
Where Do Configuration Constraints Stem From?
An Extraction Approach and an Empirical Study

Sarah Nadi, Thorsten Berger, Christian K€astner, and Krzysztof Czarnecki

Abstract—Highly configurable systems allow users to tailor software to specific needs. Valid combinations of configuration options

are often restricted by intricate constraints. Describing options and constraints in a variability model allows reasoning about the

supported configurations. To automate creating and verifying such models, we need to identify the origin of such constraints. We

propose a static analysis approach, based on two rules, to extract configuration constraints from code. We apply it on four highly

configurable systems to evaluate the accuracy of our approach and to determine which constraints are recoverable from the code. We

find that our approach is highly accurate (93% and 77% respectively) and that we can recover 28% of existing constraints. We

complement our approach with a qualitative study to identify constraint sources, triangulating results from our automatic extraction,

manual inspections, and interviews with 27 developers. We find that, apart from low-level implementation dependencies, configuration

constraints enforce correct runtime behavior, improve users’ configuration experience, and prevent corner cases. While the majority of

constraints is extractable from code, our results indicate that creating a complete model requires further substantial domain knowledge

and testing. Our results aim at supporting researchers and practitioners working on variability model engineering, evolution, and

verification techniques.

Index Terms—Variability models, reverse-engineering, qualitative studies, static analyses, configuration constraints

Ç

1 INTRODUCTION

MANY software systems need to be customized to spe-
cific user needs. Customization is commonly required

in embedded systems, for instance, to support a wide range
of hardware, to improve performance, or to reduce memory
footprints. Consequently, many such systems are designed
to be configurable by presenting the user with configuration
options, or features. By selecting a specific set of features,
customized variants of the system can be generated. Fea-
tures can range from options that tweak small functional-
and non-functional aspects, to those that enable whole sub-
systems of the software. Such highly configurable systems
range from industrial software product lines to prominent
open-source systems software, such as the Linux kernel
with currently more than 11,000 features [16], [57], [60].

Configurable systems are usually divided into a problem
space and a solution space [21] as shown in Fig. 1. The prob-
lem space describes the supported features and their depen-
dencies as constraints, while the solution space is the
technical realization of the system and of the functionalities
specified by the features (code and build files). Thus, fea-
tures cross both spaces. They are described in the problem
space and mapped to code artifacts in the solution space.

Ideally, configurable systems have a formal, documented
variability model describing the features and constraints of
the problem space. Automated and interactive configurators
use such models to support users in navigating a complex
configuration space [10], [25], [73], [74]. However, many
systems have no documented variability model or rely
on informal textual descriptions of constraints (e.g., the
FreeBSD kernel [58]). As the number of features and their
dependencies increases, configuration becomes more chal-
lenging [30], [58], and introducing an explicit variability
model is often the way out to conquer complexity and have
one central—human- and machine-readable—place for doc-
umentation. Manual extraction of constraints and construc-
tion of such models for existing systems is a daunting task
though, which calls for automation.

Constraints prevent invalid configurations for technical
and non-technical reasons. For instance, in an operating
system kernel, a technical constraint could prevent
having multi-threaded I/O locking without the correspond-
ing threading libraries. Non-technical constraints reflect
domain-specific knowledge, such as marketing require-
ments placed by a project manager or a sales department.
For instance, a low-cost model of a mobile phone should
not have a high-definition camera.

Despite common use in practice, configuration con-
straints in variability models are not well understood.
Knowing their source, quantity, and quality is important for
adopting, evolving, and refactoring highly configurable sys-
tems. For instance, understanding sources of constraints
provides the basis for their automatic extraction, to support
the creation of variability models. It also helps to ensure
that no conflicts exist between constraints in the model and
in the code. Furthermore, identifying unnecessary con-
straints in the model can improve software quality and sup-
port co-evolution of model and code.

� S. Nadi is with the Department of Computer Science, Technische
Universit€at Darmstadt, Darmstadt, Hessen, Germany.
E-mail: nadi@st.informatik.tu-darmstadt.de.

� T. Berger and K. Czarnecki are with the Department of Electrical and
Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
E-mail: {tberger, kczarnec}@gsd.uwaterloo.ca.

� C. K€astner is with the School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213. E-mail: kaestner@cs.cmu.edu.

Manuscript received 10 Oct. 2014; revised 27 Feb. 2015; accepted 16 Mar.
2015. Date of publication 22 Mar. 2015; date of current version 26 Aug. 2015.
Recommended for acceptance by A. Garcia.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2415793

820 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

0098-5589� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

We address this gap by studying configuration constraints
in practice. Our goals are (i) to conceive and implement tech-
niques to identify configuration constraints in code, and (ii) to
improve the empirical understanding of constraints in vari-
ability models. The latter goal strives to determine the reason-
ing and rationale behind constraints, to assess the limit of our
techniques, and to identify complementary sources (addi-
tional analyses or expert opinions) of constraints.

