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Abstract—A number of structural coverage criteria have been proposed to measure the adequacy of testing efforts. In the avionics and
other critical systems domains, test suites satisfying structural coverage criteria are mandated by standards. With the advent of
powerful automated test generation tools, it is tempting to simply generate test inputs to satisfy these structural coverage criteria.
However, while techniques to produce coverage-providing tests are well established, the effectiveness of such approaches in terms of
fault detection ability has not been adequately studied. In this work, we evaluate the effectiveness of test suites generated to satisfy
four coverage criteria through counterexample-based test generation and a random generation approach—where tests are randomly
generated until coverage is achieved—contrasted against purely random test suites of equal size. Our results yield three key
conclusions. First, coverage criteria satisfaction alone can be a poor indication of fault finding effectiveness, with inconsistent results
between the seven case examples (and random test suites of equal size often providing similar—or even higher—levels of fault
finding). Second, the use of structural coverage as a supplement—rather than a target—for test generation can have a positive impact,
with random test suites reduced to a coverage-providing subset detecting up to 13.5 percent more faults than test suites generated
specifically to achieve coverage. Finally, Observable MC/DC, a criterion designed to account for program structure and the selection of
the test oracle, can—in part—address the failings of traditional structural coverage criteria, allowing for the generation of test suites
achieving higher levels of fault detection than random test suites of equal size. These observations point to risks inherent in the
increase in test automation in critical systems, and the need for more research in how coverage criteria, test generation approaches,
the test oracle used, and system structure jointly influence test effectiveness.

Index Terms—Software testing, system testing

1 INTRODUCTION

IN software testing, the need to determine the adequacy of
test suites has motivated the development of several clas-
ses of test coverage criteria [1]. One such class is structural
coverage criteria, which measure test suite adequacy using
the coverage over the structural elements of the system
under test, such as statements or control flow branches. In
the critical systems domain—particularly in avionics—dem-
onstrating structural coverage is required by standards [2].

In recent years, there has been rapid progress in the
creation of automated test generation tools that direct the
generation process towards the satisfaction of certain
structural coverage criteria [3], [4], [5], [6]. Such tools
promise to improve coverage and reduce the cost associ-
ated with test creation.

In principle, this represents a success for software
engineering—a mandatory, and potentially arduous,
engineering task has been automated. Nevertheless, while
there is evidence that using structural coverage to guide
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random test generation provides better tests than purely
random tests [7], the effectiveness of test suites automati-
cally generated to satisfy various structural coverage criteria
has not been firmly established.

In previous work, we found that test inputs generated
specifically to satisfy three structural coverage criteria via
counterexample-based test generation were less effective
than random test inputs [8]. Additionally, we found that
reducing larger test suites for a given coverage metric—in
our study, MC/DC—while maintaining the same level of
coverage reduced their fault finding significantly, hinting
that it is not always wise to build test suites solely to satisfy
a coverage criterion [9]. These findings were confirmed in a
larger study, where we found that test suites generated to
provide branch and MC/DC coverage were less effective
than random test suites of the same size [7]. The same study
found that using structural coverage as a supplement to
random testing was a far more effective practice than
generating tests specifically for satisfying that criterion.

More recent work suggests that a number of factors that
are currently not well understood can strongly impact the
effectiveness of the testing process—for example, the oracle
used, the structure of the program under test, etc. [10], [11],
[12]. The results of these studies indicate that adequacy
criteria that do not take such factors into account may be at
a disadvantage to those that do.

These results are concerning. Given that common stand-
ards in critical systems domains require test suites to satisfy
certain structural coverage metrics—and the rise of auto-
mated tools that can provide such coverage—the temptation
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exists to automate the entire testing process. Before we can
recommend such action, however, is it essential to establish
the efficacy of the generated test suites.

In earlier work, we reported the results of a study mea-
suring the fault finding effectiveness of automatically gener-
ated test suites satisfying two structural coverage criteria:
decision coverage and Modified Condition/Decision Cover-
age (MC/DC coverage), as compared to randomly gener-
ated test suites of the same size on four production avionics
systems and an example system from NASA [7]. In the
work presented in this paper, we have expanded the initial
pilot study to cover a wider range of structural coverage cri-
teria, with the goal of making new observations and estab-
lishing more generally applicable conclusions.

In this study, we generate tests for seven industrial criti-
cal systems—four Rockwell Collins systems from previous
work, a NASA system, as well as two subsystems of a com-
plex real-time infusion pump—using both a random test
generation approach and counterexample-based test gener-
ation [13]—directed to satisfy condition, decision, MC/DC
and Observable MC/DC coverage (a coverage metric
designed to propagate the impact of condition choices to a
program point where they can be observed by the test oracle
[12]). Both the generated test suites and random test suites
were reduced while maintaining coverage and compared to
purely random test suites of equal size. We determined
effectiveness of the resulting test suites through mutation
analysis [14]—and, for two systems, a set of real faults—
using two expected value test oracles: an output-only test
oracle and a maximally powerful test oracle (an oracle
observing all output and internal state variables).

Our results show that for three of the four coverage crite-
ria—in four of our industrial systems—the automatically
generated test suites perform significantly worse than ran-
domly generated test suites of equal size (up to 40.6 percent
fewer faults found when coupled with an output-only ora-
cle). For the NASA example and the two infusion pump sys-
tems, which were selected specifically because their
structures were significantly different from the Rockwell
Collins systems, and the Observable MC/DC(OMC/DC)
criterion—which was selected for its potential to overcome
the shortcomings of MC/DC-test suites generated to
satisfy structural coverage—performed better, matching or
improving on randomly generated test suites of the same
size. However, these tests were still not always effective in
an absolute sense, generally finding fewer than 50 percent
of the faults with the standard output-only oracle. Similar
trends can be observed when examining systems with real
faults, with coverage-directed test generation yielding up to
93.4 percent worse fault-detection performance.

Finally, we found that for most combinations of coverage
criteria and case examples, randomly generated test suites
reduced while maintaining structural coverage sometimes
find more faults than pure randomly generated test suites
of equal size (finding up to 13.1 percent more faults).

We draw three conclusions from these results. First, auto-
matic test generation to satisfy structural coverage does not,
for many of the systems investigated, yield effective tests
relative to their size for the commonly-used condition, deci-
sion, and MC/DC coverage criteria. This, indicates that sat-
isfying even a “rigorous” coverage criterion can be a poor
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indication of test suite effectiveness. Furthermore, even
when coverage-directed tests yield superior performance,
the tests may still miss a large number of potentially
severe faults.

Second, the use of structural coverage as a supplement—
not a target—for test generation (as Chilensky and Miller
recommend in their seminal work on MC/DC [15]) can be
an effective practice.

Finally, OMC/DC, unlike other coverage criteria, gener-
ally provides the same or better fault finding than random
test suites of equal size in our study, indicating that the
extensions to consider propagation at least partly—though
not completely—address issues related to MC/DC.

These observations have serious implications and point
to the risks inherent in the increased use of test automation.
The goal of this study is not to discourage the use of one
particular form of automated test generation—or to recom-
mend another—but to raise awareness of the risks of assum-
ing that code coverage equates to effective testing. To the
best of our knowledge, this paper is the largest such study
to date. It demonstrates the potential for automatic test gen-
eration to reduce the fault finding effectiveness of test suites
and coverage criteria relative to random testing, and it is
one of the few such studies that use real-world avionics
systems. While our focus is on critical systems, test genera-
tion techniques and coverage measurements are used in the
verifications of systems across many disparate domains; the
issues raised are relevant to those domains as well.

Our results highlight the need for more research in how
the coverage criterion, the test generation approach, the cho-
sen test oracle, and the structure of the system under test
jointly influence the effectiveness of testing. The increasing
availability and use of advanced test-generation tools cou-
pled with the increased use of code coverage in certifica-
tion—and our lack of knowledge of the effectiveness of
such tools and metrics—is worrisome and careful attention
must be paid to their use and acceptance.

2 RELATED WORK

A number of empirical studies exist comparing structural
coverage criteria with random testing, with mixed results.
Juristo et al. provide a survey of much of the existing work
[16]. With respect to branch coverage, they note that some
authors (such as Hutchins et al. [17]) find that branch cover-
age outperforms random testing, while others (such as
Frankl and Weiss [18]) discover the opposite. Namin and
Andrews have found coverage levels are positively corre-
lated with fault finding effectiveness [19]. However, recent
work from Inozemtseva and Holmes found low-to-moder-
are correlation when the number of test cases is controlled
for and that stronger forms of coverage do not necessarly
lead to stronger fault-finding results [20]. Theoretical work
comparing the effectiveness of partition testing against ran-
dom testing yields similarly mixed results. Weyuker and
Jeng [21], and Chen and Yu [22], indicate that partition test-
ing is not necessarily more effective than random testing.
Hamlet and Taylor additionally found that partition test-
ing—as commonly used—is often ineffective and has little
value in gaining confidence in a system [23]. Later theoreti-
cal work by Gutjahr [24], however, provides a stronger case
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for partition testing. Arcuri et al. [25] recently demonstrated
that in many scenarios, random testing is more predictable
and cost-effective at reaching high levels of structural cover-
age than previously thought. The authors have also demon-
strated that, when cost is taken into account, random testing
is often more effective at detecting faults than a popular
alternative—adaptive random testing [26].

