X, θ]/〈Xn−

1〉, where f(X) is right divisor of Xn − 1 in Fq[X, θ].

2. r - n, then C is a left Fq[X, θ]-submodule of Sn with respect to the multiplication in

Equation (??).

In general, we consider an arbitrary length without any restriction. In this case, a

linear code C over Fq is a left Fq-submodule of Vn(Fq). Also, is said to be Fq-skew cyclic

codes if

(c0, c1, . . . , cn−1) ∈ C =⇒ (θ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C. (1.6)

Let f(X) = f0 + f1X + . . . + ftX
t, let C = 〈f(X)〉 be a left Fq[X, θ]-submodule of Sn

generated f(X). From ?, the generator matrix of C is given by

f0 . . . ft−1 ft 0 . . . 0

0 θ(f0) . . . θ(ft−1) θ(ft) . . . 0

0
. . . . . . . . . . . . . . . ...

...

0 . . . 0 θn−t−1(f0) . . . θn−t−1(f1) θn−t−1(ft)
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1.3 Codes over finite ring Fq + vFq
In this section, we generalize the concept of linear codes over finite fields Fq to the

linear codes over non-chain ring Fq+vFq. We give some definitions and characterization

related to main results.

1.3.1 Introduction

Let R := Fq + vFq := {a + vb : a, b ∈ Fq} is the commutative ring with q2 elements

where v2 = v, this ring are isomorphic to the quotient ring Fq[v]/〈v − v2〉. It is well

known that R is a finite non-chain ring with two maximal ideals

〈v〉 := {av : a ∈ Fq} and 〈v − 1〉 := {b(1− v) : b ∈ Fq},

making each R/〈v〉 and R/〈1 − v〉 isomorphic to Fq. The Chinese Remainder Theorem

then implies that

R = 〈v〉 × 〈1− v〉.

Let Rn denote the R-module of n-tuples over R. Any element in R can be uniquely

expressed as

a+ vb = (b+ a)v + a(1− v) for a, b ∈ Fq

Lemma 3. ? Let R∗ denote the group of units of R then R∗ = vF∗q ⊕ (1− v)F∗q.

Definition 11. A subset C of Rn is a linear code over R if C is an R-submodule.

For any codeword c = (a0, a1, . . . , an−1) ∈ Rn we can identified by polynomial such

that

c(X) = a0 + a1 + . . .+ an−1 ∈ R[X]/〈Xn − 1〉

This identification gives a one-to-one correspondence between Rn and

Rn := R[X]/〈Xn − 1〉

The product of c(X) = a0 + a1X + . . .+ an−1X
n−1 and r(X) = b0 + b1X + . . .+ bn−1X

n−1

in Rn is given by

c(X).r(X) mod (Xn − 1). (1.7)

For a + vb ∈ R, the classical Gray map φ : R 7→ Fnq sends a + vb to (a + b, a). The Lee

weight of any element in R is the Hamming weight of its image under φ.
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Lemma 4. ? The mapping φ : R 7→ F2
q is a bijection.

Proof. It is easy to verify that φ is one-to-one. Let (v1, v2) ∈ F2
q such that v1 and v2 are in

Fq. Let b = v1 + v2, and a = v2. Then, φ(a + vb) = (v1, v2) and, hence, the mapping φ is

onto.

This map extends naturally to Rn. For any c = (a+vb) = (a1 +vb1, a2 +vb2, . . . , an+

vyn) ∈ Rn with a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in Fnq . Then the Gray map

over Rn is defined by

φ : Rn 7→ F2n
q with φ(c) = φ(a + vb) = (a + b, a). (1.8)

The map φ is an isometry which transforms the Lee distance in Rn to the Hamming

distance in F2n
q . For any R-linear code C, the code φ(C) is Fq-linear. Furthermore, since

the inner product in Equation (??) is nondegenerate, we have |C|·|C⊥| = |φ(C)|·|φ(C)⊥| =

q2n.

1.3.2 Linear codes over R = Fq + vFq

Let A ⊕ B = {a + b | a ∈ A, b ∈ B} and A ⊗ B = {(a, b) | a ∈ A, b ∈ B} as defined

in ?. Given a linear code C over R, let

C1 := {x + y ∈ Fnq | (x + y)v + x(v + 1) ∈ C for some x,y ∈ Fnq } and

C2 := {x ∈ Fnq | (x + y)v + x(v + 1) ∈ C for some y ∈ Fnq }.

One can quickly verify that C1 and C2 are linear codes over Fq. Let r = a + vb ∈ R and

c = (c1, c2, . . . , cn) ∈ C, i.e., cj = aj + vbj with aj, bj ∈ Fq for 1 ≤ j ≤ n.

The j-th entry of rc is

(a+ vb)(aj + vbj) = ((b+ a)v + a(1− v))(aj + vbj)

= aaj︸︷︷︸
x

+v(abj + baj + bbj︸ ︷︷ ︸
y

) = (x+ y)v + x(1− v).

Hence, rc can be written in terms of C1 and C2 with

x = a(a1, a2, . . . , an) and y = (a+ b)(b1, b2, . . . , bn) + b(a1, a2, . . . , an).

The Gray map can be restricted from Rn to a linear code C over R. The next results

can be concluded by a slight modification from ?, with 2 extends to q.
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Theorem 12. ? Let C be a R-submodule of Rn. Then Φ(C) = C1 ⊗ C2 and

| C |=| C1 || C2 |.

Proof. For any codeword cj = aj + vbj in C can be expressed as cj = (bj + aj) + aj(1− v)

with aj, bj ∈ Fnq for 1 ≤ j ≤ n. It suffices to show that, Φ(cj) ∈ C1 ⊗ C2. Since Φ is

bijection, Φ(cj) = (bj + aj, aj). By definition of C1 and C2 we obtain bj + aj ∈ C1 and

aj ∈ C2, therefore, Φ(cj) ⊆ C1 ⊗ C2.

Conversely, let (v1, v2, . . . , vn, w1, w2, . . . , wn) ∈ C1 ⊗ C2, where (v1, v2, . . . , vn)C1 and

(w1, w2, . . . , wn) ∈ C2 such that vj = bj + aj and wj = aj for 1 ≤ j ≤ n. There are

c = (c0, c1, . . . , cn) ∈ C with cj = aj + vbj for 1 ≤ j ≤ n, then we obtain Φ(c) =

(b1 + a2, b2 + a2, . . . , bn + an, a1, a2, . . . , an) ∈ C1 ⊗ C2, therefore, C1 ⊗ C2 ⊆ Φ(C).

Moreover, it is easy to see that |C1|.|C2| = q2n = |C|.

Let C1 and C2 be two codes over Fq, by the definition ??, then they are equivalent to

a codes that has a generator matrices G1 and G2, respectively.

G1 0

0 G2

 (1.9)

Let C be a linear code of length n over R. If G1 and G2 are the generator matrices of a

Fq-linear codes C1 and C2, respectively, then the generator matrix of C is vG1

(1− v)G2

 (1.10)

It is clear that, if G1 = G2 then G = G1.

The following Proposition shown that any linear code C over R can be uniquely

expressed as a direct sum of two Fq-linear codes.

Proposition 3. ? Let C be a R-submodule of Rn. Then C can be written as

C = vC1 ⊕ (1− v)C2. (1.11)

Proof. Let c = (c0, c1, . . . , cn) be codeword in C, where cj = aj + vbj for 1 ≤ j ≤ n. Then

(c0, c1, . . . , cn) expressed as

((b0 + a0)v + a0(1− v), (b1 + a1)v + a1(1− v), . . . , (bn + an)v + an(1− v)),
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this implies that

c = v(b0 + a1, b1 + a1, . . . , bn + an)⊕ (1− v)(a0, a1, . . . , an) ∈ vC1 ⊕ (1− v)C2.

Completing the proof.

Since Φ is preserving distance between the lee distance inRn to the Hamming distance

in Fnq . Then

dL(C) = dH(Φ(C)) = dH(C1 ⊗ C2). (1.12)

One gets dL = dH = min{dH(C1), dH(C2)}. This result it follows from the next proposi-

tion.

Proposition 4. ? Let C be a R-submodule of Rn. Let dL and dH be the minimum

Lee distance and minimum Hamming distance of C, respectively. Then dL = dH =

min{d(C1); d(C2)}, where d(C1) and d(C2) denotes the minimum Hamming distance of

C1 and C2 over Fq defined in (??), respectively.

By Equation (??) and above Proposition it is easy to verify the following Corollary.

Corollary 2. ? Let C = vC1 ⊕ (1− v)C2 be a R-submodule of Rn. Let C1 (respectively C2

) be [n, k1, d(C1)] (respectively [n, k2, d(C2)] ) linear code over Fq. Then Φ(C) is [2n, k1 +

k2,min{d(C1), d(C2)}] linear code over Fq.

Now, we are ready to introduce the generator matrix over the ring R. It follows from

the next Theorem.

Theorem 13. ? Let C be a R-linear code of length n. Then C is permutation equivalent to

an R-linear code with a generator matrix in the standard form
Ik1 A B D1 + vD2

0 vIk2 0 vC

0 0 (1− v)Ik3 (1− v)E

 (1.13)

where A, B, C, D1, D2, and E are Fq-matrices.

Proof. Similar to (?, Proposition 1.1). It analogue to obtain the generator matrix over

quaternary codes.
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A inner product between x = (a0, a1, . . . , an−1) and y = (b0, b1, . . . , bn−1) in Rn is

given by

〈x,y〉 =
n−1∑
i=0

aibi ∈ R. (1.14)

The dual code of an R-linear code C, denoted by C⊥, is also R-linear code and is defined

by

C⊥ := {y ∈ Rn | 〈x,y〉 = 0 for all x ∈ C}. (1.15)

As for Fq-codes, we say that a R-linear code C is self-orthogonal if C = C⊥ and self-dual

if C = C⊥.

Lemma 5. ? Let C be a R-linear code. Then φ(C)⊥ = φ(C⊥) and we have the commutative

diagram

C → φ(C)

↓ ↓

C⊥ → φ(C⊥)

.

Proof. Let u = (b + a, a) ∈ φ(C⊥) where (a + vb) ∈ C⊥ with a = (a1, a2, . . . , an) and

b = (b1, b2, . . . , bn) in Fnq . Suppose that

v = φ(r + vp) = (p + r, r) ∈ φ(C),

where (r + vp) ∈ C with r = (r1, r2, . . . , rn) and p = (p1, p2, . . . , pn) in Fnq . Then,

by Equation (??), we have

〈(a + vb), (r + vp)〉 = 〈a, r〉q + v [〈a,p〉q + 〈b, r〉q + 〈b,p〉q]

= 0 + v 0.

This implies that 〈a, r〉q = 0 and 〈a,p〉q + 〈b, r〉q + 〈b,p〉q = 0.

Hence, u = (b + a, a) ∈ φ(C)⊥ and φ(C⊥) ⊆ φ(C)⊥. Since φ is bijective, we have

|C⊥| = |φ(C⊥)| = q2n

|C|
=

q2n

|φ(C)|
= |φ(C)⊥|.

Thus, φ(C⊥) = φ(C)⊥.

