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Abstract—We provide a subclass of parametric timed automata (PTA) that we can actually and efficiently analyze, and we argue that it

retains most of the practical usefulness of PTA for the modeling of real-time systems. The currently most useful known subclass of

PTA, L/U automata, has a strong syntactical restriction for practical purposes, and we show that the associated theoretical results are

mixed. We therefore advocate for a different restriction scheme: since in classical timed automata, real-valued clocks are always

compared to integers for all practical purposes, we also search for parameter values as bounded integers. We show that the problem of

the existence of parameter values such that some TCTL property is satisfied is PSPACE-complete. In such a setting, we can of course

synthesize all the values of parameters and we give symbolic algorithms, for reachability and unavoidability properties, to do it

efficiently, i.e., without an explicit enumeration. This also has the practical advantage of giving the result as symbolic constraints

between the parameters. We finally report on a few experimental results to illustrate the practical usefulness of our approach.

Index Terms—Timed automata, parameters, synthesis, model-checking, real-time systems, symbolic algorithms
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1 INTRODUCTION

REAL-TIME systems ar e ubiquitous, and to ensure their
correct design it seems natural to rely on the mathemat-

ical framework provided by formal methods. Within that
framework, the model-checking of timed models is becom-
ing ever more efficient. It nevertheless requires a complete
knowledge of the system. Consequently, the verification can
only be performed after the design stage, when the global
system and its environment are known. Getting a complete
knowledge of a system is often impossible and even when it
is possible, it increases the complexity of the conception and
the verification of systems. Moreover, if the model of the
system is proved wrong or if the environment changes, this
complex verification process must be carried out again. It
follows that the use of parametric timed models is certainly
a very interesting approach for the design of real-time
systems.

However, for general parametric formalisms such as
parametric timed automata (PTA), the existence of a param-
eter value such that some state is reachable is undecidable
and there is currently no algorithm that solves the synthesis
problem of parameter values except for severely restricted
subclasses, whose practical usability is unclear.

It is then a challenging issue to define a subclass of
parametric timed automata, which retains enough of its
expressive power and such that, for both reachability and
unavoidability properties, the existence of parameter values
is decidable and for which there exist efficient symbolic syn-
thesis algorithms.

1.1 Related Work

Parametric timed automata have been introduced by Alur
et al. in [3], as a way to specify parametric timing con-
straints. They study the parametric emptiness problem
which asks if there exists a parameter valuation such that
the automaton has an accepting run. The problem is
proven undecidable for PTA that use three clocks and six
parameters, and applies to both dense and discrete time
domain. In [12], the undecidability proof is extended for
parametric timed automata that use only strict inequal-
ities. Further in [18], Hune et al. identify a subclass of
PTA, called lower bound/upper bound (L/U) automata,
for which the emptiness problem is decidable. However,
their model-checking algorithm, that uses Difference
Bound Matrix as data structure, might not terminate.
Decidability results for L/U automata have been further
investigated by Bozzelli and La Torre in [8]. They consider
infinite accepting runs and liveness properties, and show
that main decision problems such as emptiness, finiteness
and universality for the set of parameter valuations are
decidable and PSPACE-complete. They also study con-
strained versions of emptiness and universality, where
parameters are constrained by linear systems of equalities
and inequalities, and obtain decidability if parameters of
different types (lower and upper bound parameters) are
not compared in the linear constraint. They show how to
compute the explicit representation of the set of parame-
ters, when all the parameters are of the same type
(L-automata and U-automata).

An approach for the verification of Parametric timed
computation tree logic (PTCTL) formulae has been devel-
oped in [36] by Wang, where the problem has been proved
decidable. A more general problem is studied in [9], where
parameters are allowed both in the model and the desired
property (PTCTL formula). The authors show that the
model-checking problem is decidable and the parameter
synthesis problem is solvable, in discrete time, over a PTA
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with one parametric clock, if equality is not allowed in the
formulae.

In [4], the authors develop a synthesis algorithm that
starts from a reference parameter valuation and derives
constraints on parameters, ensuring that the behaviors of
PTA are time-abstract equivalent. They prove the termina-
tion in the acyclic case (all the traces of the automaton are
acyclic), while in the general case, the algorithm is not
guaranteed to terminate. Henzinger et al. in [16], study
more general, hybrid, systems extended with parameters.
Their state-space exploration algorithms have been imple-
mented in the model-checking tool HyTech. In [35], the
authors analyze time Petri nets (TPNs) with parameters in
timing constraints. A property is given as a PTCTL formula,
but their model-checking algorithm consists in analysis of a
region graph for each parameter valuation. In [34], the
authors extend time Petri nets with inhibitor arcs with
parameters, and propose an abstraction of the parametric
state-space and semi-algorithms for the parametric synthe-
sis problem, considering simple PTCTL formulae.

1.2 Contributions

L/U-automata can be seen as the most useful subclass of
PTA supported by many decidability results for reachabil-
ity-like properties. We show that the existence of parameter
valuations such that a given unavoidability property is sat-
isfied is undecidable though. We also pinpoint some diffi-
culties with the actual synthesis of parameter values for
L/U automata and reachability properties.

We therefore propose a different way of subclassing
PTA: instead of syntactical restrictions of guards and
invariants we propose a novel approach based on restrict-
ing the possible values of the parameters. To obtain decid-
ability results, we show that we have to restrict these
values to bounded integers. From a practical point of
view, the subclass of PTA in such a setting is not that
restrictive since the temporal constraints for timed autom-
ata (TA) are usually defined on natural (or rational) num-
bers. It is also uncommon in practice not to have a bound
(possibly a quite big one) on the delay modelled by some
parameter and if we do not, it might be that the constraint
is altogether not needed. Nevertheless, this subclass is
restrictive enough to make the problems we address
decidable and to allow symbolic synthesis algorithms of
parameter values.

We give symbolic algorithms to synthesize the set of all
parameters valuations for reachability and unavoidability
properties, without having to enumerate all the possibilities.
These algorithms are implemented in our tool, Rom�eo.

Finally, we show that the problem of the existence of
bounded integer valuations for PTA such that some prop-
erty is satisfied is PSPACE-complete for a significant
number of properties, which include Timed Computation
Tree Logic, and also that lifting either of the boundedness
or the integer assumption leads to undecidability even for
reachability.

1.3 Organization of the Paper

Section 2 gives the basic definitions related to the formalism
of parametric timed automata. Section 3 recalls the main

positive results on L/U-automata and gives new negative
results that make more precise the practical usefulness of
that model. This motivates a different restriction scheme
based on limiting the possible values of the parameters.
Section 4 presents symbolic algorithms for the synthesis
problems when parameter valuations are searched as
bounded integers. In its development this section also
exhibits semi-algorithms for the general setting and the
(unbounded) integer setting. Section 5 gives the computa-
tional complexities of the associated problems. Finally, Sec-
tion 6 discusses the performance in practice of the proposed
approach, illustrated on a few small but realistic case-stud-
ies. We conclude with Section 7.

2 PARAMETRIC TIMED AUTOMATA

Z is the set of integers, N the set of natural numbers and Q is
the set of rational numbers. R is the set of real numbers. R�0

is the set of non-negative real numbers and R>0 ¼
R�0 n f0g. For any closed interval ½a; b� of R with a; b 2 Z,
we denote by ½a::b� its intersection with Z.

Let X be a finite set. 2X denotes the powerset of X and
jXj the size ofX.

A linear expression on X is an expression generated by the
following grammar, for k 2 Z and x 2 X: � ::¼ k j k �
x j �þ �.

Without loss of generality, we consider reduced linear
expressions � in which each element of X occurs at most
once and with at most one constant term. We let Coeffð�; xÞ
denote the coefficient of variable x 2 X in �. If x does not
occur in � then Coeffð�; xÞ ¼ 0. Coeffð�; xÞ is well defined
since � is reduced.

^ denotes the logical conjunction. A linear constraint on X
is an expression generated by the following grammar, with
� a linear expression on X, �2 f>;�g: g ::¼ � � 0 j g ^ g.
We denote by CðXÞ the set of linear constraints onX.

Let V � R. A V -valuation forX is a function fromX to V .

We denote by V X the set of V -valuations onX.
For any subset X0 � X, and a V -valuation v on X, we

define the restriction vjX0 of v to X0 as the unique V -valua-

tion on X0 such that vjX0 ðxÞ ¼ vðxÞ for all x 2 X0. If Y is a set

of valuations on X, then YjX0 denotes its projection on X0,
i.e., YjX0 ¼ fvjX0 j v 2 Y g.

For a linear expression (resp. constraint) � on X and a
V -valuation v on X0 � X, we denote by vð�Þ the linear
expression (resp. constraint) obtained by replacing in � each
element x of X0 by the real value vðxÞ. Note that if X0 ¼ X
then we obtain a real number (resp. a boolean value).

Given some arbitrary order on X, a valuation can be seen
as a real vector of size jXj. The set of valuations satisfying

some linear constraints is then a convex polyhedron of RjXj.
A zone is a convex polyhedron defined only by conjunc-

tions of constraints of the form x� y � c or x � c, with
x; y 2 X; c 2 Z and �2 f<;	;�; >g.

If Z is a convex polyhedron on variable set X defined by
the linear constraints L1; . . . ; Ln, X

0 � X and v is a valuation
on X0, then vðZÞ is the convex polyhedron defined by the
linear constraints vðL1Þ; . . . ; vðL2Þ.

Let X (resp. P ) be a finite set. We call clocks (resp. parame-
ters) the elements of X (resp. P ). A simple (parametric clock)
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constraint g on X (and P ) is a linear constraint on X [ P
such that exactly one element x ofX occurs in each conjunct
of the expression (not necessarily the same for each con-
junct), and Coeffðg; xÞ 2 f�1; 1g. We denote by BðX;P Þ the
set of such simple constraints and B0ðX;P Þ the set of simple
constraints in which the clock variable always has coeffi-
cient �1. As before, for any V -valuation v on P , and any
simple constraint g on X [ P , vðgÞ is the linear constraint on
X obtained by replacing each parameter p 2 P by the real
value vðpÞ.

If v is a parameter valuation (on P ) and x a clock valua-
tion (on X), we denote by x

v the valuation on X [ P such

that x
v jP ¼ v and x

v jX ¼ x. Similarly, for a set of clock valua-

tions Z, we denote by Z
v the set of valuations x on X [ P

such that xjX 2 Z and xjP ¼ v.

We further define the null valuation ~0X on X as
~0XðxÞ ¼ 0; 8x 2 X. For any subset R ofX, and any valuation
v on X, we denote by v½R� the valuation on X such that
v½R�ðxÞ ¼ 0 if x 2 R and v½R�ðxÞ ¼ vðxÞ otherwise. Finally
vþ d, for d � 0, is the valuation such that ðvþ dÞðxÞ ¼
vðxÞ þ d for all x 2 X.

We now introduce parametric timed automata as an
extension of the classical model of timed automata.

Definition 1 (Parametric TA). A Parametric Timed Automaton
A is a tuple ðL; l0;S; X; P;E; InvÞ where: L is a finite set of
locations; l0 2 L is the initial location; S is a finite set of
actions; X is a finite set of clocks; P is a finite set of parame-

ters; E � L
 S
 BðX;P Þ 
 2X 
 L is a finite set of edges:
if ðl; a; g; R; l0Þ 2 E then there is an edge from l to l0 with
action a, (parametric) guard g and set of clocks to reset R;
Inv : L ! B0ðX;P Þ assigns a (parametric) invariant to each
location.

For any Q-valuation v on P , the structure vðAÞ obtained
from A by replacing each simple constraint g by vðgÞ is a
timed automaton with invariants [2], [17] (TA). In a similar
way, if e ¼ ðl; a; g; R; l0Þ is an edge of a PTA A, then
vðeÞ ¼ ðl; a; vðgÞ; R; l0ÞÞ is an edge of a timed automaton
vðAÞ.

