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ABSTRACT

The project falls within the general framework of harmonic analysis on Clifford
algebras. We propose more precisely to extend the famous Heisenberg uncertainty principle to
the context of Clifford algebras by applying the so-called Clifford wavelets.

In mathematical physics, Clifford analysis has been developed as an extension of the
classical harmonic analysis where concepts such as Fourier transforms and wavelets have
been extended for the case of Clifford algebras.

In the present work, our aim is to study and establish a new Heisenberg uncertainty
principle based on Clifford wavelet transform. We recall that the majority of uncertainty
principles in their different forms are based essentially on Fourier  transform and the
wavelet uncertainty principles already established in the literature did not been extended
to general Clifford algebra framework. 
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ملخص

 كليفورد. نقترح على نحو أكثر دقة توسيعجبريندرج المشروع في الإطار العام للتحليل التوافقي في 
دكليفوربمويجات  كليفورد  من خلال تطبيق ما يسمى .جبر سياق فيهايزنبيرغ لمبدأ عدم اليقين الشهير 

في الفيزياء الرياضية، تم تطوير تحليل كليفورد كامتداد للتحليل التوافقي الكلاسيكي حيث تم تمديد
 كليفوردجبرفي حالة  المويجات  فورييه وتحويلاتمفاهيم مثل 

مويجاتفي العمل الحالي, هدفنا هو دراسة وإنشاء مبدأ جديد لهايزنبيرغ لعدم اليقين يستند إلى تحويل  
كليفورد. ونذكر أن معظم مبادئ عدم اليقين في أشكالها المختلفة تقوم أساسا على تحويل فورييه، وأن مبادئ

لكليفوردعدم اليقين التي وضعت بالفعل في المؤلفات لم تمتد إلى إطار الجبر العام  .

RESUME

  Le projet s'inscrit dans le cadre général de l'analyse harmonique sur les algèbres de 
Clifford. Nous proposons plus précisément d'étendre le fameux principe d'incertitude 
d’Heisenberg au contexte des algèbres de Clifford en appliquant les ondelettes de 
Clifford.

  En physique mathématique, l'analyse de Clifford a été développée comme une extension
de l'analyse harmonique classique où des concepts tels que les transformations de Fourier
et en ondelettes ont été étendus pour le cas de Clifford algèbres. 

    Dans ce travail, notre objectif est d'étudier et d'établir un nouveau principe d'incertitude
d’Heisenberg basé sur la transformation en ondelettes de Clifford. Nous rappelons que la 
majorité des principes d'incertitude sous leurs différentes formes sont basés 
essentiellement sur la transformation de Fourier et que les principes d’incertitudes relatifs

aux ondelettes n’ont pas été etendus aux algèbres de Clifford générales. 
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Chapter 1
Introduction and Main Results

1.1 Introduction

In the present thesis, we seek to establish a new uncertainty Heisenberg principle applied to

continuous Clifford wavelet transform in the settings of the non-commutative Clifford algebras

(named after the British mathematician and philosopher William Kingdon Clifford (1845-1879).

Those Clifford algebras [43, 44] are a generalization of the real and complex numbers and also of

Sir William Rowan Hamilton’s (1805-1865) quaternions [86, 85] and Hermann Günther Grass-

mann’s (1809-1877) exterior algebra [43, 78]. These algebras incorporate inside one single struc-

ture the geometrical and algebraic properties of Euclidean space, that Clifford called them ge-

ometrical algebras. They were rediscovered when Paul Adrian Maurice Dirac (1902-1984) used

what he called γ-matrices to find a linearisation of the Klein-Gordon equation [63, 62] (those

γ-matrices are just generators of a particular Clifford algebra).

The calculus on Clifford algebra treats geometric entities depending on their dimension such as

scalars, vectors, bivectors and volume elements, etc. and also that it encompasses all dimensions

at once, as opposed to a multi-dimensional tensorial approach with tensor products of one-

dimension. The use of Clifford algebras in harmonic analysis uses the fact that holomorphic

functions in the complex plane are in the kernel Cauchy-Riemann operator which factorizes the

Laplacian. Clifford analysis (study of Clifford algebras valued functions of vector variable) (see

for instance [28]) are generalization to higher dimension of the theory of holomorphic functions
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Introduction and Main Results 2

in the complex plane, their counterpart being monogenic functions (null solutions of a first

order differential operator factorizing the multi-dimensional Laplacian). This also means that

monogenic functions are harmonic ones. More on functional analysis of Clifford algebra valued

functions can be found in [11, 15, 19, 32, 60, 64, 76, 100, 103, 119, 120, 122, 126, 160, 162, 161,

169, 171, 170, 172, 173, 177].

Mathematically and quantitatively speaking wavelet analysis of functions starts by computing

a type of transform known as wavelet transform similar to Fourier one and which consists in a

convolution product of the function with special copies of one source analysing function called

mother wavelet and which plays the role of the exponential in Fourier analysis .

The original work on wavelet analysis has been done by Morlet in [141] to study seismic

waves. He also, with Grossman, gave a mathematical study of continuous wavelet transform

(see [80]). In [139], Meyer recognized the link between harmonic analysis and Morlet’s theory

and gave a mathematical foundation to the continuous wavelet theory. The continuous-wavelet

analysis of a square integrable function f begins by a convolution with copies of a given mother

wavelet ψ translated and dilated respectively by b ∈ R and a > 0. Such a function ψ has to fulfil

an admissibility condition which states that

Aψ =

∫
R

∣∣∣ψ̂(ξ)
∣∣∣2

|ξ|
dξ < +∞,

where ψ̂ is the classical Fourier transform of ψ. More information on real wavelets can be found

in [57] and [82].

The connection between the wavelet transform and Clifford analysis was considered in [127,

45, 113, 140]. Clifford analysis/algebra has started to take place especially in signal and image

processing. In [159] a wavelet based method has been developed in the quaternion algebra leading

to quaternionic representations of face image. In [94] real and complex Fourier transforms are

extended to quaternions and Clifford algebras, motivated by applications in nuclear magnetic

resonance, electric engineering, colour image and signal processing.

The uncertainty principle also known as Heisenberg’s uncertainty principle discovered in 1927

by Heisenberg in [88] is certainly one of the most famous and important concepts of quantum

mechanics. It plays an important role in the development and understanding of quantum physics.

The physical origin of uncertainty principle is related to quantum systems and states that: the
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determination of positions by performing measurement on the system disturbs it sufficiently

to make the determination of momentum imprecise and vice-versa. It has been described by

Heisenberg as [89, Page 30]:

One can never know with perfect accuracy both of those two important factors which

determine the movement of one of the smallest particles — its position and its veloc-

ity. It is impossible to determine accurately both the position and the direction and

speed of a particle at the same instant.

The uncertainty principle has been extended to various transformations in different settings.

Using Fourier transform, the authors in [3] established a Stein-Weiss type inequality for the

Riesz type potential generated by a Riemann-Liouville operator. Pitt’s and Beckner logarith-

mic uncertainty inequalities have been also proved. The same authors investigated in [4] a

Hausdorff-Young inequality for the Fourier transform connected with Riemann-Liouville oper-

ator. Such inequality has been applied next to prove an entropy based uncertainty principle

and a Heisenberg-Pauli-Weyl inequality (See also [99]). In [145], [144], two types of uncertainty

principle such as Heisenberg-Pauli-Weyl and Beurling-Hörmander have been established for the

Fourier transform associated with the spherical mean operator in some local framework.

Using real wavelet transform in [155], continuous wavelet transform associated with the spher-

ical mean operator has been introduced yielding a Plancherel formula as well as its inversion.

Such findings have been applied next to prove an analogue of Heisenberg’s inequality for the

introduced wavelet transform (See also [153], [154]).

In [49] the continuous shearlet transform has been investigated to construct mother Shear-

let function applied next for an associated general uncertainty principle. Minimizers of such

uncertainty have been also developed by means of the new wavelets.

El-Haoui et al in [68] introduced the quaternionic offset linear canonical transform and derived

a relationship with the quaternion Fourier transform to establish next Plancherel like rules. These

findings have been applied next to prove different uncertainty principles including Heisenberg-

Weyl’s, Hardy’s, Beurling’s and logarithmic ones in the case of the new quaternionic offset linear

canonical transform. Recently El-Haoui and Fahlaoui established in [67] several uncertainty

inequalities in the real Clifford algebra Rp,q such as Hausdorf-Young inequality and qualitative
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uncertainty principles of Donoho-Stark.

In [70] expansions of signals with respect to Gabor wavelets and short time Fourier transform

have been investigated. Using Heisenberg group techniques stable iterative algorithms for signal

analysis and synthesis have been developed. These algorithms have been shown to be convergent

for a variety of norms and compatibility with the time-frequency localization of signals has been

proved.

While the Clifford geometric algebra Fourier Transform is global, the author in [92] introduced

the local Clifford geometric algebra wavelet concept using the similitude group SIM(n). As an

explicit example, the author introduced Clifford Gabor wavelets. In [93] the same author derived

a new directional uncertainty principle for quaternion valued functions by means of quaternion

Fourier transformation generalized to the case of Clifford geometric algebras.

In [91] basic concept multivector functions and their vector derivative in geometric algebra

have been introduced. Concepts of Fourier transform and Clifford and some useful properties have

been also investigated in the same framework of geometric algebras. An uncertainty principle

has been next developed for many cases of Clifford wavelets and shown to be useful for signal

processing.

In [96] a generalization of the Fourier transform in some Clifford geometric algebras has

been extended and adopted for real Clifford geometric algebra Fourier transform. This has been

applied next to to define and prove the uncertainty principle for multivector functions in the new

Clifford geometric algebras.

In [123] the quaternion ridgelet transform and curvelet transform associated to the quaternion

Fourier transform have been investigated and applied to derive an associated reconstruction

formulas, reproducing kernels and uncertainty principles.

In [134] an uncertainty principle associated with the quaternion linear canonical transform

has been proved by considering the fundamental relationship between such transform and the

quaternion Fourier transform. The new principle has been applied to derive an inverse transform

and Parseval and Plancherel formulas associated with the quaternion linear canonical transform.

(See also [128], [135] for the same authors and similar subject).

Mawardi and Hitzer proposed in [130], [132] and [131] a construction of some Clifford alge-

bra valued wavelets using the similitude groups in a special case. The new framework includes
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complex Gabor wavelets and extends them to multivectors Clifford Gabor wavelets. A new uncer-

tainty principle for the Clifford Gabor wavelet transform has been proved in the new framework.

Generalizations of these results have been conducted by the same authors in [95].

In [133] the quaternionic Fourier transform has been applied to establish an uncertainty

principle for its right-sided. Such uncertainty principle has been shown to prescribe a lower

bound on the product of the effective widths of quaternion-valued signals in the spatial and

frequency domains. Furthermore, Gaussian quaternion signals have been shown to be the only

ones minimizing the uncertainty. In the same direction in [114] the linear canonical transform

has been revisited and next generalized to quaternion-valued signals.

In [129] the continuous quaternion wavelet transform has been introduced with admissibility

condition expressed by means of the right-sided quaternion Fourier transform. An application has

been derived to establish a Heisenberg type uncertainty principle for the new extended wavelets.

Recently, Mejjaoli et al considered in [138] a continuous wavelet transform associated with

the spherical mean operator relatively to some parameter h. Donoho-Stark and Benedick-type

uncertainty principles have been developed.

Yang et al [187] the authors investigated a stronger uncertainty principles in terms of covari-

ance and absolute covariance based on Fourier transform in both directional and the spatial cases

for real para-vector-valued signals. Conditions of equality of the studied uncertainty principles

have been discussed.

Finally, Yang and Kou in [188] applied the so-called linear canonical transforms to extend

the uncertainty principle for hypercomplex signals in the linear canonical transform domains.

Minimizers have been shown to be Gaussian signals, which joins several works mentioned above.

Outline

This thesis is organized as follows :

• In chapter 2 we give a detailed review of the notion of continuous wavelet transform, the

definition of an admissible mother wavelet, its proprieties and an inversion formula and a

Plancherel-Parseval theorems.
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• In the third chapter we give an introduction to Clifford algebras and Analysis including

the different definitions of a Clifford algebra, its Z2-grading, the Pin and Spin groups,

monogenic functions and a Stokes formula and a Cauchy representation formula and some

important results and properties of the Clifford-Fourier transform (links with the classical

n-dimensional Fourier transform) and the so called Clifford-wavelet are constructed by

translation, dilation and Spin-rotations. have been investigated.

• In the last chapter, we present a review of the uncertainty principle in different settings

as for the Clifford-Fourier transform and we formulate and prove the main results given in

this thesis.

1.2 Control Theory

Optimal control theory is a branch of mathematical optimization that deals with finding a control

for a dynamical system over a period of time such that an objective function is optimized. It

has numerous applications in both science and engineering. For example, the dynamical system

might be a spacecraft with controls corresponding to rocket thrusters, and the objective might

be to reach the moon with minimum fuel expenditure. Or the dynamical system could be a

nation’s economy, with the objective to minimize unemployment; the controls in this case could

be fiscal and monetary policy. (For a review on the theory of controllability and observability

see for instance [110, 109, 107, 108]).

In [179], the authors proposed an alternative feedback control in order to solve affine control

system, with quadratic cost functional based on the combination of Haar wavelet and Generalized

Hamilton-Jacobi-Bellman equation.

In [111], the authors derived the operational matrices of integration, derivative and production

of Hermite wavelets and used a direct numerical method based on Hermite wavelet, for solving

optimal control problems.

In [156], the authors gave a numerical method for solving non-linear optimal control problems

with inequality constraints by Legendre wavelet approximations.

In his PhD thesis, the author in [79] studied the interaction between problems in control

theory for partial differential equations and inequalities of the uncertainty principle type. He
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also investigated the connection between compactness of localization operators and uncertainty

principles from an abstract harmonic analysis perspective and gave results applied to the wavelet

transform.

In [112], the authors investigated performance limitations and trade-offs in the control design

for linear time-invariant systems and showed that control specifications in time domain and in

frequency domain are always mutually exclusive determined by uncertainty relations.

For the moment, a theory of controllability and observability of Clifford algebra valued differ-

ential systems is mainly studied and applied for the special case of the algebra of quaternions H.

For example in [185, 186] and [184] the authors used quaternion valued equations to determine

the best attitude for atmospheric entry (see also [1, 104]).

1.3 Main Results

In this work we obtain anew results stating that the product of variances between Clifford-Fourier

transform denoted by f̂ and the Clifford wavelet transform Tψ [f ] (w.r.t an admissible Clifford

algebra-valued mother wavelet ψ) of a square integrable function f is lower bounded.

Theorem 1.3.1. Let ψ ∈ L2(Rn,Rn, dV (x)) be an admissible Clifford mother wavelet. Then for

f ∈ L2(Rn,Rn, dV (x)) the following inequality holds(∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds

) 1
2 ∥∥∥ξkf̂∥∥∥

2
≥ (2π)

n
2

2

√
Aψ ‖f‖22 , (1.1)

where k = 1, 2, · · · , n.

