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Abstract—System-related engineering tasks are often conducted using process models. In this context, it is essential that these

models do not contain structural or terminological inconsistencies. To this end, several automatic analysis techniques have been

proposed to support quality assurance. While formal properties of control flow can be checked in an automated fashion, there is a lack

of techniques addressing textual quality. More specifically, there is currently no technique available for handling the issue of lexical

ambiguity caused by homonyms and synonyms. In this paper, we address this research gap and propose a technique that detects and

resolves lexical ambiguities in process models. We evaluate the technique using three process model collections from practice varying

in size, domain, and degree of standardization. The evaluation demonstrates that the technique significantly reduces the level of lexical

ambiguity and that meaningful candidates are proposed for resolving ambiguity.

Index Terms—Identification of lexical ambiguity, resolution of lexical ambiguity, business process models
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1 INTRODUCTION

CONCEPTUAL models play an important role in various
system-related management activities including

requirements elicitation, domain analysis, software design
as well as in documentation of databases, business pro-
cesses, and software systems [1]. However, it has been
found that the correct and meaningful usage of conceptual
models appears to be a challenge in practical settings. There
are several reasons for this. First, large scale projects often
rely on modelers who have limited experience [2] and who
often create models with correctness issues [3]. Second,
modelers in large projects work in a distributed fashion,
which makes it difficult to maintain consistency in terms
of terminology and granularity. Third, the complexity of
modeling initiatives with thousands of models [4] makes it
impossible to perform quality assurance in a manual way.
These issues cause rework and clarifying communication at
later stages, or even worse: wrong design decisions are
taken based on incorrect, incomplete, or inconsistent models
[5], [6].

The quality assurance of large and complex model collec-
tions requires the usage of automatic analysis techniques.
Up until now, such automatic quality assurance is mainly
available for checking formal properties of particular classes
of conceptual models. For instance, there is a rich set of veri-
fication techniques to check control-flow-related properties
of process models [7], [8]. There are only a few techniques
available for checking guidelines on text labels within mod-
els, e.g., for behavioural models [9], [10]. These techniques,

however, miss important concerns of quality assurance,
most notably terminological ambiguity. Indeed, the severity
of the ambiguity problem is emphasized by several authors
[11], [12]. Bolloju and Leung [13] find ambiguous descrip-
tions and inconsistent element names in 64 percent of the
UML models they evaluated. In the field of electronic
assessment of UML activity diagrams, Jayal and Sheppard
[14] also face the challenge of ambiguous label names when
matching them to semantically similar ones.

A prominent instance of ambiguity is the usage of hom-
onymous or synonymous words. Homonyms are words
that have more than a single meaning. The word ball is an
example as it can refer to a round object or to a dance event.
Synonyms are different words which refer to the same
meaning. As an example, consider the words bill and invoice.
Although the problem of synonyms and homonyms is well
established in various areas of system analysis and design
including requirements engineering [11], [12], use case
descriptions [15], [16], model transformations [17], code and
design smells [18], matching code and documentation [19],
or system components reuse [20], [21], there has been only
limited research on identifying such problems in conceptual
models automatically.

In this paper, we address the need for automatic tech-
niques to detect and resolve textual ambiguities in large
model collections. In contrast to natural language docu-
ments, conceptual models often include phrase fragments
like “check invoice” or “receipt of message”, such that
techniques that require full sentences are not directly
applicable. We address this challenge by building on
ideas that have initially been described previously [22].
Our focus will be on process models, which typically use
labels made up of phrase fragments. The contribution of
this paper is an automatic detection and resolution tech-
nique that significantly improves terminological quality
metrics of a model collection. We demonstrate this capa-
bility based on an user evaluation with more than 2,500
process models from practice.
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In the rest of the paper, Section 2 details the ambiguity
problem, discusses research on detecting and resolving lexi-
cal ambiguities and illustrates the challenges based on a
motivating example. Section 3 defines the formal preliminar-
ies before Section 4 introduces the automatic detection and
resolution techniques. Section 5 presents the results of apply-
ing our technique for the analysis of three process model col-
lections. In Section 6, we discuss implications and limitations
of our work. Finally, Section 7 concludes the paper.

2 BACKGROUND

In this section, we discuss the background of our research.
In Section 2.1, we highlight the problem of ambiguity in pro-
cess models and present existing solutions for detecting and
correcting ambiguity. In Section 2.2, we discuss the chal-
lenges of detecting and resolving ambiguity in process
models.

2.1 Managing Ambiguity in Process Models

It is widely acknowledged that process models are impor-
tant to understand how business activities are carried out
[23], to document relevant parts of the organization [24], or
to design process-aware information systems [25]. More-
over, it is also acknowledged that poor process modeling
causes wrongly-taken business decisions [23] and misun-
derstandings among several parts of the organization [26].
This ultimately leads to delayed product and service
releases [27] or poor system design [28]. One particular
cause is the presence of ambiguity in process models which
significantly influences process model understanding [29].

Despite the fact that semi-formal languages, such as pro-
cess models or UML activity diagrams, are meant to restrict
ambiguity [30], these process models still include elements
(such as activities or events) with natural language frag-
ments. Similar to natural language text [31], [32], [33], these
language fragments are a reason of ambiguity. Moreover,
the ambiguity problem is even bigger in process models
since they provide only limited context to recognize and
resolve ambiguities [9], [29]. Also, models often focus on
isolated aspects of the system. Once a system integrates sev-
eral parts of the organization, a number of models has to be
considered before inconsistencies can be detected [34].

In order to improve process models and to ensure the
quality of process-aware information systems, several
authors propose an integration of process modeling with
requirements engineering [28], [35]. This is particularly
promising since approaches to ambiguity management
have been discussed in the latter discipline. In requirements
engineering, two classes of approaches can be distin-
guished. The first class includes techniques that detect ambi-
guities in requirements documents and explain them to the
user. The second class encompasses techniques that attempt
to resolve ambiguities. Each class can be subdivided into
approaches focusing on detecting ambiguity in requirements
documents and in models (see Table 1).

Ambiguity detection approaches aim at the reduction of
ambiguity by identifying requirements statements that
can be interpreted in multiple ways. For that purpose,
various techniques have been proposed to assess require-
ments documents of different input types. In case textual

requirements are written in natural language, different
reading techniques, such as inspection-based reading
[30], [36], scenario-based reading [11], or object-oriented
inspections [37], can be employed. Denger et al. [27] as
well as Gleich et al. [33] utilize natural language patterns
for ambiguity detection. Moreover, several authors have
developed metrics that indicate ambiguity in require-
ments documents. Available approaches can measure the
degree of readability, understandability, and ambiguity
[39], [40] as well as underspecifications, vagueness, and
implicit sentence structures [31]. Metrics can also be
employed to identify and to create a ranking of ambigui-
ties according to different criteria [41]. Using a dataset of
ambiguous requirements documents and human judg-
ments about their interpretation, Chantree et al. [32]
propose heuristics to automatically replicate these judg-
ments. Finally, Yang et al. [42], [43] employ a machine
learning approach and build a classifier that automati-
cally determines the ambiguity of requirement state-
ments. For models, Anda and Sjøberg [44] apply the
concept of reading techniques to use case models and
propose a checklist-based approach to detect defects such
as inconsistencies and ambiguities. Mens et al. [45], [46]
propose an inconsistency detection approach by using
graph transformation rules to support the detection task
in UML class models and state machine diagrams.

Once ambiguities have been detected, approaches for the
systematic resolution are required to restore the consistency
of requirements documents. The resolution of ambiguous
requirements needs to identify the correct interpretation of
the requirement statement and to rewrite it according to the
stakeholders intention. For textual requirements, several
authors, such as Chantree et al. [32] or Gleich et al. [33],
acknowledge mental capabilities of humans to resolve these
ambiguities. To facilitate this task, Gleich et al. [33] propose

TABLE 1
Approaches for Ambiguity Management in Requirements

Engineering

Technique Author

Ambiguity Detection
Requirements in Text
Reading Techniques Kamsties et al. [11], [30], [36]

Shull et al. [37]
Natural Language Patterns Denger et al. [27],

Gleich et al. [33]
Rolland and Ben Achour [38]

Ambiguity Metrics Fantechi et al. [39],
Ceccato et al. [40],
Fabbrini et al. [31],
Wang et al. [41]

Ambiguity Heuristics Chantree et al. [32]
Classifier Construction Yang et al. [42], [43]

Requirements in Models
Reading Techniques Anda and Sjøberg [44]
Rule-based Detection Mens et al. [45], [46]

Ambiguity Resolution
Requirements in Text
Notification Gleich et al. [33]
Pattern-based rephrasing Rolland and Ben Achour [38]

Requirements in Models
Rule-based Resolution Mens et al. [45], [46]
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a notification approach that highlights and explains ambig-
uous requirements statements and explicitly encourages the
requirements engineers to handle the detected ambiguity.
Going one step further, Rolland and Ben Achour propose a
rephrasing technique that makes use of unambiguous and
precise natural language patterns [38] to resolve the ambi-
guity in the requirements document. In order to resolve
such ambiguity in models, Mens et al. [45], [46] enrich the
previously mentioned detection technique with resolution
rules that automatically rework the defects in class and state
machine diagrams.