The behavior of a PTA A is described by that of all the
timed automata obtained by considering all possible valua-
tions of the parameters.

Definition 2 (Semantics of a PTA). Let A ¼ ðL; l0;S; X;
P;E; InvÞ be a PTA and v be an R-valuation on P . The seman-
tics of vðAÞ is given by the timed transition system ðQ; q0;!Þ
with:

� Q ¼ fðl; uÞ 2 L
RX
�0 j uðvðInvðlÞÞÞ is trueg;

� q0 ¼ ðl0;~0XÞ (q0 2 Q due to the special form of
invariants);

� Time transitions. ðl; uÞ !d ðl; uþ dÞ, with d � 0, iff
8d0 2 ½0; d�; ðl; uþ d0Þ 2 Q;

� Action transitions. ðl; uÞ !a ðl0; u0Þ, with a 2 S, iff
ðl; uÞ; ðl0; u0Þ 2 Q, there exists an edge ðl; a; g; R; l0Þ 2
E, u0 ¼ u½R� and uðvðgÞÞ is true.

A finite run is a finite sequence r ¼ q1a1q2a2 . . . an�1qn

such that for all i, qi 2 Q, ai 2 S [R�0 and qi !ai qiþ1. For
any run r, we define EdgesðrÞ ¼ e1 . . . em as the sequence of
edges of the automaton taken in the discrete transitions

along the run. We suppose without loss of generality that
these edges are indeed thus uniquely defined. A run is
maximal if it either has an infinite number of discrete actions
or cannot be extended by a discrete action. We denote
by RunsðvðAÞÞ the set of runs that start in the initial state
of vðAÞ.

We can define several interesting parametric problems
on PTA. Among them we can ask: does there exist valua-
tions for the parameters such that some property is satis-
fied? And, even more interesting, can we compute a finite
representation of the set of these valuations? Given a class
of problems P (e.g., reachability, unavoidability, TCTL
model-checking, control) these two questions translate into
what we respectively call the P-emptiness and the P-syn-
thesis problems:

P-emptiness problem:

INPUTS: A PTA A and an instance f of P
PROBLEM: Is the set of valuations v of the parameters
such that vðAÞ satisfies f empty?

P-synthesis problem:

INPUTS: A PTA A and an instance f of P
PROBLEM: Compute the set of valuations v of the
parameters such that vðAÞ satisfies f.

In this paper we mainly focus on reachability and
unavoidability properties and call the corresponding prob-
lems EF and AF. Thus, given a PTA A and a subset G of its
locations, EF-emptiness asks: does there exist a valuation v
of the parameters such that G is reachable in vðAÞ from the
initial state? And AF-emptiness asks: does there exist a val-
uation v of the parameters such that all maximal runs in
vðAÞ from the initial state go through G? The related synthe-
sis problems immediately follow.

In [3], the EF-emptiness problem was proved undecid-
able for PTA. We give further negative results in the next
section.

3 L/U-AUTOMATA

We briefly present the proof for undecidability of EF-empti-
ness for PTA from [3], as we will use it later.

The proof is based on a reduction from a 2-counter
machine halting problem, known to be undecidable [29].
Recall that a two counter machine M has a finite number
of locations ðl1; . . . ; lnÞ and two non-negative counters C1

and C2, as well as instructions that either decrement,
increment or test for zero the value of one counter at a
time (each instruction can change the location). A config-
uration of the machine is a tuple ðl; c1; c2Þ where l is a
location of the machine, c1 a value for C1 and c2 a value
for C2. The machine halts when it reaches a given location
lhalt, from the initial configuration ðl1; 0; 0Þ, for some val-
ues of the counters.

A parametric timed automaton AM is constructed in a
way that it reaches a corresponding halting location lhalt for
some parameter valuation iff the 2-counter machine M
halts.

AM has n locations, each one corresponding to a location
of the 2-counter machine, plus some auxiliary locations,
uses three clocks x; y; z and two parameters a and b. For
every instruction of the 2-counter machine, a path between
appropriate locations is added to AM (auxiliary locations
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are used to maintain the counter values along the path).
Counter values are encoded in the values of clocks
y ¼ b� c1 and z ¼ b� a� c2, directly using parameters
instead of their valuations (vðaÞ and vðbÞ) to simplify the
writing. The states of AM are tuples consisting of a current
location and values of clocks ðl; vðxÞ; vðyÞ; vðzÞÞ.

Fig. 1 shows a path to increment counter C1, [3].
When location li is reached, AM is in a state ðli; x ¼ 0;

y ¼ b� c1; z ¼ b� a� c2Þ which encodes the configuration
ðli; c1; c2Þ of the machine.

In location li we spend exactly c1 þ 1 time units before we
reach the first auxiliary location. As we reach the location lj
when x ¼ b (the guard between the last auxiliary location
and lj is x ¼ b), the duration of the path is b. Since we reset y
after c1 þ 1 time units, the new value of y is b� c1 � 1.

The new value of clock z when reaching lj can be calcu-
lated similarly, by subtracting the time passed before the
reset of z from the total duration of the path z ¼ b� ða þ
c2Þ ¼ b� a� c2, which means that the value of z is
preserved.

After we traverse the path, we end up in a state ðlj; x ¼ 0;
y ¼ b� c1 � 1; z ¼ b� a� c2Þ, which correctly encodes the
increment of the first counter and the new configuration of
the machine ðlj; c1 þ 1; c2Þ.

In order to traverse the gadget, the clock values in each
location must be such that the guard of the outgoing edge is
satisfiable, at least after some time elapsing. For instance, in
the second location of the increment gadget, x ¼ c1 þ 1, and
therefore we must have c1 þ 1 	 a. This generates con-
straints on the parameters.

If the machine halts, AM reaches the corresponding
halting location lhalt, with the set of possible parameter
valuations fa � c1; b� a � c2g, where c1 and c2 are the
maximal values of the counters. If the machine does not
halt, then AM does not reach lhalt for every parameter val-
uation. Therefore, the EF-emptiness problem for PTA is
undecidable.

The following syntactic subclass of PTA, called L/U-
automaton, has been proposed in [18] as a decidable sub-
class for the EF-emptiness problem. It relies on the notion of
upper and lower bounds for parameters:

Definition 3 (Lower and upper bounds). Let g be a single
conjunct of a simple clock constraint on the set of clocks X and
the set of parameters P . Let x be the clock variable occurring in
g. g is an upper (resp. lower) bound constraint if Coeffðg; xÞ
is negative (resp. positive).

A parameter p is an upper (resp. lower) bound in g if
Coeffðg; pÞ is positive (resp. negative).

A parameter p is an upper (resp. lower) bound in the PTA
A if for each conjunct g of each simple clock constraint in the
guards and invariants of A, either Coeffðg; pÞ ¼ 0 or p is an
upper (resp. lower) bound in g.

For example, in a constraint g ¼ x � b ^ x < a, b is a
lower bound and a is an upper bound in g.

Definition 4 (L/U-automaton). A PTA A is an L/U-automa-
ton if every parameter is either an upper bound or a lower
bound in A.

A PTA A is a U-automaton (resp. L-automaton) if every
parameter is an upper (resp. lower) bound in A.

3.1 Emptiness

EF-emptiness is PSPACE for L/U-automata [18] and, more
generally, emptiness, universality and finiteness of the valu-
ation set are PSPACE-complete for infinite runs acceptance
properties [8]. These good results are based on a monotonic-
ity property that L/U-automata have: decreasing lower
bounds or increasing upper bounds only add behaviors. So if
we set all lower bounds to 0 and all upper bounds to a large
enough constant that we can compute, then the resulting
timed automaton contains all the possible behaviors. This
makes these automata very well-suited for reachability-like
properties. For other properties however this is not enough.
For AF properties, increasing lower bounds or decreasing
upper bounds can suppress a run that was a counter-exam-
ple to the property, and then make this property true.

We now indeed prove, with a reduction from the halting
problem of 2-counter machines [29], that the AF-emptiness
problem for L/U-automata is undecidable.

Theorem 1. The AF-emptiness problem is undecidable for L/U-
automata.

Proof. As a preliminary, consider PTA Eða; a0Þ in Fig. 2, in
which invariants are given in boxes above the corre-
sponding locations. Clearly, starting from i0, we have
AFði2Þ if and only if a ¼ a0, because any run that reaches
i1 before y is equal to a can be extended by delaying a
non null amount of time into a run that will be blocked
by the invariant of i2. So all runs should enter i1 with
y ¼ a, which is the case if and only if a ¼ a0.

Using this gadget and adapting those from [3], pre-
sented in the beginning of Section 3, we reduce the halt-
ing problem of 2-counter machines to the AF-emptiness
problem for L/U-automata.

Recall that such a machine has a finite number of loca-
tions and two non-negative counters C1 and C2, as well
as instructions that either decrement, increment or test
for zero the value of one counter at a time. Like in the
proof of [3], we consider without loss of generality that,
in the zero test of some counter, either it succeeds (the
counter is indeed 0) and the machine continues or it fails
and the machine blocks.

A configuration of the machine is a tuple ðl; c1; c2Þ
where l is a location of the machine, c1 a value for C1 and
c2 a value for C2. The machine halts when it reaches a
given location. The halting problem for 2-counter
machines is undecidable [29].

We will have that the machine reaches its lhalt location
iff for some parameter valuation, a corresponding

Fig. 1. C1 increment gadget.

Fig. 2. Parametric Timed Automaton Eða; a0Þ such that, starting from i0,
AFi2 iff a ¼ a0.
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location lhalt is unavoidable in the L/U-automaton, i.e., it
satisfies the property AF lhalt.

For each location li of the machine we add a corre-
sponding location li in the L/U-automaton. The latter
also has three clocks x; y; z and four parameters a; b; a0

and b0. Parameters a and b are upper bounds and param-
eters a0 and b0 are lower bounds.

Throughout the proof, we write the states of the
automaton as tuples ðli; xi; yi; ziÞ corresponding to loca-
tion li, value xi for x, yi for y and zi for z. Figs. 3 and 4
give the detail of the gadgets we use to encode the opera-
tions. They basically correspond to the gadgets of [3] in
which the lower bound and upper bound constraints
have been separated to obtain an L/U-automaton. Also
the upper bounds are expressed as invariants to remove
the runs ending with infinite delay in each location.

Each configuration ðli; c1; c2Þ of the machine is simu-
lated by a state, belonging to some run r�, and of the
form ðli; 0; yi; ziÞ, with the following counter encoding:
yi ¼ b� c1 and zi ¼ b� a� c2. Before we precisely define
what run is r� we need to have a closer look at the ini-
tialization gadget.

a) Initialization gadget. The initial configuration (loca-
tion l1, clock values x ¼ 0; y1 ¼ b; z1 ¼ b� a) is set using
the gadget presented in Fig. 3.

We start, in sequence, by the gadget we have seen
before, for both pairs of parameters a; a0 and b; b0. All
runs go through these first two gadgets iff a ¼ a0 and
b ¼ b0. Furthermore, since AF lhalt implies AF s0, it also
implies that a ¼ a0 and b ¼ b0 in s0 (and therefore all sub-
sequent locations).

Now, assuming this necessary condition is met, we
obtain gadgets quasi-identical to those of [3], except we
cannot delay forever in each location. As a consequence,
there is only one run generated by this automaton, which
is the run r� encoding the counter machine. Let us detail
this run in all gadgets.

Initially, we have the state ðs0; 0; 0; 0Þ of the automa-
ton. By delaying in order to enable the outgoing edge, we
obtain state ðs0; a; a; aÞ. In order to take the outgoing
edge, the invariant of the target location must be satis-
fied, which implies a 	 b. By taking the edge, we obtain
state ðs00; a; a; 0Þ and, by delay, we get state ðs00; b; b; b� aÞ.
Finally, we take the outgoing edge and get the expected
state ðl1; 0; b; b� aÞ.

b) Increment, decrement, zero testing. To simulate incre-
ment, we use the gadget given in Fig. 4 for incrementing
counter C1 and going from state li to lj.