Most studies concerning automatic test generation for
structural coverage criteria are focused on how to generate
tests quickly and/or improve coverage [3], [27]. Compari-
sons of the fault-finding effectiveness of the resulting test
suites against other methods of test generation are few.
Gopinath et al. compared a number of manual and automat-
ically-generated test suites for statement, block, brand, and
path coverage for their ability to find fault [28]. They con-
cluded that statement coverage led to the highest level of
fault-finding effectiveness. Others that exist apart from our
own limited previous work and Gopinath’s study are, to the
best of our knowledge, studies in concolic execution [4], [5].
One concolic approach by Majumdar and Sen [29] has even
merged random testing with symbolic execution, though
their evaluation only focused on two case examples, and
did not explore fault finding effectiveness.

Despite the importance of the MC/DC criterion [2], [15],
studies of its effectiveness are few. Yu and Lau study sev-
eral structural coverage criteria, including MC/DC, and
find MC/DC is cost effective relative to other criteria [30].
Kandl and Kirner evaluate MC/DC using an example from
the automotive domain, and note less than perfect fault
finding [31]. Dupuy and Leveson evaluate the MC/DC as a
complement to functional testing, finding that the use of
MC/DC improves the quality of tests [32]. None of these
studies, however, compare the effectiveness of MC/DC to
that of random testing. They therefore do not indicate if test
suites satisfying MC/DC are truly effective, or if they are
effective merely because MC/DC test suites are generally
quite large.

More concerning than the negative results regarding the
ability of structural coverage to enhance fault finding is the
overall lack of consensus one way or the other. Certain cov-
erage metrics are used as though their use guarantees effec-
tive testing when, in practice, there is no universal evidence
of their utility.

Our study applies counterexample-based test generation
using the JKind model checker [13], [33] to directly generate
test inputs for multiple coverage criteria. In this work, we
find issues with the effectiveness of tests generated using
this approach. Several problems that can arise when using
model checkers to generate tests are discussed by Fraser
et al. [34]; however, issues regarding fault-finding effective-
ness are not among them. Counterexample-based test gener-
ation is simply one method of automated test generation—
others include symbolic [35] and concolic execution [4],
model-based test generation [36], combinatorial testing [37],
and search-based testing [38], among others. For a compre-
hensive survey on automated test generation, see [6].

The work presented in this paper is an extension of a con-
ference publication [7]. Our current work differs primarily
in the number of criteria explored (four, rather than two),
and—in particular—the use of OMC/DC[12], a coverage
criterion whose definition was in part motivated by the
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issues raised in our earlier work [7]. We also expand on the
programs studied, and include real faults—as opposed to
seeded mutations—for two of the systems.

3 EXPERIMENT

We are interested in two approaches for test generation: ran-
dom test generation and directed test generation. As the name
implies, in random test generation, tests are randomly gener-
ated. Suites of these tests can later be reduced with respect to
the coverage criterion—this is akin to the practice of using
coverage as an adequacy criterion, where one tests until cover-
age is achieved. Such an approach that is useful as a gauge of
the value of a coverage criterion—if tests randomly generated
and reduced with respect to a coverage criterion are more
effective than pure randomly generated tests, we can safely
conclude the use of the criterion led to the improvement.
Unfortunately—other than our previous work [7]—evidence
demonstrating this is, at best, mixed for coverage metrics such
as decision or condition coverage [16], and non-existent for
more stringent forms of coverage, such as MC/DC.

In directed test generation, tests are created specifically
for the purpose of satisfying a coverage criterion. Examples
include heuristic search methods [38] and approaches based
on reachability [3], [4], [27]. Such techniques have advanced
to the point where they can be effectively applied to produc-
tion systems. Although these approaches can be slower than
random testing, they offer the potential to improve the
coverage of the resulting test suites.

It has been suggested that structural coverage criteria
should only be used as adequacy metrics—to determine if a
test suite has failed to cover functionality in the source code
[1], [19]. However, an adequacy criterion can always be
transformed into a test suite generation target. In mandating
that a coverage criterion be used for measurement, it seems
inevitable that some testers will opt to perform generation
to speed the testing process, and tools have been built for
that purpose [39].

Therefore, in our study, we aim to determine if using
existing directed generation techniques with these criteria
results in test suites that are more effective at fault detection
than randomly generated test suites. We expect that a test
suite satisfying the coverage criterion to be, at a minimum,
at least as effective as randomly generated test suites of
equal size. Given the central—and mandated—role the cov-
erage criteria play within certain domains (e.g., DO-178C
for airborne software [40]), and the resources required to
satisfy them, this area requires additional study. We thus
seek answers to the following research questions:

RQ1: Are random test suites reduced to satisfy various coverage
criteria more effective than purely randomly generated
test suites of equal size?

RQ2: Are test suites directly generated to satisfy various cover-
age criteria more effective than randomly Qenerated test

suites of equal size?

3.1 Experimental Setup Overview
In this study, we have used four industrial systems devel-
oped by Rockwell Collins Inc., a fifth system created as a
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TABLE 1
Case Example Information
# Simulink Subsystems | # Blocks
DWM_1 3,109 11,439
DWM_2 128 429
Vertmax_Batch 396 1,453
Latctl_Batch 120 718
# States | # Transitions | # Vars
Docking_Approach 64 104 51
Infusion_Mgr 27 50 36
Alarms 78 107 60
Infusion_Mgr (faulty) 30 47 34
Alarms (faulty) 81 101 61

case example at NASA, and two subsystems of an infusion
pump created for medical device research [41]. The Rock-
well Collins systems were modeled using the Simulink
notation and the remaining systems using Stateflow [42],
[43]; all were translated to the Lustre synchronous program-
ming language [44] to take advantage of existing automa-
tion. In practice, Lustre would be automatically translated
to C code. This is a syntactic transformation, and if applied
to C, the results of this study would be identical.

Two of these systems, DWM_1 and DWM_2, represent
portions of a Display Window Manager for a commercial
cockpit display system. The other two systems—Vertmax_-
Batch and Latctl_Batch—represent the vertical and lateral
mode logic for a Flight Guidance System (FGS). The NASA
system, Docking_Approach, was selected due to its structure,
which differs from the Rockwell Collins systems in ways
relevant to this study (discussed later). Docking Approach
describes the behavior of a space shuttle as it docks with the
International Space Station. The remaining two systems,
Infusion_Mgr and Alarms, were chosen because they come
with a set of real faults that we can use to assess real-world
fault-finding. These systems represent the prescription
management and alarm-induced behavior of an infusion
pump device."

Information related to these systems is provided in
Table 1. We list the number of Simulink subsystems, which
are analogous to functions, and the number of blocks, analo-
gous to operators. For the examples developed in Stateflow,
we list the number of Stateflow states, transitions, and varia-
bles. As we have both faulty and corrected versions of Infu-
sion_Mgr and Alarms, we list information for both.

Note that Lustre systems, and the original Simulink sys-
tems from which they were translated, operate in a sequence
of steps. In each step, input is received, internal computations
are done sequentially, and output is produced. Within a step,
no iteration or recursion is done—each internal variable is
defined, and the value for it computed, exactly once. The sys-
tem itself operates as an large loop.

For each case example, we performed the following
steps:

1) Generated mutants. We generated 250 mutants, each
containing a single fault, and removed functionally
equivalent mutants. (Section 3.2.)

1. These two models are available to download from http://crisys.
cs.umn.edu/PublicDatasets.shtml
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2)  Generated structural tests. We generated test suites sat-
isfying condition, decision, MC/DC, and Observable
MC/DC coverage using counterexample-based test
generation. (Section 3.4.)

3)  Generated random tests. We generated 1,000 random
tests of test lengths between 2-10 steps. (Section 3.4.)

4)  Reduced test suites. We generated reduced test suites
satisfying condition, decision, MC/DC, and OMC/
DCcoverage using the test data generated in the pre-
vious two step. (Section 3.5.)

5)  Random test suites. For each test suite satisfying a cover-
age criterion, we created a single random test suite of
equal size. In addition, we created test suites of sizes
evenly distributed from sizes 1 to 1,000. (Section 3.5.)

6)  Computed effectiveness. We computed the fault finding
effectiveness of each test suite using both an output-
only oracle and an oracle considering all outputs
and internal state variables (a maximally powerful
oracle) against the set of mutants and—for the infu-
sion pump examples—against the set of real faults.
(Section 3.6.)

3.2 Mutant Generation

We have created 250 mutants (faulty implementations) for
each case example by automatically introducing a single
fault into the correct implementation. Each fault was seeded
by either inserting a new operator into the system or by
replacing an existing operator or variable with a different
operator or variable. Constructing the specific mutants
involved a randomized process in which a list of possible
mutants was enumerated. From this list, 250 mutants were
selected for generation, with a roughly even distribution of
fault types across the system occurring naturally.

The mutation operators used in this study are fairly typi-
cal and are discussed at length in [45]. They are similar to
the operators used by Andrews et al. where they conclude
that mutation testing can be an adequate proxy for real
faults for the purpose of investigating test effectiveness [46].

One risk of mutation testing is functionally equivalent
mutants—the scenario in which faults exist, but these faults
cannot cause a failure (an externally visible deviation from
correct behavior). This presents a problem when using
oracles that consider internal state—we may detect failures
that can never propagate to the output. We have used the
JKind model checker [13] to detect and remove equivalent
mutants for the four Rockwell Collins systems.” This is
made possible thanks to our use of synchronous reactive
systems—each system is finite, and thus determining
equivalence is decidable.’

The cost of determining non-equivalence for the Docking
Approach, Infusion_Mgr, and Alarms system is, unfortu-
nately, prohibitive. However, for every mutant reported as
killed in our study for the output-only oracle, there exists at
least one trace that can lead to a user-visible failure, and all
fault finding measurements for that oracle indeed measure
faults detected.