Despite their merits, the presented techniques for the
detection and resolution of lexical ambiguity suffer from
two main shortcomings that impede their application to
process model repositories: the required manual effort and
their dependence on a full natural language text.

The first shortcoming, the required manual effort, refers to
the extensive amount of manual work that is required to
detect and resolve ambiguities in process models. Since
companies tend to maintain several hundreds or even thou-
sands of process models [2], the human effort can be tre-
mendous. In particular, the previously discussed reading
techniques can hardly be applied to such a number of mod-
els. Similarly, this also applies for the resolution of the
detected ambiguities, where the requirements engineers
need to understand the context of the detected ambiguity
and come up with a more precise alternative. The large
manual effort also impedes the application of heuristic-
based or machine learning approaches as each of these
approaches requires a manually created data set from which
heuristics can be derived or from which machine-learning
approaches can be trained.

The second shortcoming, the dependence on a full natural
text, refers to the fact that many approaches rely on text
fragments taken from a grammatically correct natural lan-
guage text. However, the elements of process models con-
tain only short textual fragments that do not exhibit a
complete sentence structure [9]. In addition, they follow dif-
ferent language patterns that may even hide the verb [29].
As a result, the discussed approaches, as the ones from

Denger et al. [27], Gleich et al. [33], or Rolland and Ben
Achour [38], are not applicable for process models.

Despite the findings and the diversity of approaches,
there is no technique available that can address the detec-
tion and resolution of lexical ambiguity in process models.
Therefore, it is the objective of this paper to close this gap
and to present a technique for automatically detecting and
resolving ambiguous words in process models. To this end,
we discuss specific challenges to meet this objective in the
following section.

2.2 Challenges and Applicable Concepts

There are several challenges associated with the automatic
detection and resolution of lexical ambiguity in process
models. In order to illustrate these challenges, we use
BPMN process models as depicted in Fig. 1. Scenario A
describes a job application. The process starts with the
receipt of an application followed by a check for complete-
ness. In case the documents are not complete, the missing
documents are requested and checked again. Otherwise, the
documents are evaluated and it is decided whether the
application is rejected or the applicant is invited to an inter-
view. Scenario B depicts the generation of an annual sales
report. The process starts with two activities that are con-
ducted in parallel: consulting applications for sales data and
the last year’s sales report. Then, the sales data are checked
for completeness. If the data are incomplete, the missing
sales data are collected. If everything is complete, the final
revenue overview is created and sent to the manager.

These models are subject to lexical ambiguity. First, each
process model use the word application. Scenario A utilizes
it in the sense of a job application, i.e., a written request for
employment in an enterprise. We can infer this meaning
from the context in which documents are checked and an
interview takes place. In scenario B, the word application
refers to a software program since it is consulted for data
extraction and for the creation of a sales report. Apparently,
this small collection of two models uses the word application
with two different meanings, i.e., application is a homonym.

Fig. 1. Example for ambiguous process models.
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Moreover, we observe inconsistencies in scenario B. The
word sales refers to the turnover of the enterprise. The same
semantics can be assigned to the word revenue. Thus, the
two words are used to express the same concept and are
hence considered to be synonyms.

The example also points to specific challenges for detect-
ing homonyms and synonyms. In general, we face three
challenges for the identification and resolution of lexical
ambiguities: sense disambiguation, sense operationaliza-
tion, and ambiguity resolution. Table 2 provides an over-
view of techniques addressing these challenges.

The challenge of sense disambiguation, also referred to as
word sense disambiguation (WSD), relates to determining
the sense of a word in a given context [62]. In general, we dis-
tinguish between WSD techniques that employ supervised
machine-learning techniques (e.g., [47], [48], [49], [50]) and
clustering approaches that identify context similar words
(e.g., [51], [52], [53]). However, each existing approach
requires an extensive amount of natural language text as
input. As the textual information of process model elements
is typically very short, it provides limited context for identify-
ing the correct sense of a word. This insight is also confirmed
by Zong andNg [63] who report worse sense disambiguation
results for short queries in information retrieval. Thus, the
presented approaches need to be adapted or extended for
handling short textual information of processmodels.

The challenge of ambiguity operationalization is concerned
with representing word senses in such a way that ambigui-
ties can be identified. Such a representation would show
various aspects of a particular object. A prominent represen-
tation is the vector space model, which was introduced by
Salton et al. [54] to describe documents in an information
retrieval system. The model expresses indexing terms of a
document as dimensions of the vector space. The degree to
which a document is associated with a specific index term is
expressed with numerical values. A similar approach, the
word space model by Sch€utze [55], applies this concept to the
linguistic field. The word space model interprets the vector
dimensions as words. Following Sch€utze, a word in a

corpus is represented as a vector whose components counts
the number of occurrences within a fixed context (for exam-
ple a sentence or a larger context). As a result, the distribu-
tional profile of words implicitly expresses their semantics.
Deissenboeck and Pizka [56] introduce a formalization of
ambiguities to deal with synonyms and homonyms in iden-
tifier naming. Although their formalization captures essen-
tial characteristics of ambiguity, they are not sufficiently
precise for automatically identifying synonyms and homo-
nyms.The mere existence of a word with multiple senses
does not necessarily imply that it also represents an ambigu-
ous case. To this end, we need to redefine the vector space
model, to transfer it to word senses and to refine the condi-
tions that allow for confirming or rejecting the hypothesis of
ambiguity.

After the identification, the challenge of resolution needs
to be addressed. Ideally, the detected ambiguities can be
removed in order to achieve consistency and correctness
among a set of process models. Reconsidering the example
from Fig. 1, it is desirable to replace the homonym applica-
tion with job application in scenario A and with software pro-
gram in scenario B. In the literature, there are four different
strategies for resolving ambiguities. Frakes and Pole [57] as
well as Lin and Chan [58] propose to append additional
information to the ambiguous word. Bouzeghoub et al. [59]
suggest the incorporation of user-interaction in order to
manually resolve ambiguity. A third strategy was devel-
oped by Hayne and Ram [60]. Their approach provides the
user with the possibility to choose from automatically cre-
ated recommendations. The last strategy suggests the auto-
matic rephrasing or replacement of ambiguous words with
more precise alternatives. An exemplary approach has been
developed by Ben-Ari et al. [61] who propose an interactive
approach to rephrase ambiguities. However, these strate-
gies either require manual efforts ([57], [58]), or have been
applied in specific scenarios ([58], [59], [60]), or have been
developed for grammatically correct sentences ([61]).
Hence, we require strategies that can deal with short text
fragments that are common in process models.

Building on these challenges, we develop techniques for
automatically detecting and resolving lexical ambiguities in
process models in the following sections.

3 PRELIMINARIES

This section introduces the formal preliminaries of our
approach. In Section 3.1, we discuss formal preliminaries of
process models. In Section 3.2, we formalize lexical ambigu-
ity before formulating explicit conditions for ambiguity
detection in Section 3.3.

3.1 Formalization of Process Models

In this paper, we adapt the canonical process model format
from Leopold [64], and solely focus on process model ele-
ments containing natural language text. Further, we use the
label definition as proposed by Mendling et al. [29]. Accord-
ing to this definition, every label of a process model contains
two components: an action and a business object on which
the action is applied. As an example, consider the activity
label Receive Application from Fig. 1. It contains the action to
receive and the business object application. It is important to

TABLE 2
Challenges for Ambiguity Detection and Resolution

Challenge Applicable Concepts

Sense Disambiguation
Supervised Methods Agirre and Martinez [47]

Quinlan [48]
V�eronis and Ide [49]
Navigli and Ponzetto [50]

Word and Context Clustering Sch€utze [51]
Lin [52]
Pantel and Lin [53]

Ambiguity Operationalization
Vector Space Model Salton et al. [54]
Word Space Dimensions Sch€utze [55]
Ambiguity Definitions Deissenboeck and Pizka [56]

Ambiguity Resolution
Additional Information Frakes and Pole [57]

Lin and Chan [58]
Interaction Bouzeghoub et al. [59]
Alternative Selection Hayne and Ram [60]
Rephrasing Ben-Ari et al. [61]
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note that these components can be communicated in differ-
ent grammatical variations. For instance, the label Applica-
tion Receipt contains the same action and business object as
Receive Application, but uses a different grammatical struc-
ture. In order to be independent of grammatical structures,
we use a technique which automatically extracts action and
business object of the respective label to a decent degree of
accuracy (Avg. precision: 91 percent, avg. recall: 90.6 per-
cent) [64]. Furthermore, we assume actions to be captured
as verbs and business objects as nouns. Altogether, we for-
malize a process model as follows.