We develop scalable static analysis techniques to extract
configuration constraints from code. We focus on C-based
systems with build-time variability using the build system
and C preprocessor. Using the preprocessor and a build sys-
tem to perform arbitrary code changes to support variability
and portability is a common strategy in both large open-
source systems [26], [38] and industrial systems [11], [27],
[31], [32], [51]. Our analysis technique relies on two rules:
(1) all valid configurations should build correctly, and
(2) they should all yield syntactically different variants. For
both rules, we propose novel scalable extraction strategies
based on the structural use of #IFDEF directives, and on
parser, type, and linker errors. Most importantly, we stati-
cally analyze build-time variability effectively, without
examining an exponential number of all possible configura-
tions. We empirically study four large open-source sys-
tems—uClibc, BusyBox, eCos, and the Linux kernel—with
three research objectives: (1) evaluating accuracy and scal-
ability, (2) evaluating recoverability, and (3) classifying con-
straints. We provide the constraints we extract as well as a
detailed description of our setup and data online [4].

We show an overview of our proposed approach and the
empirical study in Fig. 1, leaving details for later. Our
results show that our extraction is 93% and 77% accurate
respectively for the two rules we use, and that it can scale to
the size of the Linux kernel, in which we extract over
250,000 unique constraints. We also find that our automated
analysis can recover 28% of the existing configuration con-
straints across the four systems.

Our work comprises both an engineering contribution
(extracting constraints from C code) and an empirical contribu-
tion (assessing accuracy and recoverability, and classifying
existing constraints). This paper is an extended version of a

prior conference paper [43]. Compared to the conference
version, we improve our static analysis and, more impor-
tantly, we qualitatively study constraints using question-
naires and interviews with 27 developers of the studied
subsystems. In summary, we contribute (novel contribu-
tions highlighted in bold):

� Adaptations and extensions of existing static analy-
ses to extract configuration constraints from code.

� A novel constraint extraction technique based on fea-
ture use and code structure.

� A combination of the individual analyses to
account for interactions among different sources of
constraints.

� An evaluation of our analysis infrastructure with
respect to accuracy and recoverability of constraints;

� Aclassification of constraint sources based on devel-
oper input (interviews and questionnaires), manual
analysis, and additional automated analyses.

� A discussion of the implications of our empirical
results on extraction tools.

2 CONFIGURATION CONSTRAINTS

Variability support in configurable systems is usually
divided into a problem space and a solution space [21], as
shown in Fig. 1. This separation allows users to make con-
figuration decisions without knowledge about low-level
implementation details. Therefore, both spaces need to be
consistent, such that any feature dependencies in the solu-
tion space are enforced in the problem space, and no con-
flicts occur. We are interested in understanding the
different types of configuration constraints defined in the
problem space, and how many of these are technically
reflected in the solution space. This can be done by extract-
ing configuration constraints from both the problem and
solution spaces and then comparing and classifying them as
shown in Fig. 1.

2.1 Problem Space

Features and constraints are described in the problem
space, with varying degrees of formality—either

Fig. 1. Overview of our approach and the empirical study.

NADI ET AL.: WHERE DO CONFIGURATION CONSTRAINTS STEM FROM? AN EXTRACTION APPROACH AND AN EMPIRICAL STUDY 821

informally in plain text, such as in the FreeBSD kernel
[58], or using a formal variability model expressed in a
dedicated language (e.g., Kconfig), as in our subject sys-
tems. Given such a model, configurator tools can support
users in selecting valid configurations and avoiding
invalid ones. Fig. 2 shows the configurator of BusyBox,
one of our subject systems. The configurator displays fea-
tures in a hierarchy, which can then be selected by users,
while enforcing configuration constraints, such as propa-
gating choices or graying out features that would lead to
invalid configurations. Constraints reside in the feature
hierarchy (a child implies its parent) and in additional
rules of cross-tree constraints [15]. Specifically, the feature
hierarchy is one of the major benefits of a variability
model [58], as it helps users to configure a system and
developers to organize features.

Enforced configuration constraints can stem from techni-
cal restrictions present in the solution space such as depen-
dencies between two code artifacts. Additionally, they can
stem from outside the solution space such as external hard-
ware restrictions. Constraints can also be non-technical,
stemming from either domain knowledge outside of the
software implementation, such as marketing restrictions, or
from configurator-related restrictions, such as to organize
features in the configurator for improved usability or to
offer advanced choice propagation.

We illustrate these kinds of constraints with examples
from two of our subject systems. In the Linux kernel, a
technical constraint which is reflected in the code is that
“multi-threaded I/O locking” depends on “threading
support” due to low-level code dependencies. A technical
constraint which cannot be detected from the code is that
“64 GB memory support” excludes “386” and “486”
CPUs, which stems from the domain knowledge that
these processors cannot handle more than 4 GB of physi-
cal memory. In BusyBox (see Fig. 2), a technical constraint
is that “Enable ISO date format” requires “date”, since
the code of the former feature could not be compiled
without the latter. A non-technical, configurator-related,
constraint is that feature “date” itself appears under the
menu feature “Coreutils” in the configurator hierarchy.
Such groupings are used to allow users (and developers)
to find features faster.