2. The percentage of mutants removed is very small, 2.8 percent on
average.

3. Equivalence checking is fairly routine on the hardware side of the
reactive system community; a good introduction can be found in [47].
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TABLE 2
Real Faults for Infusion Pump Systems

Infusion_Mgr

T W N =

When entering therapy mode for the first time, infusion can begin if there is an empty drug reservoir.
The system has no way to handle a concurrent infusion initiation and cancellation request.
If the alarm level is >= 2, no bolus should occur. However, intermittent bolus mode triggers on alarm <= 2.
Each time step is assumed to be one second.
When patient bolus is in progress and infusion is stopped, the system does not enter the patient lockout.

Upon restart, the patient can immediately request an additional dosage.

N O

If the time step is not exactly one second, actions that occur at specific intervals might be missed.
The system has no way to handle a concurrent infusion initiation and pause request.

Alarms

WN =

If an alarm condition occurs during the initialization step, it will not be detected.
The Alarms system does not check that the pump is in therapy before issuing therapy-related alarms.
Each time step is assumed to be one second.

3.3 Real Faults

For both of the infusion pump systems—Infusion_Mgr and
Alarms—we have two versions of each case example. One
is an untested—but feature-complete—version with several
faults, the second is a newer version of the system where
those faults have been corrected. We can use the faulty ver-
sion of each system to assist in determining the effectiveness
of each test suite. As with the seeded mutants, effective tests
should be able to surface and alert the tester to the residing
faults.

For the Infusion_Mgr case example, the older version of
the system contains seven faults. For the Alarm system,
there are three faults. Although there are a relatively small
number of faults for both systems, several of these are faults
that required code changes in several locations to fix. The
real faults used in this experiment are non-trivial faults—
these were not mere typos or operand mistakes, require spe-
cific conditions to trigger, and extensive verification efforts
were required to identify these faults. Faults of this type are
ideal, as we do not want the generated test cases to trivially
fail on the faulty models.

A brief description of the faults can be seen in Table 2.

3.4 Test Data Generation

In this research, we explore four structural coverage criteria:
condition coverage, decision coverage, Modified Condi-
tion/Decision Coverage [15], [16], and Observable Modified
Condition/Decision Coverage (OMC/DC) [12].

Condition coverage is a coverage criterion based on exercis-
ing complex Boolean conditions (such as the ones present in
many avionics systems). For example, given the statement
((aandb) and (not c or d) ), achieving condition cover-
age requires tests where the individual atomic Boolean con-
ditions a, b, ¢, andd evaluate to true and false.

Decision coverage is a criterion concerned with exercising
the different outcomes of the Boolean decisions within a pro-
gram. Given the expression above, ( (a and b) and (not c
or d) ), tests would need to be produced where the expres-
sion evaluates to true and the statement evaluated to false,
causing program execution to traverse both outcomes of the
decision point. Decision coverage is similar to the com-
monly-used branch coverage. Branch coverage is only appli-
cable to Boolean decisions that cause program execution to

branch, such as that in if or case statements, whereas deci-
sion coverage requires coverage of all Boolean decisions,
whether or not execution diverges. Improving branch cover-
age is a common goal in automatic test generation.

Modified condition/decision coverage further strengthens
condition coverage by requiring that each decision evaluate
to all possible outcomes (such as in the expression used
above), each condition take on all possible outcomes (the
conditions shown in the description of condition coverage),
and that each condition within a decision be shown to inde-
pendently impact the outcome of the decision. Independent
effect is defined in terms of masking, which means that the
condition has no effect on the value of the decision as a
whole; for example, given a decision of the form x and y,
the truth value of x is irrelevant if y is false, so we state that
x is masked out. A condition that is not masked out has
independent effect for the decision.

Suppose we examine the independent affect of d in the
example; if (a and b) evaluates to false, than the decision
will evaluate to false, masking the effect of d; Similarly, if ¢
evaluates to false, then (not c¢ or d) evaluates to true
regardless of the value of d. Only if we assign a, b, and ¢
true does the value of d affect the outcome of the decision.

MC/DC coverage is often mandated when testing critical
avionics systems. Accordingly, we view MC/DC as likely to
be effective criteria, particularly for the class of systems
studied in this report. Several variations of MC/DC exist—
for this study, we use Masking MC/DC, as it is a common
criterion within the avionics community [48].

Observable MC/DC (OMC/DC) is an enhanced version
of MC/DC that requires that tests not only exercise the
Boolean conditions and decisions within program expres-
sions, but that tests also offer a path of propagation from
that condition to the program output as well. One can view
MCDC as determining independent affect of a condition
within a decision; OMC/DC requires an analogous effect
on some observable quantity for the test (such as a program
output variable). While MC/DC ensures that Boolean faults
will not be masked at the decision level, it is often the case
that the decision will itself be masked before propagating to
an output variable. OMC/DC tests have the potential to
overcome this weakness by requiring that a path of propa-
gation exists between the condition and an output. For
example, consider the following block of pseudocode:
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X = ((aandb) and (not cord)) ;

y=xorc;

output =y and (bord) ;

In MC/DC it is necessary to show that the result of d influ-
ences the outcome of x. In OMC/DC, we must not only
demonstrate the independent impact of d on x, but the inde-
pendent impact of x on y and the independent impact of y
on output—thus establishing a propagation path for (not
cord) from x to the program output.

For our directed test generation approach, we used coun-
terexample-based test generation to generate tests satisfying
the four coverage criteria [3], [27]. In this approach, each
coverage obligation is encoded as a temporal logic formula
and a model checker can be used to detect a counterexample
(test case) illustrating how the coverage obligation can be
covered. By repeating this process for each coverage obliga-
tion for the system, we can use the model checker to auto-
matically derive test sequences that are guaranteed to
achieve the maximum possible coverage of the model.

This coverage guarantee is why we have elected to use
counterexample-based test generation, as other directed
approaches (such as concolic/SAT-based approaches) do
not offer such a straightforward guarantee. In the context of
avionics systems, the guarantee is highly desirable, as
achieving maximum coverage is required [2]. We have used
the JKind model checker [13], [33] in our experiments
because we have found that it is efficient and produces tests
that are easy to understand [8].

For the systems with real faults, we generate tests twice.
When calculating fault-finding effectiveness on generated
mutants, we generate tests using the corrected version of
the system (as the Rockwell Collins systems are free of
known faults). However, when assessing the ability of the
test suites to find the real faults, we generate the tests using
the faulty version of the system. This reflects real-world
practice, where—if faults have not yet been discovered—
tests have been generated to provide coverage over the code
as it currently exists.

We have also generated a single set of 1,000 random tests
for each case example. The tests in this set are between two
and 10 execution steps (evenly distributed in the set). For
each test step, we randomly selected a valid value for all
inputs. As all inputs are scalar, this is trivial. We refer to
this as a random test suite. After generating coverage-based
test suites, we resample from this test suite to create random
test suites of equal size for each coverage-based test suite.
Note that as all of our case examples are modules of larger
systems, the tests generated are effectively unit tests.

3.5 Test Suite Reduction

Counterexample-based test generation results in a separate
test for each coverage obligation. This leads to a large
amount of redundancy in the tests generated, as each test
likely covers several obligations. Consequently, the test
suite generated for each coverage criterion is generally
much larger than is required to provide coverage. Given the
correlation between test suite size and fault finding effec-
tiveness [19], this has the potential to yield misleading
results—an unnecessarily large test suite may lead us to
conclude that a coverage criterion has led us to select
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effective tests, when in reality it is the size of the test suite
that is responsible for its effectiveness. To avoid this, we
reduce each naively generated test suite while maintaining
the coverage achieved. To prevent us from selecting a test
suite that happens to be exceptionally good or exceptionally
poor relative to the possible reduced test suites, we produce
50 different reduced test suites for each case example using
the process described below.

Per RQ1, we have also created tests suites satisfying the
coverage criteria by reducing the random test suite with
respect to the coverage criteria (that is, the suite is reduced
while maintaining the coverage level of the unreduced
suite). Again, we produce 50 tests suites satisfying each
coverage criterion.

For both counterexample-based test generation and ran-
dom testing reduced with respect to a criterion, reduction is
done using a simple greedy algorithm. We determine the
coverage obligations satisfied by each test generated, and
initialize an empty test set reduced. We then randomly select
a test from the full set of tests; if it satisfies obligations not
satisfied by any test input in reduced, we add it to reduced.
We continue until all tests have been examined in the full
set of tests.

For each of our existing reduced test suites, we also pro-
duce a purely random test suite of equal size using the set
of random test data. Recall that each system operates as a
large loop receiving input and producing output. Each gen-
erated test is thus a finite number of “steps”, with each step
corresponding to a set of inputs received by the system. We
measure test suite size in terms of the number of total test
steps, rather than the number of tests, as random tests are
on average longer than tests generated using counterexam-
ple-based test generation. These random suites are used as
a baseline when evaluating the effectiveness of test suites
reduced with respect to coverage criteria. We also generate
random test suites of sizes varying from 1 to 1,000 steps.
These tests are not part of our analysis, but provide context
in our illustrations.

When generating tests suites to satisfy a structural cover-
age criterion, the suite size can vary from the minimum
required to satisfy the coverage criterion (generally
unknown) to infinity. Previous work has demonstrated that
test suite reduction can have a negative impact on test suite
effectiveness [9]. Despite this, we believe the test suite size
most likely to be used in practice is one designed to be
small—reduced with respect to coverage—rather than large
(every test generated in the case of counterexample-based
generation or, even more arbitrarily, 1,000 random tests).
Note that one could build a counterexample-based test suite
generation tool that, upon generating a test, removes from
consideration all newly covered obligations, and randomly
selects a new uncovered obligation to try to satisfy, repeating
until finished. Such a tool would produce test suites equiva-
lent to our reduced test suites, and thus require no reduction;
alternatively, we could view such test suites as pre-reduced.