We even found an sharper result as given by the next theorem

Theorem 1.3.2. With the same hypothesis as in Theorem 1.3.1 we have

(

∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, ·, s)‖22
da

an+1
ds)

1
2

∥∥∥ξkf̂∥∥∥
2
≥
√

2n+1πnAψ
{
‖f‖22 + 2 |〈f1, f2〉|

}
where 

f1(x) = 1
Aψ

∫
Spin(n)

∫
Rn
∫
R+ ψ

a,b,s(x)∂bkTψ [f ] (a, b, s) da
an+1 dV (b)ds

f2(x) = 1
Aψ

∫
Spin(n)

∫
Rn
∫
R+ ψ

a,b,s(x)bkTψ [f ] (a, b, s) da
an+1 dV (b)ds
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These results will be detailed in Chapter 4. Moreover, we recall that they have been partially

published in the following papers [14, 13]:

• Banouh, H., Ben Mabrouk, A. and Kesri, M. Clifford-Wavelet Transform and the Un-

certainty Principle, Advances in Applied Clifford Algebras, 2019, Vol. 29, pp. 1-23.

DOI:10.1007/s00006-019-1026-4.

• Banouh, H., Ben Mabrouk. A. A Sharp Clifford-Wavelet Heisenberg-type Uncertainty

Principle, J. Math. Phys., 2020, Vol. 62, Issue 9. DOI:10.1063/5.0015989.

and presented as a talk [12] in

• Banouh, H. Uncertainty Principle Associated with the Clifford Continuous Wavelet Trans-

form, 12th International Conference on Clifford Algebras and Their Applications in Math-

ematical Physics, University of Science and Technology of China, Hefei, China, 3-7 August

2020.

We intend that this result will be extended to stronger inequalities. Some future directions are

exposed in the last chapter.
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Chapter 2
Wavelet Theory Revisited

2.1 Introduction

Wavelet analysis is a time-scale representation of signals used in physics, mathematics, and

engineering in the last few decades [47, 87, 124, 106, 183, 53, 58]. It began with the works of

Jean Morlet (a French oil engineer who was analysing geophysical data in the context of oil

exploration [77]). Grossmann, Morlet, and Paul [80, 81, 82] proved next that wavelets are simply

coherent states associated to the affine group of the real line (action of dilations and translations).

In [124], the discovery of orthonormal bases of regular wavelets has been pointed out, and even

with compact supports, as shown in [52], by changing the perspective (of course, the orthonormal

basis of the Haar wavelets was known since the beginning of the century, but these are piecewise

constant, discontinuous functions). Group theory was replaced by the multiresolution analysis

[125].

Most practical signals are non stationary and cover a wide range of frequencies. In addition

a direct correlation exists between the frequency of a given segment of the signal and the time

duration of that segment. Low-frequency pieces tend to last a long time, whereas high frequencies

occur in general for a short moment only. For example, vowels have low frequency and last for

a long period of time, whereas consonants short bursts of high frequency. Fourier transform

(Fourier 1878) gives us only informations about the frequency domain (symbolized by the variable
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ξ) but no information on time localization (the variable x). For this reason, we need a time-

frequency representations : transform the signal from a one variable function to a function of

two variables : time and frequency as the Short Fourier Transform or Gabor Transform (Denis

Gabor in [74]) and the wavelet transform.

We obtain wavelets by starting with a function ψ of the real variable x. This function is

called a mother wavelet if it is well localized and oscillating. (It resembles to a wave because it

oscillates, and it is a wavelet because it is localized). The localization condition is expressed in

the usual way by saying that the function decreases rapidly to zero as |x| −→ ∞. The second

condition suggests that ψ vibrates like a wave. Mathematically, we require that the integral of

ψ be zero and that preferably the other first N -moments of ψ also vanish.

2.2 Wavelets on R

To deal with and/or to conduct wavelet analysis of functions we usually need and start with

one source function which will be called next the mother wavelet and which plays the role of

the analysing source. Such function should satisfy several assumptions to be able to analyse

functions next.

2.2.1 Admissibility

The analysing function must be square integrable But to have the CWT well defined we add

a condition on that analysis wavelet. This condition (admissibility property) assures that the

CWT can be inverted and so we can reconstruct the signal again.

Definition 2.1. A function ψ ∈ L2(R,C, dx) is called an admissible wavelet or mother wavelet

if it satisfy the admissibility condition ([42]):

Aψ = 2π

∫
R

|ψ̂(ξ)|2

|ξ|
dξ <∞, (2.1)

where ψ̂(ξ) =
1√
2π

∫
R
e−ixξψ(x)dx stands for the classical Fourier transform of ψ.

The admissibility condition on ψ (2.1) can be reformulated as∫ ∞
0

∣∣∣ψ̂(tξ)
∣∣∣2

t
dt <∞, ∀ξ ∈ R∗. (2.2)
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Also, (2.1) means that therefore

ψ̂(0) =

∫
R
ψ(x)dx = 0.

This can be interpreted by the fact that the mother wavelet ψ is an oscillating function. This

oscillating behaviour legitimises the use of the denomination wavelet which has been used for

decades in digital signal processing and exploration geophysics (one of the first occurrences of

the word can be found in [157]). The equivalent French word "ondelette" (little wave) was used

by Morlet and Grossmann in the early 1980s in their works on oil prospecting.

In practice, we need more conditions on ψ such as a finite number N of vanishing moments,

that is, for k = 0, 1, · · · , N ∈ N, we have∫
R
xkψ(x)dx = 0 ⇐⇒

[
dkψ̂(ξ)

dξk

]
ξ=0

= 0. (2.3)

This will filter the polynomial components (at least of order ≤ N) which is usually the smoothest

part of the signal and will show only the singularities and the sharp parts. For example, if the

analysing wavelet has vanishing moment of first order, then the linear aspects of the signal will

be ignored.

2.2.2 Rapid examples of wavelets

On R, we fortunately have many examples of explicit wavelets whom construction as well as

the proofs of their admissibility is not complicated. The simplest example is known as the Haar

wavelets [84, 83] where the mother wavelet is explicitly given by

ψH(x) =


1 , 0 ≤ x < 1

2

−1 , 1
2 ≤ x < 1

0 , otherwise.

A next example is the Mexican Hat wavelet or Marr wavelet [125] obtained as the 2nd derivative

of a Gaussian function

ψMH(x) = − d2

dx2
(e−

x2

2 ) = (1− x2)e−
x2

2 .

An important example is also due to Morlet [180, 80] and is based on the mother wavelet

ψM (x) = eic0x−
x2

2 .

This wavelet is closely related to human perception, both in the processes of audition and vision.
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2.2.3 The Continuous Wavelet Transform

To analyse a function with wavelets and relatively to an analysing mother wavelet we pass

through the so-called Wavelet Transform of such a function. In wavelet theory and similarly to

Fourier one there is two different kinds of wavelet transform : the continuous wavelet transform

CWT (see for example [57] and [5]) and the discrete one denoted DWT. In the present section

we will introduce the CWT which is the main topic of our work. In fact CWT is more adapted

to the continuous or time-wise signals and the DWT is used for discrete cases such as statistical

series, images, ... etc. The CWT is used in an analysis and detection and the DWT is used

for compression and signal reconstruction. The CWT is based on the projection of a square

integrable function (a physicist would say the it is a finite energy signal) on a set of images of a

chosen function by a group of symmetries.

The CWT is based on the action of two operators : The translation operator T b defined for

b ∈ R by

T bψ(x) = ψ(x− b)

and the dilation operator Da defined for a > 0 by

Daψ(x) =
1√
a
ψ(
x

a
)

We create a whole family of admissible wavelets, known sometimes as the daughter wavelets by

translating and dilating a mother wavelet ψ

ψa,b(x) = T bDaψ(x) =
1√
a
ψ(
x− b
a

)

which may be also seen as the action of the affine group ax+ b on ψ.

The parameter a measures the compression or the scale and b is the translation or the position

parameter. If a < 1, the support of ψa,b will be smaller than that of the mother wavelet ψ and

correspond to high frequencies. By the same way, if a > 1, the support of ψa,b will be wider

than that of ψ and will correspond to the lower frequencial part of the signal. The factor 1/
√
a

ensures the conservation of the L2-norm of both ψ and ψa,b and plays the role of a normalization

constant. All these copies ψa,b have the same L2-norm as the mother wavelet ψ. Indeed,∥∥ψa,b∥∥
L2(R,C,dx)

= ‖ψ‖L2(R,C,dx) .

Furthermore, the frequency representation of a daughter wavelet ψa,b satisfies

ψ̂a,b(ξ) =
√
ae−ibξψ̂(aξ)
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which yields that all these daughter wavelets are admissible also.

Definition 2.2. Continuous Wavelet Transform (CWT) Let ψ ∈ L2(R,C, dx) be an admissible

wavelet and f ∈ L2(R,C, dx). The CWT of f at the scale a and the position b relatively to the

analysing wavelet ψ is defined by the integral transform

Tψ [f ] (a, b) =
〈
f, ψa,b

〉
=

∫
R
f(x)

[
ψa,b(x)

]c
dx.

where c stands for the complex conjugation.

Compared to the Fourier transform we notice that the CWT is a function of two variables:

time and frequency or position and scale. The kernel ψa,b plays the same role as the Fourier

mode eixξ: we project a finite-energy signal f on the space of wavelets and we calculate the

correspondence between them. But on the contrary of the Fourier analysis, the analysing func-

tion is not a single function but a whole family generated from an admissible function called

wavelet. Also, the generated functions in addition to dilation are also translated, so the analysis

is performed on all the domain of definition of the signal. In terms of the convolution product

we have

Tψ [f ] (a, b) = (f ∗ ψ̃a)(b)

where ψ̃a(x) = 1√
a
ψ(−xa ). It is interpreted as a filter with a function of zero momentum.

We may remark that if the wavelet ψ has N -vanishing moments, the CWT Tψ [f ] (a, b) of f

will have the same order of magnitude as aN+1+1/2 (See [58, Page 102]). Indeed,

Tψ[f ](a, b) =

∫
R
f(x)[ψa,b(x)]cdx

=
1√
a
{
∫
R
f(b)[ψ(

x− b
a

)]cdx+

∫
R
f ′(b)(x− b)[ψ(

x− b
a

)]cdx

+

∫
R

f ′′(b)

2
[ψ(

x− b
a

)]cdx+ · · ·+
∫
R

f (N)(b)

N !
(x− b)N [ψ(

x− b
a

)]cdx+ · · · }

We see that the N first terms are zero. Consequently, putting x = at+ b in the (N + 1)-integral

we get an approximation

|Tψ[f ]| ∼ aN+1+1/2.

From the definition of the CWT we may easily notice the following properties. Let ψ and φ be

two admissible wavelets, f, g ∈ L2(R,C, dx) and α, β ∈ C.

• Linearity rule

Tψ [αf + βg] (a, b) = αTψ [f ] (a, b) + βTψ [g] (a, b)
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• The CWT is translation-invariant in the sense that

Tψ [Tb0f ] (a, b) = Tψ [f ] (a, b− b0)

• The CWT is dilation-invariant in the sense that

Tψ [Da0f ] (a, b) =
1
√
a0
Tψ [f ] (

a

a0
,
b

a0
)

• Introducing the parity operator Pf(x) = f(−x). We have

Tψ [Pf ] (a, b) = Tψ[f ](a,−b)

• Anti-linearity

Tαψ+βφ[f ](a, b) = αcTψ[f ](a, b) + βcTφ[f ](a, b)

We may also prove that

• Tψ [f ] (a, b) =
[
Tψ [f ] ( 1

a ,
−b
a

]c
.

• TTb0ψ[f ](a, b) = Tψ[f ](a, ab0 + b).

• TDa0ψ [f ](a, b) = 1√
a0
Tψ[f ](a0a, b).

Besides as in Fourier analysis, we have also the possibility to reconstruct the analysed functions

even non periodic one with analogues of Dirichlet, Parseval and Plancherel rules by using the

CWT.

Theorem 2.2.1. Let ψ be an admissible wavelet and f, g ∈ L2(R,C, dx), then∫
R

∫ +∞

0

Tψ[f ](a, b)[Tψ[g](a, b)]c
da

a2
db = Aψ 〈f, g〉L2(R,C,dx) . (2.4)

Proof. In the frequency domain we have

Tψ [f ] (a, b) =
〈
f, ψa,b

〉
=
〈
f̂ , ψ̂a,b

〉
, by Parseval formula for Fourier transform.

=

∫
R
f̂(ξ)[

√
ae−iξbψ̂(aξ)]cdξ

=

∫
R

√
aeiξbf̂(ξ)[ψ̂(aξ)]cdξ

and so

[Tψ[g](a, b)]c =

∫
R

√
ae−iξb[ĝ(ξ)]cψ̂(aξ)dξ.
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This yields that∫
R

∫ +∞

0

Tψ[f ](a, b)[Tψ[g](a, b)]c
da

a2
db =

∫
R

∫ +∞

0

{
∫
R

√
aeiξbf̂(ξ)[ψ̂(aξ)]cdξ}

× {
∫
R

√
ae−iξb[ĝ(ξ)]cψ̂(aξ)dξ}da

a2
db (2.5)

=

∫
R

∫ +∞

0

{
∫
R

∫
R
f̂(ξ)[ĝ(ξ)]c[ψ̂(aξ)]cψ̂(aξ)dξdξ}da

a
db.

By interchanging the order of integration and putting aξ = z then (2.5) is equal to∫
R

∫ +∞

0

{
∫
R

∫
R
f̂(ξ)[ĝ(ξ)]c

[ψ̂(aξ)]cψ̂(aξ)

a
dξdξ}dadb

=

∫
R

∫ +∞

0

{
∫
R

∫
R
f̂(ξ)[ĝ(ξ)]c

[ψ̂(aξ)]cψ̂(aξ)

a
dξdξ}dadb

=

∫
R
f̂(ξ)[ĝ(ξ)]c ×

∫
R

|ψ̂(z)|2

|z|
dξ

= Aψ 〈f, g〉 .

As a consequence of the latter result we have a Plancherel formula

Corollary 2.3. Let ψ be an admissible wavelet and f ∈ L2(R,C, dx), then∫
R

∫ ∞
0

|Tψ[f ](a, b)|2 da
a2
db = Aψ ‖f‖2L2(R,C,dx) .

Also, we have an inversion formula making it possible to retrieve the analysed function from

its CWT.