There has been much research to extract constraints from
existing variability models within the problem space [13],
[56], [65]. Such extractors can interpret the semantics of dif-
ferent variability modeling languages to extract both hierar-
chy and cross-tree constraints, as shown in Fig. 1.

2.2 Solution Space

The solution space consists of build and code files. Our
focus is on C-based systems that realize configurability with
their build system and the C preprocessor. The build system
decides the source files and the preprocessor the code frag-
ments to be compiled. The latter is realized using condi-
tional-compilation preprocessor directives such as #IFDEFs.

To compare constraints in the variability model to those
in the implementation, we must find ways to extract global
configuration constraints that span all source files in the
code as well as the build system (as opposed to localized
code block constraints [65]). We assume that there is a solu-
tion-space (implementation-level) constraint if any configu-
ration violating this constraint is ill-defined by some rule.
There may be several sources of constraints that fit such a
description. However, in this work, we identify two tracta-
ble sources of constraints: (i) those resulting from build-
time errors and (ii) those resulting from the effect of features
in build files and in the structure of the code (e.g., #IFDEF

usage). We now explain the two rules and their justification.

2.2.1 Build-Time Errors

Every valid configuration needs to build correctly. In C proj-
ects, various types of errors can occur during the build: pre-
processor errors, parsing errors, type errors, and linker
errors. Our goal is to detect configuration constraints that
prevent such build errors, similar to the idea of safe compo-
sition [66]. We derive configuration constraints from the fol-
lowing rule:

Rule 1. Every valid configuration of the system must not
contain build-time errors, such that it can be successfully
preprocessed, parsed, type checked, and linked.

A naive, but not scalable, approach to extract these con-
straints would be to build and analyze every single configu-
ration in isolation. If every configuration with feature X

compiles except when feature Y is selected, we could infer a
constraint X! :Y. For instance, in Listing 1a, the code will
not compile in some configurations, due to a type error in
Line 6: The function foo() is called under condition X,
while it is only defined under condition :Y; thus, the con-
straint X! :Y must always hold. The problem space needs
to enforce this constraint to prevent invalid configurations
that break the compilation. However, already in a medium-
sized system such as BusyBox with 881 Boolean features,

this results in more than 2881 configurations to analyze,
which is more than the number of atoms in the universe.
We show how this can be avoided in Section 3.

2.2.2 Feature Effect

Ideally, variability models should also prevent meaningless
configurations, such as redundant feature selections that do

Fig. 2. Configurator of the BusyBox system.

Listing 1. Examples of constraint sources.

822 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

not change the solution space. That is, if a feature A is
selected in a configuration, then we expect that A adds,
changes, or removes some behavior (that was not previ-
ously present). If a feature has no effect unless other features
are selected (or deselected), a configurator may hide or dis-
able it, simplifying the configuration process for users.

Determining if two variants of a program are equivalent
is undecidable. We approximate this by comparing whether
the programs differ in their source code at all. If two differ-
ent configurations yield the same code, this suggests some
anomaly (as opposed to errors described in Section 2.2.1) in
the model.

We extract constraints that prevent such anomalies. We
use the following rule as a simplified, conservative approxi-
mation of our second source of constraints:

Rule 2. Every valid configuration of the system should
yield a lexically different program.

The use of features within the build system and the pre-
processor directives for conditional compilation provides
information about the context under which selecting a fea-
ture makes a difference in the final product. In the code
fragment in Listing 1b, selecting W without selecting Z and X

will not break the system. However, only selecting W will
not affect the compiled code, since the surrounding block
will not be compiled without Z and X also being selected.
Thus, W ! Z ^ X is a feature-effect constraint that should
likely be in the model, even though violating it will not
break the compilation.

2.3 Problem Statement

We can summarize that variability-model constraints arise
from different sources. We discussed two such sources
above where the constraints exist for technical reasons dis-
coverable from the code. Our work strives to automatically
extract such constraints. However, it is not clear if other
sources of constraints exist beyond implementation artifacts
and how prevalent they are. We, therefore, also aim to iden-
tify any additional sources of configuration constraints and
analyses used to extract them.

Improving empirical understanding of constraints in real
systems is crucial, especially since several studies empha-
size configuration and implementation challenges for devel-
opers and users due to complex constraints [12], [16], [30],

[41]. Such knowledge not only allows us to understand
which parts of a variability model can be reverse engineered
and checked for consistency from code, and to what extent;
but also how much manual effort, such as interviewing
developers or domain experts, would be necessary to
achieve a full model. For example, a main challenge when
reverse-engineering a variability model from constraints is
to disambiguate the hierarchy [58]. Thus, this process could
be supplemented by knowing which sources of constraints
relate to hierarchy information in the model.