3.6 Computing Effectiveness

In our study, we use what are known as expected value oracles
as our test oracles [49]. Consider the following testing pro-
cess for a software system: (1) the tester selects inputs using
some criterion—structural coverage, random testing, or
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TABLE 3
Median Percentage of Faults Identified, Condition Coverage Criterion

Counterexample Generation Comparison

Random Generation Comparison

Satisfyin Random of % Satisfyin Random of %
E 1 1 ymng -val ymng -val
Case Example Oracle Condition  Same Size = Change p-va Condition  Same Size  Change p-va
MX 93.8% 97.9% —42% 100 98.8% 97.1% 17%  <0.01
Latct]_Batch 00 48.6% 83.5% —41.9% 81.5% 80.2% 1.5% 0.06
MX 100.0% 95.6% 46% <001  100.0% 96.0% 42%
Vertmax_Batch 00 45.6% 76.2% —402%  1.00 81.9% 75.8% 79% <001
DWM 1 MX 92.8% 92.8% 0.0% 0.61 97.5% 96.6% 0.8%
- 00 18.2% 25.0% —271%  1.00 34.3% 33.1% 3.6% 0.35
DWM 2 MX 94.7% 92.6% 23% <001 99.2% 94.2% 52% <001
- 00 75.7% 77.8% —26%  0.99 88.9% 82.7% 7.5%
. MX 70.7% 19.4% 264.4% 18.5% 18.5% 0.0% 0.79
Docking Approach 53 21.7% 2.0% 985.0% 2.0% 2.0% 1.00
. MX 68.6% 25.1% 1733%  <0.01 20.7% 20.6% 0.5% 0.11
Infusion_Mgr 00 27.0% 10.1% 167.3% 7.3% 7.3% 0.0% 0.42
Alarms MX 74.9% 47.4% 58.0% 47.0% 47.0% 0.0% 0.46
00 40.5% 14.6% 177.4% 15.0% 14.2% 56% <001

OO = Output-Only, MX = Maximum Oracle.

engineering judgement; (2) the tester then defines concrete,
anticipated values for these inputs for one or more variables
(internal variables or output variables) in the program. Past
experience with industrial practitioners indicates that such
oracles are commonly used in testing critical systems, such
as those in the avionics or medical device fields.

We explore the use of two types of oracles: an output-only
oracle that defines expected values for all outputs, and a
maximum oracle that defines expected values for all outputs
and all internal state variables. The output-only oracle rep-
resents the oracle most likely to be used in practice. Both
oracles have been used in previous work, and thus we use
both to allow for comparison [10], [49]. The fault finding
effectiveness of the test suite and oracle pair is computed as
the number of mutants detected (or “killed”).

For all seven of our example systems, we assess the fault-
finding effectiveness of each test suite and oracle combina-
tion by calculating the ratio of mutants killed to total num-
ber of mutants (with any known non-equivalent mutants
removed).

For Infusion Mgr and Alarms, we also assess the
fault-finding effectiveness of each test suite and oracle
combination against the version of the model with real
faults by measuring the ratio of the number of tests that
fail to the total number of tests for each test suite. We
use the number of tests rather than number of real faults
because all of the real faults are in a single model, and
we do not know which specific fault led to a test failure.
However, we hypothesize that the test failure ratio is a
similar measure of the sensitivity of a test suite to the
mutant kill ratio.

4 RESULTS AND DISCUSSION

In Tables 3, 4, 5, and 6, we present the fault finding results
from our experiments when using the mutant kill ratio as
the evaluation criteria. These tables list—for each case
example, coverage criterion, test generation method, and
oracle—the median percentage of found faults for test suites
reduced to satisfy a certain criterion, next to the median

percentage of found faults for random test suites of
equal size,* the relative change in median fault finding
when using the test suites satisfying the coverage crite-
rion versus the random test suite of equal size, and the
p-value for the statistical analysis below. To give an
example, test suites generated to satisfy decision cover-
age for the Latctl Batch system find a median of 89.3 per-
cent of faults, while purely random test suites of the
same size find a median of 88.1 percent of faults—a 1.4
percent improvement in fault finding. In Tables 7, 8, 9,
and 10, we display the results for the systems where real
faults were available. In this case, we display the median
percentage of tests to fail in the generated test suites.
Note that negative values for % Change indicate the test
suites satisfying the coverage criterion are less effective
on average than random test suites of equal size.

We present the coverage achieved by the coverage-
directed test generation in Table 11 and the randomly-gener-
ated test suites in Table 12. For decision, condition, and MC/
DC coverage, the random suites are able to reach or come
close to reaching 100 percent coverage of the test obligations
for the Rockwell systems. OMC/DC is a stronger coverage
criterion, and it is more difficult to achieve full coverage.
However, the random test suites reduced to satisfy OMC/
DC are still able to come within 20 percentage points of full
coverage for the Rockwell systems. Random testing is
less capable of achieving coverage on the Docking
Approach, Infusion_Mgr, and Alarms systems, covering—at
most—around 70 percent of the decision coverage obliga-
tions for Alarms.

4.1 Statistical Analysis

For both RQ1 and RQ2, we are interested in determining if
test suites satisfying structural coverage criteria outperform
purely random test suites of equal size. We begin by formu-
lating statistical hypotheses H; and Hy:

4. “Random of Same Size” refers only to random test suites gener-
ated specifically to be the same size in terms of number of test steps as
those suites reduced with respective coverage.
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TABLE 4

Median Percentage of Faults Identified, Decision Coverage Criterion

Counterexample Generation Comparison Random Generation Comparison

Satisfyin Random of % _ Satisfyin Random of % _
Case Example Oracle Decisiong Same Size Change p-val Decisiong Same Size  Change p-val
Latctl Batch MX 89.3% 88.1% 1.4% <0.01 97.9% 95.9% 2.1% <0.01
- (0]0) 34.2% 57.6% —40.6% 1.00 80.7% 77.8% 3.7% 0.03
Vertmax Batch MX 85.1% 70.6% 20.5% <0.01 87.9% 84.3% 4.3% <0.01
- (0]0) 31.0% 41.12% —24.25% 61.7% 57.3% 7.7%
DWM 1 MX 82.6% 97.0% —14.6% 97.5% 96.2% 1.3% 0.03
- (0]0) 13.1% 32.2% —59.2% 1.00 33.5% 32.6% 2.6% 0.34
DWM 2 MX 80.2% 88.1% —8.9% 94.7% 91.8% 3.1% <0.01
- (0]0) 48.1% 70.8% -31.9% 80.1% 77.4% 4.3%
Docking Approach MX 67.5% 19.4% 247.9% 18.5% 18.5% 0.0% 0.90
(0]0) 20.1% 2.0% 905% 2.0% 2.0% 1.00
Infusion_Mgr MX 65.2% 23.5% 177.4% 20.7% 19.8% 4.5% 0.24
- (0]0) 25.5% 8.9% 186.5% <0.01 6.9% 6.9% 0.0% 0.54
Alarms MX 74.9% 47.8% 56.7% 47.0% 47.0% 0.0% 1.00
(0]0) 35.7% 14.6% 144.5% 14.6% 13.8% 5.8% <0.01
OO = Output-Only, MX = Maximum Oracle.
TABLE 5

Median Percentage of Faults Identified, MC/DC Criterion

Counterexample Generation Comparison Random Generation Comparison

Satisfyin Random of % Satisfyin Random of %
Case Example Oracle MC/I};Cg Same Size Change p-val MC/I};Cg Same Size Change p-val
MX 96.7% 99.6% —23%  1.00 99.6% 98.8% 0.8%
Latctl_Batch 00 79.8% 93.4% —145% 89.7% 87.7% 239
MX 100.0% 96.4% 38% <001  100.0% 95.2% 51% <001
Vertmax_Batch 00 59.3% 78.2% —2429 81.9% 76.6% 6.8%
MX 88.6% 97.5% —91%  1.00 97.9% 97.5% 0.4%
DWM_1 00 18.6% 36.0% —482% 34.7% 34.3% 1.2% 0.45
MX 96.3% 96.3% 0.0% 0.83 99.6% 97.1% 25% <001
DWM_2 00 79.8% 86.0% —72%  1.00 90.9% 88.1% 3.3%
. MX 72.3% 19.4% 272.7% 18.5% 18.5% 0.0% 0.62
Docking Approach 1 23.3% 2.0% 1065.0% 2.0% 2.0% 1.00
) MX 69.6% 24.7% 449% <001 20.6% 21.9% ~13% 0.9
Infusion_Mgr 00 31.6% 11.3% 20.3% 6.9% 7.3% —04% 0.2
MX 78.9% 47.8% 65.1% 47.8% 47.4% 0.8% 0.01
Alarms 00 40.5% 14.6% 177.4% 15.0% 14.6% 2.7% <0.01

OO = Output-Only, MX = Maximum Oracle.

e M. A test suite generated using random test genera-
tion to provide structural coverage will find more
faults—or, for real faults, find more failing test
cases—than a pure random test suite of similar size.

e ). A test suite generated using counterexample-
based test generation to provide structural coverage
will find more faults—or, for real faults, find more
failing test cases—than a random test suite of similar
size.

We then formulate the appropriate null hypotheses:

e  HO0,. The fault finding results of test suites generated
using random test generation to provide structural
coverage and pure random test suites of similar size
are drawn from the same distribution.

e  HO0,. The fault finding results of test suite generated
using counterexample-based test generation to pro-
vide structural coverage and random test suites of
similar size are drawn from the same distribution.