We start from some state ðli; 0; b� c1; b� a� c2Þ, for
c1; c2 2 N and prove that we reach state ðlj; 0; b� ðc1 þ
1Þ; b� a� c2Þ.

So, first we delay in li to enable the outgoing edge and
obtain state ðli; c1 þ 1; bþ 1; b� a� c2 þ c1 þ 1Þ. In order

to take it, we must have c1 þ 1 	 a. Then we take the
edge and obtain state ðsi; c1 þ 1; 0; b� a� c2 þ c1 þ 1Þ.
Again, we delay and get state ðsi; a; a� c1 � 1; b� c2Þ.
Then we take the outgoing edge, delay and get
ðs0i; aþ c2; a� c1 � 1þ c2; bÞ. Again we take the outgoing
edge, which implies that aþ c2 	 b, and obtain state
ðs00i ; aþ c2; a� c1 � 1þ c2; 0Þ. We delay, which gives state
ðs00i ; b;�c1 � 1þ b; b� a� c2Þ. And finally, by taking the
edge to lj we obtain the expected state ðlj; 0; b� ðc1 þ 1Þ;
b� a� c2Þ.

Simulating decrement is similar, using invariant
y 	 b� 1 for li instead of y 	 bþ 1 and guard y � b0 � 1
instead of y � b0 þ 1. The gadget for incrementing (resp.
decrementing) C2 is obtained in the same way, by replac-
ing invariant y 	 bþ 1 by y 	 b, guard y � b0 þ 1 by
y � b0, invariant z 	 b by z 	 bþ 1 (resp. z 	 b� 1) and
guard z � b0 by z � b0 þ 1 (resp. z0 � b0 � 1).

Finally, zero-testing C1 (resp. C2) can be done with the
same gadget, by replacing invariant y 	 bþ 1 by y 	 b,
guard y � b0 þ 1 by y � b0, and by adding conjunct x 	 0
(resp. x 	 a) in the invariant of li (resp. s

0
i).

If the machine does not halt, then it does not reach
location lhalt and therefore the automaton does not reach
the corresponding location either, so the AF-property
never holds for any parameter valuation.

If the machine halts, then no run could be blocked in
the zero-testing gadget since zero-testing was always
done when the counter was indeed zero and, similarly to
[3], the valuations such that the property holds are given
by the set fa0 ¼ a and b0 ¼ b and a � c�1 and b� a � c�2g,
where c�1 (resp. c�2) is the maximum value of the counter
C1 (resp. C2) over the finite execution of the machine.
These constraints define a convex polyhedron that is
non-empty: for instance, a0 ¼ a ¼ c�1 and b0 ¼ b ¼ c�1 þ c�2
belongs to it. tu

3.2 Synthesis

In [8] the authors prove that for L-automata and U-autom-
ata, the solution to the synthesis problem for infinite runs
acceptance properties can be explicitly computed as a linear
constraint of size doubly-exponential in the number of
parameters. That is to say this solution can be expressed as
a finite union of convex polyhedra.

With a different look at the idea used in [8] to prove that
the constrained (i.e., with initial constraints) emptiness prob-
lem for infinite runs acceptance properties is undecidable
for L/U-automata, we can express a new and quite strong
result on the solution to the EF-synthesis problem for L/U-
automata.

Theorem 2. If it can be computed, the solution to the EF-synthe-
sis problem for L/U-automata cannot be represented using any
formalism for which emptiness of the intersection with equality
constraints is decidable.

Fig. 3. Setting up the initial configuration.

Fig. 4. C1 increment gadget.
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Proof.We use the same idea as in [8] for proving that con-
strained emptiness for infinite runs acceptance proper-
ties is undecidable. Suppose that on the contrary the
solution set can be represented using such a formalism.
Consider a PTA A. For each parameter p of A that is
used both as an upper bound and a lower bound,
replace its occurences as upper bounds by a fresh
parameter pu and its occurrences as lower bounds by a
fresh parameter pl. We therefore obtain an L/U-autom-
aton. Let V be the solution to the EF-synthesis problem
for that L/U-automaton. Let V 0 be the set of equality
constraints pu ¼ pl for each of the parameters p that
were duplicated as pu and pl. By hypothesis we can
decide if V \ V 0 ¼ ; and therefore solve the emptiness
problem for A, which contradicts the undecidability of
EF-emptiness for PTA. tu
Note that, in particular, Theorem 2 rules out the possi-

bilty of computing the solution set as a finite union of
polyhedra.

4 INTEGER PARAMETRIC PROBLEMS

The decidability results related to emptiness problems
for L/U-automata are mixed: properties related to reach-
ability are decidable but very simple properties that are
not compatible with the monotonicity property, like
unavoidability, are undecidable. As for the actual synthe-
sis of the constraints between parameters that describe
the set of valuations that satisfy even the simple case of
reachability properties, we have to resort to L- or U-
automata, that have severe restrictions regarding their
use of parameters.

We therefore advocate for different kinds of restric-
tions to PTA. Note that with only one irrational constant
in the guards of timed automata, reachability is undecid-
able [28]. For all practical purposes these constants are
actually always chosen as integers. Even if we insist on
rationals, we can make those integers through adequate
scaling and we usually have to since most tools only
allow them as integers. So, instead of using syntactical
restrictions in the guards and invariants of PTA, we think
it makes a lot of sense to search for parameter values as
bounded integers.

We therefore focus on synthesizing (or just proving
the existence of) integer valuations for the parameters: a
valuation v on a set X is an integer valuation if
8x 2 X; vðxÞ 2 Z. This induces new emptiness and syn-
thesis problems that we call integer problems (e.g., inte-
ger EF-emptiness problem).

By insisting that these integer values should be bounded
we will be (unsurprisingly) able to make all parametric
problems decidable, provided the associated non-paramet-
ric problems, obtained by choosing one particular valuation,
are decidable of course.

These decidability results are however only interesting
for practical purposes if we can solve the corresponding
synthesis problems symbolically, i.e., without explicitly
enumerating all the possible valuations.

To this end, we first introduce symbolic semi-
algorithms to solve the synthesis problems in the general
setting (possibly non integer valuations) that are based

on a quite straightforward extension of the symbolic
zone-based state-space exploration that is ubiquitous for
timed automata [24].

4.1 Symbolic States for PTA

We therefore extend the notion of symbolic state of timed
automata to PTA, as well as the usual operators associated
to them:

Definition 5 (Symbolic state). A symbolic state of a PTA A,
with set of clocks X and set of parameters P , is a pair ðl; ZÞ
where l is a location ofA and Z is a set of valuations onX [ P .

For state space computation, we define classical opera-
tions on valuation sets:

� future. Z% ¼ fv0 j v 2 Z ^ v0ðxÞ ¼ vðxÞ þ d; d � 0 if
x 2 X; v0ðxÞ ¼ vðxÞ if x 2 Pg;

� past. Z. ¼ fv0 j v 2 Z ^ v0ðxÞ � 0; v0ðxÞ þ d ¼ vðxÞ;
d � 0 if x 2 X; v0ðxÞ ¼ vðxÞ if x 2 Pg;

� reset of the clock variables in set R � X. Z½R� ¼
fv½R� j v 2 Zg;

� initial symbolic state of the PTA A ¼ ðL; l0;S; X;

P;E; InvÞ. InitðAÞ ¼ ðl0; fv 2 RX[P j vjX 2 f~0Xg% ^
vðInvðl0ÞÞgÞ;

� successor by edge e ¼ ðl; a; g; R; l0Þ. Succððl; ZÞ; eÞ ¼
ðl0; ðZ \ gÞ½R�% \ Invðl0ÞÞ:

For S ¼ ðl; ZÞ, when non-ambiguous, we use S in place of
l or Z to simplify the writing a bit. We say that a symbolic
state is reachable if it can be obtained from InitðAÞ by iterative
application of the Succ operator for some finite sequence of
edges.

InitðAÞ is a convex polyhedron and all basic operators
preserve convex polyhedra: intersection does so trivially,
reset is a projection, future can be done by adding a vari-
able t � 0, and for all clocks x adding variables x0 with
constraint x0 ¼ xþ t and finally eliminating variables t
and x for all clocks. These are all basic convex polyhe-
dra-preserving operations. We therefore have the follow-
ing property.

Property 1. For any reachable symbolic state ðl; ZÞ, Z is a convex
polyhedron.

Additionally, future, reset, intersection with some arbi-
trary set are all trivially non-decreasing operations with
respect to the inclusion of sets of states. So we have:

Property 2. Succ is non decreasing with respect to the inclusion
of sets of states: for all edges e, locations l and sets of states Z
and Z0, Z � Z0 ) Succððl; ZÞ; eÞ � Succððl; Z0Þ; eÞ.
We also have the following lemma:

Lemma 1. For any reachable symbolic state ðl; ZÞ, for all edges e
and valuations v, vðSuccððl; ZÞ; eÞÞ ¼ Succððl; vðZÞÞ; vðeÞÞ.

Proof. We prove that the result holds for all suboperations
of Succ. First, vðZÞ% ¼ vðZ%Þ. Let x 2 vðZÞ%. Then there
exists x0 2 vðZÞ and t � 0 such that x ¼ x0 þ t. x0 2 vðZÞ
so x0

v 2 Z, and therefore x0
v þ t 2 Z%. By definition of the

future operation, x0
v þ t ¼ x0þt

v so x0 þ t ¼ x 2 vðZ%Þ. The
other direction and the proof for the reset operation
work in the same way.
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Now we prove that, vðZ \ Z0Þ ¼ vðZÞ \ vðZ0Þ. Let
x 2 vðZ \ Z0Þ. Equivalently x

v ¼ Z \ Z0, i.e., x
v 2 Z and

x
v 2 Z0, which is exactly x 2 vðZÞ \ vðZ0Þ. tu
We can extend the Succ operator to a sequence of edges

e1 . . . en by defining Succððl; ZÞ; e1e2 . . . enÞ ¼ Succð. . .
SuccðSuccððl; ZÞ; e1Þ; e2Þ . . . ; enÞ and considering that for the
empty sequence ;, SuccðS; ;Þ ¼ S.

The following corollaries of Lemma 1 holds:

Corollary 1. For any reachable symbolic state S, for any edge
sequence e1; . . . ; en:

vðSuccðS; e1 . . . enÞ ¼ SuccðvðSÞ; vðe1Þ . . . vðenÞÞ:

Proof. Immediate, by induction on the length of the
sequence. tu

Corollary 2. For each parameter valuation v, reachable symbolic
state S, and state s, we have s 2 vðSÞ if and only if there is a
run of vðAÞ from the initial state leading to s.

Proof. S is reachable so there exists an edge sequence
e1 . . . en such that S ¼ SuccðInitðAÞ; e1 . . . enÞ. Using
Corollary 1, we have vðSÞ ¼ SuccðvðInitðAÞÞ; vðe1Þ . . .
vðenÞÞ. Then, by the classical properties of the zone
abstraction on timed automata, s 2 SuccðvðInitðAÞÞ;
vðe1Þ . . . vðenÞÞ is equivalent to the existence of a run of
vðAÞ (along edges e1 . . . en) from the initial state of vðAÞ
to s, which concludes the proof. tu
Finally, for each integer parameter valuation v, vðAÞ is a

timed automaton with integer bounds in clock constraints.
So each of its reachable symbolic states is defined by a loca-
tion and a zone with integer constants, which are topologi-
cally closed convex unions of the regions [2] of Alur and
Dill (see, e.g., [6]). Therefore such zones have integer
vertices. Hence, with Corollary 1, we have the following
property.

Property 3. For any reachable symbolic state ðl; ZÞ, if v is an inte-
ger parameter valuation then vðZÞ is a (convex) zone with
integer vertices.

4.2 Semi-Algorithms for the General Synthesis
Problems

The following two algorithms are natural extensions of their
timed automata counterpart. The difficulty here is the han-
dling of the parameter valuations.