We focus on the sources of constraints described in both
rules above, since such constraints can be extracted using
decidable and scalable static analysis techniques. There are, of
course, also other possible kinds of constraints in the code
resulting from errors or other rules (e.g., buffer overflows or
null-pointer dereference). However, many of these require
looking at multiple runs of a program (which does not scale
well or requires imprecise sampling), or produce imprecise
or unsound results when extracted statically.

3 AUTOMATIC EXTRACTION METHODOLOGY

We used the following methodology to extract configura-
tion constraints from code, as illustrated in Fig. 3.

3.1 Extracting File Presence Conditions (PC)

To accurately analyze files and to derive constraints, we first
need to know under which condition the build system
includes each file. We use the term presence condition (PC) to
refer to a propositional expression over features that deter-
mines when a certain code artifact is compiled. For example,
a file with presence condition hush _ ash is compiled and
linked if and only if the features HUSH or ASH are selected.

Such file presence conditions are encoded in the build
system, which typically consists of several imperative
scripts, descriptions, or Makefiles. We need to manually or
automatically extract a presence condition for each file.
These file presence conditions allow us to derive global con-
straints from the low-level sources within each file. For
example, if a type error occurs under condition X in a file
guarded by a presence condition Y, then the error actually
occurs under x ^ y. In other words, local presence condi-
tions induced by conditional compilation directives are con-
joined with the file presence condition before deriving
(global) constraints from our low-level sources.

Fig. 3. Variability-aware approach to extract configuration constraints from code.

NADI ET AL.: WHERE DO CONFIGURATION CONSTRAINTS STEM FROM? AN EXTRACTION APPROACH AND AN EMPIRICAL STUDY 823

In Section 5.1, we mention the tools we use to mechani-
cally extract file presence conditions. In the remainder of
this section, without restriction of generality, we assume
that we have already identified a presence condition f for
each file and encoded it inside the file as an #IFDEF f condi-
tion that wraps the whole file (e.g., Line 0 in Listing 2), effec-
tively pushing the file presence condition into each file.

3.2 Extracting Code Constraints

We use the two rules described in Section 2 to extract code
constraints from preprocessor errors, parser errors, type errors,
linker errors, and feature effect. A simple approach to do this is
to analyze every single possible configuration to find which
ones contain errors. To avoid such an intractable brute-force
approach and to avoid incompleteness from sampling strate-
gies, we build on our recent research infrastructure, Type-
Chef, to analyze the entire configuration space of C code with
build-time variability at once [34], [35], [36].

Our overall strategy for extracting code constraints is
based on parsing C code without evaluating conditional
compilation directives. We extend and instrument Type-
Chef to accomplish this. TypeChef only partially prepro-
cesses a source file—it resolves all #INCLUDEs and expands
all macros, but preserves conditional compilation directives.
On alternative macro definitions or #INCLUDEs, it explores all
possibilities, similar to symbolic execution. Partial prepro-
cessing produces a token stream in which each token is
guarded by a corresponding accurate presence condition
(including the file presence condition, see Section 3.1),
which is subsequently parsed into a conditional abstract
syntax tree, which again can be subsequently type checked.
This variability-aware analysis is conceptually sound and
complete with regard to a brute-force approach of prepro-
cessing, parsing, and type checking all configurations sepa-
rately. However, it is much faster since it does the analysis
in a single step and exploits similarities among the imple-
mentations of different configurations; see [34], [35], [36] for
further details.

Typically, TypeChef is called with a given variability
model and it only emits error messages for preprocessor,
parser, or type problems that can occur in valid configura-
tions—discarding all implementation problems that are
already excluded by the variability model. This is the classic
approach to find implementation errors, which a user can
subsequently fix in the implementation or in the variability
model [22], [66], [67]. Since we need to extract all constraints
without knowledge of valid configurations, we run Type-
Chef without a variability model to process all reported
problems in all configurations.

We extend and instrument TypeChef, and implement a
new framework FARCE (FeAtuRe constraint extractor)1,
which analyzes the output of TypeChef and the structure of
the codebase with respect to preprocessor directive nesting,
derives constraints according to our two rules described in
Section 2.2, and provides an infrastructure to compare
extracted constraints between a variability model and code.

We now explain how we extract code constraints using
our two rules in detail. We use the C code in Listing 2 as a
running example to illustrate the various constraints we can
extract.

3.2.1 Preprocessor, Parser, and Type Constraints

Preprocessor errors, parser errors, and type errors are
detected at different stages of analyzing a translation unit.
However, the post-processing used to extract constraints
from them is similar; thus, we discuss them together. In con-
trast, linker errors require a global analysis over multiple
translation units, which we discuss separately.

Preprocessor errors. A normal C preprocessor stops on
#ERROR directives, which are usually intentionally introduced
by developers to avoid invalid feature combinations. We
extend our partial preprocessor to log #ERROR directives with
their corresponding condition, and to continue with the rest
of the translation unit instead of stopping on the #ERROR mes-
sage. In our example (Listing 2), Line 3 shows a #ERROR direc-
tive that occurs under the condition ash ^ nommu.