Our observations are drawn from an unknown distri-
bution; therefore, we cannot fit our data to a theoretical
probability distribution. To evaluate H0; and H0, with-
out any assumptions on the distribution of our data, we
use a one-sided (strictly greater) Mann-Whitney-Wil-
coxon rank-sum test [50], a non-parametric hypothesis
test for determining if one set of observations is drawn
from a different distribution than another set of observa-
tions. As we cannot generalize across non-randomly
selected case examples, we apply the statistical test for
each pairing of case example, coverage criterion, and
oracle type with o = 0.05.°

5. Note that we do not generalize across case examples, oracles
or coverage criteria, as the needed statistical assumption, random
selection from the population of case examples, oracles, or coverage
criteria, is not met. The statistical tests are used to only demon-
strate that observed differences are unlikely to have occurred by
chance.
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TABLE 6
Median Percentage of Faults Identified, OMC/DC Criterion

Counterexample Generation Comparison

Random Generation Comparison

Satisfyin Random of %% Satisfyin, Random of %
E 1 1 ymng -val ying _val
Case Example Oracle OMC/DC  Same Size  Change p-va OMC/DC  Same Size  Change p-va
Latctl Batch MX 99.2% 99.2% 0.0% 1.00 99.6% 99.6% 0.0% 0.28
atctl_Batc 00 95.3% 90.1% 5.8% 97.1% 95.9% 1.3%
v Batch MX 99.6% 96.4% 3.3% <0.01 99.2% 97.6% 1.6% <0.01
ertmax_Batc 00 97.5% 77 4% 26.0% 90.7% 80.2% 13.1%
DWM 1 MX 100.0% 100.0% 0.0% 0.16 100.0% 100.0% 0.0% 1.00
- 00O 90.5% 83.5% 8.4% 97.5% 92.8% 51%
DWM 2 MX 98.7% 97.5% 1.2% <0.01 100.0% 100.0% 0.0% <0.01
— 00O 95.7% 88.9% 7.6% 98.4% 96.7% 1.8%
Dockine A h MX 73.9% 19.4% 280.9% 19.4% 19.4% 0.56
ocking Approac 00 26.9% 2.0% 1245.0% 2.0% 2.0% 0.0% 1.00
Infusion M MX 70.0% 27.5% 154.5% <0.01 23.1% 23.1% 0.20
niusion_Wigr 00 43.3% 12.1% 257.9% 8.5% 8.5% 0.19
Al MX 81.0% 48.2% 68.0% 48.6% 48.6% 0.0% 0.02
arms 00 58.3% 15.4% 278.6% 15.4% 15.4% 0.0% 0.81
OO = Output-Only, MX = Maximum Oracle.
TABLE 7
Median Percentage of Tests Failed After Identifying Real Faults, Condition Coverage Criterion
Counterexample Generation Comparison Random Generation Comparison
Satisfying =~ Random of % _ Satisfying ~ Random of % ~
Case Example Oracle Condition Same Size Change p-val Condition Same Size Change p-val
. MX 55.8% 36.7% 52.0% <0.01 42.9% 36.4% 17.9% 0.16
Inf M
SO M8 00 10.5% 29.0% ~63.8% 1.0 35.7% 30.0% 190% 007
Alarms MX 93.0% 93.8% —0.9% 0.98 92.9% 93.0% —-0.1% 0.70
00O 91.2% —2.8% 1.00
TABLE 8

Median Percentage of Tests Failed After Identifying Real Faults, Decision Coverage Criterion

Counterexample Generation Comparison

Random Generation Comparison

Satisfying =~ Random of % _ Satisfying ~ Random of % -
Case Example Oracle Decision Same Size Change p-val Decision Same Size Change p-val
. MX 42.3% 40.0% 5.8% <0.01 33.3% 33.3% 0.0% 0.44
Inf M
nasion Vet 0o 6.3% 31.8% ~802%  1.00 28.6% 28.6% 00% 026
Alarms MX 92.6% 94.3% —1.8% 1.00 93.8% 94.1% —0.3% 0.33
(0] 90.4% —4.1%

4.2 Evaluation of RQ1

Based on the p-values less than 0.05 in Tables 3, 4, 5, and 6,
we reject HO; for nearly all of the four Rockwell case exam-
ples and the respective coverage criteria when using either
oracle. Note that we do not reject H0; for the DWM_1 case
example when using decision, condition, and MC/DC cov-
erage and the output-only oracle. That is, the use of cover-
age as a supplement to random testing—using coverage to
decide when to stop random testing—leads to improved
fault-finding results. However, for the majority of coverage
criterion and oracle combinations for the Docking Ap-
proach, Alarms, and Infusion_Mgr systems, we fail to reject
HO0,. For many of these combinations, there is no evidence
of improvement from using coverage as an adequacy metric
for random testing. Across all system, for cases with differ-
ences that are statistically significant, test suites reduced to

satisfy coverage criteria are clearly more effective than
purely randomly generated test suites of equal size—for
these combinations, we accept H;.

The difference in results between the four Rockwell Col-
lins systems and the Docking_Approach, Alarms, and Infu-
sion_Mgr systems—when examining mutations—can be
somewhat explained through the coverage achieved by ran-
dom tests on those systems. As can be seen in Table 12, ran-
dom testing is able to cover almost all of the obligations for
the four coverage criteria on the Rockwell systems. In those
cases, we can use coverage as a method of guiding the selec-
tion of tests. We can cut off random testing once coverage is
achieved, filter out superfluous tests, and potentially pres-
ent a small, powerful test suite. On the other systems, how-
ever, random testing is unable—even after generating our
full pool of 1,000 tests—to achieve full coverage for any of



812 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41,

NO.8, AUGUST 2015

TABLE 9
Median Percentage of Tests Failed After Identifying Real Faults, MC/DC Criterion

Counterexample Generation Comparison

Random Generation Comparison

Satisfying

Random of %o

Satisfying ~ Random of %

Exampl 1 -val -val

Case Example  Oracle MC/DC Same Size Change p-va MC/DC Same Size Change p-va

. MX 46.0% 34.4% 337% <001 33.3% 30.0% 11.0% 0.02

Infusion Mgr 57 1.8% 27.3% —934% 1.0 30.0% 25.0% 20% 0.05

Alarms MX 94.6% 93.8% 0.9% 0.05 95.2% 94.1% 1.2% 0.02
00 94.4% 0.6% 0.36

the coverage criteria. In those cases, it is hardly surprising
that using coverage to guide the selection of random tests
fails to lead to an improvement in fault-finding. Even if
there is potential power to be gained from the guidance of
coverage, failing to achieve coverage will also imply failing
to gain that predictive power. It may well be that any suite
of random tests of the same size will result in similar cover-
age and fault-finding, and using coverage to choose those
suites may be no more effective than choosing from the
pool of tests at random.

When evaluating test suite effectiveness against the set of
real faults for the Infusion_Mgr and Alarms systems, we see
similar results—see Tables 7, 8, 9, and 10. We reject H0, for
the MC/DC and OMC/DC criteria and the maximum ora-
cle and the MC/DC criteria for the output-only oracle for
the Infusion Mgr system. However, we fail to reject H0;
for the remaining criteria and oracle combinations for these
two systems. Note that, in several cases, we do see an
improved median fault-finding result, but we do not see a
corresponding achievement of statistical significance. In
those cases, there is a large amount of variance in the results
from the random test suites. While the median case has
improved, the the distribution of results has not changed.
Samples from the distributions of random tests guided by
coverage are not significantly better at finding faults than
samples from the distribution of purely random tests. In
some cases, we see a small improvement in fault-finding
effectiveness when we use coverage as an adequacy criteria
and, even in the other cases, using coverage as an adequacy
metric does not result in worse fault-finding results.

From our results, we can weakly confirm that all four of
these coverage criteria can be effective metrics for test suite
adequacy within the domain of critical avionics systems:
reducing test suites generated via a non-directed approach
to satisfy structural coverage criteria is at least not harmful,
and in some instances improves test suite effectiveness rela-
tive to their size by up to 13 percent. Thus, the use of struc-
tural coverage as an adequacy criteria for random testing can

potentially lead to a positive, albeit slight, improvement in
test suite effectiveness. This indicates that the core intuitions
behind these coverage metrics—i.e., covering branches, con-
ditions and combinations of conditions—appear valid, and
thus, given a constant generation strategy, covering code
yields benefits as long as coverage is actually achieved.

4.3 Evaluation of RQ2

Based on the p-values less than 0.05 in Tables 3, 4, and 5, we
fail to reject HO, for the four Rockwell Collins case examples
and the decision, condition, and MC/DC coverage criteria
when using the output-only oracle. For all but one of these
case examples, test suites generated via counterexample-
based test generation are less effective than pure random
test suites by 2.6 to 59.2 percent; we therefore conclude that
our initial hypothesis H; is false—at least, with respect to
the Rockwell systems—with regard to decision, condition,
and MC/DC coverage when using an output-only oracle.

When using the maximum oracle, the test suites gener-
ated via counterexample-based test generation to satisfy
decision, condition, and MC/DC coverage fare better. In
select instances, countere example-based test suites outper-
form random test suites of equal size (notably Vertmax -
Batch), and otherwise close the gap, being less effective than
pure random test suites by at most 14.6 percent. Neverthe-
less, we note that for most combinations of the Rockwell
case examples and those three coverage criteria, random
test suites of equal size are still more effective. When these
criteria are used as targets for test generation, the test suites
produced are generally less effective than random testing
alone, with decreases of up to 59.2 percent.