Definition 3.1 (Process Model). A process model P ¼ ðA;
E;G; F;WV ;WN; L;a;b; �Þ consists of six finite sets A, E,
G, WV , WN , L, a binary relation F � ðA [ E [GÞ � ðA [
E [GÞ, a partial function a : L Z WV , a partial function
b : L Z WN , and a partial function � : ðA [ E [GÞZ L,
such that

– A is a finite non-empty set of activities.
– E is a finite set of events.
– G is a finite set of gateways.
– WV is a finite set of verbs.
– WN is a finite set of nouns.
– F is a finite set of sequence flows. Each sequence flow

f 2 F represents a directed edge between two nodes.
– L is a finite set of text labels.
– The partial function a assigns a verb wV 2WV to a

label l 2 L.
– The partial function b assigns a noun wN 2WN to a

label l 2 L.
– The partial function � defines the assignment of a label

l 2 L to an activity a 2 A, event e 2 E or gateway
g 2 G.

As the techniques presented in this paper focus on sets of
process models, we further introduce the notion of a process
model collection. We denote a process model collection with
C. Moreover, we define the following subsets for a process
model collection C:

– The set of all labels: LC ¼ S
P2CL.

– The set of all actions: LC
A ¼

S
l2LCaðlÞ.

– The set of all business objects: LC
BO ¼

S
l2LCbðlÞ.

– The set of all actions and business objects LC=
LC
A [ LC

BO.

So far, we introduced only process models and their ele-
ment labels. However, we have observed that the sense of a
label may change in a different context. In the motivating
example of Fig. 1, the word application might either refer to
a job application or a software program. Thus, we require a for-
mal baseline for word senses and for lexical ambiguities
which is the main task of the following section.

3.2 Formalization of Lexical Ambiguity

In order to automatically identify ambiguities, namely hom-
onymy and synonymy, it is essential to adequately concep-
tualize the sense of a word. In this paper, we adopt the
enumerative approach by Navigli [62]. According to this
approach, distinct word senses are identified and listed in a
sense inventory. The connection between word senses and
words of a dictionary is formalized as follows.

Definition 3.2 (Senses). Let D be a dictionary of words, the
senses of a word are defined by the function SensesD :W�
POS ! 2S , such that

– W is the set of words denoted in dictionary D.
– POS ¼ fn; v; a; rg is the set of open-class parts of

speech (nouns, verbs, adjectives, and adverbs).
– S is the set of word senses that are encoded in the dic-

tionary. 2S denotes the powerset of senses.

Senses are defined in dictionaries such as the Oxford
Advanced Learner’s Dictionary of Current English [65], the
Oxford Dictionary of English [66], and the Longman Dictionary
of Contemporary English [67]. For automatic analysis, lexical
databases such as WordNet [68], [69] are available, which
capture various semantic relationships in a structured way.
A similar resource is the BabelNet database [70], which com-
bines WordNet senses with the web encyclopedia Wikipe-
dia and allows also multilingual word sense retrieval and
disambiguation. To illustrate the enumerative approach, we
consider the word application from Fig. 1. WordNet enumer-
ates the following seven senses:

– s1: the act of bringing something to bear
– s2: a verbal or written request for assistance or

employment or admission to a school
– s3: the work of applying something
– s4: a program that gives a computer instructions that

provide the user with tools to accomplish a task
– s5: liquid preparation having a soothing or antiseptic

or medicinal action when applied to the skin
– s6: a diligent effort
– s7: the action of putting something into operation
Using the introduced sense conceptualization, we further

formalize homonymy and synonymy. As already men-
tioned, a homonym is a word with multiple senses and syn-
onyms are words sharing a common sense. We regard the
word application as a homonym as it may refer to multiple
senses such as a job application, a software program, an applica-
tion in the medical sense, or diligence and effort. The words bill,
invoice, and account are synonyms since they share a com-
mon meaning. In order to formalize these properties, we
reformulate the ambiguity formalization of homonyms and
synonyms by Deissenboeck and Pizka [56].

Definition 3.3 (Homonyms). Given a wordw 2 LC , the wordw
is a homonym iff jSenseDðw; �Þj > 1 where the symbol *
denotes a wildcard for a part of speech p 2 POS ¼ fn; v; a; rg.
The set of all homonymsHomC from a process model collection

C is accordingly given byHomC ¼ fw jj ðSenseDðw; �Þj > 1g.

Definition 3.4 (Synonyms). Given two words w1; w2 2 LC , the
words w1 and w2 are synonyms iff ðSenseDðw1; �Þ \ SenseD
ðw2; �ÞÞ 6¼ ;. Accordingly, the set of all synonym pairs SynC

from a process model collection C is given by SynC ¼
fðw1; w2Þ jSenseDðw1Þ \ SenseDðw2Þ 6¼ ;g.

The previous definitions emphasize that a decision on
homonymy and synonymy requires the consideration of all
senses of a given word. Hence, a word is best represented
by a vector of its senses, which is inline with the concepts of
the vector space model by Salton et al. [54] and the word
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space model by Sch€utze [55]. The vector space model
describes a document with the help of indexing terms and
treats them as vector dimensions. The degree to which a doc-
ument is associated with a specific index term is expressed
with numerical values in the vector. The word space model
interprets the vector dimensions as words and counts the
occurrences of a word within a fixed context. Building on
these concepts, we introduce the notion of a semantic vector
SV w of a word w. A semantic vector, represents word senses
as vector dimensions which corresponds to a distinct word
sense of a dictionary. If the word is used with a specific
meaning, its value in the semantic vector is non-zero.

Definition 3.5 (Semantic Vector). Let w be a word and swi the
ith sense of the word w retrieved from the dictionary D, the
semantic vector is given by SV w

D ¼ <svw1 ; sv
w
2 ; . . . ; sv

w
n>,

such that

– The ith dimension of SV w
D corresponds to the ith sense

swi 2 SenseDðw; �Þ.
– svwi is a supporting score that indicates to which degree

the word is used with the ith sense in a given context.

To illustrate these concepts, we refer to the word applica-
tion of Fig. 1. As shown, application has seven distinct word
senses, such as job application (s2) and software program
(s4). Taking the process model of scenario A as context, we
assume that the context of the process model leads to the

following vector SV application
WordNet ¼ <0; 10; 0; 9; 2; 1; 0>.

3.3 Ambiguity Detection Conditions

The homonym and synonym definitions from Section 3.2
capture only the basic characteristics of lexical ambiguity.
In particular, they do not consider the context of a given
word. The implications of the missing context is explained
best by reconsidering the previously discussed word appli-
cation. According to WordNet, this word has seven different
senses. Hence, following Definition 3.3, application is a hom-
onym. However, only because a word may refer to multiple
senses, this does not necessarily mean that it actually does.
An ambiguous case exists only, if the context of the word
does not allow the reader to infer the correct sense. There-
fore, Definitions 3.3 and 3.4 constitute only necessary
conditions.

In order to finally decide about the homonymous or syn-
onymous character of a word, we refine the notion of ambi-
guity with two consecutive steps. The first step involves the
determination of the dominant word sense which is inline
with standard WSD approaches, which typically assign a
supporting score to an input target word given a set of
words as a context [71], [72]. The word sense with the high-
est supporting score is typically assumed to be the most
appropriate one and thus dominating all other word senses.
Therefore, we formally state this condition as follows.

Definition 3.6 (Dominant Word Sense). Given a word

w 2 LC , its semantic vector SV w
D along with the supporting

scores svw for a given context, a sense swi 2 SenseDðw; �Þ is
dominant iff there is no other sense swi 2 SenseDðw; �Þ with a
higher supporting score: 8swi ; swj 2 SenseDðw; �Þ; swj 6¼ swi :

svwi > svwj . We denote the dominant sense with swmax.

Let us again consider the word application in Fig. 1 and
its semantic vector with regard to scenario A, i.e.,

SV application
WordNet ¼ <0; 10; 0; 9; 2; 1; 0>. According to the defini-

tion of the dominant word sense, the 2nd sense is
considered to be dominant since its supporting score

svapplication2 ¼ 10 is the highest among all supporting
scores.

In the second step, we need to consider those cases
where a clearly dominating word sense is not present.
Although the 2nd sense is dominating due to the biggest
vector value, the 4th sense is very close. Thus, the con-
clusion is valid that this particular sense is also appro-
priate for the given context and that it cannot be
excluded from further consideration. In order to also
capture that sense, we introduce a user defined confi-
dence score � 2 ½0 . . . 1� that defines a spectrum of appro-
priate word senses around the dominating one. Thus, we
introduce the notion of quasi dominant word senses as
follows.

Definition 3.7 (Quasi-Dominant Word Senses). Given a
word w 2 LC , its semantic vector SV w

D along with the support-
ing scores svw for a given context and its dominating sense
swmax, a sense swi 2 SenseDðw; �Þ is quasi-dominant iff
svwi � � � svwmax. Accordingly the set of all quasi-dominant
word senses is given by sensewQD ¼ fswi 2 SenseDðw; �Þj
svwi � � � svwmaxg. Further, we define domSensew as being the
set that contains all dominant and quasi-dominant word
senses: domSensew ¼ fswmaxg [ sensewQD.