Let A be a PTA and G a subset of its locations we want to
reach (EF) or make unavoidable (AF).

In both algorithms, conditions are evaluated from top to
bottom and M represents a passed list of symbolic states. It
records the symbolic states that have already been explored
on a given path. Initially, M is empty and, the algorithms
are called with the initial symbolic state InitðAÞ (e.g., for EF,
we compute EFGðInitðAÞ; ;Þ).

We compute forward the reachable symbolic states until
we reach a location in G or we find a loop on the current
path (we compute a symbolic state already present in M).
We backpropagate the “good” parameter valuations, i.e.,
those for which the property is satisfied, through the recur-
sion in the algorithms.

InitðAÞ is a polyhedron and all the operations we perform
(successor, projections, etc.) preserve polyhedra so the
results of both algorithms are finite unions of polyhedra
(but not zones in general).

For EF-synthesis, we basically aggregate the valuations
found when reaching the locations in G:

EFGðS;MÞ ¼
SjP if S 2 G
; if S 2 MS

e2E EFG

�
S0;M [ fSg� otherwise:

S0¼SuccðS;eÞ

8
>><

>>:

For AF-synthesis, at a given symbolic state, the “good”
valuations, for each outgoing path (hence the intersection in
the last line), either allow it to reach G if it can, or cut it off
(by being in the complement of its first symbolic state). A
path that is cut off is indeed not a path that never reaches G.

Cutting a path, even if it does reach G, may also enable a
wider range of parameter values. To illustrate this last
point, consider the simple automaton in Fig. 5. The set of
goal locations is G ¼ f‘1; ‘2g, x is a clock and a a parameter.
If we never cut paths that lead to G then the result is the
intersection of constraints, i.e., a � 2, while the upper edge
could also be cut (a < 2) and the AF property still holds, so
the correct result is a � 0.

Furthermore, we need to forbid reaching states from
which no transition can be taken, even after some delay. In
a symbolic state ðl; ZÞ, these correspond to the complement

of
S

ðl;a;g;R;l0Þ2Eðg \ ZÞ.. We therefore remove all parameter

valuations that allow to reach such a state.

AFGðS;MÞ

¼

SjP if S 2 G

; if S 2 M
�T

e2E
S0¼SuccðS;eÞ

ðAFGðS0;M [ fSgÞ [ ðRP n S0
jP ÞÞÞn

ðRX[P n ð S ðl;a;g;R;l0Þ2Eðg \ SÞ.ÞÞjP otherwise:

8
>>>>>><

>>>>>>:

Note that it is possible to have a global passed list shared
between all paths but this complicates the writing of the
algorithms, especially AF.

The following theorem states that EF and AF are semi-
algorithms for their respective synthesis problems.

Theorem 3. For any PTA A and any subset of its locations G,
upon termination, EFGðInitðAÞ; ;Þ (resp. AFGðInitðAÞ; ;Þ) is
the solution to the EF-synthesis (resp. AF-synthesis) problem.

Proof. In this proof, we use only Lemma 1, its corollary
(Corollary 2), and the basic properties of Succ when
applied to non-parametric sets of states (i.e., states of
timed automata).

Fig. 5. A PTA in which cutting an edge can be useful for AF.
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Let us consider the possibly infinite directed labeled
tree, whose root is labeled by InitðAÞ and for every node
n, if n is labeled by S, then for all edges e of the PTA,
there exists a child n0 labeled by SuccðS; eÞ iff SuccðS; eÞ
is not empty. For easier reference, we also label the arc
from n to n0 by e.

Both algorithms are classical depth-first post-order
traversals of that tree.

Now, consider either EF or AF and suppose it has
terminated. Then only a finite prefix (a subset closed
under the parent relation) T of the infinite tree has
been visited and each leaf must correspond to one of
the leaf conditions of the algorithms or to the absence
of children in the last condition. This means that all
leaves n of the tree are labeled by symbolic states S
such that:

� either S ¼ ðl; ZÞ and l 2 G;
� or S 2 M and, by construction of M, this means

there exists another node on the path from the
root to n also labeled by S;

� or S has no successor.
We start by EF and first state the following lemma,

the proof of which can be found in the appendix,
which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2014.2357445.

Lemma 2. Let n be a node of T , labeled by some symbolic state S,
and such that the subtree rooted at n has depth N . We have:
v 2 EFGðS;MÞ, where M contains the symbolic states label-
ing nodes on the path from the root, iff there exists a state s in
vðSÞ and a run r in vðAÞ, with less than N discrete steps, that
starts in s and reaches G.

Proof.We prove this by induction onN . Note that the tree T
is always non-empty (it contains at least the root which is
labeled by InitðAÞ).

� Case of a leaf n labeled by S: the subtree rooted at
n has depth 1.
– if v 2 EFGðS;MÞ then the only leaf condition

of the algorithm that can be verified is
S ¼ ðl; ZÞ and l 2 G so for all states in vðSÞ,
there is a run with no discrete steps that starts
in s and reaches G.

– if there exists a state s 2 vðSÞ and a run with
no discrete steps that starts in s and reaches
G, then if l is the location of s, we have l 2 G,
and therefore v 2 EFGðS;MÞ.

� Case of a non-leaf node n labeled by S: Suppose
the subtree rooted at n has depth k > 1 and that
for all nodes n0 with subtree rooted at n0 of depth
k0 < k, the property holds.
– if v 2 EFGðS;MÞ then, since n is not a leaf,

the third condition of the algorithm must be
true: v 2 S

e2E
S0¼SuccðS;eÞ

EFGðS0;M [ fSgÞ. Equiv-
alently, there exists a successor n0 of n, labeled
by S0 ¼ SuccðS; eÞ for some edge e such that
v 2 EFGðS0;M [ fSgÞ. Since it is a successor of
n, n0 has depth less than k. So we can use the
induction hypothesis: there exists a run with

less than k� 1 discrete steps, starting in some
state s0 2 vðS0Þ and reaching G in vðAÞ. By
Lemma 1, s0 2 SuccðvðSÞ; vðeÞÞ so s0 has a pre-
decessor s by e in vðSÞ and we get the
expected result.

– if there exists a run r starting in some state
s 2 vðSÞ and reaching G, with less than k dis-
crete steps, then this run has at least 1 discrete
step otherwise n would be a leaf of T . So we

can write it s !d sd !a r0 where a is the action
of some edge e. Then r0 is a run starting from
some state s0 2 SuccðvðSÞ; vðeÞÞ, reaching G
and with less than k� 1 discrete steps. More-
over s0 2 vðS0Þ with S0 ¼ SuccðS; eÞ (by
Lemma 1). So we can apply the induction
hypothesis and v 2 EFGðS0; M [ fSgÞ. Since n
is not a leaf, its value for EFG is given by the
last condition, and therefore v 2 EFGðS;MÞ
by computing the union. tu

With Lemma 2, we immediately have that if
v 2 EFGðInitðAÞ; ;Þ then there exists a run in vðAÞ that
starts in the initial state and reaches G.

In the other direction, suppose there exists such a
run r. Then r is finite and its last state has a location
belonging to G. Let e1; . . . ; ep be the edges taken in r

and consider the branch in the tree T obtained by fol-
lowing this edge sequence on the labels of the arcs in
the tree as long as possible. If the whole edge
sequence is feasible in T , then the tree T has depth
greater or equal to the size of the sequence and we
can apply Lemma 2 to obtain that v 2 EFGðInitðAÞ; ;Þ.
Otherwise, let S ¼ ðl; ZÞ be the symbolic state labeling
the last node of the branch, ek be the first edge in
e1; . . . ; ep that is not present in the branch and s be the
state of r just before taking ek. Using Lemma 1
vðSuccðS; ekÞÞ is not empty so SuccðS; ekÞ is not empty.
Since the node labeled by S has no children in T , it
follows that either l 2 G or there exists another node
on the branch that is labeled by S. In the former case,
then we can apply Lemma 2 to the prefix of r ending
in s and we obtain that v 2 EFGðInitðAÞ; ;Þ. In the latter
case, by Corollary 2, there exists a run along edges
e1 . . . em, with m < k, that reaches s in vðAÞ. From that
run we can construct another run r0 by merging with
the suffix of r that starts from s. r0 has strictly less dis-
crete actions than r and also reaches G and we can
repeat the same reasoning as we have just done. We
can do this only a finite number of times (because the
length of the considered run is strictly decreasing) so
at some point we have to be in some of the other cases
and we obtain the expected result.

Now we consider the case of AF and we give the
following lemma. Again the proof can be found in
the appendix, available in the online supplemental
material.

Lemma 3. Let n be a node of T , labeled by some symbolic state S,
and such that the subtree rooted at n has depth N . We have:
v 2 AFGðS;MÞ, where M contains the symbolic states label-
ing nodes on the path from the root, iff for all states s in vðSÞ
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and all maximal runs r in vðAÞ that starts in s, r reaches G in
less thanN discrete steps.

Proof.

� The case of a leaf in T is exactly the same as for
EF.

� Case of a non-leaf node n labeled by S: Suppose
the subtree rooted at n has depth k > 1 and that
for all nodes n0 with subtree rooted at n0 of depth
k0 < k, the property holds.
– if v 2 AFGðS;MÞ, since n is not a leaf, the third

condition of the algorithm must be true: First,

v 62 ðRX[P n ð S ðl;a;g;R;l0Þ2E ðg \ SÞÞÞ.ÞjP . This

means that for all states s in vðSÞ, there is at
least one edge that can be taken, possibly after
some delay. Now for all edges e that can be
taken, we further have that, if we note
S0 ¼ SuccðS; eÞ ¼ ðl0; Z0Þ, either v 2 AFGðS0;
M [ fSgÞ or v 2 R

jP j
�0n Z0

jP . In the latter case,

vðS0Þ ¼ ; so, by Lemma 1, the edge e cannot
be taken in vðAÞ from vðSÞ, so only
v 2 AFGðS0;M [ fSgÞ holds. As before, the
depth of the subtree rooted at the successor
node of n labeled by S0, is less than k� 1 and
we can therefore apply the induction hypothe-
sis to S0 and thus obtain the expected result.

– if for all states s in vðSÞ and all maximal
runs r in vðAÞ that starts in s, r reaches G
in less than k discrete steps, then, as for EF,

we can write r ¼ s !d sd !a r0 where a is the
action of some edge e. Then r0 is a maximal
run starting from some state s0 2 SuccðvðSÞ;
vðeÞÞ ¼ vðS0Þ with S0 ¼ SuccðS; eÞ (using
Lemma 1), which reaches G in less than
k� 1 discrete steps. For a given e, the set of
the first states of the runs r0, plus those
obtained from them by a delay respecting
the invariant (who also belong to one of
those runs), is exactly SuccðvðSÞ; vðeÞÞ ¼
vðS0Þ (using once more Lemma 1). So we
can apply the induction hypothesis to vðS0Þ
and v 2 AFGðS0;M [ fSgÞ. Since this is true
for all edges e that are first taken by all the
runs r, v 2 T

e2E
S0¼SuccðS;eÞ

AFGðS0;M [ fSgÞ.
Finally, since all those maximal runs r0

reach G, there is no state in vðS0Þ that
cannot take, possibly after some delay, any
discrete transition anymore. Then v 2
AFGðS;MÞ using the third condition of the
algorithm.

tu
Similarly to EF, Lemma 3 immediately implies that if

v 2 AFGðInitðAÞ; ;Þ then G is unavoidable in vðAÞ.
In the other direction, suppose that G is unavoidable

in vðAÞ. Then all maximal runs starting in the initial state
of vðAÞ reachG. In the same fashion as for EF, we can fol-
low each of those runs along discrete edges in the tree T .
If they all reach G “within” the tree T then Lemma 3

gives us the result we expect. If not then there exists a
run r in vðAÞ that reaches G by taking discrete edges
e1 . . . ep but such that only a strict prefix of that sequence
is feasible in T . Let ek be the last feasible edge in the
sequence and let S ¼ ðl; ZÞ be the label of the last node in
the branch corresponding to the feasible prefix. With the
same reasoning as for EF, the only possible cases are that
either l 2 G or S 2 M. In the former case, Lemma 3 per-
mits to conlude, so consider the latter case. Then M 6¼ ;
and the feasible prefix contains at least one edge. Let em,
with m < k, be the first edge taken from the previous
occurrence of a node labeled by S in the branch corre-
sponding to the feasible prefix. Then SuccðS; em . . . ekÞ ¼
S and, using Lemma 1, we can therefore construct an infi-
nite run in vðAÞ first taking edges e1 . . . em�1 and then
looping on the sequence em . . . ek. Since the unavoidabil-
ity property is satisfied, the prefix of that infinite run up
to edge ek necessarily reaches a location G. And since
that prefix is common with r, we can use Lemma 3 to
conclude the proof. tu

Example 1. In the PTA A1 in Fig. 6, after n > 0 iterations of
the loop, we get the following valuation set Zn ¼ f0 	
x 	 b; 0 	 y; a 	 b; 0 	 na 	 y� x 	 ðnþ 1Þbg. We can
see that we will never have Zm ¼ Zn form 6¼ n and there-
fore neither EFf‘2gðInitðA1Þ; ;Þ nor AFf‘2gðInitðA1Þ; ;Þ will

terminate.