For the proof of the following Theorem is immediately from the previous Lemma,

and by Equation (??)
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Theorem 14. ? Let C be a R-linear code of length n. Then Φ(C⊥) = C⊥1 ⊗C⊥2 . Moreover,

C⊥ is also uniquely expressed as

v C⊥1 ⊕ (1− v)C⊥2 (1.16)

Next, we derive the generator matrix of the dual C⊥ of a R-linear code C.

Proposition 5. ? Let C be a Fq + vFq-linear code of length n. Then, he dual code C⊥,

under the inner product in Equation (??), has as generator the matrix H given by
− (D1 + vD2)

> + C>A> + E>B> C> E> In−k1−k2−k3

− vB> 0 vIk3 0

− (1− v)A> (1− v)Ik2 0 0

 (1.17)

where A, B, C, D1, D2, and E are Fq-matrices.

1.3.3 Cyclic codes over R = Fq + vFq

Now, we present a description of R-cyclic codes. Also, we give some definitions and

results to define the most important class of linear codes. A subset C of Rn is said to be

an R-cyclic code of length n if two conditions are satisfied:

1. C is an R-submodule of Rn.

2. (cn−1, c0, . . . , cn−2) ∈ C, for any codeword (c0, c1, . . . , cn−1) ∈ C.

For the proof of the following theorems are introduced and generalized in ??.

Theorem 15. ? Let C = vC1 ⊕ (1− v) be a linear code of length n over R then C is cyclic

code of length n over R if and only if C1 and C2 are cyclic codes of length n over Fq.

Proof. Similar to (?, Theorem 4.1). Here, we extends proof from F2 + vF2 to R.

The following results classify all cyclic codes over R.

Theorem 16. ? Let C = vC1 ⊕ (1− v)C2 be a cyclic code of length n over R. There exist a

unique polynomial f(X) such that C = 〈f(X)〉, where f(X) = vf1(X) + (1− v)f2(X)

Corollary 3. ? Let C = vC1⊕(1−v)C2 be a cyclic code of length n over R and f1(X), f2(X)

are the generator polynomials of C1 and C2 respectively. Then

|C| = q2n−deg(f1(X))−deg(f2(X)).
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Next, we derive the generator polynomial of the dual code C⊥ of an R-cyclic code C.

Theorem 17. ? Let C = vC1 ⊕ (1− v)C2 be a cyclic code of length n over R, then its dual

code C⊥ is also cyclic code. Moreover, we have C⊥ = vC⊥1 ⊕ (1− v)C⊥2 .

Corollary 4. ? Let C = 〈vf1(X), (1 − v)f2(X) be a cyclic code of length n over R, with

f1(X) and f2(X) as the generator polynomials of C1 and C2 respectively such that

Xn − 1 = f1(X)h1(X) and Xn − 1 = f2(X)h2(X). Then

1. C⊥ = 〈vh∗1(X), (1− v)h∗2(X)〉 and |C⊥| = qdeg(f1(X))+deg(f2(X))

2. C⊥ = 〈h(X)〉 where h(X) = vh∗1(X) + (1− v)h2(X).

The interested reader may consult ?, for more details and proofs.

Lemma 6. ? A linear cyclic code over Fq with generator polynomial f(X) is self-orthogonal

if and only if h(X)h∗(X)|(Xn − 1), where h∗(X) = Xdeg(h(X))h(X−1) is the reciprocal poly-

nomial of h(X) with h(X) = (Xn − 1)/f(X).

Theorem 18. ? Suppose C = 〈f(X)〉 is cyclic code over R, where

f(X) = vf1(X) + (1− v)f2(X), then C ⊂ C⊥ if and only if C1 ⊂ C⊥1 and C2 ⊂ C⊥2

where C1 = 〈f1(X)〉 and C2 = 〈f2(X)〉.

Corollary 5. ? Suppose C = vC1 ⊕ (1− v)C2 is a cyclic code of arbitrary length n over R

then C ⊂ C⊥, if and only if C1 ⊂ C⊥1 and C2 ⊂ C⊥2 .

Lemma 7. ? Let C1 and C2 be two linear codes if length n over Fq and

C = vC1 ⊕ (1− v)C2 = {(vc1 + (1− v)c2), c1 ∈ C1, c2 ∈ C2},

we have

C⊥ = vC⊥1 ⊕ (1− v)C⊥2 = {(vc1 + (1− v)c2), c1 ∈ C⊥1 , c2 ∈ C⊥2 },

C is self-dual if and only if C1 and C2 are self-dual.

Proposition 6. ? Let C1, C2, C
′
1 and C ′2 be four linear codes of length n over Fq.

Then

C = vC1 ⊕ (1− v)C2 = {(vc1 + (1− v)c2), c1 ∈ C1, c2 ∈ C2},

is equivalent to

C ′ = vC ′1 ⊕ (1− v)C ′2 = {(vc′1 + (1− v)c′2), c
′
1 ∈ C ′1, c′2 ∈ C ′2},

over R if and only if C1 and C2 are equivalent respectively to C ′1 and C ′2.



Chapter 2

Linear codes over F4R and their

MacWilliams identity

In this chapter, we construct error control codes over a new alphabet set, we focus

on linear codes over mixed alphabets. In particular, we study the structure of linear

codes over the ring FqR, where F4 be the field of four elements. We denote by R the

commutative ring, with 16 elements, F4 + vF4 := {a + vb | a, b ∈ F4} with v2 = v.

First, we define linear codes over the ring of mixed alphabets F4R as well as their dual

codes under a nondegenerate inner product. Next, we derive the systematic form of the

respective generator matrices of the codes and their dual codes. Finally, we establish

the MacWilliams identity for linear codes over F4R. We refer to see ???

2.1 Introduction

We recall some definitions and notations to describe our results.

Let In be the identity n × n matrix. Let 0 denote either the zero vector or the all-zero

matrix whose dimension is clear from the context. Vectors are denoted by bold lower

case letters. For example, (xn,ym) denotes (x1, x2, . . . , xn, y1, y2, . . . , ym) for

xn := (x1, x2, . . . , xn) and ym := (y1, y2, . . . , ym).

We write the finite field with four elements as F4 = {0, 1, w, w2 = 1 +w} and denote

by R the commutative ring R := F4 + vF4 := {a+ vb : a, b ∈ F4} with 16 elements where

v2 = v. It is well-known that R is a finite non-chain ring with two maximal ideals 〈v〉

and 〈v + 1〉, making each of R/〈v〉 and R/〈v + 1〉 isomorphic to F4.



29

Definition 12. Let R be any commutative ring and let θ be an automorphism of S. The

skew polynomial ring R[X, θ] is defined by

R[X, θ] =

 f(X) = a0 + a1X + a2X
2 + . . .+ anX

n|

ai ∈ R for all i = 0, 1, . . . , n

 ,

where addition of these polynomials is defined in the usual way while multiplication is

defined using the distributive law and the rule

(aX i) · (bXj) = aθi(b)X i+j

The ring R[X, θ] is not commutative even when R is. Therefore, when we talk about

divisibility, we need to specify left or right divisibility, and when we discuss ideals we

need to talk about left, right, or two-sided ideals. For example, we say that f(X) is a left

divisor of g(X) in R[X, θ] if there exists h(X) ∈ R[X, θ] such that g(X) = f(X) · h(X)

with skew multiplication of polynomials. Please note that, given a ring S, the notation

R[X, θ]/
〈
Xβ − 1

〉
does not automatically imply that a quotient ring structure is defined.

It denotes the quotient space, that is, the set of cosets of the additive group
〈
Xβ − 1

〉
.

Definition 13. Let an automorphism θ over R be defined by

θ : R 7→ R sending a+ vb 7→ a2 + (v + 1) b2. (2.1)

Restricted to F4, it interchanges w and w2 while keeping {0, 1} fixed. Note that our

θ here is equal to the composition of automorphisms ϕ ◦ θ1 in ?. If θ be an identity, then

the skew polynomial ring R[X, θ] is equal to the commutative ring R[X]. We use the

identity automorphism θ throughout the chapter.

Let α and β be nonnegative integers. A linear code C1 of length α over F4 is a subspace

of Fα4 . The number of codewords in a k0-dimensional code C1 of Fα4 is 4k0. Analogously,

a linear code C2 over R has been defined to be a submodule of Rβ. The discussion in (?,

Section 2), using the results established in (?, Sections 2 and 3), showed that if C2 is a

linear code over R, then it has 42k1+k2+k3 codewords for some nonnegative integers k1,

k2, and k3. For any element in R, we introduce a new ring homomorphism

η : R 7→ F4 sending a+ vb to a. (2.2)
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Let F4R := {(a, b) : a ∈ F4 and b ∈ R}. It is straightforward to verify that F4R is an

R-module under the multiplication

d ∗ (a, b) = (η(d)a, db) with d ∈ R and (a, b) ∈ F4R. (2.3)

Let x := (a1, a2, . . . , aα, b1, b2, ..., bβ) ∈ Fα4Rβ and d ∈ R. The multiplication extends

naturally to

d ∗ x = (η(d)a1, η(d)a2, . . . , η(d)aα, db1, db2, . . . , dbβ). (2.4)

Definition 14. A nonempty subset C of Fα4Rβ is an F4R-linear code if it is an R-submodule

of Fα4Rβ with respect to the scalar multiplication ∗ in Equation (??). An Fα4Rβ-linear code

is a generalization of a linear code over F4 when β = 0 and a linear code over a finite

non-chain ring over R when α = 0.

Two F4R-linear codes of the same length and cardinality are equivalent if one can

be obtained from the other by a composition of operations of the following types: (a)

any permutation of the first α positions, (b) any permutation of the last β positions, and

(c) multiplication of the symbols appearing in a fixed position by a nonzero scalar. An

F4R-linear code C, seen as a group, is isomorphic to Fk04 × F2k1
4 × Fk24 × Fk34 and we say

that C has type (α, β; k0, k1, k2, k3).

2.2 Generator Matrices

Obtaining a standard form of the generator matrix of a linear code is useful. It helps

in constructing or searching for codes with some desired properties. When the search

space is large, a standard form often leads to algorithmic tools with least time and or

memory complexities.

Theorem 19. Let C be a F4R-linear code of type (α, β; k0, k1, k2, k3) Then C is permutation

equivalent to an F4R-linear code with a generator matrix in the standard form

G =



Ik0 M 0 0 0 vT

0 S Ik1 A B D1 + vD2

0 0 0 vIk2 0 vC

0 0 0 0 (1 + v)Ik3 (1 + v)E


(2.5)

where M , A, B, C, D1, D2, E, S, and T are F4-matrices.
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Proof. It is well-known that any linear code over F4 is equivalent to one that has a

generator matrix of the form G1 :=
(
Ik0 M ′

)
. where M ′ is an F4 matrix. We know

from (?, Section 3) that any linear code over F4 + vF4 is equivalent to a code that has a

generator matrix of the form

G2 :=


Ik1 A′ B′ D′1 + vD′2

0 vIk2 0 vC ′

0 0 (1 + v)Ik3 (1 + v)E ′

 (2.6)

where A′, B′, C ′, D′1, D
′
2, and E ′ are F4-matrices. We can now combine the two matrices

by putting the matrix G1 on the first α coordinates and the matrix G2 on the last β

coordinates before filling up the other entries to arrive at the matrix

Ik0 M ′ M1 M2 M3 M4

P1 Q1 Ik1 A′ B′ D′1 +D′2

P2 Q2 0 vIk2 0 vC ′

P3 Q3 0 0 (1 + v)Ik3 (1 + v)E ′


where P`, Q`, and Mk are suitable F4-matrices for 1 ≤ ` ≤ 3 and 1 ≤ k ≤ 4. By applying

the necessary row and column operations to the matrix we obtain, as promised,

G =



Ik0 M 0 0 0 vT

0 S Ik1 A B D1 + vD2

0 0 0 vIk2 0 vC

0 0 0 0 (1 + v)Ik3 (1 + v)E


.