Reconsidering the example of the word application, we
already identified the 2nd sense to be dominant. If we set
the confidence score � to 0.9 and apply the previous defi-

nition to the remaining supporting scores sapplicationi , we
also find the 4th sense as quasi-dominant with regard to
the other vector values. Obviously, since more word
senses appear to be appropriate, the word application
actually represents a homonym. Thus, we need to extend
the necessary conditions of homonyms and synonyms
with these concepts. The extended definitions formulate a
sufficient condition for synonyms and homonyms that
build upon the necessary conditions in the Definitions 3.3
and 3.4. The extended definitions consider the dominant
senses of the word in the respective context and thus
decide if the respective synonym or homonym candidate
is confirmed or rejected.

Definition 3.8 (Sufficient Homonym Condition). Given a
word w 2 LC , the semantic vector space for that word w, its
vector scores svw and its set of dominant and quasi-dominant
word senses domSensew, the word w is a confirmed hom-
onym iff Definition 3.3 holds and jdomSensewj > 1. Other-
wise, it is a rejected homonym.

Definition 3.9 (Sufficient Synonym Condition). Given two
words w1; w2 2 LC that fulfill Definition 3.4. Let
domSensew1 and domSensew2 be the set of the dominant and
quasi-dominant word senses of w1 or w2, respectively. The
words w1 and w2 are confirmed synonyms iff Definition 3.4
holds and iff domSensew1 \ domSensew2 6¼ ;. Otherwise, the
words are rejected synonyms.
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Building on these definitions, we introduce a technique
that identifies and resolves lexical ambiguities in process
models in the following section.

4 CONCEPTUAL APPROACH

In this section, we introduce the approaches for identifying
and resolving homonymy and synonymy in process mod-
els. We start with presenting the techniques for detecting
homonyms and synonyms. Afterwards, we present the
respective resolution techniques.

4.1 Detection of Lexical Ambiguity

In order to properly identify lexical ambiguity, we employ
the concepts and definitions we introduced in the previous
section. We first discuss the detection of homonyms. Then,
we present the approach for detecting synonyms.

4.1.1 Homonym Detection

Building on our arguments from the previous sections, we
formulate three essential requirements a homonym detec-
tion technique has to fulfill. First, it has to identify words
with several meanings. Second, it has to select those words
that are actually used with different meanings in similar
contexts. Third, it needs to preserve the quality and consis-
tency of the considered model collection, i.e., process mod-
els with a similar contexts need to be treated equally.

To address the first requirement, we employ lexical data-
bases that store several distinct word senses according to
the enumerative approach. We already mentionedWordNet
and BabelNet as examples of such lexical databases. In con-
trast to WordNet, BabelNet also includes encyclopedic
knowledge of Wikipedia and further enriches WordNet
with contemporary senses. Moreover, it has been shown
that the combination of these two knowledge bases handles
specific terms and vocabulary better [73]. For these reasons,
we use the BabelNet to retrieve the word senses and check
Definition 3.3 for any term.

In order to fulfill the second requirement, we need to opera-
tionalize the process model context and to derive the sup-
porting scores for each dimension of the semantic vector.
For this purpose, we employ an advanced multilingual
WSD approach by Navigli and Ponzetto [50]. This approach
exploits the BabelNet database to perform a graph-based
disambiguation across different languages bringing
together empirical evidence from other languages by
ensemble methods. The evaluation of this approach demon-
strates that the combination of a lexical knowledge base
with graph algorithms provides partially better results than
classical WSD methods, also including specific words.
Equipped with the supporting scores we check Definition
3.8 and finally confirm or reject a word as homonym.

To appropriately deal with the third requirement, we need
to consider the fact that a word occurs in several process
models and that the word can have a different sense in
another model. Thus, we need to find those models in
which the target word is used with similar senses, i.e., in
which the semantic vectors are close to each other. After-
wards, we decide for a group of several process models if a
target term is used ambiguously or not. For the resolution,
we ensure that the ambiguity is resolved consistently

through all process models within a group.For this purpose,
we employ the XMeans clustering approach by Pelleg and
Moore [74] as it efficiently estimates the number of clusters
automatically and is capable of finding smaller groups of
vectors with similar characteristics. Finally, we check the
necessary and the sufficient condition for each cluster center
and decide on the homonymy of a word.

These steps are formalized in Algorithm 1. The algorithm
requires the process model collection C and a target word w
as input and starts with basic initializations (Steps 2-4). The
set SemanticVectors stores the semantic vectors that are cre-
ated from disambiguating the word w with respect to the
process model p which serves as the context. The set
homonymCandidates stores the final results of the algorithm
and contains the detected homonyms. After the initializa-
tions, the necessary condition for homonyms is checked. For
this purpose, we employ the BabelNet database and retrieve
the synsets of the wordw (Step 5). If this check does not eval-
uate to false, the semantic vectors for each process model p
and word w are calculated using the graph-based WSD
approach with BabelNet. We denote this with the function
babelðw; pÞ that takes the word w and a process model p
as input and returns the semantic vector according to
Definition 3.5. Each semantic vector is then added to the set
SemanticVectors (Steps 5-7). In Step 9, the semantic vectors
are clustered to identify groups of context similar vectors.
We denote this with the function xmeans ðsemanticVectorsÞ
that takes the set of all semantic vectors of word w as input
and returns a set of identified clusters. Afterwards, the suffi-
cient homonym condition is checked for each cluster (Steps
10-11). The sufficient homonym evaluation makes use of the
function DominantSenseðscÞ that returns all dominant
senses. If it evaluates to true, the word and the respective
cluster are considered to be a potential homonym candidate
and added to the result set (Step 12). At the end, the algo-
rithm returns the final result set and terminates (Step 16).

Algorithm 1. Identification of Homonyms for a Set of
Process Models

1: identifyHomonyms(Word w, ProcessModels C)
2: semanticVectors ;
3: semanticClusters ;
4: homonymCandidates ;
5: if BabelNet.RetrieveSynsets(w) � 2 then
6: for all p 2 C do
7: semanticVectors semanticVectors [ babel (w,p)
8: end for
9: semanticClusters xmeans(semanticVectors)
10: for all sc 2 semanticClusters do
11: if jDominantSenses(sc)j � 2 then
12: homonymCandidates homonymCandidates[ (w,

sc)
13: end if
14: end for
15: end if
16: return homonymCandidates

4.1.2 Synonym Detection

Regarding the identification of synonyms, the technique has
to consider pairs of words that have at least one meaning in
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common. Analogously to the homonymy problem, these
two words can be synonymous only if their context is
approximately identical.

For this purpose, we again employ the BabelNet database
to learn about the word senses of two words and to decide if
they fulfill Definition 3.4. If so, we use the multilingual WSD
approach and create the semantic vectors and the support-
ing scores. Afterwards, we employ the XMeans clustering
approach for each semantic word space and identify the
dominant and quasi-dominant meanings. In contrast to the
homonym approach, we have to compare the resulting clus-
ters of each candidate word with each other to check the
sufficient synonym condition. If two clusters share at least
one meaning, i.e., the intersection of dominant and quasi
dominant sense is not empty, we confirm the two words in
the respective clusters as synonym candidates.

The synonym detection approach is formalized in
Algorithm 2. It takes two words w1 and w2 as well as the set
of process models C as input. Afterwards, it starts with the
basic initializations, i.e., the initialization of the semantic
vector and cluster set for w1 and w2 and the result set (Steps
2-5). In Step 6, the necessary synonym condition is checked
according to Definition 3.4. If true, the semantic vectors of
each word are calculated using the BabelNet WSD approach
which we denote again with the function babelðw; pÞ (Steps
8-11). The algorithm continues with clustering the vectors of
each semantic vector space denoted by the function
xmeansðsemanticVectorsÞ (Steps 12-13). Finally, the algo-
rithm checks the sufficient synonym condition for each clus-
ter (Step 15). If the dominant senses of one cluster of word
w1 intersect with the dominant senses of one cluster of word
w2, the sufficient condition evaluates to true and the two
words as well as the respective clusters are stored in the
result map (Steps 15-16). The algorithm terminates by
returning the result set synonymClusters (Step 20).