4.3 Extension for the Integer Synthesis Problems

We now modify the two semi-algorithms to symbolically
compute integer valuations. For that we use the notion of
integer hull.

Let n 2 N and let Y be a subset of Rn. We denote by
ConvðY Þ the convex hull of Y , i.e. the intersection of all con-
vex sets containing Y . IntVectsðY Þ denotes the subset of all
elements of Y with integer coordinates. We call those ele-
ments integer valuations (or vectors, or points).

Let Z be a convex polyhedron. Z is topologically closed if
it can be defined using only non-strict inequalities. The clo-

sure of Z, denoted by Z, is the intersection of all closed poly-
hedra containing Z.

The integer hull of a closed polyhedron Z, denoted by
IntHullðZÞ is defined as the convex hull of the integer vectors
of Z: IntHullðZÞ ¼ ConvðIntVectsðZÞÞ.

An integer vertex of a convex polyhedron is a vertex with
integer coordinates. Any (bounded or unbounded) closed
convex polyhedron with all its vertices integer is its own
integer hull [27].

In the rest of this section, we assume without loss of gen-
erality that the polyhedra we consider are topologically

Fig. 6. The PTA A1 with clocks x and y and parameters a and b.
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closed. This is not a restriction since any non-closed polyhe-
dron can be represented by a closed polyhedron with one
extra dimension [15]. Direct handling of not-necessarily-
closed (NNC) polyhedra raises no theoretical issue but
would impair the readability of this section. Let us just note
that we would need only to define the integer hull of an
NNC polyhedron Z as IntHullðZÞ ¼ Z \ ConvðIntVectsðZÞÞ
and, when dealing with the vertices of NNC polyhedra, to
also consider the vertices of their closure as described in [5].

We extend IntVects to symbolic states by: IntVectsððl;
ZÞÞ ¼ ðl; IntVectsðZÞÞ and extend likewise all the other oper-
ators on valuation sets.

We now show that to address our integer parametric
problems, it is sufficient to consider the integer hulls of the
(valuations in the) symbolic states.

We therefore consider the semi-algorithm IEF (resp. IAF)
obtained from EF (resp. AF) by replacing all occurrences
of the operator Succ by ISucc with ISuccððl; ZÞ; eÞ ¼
IntHullðSuccððl; ZÞ; eÞÞ. We also extend ISucc to edge
sequences in the same way as for Succ.

Finally, we can state the main result of this section: IEF
and IAF are correct semi-algorithms for their respective inte-
ger synthesis problems.

Theorem 4. For any PTA A and any subset of its locations G,
upon termination, IEFGðInitðAÞ; ;Þ (resp. IAFGðInitðAÞ; ;Þ) is
the solution to the integer EF-synthesis (resp. AF-synthesis)
problem.

The proof of Theorem 4 is immediate from the proof of
Theorem 3, once we have Lemma 4, which is an equivalent
of Lemma 1 for integer valuations.

Lemma 4. For all integer parameter valuations v, symbolic state
S reachable through ISucc and edge e, vðISuccðS; eÞÞ ¼
SuccðvðSÞ; vðeÞÞ.

Proof. Let v be an integer parameter valuation, S be a
symbolic state reachable through ISucc and e be an
edge in A.

Since S is convex, it certainly holds that IntHullðSuccðS;
eÞÞ � SuccðS; eÞ. And therefore vðIntHullðSuccðS; eÞÞÞ �
vðSuccðS; eÞÞ. By Lemma 1, vðISuccðS; eÞÞ � SuccðvðSÞ;
vðeÞÞÞ.

Since v is an integer parameter valuation and ðl; ZÞ
is a symbolic reachable state, then by property 3,
we have IntHullðSuccðvðSÞ; vðeÞÞÞ ¼ SuccðvðSÞ; vðeÞÞ. Let
u 2 IntHullðSuccðvðSÞ; vðeÞÞÞ, then by Lemma 1, u 2
IntHullðvðSuccðS; eÞÞÞ. Recall that the integer hull of
vðSuccðS; eÞÞ is, by definition, the convex hull of the
integer vectors of vðSuccðS; eÞÞ. So, there exist
z1; . . . ; zn 2 IntVectsðvðSuccðS; eÞÞÞ such that u is a con-
vex combination of the zi’s, i.e., there also exist �1; . . . ;
�n 2 R�0 such that

P
i �i ¼ 1 and u ¼ P

i �izi. Let xi be

the valuations on X [ P s.t. xijP ¼ v and xijX ¼ zi.

Then, since v is an integer valuation, xi 2 IntVects
ðSuccðS; eÞÞ. Furthermore, if x is the valuation on
X [ P s.t. xjP ¼ v and xjX ¼ u, then x ¼ P

i �ixi and

therefore x 2 IntHullðSuccðS; eÞÞ and, by consequence,
u 2 vðIntHullðSuccðS; eÞÞÞ, which concludes the proof. tu

Example 2. Let us go back to the PTA A1 in Fig. 6. After n
iterations of the loop, we still get the same valuation set

Zn ¼ f0 	 x 	 b; 0 	 y; 0 	 na 	 y� x 	 ðnþ 1Þbg. This
is because Zn is its own integer hull. So, again neither
IEFf‘2gðInitðA1Þ; ;Þ nor IAFf‘2gðInitðA1Þ; ;Þwill terminate.

4.4 Bounded Integer Synthesis Problems

To ensure termination of semi-algorithms IEF and IAF, we
now consider that we are searching for bounded integer
parameter valuations, i.e., given a priori some M;N 2 N, we

search for integer valuations in ½�M::N�P . Again, this indu-
ces new emptiness and synthesis problems that we call
ðM;NÞ-bounded integer problems (e.g., ð100; 100Þ-bounded
integer EF-emptiness problem).

4.4.1 Bounding the Clocks of PTA

We now show that, without loss of generality, the PTA can
be considered to have bounded clocks.

First remark that, in a TA with jLj locations a maximal
constant appearing in the constraints of the TA m, and
RðmÞ clock regions (according to the classical definition of
[2]), if some location ‘ is reachable, then there exists a run
that leads to ‘ and visits at most jLj 
RðmÞ states. Since it
takes at most 1 time unit to go from one region to another,
the duration of this run is at most jLj 
RðmÞ time units. So,
if we add invariants x 	 jLj 
RðmÞ for all clocks x in all the
locations of the TA, we obtain an equivalent TA, with
respect to location reachability and unavoidability. Since
RðmÞ is non-decreasing with m, this is also true if we
increase the value ofm.

Now, in our bounded integer parameters setting, we can
compute a maximal constant upper (resp. lower) bound on
clocks for each parametric upper (resp. lower) bound linear
constraint used in the guards and invariants of the automa-
ton: replace the upper bound parameters by their upper
(resp. lower) bound and the lower bound parameters by
their lower (resp. upper) bound. Let K be the maximum of
those maximal constants and of the constants in the non-
parametric constraints of the TA. Using the reasoning
above, we can then add for all clocks x the invariant
x 	 jLj 
RðKÞ to all locations of our PTA and obtain an
equivalent PTA, with respect to location reachability and
unavoidability.

4.4.2 Soundness and Correctness of the Algorithms

For a PTA A with bounded clocks and for any valuation

v 2 ½�M::N�P , vðAÞ is a TA with bounded clocks for which
the finiteness of the number of zones computed with the
Succ operator is thus ensured.

Let us define an extension of the Init operator that accepts
a bound on the values of the parameters in the initial sym-
bolic state (and therefore in the whole computation): for

any M;N 2 N, InitM;NðAÞ ¼ ðl0; fv 2 RX[P j vjX 2 f~0Xg% ^
vðInvðl0ÞÞ and vjP 2 ½�M::N �PgÞ.

Theorem 4 can be naturally adapted to this setting in the
following form:

Theorem 5. For anyM;N 2 N, any PTAA and any subset of its
locations G, upon termination, IEFGðInitM;NðAÞ; ;Þ (resp.
IAFGðInitM;NðAÞ; ;Þ) is the solution to the ðM;NÞ-bounded
integer EF-synthesis (resp. AF-synthesis) problem.
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The proof of Theorem 5 is immediate from that of
Theorem 4 and the following lemma:

Lemma 5. For any location l, any polyhedron Z on X [ P , and
any edge e of A, for any polyhedron C on X [ P defined

only by constraints on P (i.e., for all v 2 CjP , vðCÞ ¼ RX),

we have:

Succððl; Z \ CÞ; eÞ ¼ Succððl; ZÞ; eÞ \ C:

Proof. We first prove that ðZ \ CÞ% ¼ Z% \ C. Let

x 2 ðZ \ CÞ%. Then there exists d � 0 and x0 2 Z \ C

such that x ¼ x0 þ d. Since x0 2 Z, then x 2 Z%. Further-

more, since x0
jP ¼ xjP , x0 2 C, and x0

jP ðCÞ ¼ RX, we have

x 2 C. The other direction is similar.
We can also prove in the exact same manner that the

reset operator behaves similarly because it affects only
clocks.

To conclude, recall that if ðl0; Z0Þ ¼ Succððl; ZÞ; eÞ and
e ¼ ðl; a; g; R; l0Þ then Z0 ¼ ðZ \ gÞ½R�% \ Invðl0Þ. With the
above results and commutativity of intersection, we
therefore obtain the expected result. tu

4.4.3 Termination of the Algorithms

To prove the termination of our computations, we rely on a
few additional lemmas.

First, the following lemma states that the computation of
the integer hull of a successor of a symbolic state ðl; ZÞ
(reachable from InitðAÞ), results in the same set as if we
would compute the integer hull of a symbolic state ðl; ZÞ at
first, and then the integer hull of its successor.

Lemma 6. For any reachable symbolic state ðl; ZÞ and any edge e:
ISuccððl; IntHullðZÞÞ; eÞ ¼ IntHullðSuccððl; ZÞ; eÞÞ:

Proof. IntHullðZÞ � Z because Z is convex, and since Succ
and IntHull are non-decreasing, we immediately have
ISuccððl; IntHullðZÞÞ; eÞ � IntHullðSuccððl; ZÞ; eÞÞ.

Let us now consider x
v 2 IntVectsðSuccððl; ZÞ; eÞÞ.

Then, v being an integer parameter valuation, using
Lemma 4, we have x 2 Succððl; vðZÞÞ; vðeÞÞ. Also, by
Property 3, vðZÞ has integer vertices so IntHullðvðZÞÞ ¼
vðZÞ. Moreover, vðZÞ

v � Z. So, IntHull being non-decreas-

ing, IntHullðvðZÞv Þ � IntHullðZÞ and thus vðZÞ
v � IntHullðZÞ.