We can now repeat the analysis for the dual codes. The standard Euclidean inner

product of a = (a1, . . . , an) and b = (b1, . . . , bn) in Fn4 , denoted by 〈a,b〉4, is given, as

usual, by

〈a,b〉4 :=
n∑
j=1

ajbj ∈ F4.

Given two elements x,y ∈ Fα4 × (F4 + vF4)
β with

x := (x1, x2, . . . , xα, xα+1, xα+2, . . . , xα+β) and

y := (y1, y2, . . . , yα, yα+1, yα+2, . . . , yα+β),
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we define their inner product to be

〈x,y〉 =

[
α+β∑
j=α+1

xjyj + v

(
α∑
i=1

xiyi

)]
∈ F4 + vF4. (2.7)

It is immediate to verify that the inner product is nondegenerate. If C is a linear code

over F4R, then the dual of C, denoted by C⊥, is

C⊥ , {y ∈ Fα4Rβ | 〈x,y〉 = 0 for all x ∈ C} (2.8)

For a + vb ∈ R, the classical Gray map φ∗ : R 7→ F2
4 sends a + vb to (a + b, a).

The Lee weight of any element in R is the Hamming weight of its image under φ∗. This

map extends naturally to Rn. For any x = (x1, x2, . . . , xα) ∈ Fα4 and b = (z + vy) =

(z1 + vy1, z2 + vy2, . . . , zβ + vyβ) ∈ Rβ the Gray map over F4R is defined by

φ : Fα4Rβ 7→ Fα+2β
4 with φ(x,b) = φ(x, z + vy) = (x, z + y, z). (2.9)

The map φ is an isometry which transforms the Lee distance in Fα4Rβ to the Hamming

distance in Fα+2β
4 . For any F4R-linear code C, the code φ(C) is F4-linear. Furthermore,

since the inner product in Equation (??) is nondegenerate, we have |C| · |C⊥| = |φ(C)| ·

|φ(C)⊥| = 4α+2β.

Lemma 8. The mapping φ : Fα4Rβ 7→ Fα+2β
4 is a bijection.

Proof. It is clear that φ is one-to-one. Let (x,v1,v2) ∈ Fα+2β
4 be such that x ∈ Fα4 and

both v1 and v2 are in Fβ4 . Let y = v1 + v2, and z = v2. Then, φ(x, z + vy) = (x,v1,v2)

and, hence, the mapping φ is onto.

There are numerous occasions where the Gray image of an F4R-linear code, seen

now as an F4-linear code, has good parameters. In the next three examples, we provide

F4R-linear codes whose Gray images yield F4-linear codes with good parameters, based

on the corresponding entries in the Grassl Table ?.

Example 1. Let C be an F4R-linear code generated by

G1 =

 1 0 1 w + vw2 0 w2 + v 1 + vw

0 1 1 0 w + vw2 1 + vw w2 + v

 .
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The Gray image φ(C) is an optimal F4-linear code of length 11, dimension 2, and minimum

distance 8. Its generator matrix, as a code over F4 is

φ(G1) =

 1 0 1 1 0 w w2 w 0 w2 1

0 1 1 0 1 w2 w 0 w 1 w2

 .

Example 2. Let C be an an F4R-linear code generated by a single codeword

v =

1, 1, . . . , 1︸ ︷︷ ︸
α

| 1 + vw2, 1 + vw2, . . . , 1 + vw2︸ ︷︷ ︸
β

 .

The image under the Gray map is, therefore, an F4-linear code generated by

φ(v) =

1, 1, . . . , 1,︸ ︷︷ ︸
α

w,w, . . . , w,︸ ︷︷ ︸
β

1, 1, . . . , 1︸ ︷︷ ︸
β

 .

The latter is a maximal distance separable (MDS) code of length n = α+ 2β, dimension 1,

and minimum distance n. Its dual, under the usual Euclidean or Hermitian inner product,

is an MDS code of dimension n− 1 and minimum distance 2.

Example 3. Let C be an F4R-linear code generated by

G2 =


1 0 0 1 w2 w + vw2 0 0 w + vw2 1 + vw 1 + vw

0 1 0 w2 w2 0 w + vw2 0 1 + vw 1 + vw w + vw2

0 0 1 w2 1 0 0 w + vw2 1 + vw w + vw2 1 + vw

 .

The Gray image φ(C) is an F4-linear code of length 17, dimension 3, and minimum distance

11. As a code over F4, it is generated by

φ(G2) =


1 0 0 1 w2 1 0 0 1 w2 w2 1 0 0 1 w2 w2

0 1 0 w2 w2 0 1 0 w2 w2 1 0 1 0 w2 w2 1

0 0 1 w2 1 0 0 1 w2 1 w2 0 0 1 w2 1 w2

 .

The optimal minimum distance of an F4-linear code of length 17 and dimension 3 is 12.

Our code φ(C) here has distance one less than optimal. It corrects the same number of

errors, which is 5, as the optimal one.
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2.3 Parity-check Matrices

Lemma 9. Let C be an F4R-linear code. Then φ(C)⊥ = φ(C⊥) and we have the commutative

diagram

C → φ(C)

↓ ↓

C⊥ → φ(C⊥)

.

Proof. Let u = (x,y + z, z) ∈ φ(C⊥) where (x, z+ vy) ∈ C⊥. Suppose that φ(e, r+ vp) =

v = (e,p + r, r) ∈ φ(C) where (e, r + vp) ∈ C. Then, by Equation (??), we have

〈(x, z + vy), (e, r + vp)〉 = v〈x, e〉4 + 〈z, r〉4 + v〈z,p〉4 + v〈y, r〉4 + v〈y,p〉4

= v [〈x, e〉4 + 〈z,p〉4 + 〈y, r〉4 + 〈y,p〉4] + 〈z, r〉4 = 0 + v 0.

This implies that 〈x, e〉4 + 〈z,p〉4 + 〈y, r〉4 + 〈y,p〉4 = 0 and 〈z, r〉4 = 0. It is now clear

that

〈u,v〉4 = 〈x, e〉4 + 〈y + z,p + r〉4 + 〈z, r〉4 =

〈x, e〉4 + 〈y,p〉4 + 〈y, r〉4 + 〈z,p〉4 + 〈z, r〉4 + 〈z, r〉4 = 0.

Hence, u = (x,y + z, z) ∈ φ(C)⊥ and φ(C⊥) ⊆ φ(C)⊥. Since φ is bijective, we have

|C⊥| = |φ(C⊥)| = 4α+2β

|C|
=

4α+2β

|φ(C)|
= |φ(C)⊥|.

Thus, φ(C⊥) = φ(C)⊥.

Example 4. Let C be the code in Example ??. We have that φ(C⊥) is an F4-linear code of

length 5 and dimension 4 with generator matrix

1 0 0 0 0

0 1 0 w 0

0 0 1 0 0

0 0 0 0 1


.

There are 44 codewords in φ(C⊥) = φ(C)⊥.

We now derive the generator matrix of the dual code C⊥ of a linear code C of a given

type.
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Theorem 20. Let C be an F4R-linear code of type (α, β; k0, k1, k2, k3). Then, the dual code

C⊥, under the inner product in Equation (??), has as generator the matrix H given by

M> Iα−k0 − vS> 0 0 0

T> 0 − (D1 + vD2)
> + C>A> + E>B> C> E> Iβ−k1−k2−k3

0 0 − vB> 0 vIk3 0

0 0 − (1 + v)A> (1 + v)Ik2 0 0


.

(2.10)

Proof. Let C ′ be an F4R-linear code generated by H given in Equation (??). It is clear

that C ′ ⊆ C⊥ since HG> = 0.

Let c = (a1, a2, . . . , aα, b1, b2, . . . , bβ) ∈ C⊥. After adding some linear combination of

the first β−k1−k2−k3 rows of the matrix H in Equation (??) to c we obtain a codeword

of C⊥ of the form

c′ = (0, . . . , 0, c1, . . . , ck1 , ck1+1, . . . , ck1+k2 , ck1+k2+1, . . . , ck1+k2+k3 , 0, . . . , 0).

Since c′ is orthogonal to the last k3 rows of the matrix G in Equation (??), the entries

ck1+k2+j must be either 0 or v for all 1 ≤ j ≤ k3.

Next, we add some linear combination of the middle k3 rows of H to c′ to obtain a

codeword c′′ ∈ C⊥ of the form c′′ = (0, . . . , 0, c1, . . . , ck1 , ck1+1, . . . , ck1+k2 , 0, . . . , 0). Since

c′′ is orthogonal to the middle k2 rows of G, the entries ck1+k2+j must be either 0 or 1+v

for all 1 ≤ j ≤ k3. After adding some linear combination of the last k2 rows of H to

c′′, we get to a codeword c′′′ ∈ C⊥ that has the form c′′′ = (0, . . . , 0, c1, . . . , ck1 , 0, . . . , 0).

Since c′′′ is orthogonal to the middle k1 rows of G, we infer c1 = . . . = ck1 = 0, which

means 0 ∈ C ′. Thus, c = (a1, c2, . . . , aα, b1, c2, . . . , bβ) ∈ C ′.

To illustrate the process explained above, we present two examples. Example ??

exhibits the steps taken to express the respective generator and parity check matrices

of a given code in the standard form. Example ?? present the Gray image φ(C) of an

F4R-linear code C.
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Example 5. Let C be the type (3, 5; 1, 2, 1, 0) linear code over F3
4 ×R5 generated by

GC :=



1 w2 w2 0 1 0 wv 0

1 1 w2 1 0 w vw2 vw

1 0 1 1 1 w 0 vw2

1 0 1 1 1 v + w 0 vw


.

Now, applying elementary row operations to the above generator matrix, we obtain the

standard form

G =



1 w 1 0 0 0 v v

0 w2 w 1 0 w vw vw2

0 1 w 0 1 0 vw2 v

0 0 0 0 0 v 0 v


.

The code C has |C| = 41 × 42×2 × 41 = 4096 codewords.

The parity-check matrix H of C, in the standard form, is

H =



w 1 0 vw2 v 0 0 0

1 0 1 vw vw 0 0 0

1 0 0 vw vw2 0 1 0

1 0 0 w + vw2 v v 0 1

0 0 0 (1 + v)w 0 1 + v 0 0


.