This indicates that decision, condition, and MC/DC cov-
erage are—by themselves—not necessarily good indicators
of test suite effectiveness; factors other than coverage
impact the effectiveness of the testing process. In contrast,
to the more traditional structural coverage criteria—notably
MC/DC coverage—results for OMC/DC coverage are more
positive in terms of the value of directed test generation.

TABLE 10
Median Percentage of Tests Failed After Identifying Real Faults, OMC/DC Criterion

Counterexample Generation Comparison

Random Generation Comparison

Satisfying ~ Random of % _ Satisfying ~ Random of % ~
Case Example  Oracle OMC/DC Same Size Change p-val OMC/DC Same Size Change p-val
. MX 47.9% 38.3% 25.1% <0.01 42.1% 35.3% 19.3% <0.01
Infusion_Mgr 50 40.4% 30.3% 33.3% 30.0% 28.6% 4.9% 0.09
Alarms MX 93.0% 94.4% —-1.5% 1.00 92.4% 94.7% —2.4% 1.00
(0]0) 40.4% —57.2%
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TABLE 11
Coverage Achieved by Coverage-Directed Test Suites Reduced to Satisfy Coverage Criteria
Decision Coverage Condition Coverage MC/DC Coverage OMC/DC Coverage
DWM_1 100.00% 100.00% 100.00% 99.90%
DWM_2 100.00% 100.00% 95.28% 89.79%
Vertmax_Batch 100.00% 100.00% 100.00% 98.15%
Latctl_Batch 100.00% 100.00% 100.00% 93.42%
Docking_Approach 97.94% 95.85% 91.94% 50.86%
Infusion_Mgr 92.06% 93.56% 92.36% 56.06%
Alarms 91.85% 93.17% 91.32% 76.24%

From the p-values in Table 6, we reject H0, for all case
examples except Latctl Batch with the maximum oracle and
DWM _1 with the maximum oracle when examining the
mutation-based faults. It appears that test suites generated
to satisfy OMC/DC coverage are more effective than purely
random tests of the same size, and—as when using cover-
age as a supplemental criteria for random testing—generat-
ing tests in order to satisfy OMC/DC is no worse than just
constructing random tests. Thus, we can see that consider-
ing how covered obligations propagate to observable points
can yield dividends during test generation.

The converse of H,—that randomly generated test suites
are more effective than equally large test suites generated
via counterexample-based test generation—is also not uni-
versally true, as the Docking_Approach, Alarms, and Infu-
sion_Mgr examples illustrate. For the Docking Approach
example, random testing is effectively useless, finding a
mere 2 percent of the faults on average when using an out-
put-only oracle and 19.4 percent with the maximum oracle.
Similarly, for the Alarms and Infusion Mgr systems, the
use of counterexample-based tests does improve fault-find-
ing effectiveness by up to 278.6 percent over random test
suites of similar size. However, it should be noted that
improved fault-finding is not always the same as good fault-
finding. The maximum oracle finds up to 81 percent of the
faults for the Alarms system; however, maximum oracles
are often prohibitively expensive to employ, as they require
a specification of correctness for all variables. The output-
only oracle, a far more common option [49], only manages
to find slightly over half of the faults for a single case exam-
ple and coverage combination—OMC/DC testing on the
Alarms system. There is clearly room for improvement.

Contrasting the performance of counterexample-based
test generation and random test generation on the systems
with real faults yields a number of observations. From the
results for Infusion_Mgr in Tables 7, 8, 9, and 10, we can see
that the use of coverage-directed test generation yields a

higher percentage of failing tests for the maximum oracle.
However, for the output-only oracle, the opposite is true—
random tests are far more capable at detecting faults than the
coverage-directed tests. This difference is likely due to mask-
ing—some expressions in the systems can easily be pre-
vented from influencing the outputs. When covered
expressions do not propagate to an observable output, faults
cannot be observed. The coverage-directed tests tend to be
short, one or two test steps at most. The real faults embedded
within this system require specific combinations of events to
trigger, and may take some time before they influence the
output. As a result, the coverage-based tests may trigger
more of the difficult-to-reach faults, but are not long enough
for the effects of those faults to influence the outward behav-
ior of the system. The random tests, on the other hand, tend
to be longer (up to ten steps), which may be long enough that
many of the faults do propagate to the system output.

On the Alarms system, the random tests are more capable
of detecting faults than the coverage-directed tests, with the
exception of the MC/DCcriterion. For the decision and con-
dition coverage criteria, this difference is relatively small, up
to a 4.1 percent difference. However, for the OMC/DC crite-
rion, random testing is far more capable at detecting the
embedded faults. This result can be explained by examining
the type of faults that exist in this system, as listed in Table 2.
In particular, the first fault—that if an alarm condition occurs
during the first initialization step of execution, it will not be
detected in the faulty version of the system—helps to explain
the particular results that were observed. The coverage crite-
ria employed in this experiment all, to a varying degree,
require that certain combinations of Boolean conditions are
satisfied. As a result, the generated tests will be biased
towards particular input values. In many cases, these input
values would be not trigger alarm conditions immediately
upon system activation. The random tests, on the other
hand, tend towards extreme input values (or, at least, make
use of the full range of possible input combinations) and, as a

TABLE 12
Coverage Achieved by Randomly Generated Test Suites Reduced to Satisfy Coverage Criteria
Decision Coverage Condition Coverage MC/DC Coverage OMC/DC Coverage
DWM_1 100.00% 100.00% 100.00% 99.85%
DWM_2 100.00% 100.00% 93.15% 89.25%
Vertmax_Batch 100.00% 99.83% 99.40% 84.18%
Latctl_Batch 100.00% 100.00% 100.00% 89.21%
Docking_Approach 58.10% 56.90% 48.59% 2.20%
Infusion_Mgr 62.77% 62.33% 48.86% 11.16%
Alarms 69.33% 68.85% 64.22% 32.72%
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result, trigger this particular fault in almost every test case. As
a result, random testing results in a higher percentage of fail-
ing tests, but the majority of those failures are due to the fault
in the initialization step.

Another factor that helps explain the differing results on
the version of Alarms with real faults is that coverage-
directed test generation is unable to achieve a level of
OMC/DC coverage as high as that achieved by MC/DC,
condition, and decision coverage—tests generated on the
faulty version of Alarms only achieve 72 percent OMC/DC
coverage, whereas 88 percent MC/DC coverage is achieved.
This means that some portion of the state space is not being
explored by the OMC/DC-directed tests. If the uncovered
state space overlaps with one of the embedded faults, then
the existing OMC/DC tests may not execute the tests in
such a way that the fault will be triggered.

The results when examining real faults differ from those
seen for the Infusion_Mgr and Alarms systems when exam-
ining seeded mutations. In the latter case, coverage-directed
generation yielded stronger tests. Often, in the former case,
the randomly-generated tests yielded stronger results. This
shift can likely be explained by examining the types of faults
seeded in both scenarios. The seeded mutations are all code-
based errors—using the wrong operation, changing a con-
stant, using a stored value for a variable from a previous
computation. However, the real faults, listed in Table 2,
tend to be more conceptual in nature. Largely, the real faults
are problems of omission—the developers forgot to imple-
ment a feature or the system specification left an outcome
ambiguous. Code coverage cannot be expected to account
for code that does not exist, and thus, is unlikely to yield
tests that account for such faults. This explains the different
results for these systems when switching from seeded faults
to real faults—coverage-directed tests can help find faults
when the faults are the result of mistakes in the code that is
being exercised, but are not guaranteed to be effective when
faults are due to conceptual mistakes.

4.4 Implications

Given the important role of structural coverage criteria in
the verification and validation of safety-critical avionics sys-
tems, we find these results quite troublesome. In the
remainder of this section, we discuss the immediate practi-
cal implications of this as well as the implications for future
work. We begin by discussing why traditional structural
coverage criteria fare poorly when used as targets for test
generation. We have identified several factors that contrib-
ute to this, including the formulation of structural coverage
criteria; the behavior of the test generation mechanism (in
this case, software model checkers); and structural proper-
ties of the case examples.

First and—given the differences observed with OMC/
DC coverage—foremost, we note that traditional coverage
criteria are formulated over specific elements in the source
code. For each element, (1) execution must reach the ele-
ment and (2) exercise the element in a specific way. This
type of formulation falls short in two ways. First, it is possi-
ble to change the number and structure of each element by
varying the structure of the program, which we have previ-
ously seen can significantly impact the number of tests
required to satisfy the MC/DC coverage criterion [12], [51].
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This is linked partly to the second issue, masking—some
expressions in the systems can easily be prevented from
influencing the outputs. When covered expressions do not
propagate to an observable output (i.e., do not reach a test
oracle variable), faults cannot be observed. This reduces the
effectiveness of any testing process based on structural cov-
erage criteria, as we can easily satisfy coverage obligations
for internal expressions without allowing resulting errors to
propagate to the output.

Issues related to masking are in turn exacerbated by
automated test generation, bringing us to our second factor.
We have found that test inputs generated using counterex-
ample-based generation (including those in this study) tend
to be short, and manipulate only a handful of input values,
leaving other inputs at default values (in our case, false or
0) [8]. Such tests tend to exercise the program just enough
to satisfy the coverage obligations for which they were gen-
erated and do not consider the propagation of values to the
outputs. In contrast, random tests can vary arbitrarily in
length (up to 10 steps in this study) and vary all input val-
ues; such test inputs may be more likely to overcome any
masking present in the system. Rather than pointing to this
as a strength of random testing, we would like to emphasize
that this is a weakness of the coverage-directed test genera-
tion method. The use of coverage cannot be assumed to
guarantee effective tests—the particulars of the method of
test generation appear to have a greater impact at present.