Then vðvðZÞv Þ � vðIntHullðZÞÞ, i.e., vðZÞ � vðIntHullðZÞÞ.
Succ is also non-decreasing so: Succððl; vðZÞÞ; vðeÞÞ �
Succððl; vðIntHullðZÞÞÞ; vðeÞÞ. So, using Lemma 1, x 2
vðSuccððl; IntHullðZÞÞ; eÞÞ. Then, x being an integer valu-
ation, x

v 2 IntVectsðSuccððl; IntHullðZÞÞ; eÞÞ. Finally, Conv
being non-decreasing, IntHullðSuccððl; ZÞ; eÞÞ � IntHull
ðSuccððl; IntHullðZÞÞ; eÞÞ. tu
Then, we extend Lemma 6 to sequences of edges.

Lemma 7. For any edge sequence e1 . . . en:

ISuccðInitðAÞ; e1 . . . enÞ ¼ IntHullðSuccðInitðAÞ; e1 . . . enÞÞ:

Proof. By induction on the length n of the edge sequence:
for n ¼ 0 the property trivially holds. Suppose the

lemma holds for n � 0 and consider the edge sequence
e1 . . . enenþ1. ISuccðInitðAÞ; e1 . . . enenþ1Þ ¼ ISuccðISucc
ðInitðAÞ; e1 . . . enÞ; enþ1Þ. By the induction hypothesis
this is equal to ISuccðIntHullðSuccðInitðAÞ; e1 . . .
enÞÞ; enþ1Þ. Thus, using Lemma 6, this is again equal to
IntHullðSuccðSuccðInitðAÞ; e1 . . . enÞ; enþ1ÞÞ. And finally,
this is indeed equal to IntHullðSuccðInitðAÞ; e1 . . .
enenþ1ÞÞ. tu
Finally Lemma 8 states that computing the integer hull of

a symbolic state is equivalent to separately computing each
of its subsets corresponding to integer parameters and then
taking the convex hull of their union.

Lemma 8. For any reachable symbolic state ðl; ZÞ of the PTA A,

IntHullðZÞ ¼ Convð S v2IntVectsðZjP Þ
vðZÞ
v Þ.

Proof. Recall that IntHullðZÞ ¼ ConvðIntVectsðZÞÞ.
Let x 2 IntVectsðZÞ and xjP be its restriction to param-

eters. By definition, x 2 xjP ðZÞ
xjP

and xjP is an integer valua-

tion. So x 2 S
v2IntVectsðZjP Þ

vðZÞ
v . Then IntVectsðZÞ �

S
v2IntVectsðZjP Þ

vðZÞ
v and, by taking the convex hull, which

is non-decreasing with respect to set inclusion, we get

IntHullðZÞ � Convð S v2IntVectsðZjP Þ
vðZÞÞ
v .

Now, let v 2 IntVectsðZjP Þ. We certainly have vðZÞ
v � Z.

So IntHullðvðZÞv Þ � IntHullðZÞ since IntHull is non-decreas-

ing. v being an integer parameter valuation, by Property

3, vðZÞ and consequently vðZÞ
v have integer vertices. It is

therefore its own integer hull and vðZÞ
v � IntHullðZÞ. So

S
v2IntVectsðZjP Þ

vðZÞ
v Þ � IntHullðZÞ, and since IntHullðZÞ is

convex and Conv is non-decreasing, we finally get

Convð S v2IntVectsðZjP Þ
vðZÞ
v Þ � IntHullðZÞ. tu

We can finally prove that, in this setting where all the
clocks are bounded, the semi-algorithms do terminate:

Theorem 6. For anyM;N 2 N, any PTAA and any subset of its
locations G, Algorithms IEFGðInitM;NðAÞ; ;Þ and
IAFGðInitM;NðAÞ; ;Þ terminate.

Proof. Using Lemma 7 we know that for any edge sequence
e1 . . . en, ISuccðInitM;NðvðAÞÞ; e1 . . . enÞ is actually the inte-
ger hull of ðl; ZÞ ¼ SuccðInitM;NðvðAÞÞ; e1 . . . enÞ.

Then, with Lemma 8, IntHullðZÞ ¼ Conv

ð S v2IntVectsðZjP Þ
vðZÞ
v Þ.

For all v in IntVectsðZjP Þ, vðAÞ is a TAwith integer con-
stants and bounded clocks (see Section 4.4.1). It then gen-

erates a finite number of different zones. So vðZÞ
v takes its

values (depending on the edge sequence) in a finite set.
Furthermore, since all clocks and parameters are bounded
then IntVectsðZjP Þ is finite and also takes its values in a

finite set. Finally, Convð S v2IntVectsðZjP Þ
vðZÞ
v Þ takes its val-

ues in a finite set and, consequently, for all possible edge
sequences e1 . . . e2, so does ISuccðInitM;NðvðAÞÞ; e1 . . . enÞ,
which concludes the proof. tu

Example 3. Consider once again the PTA A1 in Fig. 6. We
now suppose that both parameters are bounded and take
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their values, say in ½0::3�. Then, as seen in Section 4.4.1,
we add the invariants x 	 4 and y 	 4 to both locations
(4 is less than the proposed bound but enough in this
simple case and keeps the computation understandable).
This preserves location-based reachability and unavoid-
ability properties. Now, after n > 0 iterations of the loop
with the “normal” Succ operator, we have the valuation
set Zn ¼ f0 	 a 	 3; 0 	 b 	 3; a 	 b; 0 	 x 	 4; 0 	 y 	
4; x 	 b, na 	 y� x 	 ðnþ 1Þbg. If we do not suppose
that a and b are integers, we still never have Zm ¼ Zn for
any m 6¼ n. If we do suppose they are integers, we com-
pute each time Z0

n ¼ IntHullðZnÞ. We have Z0
0 ¼ Z0,

Z0
1 ¼ Z1 \ fy 	 aþ 3; y 	 bþ 2g, Z0

2 ¼ Z2 \ fx 	 b� 2a þ
2; y 	 aþ 3; y� x 	 aþ 2g, Z0

3 ¼ Z3 \ fa 	 1; y 	 aþ 3;

y 	 bþ 3ag, Z0
4 ¼ Z4 \ fy� x ¼ 4a; x 	 3� 3a; x 	 b� ag,

and when n � 5, Z0
n ¼ Z0

nþ1 ¼ fa ¼ 0; x ¼ y; 0 	 x 	 b;

b 	 3g. And therefore IEFf‘2gðInit0;3ðA1Þ; ;Þ terminates

and its result is a 2 ½0::3� and b 2 ½1::3�. Similarly,
IAFf‘2gðInit0;3ðA1Þ; ;Þ terminates and its result is a 2 ½1::3�
and b 2 ½a::3�.

5 COMPLEXITY OF THE INTEGER PARAMETRIC

PROBLEMS

When the possible values of the parameters are integer and
bounded, we can enumerate all of the possible valuations in
exponential time. And therefore, for all classes of problems
P that are in EXPTIME for TA, the P-synthesis problem
(and of course the P-emptiness) can be solved in exponen-
tial time. Also, since the P problem for TA is always a spe-
cial case of the P-emptiness problem for PTA, for problems
that are complete for some complexity class containing
EXPTIME, we can deduce that the corresponding bounded
integer emptiness problem is complete for the same com-
plexity class. For instance, the reachability control problem
is EXPTIME-complete for TA [22]. The corresponding
parametric emptiness problem is: for a PTA A with actions
partitioned between controllable and uncontrollable, does
there exist a parameter valuation v such that there exists a
controller for vðAÞ that enforces the reachability of some
location whatever the uncontrollable actions that occur?
This problem is therefore EXPTIME-complete for bounded
integer parameters.

For simpler problems, we have a better and a bit surpris-
ing result, using the classical construction of Savitch giving
PSPACE ¼ NPSPACE [30]:

Theorem 7. The P-emptiness problem for PTA with bounded
integer parameters is PSPACE-complete for any class of prob-
lems P that is PSPACE-complete for TA.

Proof. First, by definition, P for TA is a special case of
P-emptiness for PTA with bounded integer valuations
(consider a PTA with no parameter). This gives us the
PSPACE-hardness.

Now, let A be a PTA, let f be an instance of P on A,
and let k be the bound on the values of parameters. Con-
sider the non-deterministic Turing machine that:

1) takes A, f and k as input;
2) non-deterministically “guesses” an integer valua-

tion v bounded by k and writes it to the tape;

3) uses the written valuation to overwrite the param-
eters with their value giving the TA vðAÞ;

4) solves f for that TA;
5) accepts iff the result of the previous step is “yes”.
Then the machine obviously accepts iff there exists an

integer valuation v bounded by k for which vðAÞ satisfies
f, i.e., it solves the P-emptiness problem for bounded
integer parameters.

Now let us look at the complexity. The size of the
input is jAj þ jfj þ jkj, using j:j to denote the size in bits
of the different objects. There are at most kp possible val-
uations, where p is the number of parameters in A. So,
storing the valuation at step 2 uses at most p
 jkj addi-
tional bits, which is polynomial w.r.t. the size of the
input. Step 4 also needs polynomial space by hypothesis.
So globally this non-deterministic machine runs in poly-
nomial space. Finally, by Savitch’s theorem, we have
PSPACE ¼ NPSPACE and the expected result. tu
In particular the whole TCTL model-checking, including

reachability and unavoidability, is PSPACE-complete for
TA [1] and as a consequence, the corresponding emptiness
problem, which includes EF-emptiness and AF-emptiness,
is PSPACE-complete for PTA with bounded integer
parameters.

Finally, it is important to remark that we cannot easily lift
neither of the boundedness nor the integer assumptions: the
EF-emptiness problem for PTA with bounded rational param-
eter values is undecidable [28], and Theorem 8 follows from
the undecidability proof of [3]:

Theorem 8. The EF-emptiness problem for PTA with possibly
unbounded integer parameter values is undecidable.

Proof. From the 2-counter machine reduction from [3]
(replacing the parameter bþ1 in the guards by the proper
expression bþ 1 and idem for all such parameters):

� When the machine does not halt, the PTA simulat-
ing the machine cannot reach the halting location,
so there is no rational valuation such that the EF-
property holds. And, in particular, there is no
integer valuation either;

� When the machine halts, its execution is obvi-
ously finite. Let c1 (resp. c2) be the biggest value
of the counter C1 (resp. C2) along that execution.
Then the set of valuations such that the EF prop-
erty holds is fa � c1 and b� a � c2g which is not
empty and contains at least the integer valuation
b ¼ c1 þ c2 and a ¼ c1. tu

6 ON PERFORMANCE IN PRACTICE

6.1 The Tool

We have implemented the synthesis of integer parameter
valuations in our tool ROM�EO [25].

The formal timed model. With its textual input language,
ROM�EO

1 handles a model called clock transition systems
(CTS) [19] with timed intervals, which are particularly well-
suited for the modeling of real-time systems. This model

1. Notice that the graphical user interface of ROM�EO remains on Time
Petri Nets.
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encompasses classical models with implicit clocks such as
Time Petri Nets [26] or Duration Kripke structures [23], and
models with explicit clocks such as Product Interval Autom-
ata [13], [14], which are networks of particular kind of
Timed Automata with a single clock which must be reset
along every transition. Though best presented in the more
well-known framework of parametric timed automata, the
method we have proposed in this paper can be naturally
adapted to the model of Clock Transition Systems with
parametric timed intervals, on which operates ROM�EO.

The symbolic abstraction. On CTS with timed intervals,
ROM�EO uses the well known state class abstraction of [7],
which is specific to models using timed intervals, and do
not require extrapolation. A very interesting feature of the
result presented in this paper is that it directly carries over
any parametrization of a timed abstraction satisfying
Lemma 1, and Properties 1,3 and 2. This is trivially the case
for parametric state class abstraction of [34] implemented in
ROM�EO for CTSs.