Example 6. Let C be the linear code over F5
4 ×R6 of type (5, 6; 2, 3, 1, 1) with

GC :=



w2 1 w 1 0 w + vw 0 0 v w + vw w + vw

0 w2 0 w 1 v 0 1 0 v v

w 0 w 0 0 w2 + v 1 0 1 v 1 + v

0 1 0 w2 w vw2 1 w 1 vw2 vw2

1 1 1 w w2 w + vw2 w w 1 vw2 w + vw2

w2 1 w 1 0 w + vw2 1 + v 0 0 w2 + vw v

w 0 w2 w2 w2 vw w2 + v w 1 + v w2 + vw2 w



.
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Now, applying elementary row and column operations to the above generator matrix, we

obtain the standard form

G =



1 0 w 1 0 0 0 0 0 0 v

0 1 0 w 1 0 0 0 0 0 v

0 0 w 0 0 1 0 0 1 1 1 + v

0 0 0 w2 w 0 1 0 1 0 vw2

0 0 1 w w2 0 0 1 1 w w + vw2

0 0 0 0 0 0 0 0 v 0 vw

0 0 0 0 0 0 0 0 0 1 + v (1 + v)w



.

The code C has |C| = 42 × 42×3 × 41 × 41 = 49 codewords.

The parity-check matrix H of C, in the standard form, is

H =



w 0 1 0 0 vw 0 v 0 0 0

1 w 0 1 0 0 vw2 vw 0 0 0

0 1 0 0 1 0 vw vw2 0 0 0

1 1 0 0 0 1 + v w + vw2 w2 + vw2 w w 1

0 0 0 0 0 v 0 vw 0 v 0

0 0 0 0 0 1 + v 1 + v 1 + v 1 + v 0 0


.

2.4 MacWilliams identity over F4R

Let x = (x1, x2, . . . , xα, xα+1, xα+2, . . . , xα+β) = (xα,xβ) ∈ Fα4Rβ and recall that the

Lee weight of a+ vb ∈ F4R, denoted by wL(a+ vb), is given by wH(a+ b, a). Hence, the

weight of x is defined to be wt(x) := wH(xα) + wL(xβ). We consider F4 as an extension

of degree 2 over F2 with basis {1, w}, where w is a primitive element of F4 such that

w3 = 1. We write any b ∈ F4 as b := b0 + b1w, with b0, b1 ∈ F2, and define the map

τ : F4 7→ F2 to send b→ τ(b) = b1.

Definition 15. The map χ : R 7→ C∗ that sends χ(a+ vb)→ (−1)τ(b) for all a+ vb ∈ R is

a nontrivial character of R.

The next lemma follows immediately from how the map χ is defined.
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Lemma 10. Let χ be the nontrivial character defined on R in Definition ??. Then the

following properties hold.

1. For all x, y ∈ R, we have χ(x+ y) = χ(x) · χ(y).

2. For any fixed y ∈ R, we have
∑
x∈R

χ(xy)

Lemma 11. Let C be an F4R-linear code. Let x := (xα,xβ) and y := (yα,yβ) be elements

in Fα4Rβ. Then ∑
x∈C

χ(〈x,y〉) =

0 if y /∈ C⊥,

|C| if y ∈ C⊥.
(2.11)

Proof. If y ∈ C⊥, then 〈x,y〉 = 0 for any x ∈ C. This implies χ(〈x,y〉) = χ(0) = 1.

Hence, ∑
x∈C

χ(〈x,y〉) =
∑
x∈C

1 = |C|.

Now, let y /∈ C⊥. Then 〈x,y〉 6= 0 for all x ∈ C. Since
α∑
i=1

xiyi ∈ F4, we write

χ(〈x,y〉) = χ

( α+β∑
j=α+1

xjyj

)
χ

(
v

( α∑
i=1

xiyi

))

=

[
α+β∏
j=α+1

χ(xjyj)

]
(−1)

τ


α∑
i=1

xiyi


. (2.12)

Summing up over all elements x ∈ C, one arrives at

∑
x∈C

χ(〈x,y〉) =
∑
x∈C

(
(−1)

τ


α∑
i=1

xiyi


·
α+β∏
j=α+1

χ(xjyj)

)

=
∑

xα∈Fα4

(−1)

τ


α∑
i=1

xiyi


·
∑

xβ∈Rβ

α+β∏
j=α+1

χ(xjyj)

=
∑

xα∈Fα4

(−1)

τ


α∑
i=1

xiyi

 α+β∏
j=α+1

∑
xj∈R

χ(xjyj)︸ ︷︷ ︸
=0

=
∑
x∈C

(−1)

τ


α∑
i=1

xiyi


· 0 = 0.
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Lemma 12. For any fixed b ∈ R, we have∑
a∈R

χ(ab) X2−wt(a) Y wt(a) = (X + 3Y )2−wt(b) (X − Y )wt(b).

Proof. We partition the set R \ {0} into

A := {v, wv, w2v, v + 1, wv + w, w2v + w2} and

B := {1, w, w2, wv + 1, w2v + 1, v + w, w2v + w, v + w2, wv + w2}.

By the definition of the Lee weight over R, we have wL(a) ∈ {0, 1, 2} for any a in R. If

b = 0, then wL(0) = 0 and χ(0) = 1. Hence,∑
a∈R

χ(ab) X2−wL(a) Y wL(a) = X2 + 9Y 2 + 6XY = (X + 3Y )2.

Next, for any b ∈ A, we have wL(b) = 1 and χ(ab) = ±1. Hence,∑
a∈R

χ(ab) X2−wL(a) Y wL(a) = X2 + 2XY − 3Y 2 = (X + 3Y )(X − Y ).

Finally, for any b ∈ B, we have wL(b) = 2 and χ(ab) = ±1. Hence,∑
a∈R

χ(ab) X2−wL(a) Y wL(a) = X2 − 2XY + Y 2 = (X − Y )2.

Thus,

∑
a∈R

χ(ab) X2−wL(a) Y wL(a) =


(X + 3Y )2 if b = 0

(X + 3Y )(X − Y ) if b ∈ A

(X − Y )2 if b ∈ B

= (X + 3Y )2−wt(b)(X − Y )wt(b).

(2.13)

Theorem 21. Let z ∈ Fα4Rβ and N := α + 2β. Let χ be the character of R given in

Definition ??. Then∑
l∈Fα4Rβ

χ(〈l, z〉)XN−wt(l)Y wt(l) = (X + 3Y )N−wt(z)(X − Y )wt(z).
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Proof. We can rewrite ∑
l∈Fα4Rβ

χ(〈l, z〉)XN−wt(l)Y wt(l)

as ∑
lα∈Fα4

∑
lβ∈Rβ

χ(〈lα, zα〉)Xα−wH(lα)Y wH(lα)χ(〈lβ, zβ〉)X2β−wL(lβ)Y wL(lβ)

=

(
α∏
i=1

∑
li∈F4

χ(lizi)X
1−wH(li)Y wH(li)

)(
β∏
i=1

∑
li∈R

χ(lizi)X
2−wL(li)Y wL(li)

)

=

(
α∏
i=1

(X + 3Y )1−wH(zi)(X − Y )wH(zi)

)(
β∏
i=1

(X + 3Y )2−wL(zi)(X − Y )wL(zi)

)
= (X + 3Y )N−wt(z)(X − Y )wt(z).

The following Lemma gives the Discrete Fourier Transform (DFT) formula for our

setup, which will be useful in the proof of the MacWilliams identity.

Lemma 13. Let C be a linear code over F4R and C⊥ be its dual code. Let the weight

enumerator of the codeword u ∈ Fα4Rβ be f(u) := XN−wt(u)Y wt(u). Let

f̂(z) :=
∑

u∈Fα4Rβ
χ(〈u, z〉)f(u).

Then ∑
u∈C⊥

f(u) =
1

|C|
∑
z∈C

f̂(z).

Proof. Notice that∑
z∈C

f̂(z) =
∑
z∈C

∑
u∈Fα4Rβ

χ(〈u, z〉)f(u)

=
∑
z∈C

∑
u∈C⊥

χ(〈u, z〉)f(u) +
∑
z∈C

∑
u/∈C⊥

χ(〈u, z〉)f(u)

=
∑
u∈C⊥

f(u)
∑
z∈C

χ(〈u, z〉) +
∑
u/∈C⊥

f(u)
∑
z∈C

χ(〈u, z〉).

By Lemma ??, we obtain
∑
u∈C⊥

f(u) =
1

|C|
∑
z∈C

f̂(z).

We are now finally ready to establish the MacWilliams identity.
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Theorem 22. Let C be an F4R code. The relation between the weight enumerators of C

and that of its dual is given by the identity

WC⊥(X, Y ) =
1

|C|
WC(X + 3Y,X − Y ).

Proof. We apply Lemma (??) with

f(u) = XN−wt(u)Y wt(u) and f̂(z) =
∑

u∈Fα4Rβ
χ(〈u, z〉)XN−wt(u)Y wt(u).

Let us rewrite
∑
u∈C⊥

f(u) =
1

|C|
∑
z∈C

f̂(z) as

∑
u∈C⊥

XN−wt(u)Y wt(u) =
1

|C|
∑
z∈C

 ∑
u∈Fα4Rβ

χ(〈u, z〉)XN−wt(u)Y wt(u)

 .

Applying Theorem ??, one obtains∑
u∈C⊥

XN−wt(u)Y wt(u) =
1

|C|
∑
z∈C

(X + 3Y )N−wt(z)(X − Y )wt(z).

Thus,

WC⊥(X, Y ) =
1

|C|
WC(X + 3Y,X − Y ).

Example 7. Let C be the linear code over F4R of type (1, 1; 1, 0, 1, 0) with generator matrix

GC :=
(

1 v
)

. The code C has |C| = 16 codewords. Its dual code has |C⊥| = 4 codewords.

The codewords of C and their respective weights are as follow.

z ∈ C wt(z) z ∈ C wt(z) z ∈ C wt(z) z ∈ C wt(z)

(0 | 0) 0 (0 | v) 1 (0 | vw) 1 (0 | vw2) 1

(1 | 0) 1 (1 | v) 2 (1 | vw) 2 (1 | vw2) 2

(w | 0) 1 (w | v) 2 (w | vw) 2 (w | vw2) 2

(w2 | 0) 1 (w2 | v) 2 (w2 | vw) 2 (w2 | vw2) 2

The weight distribution of C is WC(X, Y ) = X3 + 6X2Y + 9XY 2. By Theorem ??, the

weight distribution of C⊥ is WC⊥(X, Y ) = X3 + 3X2Y .

The presented results are publish in International Journal. See ?.



Chapter 3

Skew cyclic codes F4R

Recent topics in the studies of error correcting codes are additive codes over mixed

alphabets on one hand and codes using skew polynomial rings on the other. In this

chapter, we generalize different ways of building linear codes. We present our study on

skew cyclic codes over the ring F4R, resulting in the identification of their generators.

We have shown that, under some simple conditions on their length, they are equivalent

to cyclic or 2-quasi-cyclic codes over the same ring. We supplied several ways of obtain-

ing F4-linear codes with good parameters as images of F4R-skew cyclic codes under the

Gray mapping. Finally, Applications of these codes to DNA computing are included in

our treatment. We refer to see ?, ?, ? and ?.

3.1 Introduction

Let A ⊕ B = {a + b | a ∈ A, b ∈ B} and A ⊗ B = {(a, b) | a ∈ A, b ∈ B} as defined

in ?. An F4-linear code of length n is a subspace of Fn4 . A subset C of Rn is a linear code

over R if C is an R-submodule. Given a linear code C over R, let

C1 := {x + y ∈ Fn4 | (x + y)v + x(v + 1) ∈ C for some x,y ∈ Fn4} and

C2 := {x ∈ Fn4 | (x + y)v + x(v + 1) ∈ C for some y ∈ Fn4}.