Algorithm 2. Detection of Synonyms in a Set of Process
Models

1: identifySynonyms(Word w1, w2, ProcessModels C)
2: semanticVectors1  ;
3: semanticVectors2  ;
4: semanticClusters1  ;
5: semanticClusters2  ;
6: synonymCandidates ;
7: if ðSenseDðw1; �Þ \ SenseDðw2; �ÞÞ 6¼ ; then
8: for all p1; p2 2 C do
9: semanticVectors1  semanticVectors1 [ babel (w1, p1)
10: semanticVectors2  semanticVectors2 [ babel (w2, p2)
11: end for
12: semanticClusters1  xmeans(semanticVectors1)
13: semanticClusters2  xmeans(semanticVectors2)
14: for all sc1 2 semanticClusters1;

sc2 2 semanticClusters2 do
15: if ðDominantSenses(sc1)

\ DominantSenses(sc2)Þ 6¼ ; then
16: synonymCandidates synonymCandidates [ (w1,

sc1, w2, sc2)
17: end if
18: end for
19: end if
20: return synonymCandidates

4.2 Resolution of Lexical Ambiguity

A fully automatic resolution of lexical ambiguity is associ-
ated with considerable challenges and thus not free of
errors. Therefore, it is often more appropriate to rely on
human resolution instead and to notify them about identi-
fied cases of ambiguity [32], [75]. In this line, we propose a
resolution technique that aims at providing sensible refac-
toring suggestions for the identified synonyms and homo-
nyms. In the following, we first discuss strategies for
generating resolution suggestions for homonyms. Then, we
present a strategy for synonyms.

4.2.1 Homonym Resolution

The resolution of homonyms is addressed using different
perspectives. We propose three resolution strategies.

The first strategy exploits the semantic relationship of
hyponomy. The hyponymy relation describes a transitive
relation between word senses that organizes them into a
sub-word hierarchy. It starts with a general word and
becomes more and more specific. As an example, con-
sider the fragment of BabelNet’s hyponymy tree for the
word application in Fig. 2. It illustrates that BabelNet
provides four different hyponyms that can be used to
resolve the ambiguity. Accordingly, this resolution strat-
egy would suggest the depicted hyponyms, i.e., job
application, credit application, loan application, and patent
application. Building on this concept, we formalize the res-
olution strategy as follows:

SuggestionHypo ¼ hypoDðw0; s0Þ;

where hypoDðw0; s0Þ denotes a function that returns the set
of all hyponyms of the original word w0 with the word
sense s0 in a dictionaryD.

In the second homonym resolution strategy we employ
again the hyponym relation. However, instead of replacing
the ambiguous term with a hyponym (a more specific
word), we add a more general word from the hyponym tree
as a qualifier. In linguistics, such a word is referred to as
hypernym. Reconsidering the hyponym tree in Fig. 2, we
pick the hypernym request and create application [request] as
a suggestion. Formally, the hypernym strategy is described
as follows:

SuggestionHyper ¼ hyperDðw0; s0Þ;

Fig. 2. Example fragment of the hyponymy tree.
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where hyperDðw0; s0Þ denotes a function that returns hyper-
nym of the original word w0 with the word sense s0 in a dic-
tionaryD.

The third strategy also implements the qualifier concept.
In particular, we aim at identifying qualifiers in dictionaries
and glosses of the respective word. In order to automatically
select an appropriate candidate, the approach picks the
word that is most similar to the original word. To measure
the closeness between the words, we employ the Lin metric
[76] as is it has been shown to best correlate with the human
judgements. For the word application, we can retrieve words
such as employment, patent, job, or admission. According to
the Lin measure, the word patent has the highest similarity
score which subsequently leads to the suggestion application
(patent). Formally, this strategy can be described as follows:

SuggestionLin ¼ fwj max
w2glossDðw0;s0Þ

fsimLinðw0; wÞgg;

where glossDðw0; s0Þ denotes a function that retrieves all
gloss words of the original word w0 with the word sense s0
in a dictionary D and simLinðw1; w2Þ a function that calcu-
lates the similarity score.

4.2.2 Synonym Resolution

The synonym resolution strategy is motivated by the
research of Plachouras et al. [77] and Rijsbergen [78] who
measured the generality of a search query in an information
retrieval system. The authors argue that the generality of a
search query is determined by the number of documents
that are retrieved by this query. We adapt this concept in
the following way. The search query is interpreted as a
word that is looked up in the BabelNet database, while the
query results represent the word senses. Accordingly, the
more synsets the query word retrieves, the more general it
is. The rationale is that a general word can be used in sev-
eral contexts with a broader set of meanings. In order to
finally suggest an alternative word for replacement, the
approach determines the word with the minimal number of
word senses. For example, consider the synonyms sales and
revenue from Fig. 1. The approach retrieves four senses for
sales and six senses for revenue. Accordingly, the word sales
is chosen as a suggestion to resolve the synonym conflict.
This strategy is formalized as follows:

SuggestionS ¼ fwj min
w2synðw0Þ

jfSenseDðw; �Þjg;

where synðw0Þ denotes the set of all words that have the
same meaning as the original word w0.

5 EVALUATION

To demonstrate the capability of the presented techniques,
we challenge them against real-world data. More specifi-
cally, we test them on three process model collections from
practice with a varying degree of standardization. The over-
all goal of the evaluation is to learn whether the techniques
can effectively identify homonyms and synonyms and suc-
cessfully resolve them by suggesting more specific words.
To this end, we study different evaluation dimensions.
Section 5.1 provides detailed information about the
employed process model collections. Section 5.2 investigates

the techniques from a run time perspective. Section 5.3
discusses the evaluation of the identification algorithms.
Finally, Section 5.4 elaborates on the evaluation of the reso-
lution algorithms.

5.1 Model Repository Demographics

In order to achieve a high external validity, we employ three
different model collections from practice. We selected col-
lections differing with regard to standardization, the
expected degree of terminological quality, and the domain.
Table 3 summarizes their main characteristics. These collec-
tions include:

� SAP reference model. The SAP Reference Model contains
604 Event-Driven Process Chains organized in 29 dif-
ferent functional branches [79]. Examples are pro-
curement, sales, and financial accounting. The model
collection includes 2,432 activity labels with 321
unique actions and 891 unique business objects.
Since the SAP Reference Model was designed as an
industry recommendation with a standardized ter-
minology, we expect a small number of homonyms
and synonyms.

� TelCo collection. The TelCo collection contains the pro-
cesses from an international telecommunication
company. It comprises 803 process models with in
total 12,088 activities. We identified 728 unique
actions and 3,955 unique business objects. We
assume the TelCo collection to contain more hetero-
geneous terminology as it is not based on a standard-
ized glossary.

� AI collection. The models from the AI collection cover
diverse domains and stem from academic training
(see http://bpmai.org). From the available models,
we selected those with proper English labels. The
resulting subset includes 1,091 process models with
in total 8,339 activity labels. The activities contain
1,567 unique actions and unique 3,268 business
objects. Since the collection targets no specific indus-
try and has been mainly created by students, the
number of synonyms and homonyms is expected to
be the highest among all considered collections.

5.2 Performance Results

The main application scenario of the presented techniques is
the automatic assurance of an unambiguous terminology in
process model repositories. Thus, the detection and resolu-
tion of ambiguous terms is not necessarily time critical. A
user may start the algorithms, and assess the terminology
conflicts at a later point. However, if the detection and reso-
lution approaches are used in an interactive setting, the
computation must be adequately fast. Hence, we tested the

TABLE 3
Details of the Test Collections

Characteristic SAP TelCo AI

No. of Models 604 803 1,091
No. of Labels 2,432 12,088 8,339
No. of. Unique Actions 321 728 1,567
No. of. Unique Business Objects 891 3,955 3,268
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resolution technique on a MacBook Pro with a 2.4 GHz Intel
Core Duo processor and 4 GB RAM, running on Mac OS X
10.7 and Java Virtual Machine 1.7.

Table 4 summarizes the average, minimum, and maxi-
mum execution times of the text generation technique for
a single word of a specific collection. The last column
indicates the required time to perform a complete run on
the collection. We split the processing time into two com-
ponents for transparency. The results show that the syno-
nym technique consumes significantly more time than the
homonym technique, which is due to pairwise compari-
son. An average detection and resolution run consumes
about 0.04 seconds for homonyms and 2.54 seconds for
the synonyms. Large deviations from these values are
observed only for words that are used in several process
models containing a higher number of elements. In gen-
eral, we learn that the disambiguation of word senses is
the most time consuming step. Although the average
disambiguation consumes only 1.54 seconds, there are
deviations that would be tedious when used in an interac-
tive mode. However, if required, these results can be
improved by storing and reusing the calculated support-
ing scores. Since these scores have to be calculated only if
a new process model is created or an existing process
model was changed, standard indexing techniques could
be used to effectively improve the overall run time.

5.3 Evaluation of Identification

In this section, we discuss the evaluation of the proposed
identification techniques. First, Section 5.3.1 elaborates on
our evaluation setup. Then, Section 5.3.2 presents the results
for the homonym identification. Finally, Section 5.3.3 dis-
cusses the results of the synonym identification.