Theorem 2.2.2. Let ψ be an admissible wavelet and f, g ∈ L2(R,C, dx), then

f(x) =
1

Aψ

∫
R

∫ ∞
0

Tψ[f ](a, b)ψa,b(x)
da

a2
db

almost everywhere.
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Proof. From above we have

〈f, g〉 =
1

Aψ

∫
R

∫ +∞

0

Tψ[f ](a, b)[Tψ[g](a, b)]c
da

a2
db

=
1

Aψ

∫
R

∫ +∞

0

Tψ[f ](a, b)[

∫
R
g(x)[ψa,b(x)]cdx]c

da

a2
db

=
1

Aψ

∫
R

∫ +∞

0

Tψ[f ](a, b)

∫
R
[g(x)]cψa,b(x)dx

da

a2
db

=
1

Aψ

∫
R

(

∫ +∞

0

∫
R
Tψ[f ](a, b)ψa,b(x)

da

a2
db)[g(x)]cdx

=
1

Aψ

〈∫ +∞

0

∫
R
Tψ[f ](a, b)ψa,b(•)da

a2
db, g

〉

Now, we characterize the image of L2(R,C, dx) by a given CWT and introduce thus some repro-

ducing kernels associated to the CWT. Let Hψ = L2(R+
∗ × R, dadbAψa2 ). It is a reproducing kernel

Hilbert space with kernel

Kψ(a, b; a′, b′) =
1

Aψ

〈
ψa,b, ψa

′,b′
〉

It is the solution of the integral equation

F (a′, b′) =

∫
R

∫ ∞
0

Kψ(a, b; a′, b′)F (a, b)
da

a2
db.

A function F ∈ L2(R+
∗ × R, C−1

ψ a−2dadb) is the CWT of a signal iff

F (a, b) =

∫
R

∫ ∞
0

[Kψ(a, b; a′, b′)]
c
F (a′, b′)

da

a2
db

2.3 Conclusion

In this chapter, we presented the wavelets tool used for analysing functions. We saw some

proprieties of those wavelets and proved that under certain conditions, the continuous wavelet

transform is a an invertible operator. We will use similar characteristics in the Clifford algebra

framework which will be the subject of the next chapter.
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Chapter 3
Clifford Algebra/Analysis Toolkit

3.1 Introduction

Clifford analysis may be seen as a generalization of Fourier one in signal processing as it applies

real, complex and quaternion numbers. It may be also described with the algebra of Pauli and

Dirac matrices for physical space and Minkowski space-time and thus a unifying language for

mathematics and physics [25, 163, 23].

In [101] a Clifford algebra based algorithm has been developed for segmentation of blood

vessels. In [40] some contributions for Clifford algebra based colour image processing have been

reviewed and applied to define colour alterations. Clifford algebras has been proved to be an

efficient mathematical tool to investigate the geometry of images. See also [].

In [37] two convolution products for Hypercomplex Fourier transforms are studied for the

analysis of higher dimensional signals such as colour images based on Clifford Hermite wavelets.

In [75] a sophisticated model based on Marr wavelet kernel has been developed and applied on

samples of intensity values for each pixel in an image to estimate the probability density function

of the pixel intensity. Marr wavelet has been also applied in [181] to detect and characterize two-

dimensional vortex for a synthetic flow and propeller wake.

In [30], the authors studied the historical development of quaternion and Clifford Fourier

transforms and wavelets. Basic concepts have been revisited and mathematical formulations
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has been enlightened. Hypercomplex Fourier transforms and wavelets has been revisited with

overviews on quaternion Fourier transforms, Clifford Fourier transforms, quaternion and Clifford

wavelets.

In [38], [39], the authors introduced new definition for general geometric Fourier transform

covering some Clifford cases. They showed necessary constraints to obtain linearity, scaling

and shift theorem. Applications in image/signal processing and mathematical imaging vision in

general have been discussed.

In this chapter we propose to state the most relevant results on Clifford algebras and the

theory of functions taking value in them. In the first section, we give some preliminary concepts

on Clifford algebra as their definitions, the matrix representation of Clifford algebras and the

Spin group (which will be used to describe rotations in Rn ). In the forth section, we give

a review on monogenic functions which are counterparts of the holomorphic functions on the

complex plan. In the two final sections, we present the generalizations of the classical Fourier

transform and the wavelet transform in the Clifford algebras framework.

3.2 Clifford Algebras

In the literature, there are different ways to introduce Clifford algebras. We will present in

this part some of them. The readers may be referred to the list of references provided in this

document for more details and other constructions.

3.2.1 The original definition made by Clifford

It starts from the Grassmann exterior algebra [78]
∧

Rn of the linear space Rn, which is an

associative algebra of dimension 2n. A basis for such an algebra may be defined from an or-

thonormal basis {e1, e2, · · · , en} of Rn by considering the tensor products for k = 1, 2, . . . , n and

(i1, i2, . . . , ik) ∈ {1; 2; ...;n}k a multi-index of length k ≥ 1,

ei1i2...ik = ei1 ∧ ei2 ∧ · · · ∧ eik .

and e∅ = 1 and with the extra assumption

ei ∧ ej = −ej ∧ ei for i 6= j and ei ∧ ei = 0.
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In [44] the last assumption is replaced by

eiei = e2
i = 1.

The associative 2n-dimensional algebra, defined above is the Clifford algebra Rn associated to

the euclidean space Rn. We mention also, the case where he put eiei = −1 in 1878 which is the

Clifford algebra associated with the anti-Euclidean space R0,n (see for instance [43]).

3.2.2 Riesz’s construction

In [158] another construction of Clifford algebras has been provided. Let (V,Q) be a n−dimensional

quadratic space and A an associative algebra with the following rules on addition and multipli-

cation :

x2 = Q(x)

xy + yx = 2B(x, y)

where B is the bilinear form associated to Q. If {e1, e2, · · · , en} is a basis of V then the latter

conditions become

eiej + ejei = 2B(ei, ej).

We introduce the Clifford algebra Rn over Rn as an associative algebra generated by the basis

{e1, e2, · · · , en} satisfying the rules
eiej + ejei = 0 if i 6= j

eiei = e2
i = 1 ∀1 ≤ i ≤ n.

This last construction resembles to the constructions formulated in [61] and [121].

3.2.3 Rapid Examples in low dimensions

The first and simplest example is the Clifford algebra R0,1 where the elements are written on

the form x = x01 + x1e1 where x0, x1 ∈ R and e2
1 = −1. We have in fact By making the identity

e1 = i, the imaginary unit we have the isomorphism

R0,1 ' C.

The second example is the well known quaternions algebra [86] denoted R0,2 with its elements

q = q01 + q1e1 + q2e2 + q12e12 where qi ∈ R for i = 0, 1, 2, q12 ∈ R and where e2
i = −1, and
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eiej = −ejei for i 6= j. Choosing e1 = i, e2 = j, e12 = k the elements of the canonical basis of

the Euclidean space R3 we obtain the Hamilton algebra constructed in [85] known also as the

quaternion algebra which satisfies

H ' R2,0.

3.3 Gradings of a Clifford Algebra

In the later we mainly consider the Clifford algebra Rn of the euclidean space Rn.

Any element of the Clifford algebra Rn can be written as

a =
∑
A

aAeA

where A is an arbitrary ordered multi-indices

A = ei1···ik , with 1 ≤ i1 < i2 < · · · < ik ≤ n.

For example, the Clifford algebra R3 is spanned by the family

{1, (e1, e2, e3), (e12, e23, e13), e123}

then an element a in R3 will be

a =
∑

aAeA

= a0 + (a1e1 + a2e2 + a3e3)

+ (a12e12 + a23e23 + a13e13)

+ a123e123

and the a’s are real numbers. Let k be the cardinality of A (|A| = k), we have

a =
∑
A

aAeA =

n∑
k=0

∑
k=|A|

aAeA.

The subspace Rkn = SpanR {eA| |A| = k} will be called subspace of grade k.

For example, the subspace of grade 0 is the field R whose elements are called scalars, the one

of grade 1 is the vector space Rn composed of vectors, the elements of one of grade 2 are called

bivectors and finally, the one dimensional subspace of grade n is called the set of pseudo-scalars.

We have a decomposition of Rn

Rn = R0
n ⊕ R1

n ⊕ ....⊕ Rnn
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So that

a = a∅1
scalars

+ (a1e1 + ....+ anen)
vectors

+ (a12e12 + a13e13 + ....aijeij + .....+ an−1nen−1en)
bivectors

+ · · ·+ (a123...ne123....n)
pseudo−scalar

.

We may write a =

n∑
k=0

[a]k where [a]k is the projector of a on Rkn. The operator [.]k : Rn −→ Rkn

for k = 0, 1, · · · , n satisfy for a, b ∈ Rn and λ ∈ R

[a+ b]k = [a]k + [b]k

[λa]k = λ [a]k = [a]k λ

[[a]k]
k

= [a]k

We define the complexification of Rn by Cn = C ⊗ Rn which means aA ∈ C in
∑
A aAeA ∈ Cn

or λ = a+ ib ∈ Cn with a, b ∈ Rn.

The Clifford algebra Rn is Z2−grader, which means that it is the direct sum of an even and

odd subspaces

Rn = R+
n ⊕ R−n =

⊕
k even

Rkn ⊕
⊕
k odd

Rkn

and any Clifford number a can be written as

a = [a]
+

+ [a]
−

where [a]
± ∈ R±n . These two components satisfy to the following inclusions [143]

R+
nR+

n

R−nR−n

 ⊂ R+
n and

R+
nR−n

R−nR+
n

 ⊂ R−n .

Also, as Rn is the direct sum of the even and odd subspaces and being of dimension 2n we have

dim(R+
n ) = dim(R−n ) = 2n−1.

Definition 3.1. The centre of the Clifford algebra Rn is the set of elements which commute

with all the other elements of the algebra. It will be noted by Z

Z(Rn) := {a ∈ Rn|ab = ba,∀b ∈ Rn}

We have

Z(Rn) =


R for n even

R⊕ Re123···n for n odd
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One remarkable concept in Clifford algebra is its attempt to mix between the Grassmann

exterior algebra and the Hamilton quaternion one. Let x and y be two vectors. We define the

Clifford product by

xy = x · y + x ∧ y

x · y = −
n∑
j=1

xjyj = − < x, y >Rn

x ∧ y =
∑
i<j

eiej(xiyj − xjyi)

Observing that y ∧ x = −x ∧ y we get

yx = y · x+ y ∧ x = x · y − x ∧ y.

So that

x · y =
1

2
(xy + yx) and x ∧ y =

1

2
(xy − yx).

Figure 3.1: wedge product of vectors

All this can be generalized to the product of a vector (grade 1) with a k-grade element Ak

which can be decomposed into the sum of an inner product (contraction) and an outer one

(extension)

x ·Ak = [xAk]k−1 =
1

2
(xAk − (−1)kAkx) (3.1)

and

x ∧Ak = [xAk]k+1 =
1

2
(xAk + (−1)kAkx). (3.2)

In this case the Clifford product will be

xAk = x ·Ak + x ∧Ak.

We can even expand to the Clifford product of two k−grade,Ak, and l−grade, Bl, elements (see
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[90, page 6])

Ak ·Bl = [AkBl]|k−l| with Ak ·Bl = 0 if kl = 0

and

Ak ∧Bl = [AkBl]|k+l|

On the real Clifford algebra Rn we may also define different types of involutions.

A first type is the main involution. It extends the vectorial reflection through the origin

to the whole algebra. Sometimes called grade involution, it is denoted ˜ and has following

proprieties : for λ ∈ R, x ∈ Rn we have

λ̃ = λ, x̃ = −x, ẽi = −ei and ẽA = (−1)|A|eA.

We thus obtain for all a ∈ Rn ˜̃a = a and ã = [a]
+ − [a]

−

and for all a, b ∈ Rn,

(̃ab) = ãb̃ and (̃a+ b) = ã+ b̃.

For a k−grade element Ak we have

Ãk = (−1)kAk.

The second inversion type is known as the reversion denoted by ∗. It is defined as follow

λ∗ = λ, x∗ = x, e∗j = ej , e∗A = (−1)
|A|(|A|−1)

2 eA

and for all a, b ∈ Rn,

(ab)∗ = b∗a∗, (a+ b)∗ = a∗ + b∗, a∗ = [a]
+

+ [a]
−
, a∗

∗
= a.

For a product of vectors {vi}i∈N ⊂ Rn we have

(

k∏
i=1

vi)
∗ = vkvk−1 · · · v2v1.

For a k−grade element Ak we have

Ãk = (−1)
k(k−1)

2 Ak.

Next, the Clifford conjugation is defined as the composition of the main involution and the

reversion as follows,

ã∗ = ã∗.

It corresponds to the complex and quaternion conjugation in the case of R0,1 ' C and R0,2 ' H
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respectively. The superposition will be denoted by so we have

a = ã∗ = ã∗.

So that

λ = λ, x = −x, ej = −ej , eA = (−1)
|A|(|A|+1)

2 eA

and for all a, b ∈ Rn,

(ab) = ba, (a+ b) = a+ b, a = a

For a k−grade element Ak we have

Ãk = (−1)
k(k+1)

2 Ak.

Finally, the complex Clifford conjugation is defined on the complexified Clifford algebra

C⊗ Rn. We speak here about another involution by taking the complex conjugation (noted by

c) of the Clifford conjugation. An element Λ ∈ C⊗ Rn can be written as Λ = a+ ib, a, b ∈ Rn.

The complex Clifford conjugation will be noted by † and defined by

Λ† = a− ib. (3.3)

It satisfies the properties

(ΛΘ)† = Λ†Θ† and (λΛ + θΘ)† = λcΛ† + θcΘ†

with Λ,Θ ∈ C⊗Rn and λ, θ ∈ C. To close with the operations on Clifford algebras we recall the

concept of norms on Clifford algebras. We define an inner product on Rn as

〈a, b〉 =
[
ab
]
0

= [ba]0

and so the Clifford norm |a| of a multivector a =
∑
A

aAeA ∈ Rn satisfy

|a|2 = aa = aa =
∑
A

a2
A. (3.4)

We have for a, b ∈ Rn, |a+ b| ≤ |a|+ |b| and generally |ab| 6= |a| |b|. We have instead

|ab| ≤ 2n |a| |b| .

The equality holds if at least one of them is a vector

|ax| = |a| |x| , ∀x ∈ Rn.
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3.3.1 Pin and Spin Groups

Let us now consider the two following groups, the formed by the products of invertible vectors

(known as the versor group)

Γ2
p,q := {

k∏
i=1

vi : v1, v2, · · · , vk ∈ (Rp,q)×}

and

Γ1
p,q := {b ∈ R×p,q; b̃xb−1 for all vector x ∈ Rp,q}.

We define the spinor norm, denoted N , as follows (cf. 3.4)

N : Rp,q −→ Rp,q

a 7−→ aa

Definition 3.2. We define the Pin(p, q) group as the subgroup of Γ1
p,q of elements b for which

N(b) = ±1. It can be shown that it is also the kernel of the mapping N : Γ1
p,q −→ R∗.