Finally, the structure of the case examples themselves—
being fairly representative of case examples within this
domain—is also partly at fault. Recall that when testing the
Docking Approach, Alarms, and Infusion Mgr systems,
tests generated to satisfy structural coverage criteria some-
times dramatically outperform random test generation. This
is due to the structure of these systems: large portions of
these system’s behavior are activated only when very spe-
cific conditions are met. As a result the state space is both
deep and narrow at multiple points, and exploration of these
deep states requires relatively long tests with specific combi-
nations of input values. Random testing is therefore highly
unlikely to reach much of the state space, and indeed, less
than 50 percent of the MC/DC obligations were covered for
Docking Approach. In contrast, the Rockwell Collins sys-
tems (while stateful) have a state space that is shallow and
highly interconnected; these systems are therefore easier to
cover with random testing and, thus, the potential benefits of
structural coverage metrics are diminished.

It is these issues—particularly the first two issues—that
motivated the development of the OMC/DC coverage crite-
rion. Observable MC/DC coverage explicitly avoids issues
related to masking by requiring in its test obligations both
demonstrate the independent impact of a condition on the
outcome of the decision statement, and follow a non-masking
path to some variable monitored by the test oracle. Conse-
quently, test suites generated via counterexample-based test
generation to satisfy OMC/DC outperform purely randomly
generated test suites of equal size by up to 42.5 percent.

This represents a major improvement over existing struc-
tural coverage criteria, though we still urge caution. The high
cost and difficulty of generating OMC/DC satisfying test
suites—relative to generating the weaker decision, condition,
or MC/DC test suites—makes its use as a target for directed
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test suite generation less likely at this point in time. Additional
work demonstrating the cost effectiveness (and perhaps spe-
cific improvements for test generation) will be necessary
before OMC/DC coverage can replace MC/DC coverage.

We see three key implications in our results. First, with
regard to RQ1, we can weakly conclude that using any of
these four structural coverage criteria as an addition to
another non-structure-based testing method—in this case,
random testing—can potentially yield improvements in the
testing process. These results are similar to those of other
authors, for example, results indicating MC/DC is an effective
coverage criterion when used to check the adequacy of man-
ual, requirement-driven test generation [32] and results indi-
cating that reducing randomly generated tests with respect to
decision coverage yields improvements over pure random
test generation [19]. These results, in conjunction with the
results for RQ2, reinforce the advice that coverage criteria are
best applied after test generation to find areas of the source
code that have not been tested. In the case of MC/DC this
advice is already explicitly stated in regulatory requirements
and by experts on the use of the criterion [2], [15].

Second, the dichotomy between the Docking Approach,
Alarms, and Infusion_Mgr examples and the Rockwell Col-
lins systems highlights that, while the current methods of
determining test suite adequacy in avionics systems are
themselves largely inadequate, some method of determin-
ing testing adequacy is needed. While current practice rec-
ommends that coverage criteria should be applied after test
generation, in practice, this relies on the honesty of the tester
(it is not required in the standard). Therefore, it seems inevi-
table that at least some practitioners will use automated test
generation to reduce the cost of achieving the required
coverage.

The lack of consensus in the results across these varied
systems is concerning in light of this inevitability. While
coverage-directed test generation can lead to effective test-
ing, there is no evidence that it can do so consistently. With
the importance given to coverage criteria in the avionics
industry, the temptation exists to rely on coverage as an
assurance of reliable and thorough testing. However, we
stress that blind faith in the power of code coverage is a
risky proposition at best in light of the inconsistency of the
results in this study.

Finally, our results with OMC/DC coverage indicate that
it is possible to extend existing coverage to overcome some
of the issues we have highlighted above. The primary prob-
lem with existing structural coverage criteria is that all effort
is expended on covering structures internal to the system,
and no further consideration is paid to how the effect of cov-
ered structure reaches an observable point in the system.
OMC/DC considers the observability aspect for Boolean
expressions (using MC/DC) by appending a path condition
onto each test obligation in MC/DC. Similar extensions
could be applied to a variety of other existing coverage met-
rics, e.g., boundary value testing.

5 RECOMMENDATIONS

Assuming our results generalize, we believe that these stud-
ies raise serious concerns regarding the efficacy of cover-
age-directed automated testing. The tools are not at fault:
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we have asked these tools to produce test inputs satisfying
some form of structural coverage, and they have done so
admirably; for example, satisfying MC/DC for the Docking
Approach example, for which random testing achieves a
mere 37.7 percent of the possible coverage. However, our
results—along with the existing body of research on this
topic—lead us to conclude that it is not sufficient to simply
maximize a structural coverage metric when automatically
generating test inputs. In practice, the mechanism for
achieving coverage is important. How tests are generated
matters more than what is being maximized.

The key issues involve how structural coverage criteria are
formulated and how automatic test generation tools operate.
Traditional coverage criteria are formulated over specific ele-
ments in the source code. To cover an element, (1) execution
must reach the element and (2) exercise the element in a spe-
cific way. However, commonly used structural coverage crite-
ria typically leave a great deal of leeway to how the element is
reached, and—more importantly, in our experience—place
no constraints whatsoever on how the test should evolve after
the element is exercised. Automatic test generation tools typi-
cally use this freedom to do just enough work to satisfy cover-
age criteria, without consideration of, for example, how the
faults are to be detected by the test oracle.

First, let us consider the path to satisfy a coverage obliga-
tion, e.g., a branch of a complex conditional. Structural cover-
age criteria require only that the point of interest is reached
and exercised. We have found that automatically generated
tests often take a shortest-path approach to satisfying test
obligations, and manipulate only a handful of input values,
leaving other inputs at default values. This is a cost effective
method of satisfying coverage obligations; why tinker with
program values that do not impact the coverage achieved?
However, we, and other authors, have observed that varia-
tions provided by (for example) simple random testing result
in test suites that are nearly as effective in terms of coverage,
and moreover produce more interesting behavior capable of
detecting faults [7], [25]. As illustrated by our experiments,
however, even with lower coverage achieved, randomly gen-
erated test inputs can outperform automatically generated
test suites in terms of fault finding.

Second, for the most commonly used structural cover-
age criteria, there is no directive concerning how tests
should evolve after satisfying the structural element.
Given this lack of direction, automatic test generation
tools typically do not consider the path from the covered
element to an output/assertion/observable state when
generating a test, and therefore test inputs may achieve
high coverage but fail to demonstrate faults that exist
within the code. One reason for this failure is masking,
which occurs when expressions/computations in the sys-
tem are prevented from influencing the observed output,
i.e., do not reach a variable or assertion monitored by the
test oracle. More generally, this is related to the distinc-
tion between incorrect program state and program out-
put: just because a test triggers a fault, there is no guarantee
this will manifest as a detected fault. Indeed, in our experi-
ence, care must be taken to ensure that this occurs.

These two high level issues result in the generation of test
inputs that may indeed be effective at encountering faults,
but may make actually observing them—that is, actually
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detecting the fault—very difficult or unlikely. This reduces
the effectiveness of any testing process based on structural
coverage criteria, as we can easily satisfy coverage obliga-
tions for internal expressions without allowing resulting
errors to propagate to the output.

Furthermore, even when the generated tests are more
effective than the randomly-generated tests, these tests may
still not actually yield good fault-finding performance. On
the Alarms, Infusion Mgr, and—in particular—Dockin-
g Approach, the generated tests commonly found fewer
than half of the seeded faults when using a common out-
put-only oracle, and less than 80 percent of the faults with
the prohibitively expensive maximum oracle.

We believe that these issues raise serious concerns about
the efficacy of coverage-directed automated testing. A focus
in automated test generation work has been on efficiently
achieving coverage without carefully considering how
achieving coverage impacts fault detection. We therefore
run the risk of producing tools that are satisfying the letter
of what is expected in testing, but not the spirit. Neverthe-
less, the central role of coverage criteria in testing is unlikely
to fade, as demonstrated by the emphasis on coverage crite-
ria for certification.

Hence, the key is to improve upon the base offered by
these criteria and existing technology. We have come to the
conclusion that the research goal in automated test genera-
tion should not be developing methods of maximizing struc-
tural code coverage, but rather determining how to maximize
fault-finding effectiveness. We propose that algorithms built
for test generation must evolve to take into account factors
beyond the naive execution of individual elements of the
code—factors such as masking, program structure, and the
execution points monitored by the test oracle.

To that end, we recommend three approaches. First, we
could improve, or replace, existing structural coverage crite-
ria, extending them to account for factors that influence test
quality. Automated test generation has improved greatly in
the last decade, but the targets of such tools have not been
updated to take advantage in this increase in power.
Instead, we continue to rely on criteria that were originally
formulated when manual test generation was the only prac-
tical method of ensuring 100 percent achievable coverage.

Second, automated test generation tools could be
improved to avoid pitfalls when using structural coverage
criteria. This could take many forms, but one straightfor-
ward approach would be to develop heuristics or rules that
could operate alongside existing structural coverage crite-
ria. For instance, tools could be encouraged to generate lon-
ger test cases, increasing the chances that a corrupted
internal state would propagate to an observable output (or
other monitored variable).

Third, important factors specific to individual domains,
e.g., web testing versus embedded systems, could be empir-
ically identified and formalized as heuristics within a test
generation algorithm.