One can quickly verify that C1 and C2 are linear codes over F4. In fact, any linear

code C over R can be expressed as C = vC1 ⊕ (v + 1)C2. Let r = a + vb ∈ R and

c = (c1, c2, . . . , cn) ∈ C, i.e., cj = aj + vbj with aj, bj ∈ F4 for 1 ≤ j ≤ n.
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The j-th entry of rc is

(a+ vb)(aj + vbj) = ((a+ b)v + a(v + 1))(aj + vbj)

= aaj︸︷︷︸
x

+v(abj + baj + bbj︸ ︷︷ ︸
y

) = (x+ y)v + x(v + 1).

Hence, rc can be written in terms of C1 and C2 with

x = a(a1, a2, . . . , an) and y = (a+ b)(b1, b2, . . . , bn) + b(a1, a2, . . . , an).

We recall the definition of automorphim θ.

Definition 16. Let an automorphism θ over R be defined by

θ : R 7→ R sending a+ vb 7→ a2 + (v + 1) b2. (3.1)

it is clear that |〈θ〉| = 2 i.e. for all c in R, θ(c) = c. A subset C of Rn is said to be an

R-skew cyclic code of length n if two conditions are satisfied.

1. C is an R-submodule of Rn.

2. If c = (c0, c1, ..., cn−1) ∈ C then the skew cyclic shift of c over R, denoted by

Tθ(c) := (θ(cn−1), θ(c0), ..., θ(cn−2)), is also in C.

It is often convenient to associate a vector a = (a0, a1, . . . , an−1) with a polynomial

a(X) := a0 +a1X+ . . .+an−1X
n−1 in an indeterminate X. This allows for constructions

of codes using results from the algebra of polynomial rings.

The next two theorems can be inferred by a slight modification on the corresponding

theorems in ?, with q restricted to 4. The respective proof is therefore omitted for brevity.

Theorem 23. (From (?, Theorem 3)) Let C = vC1 ⊕ (v + 1)C2 be an R-linear code. Then

C is an R-skew cyclic code if and only if C1 and C2 are skew cyclic codes over F4.

Theorem 24. (From (?, Theorem 5)) Let C = vC1 ⊕ (v + 1)C2 be an R-skew cyclic code

of length n. Let g1(X) and g2(X) be the respective generator polynomials of C1 and C2 as

F4-skew cyclic codes. Then C = 〈vg1(X) + (v + 1)g2(X)〉.

For any element in R, we introduce a new ring homomorphism

η : R 7→ F4 sending a+ vb to a. (3.2)
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Let F4R := {(a, b) | a ∈ F4 and b ∈ R}. It is straightforward to verify that F4R is an

R-module under the multiplication

d ∗ (a, b) = (η(d)a, db) with d ∈ R and (a, b) ∈ F4R. (3.3)

This extends naturally to Fα4Rβ. Let x = (a0, a1, ..., aα−1, b0, b1, ..., bβ−1) ∈ Fα4Rβ, for α

and β ∈ N, and d ∈ R. Then

d ∗ x = (η(d)a0, η(d)a1, ..., η(d)aα−1, db0, db1, ..., dbβ−1). (3.4)

Definition 17. A nonempty subset C of Fα4Rβ is called an F4R-linear code if it is an R-

submodule of Fα4Rβ with respect to the scalar multiplication in Equation (??).

A nondegenerate inner product between x = (a0, a1, . . . , aα−1, b0, b1, . . . , bβ−1) and

y = (d0, d1, . . . , dα−1, e0, e1, ..., eβ−1) in Fα4Rβ is given by

〈x,y〉 = v
α−1∑
i=0

aidi +

β−1∑
j=0

bjej ∈ R. (3.5)

Note that if α = 0, then the inner product is well-defined for elements x,y ∈ Rβ. The

dual code of an F4R-linear code C, denoted by C⊥, is also F4R-linear and is defined in

the usual way as

C⊥ := {y ∈ Fα4Rβ | 〈x,y〉 = 0 for all x ∈ C}.

Let

a(X) = a0 + a1X + . . .+ aα−1X
α−1 ∈ F4[X]/〈Xα − 1〉 and

b(X) = b0 + b1X + . . .+ bβ−1X
β−1 ∈ R[X, θ]/〈Xβ − 1〉.

Then any codeword c = (a0, a1, ..., aα−1, b0, b1, ..., bβ−1) ∈ Fα4Rβ can be identified with a

module element consisting of two polynomials such that

c(X) = (a(X), b(X)). (3.6)

This identification gives a one-to-one correspondence between Fα4Rβ and

Rα,β := F4[X]/〈Xα − 1〉 ×R[X, θ]/〈Xβ − 1〉. (3.7)

The product of r(X) = r0 + r1X + . . .+ rtX
t ∈ R[X, θ] and (a(X), b(X)) ∈ Rα,β is

r(X) ∗ (a(X), b(X)) = (η(r(X))a(X), r(X)b(X)), (3.8)
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where η(r(X)) = η(r0) + η(r1)X + . . . + η(rt)X
t ∈ F4[X]. Here, η(r(X))a(X) is the

usual polynomial multiplication in F4[X]/〈Xα − 1〉 while r(X)b(X) is the polynomial

multiplication in R[X, θ]/〈Xβ − 1〉 where X(a+ vb) = (a2 + (v + 1)b2)X.

Theorem 25. Rα,β is a left R[X, θ]-module with respect to ∗ in Equation (??).

Proof. Verifying that the required properties are satisfied over F4[X]/〈Xα − 1〉 is easy

since we do not have to deal with skewness. Verifying over R[X, θ]/〈Xβ − 1〉 is routine,

albeit tedious. It suffices to use the fact that θ is a homomorphism with θ−1 = θ.

We define skew cyclic codes to be left R[X, θ]-submodule of

Rα,β := F4[X]/〈Xα − 1〉 ×R[X, θ]/〈Xβ − 1〉.

This definition implies that the results are applied for any β.

3.2 Generator Polynomials of F4R-Skew Cyclic Codes

This section begins with a formal definition of an F4R-skew cyclic code and, then,

proposes a method to determine a generator polynomial of any F4R-skew cyclic code C

in Rα,β. We use a general notion of equivalence to say that two codes are equivalent if

one can be obtained from the other by a combination of the following operations: (a)

some composition of a permutation of the first α positions, a permutation of the last β

positions, (b) multiplication of the scalars appearing in a chosen position by a nonzero

scalar, and (c) applying a ring (or field) automorphism to elements in a chosen position.

Definition 18. An F4R-linear code C of length n = α + β is said to be F4R-skew cyclic if,

for any codeword c = (a0, a1, . . . , aα−1, b0, b1, . . . , bβ−1) ∈ C, its skew cyclic shift

Tθ(c) := (aα−1, a0, . . . , aα−2, θ(bβ−1), θ(b0), . . . , θ(bβ−2)) is also in C.

Theorem 26. Let C be an F4R-skew cyclic code of length n = α+ β such that β is an even

integer. Then C⊥ is also an F4R-skew cyclic code of the same length.

Proof. It suffices to show that, for any x = (a0, a1, . . . , aα−1, b0, b1, . . . , bβ−1) ∈ C⊥, we

have Tθ(x) ∈ C⊥. Let y = (d0, d1, . . . , dα−1, e0, e1, . . . , eβ−1) be any codeword in C. Then

we write 〈Tθ(x),y〉 as

〈(aα−1, a0, . . . , aα−2, θ(bβ−1), θ(b0), . . . , θ(bβ−2)), (d0, d1, . . . , dα−1, e0, e1, . . . , eβ−1)〉

= v(aα−1d0 + a0d1 + . . .+ aα−2dα−1) + (θ(bβ−1)e0 + θ(b0)e1 + . . .+ θ(bβ−2)eβ−1).
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Hence, one only needs to show that

aα−1d0 + a0d1 + . . .+ aα−2dα−1 = 0 and θ(bβ−1)e0 + θ(b0)e1 + . . .+ θ(bβ−2)eβ−1 = 0.

Now, let γ := lcm(α, β). Then γ is an even integer since β is an even integer. Since

C is F4R-skew cyclic, for any y ∈ C we have T γθ (y) = y and T γ−1θ (y) ∈ C. Hence,

〈x, T γ−1θ (y)〉 = 0. Since T γ−1θ (y) = (d1, . . . , dα−1, d0, θ(e1), . . . , θ(eβ−1), θ(e0)), we then

obtain

v
α−1∑
j=0

aj d(j+1) (mod α) +

β−1∑
j=0

bj θ
(
e(j+1) (mod β)

)
= 0.

This implies

0 = aα−1d0 + a0d1 + a1d2 + . . .+ aα−2dα−1 and

0 = bβ−1θ(e0) + b0θ(e1) + b1θ(e2) + . . .+ bβ−2θ(eβ−1).

Applying θ to both sides of the last equation yields

θ(0) = θ(bβ−1)e0 + θ(b0)e1 + θ(b1)e2 + . . .+ θ(bβ−2)eβ−1 = 0,

completing the proof.

Theorem 27. A code C is F4R-skew cyclic if and only if C is a left R[X, θ]-submodule of

Rα,β under the multiplication ∗.

Proof. Let c(X) = (a(X), b(X)) be any codeword of an F4R-skew cyclic code C. Hence,

(a0, a1, . . . , aα−1, b0, b1, . . . , bβ−1) and all of it’s Tθ-skew cyclic shifts are in C. We asso-

ciate, for each j ∈ N, the polynomial

Xj ∗ c(X) = (aα−j + aα−j+1X + . . .+ aα−j−1X
α−1,

θj(bβ−j) + θj(bβ−j+1)X + . . .+ θj(bβ−j−1)X
β−1)

with the vector

(aα−j, aα−j+1, . . . , aα−j−1, θ
j(bβ−j), θ

j(bβ−j+1), . . . , θ
j(bβ−j−1)).

The indices of the first block (of length α) are taken modulo α and those of the second

block (of length β) are taken modulo β. By the F4R-linearity of C, we have

r(X) ∗ c(X) ∈ C for any r(X) ∈ R[X, θ]. Thus, C is a left R[X, θ]-submodule of Rα,β.
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Conversely, let C be a left R[X, θ]-submodule of the left R[X, θ]-module Rα,β. Then,

for any c(X) ∈ C, we have Xj ∗ c(X) ∈ C for any j ∈ N. Thus, C is indeed an F4R-skew

cyclic code.

Let C be an F4R-skew cyclic code. Let c(X) = (a(X), b(X)) be an element in C.

Let `(X) be an element in F4[X]/〈Xα − 1〉. We use 0 to denote either the zero vector

(0, 0, . . . , 0) or the zero polynomial. Let

I := {b(X) ∈ R[X, θ]/〈Xβ − 1〉 | (`(X), b(X)) ∈ C, ∃`(X) ∈ F4[X]/ 〈Xα − 1〉} and

J := {a(X) ∈ F4[X]/〈Xα − 1〉 | (a(X),0) ∈ C}.

The following results establish useful properties of the sets I and J

Lemma 14. J is an ideal in F4[X]/ 〈Xα − 1〉 generated by a divisor of Xα − 1.

Proof. If a1(X) and a2(X) are in J , then (a1(X),0) and (a2(X),0) are in C by definition.