5.3.1 Evaluation Setup

We assess the performance of the identification algorithms
by comparing the performance of the basic approach and
the advanced approach. As a baseline, the basic approach
uses a lexical database such as WordNet to learn whether or
not the respective word is ambiguous. The advanced
approach has already been described in the previous sec-
tion, whereby the advanced approach explicitly uses WSD
capabilities to decide upon the ambiguity of a word. In

order to assess the performance of these approaches, we use
precision, recall and the f-measure as metrics [80]. In our
context, the precision value is the number of correctly recog-
nized ambiguity cases divided by the total number of ambi-
guity cases retrieved by the algorithms. The recall is the
number of correctly recognized ambiguity cases divided by
the total number of ambiguity cases. The f-measure is the
harmonic mean between precision and recall.

In order to be able to compute precision and recall for the
collections introduced in Section 5.1, we require a bench-
mark with the human interpretations of the comprised
terms. However, due to the high number of terms and pro-
cess models in the test collections, a complete benchmark
would require the manual judgment and annotation of
29,438 potential homonym term-model pairs and 80,609,259
potential synonym term-model pairs. It would be extremely
difficult and time consuming to annotate all the homonyms
and synonyms in the test collection.

To solve this problem, we draw a random sample from
the test collections and apply statistical methods in order
to make valid propositions for precision and recall. In
particular, we apply the following procedure. We notice
that each combination of a term and a process model is
either ambiguous or not. Hence, repeatedly drawing
instances from our test collections and assessing the ambi-
guity represents a binomial experiment X 	 Bðn; pÞ with a
population size of n and the probability of finding an
ambiguity p. Assuming a homonym probability of 0:01
and a synonym probability of 0:0001 for our overall test
sample, we follow the recommendations by Berger [81]
and Brown et al. [82] and apply the Jeffrey interval, which
is most suitable for binomial references from large popu-
lations with a small probability p. Aiming for a signifi-
cance level a ¼ 0:05 and a margin of error � 
 0:02, we
draw a random sample of 120 term-model pairs for homo-
nyms and 125 term-model pairs for synonyms based on
the sample size calculation formula provided by
Piegorsch [83]. Additionally, we created two types of
samples. The first sample includes term-model pairs from
the algorithmic results, while the second one includes
term-model pairs from the overall test set. With this strat-
egy, we assess the performance of the algorithmic output
and the overall test set for the synonym as well as the
homonym detection technique.

TABLE 4
Average Processing Time for Identification and Resolution

Characteristic Avg (s) Min (s) Max (s) Total (s)

SAP Detection þ Resolution 0.03 <0.01 2.12 40.46
WSD 0.88 <0.01 48.26 1,055.35

Homonyms TelCo Detection þ Resolution 0.04 0.01 4.39 206.96
WSD 1.88 <0.01 253.9 8,750.98

AI Detection þ Resolution 0.05 0.01 3.79 216.46
WSD 1.51 <0.01 113.94 7,107.16

SAP Detection þ Resolution 0.81 <0.01 6.01 967.06
WSD 0.93 <0.01 291.19 1,109.10

Synonyms TelCo Detection þ Resolution 4.22 <0.01 54.64 19,634.08
WSD 1.95 <0.01 480.94 9,055.74

AI Detection + Resolution 2.60 <0.01 40.45 12,233.39
WSD 0.78 <0.01 271.29 3,664.51
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Taking into account the literature of WSD evaluation (see
for example [84], [85]), we asked a set of six native English
speakers to provide us with their interpretation of the term-
model pairs. We randomly assigned them to the test samples
in such a way that each native speaker had to assess one
homonym and one synonym sample. Thus, we got three
judgments for each sample of term-model pairs. Each partic-
ipant was provided with a target word and a process models
in which this word was highlighted. For homonyms, we ran-
domly selected four word senses and asked participants
whether the target word could be used with the respective
sense a) in general and b) in the context of the particular pro-
cess model. For synonyms, we analogously selected alterna-
tive terms and asked users whether a replacement of the
target term by an alternative term is meaningful a) in general
and b) in the context of the particular process model. The
participants were asked to provide feedback for each ques-
tion on a 4-point-Likert-scale from Strongly agree to Strongly
disagree. By using a 4-point-scale, we intentionally forced
participants to make a final decision, which is necessary for
the calculation of precision and recall. For the evaluation, we
considered only the answers that relate to the particular pro-
cess model and calculated the average of these which
marked the term as ambiguous or not.

5.3.2 Homonym Identification Results

The results of the homonym identification approach are
summarized in Table 5. The results show that the advanced
approach works satisfactorily in comparison to the basic
approach. The advanced approach achieves a precision of
53 to 55 percent, while the basic approach is much more
unstable and retrieves a considerable high number of false
positives (precision: 20 to 50 percent). In contrast however,
the recall scores of the basic approach ranges between 84
and 98 percent in the samples. This observation relates
directly to the high number of ambiguous words detected
by the basic approach (115 in the precision sample and 104
in the recall sample) which apparently include most of the
ambiguous words. If we take the f-measure into account,
we observe again a higher performance of the advanced
approach. The f-measure amounts to 42 percent in the recall
sample and 70 percent in the precision sample in contrast to
32 and 66 percent.

We further reflect upon the results by including the
nature of the term-model samples into our consideration. In
the precision sample, we chose from those term-model pairs
that have been retrieved by the algorithm. Thus, this sample
included pairs with a fairly good chance of being

ambiguous. In such a setting, each approach is equally capa-
ble of identifying a considerable number of ambiguities that
are also relevant for the user. When looking at the details, we
observe that the advanced approach is capable of reducing
the number of false positives and keeping the relevant terms
at the same time. In the recall sample, we selected term-
model pairs from all three processmodel collections and also
included terms that may remain unrecognized by the algo-
rithm. In this case, we observed a low precision and a high
recall for the basic approach. In contrast, the results of the
advanced approach are more balanced with a moderate pre-
cision. However, we observe a surprisingly low recall at the
same time. The details revealed that our participants spotted
specific word senses to be similar to each other and thus
identified an ambiguous term. The algorithm drew a clear
distinction between specific word senses and found only one
to be appropriate. For example, the participants agreed that
the term link in the activity link pairs order to case complies to
the word senses to be or to become joined or united as well as to
make a logical or causal connection, while the algorithm agrees
only on the first word sense. Despite this, we still consider
the algorithm to be superior to the basic approach and to
retrievemoremeaningful candidates to the users.

In addition to the quantitative analysis, we discuss quali-
tative results of the identification approach. Table 6 presents
the Top five homonymous actions and business objects
among all test collections. The most frequent homonym
action is given by to process. For this word, our approach
identified two dominant word senses. First, the word is
used as a general expression to perform a set of operations
to create a required output or information. Second, it also
identifies the activity of officially delivering a legal notice or
summons. For the business objects, the technique identifies
the noun notice as the most frequent homonym. In this case,
it is unclear if the incident refers to a single event or a dis-
turbance, for example in IT applications. These words are
good examples of homonyms that are frequently used and
should rather be avoided.

5.3.3 Synonym Identification Results

The results of the synonym detection technique are summa-
rized in Table 5. Similarly to the homonym detection
approach, the results show that the advanced approach of
this paper exceeds the capabilities of the basic approach. In
terms of precision, the basic approach achieves 29 percent
while the advanced approach reaches at least 56 percent. In
terms of recall, the basic approach appears to outperform
the advanced approach (88 percent compared to 58

TABLE 5
Identification Results for Homonyms and Synonyms

Sample User Assessment Basic Approach Adv. Approach Basic Approach Adv. Approach

AW NAW AW NAW AW NAW P R F P R F

Precision 58 62 115 5 104 16 0.5 0.98 0.66 0.55 0.98 0.7
Homonyms Recall 26 94 104 16 17 103 0.2 0.84 0.32 0.53 0.35 0.42

Precision 33 95 100 28 36 92 0.29 0.88 0.44 0.56 0.58 0.57
Synonyms Recall 2 126 0 128 0 128 - 0 - - 0 -

AW: Number of Ambiguous Words, NAW: Number of Non-Ambiguous Words P: Precision, R: Recall, F: F-Measure
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percent). As discussed earlier, the high recall value is the
result of the extensive number of retrieved instances that
are produced by the basic approach. Taking the f-measure
into account, we observe that the advanced approach is
more balanced (57 percent in contrast to 44 percent).

We also discuss the results with regard to the samples of
the user evaluation. In the precision sample, the advanced
approach dominates the capabilities of the basic approach.
It does not only reduce the number of false positives by a
significant amount (36 instances compared to 100 instances),
but it also keeps a large share of those synonym pairs that
are relevant for the user. In the recall sample, the partici-
pants have detected two synonyms which have not been
found by the basic or the advanced approach. Accordingly,
it is not possible to calculate any values for precision or the
f-measure. Interestingly, the users found the term pairs (fill
out, complete and submit) as well (document, register and com-
municate). In these cases, the participants interpreted the
combination of two distinct verbs as a synonym to the single
term. Since neither of these two approaches cannot recog-
nize the combination of verbs correctly, they do not detect a

synonym in these cases. Overall, we consider the advanced
approach to be superior to the basic one and to retrieve the
relevant cases for the user.