5.1 Use More Robust Coverage Criteria

n our own work, the issues of criteria formulation and
masking motivated the development of the Observable
MC/DC coverage criterion employed in this case study
[12]. OMC/DC coverage explicitly avoids issues related to
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masking by requiring that its test obligations both demon-
strate the independent impact of a condition on the outcome
of the decision statement, and follow a non-masking propa-
gation path to some variable monitored by the test oracle.
OMC/DC, by accounting for the program structure and the
selection of the test oracle, can, in our experience, address
some of the failings of traditional structural coverage crite-
ria within the avionics domain, allowing for the generation
of test suites achieving better fault detection than random
test suites of equal size. Similarly, Vivanti et al. have dem-
onstrated evidence that the use of data-flow coverage as a
goal for test generation results in test suites with higher
fault detection capabilities than suites generated to achieve
branch coverage [52]. OMC/DC considers the observability
aspect for Boolean expressions (using MC/DC) by append-
ing a path condition onto each test obligation in MC/DC.
Similar extensions could be applied to a variety of other
existing coverage metrics, e.g., boundary value testing.

5.2 Algorithmically Improve Test Selection

Extensions to coverage criteria are not without downsides:
for stronger metrics, programs will contain unsatisfiable obli-
gations where there is no test that can be constructed to sat-
isfy the obligation. Depending on the search strategy, the
test generator may never terminate on such obligations. Fur-
ther, the cost and difficulty of generating OMC/DC satisfy-
ing test suites—relative to generating the weaker MC/DC
test suites—makes the use of strong coverage criteria as
targets for test generation harder to universally recommend.

Instead, another possible method of ensuring test quality
is to use a traditional structural coverage metric as the objec-
tive of test generation, and augment this by considering
other factors empirically established to impact fault detec-
tion effectiveness. For example, in the context of a search-
based test generation algorithm, this might mean adding
additional objective functions to the search strategy, rather
than adding additional constraints to the coverage criterion.
For instance, an algorithm could both work to maximize an
existing structural coverage criterion and minimize the
propagation distance between the assignment of a value
and its observation by the oracle (an algorithm that mini-
mizes this distance for test prioritization purposes already
exists [53]).

As an example, consider purely random testing. Random
testing does not employ an objective function, but it is possi-
ble to use one to approximate how well the system’s state
space is being covered. We have seen systems containing
bottlenecks (pinch-points) in the state space where ran-
domly generated tests perform very poorly. Such bottle-
necks require certain specific input sequences to reach a
large portion of the state space. However, approaches such
as concolic testing [4]—combining random testing with
symbolic execution—are able to direct the generation of
tests around such bottlenecks. Similar approaches could be
employed to direct test generation towards, for example,
propagation paths from variable assignment to oracle-moni-
tored portions of the system.

By pursuing and balancing multiple objectives, we could
potentially offer stronger tests that both satisfy MC/DC
obligations and offer short propagation paths, even when it
would be impossible to generate a test that satisfies the
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corresponding—but stricter—OMC/DC obligation. Embed-
ding aspects of test selection into the objective function—or
even into the search algorithm itself—may allow for
improved efficiency. The search method can use, say, mask-
ing as a pruning mechanism on paths through the system,
and the algorithm would not have to track as much sym-
bolic information related to the objective metric itself.

5.3 Tailor an Approach to the Domain

It is important to emphasize that there is no “one size fits all”
solution to test generation. The size and shape of the state
space of a system varies dramatically between domains and
programming paradigms, and, as a result, it is difficult to tai-
lor universal testing strategies. Much of our work has
focused on embedded systems that run as cyclic processes.
In this area, a common issue is that the impact of exercising a
code path on the system’s output is often delayed; only sev-
eral cycles after a fault occurs can we observe it. If the goal of
test generation is only to cause the code path to be executed,
many of the tests will not cause a visible change in system
behavior. In object-oriented systems, a central, but related
issue is that a method call may change internal state that,
again, is not visible externally until another method call pro-
duces output. As a result, choosing appropriate method
sequences and their ordering becomes a major challenge.

Thus while general rules and heuristics for improving
test generation are valuable, we believe there are large
improvements to be found in tailoring the approach to the
testing challenge at hand. For example, two often over-
looked factors are the cost of generating tests and the cost of
running tests. It is hard to outperform random testing in
terms of the cost of generating tests, because doing so
requires very little computation. If it is also cheap to run
tests, then for many systems it is difficult to outperform
straight random testing. On the other hand, if it is expensive
to run tests, e.g., for embedded systems, this may require
access to a shared hardware “rig.” In this case, using
search-based techniques to generate tests for a specific
strong coverage criterion (such as OMC/DC) may be sensi-
ble because the number of required tests can be dramati-
cally smaller than the number of random tests required to
achieve the same level of fault finding.

Another overlooked factor is the “reasonableness” of
generated tests. Automated test generation methods should
deliver tests that not only find faults, but are also meaning-
ful to the domain of interest. Coverage-based techniques
take the path of least resistance when generating tests, but
can produce tests that make little sense in the context of the
domain. Techniques that can generate inputs with meaning
to the human testers are valuable in reducing the “human
oracle cost” associated with checking failing test results [54].

Addressing factors such as these must be done on a per
domain level, and indicate that code coverage should be
one of several goals in test generation. We suspect that, in
the long run, effective test generation tools will consist of
both general techniques and heuristics, and additional
test generation profiles for each domain. Determining the
correct objective functions for test generation for each
domain is an open research question, one requiring both
technical advancements in search-based test generation
and empirical studies.
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6 THREATS TO VALIDITY

External validity. Our study has focused on a relatively small
number of systems but, nevertheless, we believe the systems
are representative of the critical systems domain, and our
results are generalizable to other systems in that domain.

We have used two methods for test generation (random
generation and counterexample-based). There are many
methods of generating tests and these methods may yield
different results. Counterexample-based testing is used to
produce coverage-directed test cases because it is a method
used widely in testing safety-critical systems. Random test-
ing is used as a contrasting baseline because it is one of the
most simple test generation methods in existence. Because
the length of test inputs and the values selected for the input
variables are chosen at random, we believe that random
generation is a fair baseline—it has not been tuned to sys-
tems in this domain and has no particular strengths or result
guarantees.

For all coverage criteria, we have examined 50 test suites
reduced using a simple greedy algorithm. It is possible that
larger sample sizes may yield different results. However, in
previous studies, smaller numbers of reduced test suites
have been seen to produce consistent results [51].

Construct validity. In our study, we primarily measure
fault finding over seeded faults, rather than real faults
encountered during development. However, Andrews
et al. showed that seeded faults lead to similar conclu-
sions to those obtained using real faults [55] for the pur-
pose of measuring test effectiveness. We have assumed
these conclusions hold true in our domain/language for
several case examples. We have, however, made use of
two systems containing real faults in order to widen our
pool of observations.

Our generation of mutants was randomized to avoid bias
in mutant selection. A large pool of mutants was used to
avoid generated a set of mutants particularly skewed
toward or against a coverage criteria. In our experience,
mutants sets greater than 100 result in very similar fault
finding; we generated 250 to further increase our confidence
no bias was introduced. In addition, we have also used one
case example which has an associated set of real faults,
which yields results comparable to those found when using
seeded faults.

We measure the cost of test suites in terms of the number
of steps. Other measurements exist, e.g., the time required
to generate and/or execute tests [56]. We chose size as a
metric that favors directed test generation. Thus, conclu-
sions concerning the inefficacy of directed test generation
are reasonable.

Conclusion validity. When using statistical analyses, we
have attempted to ensure the base assumptions beyond
these analyses are met, and have favored non-parametric
methods. In cases in which the base assumptions are clearly
not met, we have avoided using statistical methods. (Notably,
we have avoided statistical inference across case examples.)

7 CONCLUSION

Our results indicate that the use of structural coverage as a
supplement to an existing testing method—such as random
testing—may result in more effective tests suites than
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random testing alone. However, the results for the use of
coverage criteria as a target for directed, automatic test case
generation are mixed. For three of the systems, automatic
test case generation yielded effective tests. However, for the
remaining systems, randomly generated tests often yielded
similar—or more effective—fault-finding results. These
results lead us to conclude that, while coverage criteria are
potentially useful as test adequacy criteria, the use of cover-
age-directed test generation is more questionable as a
means of creating tests within the domain of avionics sys-
tems. If simple random test generation can yield equiva-
lently sized—but more effective test suites—for more
traditional coverage criteria such as decision, condition or
MC/DC coverage, then more research must be conducted
before automated test generation can be recommended.

We do not wish to condemn a particular test generation
method or recommend another. Instead, we want to shine a
light on the risks of relying on structural coverage criteria as
an assurance of effective testing. Given the important role of
structural coverage criteria in the verification and validation
of safety-critical avionics systems, we find these results
quite troublesome. We believe that structural coverage crite-
ria are, for the domain explored, potentially unreliable, and
thus, unsuitable, as a target for determining the adequacy of
automated test suite generation. Our observations indicate
a need for methods of determining test adequacy that
(1) provide a reliable measure of test quality and (2) are bet-
ter suited as targets for automated techniques. At a mini-
mum, such coverage criteria must, when satisfied, indicate
that our test suites are better than simple random test suites
of equal size. Such criteria must account for all of the factors
influencing testing, including the program structure, the
test oracle used, the nature of the state space of the system
under test, and the method of test generation. Towards this
goal, the OMC/DC criterion is an improvement in this
regard, but we believe there is still much work to be done.

Until the challenges of determining the efficacy of gener-
ated test suites are overcome, we urge caution when auto-
matically generating test suites: code coverage does not
guarantee test quality. While automated test generation is
an alluring possibility, savings of time and cost may not be
worth the trade-off in the safety of the released software.
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