Hence, (a1(X),0) + (a2(X),0) = (a1(X) +a2(X),0) ∈ C, ensuring that a1(X) +a2(X) ∈

J . Let s(X) ∈ F4[X]/ 〈Xα − 1〉 and a(X) ∈ J . Then (a(X),0) is in C. Because C is a

left R[X, θ]-module, we have

s(X) ∗ (a(X),0) = (s(X)a(X),0) ∈ C =⇒ s(X)a(X) modulo (Xα − 1) ∈ J.

Thus, J is an ideal in F4[X]/ 〈Xα − 1〉 generated by a divisor f(X) of Xα − 1.

Lemma 15. I is a principally generated left R[X, θ]-submodule of R[X, θ]/〈Xβ − 1〉.

Proof. Let b1(X) and b2(X) be elements in I. Then there exist polynomials `1(X) and

`2(X) in F4[X]/〈Xα − 1〉 such that (`1(X), b1(X)), (`2(X), b2(X)) ∈ C. Hence,

(`1(X), b1(X)) + (`2(X), b2(X)) = (`1(X) + `2(X), b1(X) + b2(X)) ∈ C,

implying b1(X) + b2(X) ∈ I. Let r(X) ∈ R[X, θ]/〈Xβ − 1〉 and (`(X), b(X)) ∈ C. Since

C is a left R[X, θ]-submodule of Rα, β, we have

r(X) ∗ (`(X), b(X)) = (η(r(X))`(X) modulo (Xα − 1), r(X)b(X) modulo (Xβ − 1))

in C, making r(X)b(X) modulo (Xβ−1) ∈ I. Thus, I is a left submodule inR[X, θ]/〈Xβ−

1〉 and, by Theorem ??, I = 〈g(X)〉 where

g(X) := vg1(X) + (v + 1)g2(X). (3.9)

Our proof is now complete.
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The following result classifies all F4R-skew cyclic codes.

Theorem 28. Let g(X) be as defined in Equation (??). Let C be an F4R-skew cyclic code.

Then C is generated as a left submodule of Rα,β by (f(X),0) and (`(X), g(X)), where `(X)

is an element in F4[X]/〈Xα − 1〉 and f(X) divides Xα − 1.

Proof. Let c = (c1, c2) ∈ C with c1 ∈ Fα4 and c2 ∈ Rβ. Then c2(X) ∈ I and we

write c2(X) = q(X) g(X) for some q(X) ∈ R[X, θ]/〈Xβ − 1〉. There exists `(X) ∈

F4[X]/〈Xα − 1〉 such that (`(X), g(X)) ∈ C, since g(X) ∈ I. We have

c = (c1, c2) = (c1(X),0) + (0, q(X)g(X))

= (c1(X),0) + (η(q(X))`(X), q(X)g(X)) + (η(q(X))`(X),0)

= (c1(X),0) + q(X) ∗ ((`(X), g(X)) + (`(X),0)) .

Hence, (η(q(X))`(X) + c1(X),0) ∈ C, making η(q(X))`(X) + c1(X) ∈ J . By Lemma ??,

there exists p(X) ∈ J satisfying η(q(X))`(X) + c1(X) = p(X)f(X). Thus, c(X) =

q(X) ∗ (`(X), g(X)) + (p(X)f(X),0).

Lemma 16. Let C be an F4R-skew cyclic code. Then, without loss of generality, we can

assume deg(`(X)) < deg(f(X)), where f(X) is the divisor of Xα − 1 as in Theorem ??.

Proof. Suppose that deg(`(X))− deg(f(X)) = k ≥ 0. Consider the code D generated by

{(f(X),0), (`(X), g(X))+sXk ∗ (f(X),0)} = {(f(X),0), (`1(X), g(X))}, where `1(X) =

`(X) + sXkf(X) for some s ∈ F4. Hence, D ⊆ C. On the other hand, (`(X), g(X)) =

(`(X), g(X)) + sXk ∗ (f(X),0)− sXk ∗ (f(X),0). Hence, C ⊆ D, making C = D. Notice

here that deg(`1(X)) < deg(`(X)). We repeat the same process on `1(X) until we obtain

deg(`(X)) < deg(f(X)).

Theorem 29. An F4R-skew cyclic code is equivalent to an F4R-cyclic code if both α and β

are odd integers.

Proof. Let C be an F4R-skew cyclic code and γ := lcm(α, β). Then gcd(γ, 2) = 1 since γ is

odd. Then there exist integers k and j such that γk+2j = 1. Hence, 2j = 1−γk = 1+γt,

for some t > 0 where t ≡ −k (mod γ). As in Equation (??), let c(X) = (a(X), b(X)) ∈



49

C. Then

X2j ∗ c(X) = X2j ∗

(
α−1∑
i=0

aiX
i,

β−1∑
i=0

biX
i

)
=

(
α−1∑
i=0

aiX
i+2j,

β−1∑
i=0

θ2j(bi)X
i+2j

)

=

(
α−1∑
i=0

aiX
i+1+γt,

β−1∑
i=0

θ2j(bi)X
i+1+γt

)

=

(
α−2∑
i=0

aiX
i+1+γt + aα−1X

α+γt,

β−2∑
i=0

biX
i+1+γt + bβ−1X

β+γt

)

=

(
α−2∑
i=0

aiX
i+1 + aα−1,

β−2∑
i=0

biX
i+1 + bβ−1

)
∈ C.

The second to the last equation is due to θ2(r) = r for all r ∈ R, while the last equation

follows because Xα = Xβ = Xγ = 1. This shows that X2j ∗ c(X) is the cyclic shift of

c(X) over F4R. Thus, C is cyclic.

Theorem 30. An F4R-skew cyclic code is equivalent to an F4R-quasi-cyclic code of index 2

if both α and β are even integers.

Proof. Let C be an F4R-skew cyclic code, α = 2N , and β = 2M for some N,M ∈ N.

Then γ = lcm(α, β) is an even integer with gcd(γ, 2) = 2. For any

c = (a0,0, a0,1, . . . , aN−1,0, aN−1,1 , b0,0, b0,1, . . . , bM−1,0, bM−1,1) ∈ C

there exist integers k ≥ 0 and j such that 2j = 2 + kγ. Consider

Tθ2+kγ (a0,0, a0,1, . . . , aN−1,0, aN−1,1, b0,0, b0,1, . . . , bM−1,0, bM−1,1) =

Tθkγ (aN−1,0, aN−1,1, . . . , aN−2,0, aN−2,1, bM−1,0, bM−1,1, . . . , bM−2,0, bM−2,1) =

(aN−1,0, aN−1,1, . . . , aN−2,0, aN−2,1, bM−1,0, bM−1,1, . . . , bM−2,0, bM−2,1) ∈ C,

since Tθkγ (c) = c for any c ∈ Fα4Rβ. Thus, C is equivalent to an F4R-quasi cyclic code of

length n = α + β and index 2.

3.3 The Gray Mapping

The classical Gray mapping φ∗ : R 7→ F2
4 is defined by φ∗(a+ vb) = (a+ b, a) for any

a+vb ∈ R. The Lee weight of any element inR is the Hamming weight of its image under
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φ∗. This map extends naturally to vectors in Rn. For any x = (x0, x1, . . . , xα−1) ∈ Fα4 and

y = (y0, y1, . . . , yβ−1) ∈ Rβ, the Gray map over F4R is defined by

φ : Fα4Rβ 7→ Fα+2β
4 sending (x,y) 7→ (x, φ∗(y)).

The map φ is an isometry which transforms the Lee distance in Fα4Rβ to the Hamming

distance in Fα+2β
4 . For any F4R-linear code C, the code φ(C) is F4-linear. Furthermore,

we have

wt(x,y) = wtH(x) + wtL(y) (3.10)

where wtH(x) is the Hamming weight of x and wtL(y) is the Lee weight of y.

Theorem 31. Let C be a self-orthogonal F4R-linear code under the inner product defined

in Equation (??). Then φ(C) is a Euclidean self-orthogonal code over F4.

Proof. It suffices to show that the Gray images of codewords are Euclidean orthogonal

whenever the codewords are orthogonal. Let C be a self-orthogonal F4R-linear code of

length α + β. Let v = (a,b + v c),w = (d,u + v s) ∈ Fα4 × Rβ be codewords in C with

a,d ∈ Fα4 and b, c,u, s ∈ Fβ4 . Then, by Equation (??),

〈v,w〉 = v(a · d) + b · u + v(b · s + c · u + c · s) = 0 + v0 ∈ R.

Hence, b · u = 0 and a · d + b · s + c · u + c · s = 0 . Since φ(v) = (a,b + c,b) and

φ(w) = (d,u + s,u), one gets

φ(v) · φ(w) = a · d + b · u + b · s + c · u + c · s + b · u = 0.

Therefore, the code φ(C) is Euclidean self-orthogonal.

Theorem 32. Let C be an F4R-skew cyclic code of length n = α + β. Then,

φ(C) = C0⊗C1⊗C2, where C0 is a cyclic code of length α in F4[X]/〈Xα− 1〉 and both C1

and C2 are skew cyclic codes of length β in R[X, θ]/
〈
Xβ − 1

〉
. Moreover, |φ(C)| =

2∏
i=0

|Ci|.

Proof. From {x = (a0, a1, . . . , aα−1, b0 + vc0, b1 + vc1, . . . , bβ−1 + vcβ−1) : x ∈ C}, we

construct the codes

C0 := {(a0, a1, . . . , aα−1)}, C1 := {(b0 + c0, b1 + c1, . . . , bβ−1 + cβ−1)},

and C2 := {(b0, b1, . . . , bβ−1)}.
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A codeword u := (a0, a1, . . . , aα−1) ∈ C0 corresponds to a codeword

x = (a0, a1, . . . , aα−1, b0 + vc0, b1 + vc1, . . . , bβ−1 + vcβ−1) ∈ C.

Since C is an F4R-skew cyclic code, we know that Tθ(x) is given by

(aα−1, a0, a1, . . . , aα−2, θ(bβ−1 + vcβ−1), θ(b0 + vc0), . . . , θ(bβ−2 + vcβ−2)) ∈ C.

Hence, (aα−1, a0, a1, . . . , aα−2) ∈ C0. This implies that C0 is a cyclic code of length α in

F4[X]/〈Xα − 1〉.

The proof that both C1 and C2 are skew cyclic codes of length β in R[X]/〈Xβ − 1〉

follows the same line of argument. Thus, φ(C) = C0⊗C1⊗C2 and |φ(C)| =
∏2

i=0|Ci|.

Lemma 17. Let C = 〈(f(X),0), (0, g(X))〉 be an F4R-skew cyclic code with `(X) := 0.

Then C = C1 ⊗ C2 where C1 is a skew cyclic code over F4 and C2 is a skew cyclic code over

R.

Proof. Note that c = (c1, c2) ∈ C if and only if c1 = q1f(X) and c2 = q2g(X) if and only

if c1 ∈ C1 = (f(X)) and c2 ∈ C2 = (g(X)) if and only if C = C1⊗C2 where C1 = (f(X))

and c2 ∈ C2 = (g(X)).

Lemma 18. Let C = C1 ⊗ C2 where C1 is an F4-skew cyclic Euclidean self-orthogonal

code and C2 is an R-skew cyclic self-orthogonal code over R. Then C is a self-orthogonal

F4R-skew cyclic code.