Parser errors. Similarly, a normal C parser stops on syntax
errors, such as unclosed parentheses. Our TypeChef parser
reports an error message together with a corresponding
condition, but continues parsing for other configurations. In
Listing 2, a parser error occurs on Line 12 because of a miss-
ing semicolon if MAX_LEN is not selected. In this case, our
analysis reports a parser error under condition
ash ^ editing ^ :max len.

Type Errors. Where a normal type checker reports type
errors in a single configuration, TypeChef’s variability-
aware type checker [34], [36] reports each type error
together with a corresponding condition. In Listing 2, we
detect a type error in Line 23 if EDITING is not selected since
line_input_state is only defined under condition
ash ^ editing on Line 7. TypeChef would, thus, report a
type error (undefined symbol) under condition ash^
editing vi ^ max len ^ :editing.

Constraints. Following Rule 1, we expect that each file
should compile without errors. Every error message with a
corresponding condition indicates a part of the configuration

Listing 2. Running example of C code with compile-time errors (adapted
from ash.c in Busybox.

1. https://bitbucket.org/tberger/farce

824 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

space that does not compile and should hence be excluded in
the variability model. For each condition e of an error, we
add a constraint :e to the set of automatically extracted con-
figuration constraints.

In our running example, we extract the following con-
straints (rewritten to equivalent implications): ash!
:nommu from the preprocessor, ash! ðediting! max lenÞ
from the parser, and ash! ððediting vi ^ max lenÞ !
editing) from the type system.

More formally, we create a single formula to represent
each of these categories of error constraints as follows:

fparser=preprocessor=type ¼
^
i

ð:eiÞ (1)

where ei is the presence condition of a preprocessor/
parser/type error.

3.2.2 Linker Constraints

To detect linker errors in configurable systems, we build a
conditional symbol table for each translation unit during
type checking. The symbol table describes all non-static
symbols as exported symbols and all called but not defined
symbols as imports. All imports and exports are again
guarded by corresponding presence conditions. We show
the conditional symbol table (without type information) of
our running example in Table 1, assuming that symbol
initEditing is defined under presence condition INIT in
some other translation unit (not shown). More details on
conditional symbol tables can be found in related publica-
tions on variability-aware module systems [7], [36].

In contrast to the file-local preprocessor, parser, and type
constraint analyses, linker analysis is global across all trans-
lation units. From all conditional symbol tables, we now
detect linker errors and derive corresponding constraints.
Again, we follow Rule 1: a linker error arises when a mod-
ule imports a symbol which is not exported (def/use) or
when two modules export the same symbol (conflict). We
derive constraints for each symbol s as follows:

def =useðsÞ ¼
_

ðf;cÞ2impðsÞ
c

0
@

1
A! _

ðf;cÞ2expðsÞ
c

0
@

1
A

conflictðsÞ ¼
^

ðf1;c1Þ2expðsÞ;ðf2;c2Þ2expðsÞ;f1 6¼f2
:ðc1 ^ c2Þ

where impðsÞ and expðsÞ look up all imports and exports of
symbol s in all conditional symbol tables and return a set of
tuples ðf;cÞ, each determining the translation unit f in
which s is imported/exported and the presence condition c

under which this happens. The def/use constraints ensure

that the presence condition of an import implies at least one
presence condition of a corresponding export, while the con-
flict constraints ensure mutual exclusion of the presence
conditions of exports with the same symbol name.

An overall linker formula can be derived by conjoining
all def/use and conflict constraints for each symbol in the set
of all symbols S:

flinker ¼
^
s2S

def=useðsÞ ^ conflictðsÞ (2)

If the two files shown in Table 1 were the only files of
our running example, we would extract constraint ash ^
editing! init for symbol initEditing.

3.2.3 Feature Effect

To ensure Rule 2 of lexically different programs in all
valid configurations, we detect the configurations under
which a feature has no effect on the compiled code and
create a constraint to disable the feature in those configu-
rations. The general idea is to detect nesting among #IFDEF

s: When a feature only occurs nested inside an #IFDEF of
another feature, such as EDITING that occurs only nested
inside ‘#IFDEF ASH’ in our running example, the nested fea-
ture does not have any effect when the outer feature is
not selected. Hence, we would create a constraint that
the nested feature should not be selected without the
outer feature, because it would not have any effect:
editing! ash in our example.

Unfortunately, extracting constraints directly from nest-
ing among #IFDEF directives alone produces inaccurate
results, because features may occur in multiple locations
inside multiple files. Additionally, #IF directives allow com-
plex conditions including disjunctions and negations.
Hence, we developed the following novel and principled
approach, deriving a constraint for each feature’s effect
from presence conditions throughout the system.

First, we collect all unique presence conditions of all code
fragments occurring in the entire system (in all translation
units, including the corresponding file presence condition
as usual). Technically, we inspect the conditional token
stream produced by TypeChef’s partial preprocessor and
collect all unique token presence conditions (note that this
covers all conditional compilation directives, #IF, #IFDEF,
#ELSE, #ELIF, etc. including dynamic reconfigurations with
#DEFINE and #UNDEF).