In addition to the quantitative perspective, it is again
interesting to investigate qualitative examples. Table 7 gives
an overview of the Top five synonymous actions and busi-
ness objects. It is interesting to note that the approach identi-
fied a group of three pairwise synonym words. The words
make, create, and produce all refer to the activity of
manufacturing products. For the business objects, the tech-
nique identifies customer, market and client as synonyms for
persons that pay for goods and services. Another example
are the synonyms purchase order and order which refer to a
commercial delivery document. Overall, these examples
also illustrate the capability of our approach to identify syn-
onyms that should be avoided.

5.4 Evaluation of Resolution

In this section, we discuss the evaluation of the resolution
strategies. First, Section 5.4.1 elaborates on our evaluation

TABLE 6
Top Five of Homonymous Actions and Business Objects

Rank Word Frequency Word Sense

1 process 191 Perform operations to obtain required information
Officially deliver

2 create 175 Manufacturing a man-made product
Causing something (create a furor)

Actions 3 check 171 Be careful or certain to do something
Hand over something to somebody

4 review 111 Hold a review
Appraise critically

5 receive 65 To come into possession of
To convert into sounds or pictures

1 incident 39 A single distinct event
A disturbance

2 request 38 The verbal act of requesting or asking
A formal message postulating something

Business Objects 3 case 27 Someone who is an object of investigation
A portable container for carrying several objects

4 notification 26 A request for payment
Informing by words

5 application 22 A computer program
A verbal or written request for employment

TABLE 7
Top Five of Synonymous Actions and Business Objects

Rank Word Frequency Word Sense

1 check, control 173 Be careful or certain to do something
2 create, produce 157 Manufacturing a man-made product

Actions 3 post, send 142 Cause to be directed or transmitted to
another place

4 make, create 135 Manufacturing a man-made product
5 survey, review 115 Hold a review

1 customer, market 119 Someone who pays for goods or services
2 customer, customer account 118 Someone who pays for goods or services

Business Objects 3 purchase order, order 92 A document to request someone to supply
something

4 account, invoice 72 A statement of money owed for goods
or services

5 customer, client 36 Someone who pays for goods or services
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setup. Then, Section 5.4.2 presents the results for the hom-
onym resolution. Finally, Section 5.4.3 discusses the results
of the synonym resolution.

5.4.1 Evaluation Setup

We assess the performance of the resolution strategies by
comparing the degree of ambiguity before and after apply-
ing it to the test collections. Since we do not aim at a fully
automatic resolution of ambiguity and still require humans
to perform this task, we can abstract from the suggestions
themselves and turn to the effects of ambiguity resolution,
i.e., a reduction of ambiguity in the test collections. There-
fore, we define metrics that measure the basic characteristics
of homonyms or synonyms respectively in order to opera-
tionalize the effects of ambiguity.

Since a homonym represents a word referring to multiple
senses, we measure the degree of homonymy by using the
number of senses per word. Given a set of process models
P , we capture the degree of homonymy as follows:

SpWP ¼ j
S

w2LP SenseDðw; �Þj
jLP j : (1)

Differentiating between action and business object, we
further calculate the number of senses per word for actions
(SpWP

A ) and for business objects (SpWP
BO):

SpWP
A ¼

j S w2LASenseDðw; vÞj
jLAj (2)

SpWP
BO ¼

j S w2LBOSenseDðw; nÞj
jLBOj : (3)

For the degree of synonymy, we calculate the number of
words for each word sense. Given a process model set P ,
the degree of synonymy is defined as follows:

WpSP ¼ jLP j
j S w2LP SenseDðw; �Þj

: (4)

Differentiating between action and business object, we
calculate the number of words per sense for actions (WpSP

A)

and for business objects (WpSP
BO):

WpSP
A ¼

jLAj
j S w2LASenseDðw; vÞj

(5)

WpSP
BO ¼

jLBOj
j S w2LBOSenseDðw; nÞj

: (6)

5.4.2 Homonym Resolution Results

Table 8 summarizes the results for the introduced metrics. It
illustrates the significant effect of the homonym resolution
technique for both, actions and business objects. The biggest
effect can be seen for the TelCo collection. In the TelCo col-
lection, the number of senses per action is reduced from
6.27 to 1.47 and the number of senses per business object is
reduced from 8.96 to 1.76. However, similar results can be

observed for the SAP and AI collection. Fig. 3 illustrates this
effect by showing the senses per word distribution for all
collections. The distribution figures demonstrate that the
technique reduces the number of words with multiple
sense. As a result of its application, almost all words with
more than five senses are replaced. Consequently, the tech-
nique also significantly increases the number of words with
a single sense. Thus, the degree of homonymy is consider-
ably reduced. Note that not every word having multiple
senses is necessarily ambiguous. Many words are associated
with senses that a closely related. Hence, the technique will
never result in a sense distribution in which every word
points to a single sense.

In addition to the quantitative results, we provide resolu-
tion examples for each of the Top five homonyms (see
Table 9). For the sake of readability, we list only the first
hyponym that is suggested. In general, the resolution strate-
gies are capable of creating a decent number of suggestions
to resolve the ambiguous words. However, we also note dif-
ferences in the performance of these strategies. For the
hyponym strategy, we note that it fails to retrieve hypo-
nyms in eight cases due to the fact that there are simply no
hyponyms existing. Looking at the suggestions, we observe
that the suggestions are quite specific for most of the cases
and might miss the originally intended word senses. The
hypernym strategy fails in only two cases. Moreover, if we
compare the word sense and the suggestion, we more likely
tend to accept the suggestion as it best describes the
intended word sense. The Lin strategy is always capable to
create a suggestion. However, we also notice that it fails in
nine cases. This typically occurs when each gloss word has
a similarity score of 0. Nevertheless, we can consider the
remaining Lin suggestions as meaningful suggestions when
combining it with the other strategies.

5.4.3 Synonym Resolution Results

Table 10 summarizes the results for the introduced metrics.
From the data we learn that the technique decreases the
degree of synonymy for all three collections. The biggest
effect can be observed for the AI collection. In this collec-
tion, the WpSP

A is reduced by 0.036 and the WpSP
BO is

reduced by 0.08. While we yield comparable results for the
TelCo collection, the effect for the SAP collection is signifi-

cantly smaller. In the SAP collection, the WpSP
A metric

deceases by 0.04 and the WpSP
BO decreases by 0.05. These

differences are a result of the lower ex ante degree of synon-
ymy of the SAP collection. The, in general, small absolute
differences can be explained by the fact that many words do

TABLE 8
Results of Homonym Resolution

SAP TelCo AI

SpWP Before 6.79 8.67 7.29
After 1.71 1.47 1.86

SpWP
A

Before 5.37 6.27 5.70
After 1.83 1.47 1.54

SpWP
BO

Before 7.31 8.96 7.60
After 1.66 1.76 1.92
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not have synonyms, i.e., their words per sense value is one.
Those words having synonyms typically have one or two.
Hence, the effect of resolving a synonym results in a rather
small difference of the metric. However, the numbers still
show the positive effect of the synonymy resolution tech-
nique. Fig. 4 visualizes the results by showing the words
per sense distribution. It confirms the explanation for the
small absolute values. Only a few senses are represented by
more than one word. Again note that not every case with
WpS > 1 is necessarily ambiguous. Hence, not all of them
are replaced.

We also discuss the qualitative results of the synonym
resolution strategy. Similar to the homonym case, we create
the resolution suggestions for the Top five synonymous
actions and business objects as depicted in Table 11. The
table shows on the one hand that the strategy is always
capable of creating a suggestion based on the specificity of a
word. On the other hand, we can distinguish two cases.
First, the strategy can suggest a new alternative that com-
prises two words, such as the verb go over for the synonym
pair survey and review. Second, it can select the most
unambiguous alternative among two words, as for example

for the words invoice and account. In general, we could not
find counter-intuitive suggestions which lets us conclude
that the specificity strategy fulfills its purpose.

5.4.4 Joint Application Results

The homonym as well as the synonym resolution technique
modify the content of the investigated collections. In this
section, we investigate whether the results are negatively
affected by applying the proposed techniques in sequence.
Table 12 summarizes the results.

In general, it must be stated that the techniques appear to
be complementary. The results show that the joint applica-
tion of the resolution techniques reduces the degree of syn-
onymy and homonymy and hence improves the result. As
there are overlaps between cases of homonymy and synon-
ymy, i.e., there are words that are synonyms and homo-
nyms at the same time, this is a desirable result. In addition,
the data illustrates the importance of application order.
Considering the metrics SpWP

A and WpSP
A , it can be seen

that resolving synonymy first yields better results. How-

ever, the values of the metric SpWP
BO suggest the opposite.

Fig. 3. Senses per word distribution before and after homonym resolution.