Proof. Suppose C1 ⊆ C⊥1 and C2 ⊆ C⊥2 . Let c = (c1, c2) ∈ C and u = (c3, c4) ∈ C. Then

c1, c3 ∈ C1 = (f(X)) and c2, c4 ∈ C2 = (g(X)). This implies that c1 · c3 = 0 ∈ F4 and

〈c2, c4〉 = 0 ∈ R. Hence,

〈c,u〉 = v(c1 · c3) + 〈c2, c4〉 = v · 0 + 0 = 0.

Therefore, C ⊆ C⊥, i.e., the F4R-skew cyclic code C is self-orthogonal.

Note that the converse does not hold. In fact, C⊥ 6= C⊥1 ⊗ C⊥2 in general. For an

example, consider the following C := C1 ⊗ C2 ∈ F6
4R

3. Let C1 be the F4-skew cyclic

codes with parameters [6, 3, 4]4 generated by w + w2X + w2X2 + X3. This codes is

not self-dual although the dual, under the usual Euclidean inner product over F4, has
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the same parameters [6, 3, 4]4. The standard generator and parity check matrices are,

respectively,

GC1 =


1 0 0 w2 w w

0 1 0 w w2 w

0 0 1 w w w2

 and HC1 =


1 0 0 w w2 w2

0 1 0 w2 w w2

0 0 1 w2 w2 w

 .

For C2 we use the R-skew cyclic code generated by X + (w + v). As an R-code, its

standard generator and parity check matrices are, respectively,

GC2 =

1 0 w2 + v

0 1 w + v

 and HC2 =
(
w2 + v w + v 1

)
.

Notice that x = (1, 0, 0, w2, w, w, w2v, v, wv) is a codeword in C⊥1 ⊗C⊥2 and y = (w,w2, w2, 1, 0, 0, w+

v, v, wv) is a codeword in C, but x /∈ C⊥, since

〈x,y〉 = v
5∑
i=0

xiyi +
2∑
j=0

xjyj = v 6= 0.

3.4 F4-Codes with Good Parameters from F4R-Skew Cyclic Codes

This section highlights several ways of obtaining F4-linear codes with good parame-

ters from F4R-skew cyclic codes.

First, we consider the case of α = 0. This yields skew cyclic codes over R. We start

by finding a divisor gβ(X) of Xβ−1 in the skew polynomial ring R[X, θ]. Then the skew

cyclic code Cβ over R has a generator matrix

G =


g(X)

Xg(X)
...

Xk−1g(X)

 =


g

Tθ(g)
...

T k−1θ (g)
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where k = β − deg(g(X)) is the dimension of Cβ. Its Gray image is an F4-linear code of

length 2β and dimension 2k with a generator matrix

φ(G) =



φ(g)

φ(Tθ(g))
...

φ(T k−1θ (g))

−−−−−−

φ(vg)

φ(Tθ(vg))
...

φ(T k−1θ (vg))



=


Gup

−−−

Glo

 . (3.11)

Note that Gup and Glo, individually, generate linear codes over F4 of length 2β. There

are some optimal codes that can be obtained in this way.

Example 8. For β = 6, the polynomial g(X) = X3 + w2X2 + w2X + w divides Xβ − 1

in R[X, θ]. The matrix Gup, obtained from g(X), generates a [12, 3, 8]4 quasi-cyclic code,

which is optimal according to the Grassl table ?. Moreover, checking the online database ?,

we see that it is a new code among the class of quasi-cyclic codes. Table ?? includes a few

more examples of optimal F4 codes of length 2β.

TABLE 3.1

Examples of Optimal F4-Linear Codes from Gup

No. Parameters g(X) ∈ R[X, θ] Remark

1 [6, 2, 4]4 X + (v + w)

2 [8, 2, 6]4 X2 + wX + w New as a QC code

3 [10, 2, 8]4 X3 + (v + w)X2 + (v + w)X + 1

4 [10, 3, 6]4 X2 + (v + w2)X + 1

5 [12, 3, 8]4 X3 + w2X2 + w2X + w New as a QC code

A number of high-rate optimal linear codes over F4 from skew cyclic codes over R

(that is, α = 0) can be constructed from the full matrix φ(G) in Equation (??). Table ??

provides a representative subset of such codes, each of length 2β.
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TABLE 3.2

Examples of Optimal F4-Linear Codes from φ(G)

No. Parameter g(X) ∈ R[X, θ] No. Parameter g(X) ∈ R[X, θ]

1 [8, 6, 2]4 X + w2 5 [16, 14, 2]4 X + w2

2 [10, 8, 2]4 X + 1 6 [18, 16, 2]4 X + v + w2

3 [12, 10, 2]4 X + w 7 [20, 18, 2]4 X + w2

4 [14, 12, 2]4 X + 1 8 [30, 28, 2]4 X + v + w2

Finally, for α 6= 0 and β 6= 0, to maximize the minimum distance of the image of an

F4R skew cyclic code, one can consider codes with generators of the form (gα(X), gβ(X))

where gα(X) divides Xα − 1 over F4 and gβ(X) divides Xβ − 1 in R[X, θ] such that

α − deg gα(X) = 2(β − deg gβ(X)). This ensures that the dimension of the cyclic code

over F4 generated by gα(X) is equal to the dimension of the Gray (F4)-image of the

skew cyclic code over R generated by gβ(X). A generator matrix of the Gray image is

of the form (
Ggα |φ(G)

)
where Ggα is the circulant matrix obtained from gα(X), i.e., the standard generator of

the cyclic code generated by gα(X), and φ(G) is as in Equation (??). Moreover, the

ranks of these two matrices are the same.

The main advantage of this construction is to enable us to find codes with min-

imum distances much higher than what we would have gotten from the direct sum

construction in Theorem ??. The codes in Table ?? have minimum distances that are

within 2 to 4 units of the minimum distances of the comparable best-known linear

codes in ?. We present the polynomials in a compact form by listing the coefficients

in the decreasing order of exponents. In Entry 1, for example, [1ww2w2w2] stands for

X4 +wX3 +w2X2 +w2X +w2. For brevity, since a cyclic code can also be defined by its

check polynomial h(X) := (Xn−1)/g(X), we give the check polynomial hα(X), instead

of gα(X), whenever deg(hα(X)) < deg(gα(X)).

We have thus shown that there are several possible ways to construct good quater-

nary codes via skew cyclic codes over F4R.
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TABLE 3.3

Examples of F4-Linear Codes with Good Parameters

No. α β hα gβ Parameters

1 10 5 [1ww1] [1(v + w)(v + w)1] [20, 4, 9]4

2 15 3 [1ww2w2w2] [1(v + w2)] [21, 4, 12]4

3 17 3 [11w11] [1(v + w)] [23, 4, 14]4

4 15 5 [1ww2w2w2] [1(v + w)(v + w)1] [25, 4, 14]4

5 30 3 [1ww2w2w2] [1(v + w)] [36, 4, 22]4

6 34 3 [11w11] [11] [40, 4, 26]4

7 45 3 [1ww2w2w2] [1(v + w)] [51, 4, 32]4

8 51 3 [11w11] [1(v + w2)] [57, 4, 38]4

9 63 3 [10w21w2] [1(v + w)] [69, 4, 49]4

3.5 DNA Skew Cyclic Code over F4R

The encoding and decoding systems to store or transfer information or data by mim-

icking DNA sequences are known collectively as DNA codes. The strands, i.e., DNA

strings, are preferred to be short to make the synthesis easy and cheap. They must,

however, satisfy numerous constraints to be useful for applications. The two most com-

mon applications are as basic tools for biomolecular computation and as biomolecular

barcoding-tagging system to identify and manipulate individual molecules in complex

libraries.

Numerous approaches to DNA codes have been extensively investigated. A recent

addition to several surveys that have appeared in the literature is the work of Lim-

bachiya et alin ?. Tools from algebraic coding theory, both from finite fields as well as

rings, have been fruitfully used since the inception. A relatively early work by Marathe

et alin ? discussed important design criteria and bounds derived from error-correcting

codes. We continue on this line of studies by constructing F4R-DNA skew cyclic codes.

The Watson-Crick complement of a strand is the strand obtained by replacing each A

by T and vice versa, and each G by C and vice versa. One writes A = T, T = A, C = G,

and G = C. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be distinct codewords in
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a DNA code D. The reverse of x is xrev = (xn, xn−1, . . . , x1). The complement of x is

xc = (x1, x2, . . . , xn). Hence, xcrev = (xn, xn−1, . . . , x1) is the reverse complement of x.

The process in which a strand and its complement bound to form a double-helix is

known as hybridization. Constraints on the codewords in a DNA code are imposed to

avoid it. Let D be a DNA code of fixed length n, cardinality M , and minimum distance

d. Then the constraints on the Hamming distances

wtH(x,y) ≥ d and wtH(xc,yrev) ≥ d for all x,y ∈ D (3.12)

are imposed to prevent hybridization between any two strands as well as between a

strand and the reverse of any other strand. A reverse-complement DNA code D has pa-

rameters (n,M, d)4 that satisfies Equation (??).

Abualrub et alstudied F4-DNA codes of odd lengths in ?, using the bijection between

the set of DNA alphabets {A, T, C, G} and F4 := {0, 1, w, w2}, in that respective ordering.

They also established that any F4-cyclic code with generator polynomial f(X) is reverse-

complement if and only if f(X) ∈ F4[X] is a self-reciprocal polynomial, i.e., f(X) =

Xdeg(f(X)) · f(X−1), which is not divisible by X − 1 in (?, Theorem 11).

We now extend their bijection to a bijection between the elements of R and the 16

DNA codons in {A, C, G, T}2. Let a := a1 + vb1 ∈ R, with a1, b1 ∈ F4. The complement a

of a is given by

a := a+ v = a1 + v(b1 + 1). (3.13)

The next lemma follows immediately from the definition.

Lemma 19. For all a, b ∈ R, we have

a+ b = a+ b+ v, (v + 1)a = (v + 1)a+ v, and va = va.

The bijection that we use here can be explicitly given as a list.

a ∈ R Base pairs a ∈ R Base pairs a ∈ R Base pairs a ∈ R Base pairs

0 AA v TT 1 + vw2 CG 1 + vw GC

1 TA 1 + v AT w2 + vw2 AG w2 + vw TC

w CA w + v GT vw2 GG vw CC

w2 GA w2 + v CT w + vw2 TG w + vw AC

Definition 19. An R-linear code C of length β is called DNA-skew cyclic if
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1. The code C is R-skew cyclic of length β.

2. For any codeword x ∈ C, x 6= xcrev with xcrev ∈ C.

We adopt the following definition of reciprocal polynomials.

Definition 20. Let f(X) =
α∑
i=0

aiX
i be a polynomial in R[X, θ]. The reciprocal polynomial

of f(X) is the polynomial f ?(X) given by

f ?(X) := (f(X))? = Xα · f(X−1) =
α∑
i=0

θα(ai)X
α−i =

α∑
i=0

θα(aα−i)X
i. (3.14)

If f(X) = f ?(X), then f(X) is skew self-reciprocal.

Lemma 20. Let f(X), g(X) ∈ R[X, θ], with α = deg(f(X)) ≥ deg(g(X)) = β. Then the

following assertions hold.