The same way we define Spin(p, q) as the subgroup of Pin(p, q) of product of an even number

of elements which the spinor norm equals ±1 or

Spin(p, q) = Pin(p, q) ∩ R+
p,q

= {s ∈ Rp,q; s =

2l∏
j=1

ωj with ω
2
j = ±1, 1 ≤ j ≤ 2l}. (3.5)

3.4 Clifford Analysis

Clifford analysis, in its most basic form, is a refinement of harmonic analysis in higher dimensional

Euclidean spaces. By introducing the so-called Dirac operator, researchers introduced the notion

of monogenic functions extending holomorphic ones. In this context, different concepts of real and

complex analysis have been extended to the Clifford case such as Fourier transform [19, 28, 60, 54].

3.4.1 Clifford Algebra Valued Functions

We define a multivector function as a mapping f from Rn to Rn, associating a multivector f(a)

to another multivector a. For example we have

Definition 3.3 (Exponential of a multivector). Let a ∈ Rn, we define the exponential of a (noted
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ea or exp a) as the series

ea =

∞∑
k=0

ak

k!
(3.6)

Proposition 3.4. For two commuting multivectors a and b we have

eaeb = ea+b

In the latter, we consider only functions with values on a Clifford algebra but where the

variable is a vector in Rn taken as a part of the Clifford algebra.

We put x = (x0, x) ∈ Rn+1 and where x =

n∑
i=1

eixi ∈ Rn so we can write

x = e0x0 +

n∑
i=1

eixi =

n∑
i=0

eixi

The vector space Rn can be seen as the hyper-plan {x = (x0, x) ∈ Rn+1 : x0 = 0}.

Consider functions defined on the (n+ 1)-dimensional vector space Rn+1:

f : R⊕ Rn ' Rn+1 −→ Rn( or Cn).

It may be expressed as

f(x) =
∑
A

eAfA(x), (3.7)

where fA are real-valued functions and A ⊂ {1, 2, · · · , n}. Its conjugate f is given by

f(x) =
∑
A

eAfA(x)

for a function with values in the “real” Clifford algebra Rn, and

f†(x) =
∑
A

e†AfA(x)

for a function with values in the complexified Clifford algebra Cn = C⊗ Rn.

The continuity and derivability of f is to be taken component-wise. Denote for Ω an open

domain in Rn,

C(r)(Ω,Rn) = {f : Ω −→ Rn; f =
∑
A

fAeA with fA ∈ C(r)(Ω,R)}

and

C(r)(Ω,Cn) = {f : Ω −→ Cn; f =
∑
A

fAeA with fA ∈ C(r)(Ω,C)}.

The Clifford-valued function f belongs to the Lebesgue module Lp(Ω,Rn, dV (x)) if all the com-

ponents fA ∈ Lp(Ω,R, dx), 1 ≤ p <∞, the norm 2n
∑
A

(∫
Ω

|fA|p dV (x)

)1/p

being equivalent to
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the norm

‖f‖p =

(∫
Ω

|f |pdV (x)

)1/p

where dV (x) stands for the Lebesgue measure on Rn. We say that f, g ∈ Lp(Rn,Rn, dV (x)) are

equal if the set {x ∈ Rn; f(x) 6= g(x)} is negligible.

The inner product on L2(Rn,Rn, dV (x)) is given by

〈f, g〉L2(Rn,Rn,dV (x)) =

∫
Rn
f(x)g(x)dV (x) (3.8)

and

〈f, g〉L2(Rn,Cn,dV (x)) =

∫
Rn

[f(x)]†g(x)dV (x). (3.9)

More explicitly,

〈f, g〉L2(Rn,Rn,dV (x)) =
∑
A,B

∫
Rn
fA(x)gB(x)eAeB .

We mainly use the complex Clifford conjugation (see 3.3. The inner product (3.8) satisfies the

Cauchy-Schwartz inequality∣∣< f, g >L2(Rn,Rn,dV (x))

∣∣ ≤ ‖f‖L2(Rn,Rn,dV (x)) ‖g‖L2(Rn,Rn,dV (x)) . (3.10)

3.4.1.1 Differential and derivative of a Clifford algebra-valued function

Definition 3.5 (Directional Derivative). [46, Page 29] Let f : Rn −→ Rn a multivector-valued

function of a vector variable x ∈ Rn and taking an arbitrary direction a ∈ Rn we define the

vector differential (directional derivative of f in the direction a)

a · ∇f(x) := lim
λ→0

f(x+ λa)− f(x)

λ
(3.11)

provided that the limit exists well defined for all a, where the limit is taken for scalar λ.

This is similar to the usual definition of a directional derivative but extends it to functions

that are not necessarily scalar-valued but also vector valued or multivector valued ones. We have

these proprieties

(i) (a+ b) · ∇f = a · ∇f + b · ∇f for a, b ∈ Rn.

(ii) (ta) · ∇f(x) = t(a · ∇f(x)) for t ∈ R.

(iii) a · ∇(f + g)(x) = a · ∇f(x) + a · ∇g(x).

(iv) a · ∇(fg)(x) = (a · ∇f(x))g(x) + f(x)(a · ∇g(x)).

Thesis in Mathematics Hicham BANOUH



Clifford Algebra/Analysis Toolkit 28

(v) a · ∇ [f(x)]k = [a · ∇f(x)]k .

(vi) Let τ : Rn −→ R and f = f(τ(x)) then

a · ∇f(x) = (a · ∇τ(x))
df

dτ
.

3.4.1.2 Dirac Operator and Monogenic Functions

Introduce the Dirac operator (compare with (3.5))

∂x : C(r) −→ C(r−1)

f 7−→ ∂xf =

n∑
k=1

ek
∂f

∂xk
(3.12)

and the generalized Cauchy-Riemann operator or Weyl operator as

Dx =
∂

∂x0
+ ∂x (3.13)

also known as the Fueter-Delanghe operator [72, 59]. For the sake of simplicity we denote from

now on
∂

∂xi
= ∂i

so the operators (3.12) and (3.13) become

∂x =

n∑
i=1

ei∂i and Dx = ∂0 + ∂x

and their conjugates will be

∂x =

n∑
i=1

ei∂i and Dx = ∂0 − ∂x.

They have an action from the left

∂xf(x) =
∑
i,A

eieA∂ifA(x)

and right

f∂x(x) =
∑
i,A

eAei∂ifA(x).

(see the formulas (3.2)). By the same way

Dxf = ∂0f + ∂xf and

fDx = f∂0 + f∂x.
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In the special case where f is vector-valued, then we have ∂xf = div f + curl f where the

divergence and curl of f can be computed as the scalar and bivector parts

div f = ∂x · f =
1

2
(∂xf + f∂x)

and

curl f = ∂x ∧ f =
1

2
(∂xf − f∂x).

We consider the action of the group Spin(n) on a Clifford-valued function f (see [76, Thm 3.6])

given by

s ∈ Spin(n)→ Ls : f(x)→ sf(s̄xs)s.

Definition 3.6. A partial differential operator with constant coefficients is called Spin-invariant

if it commutes with Ls.

Proposition 3.7. The Dirac operator is Spin-invariant i.e

∂xLs = Ls∂x.

Proof. We have

∂xLsf(x) =

n∑
i=1

ei∂i {sf(sxs)s}

=

n∑
i=1

eis∂i {f(sxs)} s

= s(

n∑
i=1

ei∂i {f(sxs)})s

= s∂xf(sxs)s

= Ls∂xf(x).

Remark 3.8. We remark (see [148, pp. 139]) that the Dirac operator ∂x maps even parts to odd

parts and odd parts to even parts (see the splitting in (3.3))

∂x [f(x)]
+

=
[
∂xf(x)

]−
and

∂x [f(x)]
−

=
[
∂xf(x)

]+
As such, f is monogenic if and only if ∂x [f(x)]

+
= 0 and ∂x [f(x)]

−
= 0. More generally, the
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equation

∂xf = g

where f and g are two Clifford algebra-valued functions defined on Rn, can be splitted into a

system of two equations  ∂x[f ]+ = [g]−

∂x[f ]− = [g]+

where [·]± is the projection onto even and odd sub-algebras R±n .

Definition 3.9. A function f ∈ C1(Ω,Rn) is called left-monogenic (resp. right-monogenic) on

Ω iff

Dxf = (∂x0 + ∂x)f(x0 + x) = 0, (3.14)

resp.

fDx = 0.

In the special case where the function f takes values only on the vector space Rn taken as a

component of the real Clifford algebra Rn, so it can be written as

f(x) =

n∑
i=0

eifi(x)

where, by analogy with (3.7), the (n + 1) functions fi are real valued. In this case, the mono-

genicity condition (3.14) becomes ∑
i,j

eiej∂ifj(x) = 0.

Or as f is vector-valued ∂xf = ∂x · f + ∂x ∧ f = 0 so we have
∂x · f = −

n∑
j=1

∂xjfj = −div(f)

∂x ∧ f =
∑
i<j

eij
(
∂xifj − ∂xjfi

)
= rot(f)

known as the Riesz system which describes an irrotational flow [175]. One can show that

∂2
x = −∆n and ∆m+1 = DxDx,

where ∆n and ∆n+1 are the Laplacian in Rn and Rn+1 respectively. This means that a monogenic

function is also a harmonic one and hence infinitely differentiable; even more, it is an multivector-

valued analytic function in Ω ⊂ Rn and so each of its components fA is real-analytic in its domain.

Now, we will try to write the previous operators in terms of spherical coordinates. For that, we

recall that we can write x = rη with η =
∑n
i=0 eiηi and ηi = xi

r for i = 0, 1, · · · , n.More explicitly
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(see [16, Page 65]) 

x0

x1

x2

...

xi
...

xn−1

xn



= r



cos θ0

sin θ0 cos θ1

sin θ0 sin θ1 cos θ2

...∏i−1
j=1 sin θj cos θi

...∏n−1
j=1 sin θj cos θn∏n

j=1 sin θj


where 0 < θ1, . . . , θn−1 < π and 0 < θn < 2π. Using the spherical coordinates, the Dirac operator

and its conjugate can be written (see [28, Page 49]) as

∂x = η(∂r +
1

r
∂η) and ∂x = η(∂r +

1

r
∂η)

where ∂η spherical Dirac operator acts on the sphere Sn. We have [28, Page 49]

∂η =

n∑
i=1

∂η

∂θi
· ∂θi∣∣∣∂ηi∂θi

∣∣∣2 and ∂η = x ∧ ∂x.

Putting

Γη = η∂η and Γ?η = η∂η (3.15)

called the spherical Dirac operators, we also define their adjoints as

Γ̃η = ∂ηη and Γ̃?η = ∂ηη.

Consequently,

∂x = η

(
∂r +

1

r
Γη

)
= (∂r +

1

r
Γ̃?η)η

and

∂x =

(
∂r +

1

r
Γ̃η

)
η

Observing that

∆n = ∂x∂x = ∂x∂x (3.16)

and that ηη = ηη = 1 we obtain

∆n = ∂2
r +

1

r
(Γη + Γ̃η)∂r +

1

r
(Γ̃ηΓη − Γη).

By the same way we get

∆n = ∂2
r +

1

r
(Γ?η + Γ̃?η)∂r +

1

r
(Γ̃?ηΓ?η − Γ?η).
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This means that

∂2
r +

1

r
(Γη + Γ̃η)∂r +

1

r
(Γ̃ηΓη − Γη) = ∂2

r +
1

r
(Γ?η + Γ̃?η)∂r +

1

r
(Γ̃?ηΓ?η − Γ?η)

Next as we have ([28, Page 50])

Γη + Γ̃η = Γ?η + Γ̃?η = n

then (3.16) becomes

∆n = ∂2
r +

n

r
∂r + ∆η

where ∆η is the Laplace-Beltrami operator. Denoting next I the identity applications we get

∆η =
(

(n− 1) I − Γ?η

)
Γ?η.

Putting E =

n∑
i=0

xi∂i called the Euler operator, we obtain E = r∂r. As a result, we get the

following identities

• xDx = E − x ∧ ∂x + (x0∂x − x∂0) ,

• xDx = E + Γη,

• x∂x + ∂xx = −2E − n,

• Γη = −
∑
i<j eij(xi∂j − xj∂i).

Γη is called the angular Dirac operator and Lij = xi∂j − xj∂i for i, j = 1, 2, · · · , n are the

angular momentum operators.

3.4.2 Generating Monogenic Functions

We know that a harmonic function is monogenic so we seek the inverse : given a harmonic

function f : Ω ⊂ Rn −→ R, is there a Clifford algebra-valued function g, defined on the same

domain Ω such that the restriction of g to its real values is f or

f(x) = [g(x)]0 , ∀x ∈ Ω ?

Definition 3.10. [17, Def. 1] An open subset Ω of Rn is said to be star-shaped with re-

spect to some x0 ∈ Ω, if for all x in the interior of Ω, the subset Ω contains the segment

{(1− t)x0 + tx; 0 ≤ t < 1}.
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Proposition 3.11. [28, Page 48] If Ω is open and star-shaped with respect to the origin and

u : Ω→ R is harmonic in Ω then the function

g(x) = f(x)e0 +

∫ 1

0

tn−1∂xf(tx)xdt−
[∫ 1

0

tn−1∂xf(tx)dt

]
0

is left monogenic in Ω and its scalar part is precisely the function f .

As for the previous result, we seek a monogenic function starting with an analytic one. For

this, we use the Cauchy-Kowalevski extension (CK-extension). The idea behind the CK-extension

is to characterize solutions of a system of partial differential equations by the restriction of some

of their derivatives to a sub-manifold of co-dimension one.

Let f be an analytic function on an open set U of Rn, then we can always monogenically

extend it to an open set Ω of Rn+1 where U = Rn∩Ω (known as the Cauchy-Kowalevski extension

(see for instance the original works [41, 116] and more recently [29, 31, 172, 41][28, Page 111]

and [61, Page 151] ), then the solution F of the system ∂x0F (x0, x) = −∂xF (x0, x) in Rm+1

F (0, x) = f(x)

is monogenic on Rn+1 and its restriction to Rn is f .

The extension can be realized by the operation

F (x0, x) = e−x0∂xf(x) =

∞∑
k=0

(−x0)
k

k!
∂kxf(x). (3.17)

understood in the symbolic way. In fact, formally we have

Dx

(
e−x0∂xf(x)

)
=
(
∂0 + ∂x

) (
e−x0∂xf(x)

)
= ∂0

(
e−x0∂xf(x)

)
+ ∂x

(
e−x0∂xf(x)

)
= −∂x

(
e−x0∂xf(x)

)
+ ∂x

(
e−x0∂xf(x)

)
= 0

Definition 3.12. [48] A monogenic function f is called axial monogenic if it takes the form

f (x0, x) = A (x0, r) + ηB (x0, r)

where r > 0 and η are the spherical coordinate given in section (3.4.1.2) and A,B are two scalar

valued function. The monogenicity of f leads to the equations

∂x0
A− ∂rB =

n− 1

r
B and

∂x0B + ∂rA = 0

called the Vekua system.
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Using the following result we can extend a holomorphic complex function into a monogenic

one.

Theorem 3.4.1. [164, 72] Let n be odd and let z = x+iy 7−→ f(x+iy) be holomorphic function.

Then the function

(∆n+1)
n−1
2 f (x0 + x)

is monogenic.