Computing the Integer Hull. In the tool ROM�EO, the compu-
tation of the integer hull of a given convex polyhedron is
adapted from the computation of Chv�atal-Gomory cuts
originally formulated in the context of integer linear pro-
gramming (see, e.g., [31]).

We first shortly introduce Time Petri Nets [26], as we will
use them as a model for our second case-study.

Time Petri Nets extend Petri Nets with timing constraints
on the firings of transitions. In a TPN, a time interval is asso-
ciated with each transition. An implicit clock can then be
associated with each enabled transition, and gives the
elapsed time since it was last enabled. An enabled transition
can be fired if its clock value belongs to the interval of the
transition. Furthermore, time cannot progress if time elaps-
ing would result in leaving the interval of a transition.

In parametric Time Petri Nets we allow the use of param-
eters in the time intervals of transitions.

6.2 Case-Studies

The PTA in Fig. 6 demonstrates that it is very easy to find an
example for which the symbolic computation does not ter-
minate without the bounded integer parameters restriction
but one could object that this PTA models nothing real (if
a ¼ 0, there are zeno runs for instance).

We now show with two simple but realistic case-studies
that this restriction is also useful for real applications. We
first describe the two systems:

6.2.1 Task Set Schedulability

We consider a scheduling problem, adapted from [11] for a
non-preemptive setting: we have three real-time tasks t1, t2
and t3. t1 is periodic with period a and has an execution
time C1 2 ½10; b�. t2 is sporadic: it has only a minimal delay
between two activations and that delay is 2a. The execution
time of t2 is C2 2 ½c; d�, with c 	 d. Finally, t3 is periodic
with period 3a and has an execution time C3 2 ½20; 28�.
These three tasks are scheduled using a non-preemptive2

priority policy defined by t1 > t2 > t3.

We model this problem with a network of parametric
timed automata given in Fig. 7. The automata of the network
interact with each other by a classical synchronized product
�a la Arnold Nivat where a transition with label e! (respec-
tively e?) must be executed simultaneously with one and
only one other transition with label e? (respectively e!). A
synchronization is done as soon as possible (which corre-
sponds to the urgent channel of the tool UPPAAL [6]) except
for the synchronization endwhich is a classical channel.

The models of the tasks and their request are given in
Figs. 7a, 7b and 7c. For example, for the task t1 in Fig. 7a, as

Fig. 7. A PTA with six clocks and four parameters for non-preemptive
scheduling modeling (non-underlined channels are urgent).

2. A running task cannot be interrupted even if another task with a
greater priority is ready.
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soon as clock x1 reaches the value a the synchronization
start1 can be performed if the automaton of the task is in
state task1. After the synchronization, the automaton of the
request is in state (clock1; x1 ¼ 0) and the automaton of task
t1 is in the discrete state ready1. The model of the non-pre-
emptive scheduler is given in Fig. 7d.

We say that the system is schedulable if each task always
has at most one instance running, which is a safety prop-
erty. On our model, this property is verified iff the transi-
tions starti are always possible in null time meaning for the
example of task t1, that a state such that the model is in loca-
tion req1 with x1 > a is not reachable.

6.2.2 Alternating Bit Protocol (ABP)

The Alternating Bit Protocol is a network protocol operating
at the data link layer that retransmits lost or corrupted mes-
sages. This protocol transmits messages between two enti-
ties, allowing only one message in transit at a time, over an
unreliable transmission medium. Hypotheses on the behav-
ior of the transmission medium are that messages or
acknowledgments may be lost in transit. Recovery from
losses is done using a time-out and retransmission: each
sender records the time at which it sends a message and if
an acknowledgment of its delivery does not return within
before the time-out, the message is retransmitted. ABP has
most of the important features of communication protocols
such as TCP and then has been modelled using many exten-
sions of Petri Nets with time [7], [10], [32]. We extend the
ABP model of [7] with 6 parameters a; b; c; d; e; f as shown
in Fig. 8. The model of [7] corresponds to a ¼ 5, b ¼ 5, c ¼ 1,
d ¼ 1, e ¼ 0 and f ¼ 2.

In this net, retransmissions of messages occur at a time
given by parameters a and b after the message has been
sent. The time for losses of messages and acknowledgments
(transitions with no output places) is an interval ½0; 1� or
½0; c� or ½0; d�. The time for receptions of messages and
acknowledgments is an interval ½0; 1�. The time for the
receiver to send the acknowledgments is ½e; 2� or ½0; f �.

The property that should be verified is that the TPN is
one safe. This guarantees that at most one message or
acknowledgment is pending at any time and that the trans-
mission medium never holds more than one message or
acknowledgment.

6.3 Verification with Rom�eo

The models we have proposed for both case-studies belong
to the class of CTS with parametric timed intervals. In both

cases, we have a safety property, which is verified using
implementations of the semi-algorithms EF and IEF pre-
sented in Section 4. We use a machine with an Intel Core i7
at 2.3 GHz and 8 Gb RAM.

6.3.1 Obtained Constraints

Using ROM�EO, and given that all parameters should be non-
negative integers, we obtain for the schedulability problem
that a� b � 24; b � 10; c 	 28 when d is equal to 28. As we
will see in the next section the computation did not termi-
nate in a reasonable time without fixing the value of d.

For the alternating bit protocol, we obtain the follow-
ing constraint with all six parameters as non-negative
integers:

Fig. 8. The parametrized TPN model of the Alternating Bit Protocol.

TABLE 1
Scaling Up the Number of Parameters in the Schedulability Problem

a 2 ½0;1Þ
b ¼ 20
c ¼ 18
d ¼ 28

a 2 ½0;1Þ
b 2 ½10;1Þ
c ¼ 18
d ¼ 28

a 2 ½0;1Þ
b 2 ½10;1Þ
c 2 ½0; 28�
d ¼ 28

a 2 ½0;1Þ
b 2 ½10;1Þ
c ¼ 18
d 2 ½18;1Þ

a 2 ½0;1Þ
b 2 ½10;1Þ
c � 0
d � c

IEF Time 1 s 2:8 s 27 s 840 s DNF
Int. Hull 0:2 s ð20%Þ 0:4 s ð14%Þ 2:9 s ð11%Þ 146 s ð17%Þ �
IEF Mem. 15MB 35MB 153MB 1;289MB �
EF Time 1:5 s 6:4 s DNF DNF DNF
EF Mem. 19:6MB 55MB � � �
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c ¼ 0

a � 4

e 	 2

b� f � 3

or

e 	 2

b� f � 3

a � 5

8
><

>:
or

e 	 2

�bþ dþ f 	 �2

a � 5

8
><

>:

8
>>><

>>>:

or

e ¼ 0

a� c � 4

b� f � 3

8
><

>:
or

e ¼ 0

a� c � 4

�bþ dþ f 	 �2

8
><

>:
or

c ¼ 0

a � 4

e 	 2

�bþ dþf 	�2:

8
>>><

>>>:

6.3.2 Usefulness of the Integer Hull

Tables 1 and 2 provide some insight on the performance of
Algorithm IEF and a comparison to Algorithm EF. The
only difference in the implementations of the two algo-
rithms is the application or not of the integer hull operator.
The table shows the total time for the verifications, the part
of it used for computing the integer hull for Algorithm
IEF, and the memory consumptions. DNF means that the
computation did not finish within 90 min (memory was
not a problem here).

Note that in all these cases some parameters are
unbounded so termination of Algorithm IEF was actually
not guaranteed but it is interesting to remark that the com-
putation did terminate. For both case-studies the use of the
integer hull, while sometimes expansive to compute, allows
for much better results, in terms of both computation time
and memory.

6.3.3 Scaling with Respect to the Bounds on

Parameters

With Tables 3 and 4, we illustrate the smooth scaling of our
approach with the value of upper bounds (except for very
small number of values of parameter). Note that the perfor-
mance of Algorithm IEF is actually worse when all parame-
ters are bounded (compare with the fourth column of
Table 1). This is due to the fact that our implementation
uses inclusion for convergence, which is favored by the
reduced number of constraints in the absence of upper
bounds. In this setting, termination is guaranteed however.

6.3.4 Comparison with an Enumeration of the

Parameter Values

To conclude, we comment on the overall usefulness of our
approach compared to an explicit enumeration of all the

possible parameter values coupled with efficient timed
verification.

First, as seen above, our symbolic computation may ter-
minate even if the parameters are not bounded, while
explicit enumeration is impossible in this case. This situa-
tion occurs in both the case-studies presented here.

Second our approach directly gives a symbolic con-
straint, which is, in our opinion, more useful than the indi-
vidual values satisfying the property. Obtaining these
constraints from the explicit enumeration technique
requires some post-processing.

Finally, in practice, our approach behaves well with
respect to the scaling of the bounds on parameters. For an
explicit enumeration we can easily see this would not be the
case. For the schedulability problem, for instance, the typi-
cal verification time with ROM�EO in the timed case (with all
parameter values fixed) is reliably 0.1 s. If we consider 100
different possible values for each of the parameters a, b and
c, this would give a total computation time of the order of
10,000 s for an explicit enumeration.

We explicitly do this comparison with the state-of-the-
art model checker UPPAAL [6] for the schedulabilty
problem of Fig. 7. We choose values of parameters lead-
ing to both true or false results for the schedulability
property. The results are given in Table 5. We can see
that there exists a bound from which our symbolic com-
putation behaves faster than an enumerative approach
with UPPAAL:

� for one parameter (a), the bound is about 70 values of
the parameter;

� for two parameters (a; b), the bound is about 15 val-
ues per parameter;

� for three parameters (a; b; c), the bound is under 10
values per parameter.

For the sake of completeness we have also tried to com-
bine explicit enumeration with an efficient decision diagram
based model-checker (with a discrete time semantics): we
have used the SDD-based ITS tools, which is capable of veri-
fying huge state-spaces [33] and has the advantage of pro-
viding a parser for ROM�EO models and automatic discrete-
time analysis for which it has already given good results.
The performance was however not so good here, with the
verification of the property on the schedulability problem

TABLE 2
Scaling Up the Number of Parameters for the ABP Problem

a; b a; b; c a; b; c; d a; b; c; d; e a; b; c; d; e; f

EF Time 0 s 0:2 s 0:7 s DNF DNF
EF Mem. 1:6MB 2:4MB 4:7MB DNF DNF

IEF Time 0 s 0:2 s 0:6 s 44:7 s 152:7 s
IEF Mem. 1:6 MB 2:5 MB 4:4 MB 75:2 MB 106:9 MB

TABLE 3
Scaling Up a’s Upper Bound in the Schedulability Problem for b 2 ½10; 100�; c ¼ 18 and d 2 ½18; 100�

a ¼ 50 a 2 ½40; 50� a 2 ½0; 100� a 2 ½0; 1;000� a 2 ½0; 10;000�
IEF Time 17 s 211 s 1;079 s 1;150 s 1;178 s
Int. Hull 2 s ð11:7%Þ 25:7 s ð12:1%Þ 166 s ð15:4%Þ 167 s ð14:5%Þ 168 s ð14:3%Þ
IEF Mem. 121MB 425MB 1;598MB 1;667MB 1;667MB

TABLE 4
Scaling Up a’s Upper Bound for ABP Problem

a 	 10 a 	 100 a 	 1;000 a 	 10;000

IEF Time 152:8 s 152:6 s 154 s 153:2 s
Int. Hull 2:3 s ð%Þ 2:3 s ð%Þ 2:3 s ð%Þ 2:3 s ð%Þ
IEF Mem. 108:2MB 108:2MB 108:2MB 108:2MB
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for a typical instance, namely a ¼ 50; b ¼ 30; c ¼ d ¼ 18, tak-
ing 74 s for 392;962 states.

Of course, given the good model-checker and a small set
for the possible parameter values, an explicit enumeration
has good chances to be more efficient. In the general case
however, we believe that our approach is more flexible and
efficient.