TABLE 9
Resolution Suggestions for the Top Five Homonymous Actions and Business Objects

Rank Word Word Sense SuggestionHypo SuggestionHyper SuggestionLin

1 process Perform operations N/A process (calculate) process (process)
Officially deliver wash process (deliver) process (process)

2 create Manufacturing overproduce N/A create (produce)
Causing something blast N/A create (create)

Actions 3 check Being certain to do sth proofread check (verify) check (control)
Handing over N/A check (consign) check (check)

4 review Hold a review N/A review (inspect) review (survey)
Appraise critically referee review (evaluate) review (critique)

5 receive Coming into possession inherit receive (get) receive (receive)
Converting N/A receive (convert) receive (receive)

1 incident A distinct event cause celebre incident (happening) incident (incident)
A disturbance N/A incident (disturbance) incident (incident)

2 request Requesting or asking call request (speech act) request (asking)
A formal message solicitation request (message) request (petition)

Business 3 case Investigation subject N/A case (person) case (subject)
Objects A portable container gun case case (container) case (case)

4 notification A request for payment N/A notification (request) notification (notice)
Informing by words warning notification (informing) notification (apprisal)

5 application A computer program browser application (program) application (program)
Request f. employment credit application application (request) application (patent)
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In general, the synonymy resolution technique may create
new homonyms, but it is very unlikely that the homonymy
resolution creates new synonyms since it typically introdu-
ces compounds. Hence, the synonymy resolution should be
executed first. This is also emphasized by the negligibly
small differences of the SpW metrics.

6 DISCUSSION

In this section, we discuss the implications of our research
for research and practice. Finally, we reflect upon the limita-
tions of our work.

6.1 Implications for Research

The results of this research have implications for software
and requirements engineering, the quality assurance of
conceptual models, and for conceptual model analysis
techniques.

In the domain of software engineering, conceptual mod-
els are frequently used for formally specifying system
requirements [86]. These models have to be consistent and
correct in order to avoid risks for the software development
project [6]. The proposed techniques provide means for sup-
porting the software and requirements engineering process
by automatically detecting ambiguous terminology in for-
mal requirements documents and by automatically propos-
ing more accurate terms. As a result, misconceptions of
requirements are avoided and the likelihood of a successful
completion of the software engineering initiative is
increased. It should be noted that the application of our
technique is not limited to process models. Since also other
conceptual models use natural language fragments in the
same fashion as process models [87], [88], [89], our tech-
nique can be also applied to goal models, feature diagrams,
or use case diagrams.

For assuring the quality of conceptual models, several
guidelines and frameworks have been proposed [90], [91],
[92], [93]. Building on the requirements of such guidelines,
many techniques have been introduced that check and cor-
recting these guidelines in an automatic fashion. Among
others, this includes techniques for checking and correcting
syntactical aspects of natural language in conceptual models
[10], [94], [95]. The research in this paper complements these
techniques by addressing the semantic dimension of natural
language. Thus, it represents an important step towards
fully automated quality assurance of conceptual models.

There are several techniques that automatically analyze
conceptual models for different purposes. Examples include
techniques for computing the overall similarity between two
models [96], [97], for the automatic identification of activity
correspondences between two process models [98], [99],
[100], for the identification of service candidates from pro-
cess models [101], [102], [103] and for the automatic assess-
ment of diagrams in an educational scenario [104]. What all
these techniques have in common is that they need to syntac-
tically compare the natural language content of the analyzed
models. Our technique can improve the performance of
these techniques by first assuring a consistent usage of lan-
guage. As a result, model analysis techniques can avoid an
erroneous association of semantically unrelated words.

6.2 Implications for Practice

The results of this paper have considerable implications for
practice. Most importantly, the proposed techniques can be
integrated into commercial modeling tools. In such a con-
text, it can point modelers to ambiguous words and auto-
matically generate more accurate alternatives among which
the modeler may choose. As a result, linguistic quality
issues can be avoided right from the start.

For already existingmodel repositories, our technique can
help modelers in cleaning up terminology. Given the size of
model repositories in practice with thousands of models [2],
our techniques make an important contribution to the effec-
tive and efficient model management. This is particularly
useful whenmultiple modelers createmodels concurrently.

6.3 Limitations

The findings from this paper are subject to some limitations.
In particular, we discuss the representativeness of the col-
lections, the transfer to other conceptual models, and user
evaluation.

TABLE 10
Results of Synonym Resolution

SAP TelCo AI

WpSP Before 1.087 1.083 1.089
After 1.075 1.072 1.076

WpSP
A

Before 1.100 1.187 1.191
After 1.096 1.155 1.155

WpSP
BO

Before 1.082 1.062 1.067
After 1.077 1.055 1.059

Fig. 4. Word per sense distribution before and after synonym resolution.
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The three process model collections can hardly be seen as
representative in a statistical sense. Therefore, we cannot
completely rule out that other model collections would
yield different results. We tried to minimize this risk by
selecting process model collections that vary along different
dimensions such as degree of standardization, domain, and
size. Hence, we are confident that the successful application
of our techniques is not limited to a particular set of models.

We evaluated the techniques using only process models.
Consequently, the applicability to other conceptual models
might still require further demonstration. Nevertheless,
related work reveals that the naming conventions for other
conceptual models are identical to those of process models.
Examples include naming conventions of goal models [87],
feature diagrams [88], and use case diagrams [89]. Since our
technique uses only a set of labels as input, this provides us
with confidence that the presented techniques are applica-
ble also to other conceptual models.

Although the findings suggest the usefulness of the tech-
nique, there is still a need to conduct an evaluation in an
end user scenario from practice. Nevertheless, we know
that the detection and resolution tasks are typically con-
ducted by human reviewers who perceive it as time-

consuming, ineffective and boring [105], [106]. Since our
techniques can reduce the detection time significantly and
increase the effectiveness of resolving ambiguities, we are
confident that human reviewers will find these techniques
useful to fulfill this task.

7 CONCLUSION

In this paper, we addressed the problem of automatically
identifying and resolving homonyms and synonyms in
conceptual models. Using a literature review, we identi-
fied that current techniques cannot be easily transferred
to models as they cannot deal with their specific charac-
teristics. In particular, the shortness of the natural lan-
guage text labels represents a major challenge. In order
to adequately address this issue, we introduced a tech-
nique that operationalizes and exploits the model context.
Moreover, we proposed necessary and sufficient condi-
tions that allow us to automatically identify truly ambig-
uous homonyms and synonyms. Using the lexical
database BabelNet, we further implemented different res-
olution strategies, which automatically suggest replace-
ment terms. The evaluation with English native speakers
illustrated that the technique identifies a significant num-
ber of homonyms and synonyms within the test collec-
tions. The introduced metrics Sense per Word and Word
per Sense further highlighted the positive effect of the res-
olution approach. As a result, the overall ambiguity
could be significantly reduced.

In future research, we first aim to transfer our technique
to a professional environment. In such an environment, pro-
cess modelers are capable to use our technique complement
to their work with modeling tools in order to refine the ter-
minology within processes. We are currently discussing dif-
ferent opportunities with industry partners that already
started with this task. Second, we aim to study the perfor-
mance of the techniques when applied for other types of
models. Since, for instance, goal models have similar char-
acteristics with regard to natural language, the techniques
should be readily applicable. Therefore, the research pre-
sented in this paper can be regarded as an important step
towards the automatic quality assurance of conceptual
models altogether.
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TABLE 11
Top Five of Synonymous Actions and Business Objects

Rank Word Word Sense SuggestionS

1 check, control Being certain to do sth insure
2 create, produce Manufacturing create

Actions 3 post, send Transmitting to another place send
4 make, create Manufacturing create
5 survey, review Hold a review go over

1 customer, market Someone who pays for goods customer
2 customer, customer account Someone who pays for goods customer

Business Objects 3 purchase order, order A supply request document purchase order
4 account, invoice A statement of owed money invoice
5 customer, client Someone who pays for goods customer

TABLE 12
Results of Joint Application

SAP TelCo AI

Homonym only 1.71 1.47 1.86
SpWP Synonym-Homonym 1.53 1.49 1,64

Homonym-Synonym 1.53 1.52 1,61

Homonym only 1.83 1.47 1.54
SpWP

A
Synonym-Homonym 1.54 1.24 1.35
Homonym-Synonym 1.64 1.30 1.34

Homonym only 1.66 1.76 1.92
SpWP

BO
Synonym-Homonym 1.53 1.52 1.68
Homonym-Synonym 1.49 1.54 1.67

Synonym only 1.076 1.072 1.077
WpSP Synonym-Homonym 1.072 1.068 1.070

Homonym-Synonym 1.077 1.073 1.077

Synonym only 1.096 1.155 1.155
WpSP

A
Synonym-Homonym 1.056 1.102 1.094
Homonym-Synonym 1.071 1.158 1.155

Synonym only 1.077 1.055 1.059
WpSP

BO
Synonym-Homonym 1.077 1.062 1.067
Homonym-Synonym 1.079 1.056 1.061
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