To compute a feature’s effect, we use the following
insights: given a set of presence conditions P found for code
blocks anywhere in the project and the set of features of
interest F , then we say a feature f 2 F has no effect in a
presence condition r 2 P if r½f True� is equivalent to
r½f False�, where X½f y� means substituting every
occurrence of f in X by y. In other words, if enabling or dis-
abling a feature does not affect the value of the presence
condition, then the feature does not have an effect on select-
ing the corresponding code fragments.

Furthermore, we can identify the exact condition when a
feature f has an effect on a presence condition r by finding
all configurations in which the result of substituting f is dif-
ferent (using xor: r½f True� � r½f False�). This method
is also known as unique existential quantification [29].

TABLE 1
Example of Two Conditional Symbol Tables

translation unit symbol kind presence condition

Listing 2 init export ash ^ editing
main export ash

initEditing import ash ^ editing
other file initEditing export INIT

NADI ET AL.: WHERE DO CONFIGURATION CONSTRAINTS STEM FROM? AN EXTRACTION APPROACH AND AN EMPIRICAL STUDY 825

Putting the pieces together, to find the overall effect of a
feature on the entire code in the project, we take the disjunc-
tion of all its effects on all presence conditions. We then
require that the feature may only be selected when the fea-
ture has an effect, resulting in the following constraint:

f !
_
r2P

r½f True� � r½f False�

We then create a conjunction of all such nesting constraints,
and call the final result ffeffect. More formally, ffeffect would
be calculated as follows, where F is the set of all features:

ffeffect ¼
^
f2F

f !
_
r2P

r½f True� � r½f False�
 !

(3)

We could also enable a feature by default and forbid dis-
abling it when disabling has no effect (or use some different
default per feature): we just need to negate f on the right-
hand side of the above formula. However, we assume the
more natural setting where most features are disabled by
default, and so we look for the effect of enabling a feature.

In our running example in Listing 2, we can identify
five unique presence conditions (excluding tokens for
spaces and line breaks): ash, ash ^ ash, ash ^ editing,
ash ^ editing ^ max len, and ash ^ editing vi ^ max len.
To determine the effect of MAX_LEN, we would substitute it
with True and False in each of these conditions, and cre-
ate the the following constraint (assuming that MAX_LEN
does not occur anywhere else in the code):

max len! ðash� ashÞ
_ �ðash ^ nommuÞ � ðash ^ nommuÞ�
_ �ðash ^ editingÞ � ðash ^ editingÞ�
_ �ðash ^ editing ^ TrueÞ � ðash ^ editing ^ FalseÞ�
_ �ðash ^ editing vi ^ TrueÞ �
ðash ^ editing vi ^ FalseÞ�
� max len! ash ^ ðediting _ editing viÞ

This confirms that MAX_LEN only has an effect if ASH and
either EDITING or EDITING_VI are selected. In all other cases, the
constraint enforces that MAX_LEN remains deselected.

Additionally, to determine how many configuration con-
straints the build system alone provides, we do the same anal-
ysis for file presence conditions only instead of presence
conditions of code blocks (which include both file and local
presence conditions). Note that this analysis is incomplete
and provides only a rough approximation of configuration
constraints. On the other hand, it provides insight into the
role of the build system in enforcing configuration constraints.

3.2.4 Full Code Formula

Besides having individual formulas that represent each con-
straint source, we also conjoin them into a single formula
representing all code constraints. This ensures that any
interaction among the individual constraints is accounted
for in an overall, global formula. However, recall that the
reasoning behind Rule 1 and Rule 2 is different; the former
represents errors, whereas the latter is a heuristic

whose violation does not break the system. Thus, we still
distinguish between both and yield the following three
global formulas:

frule1 ¼ fpreprocessor ^ fparser ^ ftype ^ flinker (4)

frule2 ¼ ffeffect ^ ffeffect build (5)

fcode ¼ frule1 ^ frule2 (6)

In addition to the individual formulas 1-3, we will also
use these global formulas 4-6 when assessing recoverability
of existing variability-model constraints as will be shown in
Section 5.

4 EMPIRICAL STUDY OVERVIEW

To understand what configuration constraints are enforced
in practice and to what extent they can be extracted, we
study four real-world systems with existing variability
models. Existing models are required to have a basis for
comparison. In this section, we describe the four subject sys-
tems as well as our three objectives.

4.1 Subject Systems

We chose four highly-configurable open-source projects
from the systems software domain. All are large, industrial-
strength projects that realize variability with the build
system and the C preprocessor. Our selection reflects a
broad range of variability model and codebase sizes, in the
reported range of large commercial systems.