The authors in [150] proved a similar result for n even. Now, we present another method of

extending a function on Rn into a monogenic one. This is due to [115, 151]

Theorem 3.4.2. Let f ∈ L2 (Rn,Cn, dV (x) . Then f can be monogenically extended to a mono-

genic function F on Rn+1 with the estimate

|F (x0, x)| ≤ ceR|(x0,x)|

if and only if

Supp(f̂) ⊂ B(0, R)

where

B(0, R) = {x ∈ Rn : |x| < R}

In this case we have

F (x0, x) =
1

(2π)n

∫
Rn
e(x0, x, ξ)f̂(ξ)dξ,

where

e(x0, x, ξ) = e+(x0, x, ξ) + e−(x0, x, ξ), e±(x0, x, ξ) = eix·ξe∓x0|ξ|χ±(ξ)

and

χ±(ξ) =
1

2

(
1 + i

ξ

|ξ|

)

Proof. [152, Page 118].

Now, we give some results about integration of Clifford-valued function which are similar to those

that are well known in the theory of complex-valued functions as a Stokes formula and a Cauchy

representation formula.
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3.4.3 Cauchy-Clifford Integral Formula

In the sequel, Ω is an open subset of Rn, U ⊂ Ω a compact and orientable piecewise differentiable

bounded domain in Rn with lipschitzian boundary ∂U . The surface element on ∂U will be

dσx =

n∑
j=1

(−1)jejdx[j]

where dx[j] = dx1 ∧ dx2 ∧ · · · dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn (we omit the jth term). If we call η(x)

the unit outward pointing normal-vector at x ∈ ∂U , then

dσx = η(x)dS(x)

with dS(x) being the surface element on ∂U .

Theorem 3.4.3 – Clifford-Stokes Theorem. Let f, g ∈ C1(Ω) then for U ⊂ Ω∫
∂U

f(x)dσxg(x) =

∫
U

[(f∂x)g + f(∂xg)]dV (x) (3.18)

In particular, if f ≡ 1 then ∫
∂U

dσxg(x) =

∫
U

∂xg(x)dV (x)

which relates the values of a function in a domain to its values on its boundary of the given

domain. Let f be left-monogenic and g right-monogenic on an open set Ω ⊂Rn then∫
∂U

g(x)dσxf(x) = 0

for any U ⊂ Ω.

As a consequence we have.

Corollary 3.13. Suppose that g is a right monogenic function on Ω ⊂ Rn then for every subset

U of Ω we have ∫
∂U

g(x)dσx = 0

Theorem 3.4.4. Let f left-monogenic and g right-monogenic on an open U ⊂ Ω (as in theorem
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3.4.3) and let y ∈ U then

f(y) =
1

an

∫
∂U

E(x− y)η(x)f(x)dσx

and

g(y) =
1

an

∫
∂U

g(x)η(x)E(x− y)dσx.

Proof. We only prove the result for the left-monogenic function f . We consider the sphere

Sn−1(y, r) for r > 0 chosen small enough such that the disc whose boundary is Sn−1(y, r) is

included in U . Applying formula (3.18) on the kernel E and f we get∫
∂U

E(x− y)η(x)f(x)dσx =

∫
Sn−1(y,r)

E(x− y)η(x)f(x)dσx.

The sphere Sn−1(y, r) being of curvature 1, the outward pointing normal-vector η at x ∈

Sn−1(y, r) is given by (see [161, Page 231])

η(x) =
x

|x|
=

y − x∣∣x− y∣∣ =
y − x
r

so on the surface of Sn−1(y, r)

E(x− y)η(x) =
x− y
rn

y − x
r

=
r2

rn+1
=

1

rn−1

this gives us∫
Sn−1(y,r)

E(x− y)η(x)f(x)dσx =

∫
Sn−1(y,r)

1

rn−1
f(x)dσx

=

∫
Sn−1(y,r)

f(x)− f(y) + f(y)

rn−1
dσx

=

∫
Sn−1(y,r)

f(x)− f(y)

rn−1
dσx +

∫
Sn−1(y,r)

f(y)dσx

=

∫
Sn−1(y,r)

f(x)− f(y)∣∣x− y∣∣n−1 dσx + f(y)

∫
Sn−1(y,r)

dσx

=
1

an

∫
Sn−1(y,r)

f(x)− f(y)∣∣x− y∣∣n−1 dσx +
f(y)

an

∫
Sn−1

dσx

=

∫
Sn−1(y,r)

f(x)− f(y)∣∣x− y∣∣n−1 dσx + anf(y).

By continuity we have

lim
r→0

∫
Sn−1(y,r)

f(x)− f(y)∣∣x− y∣∣n−1 dσx = 0.

Finally, we have f(y) = 1
an

∫
∂U

E(x− y)η(x)f(x)dσx. By a similar procedure we prove the result

for g.
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Theorem 3.4.5 –Mean Value Theorem. Let y ∈ U and R > 0 and consider D(y,R), the disk

of centre y and radius R such that D(y,R) ⊂ U then

f(y) =
1

Rnan

∫
D(y,R)

f(x)dV (x).

Proof. Applying theorem (3.4.4) on D(y,R) we obtain

f(y) =
1

an

∫
∂D(y,R)

E(x− y)η(x)f(x)dσx

=
1

an

∫
∂D(y,R)

E(x− y)η(x)f(x)dσx

=
1

an

∫
∂D(y,R)

1

rn−1
f(x)dσx.

Integrating by respect to r will give us

f(y)Rn =
1

an

∫
D(y,R)

f(x)dV (x).

So that

f(y) =
1

anRn

∫
D(y,R)

f(x)dV (x).

3.5 Clifford-Fourier Transform

In this section we propose to review some basic concepts of the Clifford-Fourier transform. Fore

more details we may refer to [71] and [102]. Recall that the classical Fourier transom can be seen

as the operator exponential (see [142, 6, 18, 168, 176, 65])

F = exp
(
−iπ

2
H
)

=

∞∑
k=0

1

k!

(
−iπ

2

)k
Hk (3.19)

where H is the scalar-valued operator

H =
−1

2

(
∆n + x2 + n

)
(3.20)

called Hermite operator.

An eigenfunction for the n-dimensional Fourier transform is given by the Gaussian function

x 7−→ G(x) = e−|x|
2/2 which satisfies

Ĝ(ξ) = G(ξ).

Proposition 3.14. The two operators H and exp(−iπ2H) are Fourier invariant in the sense
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that

Ĥ(f) = H(f̂)

and that
̂

exp(−iπ
2
H)(f) = exp(−iπ

2
H)(f̂).

Proof. We have

Ĥ(f)(ξ) =
1

(2π)
n
2

∫
Rn

−1

2
(∆nf(x) + x2f(x) + nf(x))e−ix·ξdV (x)

=
−1

2
[

1

(2π)
n
2

∫
Rn
∂2
xf(x)e−ix·ξdV (x) +

1

(2π)
n
2

∫
Rn
x2f(x)e−ix·ξdV (x)

+ n
1

(2π)
n
2

∫
Rn
f(x)e−ix·ξdV (x)]

=
−1

2

[
ξ2f̂(ξ) + ∂2

ξ f̂(ξ) + nf̂(ξ)
]

= H(f̂)(ξ).

For the second assertion we have
̂

exp(−iπ
2
H)(f)(ξ) =

1

(2π)
n
2

∫
Rn

exp(−iπ
2
H)(f)(x)e−ix·ξdV (x)

=
1

(2π)
n
2

∫
Rn

{ ∞∑
k=0

(
−iπ2

)k
k!

Hk(f)(x)

}
e−ix·ξdV (x)

=

∞∑
k=0

(
−iπ2

)k
k!

{
1

(2π)
n
2

∫
Rn
Hk(f)(x)e−ix·ξdV (x)

}

=

∞∑
k=0

(
−iπ2

)k
k!

Ĥk(f)(ξ).

Lets calculate Ĥk(f). We have from the first assertion :

Ĥk(f) = ̂H{Hk−1(f)}

= HĤk−1(f)

= H ̂H{Hk−2(f)}

= H2Ĥk−2(f)

...

= HkĤ0(f)

= Hkf̂ .
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This gives us

̂
exp(−iπ

2
H)(f)(ξ) =

∞∑
k=0

(
−iπ2

)k
k!

Hkf̂(ξ)

= exp(−iπ
2
Hf̂).

The idea behind the extension of the classical Fourier transform to Clifford algebra-valued

one resides in the generalization of the Hermite operator into a multivector-valued one. We use

the factorization of the Laplace operator by the Dirac operator to obtain two new Clifford-valued

operators that factorize the Hermite operator. This method has been developed in [26, 56, 22,

Ch. 12]. For that purpose we introduce the following operators (see [24])

O1 =
1

2

(
∂x − x

) (
∂x + x

)
O2 =

1

2

(
∂x + x

) (
∂x − x

)
This operators has the following properties

Proposition 3.15.

O1 = H+ Γx

O2 = H− Γx + n

O1 +O2 = 2
(
H+ n

2

)
O1 −O2 = 2

(
Γx − n

2

)
Proof. We have that Γx = −1

2 (x∂x − ∂xx− n). So

O1 =
1

2

(
∂x − x

) (
∂x + x

)
=

1

2

(
∂2
x + ∂xx− x∂x − x2

)
=

1

2

(
∂2
x − x2 − n

)
− 1

2

(
x∂x − ∂xx− n

)
= H+ Γx.
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And

O2 =
1

2

(
∂x + x

) (
∂x − x

)
=

1

2

(
∂2
x − x2 − n+ x∂x − ∂xx+ n

)
= H+

1

2

(
x∂x − ∂xx+ 2n− n

)
= H− Γx + n.

We have also

O1 +O2 = H+ Γx +H− Γx + n

= 2
(
H+

n

2

)
O1 −O2 = H+ Γx −H+ Γx − n

= 2
(

Γx −
n

2

)
.

For the two operators O1 and O2 to be used in the definition of the new Fourier transform

in the Clifford algebra’s setting, they have to be Fourier-invariant. We have from proposition

(3.14)

Ĥ(f) = H(f̂).

So we have just to prove that

Γ̂x(f) = Γξ(f̂).

Indeed, formally we can write

Γ̂x(f) =
̂−1

2
(x∂x − ∂xx− n)

=
−1

2

(
x̂∂xf − ∂̂xxf − nf̂

)
=
−1

2

(
∂ξ∂̂xf − ξx̂f − nf̂

)
=
−1

2

(
∂ξξ − ξ∂ξ − n

)
f̂

= Γξ(f̂).

As 
O1 = H+ Γx

O2 = H− Γx + n
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then 
Ô1f = Ĥf + Γ̂xf = O1f̂

Ô2 = Ĥ{ − Γ̂xf + nf̂ = O2f̂ .

Now, we are able to define the Clifford-Fourier transform

Definition 3.16. The Clifford-Fourier transform is the pair of exponential operators

F+ = exp(−iπ
2
H+) and F− = exp(−iπ

2
H−).

If we want that the classical Fourier transform F to be the harmonic average of the couple

F+ and F−

F2 = F+F−

and as F = exp(−iπ2H) we have to choose H+ and H− to satisfy

H =
1

2
(H+ +H−).

But having O1 +O2 = 2H+ n we get

H+ +H− = O1 +O2 − n.

So we set 
H+ = O1 − n

2

H− = O2 − n
2

hence 
H+ = H+

[
Γx − n

2

]
H− = H−

[
Γx − n

2

]
.

(3.21)

One alternative for the operators H+ and H− is given in [56, Sec. 12.3.2] and in [26, Def. 4.2]
H+ = O1

H− = O2 − n
and in this case we have 

H+ = H+ Γx

H− = H− Γx.
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Keeping our operators as in (3.21) we obtain in terms of the exponential operator

F+ = exp(−iπ
2
H+)

= exp
(
−iπ

2

(
H+

[
Γx −

n

2

]))
= exp

(
−iπ

2

(
Γx −

n

2

))
exp

(
−iπ

2
H
)

= exp
(
−iπ

2

(
Γx −

n

2

))
F

(3.22)

and in the same way

F− = exp
(
i
π

2

(
Γx −

n

2

))
F . (3.23)

We obtain an integral representation for the new Clifford-Fourier transform:

F+[f ](ξ) =
1

(2π)
n
2

∫
Rn

exp
(
−iπ

2

(
Γξ −

n

2

))
e−ix·ξf(x)dV (x)

and

F−[f ](ξ) =
1

(2π)
n
2

∫
Rn

exp
(
i
π

2

(
Γξ −

n

2

))
e−ix·ξf(x)dV (x). (3.24)

We have defined the Clifford-Fourier transform as a pair of operators satisfying

F2 = F+F−

so we can write

F = F
1
2
+F

1
2
−

where the square root is the Fractional Fourier Transform (see [149] and [56, Ch.11]) given by

F
1
2
+ = exp

(
−iπ

4
H+

)
F

1
2
− = exp

(
−iπ

4
H−
)
.

We can factorize the classical Fourier transform as the products

F = exp
(
−iπ

4
H+

)
exp

(
−iπ

4
H−
)

= exp
(
−iπ

4
H−
)

exp
(
−iπ

4
H+

)
This transform can be inverted. Using (3.22) and (3.23) we have

F−1
+ = exp

(
i
π

2
H+

)
and

F−1
− = exp

(
i
π

2
H−
)
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which gives

F−1
+ = exp

(
i
π

2

(
Γx −

n

2

))
F−1

and

F−1
− = exp

(
−iπ

2

(
Γx −

n

2

))
F−1

The Clifford-Fourier transform has properties similar to those of the classical Fourier transform.

Proposition 3.17. For two Clifford algebra-valued functions f and g and a, b ∈ Cn we have

F+ [fa+ gb] = F+ [f ] a+ F+ [g] b

and

F− [fa+ gb] = F− [f ] a+ F− [g] b.

Proof. This results from (3.24).

Proposition 3.18. For λ > 0 we have

F+ [f(λ•)] (ξ) =
1

λn
F+ [f ] (

ξ

λ
)

and

F− [f(λ•)] (ξ) =
1

λn
F− [f ] (

ξ

λ
).

Proof. First, let us prove that

F [f(λ•)] (ξ) =
1

λn
F [f ] (

ξ

λ
).

We have

F [f(λ•)] (ξ) =
1

(2π)
n
2

∫
Rn
f(λx)e−ix·ξdV (x).

If we put y = λx then dV (x) = 1
λn dV (y), so

F [f(λ•)] (ξ) =
1

λn
1

(2π)
n
2

∫
Rn
f(y)e−ix·

ξ

λ dV (y)

=
1

λn
f̂(
ξ

λ
).

Then from (3.22) and (3.23)

F+ [f(λ•)] (ξ) = exp
(
−iπ

2

(
Γξ −

n

2

)) 1

λn
f̂(
ξ

λ
)

and

F− [f(λ•)] (ξ) = exp
(
i
π

2

(
Γξ −

n

2

)) 1

λn
f̂(
ξ

λ
).
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Next, we prove that Γx = Γ x
λ
. We have

Γ x
λ

= −x
λ
∧ ∂ x

λ
,

if we put y = x
λ ⇐⇒ xi = λyi and so

∂y =

n∑
i=1

ei
∂

∂yi
=

n∑
i=1

eiλ
∂

∂xi
= λ∂x.