1. The reciprocal of f(X) · g(X) is given by

(f(X) · g(X))? =

f
?(X) · g?(X) if β is even,

Θ(f ?(X)) · g?(X) if β is odd.
(3.15)

2. (f(X) + g(X))? = f ?(X) +Xα−β · g?(X).

Proof. Let f(X) =
α∑
i=0

aiX
i and g(X) =

β∑
j=0

bjX
j be polynomials in R[X, θ] with α ≥ β.

Then,

f(X) · g(X) =
α∑
i=0

β∑
j=0

aiθ
i(bj)X

i+j.

To prove the first assertion, we use Equation (??) to obtain

(f(X) · g(X))? =
α∑
i=0

β∑
j=0

θα+β(ai) θ
α+β−i(bj)X

α+β−i−j

=
α∑
i=0

β∑
j=0

θα+β(aα−i) θ
β+i(bβ−j)X

i+j. (3.16)

On the other hand, applying Equation (??) on f(X) and g(X), we get

f ?(X) · g?(X) =

(
α∑
i=0

θα(aα−i)X
i

)(
β∑
j=0

θβ(bβ−j)X
j

)

=
α∑
i=0

β∑
j=0

θα(aα−i) θ
β+i(bβ−j)X

i+j. (3.17)
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Since θ has order 2, the expression in Equations (??) and (??) are equal when β is even.

When β is odd, we can write the expression in Equation (??) as

α∑
i=0

β∑
j=0

θα+1(aα−i) θ
β+i(bβ−j)X

i+j = Θ(f ?(X)) · g?(X).

To prove the second assertion, we use Equation (??) to write

(f(X) + g(X))? =

β∑
j=0

θα(aj + bj)X
α−j +

α∑
i=β

θα(ai)X
α−i =

α∑
i=0

θα(aα−i)X
i +

β∑
j=0

θα(bβ−j)X
j = f ?(X) +Xα−β · g?(X).

Example 9. Given f(X) = X + 1 and g(X) = X + v in R[X, θ], we have

(f(X) · g(X))? = vX2 + vX + 1 = Θ(f ?(X)) · g?(X).

A code is reversible complement if ccrev ∈ C for any c ∈ C. The next theorem

characterizes reversible complement R-skew cyclic codes.

Theorem 33. Let g1(X) and g2(X) divide Xβ − 1 in F4[X]. Let C = 〈g(X)〉 be R-skew

cyclic of odd length β with g(X) = vg1(X)+(v+1)g2(X). Then C is reversible complement

if and only if g(X) is skew self-reciprocal and v(Xβ − 1)/(X − 1) ∈ C.

Proof. Let g(X) = vg1(X) + (v + 1)g2(X) and C = 〈g(X)〉 be an R-skew cyclic code

of odd length β. Suppose that C is reversible complement. Since 0 ∈ C, we have(
0, 0, . . . , 0

)
= (v, v, . . . , v) = v(Xβ − 1)/(X − 1) ∈ C. Let

g1(X) = g0 + g1X + . . .+ gt−1X
t−1 +X t and

g2(X) = h0 + h1X + . . .+ hk−1X
k−1 +Xk,

where t ≤ k. Then

g(X) = vg1(X) + (v + 1)g2(X)

= (vg0 + (v + 1)h0) + (vg1 + (v + 1)h1)X + . . .

+ (vgt−1 + (v + 1)ht−1)X
t−1 + (v + (v + 1)ht)X

t

+ (v + 1)ht+1X
t+1 + . . .+ (v + 1)hk−1X

k−1 + (v + 1)Xk.
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Since C is reversible complement, it contains

gcrev(X) = v(1 +X + . . .+Xβ−k−2) + (v + 1)Xβ−k−1 + (v + 1)hk−1X
β−k

+ . . .+ (v + 1)ht+1X
β−t−2 + (v + (v + 1)ht)X

β−t−1

+ (vgt−1 + (v + 1)ht−1)X
β−t + . . .+ (vg1 + (v + 1)h1)X

β−2

+ (vg0 + (v + 1)h0)X
β−1.

Using Lemma ?? we can write

gcrev(X) = v(1 +X + . . .+Xβ−k−2) + (v + 1)Xβ−k−1 + (v + 1)hk−1X
β−k

+ . . .+ (v + 1)ht+1X
β−t−2 + vXβ−t−1 + (v + 1)htX

β−t−1 + vXβ−t−1

+ vgt−1X
β−t + (v + 1)ht−1X

β−t + vXβ−t + . . .+ vg1X
β−2

+ (v + 1)h1X
β−2 + vxβ−2 + vg0X

β−1 + (v + 1)h0X
β−1 + vXβ−1.

Because C is R-linear, gcrev(X) + v(Xβ − 1)/(X − 1) ∈ C. This implies

gcrev(X) + v(Xβ − 1)/(X − 1) =

((v + 1) + v)Xβ−k−1 + ((v + 1)hk−1 + v)Xβ−k + . . .+

((v + 1)ht+1 + v)Xβ−t−2 + (v + v)Xβ−t−1+((v + 1)ht + v)Xβ−t−1+

(vgt−1 + v)Xβ−t + ((v + 1)ht−1 + v)Xβ−t + . . .+ (vg1 + v)Xβ−2+

((v + 1)h1 + v)Xβ−2 + (vg0 + v)Xβ−1 + ((v + 1)h0 + v)Xβ−1.

By Equation (??) we can write

(v + 1)Xβ−k−1 + (v + 1)hk−1X
β−k + . . .+ (v + 1)ht+1X

β−t−2+

vXβ−t−1 + (v + 1)htX
β−t−1 +Xβ−t + (v + 1)ht−1X

β−t + . . .+

vg1X
β−2 + (v + 1)h1X

β−2 + vg0X
β−1 + (v + 1)h0X

β−1

as

(v + 1)Xβ−k−1 + (v + 1)hk−1X
β−k + . . .+ (v + 1)ht+1X

β−t−2+

(v + (v + 1)ht)X
β−t−1 + (vgt−1 + (v + 1)ht−1)X

β−t + . . .+

(vg1 + (v + 1)h1)X
β−2 + (vg0 + (v + 1)h0)X

β−1.
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Multiplying on the left by Xk+1−β, we obtain

θk(v + 1) + θk((v + 1)hk−1)X + . . .+ θk((v + 1)ht+1)X
k−t−1

+ θk(v + (v + 1)ht)X
k−t + θk(vgt−1 + θk(v + 1)ht−1)X

k−t+1 + . . .

+ θk(vg1 + (v + 1)h1)X
k−1 + θk(vg0 + (v + 1)h0)X

k.

Hence, g?(X) ∈ C. Since C = 〈g(X)〉, there exists q(X) ∈ R[X, θ] such that g?(X) =

q(X) · g(X), which implies deg(g?(X)) = deg(g(X)) and q(X) = 1. Thus, g?(X) = g(X),

as required.

Conversely, let C = 〈g(X)〉 be anR-skew cyclic code of length β generated by g(X) =

vg1(X) + (v + 1)g2(X), where g1(X) and g2(X) are two divisors of Xβ − 1 in F4[X].

Let c(X) = c0 + c1X + . . . + ckX
k ∈ C, then there exists q(X) ∈ R[X, θ] such that

c(X) = q(X)·g(X). By Lemma ??, c?(X) = q?(X)·g?(X). Since C is skew self-reciprocal,

c?(X) = q?(X) · g(X) ∈ C for any c(X) ∈ C. We have

c?(X) = θk(ck) + θk(ck−1)X + . . .+ θk(c0)X
k ∈ C.

Hence,

v(Xβ − 1)/(X − 1) = v(1 + . . .+Xβ−1) ∈ C.

Since C is R-linear,

Xβ−k−1 · c?(X) + v(Xβ − 1)/(X − 1) =

v + . . .+ vXβ−k−2 + (c0 + v)Xβ−k−1 + . . .+ (ck + v)Xβ−1.

By Equation (??),

v + . . .+ vXβ−k−2 + c0X
β−k−1 + . . .+ cKX

β−1 = (c?(X))crev ∈ C.

This concludes the proof.

The theorem that we have just proved leads us from R-skew cyclic codes to the

definition and subsequent characterization of F4R-skew cyclic codes in the context of

DNA coding.
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Definition 21. An F4R-linear code C is DNA-skew cyclic if the following conditions hold.

1. C is an F4R-skew cyclic code, i.e., C is an R-left submodule of

F [X]/ 〈Xα − 1〉 ×R[X, θ]/
〈
Xβ − 1

〉
.

2. Any codeword c = (c1, c2) ∈ C and its reverse complement

ccrev = ((c1)
c
rev, (c2)

c
rev) ∈ C

are distinct.

The characterization of reverse complement codes over F4R can now be established.

Theorem 34. Let C = 〈(f(X),0), (0, g(X)〉 be an F4R-skew cyclic code. Note that `(X) :=

0 and C = C1 ⊗ C2, with C1 an F4-cyclic code and C2 an R-skew cyclic code. Then C is

reversible complement if and only if C1 and C2 are reversible complement over F4 and R,

respectively.

Proof. Let C be an F4R-skew cyclic code generated by (f(X),0) and (0, g(X)). Lemma ??

shows how to find C = C1⊗C2. Let c = (c1, c2) ∈ C = C1⊗C2 with c1 ∈ C1 and c2 ∈ C2.

Suppose that C1 and C2 are reversible complement over F4 and R, respectively. Then

we have (c1)
c
rev ∈ C1 and (c2)

c
rev ∈ C2. Thus,

((c1)
c
rev, (c2)

c
rev) = ccrev ∈ C1 ⊗ C2 = C.

Conversely, let c1 ∈ C1 and c2 ∈ C2. Then c = (c1, c2) ∈ C. If C is reversible

complement, then

ccrev = ((c1)
c
rev, (c2)

c
rev) ∈ C = C1 ⊗ C2.

This implies cc1,rev ∈ C1 and cc2,rev ∈ C2, as required.

The presented results are publish in International Journal. See ?.
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3.6 Conclusion

In this thesis, in chapter 2 we have presented the generator matrices of linear codes

over F4R and those of their dual codes. This is a salient step in determining the pa-

rameters of such codes. As computational tools, the matrices can be used to search

for, or otherwise rule out the existence of, codes with specified parameter sets. Future

classification effort is likely to benefit as well. Towards the end, we established the

MacWilliams identity for linear codes over F4R.

Also, in chapter 3, we have presented our study on skew cyclic codes over the ring

F4R. Their algebraic structure as left submodules of a skew-polynomial ring is inves-

tigated, resulting in the identification of their generators. We have shown that, under

some simple conditions on their length, they are equivalent to cyclic or 2-quasi-cyclic

codes over the same ring. We supplied several ways of obtaining F4-linear codes with

good parameters as images of F4R-skew cyclic codes under the Gray mapping.

Finally, In terms of practical applications, we are currently looking into DNA computing,

we have demonstrated how this setup leads naturally to DNA codes and proved a condi-

tion on the associated generator polynomial of an F4R-skew cyclic code that guarantees

the code to be reversible complement. One of the interesting questions to explore in

this topic is to find out whether the class of codes that we propose here contains codes

with better relative minimum distances or sizes than known DNA codes. Usage as DNA

codes, which are encoding and decoding systems to store or transfer information by

mimicking DNA sequences. They are commonly used in biomolecular computation and

as biomolecular barcoding system.
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