All subjects have a variability model, which we use in
the comparison. The first three use the Kconfig language
[80], and the last one uses the CDL language [70],
each with the respective configurator infrastructure in the
problem space.

uClibc is an alternative, resource-optimized C library for
embedded systems. We analyze the x86_64 architecture in
uClibc v0.9.33.2, which has 1,628 C source files and 367 fea-
tures described in a Kconfig model. BusyBox is an imple-
mentation of 310 GNU shell tools (ls, cp, rm, mkdir, etc.)
within one binary executable. We study BusyBox v1.21.0
with 535 C source files and 921 documented features
described in a Kconfig model. eCos is a highly configurable
real-time operating system intended for deeply embedded
applications. We study the i386PC architecture of eCos v3.0,
which has 579 C source files and 1,254 features described in
a CDL model. The Linux kernel is a general-purpose oper-
ating system kernel. We analyze the x86 architecture of
v2.6.33.3, which has 7,691 C files and 6,559 features docu-
mented in a Kconfig model.

In all systems, the variability models have been created,
maintained, and evolved by the original developers of the
systems over periods of up to 13 years. Using them reduces
experimenter bias in our study. Prior studies of the Linux
kernel and BusyBox have also shown that their variability
models, while not perfect, are reasonably well maintained
[15], [35], [36], [41], [49], [65]. In particular, eCos and Linux
have two of the largest publicly available variability models
today.

826 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

4.2 Objectives

Our empirical study aims at three objectives:
Objective 1 to evaluate accuracy and scalability of our

extraction approach. This is done by checking if the configu-
ration constraints that we extract from implementation are
enforced in existing variability models.

Objective 2 to study the recoverability of variability-model
constraints using our approach. Specifically, we are inter-
ested in how many of the existing model constraints
reflect implementation specifics that can be automatically
extracted from the solution space.

Objective 3 to classify variability-model constraints. We
want to understand which constraints are technically
enforced and which constraints go beyond the code arti-
facts. This allows us to understand what reverse-engineer-
ing approaches to choose in practice.

Since Objectives 1 and 2 primarily evaluate our infra-
structure, we discuss them together in Section 5. Objective 3
is more exploratory, aiming at understanding the types of
constraints enforced by developers and requires a different
research method. Thus, we discuss it separately in Section
6. In both sections, we explain the experiment setup and
present the respective results.

5 ACCURACY, SCALABILITY, AND RECOVERABILITY

In this section, we report on the accuracy and scalability of
our infrastructure (Objective 1), and identify the recoverabil-
ity of existing variability-model constraints (Objective 2)
from code.

We first describe the study setup in Section 5.1 and then
present the results of objectives 1 and 2 in Sections 5.2 and
5.3, respectively.

5.1 Study Setup

For the setup, we first describe how we extract constraints
from the variability model and then how we evaluate our
code analysis against these model constraints.

5.1.1 Methodology and Tool Infrastructure

We follow the methodology shown in Fig. 1. We first extract
hierarchy and cross-tree constraints from the variability
models (problem space) of our subject systems. We rely
on our previous analysis infrastructures LVAT [3] and
CDLTools [1], which can interpret the semantics of Kconfig
and CDL respectively to extract such constraints and addi-
tionally produce a single propositional formula represent-
ing all enforced constraints (see the work on analyzing
Kconfig and CDL [13], [56] for details).

We then run TypeChef on each system and use our
developed infrastructure FARCE to derive solution-space
constraints from its error output (Rule 1, cf., Section 2.2.1)
and the conditional token stream (Rule 2, cf., Section 2.2.2).
As a prerequisite, we extract file presence conditions from
build systems by using the build-system analysis tool
KBuildMiner [2] for systems using KBUILD (BusyBox and
Linux), and a semi-manual approach for the others. The
build system analysis to extract file presence conditions and
any header files required for the system to properly build is
the only prerequisite for using our infrastructure to analyze
additional subject systems.

5.1.2 Evaluation Technique and Measurement Strategy

After problem and solution-space constraints are extracted,
we compare them according to the first two objectives.

To addressObjective 1 (evaluate accuracy and scalability),
we verify whether extracted solution-space constraints hold
in the propositional formula representing the variability
model (problem space formula) of each system. We also
measure the execution time of the involved analysis steps.
For this objective, we assume the existing variability model
as the ground truth, since it reflects the system’s configura-
tion knowledge specified by developers, and measure accu-
racy as follows. We keep constraints extracted in the
individual steps of our analysis separate. That is, for each
build error (Rule 1) and each feature effect (Rule 2), we cre-
ate a separate constraint ai. For each extracted constraint ai,
we check whether it holds in the problem space formula n

(representing variability model constraints) with a SAT
solver, by determining whether n) ai is a tautology (i.e.,
whether its negation is not satisfiable).

For scalability, we record execution time of each analysis
step separately to measure the scalability of our approach.
All our experiments are executed on a server with two
AMD Opteron processors (16 cores each) and 128 GB RAM.
For all analysis steps performed by TypeChef and KBuild-
Miner, which can be parallelized, we report the average and
the standard deviation of processing each file. In addition,
we provide the total processing time for the whole systems,
assuming sequential execution of file analyses. For the deri-
vation of constraints, which cannot be easily parallelized,
we report the total computation time per system.