So finally,

Γ x
λ

= −x
λ
∧ ∂ x

λ
= −x

λ
∧ λ∂x = Γx.

We obtain the formulas

F+ [f(λ•)] (ξ) = exp
(
−iπ

2

(
Γ ξ

λ

− n

2

)) 1

λn
f̂(
ξ

λ
) =

1

λn
F+ [f ] (

ξ

λ
)

and

F− [f(λ•)] (ξ) = exp
(
i
π

2

(
Γ ξ

λ

− n

2

)) 1

λn
f̂(
ξ

λ
) =

1

λn
F− [f ] (

ξ

λ
).

Proposition 3.19. For all Clifford-valued function f we have

F+ [•f(•)] (ξ) = −(−i)n∂ξF+ [f ] (ξ)

and

F− [•f(•)] (ξ) = (i)n∂ξF− [f ] (ξ)

Proof. We know from the proprieties of the classical Fourier transform that

F [•f(•)] (ξ) = i∂ξF [f ] (ξ).

Then

F+ [•f(•)] (ξ) = exp
(
−iπ

2

(
Γξ −

n

2

))
F [•f(•)] (ξ)

= i exp
(
−iπ

2

(
Γξ −

n

2

))
∂ξF [f ] (ξ)

= i

{ ∞∑
k=0

(−iπ2 )k

k!

(
Γξ −

n

2

)k}
∂ξF [f ] (ξ). (3.25)

We know from [142, Thm 2.4] that

∂ξΓξ + Γξ∂ξ = (n− 1)∂ξ.

Then

Γξ∂ξ = ∂ξ

[
n− 1− Γξ

]
,
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and
n

2
∂ξ = ∂ξ

n

2
.

So (
Γξ −

n

2

)
∂ξ = ∂ξ

(
n− 2

2
− Γξ

)
.

Applying
(

Γξ − n
2

)
gives us(
Γξ −

n

2

)(
Γξ −

n

2

)
∂ξ =

(
Γξ −

n

2

)
∂ξ

(
n− 2

2
− Γξ

)
= ∂ξ

(
n− 2

2
− Γξ

)(
n− 2

2
− Γξ

)
.

Repeating this k times we obtain(
Γξ −

n

2

)k
∂ξ = ∂ξ

(
n− 2

2
− Γξ

)k
.

Then (3.25) becomes

F+ [•f(•)] (ξ) = i

{ ∞∑
k=0

(−iπ2 )k

k!

(
Γξ −

n

2

)k}
∂ξF [f ] (ξ)

= i

{ ∞∑
k=0

(−iπ2 )k

k!

(
Γξ −

n

2

)k
∂ξ

}
F [f ] (ξ)

= i

{ ∞∑
k=0

(−iπ2 )k

k!
∂ξ

(
n− 2

2
− Γξ

)k}
F [f ] (ξ)

= i∂ξ exp
(
i
π

2

(
Γξ −

n

2
+ 1
))
F [f ] (ξ)

= i exp
(
i
π

2

)
∂ξ exp

(
i
π

2

(
Γξ −

n

2

))
F [f ] (ξ)

= −∂ξF− [f ] (ξ).

The same yields for F− and we have

F− [•f(•)] (ξ) = ∂ξF+ [f ] (ξ).

These results may be generalized to

F+

[
x2kf

]
(ξ) = (−1)k∂2k

ξ F+ [f ] (ξ)

and

F+

[
x2k+1f

]
(ξ) = −(−1)k∂2k+1

ξ F− [f ] (ξ)

By applying the recurrence rule.

The explicit form of the kernel of (3.24) is a difficult problem. In the case where n = 2 it has
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been given in [25, Sec. 4]

F+[f ](ξ) =
1

2π

∫
R2

exp(ξ ∧ x)f(x)dV (x)

and

F−[f ](ξ) =
1

2π

∫
R2

exp(x ∧ ξ)f(x)dV (x).

For even dimensions, a first attempt was done in [27], for example for n = 4 we have in the term

of the Bessel function [6, Sec. 2.2.2]

K+(x, ξ) =

√
π

2
|x ∧ ξ|−1/2

(
(1 + x · ξ)J1/2(|x ∧ ξ|) +

(ξ ∧ x)

|x ∧ ξ|
J3/2(|x ∧ ξ|)(x · ξ)

)
and

K−(x, ξ) =

√
π

2
|x ∧ ξ|−1/2

(
(1− x · ξ)J1/2(|x ∧ ξ|) +

(ξ ∧ x)

|x ∧ ξ|
J3/2(|x ∧ ξ|)(x · ξ)

)
and for n = 6 we have

K+(x, ξ) =
√

π
2 {|x ∧ ξ|

−1/2
(
J1/2(|x ∧ ξ|) + (x·ξ)2

|x∧ξ| J3/2(|x ∧ ξ|)
)

+|x ∧ ξ|−3/2
(

2(x · ξ)J3/2(|x ∧ ξ|) + (ξ ∧ x)J3/2(|x ∧ ξ|) + (x·ξ)2
|x∧ξ| (ξ ∧ x)J5/2(|x ∧ ξ|)

)
}

and

K−(x, ξ) =
√

π
2 {|x ∧ ξ|

−1/2
(
J1/2(|x ∧ ξ|) + (x·ξ)2

|x∧ξ| J3/2(|x ∧ ξ|)
)

−|x ∧ ξ|−3/2
(

2(x · ξ)J3/2(|x ∧ ξ|) + (ξ ∧ x)J3/2(|x ∧ ξ|) + (x·ξ)2
|x∧ξ| (ξ ∧ x)J5/2(|x ∧ ξ|)

)
}.

In [55], the authors found a general expression for the kernels for all even dimensions.

3.6 Clifford Wavelet Transform

We introduce the concept of the Clifford-wavelet transform and some of its important properties

to be used later. Besides of the translation and dilation, we will use rotation using the action of

the spin group which is a double-cover of the special orthogonal group in Rn. In this context,

a function ψ ∈ L1 ∩ L2(Rn,Rn, dV (x)) will be considered as a Clifford mother wavelet. To join

the admissibility assumptions in the case of wavelets on R, here-also we define

Definition 3.20 (Clifford Wavelet). Let ψ ∈ L1 ∩ L2(Rn,Rn, dV (x)) such that

• ψ̂(ξ)
[
ψ̂(ξ)

]†
is scalar.

• The admissibility condition : Aψ = (2π)n
∫
Rn

ψ̂(ξ)
[
ψ̂(ξ)

]†
|ξ|n

dV (ξ) <∞.
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The function ψ is called an admissible Clifford mother wavelet and Aψ is its admissibility con-

stant. We can see that this condition implies that

ψ̂(0) = 0⇐⇒
∫
Rn
ψ(x)dV (x) = 0.

Starting with an admissible wavelet, we create a whole set of daughter wavelets by translating,

dilating and Spin-rotating the mother wavelet.

Example 3.21. In [34], the authors defined a generalization of the n-dimensional Mexican Hat

wavelet [125] as the CK-extension of

ψ(x) = exp(
1

2
x2)Hn(x)

= (−1)n∂x exp(
x2

2
)

where Hn are the radial Hermite polynomials given in [33, 34, 9, 10]. Its Fourier transform is

ψ̂(ξ) = (2π)
n
2 (−i)nξn exp(

ξ2

2
)

and so it is an admissible Clifford algebra-valued mother wavelet since

Aψ = (2π)n
∫
Rn

∣∣∣ψ̂(ξ)
∣∣∣2∣∣ξ∣∣n dV (ξ)

= (2π)2n

∫
Rn

∣∣∣∣∣exp(
ξ2

2
)

∣∣∣∣∣
2

dV (ξ)

<∞.

Example 3.22. From [6] we know that for 0 < t < 1−n−2α
2 we have∫

Rn
xkGn,t,α+t(x)

(
1 + |x|2

)α
dV (x) = 0

where Gn,t,α+t are the Clifford-Gegenbauer polynomials and specially∫
Rn
Gn,t,α+t(x)

(
1 + |x|2

)α
dV (x) =

∫
Rn

(−1)t∂tx
(
1 + |x|2

)α+t
dV (x)

= 0

and this is just the admissibility condition 3.6. So the functions x 7−→ ψn,t,α(x) = (−1)t∂tx
(
1 + |x|2

)α+t

can be taken as mother wavelets. We call them Clifford-Gegenbauer Wavelets.

Example 3.23. In [20] the authors defined the so called Clifford-Laguerre Wavelets as

(−1)k∂kx
(
exp(−|x|)|x|α+2kP+

)
for α > −n, l > 0 and P+(x) = 1

2 (1 + i x|x| ) is the Clifford-Heaviside function.
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Definition 3.24. For (a, b, s) ∈ R+ × Rn × Spin(n), we denote

ψa,b,s(x) =
1

a
n
2
sψ(

s(x− b)s
a

)s.

It holds in fact that these copies are also admissible and that

Aψa,b,s =
an/2

(2π)n
Aψ <∞.

Now we will see that indeed the family of wavelets ψa,b,s can be used to analyse or decompose

square integrable Clifford-valued functions, for that we have

Proposition 3.25. The set
{
ψa,b,s : a > 0, b ∈ Rn, s ∈ Spin(n)

}
is dense in L2(Rn,Rn, dV (x)).

Proof. Let f be an analysed function such that

< ψa,b,s, f >L2(Rn,Rn,dV (x))= 0, ∀a > 0, b ∈ Rn and s ∈ Spin(n).

We shall prove that f = 0. Using the Parseval identity of the Clifford-Fourier transform : for

f, g ∈ L1 ∩ L2(Rn,C, dV (x)

〈f, g〉L2(Rn,C,dV (x) =
〈
f̂ , ĝ
〉
L2(Rn,C,dV (ξ)

. (3.26)

we obtain

< ψa,b,s, f >L2(Rn,Rn,dV (x))=< ψ̂a,b,s, f̂ >L2(Rn,Rn,dV (x))= 0.

Since

< ψ̂a,b,s, f̂ >L2(Rn,Rn,dV (x))= a
n
2

∫
Rn
eib·ξs

[
ψ̂(asξs)

]†
sf̂(ξ)dV (ξ) = 0,

then necessarily

s
[
ψ̂(asξs)

]†
sf̂(ξ) = 0,∀ξ ∈ Rn.

Recall now that for a fixed ξ 6= 0 in Rn (see [56], pages 48 and 49){
asξs, a > 0 and s ∈ Spin(n)

}
= Rn.

It results that

f̂ = 0 and so f = 0.

As for the real case, we define the Clifford Wavelet Transform as the projection of the signal

f on the set of admissible Clifford wavelets

Definition 3.26. The Clifford-wavelet transform of a function f ∈ L2(Rn,Rn, dV (x)) with

Thesis in Mathematics Hicham BANOUH



Clifford Algebra/Analysis Toolkit 49

respect to an admissible mother wavelet ψ is 1

Tψ [f ] (a, b, s) =< ψa,b,s, f >L2(Rn,Rn,dV (x))

=

∫
Rn

[
ψa,b,s(x)

]†
f(x)dV (x) (3.27)

=
1

a
n
2

∫
Rn
s

[
ψ

(
s(x− b)s

a

)]†
sf(x)dV (x). (3.28)

3.6.1 Proprieties of the Clifford Wavelet Transform

It has the following covariance proprieties

• Covariance by translation

Tψ [f(• − c] (a, b, s) = Tψ [f ] (a, b− c, s).

• Covariance by Dilation

Tψ

[
1

λ
n
2
f(
•
λ

)

]
(a, b, s) = Tψ [f ] (

a

λ
,
b

λ
, s).

• Covariance by Spin rotation

Tψ [Ltf ] (a, b, s) = tTψ [f ] (a, tbt, ts)t.

Proof. We have

Tψ [f(• − c] (a, b, s) =
1

a
n
2

∫
Rn
s

[
ψ

(
s(x− b)s

a

)]†
sf(x− c)dV (x).

Put y = x− c =⇒ x− b = y − (b− c) and dV (x) = dV (y) so

Tψ [f(• − c] (a, b, s) =
1

a
n
2

∫
Rn
s

[
ψ

(
s(y − (b− c))s

a

)]†
sf(y)dV (y)

= Tψ [f ] (a, b− c, s).

For the covariance by dilation

Tψ

[
1

λ
n
2
f(
•
λ

)

]
(a, b, s) =

1

a
n
2

∫
Rn
s

[
ψ

(
s(x− b)s

a

)]†
s

1

λ
n
2
f(
x

λ
)dV (x),

put y =
y

λ =⇒ x = λy, x− b = λy − b and dV (x) = λndV (y) so

Tψ

[
1

λ
n
2
f(
•
λ

)

]
(a, b, s) = (

λ

a
)
n
2

∫
Rn
s

[
ψ

(
s(λy − b)s

a

)]†
sf(y)dV (y)

=
1

( aλ )
n
2

∫
Rn
s

[
ψ

(
s(y − b

λ )s
a
λ

)]†
sf(y)dV (y)

= Tψ [f ] (
a

λ
,
b

λ
, s).

1We used the complex Clifford conjugation † (see (3.3)) but we could have used (3.3) too.
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Finally, for the case of the Spin rotation first recall the action of the Spin group (3.4.1.2)

Ls : f(x)→ sf(s̄xs)s

Then we have

Tψ [Ltf ] (a, b, s) =
1

a
n
2

∫
Rn
s

[
ψ

(
s(x− b)s

a

)]†
stf(txt)tdV (x)

put y = txt =⇒ x = tyt and dV (x) = tdV (y)t. So

Tψ [Ltf ] (a, b, s) =
1

a
n
2

∫
Rn
s

[
ψ

(
s(tyt− b)s

a

)]†
stf(tyt)tdV (y),

having tt = tt = 1, then

Tψ [Ltf ] (a, b, s) =
1

a
n
2

∫
Rn
s

[
ψ

(
s(tyt− b)s

a

)]†
stf(tyt)tdV (y)

= t
1

a
n
2

∫
Rn

{
ts
}[

ψ

(
st(y − tbt)ts

a

)]†
{st} f(tyt)tdV (y)t

= tTψ [f ] (a, tbt, ts)t

Definition 3.27. (Inner product relation) Let Hψ =
{
Tψ [f ] , f ∈ L2(Rn,Rn, dV (x))

}
be the

image of L2(Rn,Rn, dV (x)) relatively to the operator Tψ. We define the inner product for two

square integrable functions f and g by

[Tψ [f ] , Tψ [g]] =
1

Aψ

∫
Spin(n)

∫
Rn

∫
R+

(Tψ [f ] (a, b, s))†Tψ [g] (a, b, s)
da

an+1
dV (b)ds,

where ds stands for the Haar measure on Spin(n).