7 CONCLUSION

We have presented novel results for the parametric verifica-
tion of timed systems modeled as parametric timed autom-
ata. Our new negative results show that even when severely
restricting the form of the parametric constraints we
encounter undecidabilty for many interesting problems. In
particular, we have proved that the AF-emptiness problem
is undecidable for L/U-automata (it is still open for U- and
L-automata though). So we have proposed instead to
restrict the codomain of the parameter valuations to
bounded integers.

This is completely orthogonal to previous restriction
schemes in the sense that it does not enforce any syntactic
restriction on PTA, thus simplifying the modeling activity.
Also experimental evidence shows that the symbolic
approach we propose to avoid an explicit enumeration of
all the possible parameter values is robust to scaling the
bounds of the parameters (and improves on convergence
even without any bounds in some cases).

Also, in this setting, most problems are of course decid-
able and we have proved that, for instance, emptiness for
TCTL properties, which include reachability and unavoid-
ability, is PSPACE-complete. We have also proved that lift-
ing the boundedness or the integer assumption leads to
undecidability. We have exhibited symbolic algorithms that
allow to avoid the explicit enumeration of all possible valua-
tions and implemented them in our tool ROM�EO [25].

We have extended the work presented here to timed
game automata with parameters, a model that is used for
the analysis of control problems on real-time systems, [21].
The challenge was to handle non-convex sets, as the back-
ward exploration, needed for the computation of winning
states, creates non-convex zones.

The main problem we are now investigating is whether
the symbolic result we obtain, as a finite union of convex
polyhedra is dense or not, i.e., wether non-integer points in
that result also are valuations satisfying the property. This
is undoubtly true for reachability but not so clear for
unavoidability or parametric timed reachability games. We
may however be able to slightly alter the algorithms to
make it true in all cases.

Our other current lines of work on this topic include
improving the computation of the integer hulls, the search

for less restrictive codomains for parameter valuations, and
extension of this work to PTA with stopwatches.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their very
useful comments. This work was partially funded by the
ANR national research programs ImpRo (ANR-2010-
BLAN-0317) and PACS (ANR-2014). A preliminary version
of this work appeared in [20].

REFERENCES

[1] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in dense
real-time,” Inf. Comput., vol. 104, no. 1, pp. 2–34, May 1993.

[2] R. Alur and D. Dill, “A theory of timed automata,” Theoretical
Comput. Sci., vol. 126, no. 2, pp. 183–235, 1994.

[3] R. Alur, T. A. Henzinger, and M. Y. Vardi, “Parametric real-time
reasoning,” in Proc. ACM Symp. Theory Comput., 1993, pp. 592–601.

[4] E. Andr�e, T. Chatain, E. Encrenaz, and L. Fribourg, “An inverse
method for parametric timed automata,” in Proc. Workshop Reach-
ability Problems, Liverpool, United Kingdom, 2008, vol. 223,
pp. 29–46.

[5] R. Bagnara, P. Hill, and E. Zaffanella, “Not necessarily closed
polyhedra and the double description method,” Formal Aspects
Comput., vol. 17, pp. 222–257, 2005.

[6] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,”
in Proc. 4th Int. School Formal Methods Des. Comput., Commun.,
Softw. Syst., 2004, vol. 3185, pp. 200–236.

[7] B. Berthomieu and M. Diaz, “Modeling and verification of time
dependent systems using time Petri nets,” IEEE Trans. Softw. Eng.,
vol. 17, no. 3, pp. 259–273, Mar. 1991.

[8] L. Bozzelli and S. L. Torre, “Decision problems for lower/upper
bound parametric timed automata,” Formal Methods Syst. Des.,
vol. 35, no. 2, pp. 121–151, 2009.

[9] V. Bruy�ere and J.-F. Raskin, “Real-time model-checking: Parame-
ters everywhere,” Logical Methods Comput. Sci., vol. 3, no. 1, pp. 1–
30, 2007.

[10] G. Bucci, L. Carnevali, L. Ridi, and E. Vicario, “Oris: A tool for
modeling, verification and evaluation of real-time systems,” Int. J.
Softw. Tools Technol. Transfer, vol. 12, no. 5, pp. 391–403, 2010.

[11] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario, “Timed state space
analysis of real-time preemptive systems,” IEEE Trans. Soft. Eng.,
vol. 30, no. 2, pp. 97–111, Feb. 2004.

[12] L. Doyen, “Robust parametric reachability for timed automata,”
Inf. Process. Lett., vol. 102, no. 5, pp. 208–213, 2007.

[13] D. D’Souza and P. S. Thiagarajan, “Product interval automata: A
subclass of timed automata,” in Proc. 19th Conf. Softw. Technol. The-
oretical Comput. Sci., 1999, pp. 60–71.

[14] D. D’Souza and P. S. Thiagarajan, “Product interval automata,”
Sadhana, Indian Academy Sci., vol. 27, no. 2, pp. 181–208, 2002.

[15] N. Halbwachs, Y. Proy, and P. Raymond, “Verification of linear
hybrid systems by means of convex approximation,” in Proc. 1st
Int. Symp. Static Anal., 1994, vol. 864, pp. 223–237.

[16] T. A. Henzinger, P.-H. Ho, and H. Wong-toi, “Hytech: A model
checker for hybrid systems,” Softw. Tools Technol. Transfer, vol. 1,
pp. 460–463, 1997.

[17] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
model checking for real-time systems,” Inform. Comput., vol. 111,
no. 2, pp. 193–244, 1994.

[18] T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager, “Linear
parametric model checking of timed automata,” J. Logic Algebraic
Program., vol. 52/53, pp. 183–220, 2002.

TABLE 5
Comparison with an Explicit Enumeration of Parameter Values Using UPPAAL (with d ¼ 28)

a 2 ½30; 50�
b ¼ 20
c ¼ 18

a 2 ½10; 100�
b ¼ 20
c ¼ 18

a 2 ½40; 50�
b 2 ½20; 30�
c ¼ 18

a 2 ½10; 50�
b 2 ½10; 50�
c ¼ 18

a 2 ½40; 49�
b 2 ½20; 29�
c 2 ½18; 22�

a 2 ½10; 50�
b 2 ½10; 50�
c 2 ½0; 28�

a 2 ½10; 100�
b 2 ½10; 100�
c 2 ½0; 28�

UPPAAL ðenumerationÞ 0:34 s 1:4 s 1:8 s 28:1 s 7:9 s 802 s >2;000 s
Romeo ðsymbolicÞ 1:1 s 1:1 s 3:5 s 4:6 s 8:5 s 56:3 s 55:8 s

460 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 5, MAY 2015



[19] C. Jard, D. Lime, and O. H. Roux, “Clock transition systems,” pre-
sented at the 21th Int. Workshop Concurrency, Specification Pro-
gram., Berlin, Germany, Sep. 2012.

[20] A. Jovanovi�c, D. Lime, and O. H. Roux, “Integer parameter syn-
thesis for timed automata,” in Proc. 19th Int. Conf. Tools Algorithms
Construction Anal. Syst., Mar. 2013, vol. 7795, pp. 401–415.

[21] A. Jovanovi�c, D. Lime, and O. H. Roux, “Synthesis of bounded
integer parameters for parametric timed reachability games,” in
Proc. 11th Int. Symp. Autom. Technol. Verification Anal., Hanoi,
Vietnam, Oct. 2013, vol. 8172, pp. 87–101.

[22] M. Jurdzinski and A. Trivedi, “Reachability-time games on timed
automata,” in Proc. 34th Int. Colloq. Automata, LangUAGE Program.,
Jul. 2007, vol. 4596, pp. 838–849.

[23] F. Laroussinie, N. Markey, and P. Schnoebelen, “On model check-
ing durational Kripke structures,” in Proc. 5th Int. Conf. Found.
Softw. Sci. Comput. Struct., 2002, pp. 264–279.

[24] K. G. Larsen, P. Pettersson, and W. Yi, “Model-checking for real-
time systems,” in Proc. Fundam. Comput. Theory, 1995, vol. 965,
pp. 62–88.

[25] D. Lime, O. H. Roux, C. Seidner, and L.-M. Traonouez, “Romeo: A
parametric model-checker for Petri nets with stopwatches,” in
Proc. 15th Int. Conf. Tools Algorithms Construction Anal. Syst., Mar.
2009, vol. 5505, pp. 54–57.

[26] P. M. Merlin, “A study of the recoverability of computing sys-
tems,” Ph.D. dissertation, Dept. Inform. Comput. Sci., Univ.
California, Irvine, CA, USA, 1974.

[27] R. Meyer, “On the existence of optimal solutions of integer and
mixed-integer programming problems,” Math. Program., vol. 7,
pp. 223–235, 1974.

[28] J. S. Miller, “Decidability and complexity results for timed autom-
ata and semi-linear hybrid automata,” in Proc. 3rd Int. Workshop
Hybrid Syst.: Comput. Control, 2000, vol. 1790, pp. 296–309.

[29] M. L. Minsky, Computation: Finite and Infinite Machines. Upper Sad-
dle River, NJ, USA: Prentice-Hall, 1967.

[30] W. J. Savitch. (1970, Apr.). Relationships between nondeterminis-
tic and deterministic tape complexities. J. Comput. Syst. Sci.
[Online]. 4(2), pp. 177–192 [Online]. Available: http://dx.doi.org/
10.1016/S0022-0000(70)80006-X

[31] A. Schrijver, Theory of Linear and Integer Programming. New York,
NY, USA: Wiley, 1986.

[32] I. Suzuki, “Formal analysis of the alternating bit protocol by tem-
poral petri nets,” IEEE Trans. Softw. Eng., vol. 16, no. 11, pp. 1273–
1281, Nov. 1990.

[33] Y. Thierry-Mieg, D. Poitrenaud, A. Hamez, and F. Kordon,
“Hierarchical set decision diagrams and regular models,” in Proc.
15th Int. Conf. Tools Algorithms Construction Anal. Syst., Mar. 2009,
vol. 5505, pp. 1–15.

[34] L.-M. Traonouez, D. Lime, and O. H. Roux, “Parametric model-
checking of stopwatch Petri nets,” J. Univ. Comput. Sci., vol. 15,
no. 17, pp. 3273–3304, 2009.

[35] I. Virbitskaite and E. Pokozy, “Parametric behaviour analysis for
time Petri nets,” in Proc. 5th Int. Conf. Parallel Comput. Technol.,
1999, vol. 1662, pp. 134–140.

[36] F. Wang, “Parametric timing analysis for real-time systems,” Inf.
Comput., vol. 130, no. 2, pp. 131–150, Nov. 1996.

Didier Lime is an associate professor in the
Computer Science Department at Ecole Centrale
de Nantes. He is also a member of the Research
Institute on Communications and Cybernetics of
Nantes, in the Real-time Systems Group. Since
2012, he has been holding an “habilitation �a
diriger les recherches” (HDR). His main research
interests concern the formal verification and con-
trol of timed systems, and their hybrid or
parametric extensions.

Olivier H. Roux is full professor at the Ecole
Centrale de Nantes (France) and he carries out
his research activity at the Research Institute for
Communications and Cybernetics of Nantes
(IRCCyN - UMR CNRS 6597). He is the head of
the Real Time Systems group of IRCCyN. His
work deals with the verification and the control of
timed systems. He has a particular interest in
time Petri nets and timed automata as well as in
their stopwatch and parametric extensions.

Aleksandra Jovanovi�c received the PhD degree
from Ecole Centrale de Nantes, France, as a
member of Research Institute for Communica-
tions and Cybernetics of Nantes. She is currently
a postdoctoral research assistant at Computer
Science Department, University of Oxford. Her
research concerns formal verification with focus
on quantitative verification of real-time and proba-
bilistic systems and their parametric extensions.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

JOVANOVI�C ET AL.: INTEGER PARAMETER SYNTHESIS FOR REAL-TIME SYSTEMS 461



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