Proposition 3.28. The range of an isometry T : H −→ H′ is a closed subspace of H′.

Knowing all that, we can now introduce a result that permits us to invert the Clifford wavelet

transform

Proposition 3.29. Tψ : L2(Rn,Rn, dV (x)) −→ Hψ is an isometry.

Proof. We have to show that

[Tψ [f ] , Tψ [g]] =< f, g >L2(Rn,Rn,dV (x)) . (3.29)

Put

Φψ(a, s, ξ) [f ] (−b) =

[[
ψ̂(asξs)

]†
sf̂(ξ)

]
(−b)
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and similarly

Φψ(a, s, ξ) [g] (−b) =

[[
ψ̂(asξs)

]†
sĝ(ξ)

]
(−b).

We obtain

Tψ [f ] (a, b, s) = a
n
2 s(2π)

n
2 ̂Φψ(a, ξ, s) [f ] (−b)

and

Tψ [g] (a, b, s) = a
n
2 s(2π)

n
2 ̂Φψ(a, ξ, s) [g] (−b).

Applying Parseval formula we get〈
̂Φψ(a, •, s) [f ], ̂Φψ(a, •, s) [g]

〉
= 〈Φψ(a, •, s) [f ] ,Φψ(a, •, s) [g]〉 .

And so

[Tψ [f ] , Tψ [g]] =
1

(2π)nAψ

∫
Spin(n)

∫
R+

{∫
Rn

(Φψ(a, ξ, s) [f ] (ξ))†Φψ(a, ξ, s) [g] (ξ)dV (b)

}
da

a
ds

=
1

(2π)nAψ

∫
Spin(n)

∫
R+

{∫
Rn

[
(
[
ψ̂(asξs)

]†
sf̂(ξ)

]† [
ψ̂(asξs)

]†
sĝ(ξ)dV (ξ)

}
da

a
ds

=
1

(2π)nAψ

∫
Spin(n)

∫
R+

{∫
Rn

[
f̂(ξ)

]†
sψ̂(asξs)

[
ψ̂(asξs)

]†
sĝ(ξ)dV (ξ)

}
da

a
ds

=
1

(2π)nAψ

∫
Rn

[
f̂(ξ)

]†
∫
Spin(n)

∫
R+

sψ̂(asξs)
[
ψ̂(asξs)

]†
s
da

a
ds

 ĝ(ξ)dV (ξ).

Observing now that ∫
Spin(n)

∫
R+

sψ̂(asξs)
[
ψ̂(asξs)

]†
s
da

a
ds =

Aψ
(2π)n

, (3.30)

we get immediately

[Tψ [f ] , Tψ [g]] =

∫
Rn

[
f̂(ξ)

]†
ĝ(ξ)dV (ξ)

=< f̂, ĝ >

=< f, g > . (3.31)

We can also say that it is an isometry between the two spaces of integrable functions

L2(Rn,Rn, dV (x)) and L2(R+ × Rn × Spin(n),A−1
ψ a−(n+1)dadV (b)ds). This is an analogue

to Parseval’s formula and as a result we have also a Plancherel’s formula∫
Spin(n)

∫
Rn

∫
R+

|Tψ [f ] (a, b, s)|2 da

an+1
dV (b)ds = Aψ ‖f‖22 . (3.32)
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As a result of the last Proposition and as in the real case, we have here a Clifford-wavelet

reconstruction formula.

Proposition 3.30. For all f ∈ L2(Rn,Rn, dV (x)) we have

f(x) =
1

Aψ

∫
Spin(n)

∫
Rn

∫
R+

ψa,b,s(x)Tψ [f ] (a, b, s)
da

an+1
dV (b)ds

which holds weakly in L2 (Rn,Rn, dV (x)) .

In other words, the Clifford wavelet transform decomposes the signal f in terms of the

analysing wavelets ψa,b,s with coefficients Tψ [f ].

Proof. Let f and g two square integrable Clifford-valued functions with Clifford wavelet trans-

forms (with respect to a mother wavelet ψ) Tψ [f ] and Tψ [g] respectively. We have from propo-

sition (3.29) and using (3.28)

< f, g >L2 =
1

Aψ

∫
Spin(n)

∫
Rn

∫
R+

(Tψ [f ] (a, b, s))†Tψ [g] (a, b, s)
da

an+1
dV (b)ds

=
1

Aψ

∫
Spin(n)

∫
Rn

∫
R+

[Tψ [f ] (a, b, s)] †Tψ [g] (a, b, s)
da

an+1
dV (b)ds

=
1

Aψ

∫
Spin(n)

∫
Rn

∫
R+

< ψa,b,s, f >†L2 Tψ[g](a, b, s)
da

an+1
dV (b)ds

=
1

Aψ

∫
Spin(n)

∫
Rn

∫
R+

< f,ψa,b,s >L2 Tψ[g](a, b, s)
da

an+1
dV (b)ds

=< f,
1

Aψ

∫
Spin(n)

∫
Rn

∫
R+

ψa,b,s(x)Tψ[g](a, b, s)
da

an+1
dV (b)ds >L2

Then

g(x) =
1

Aψ

∫
Spin(n)

∫
Rn

∫
R+

ψa,b,s(x)Tψ[g](a, b, s)
da

an+1
dV (b)ds

where the equality is understood in the L2-sense.

Now, we present a result similar to the reproducing kernel given by (2.2.3).

Theorem 3.6.1. A function F ∈ L2
(
R+ × Rn × Spin(n),A−1

ψ a−(n+1)dadV (b)ds
)
is the Clifford
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wavelet transform of a square integrable function f iff

F (a, b, s) =
1

Cψ

∫
Spin(n)

∫
Rn

∫ +∞

0

(
Kψ(a, b, s; ã, b̃, s̃)

)†
F (ã, b̃, s̃)

dã

ãn+1
dV (b̃)ds̃

where Kψ(a, b, s; ã, b̃, s̃) = Tψ
[
ψa,b,s

]
(ã, b̃, s̃) =< ψã,b̃,s̃, ψa,b,s > is the reproducing kernel.

3.7 Conclusion

In this part, we gave an introduction to the theory of Clifford algebras and we saw that modulo

a condition similar to the Cauchy-Riemann equations in the complex plan, we generalized the

notion of holomorphic and harmonic functions to n-dimensions. Also, we presented the extension

of the well known Fourier transform to Clifford algebra settings and presented the main topic of

this thesis namely the Clifford wavelet transform.
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Chapter 4
Clifford Wavelet Uncertainty Principle

4.1 Introduction

The uncertainty principle is central for information processing and quantum physics. In the Clif-

ford algebras framework, the uncertainty principle provides us data about the way a multivector

valued function and its Clifford-Fourier transform are related. We will see that the uncertainty

principle for the Clifford wavelet transform establishes a lower bound of the product of the vari-

ances of Clifford wavelet transform of a square integrable multivector-valued function and its

Clifford-Fourier transform.

4.2 Old uncertainty principle revisited

First, we recall some results concerning the classical Heisenberg uncertainty principle. For more

backgrounds on the uncertainty principle, its variants, Fourier and wavelet transforms on the

Euclidean space Rn the readers may be referred also to [105], [146], [166] and [174]. Mathemati-

cally, the uncertainty principle states that a non-zero function and its Fourier transform cannot

both be sharply localized. The next theorem formally summarizes the Heisenberg’s Uncertainty

Principle.
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Theorem 4.2.1. Uncertainty Principle [182]

Let A and B be two self-adjoint operators on a Hilbert space X with domains D(A) and D(B)

respectively and [A,B] = AB −BA their commutator. Then

‖Af‖2 ‖Bf‖2 ≥
1

2
|< [A,B] f, f >| ,∀f ∈ D([A,B]). (4.1)

Proof. Let f ∈ D([A,B]). Then f ∈ D(A) ∩ D(B). Hence ,

| 〈[A,B] f, f〉 | = | 〈ABf, f〉 − 〈BAf, f〉 |.

As A and B are two self-adjoints operators, we get

| 〈[A,B] f, f〉 | = | 〈Af,Bf〉 − 〈Bf,Af〉 | = 2|Im {〈Af,Bf〉} |.

Applying next the Cauchy-Schwartz inequality, we obtain

| 〈[A,B] f, f〉 | ≤ 2‖Af‖2‖Bf‖2.

Which reads as

‖Af‖2 ‖Bf‖2 ≥
1

2
|〈[A,B] f, f〉| . (4.2)

which completes the proof.

Lets apply theorem (4.2.1) to the case of the Fourier transform. We mainly review the results of

[71] and [102]. Let f ∈ L1 ∩ L2(Rn,Rn, dV (x)) We define for k ∈ {1, 2, · · · , n} the two families

of operators

Akf(x) = xkf(x)

Bkf(x) = ∂xkf(x).

Using the fact that

∂xkf(x) = ∂xk

{
1

(2π)
n
2

∫
Rn
eix·ξ f̂(ξ)dV (ξ)

}
=

1

(2π)
n
2

∫
Rn
∂xk

{
eix·ξ f̂(ξ)

}
dV (ξ)

=
1

(2π)
n
2

∫
Rn
eix·ξ

{
iξkf̂(ξ)

}
dV (ξ)

= F−1
[
iξkf̂(•)

]
(x)

whence

∂̂xkf(ξ) = iξkf̂(ξ).
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and so we have the norm equality ∥∥∥∂̂xkf∥∥∥
2

=
∥∥∥ξkf̂∥∥∥

2
.

In a similar way we can see that

x̂kf(•)(ξ) =
1

(2π)
n
2

∫
Rn
xkf(x)e−ix·ξdV (x)

=
1

(2π)
n
2

∫
Rn
f(x)i∂ξk

{
e−ix·ξ

}
dV (x)

= i∂ξkF [f ] (ξ).

We have Akf(x) = xkf(x) and Bkf(x) = ∂xkf(x). So

‖Akf‖2 = ‖xkf‖2

and

‖Bkf‖2 =
∥∥∥ξkf̂∥∥∥

2

Applying theorem (4.2.1) to both operators Ak and Bk yields :

‖Akf‖2 ‖Bkf‖2 ≥
1

2
|< [Ak, Bk] f, f >| .

As the commutator

[Ak, Bk] f = AkBkf −BkAkf

= xk∂xkf(x)− ∂xk {xkf(x)}

= xk∂xkf(x)− f(x)− xk∂xkf(x)

= −f(x)

we obtain finally

‖xkf‖2
∥∥∥ξkf̂∥∥∥

2
≥ 1

2
‖f‖22 . (4.3)

Theorem 4.2.2. For A and B two symmetric operators on a Hilbert space H and for f ∈

L2(H, dx) we have

‖Af‖2 ‖Bf‖2 ≥
1

2

√
|〈[A,B] f, f〉|2 +

∣∣〈[A,B]+ f, f
〉∣∣2 (4.4)

where [A,B]+ = AB +BA is the anti-commutator.

Proof. See [165] and [69].

As for Theorem 4.3.1, the first step is to apply this result to the Fourier transform. So we
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have

Theorem 4.2.3. [69] Let f ∈ L1∩L2(Rn,Rn, dV (x)) and define Akf(x) = xkf(x) and Bkf(x) =

1
i ∂xkf(x) then

‖xkf‖2
∥∥∥ξkf̂∥∥∥

2
≥
√

2(‖f‖22 + |2 〈xk∂xkf, f〉|).

Proof. We have by Theorem 4.2.2

‖Akf‖2 ‖Bkf‖2 ≥
1

2

√
|〈[Ak, Bk] f, f〉|2 +

∣∣〈[Ak, Bk]+ f, f
〉∣∣2. (4.5)

Observe next that

[Ak, Bk] f(x) = AkBkf(x)−BkAkf(x)

= xk
1

i
∂xkf(x)− 1

i
∂xkxkf(x)

=
1

i
xk∂xkf(x)− 1

i
f(x)− 1

i
xk∂xkf(x)

= −1

i
f(x).

By the same way

[Ak, Bk]+ f(x) =
1

i
(2xk∂xkf(x) + f(x)).

Substituting in (4.5) we get

‖xkf‖2 ‖∂xkf‖2 ≥
1

2

√
‖f‖42 + |〈2xk∂xkf + f, f〉|2.

We know that

∂̂xkf(ξ) = iξkf̂(ξ).

So

‖∂xkf‖2 =
∥∥∥∂̂xkf∥∥∥

2
=
∥∥∥ξkf̂∥∥∥

2
.

Then (4.5) becomes

‖xkf‖2
∥∥∥ξkf̂∥∥∥

2
≥ 1

2

√
‖f‖42 + |〈2xk∂xkf + f, f〉|2

=
1

2

√
‖f‖42 +

∣∣∣‖f‖22 + 2 〈xk∂xkf, f〉
∣∣∣2

≥ 1

2

√
‖f‖42 + 4 |〈xk∂xkf, f〉|

2
.

Since for a, b > 0,
√

a2+b2

2 ≥ a+b
2 then 1

2

√
a2 + b2 ≥

√
2(a+ b). So

‖xkf‖2
∥∥∥ξkf̂∥∥∥

2
≥ 1

2

√
‖f‖42 + 4 |〈xk∂xkf, f〉|

2

≥
√

2(‖f‖22 + |2 〈xk∂xkf, f〉|).
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4.3 Clifford wavelet uncertainty principle

In this section, we establish the main result of the thesis : a new Heisenberg uncertainty principle

for the Clifford wavelet transform. This result have been published in [14].

Theorem 4.3.1. Let ψ ∈ L2(Rn,Rn, dV (x)) be an admissible Clifford mother wavelet. Then for

f ∈ L2(Rn,Rn, dV (x)) the following inequality holds(∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds

) 1
2 ∥∥∥ξkf̂∥∥∥

2
≥ (2π)

n
2

2

√
Aψ ‖f‖22 ,

where k = 1, 2, · · · , n.

To prove this result we need the following lemma.

Lemma 4.1. Given ψ and f as in Theorem (4.3.1) then∫
Spin(n)

∫
R+

∫
Rn
|ξkT̂ψ [f ](a, ξ, s)|2dV (ξ)

da

an+1
ds =

Aψ
(2π)n

∥∥∥ξkf̂∥∥∥2

2
.

Proof. As the daughter wavelet ψa,b,s has the following Fourier expression

ψ̂a,b,s(ξ) = a
n
2 e−i<b,ξ>sψ̂(asξs)s,

we get

Tψ [f ] (a, b, s) = a
n
2 F−1

[
s
[
ψ̂(as • s)

]†
sf̂(•)

]
(b)

and in the frequency domain

T̂ψ [f ](a, ξ, s) = a
n
2 s
[
ψ̂(asξs)

]†
sf̂(ξ). (4.6)
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Therefore by (3.8)∫
Rn

|ξkT̂ψ [f ](a, ξ, s)|2dV (ξ)

=

∫
Rn

|ξka
n
2 s
[
ψ̂(asξs)

]†
sf̂(ξ)|2dV (ξ)

=

∫
Rn

{
ξka

n
2 s
[
ψ̂(asξs)

]†
sf̂(ξ)

}†
ξka

n
2 s
[
ψ̂(asξs)

]†
sf̂(ξ)dV (ξ)

=

∫
Rn

ξ2
ka
ns
[
ψ̂(asξs)

]†
sf̂(ξ)

{
s
[
ψ̂(asξs)

]†
sf̂(ξ)

}†
dV (ξ)

=

∫
Rn

ξ2
ka
ns
[
ψ̂(asξs)

]†
sf̂(ξ)

[
f̂(ξ)

]†
sψ̂(asξs)sdV (ξ)

=

∫
Rn

ξ2
ka
n
[
ψ̂(asξs)

]†
f̂(ξ)

[
f̂(ξ)

]†
ψ̂(asξs)dV (ξ)

=

∫
Rn

ξ2
ka
n

{[
ψ̂(asξs)

]†
ψ̂(asξs)

}{
f̂(ξ)

[
f̂(ξ)

]†}
dV (ξ). (4.7)

Using (4.7) we obtain∫
Spin(n)

∫
R+

∫
Rn

|ξkT̂ψ [f ](a, ξ, s)|2dV (ξ)
da

an+1
ds

=

∫
Spin(n)

∫
R+

∫
Rn

ξ2
ka
n

{[
ψ̂(asξs)

]†
ψ̂(asξs)

}{
f̂(ξ)

[
f̂(ξ)

]†}
dV (ξ)

da

an+1
ds

=

∫
Spin(n)

∫
R+

∫
Rn

ξ2
k

{[
ψ̂(asξs)

]†
ψ̂(asξs)

}{
f̂(ξ)

[
f̂(ξ)

]†}
dV (ξ)

da

a
ds

=

∫
Rn


∫

Spin(n)

∫
R+

[
ψ̂(asξs)

]†
ψ̂(asξs)

a
dads

 ξ2
k

{
f̂(ξ)

[
f̂(ξ)

]†}
dV (ξ).

According to (3.30), we get finally∫
Spin(n)

∫
R+

∫
Rn

|ξkT̂ψ [f ](a, ξ, s)|2dV (ξ)
da

an+1
ds =

Aψ
(2π)n

∥∥∥ξkf̂∥∥∥2

2
.

Proof. of Theorem (4.3.1). Using the inequality (4.3) and setting x = b ∈ Rn, we obtain

‖bkTψ [f ] (a, •, s)‖2
∥∥∥ξkT̂ψ [f ](a, •, s)

∥∥∥
2
≥ 1

2
‖Tψ [f ] (a, •, s)‖22 .

Therefore ∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖2
∥∥∥ξkT̂ψ [f ](a, •, s)

∥∥∥
2

da

an+1
ds
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≥ 1

2

∫
Spin(n)

∫
R+

‖Tψ [f ] (a, •, s)‖22
da

an+1
ds

According to the Cauchy-Schwartz inequality (3.10), it follows that

∫
Spin(n)×R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds×

∫
Spin(n)×R+

∥∥∥ξkT̂ψ [f ](a, •, s)
∥∥∥2
2

da

an+1
ds

≥

(
1

2

∫
Spin(n)×R+×Rn

|Tψ [f ] (a, b, s)|2dV (b)
da

an+1
ds

)2

. (4.8)

Now, using Lemma 4.1 and the fact that the Clifford wavelet transform is an isometry, we get by (3.32)

∫
Spin(n)

∫
Rn

∫
R+

|Tψ [f ] (a, b, s)|2 da

an+1
dV (b)ds = Aψ ‖f‖22 .

The inequality (4.8) becomes

 ∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds


1
2 (

Aψ
(2π)n

∥∥∥ξkf̂∥∥∥2
2

) 1
2

≥ 1

2
Aψ ‖f‖22 . (4.9)

Hence, we obtain

 ∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds


1
2 ∥∥∥ξkf̂∥∥∥

2
≥ (2π)

n
2

2

√
Aψ ‖f‖22 .

4.4 A sharper Clifford wavelet uncertainty principle

In the present section we state and prove the second main result which concerns a sharper

formulation of the Clifford-wavelet uncertainty principle.

Theorem 4.4.1. [13]Let ψ ∈ L2(Rn,Rn, dV (x)) be an admissible Clifford mother wavelet. Then

for f ∈ L2(Rn,Rn, dV (x)) the following inequality holds

(

∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds)

1
2

∥∥∥ξkf̂∥∥∥
2
≥
√

2n+1πnAψ
{
‖f‖22 + 2 |〈f1, f2〉|

}
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where 
f1(x) = 1

Aψ

∫
Spin(n)

∫
Rn
∫
R+ ψ

a,b,s(x)∂bkTψ [f ] (a, b, s) da
an+1 dV (b)ds

f2(x) = 1
Aψ

∫
Spin(n)

∫
Rn
∫
R+ ψ

a,b,s(x)bkTψ [f ] (a, b, s) da
an+1 dV (b)ds

Proof. From Theorem 4.2.3 we have

‖xkf‖2
∥∥∥ξkf̂∥∥∥

2
≥
√

2(‖f‖22 + |2 〈xk∂xkf, f〉|).

We substitute f(•) by Tψ [f ] (a, •, s), then

‖bkTψ [f ] (a, •, s)‖2
∥∥∥ξk ̂Tψ [f ] (a, •, s)

∥∥∥
2
≥
√

2(‖Tψ [f ] (a, •, s)‖22

+ |2 〈bk∂bkTψ [f ] (a, •, s), Tψ [f ] (a, •, s)〉|).

Hence ∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖2
∥∥∥ξk ̂Tψ [f ] (a, •, s)

∥∥∥
2

da

an+1
ds.

≥
√

2

∫
Spin(n)

∫
R+

(‖Tψ [f ] (a, •, s)‖22 + |2 〈bk∂bkTψ [f ] (a, •, s), Tψ [f ] (a, •, s)〉|) da

an+1
ds.

By the inequality of Cauchy-Schwartz∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖2
∥∥∥ξk ̂Tψ [f ] (a, •, s)

∥∥∥
2

da

an+1
ds

≤ (

∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds)

1
2

×(

∫
Spin(n)

∫
R+

∥∥∥ξk ̂Tψ [f ] (a, •, s)
∥∥∥2

2

da

an+1
ds)

1
2 .

Then

(

∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds)

1
2 × (

∫
Spin(n)

∫
R+

∥∥∥ξk ̂Tψ [f ] (a, •, s)
∥∥∥2
2

da

an+1
ds)

1
2

≥
√
2

∫
Spin(n)

∫
R+

(‖Tψ [f ] (a, •, s)‖22

+ |2 〈bk∂bkTψ [f ] (a, •, s), Tψ [f ] (a, •, s)〉|) da

an+1
ds

=
√
2

∫
Spin(n)

∫
R+

(‖Tψ [f ] (a, •, s)‖22
da

an+1
ds

+2
√
2

∫
Spin(n)

∫
R+

|〈bk∂bkTψ [f ] (a, •, s), Tψ [f ] (a, •, s)〉|) da

an+1
ds.

Knowing that 
∫
Spin(n)

∫
R+

∥∥∥ξkT̂ψ [f ](a, •, s)
∥∥∥2
2

da
an+1 ds =

Aψ
(2π)n

∥∥∥ξkf̂∥∥∥2
2∫

Spin(n)

∫
R+ ‖Tψ [f ] (a, •, s)‖22

da
an+1 ds = Aψ ‖f‖22 .
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Then we have

(

∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds)

1
2 × (

Aψ
(2π)n

∥∥∥ξkf̂∥∥∥2
2
)
1
2 ≥
√
2Aψ ‖f‖22 .

+2
√
2

∫
Spin(n)

∫
R+

|〈bk∂bkTψ [f ] (a, •, s), Tψ [f ] (a, •, s)〉|) da

an+1
ds.

So

(

∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds)

1
2

∥∥∥ξkf̂∥∥∥
2
≥
√

2n+1πnAψ ‖f‖22

+

√
2n+3πn

Aψ

∫
Spin(n)

∫
R+

|〈bk∂bkTψ [f ] (a, •, s), Tψ [f ] (a, •, s)〉|) da

an+1
ds

=
√

2n+1πnAψ ‖f‖22

+

√
2n+3πn

Aψ

∫
Spin(n)

∫
R+

|〈bk∂bkTψ [f ] (a, •, s), Tψ [f ] (a, •, s)〉|) da

an+1
ds.

We know that

∫
Spin(n)

∫
R+

|〈bk∂bkTψ [f ] (a, •, s), Tψ [f ] (a, •, s)〉|) da

an+1
ds

=

∫
Spin(n)

∫
R+

∣∣∣∣∫
Rn

[∂bkTψ [f ] (a, b, s)]† bkTψ [f ] (a, b, s)dV (b)

∣∣∣∣ da

an+1
ds

≥

∣∣∣∣∣
∫
Spin(n)

∫
R+

∫
Rn

[∂bkTψ [f ] (a, b, s)]† bkTψ [f ] (a, b, s)dV (b)
da

an+1
ds

∣∣∣∣∣
= |Aψ [∂bkTψ [f ] , bkTψ [f ]]| .

Then we have

(

∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds)

1
2

∥∥∥ξkf̂∥∥∥
2
≥
√

2n+1πnAψ ‖f‖22

+
√

2n+3πnAψ |[∂bkTψ [f ] , bkTψ [f ]]| .

Since for f, g ∈ L2(Rn, dV (x) (see for instance [56])

[Tψ [f ] , Tψ [g]] = 〈f, g〉
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we may write

(

∫
Spin(n)

∫
R+

‖bkTψ [f ] (a, •, s)‖22
da

an+1
ds)

1
2

∥∥∥ξkf̂∥∥∥
2
≥
√

2n+1πnAψ
{
‖f‖22 + 2 |〈f1, f2〉|

}
where 

f1(x) = 1
Aψ

∫
Spin(n)

∫
Rn
∫
R+ ψ

a,b,s(x)∂bkTψ [f ] (a, b, s) da
an+1 dV (b)ds

f2(x) = 1
Aψ

∫
Spin(n)

∫
Rn
∫
R+ ψ

a,b,s(x)bkTψ [f ] (a, b, s) da
an+1 dV (b)ds

This result is evidently more powerful than the one given in Theorem (4.3.1) (see [14]). For that,

we notice that there is a slit increase in the lower bound :

√
2n+1πnAψ

{
‖f‖22 + 2 |〈f1, f2〉|

}
=
√
2(2π)

n
2
√
Aψ
{
‖f‖22 + 2 |〈f1, f2〉|

}
≥

(2π)
n
2
√
Aψ

2
‖f‖22

where f1 and f2 are as given above.

Those result may be seen as an improvement of those given in [129, 135, 66] in the special

case of the continuous wavelet transform defined on the quaternions algebra H as for the Clifford

wavelet transform defined on the geometric algebra Cln,0 for n = 2 ≡ [4] established in [137] and

for n = 2, 3 ≡ [4] given in [97, 92] and of the similar results obtained by E. Hitzer and M. Bahri

for the Cl3,0 in [130, 132] .

4.5 Conclusion

In this chapter, we could formulate and prove a new result on Clifford wavelet uncertainty

principle stating that we can’t know simultaneously the values of the Clifford-Fourier transform

and the Clifford wavelet transform of a square integrable multi-vector valued function. The

results are based on the generalizations of the uncertainty principle to Clifford-Fourier transform.
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Chapter 5
Conclusion and perspectives

5.1 Conclusion

In this thesis, we answered the main problematic which is that the Clifford wavelet transform and

the Clifford-Fourier transform of multivector valued function can’t be both sharp an uncertainty

principle associated with the continuous wavelet transform in the Clifford algebra’s settings

has been formulated and proved. Starting from the definition of real Clifford algebra and the

real continuous wavelet transform, we have presented a continuous Clifford wavelet transform,

displayed its properties and formulated an associated uncertainty principle. This research aimed

to state a new uncertainty principle for the Clifford wavelet transform. Based on proprieties

of Clifford algebra-valued monogenic admissible mother wavelets and harmonic analysis of the

Clifford-Fourier transform, we concluded on the impossibility for a Clifford wavelet transform of

a function and its Clifford-Fourier transform to be simultaneously sharply concentrated. which

expresses the limitations on the simultaneous concentration of Tψ [f ], and f̂ . This results have

been published in

• Banouh, H., Ben Mabrouk, A. and Kesri, M. Clifford-Wavelet Transform and the Un-

certainty Principle, Advances in Applied Clifford Algebras, 2019, Vol. 29, pp. 1-23.

DOI:10.1007/s00006-019-1026-4.

• Banouh, H., Ben Mabrouk. A. A Sharp Clifford-Wavelet Heisenberg-type Uncertainty
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Principle, Journal of Mathematical Physics, 2020, Vol. 62, Issue 9. DOI:10.1063/5.0015989.

5.2 Perspectives

5.2.1 Practical Applications

We attend to apply the results of this thesis to some concrete Clifford wavelets such as Clifford-

Hermite, Clifford-Bessel, Clifford-Laguerre and Clifford-Gegenbauer wavelets [20, 35, 33, 8, 7, 6,

10, 21] and other.

5.2.2 Donoho-Stark uncertainty principle for the Clifford wavelet trans-

form

Following [67], [2] and [98] we may try to extend the Dohono-Stark uncertainty principle for

ε-concentrated Clifford wavelet transforms. We recall that for Ω ⊂ Rn the function f : Ω −→ Rn

is ε-concentrated in the Lp norm on Ω if there exists εΩ > 0 such(∫
Rn\Ω

|f(x)|pdV (x)

) 1
p

≤ εΩ ‖ f ‖p .

5.2.3 Continuous shearlet transform in Clifford algebra

As for the continuous wavelet transform, the shearlet transform [118, 50, 117, 51] can be de-

rived from a square-integrable group representation of a specific group namely the shear group

R∗ × Rn−1 × Rn with the operators defined the following way : we set for a ∈ R∗ and s =

(s1, s2, · · · , sn−1) ∈ Rn−1 the dilation matrix

Aa =


a . . . 0

...
. . .

...

0 . . . a


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and the shear matrix

Ss =



1 s1 s2 . . . sn−1

0 1 s1 s2

...
...

. . . . . . . . .
...

...
. . . 1 s1

0 . . . . . . 0 1


.

We may try to extend this transform into the Clifford algebra Rn and deduce a new uncertainty

principle (see for example [167, 49, 178, 36, 147, 136]) and formulate new uncertainty principles

.

5.2.4 New uncertainty principles for the Clifford wavelet transform

We may find a generalised result for the Lp-variance instead of the square integrable one and a

logarithmic uncertainty principle based on [136] and [135].

5.2.5 Controllability of Clifford algebra valued Systems

One future perspective is to introduce the theory of controllability and observability in the

settings of non-commutative Clifford algebra Rn and apply it to some practical problems as

three dimensional movements of planes and space shuttles [185, 73, 184, 186, 104]
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