To addressObjective 2 (recoverability ofmodel constraints),
we determine whether each existing variability model con-
straint holds in the solution-space constraint formulas we
extract.We use the term recoverability instead of recall, because
we do not have a ground truth in terms of which constraints
can be extracted from the code. Since no previous study has
classified the kinds of constraints in variability models, we
cannot expect that 100% of them represent low-level code
dependencieswhich can be statically extracted.

Measuring recoverability is a bit more challenging than
measuring accuracy since for the latter, we have the individ-
ual, extracted constraints to compare against. However,
variability models in practice are described in different
modeling languages. Semantics of a variability model are
typically expressed uniformly as a single large Boolean
function expressed as a propositional formula describing
the valid configurations. After experimenting with several
slicing techniques for comparing these propositional formu-
las, we decided to exploit structural characteristics that are
commonly found in variability models. In all analyzed mod-
els, we can identify child-parent relationships (hierarchy
constraints) as well as inter-feature constraints (cross-tree con-
straints). This way, we count individual constraints as the
developer modeled them, which is intuitive to interpret and
allows us to investigate the different types of model con-
straints. We only account for binary constraints as they are
most frequent, whereas accounting for n-ary constraints is
an inherently hard combinatorial problem. Technically, we
perform the inverse comparison to that described above for
accuracy: we compare whether each individual problem-
space constraint nj holds in the conjunction of all extracted

NADI ET AL.: WHERE DO CONFIGURATION CONSTRAINTS STEM FROM? AN EXTRACTION APPROACH AND AN EMPIRICAL STUDY 827

solution-space constraints fanalysis in each code analysis cat-

egory (Formulas 1-3) as well as the overall code formulas
(Formulas 4-6), i.e., whether fanalysis) ni is a tautology.

Note that using propositional logic for comparison comes
with its own set of problems. For example, comparing two
constraints or formulas which have a different set of fea-
tures or comparing disjunctions may lead to misleading
results. We provide a detailed discussion of these cases in
Appendix B, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2015.2415793. Additionally, checking if a con-
straint holds in three single formulas separately may pro-
vide a different result than checking if the constraint holds
in the conjunction of the three formulas (as will be seen in
the Linux kernel recoverability results). While finding the
proper comparison mechanism is an open problem, our
comparison technique allows us to understand configura-
tion constraints better, despite its drawbacks. A key factor
in selecting this comparison technique is that we can cur-
rently manually verify, track, and understand the logic
behind the variability-model constraints, which also allows
us to ask developers about these constraints.

5.2 Objective 1: Accuracy and Scalability

We expect that all constraints extracted according to Rule 1
hold in the problem-space (variability model) formula, as
these prevent any failure in building a system. Constraints
that do not hold either indicate a false positive due to an
inaccuracy of our implementation or an error in the variabil-
ity model or implementation; we investigate these cases
separately. Such constraint checks have been the standard
approach in previous work on finding bugs in configurable
systems [22], [35], [68], where inconsistencies between the
model and implementation are identified as errors. In con-
trast, Rule 2 prevents meaningless configurations that lead
to duplicate systems. Thus, we expect a large number of cor-
responding constraints, but not all, to occur in the variabil-
ity model.

Table 2 shows the number of unique constraints
extracted from each subject system in each analysis step,

and the percentage of those constraints found in the existing
variability model. On average across all systems, constraints
extracted with Rule 1 and Rule 2 are 93% and 77% accurate,
respectively (geometric mean of highlighted values in
Table 2).

Both results show that we achieve a very high accuracy
across all four systems. Rule 1 is a reliable source of con-
straints where our tooling produces only few false positives
(extracted constraints that do not hold in the model). Inter-
estingly, a 77% accuracy rate for Rule 2 suggests that vari-
ability models in fact prevent meaningless configurations to
a high degree.

Table 3 shows execution times of our tools. Significant
time is taken to parse files, which often explode after
expanding all macros and #INCLUDE preprocessor directives.

TABLE 2
Constraints Extracted with Each Rule per System, and Percentage Holding in the Variability Model (VM)1

Code Analysis uClibc BusyBox eCos Linux

extracted % found in VM # extracted % found in VM # extracted % found in VM # extracted % found in VM

Rule 1
Preprocessor
Constr.

158 100% 3 100% 162 81% 12,780 81%

Parser Constr. 59 100% 23 100% 133 91% 8,443 100%
Type Checking
Constr.

947 97% 54 100% 139 82% 256,510 97%

Linker Constr. 312 63% 38 100% 7 100% 19,654 90%
Total 1,330 90% 118 100% 441 85% 284,914 96%
Rule 2
Feature effect
Constr.

57 74% 359 93% 263 62% 2,961 95%

Feature effect -
Build Constr.

26 81% 62 0% n/a n/a 2,552 97%

Total 83 76% 421 79% 263 62% 5,513 96%

1Geometric mean of highlighted percentages is used to compute overall accuracy of Rules 1 and 2 (93% and 77% respectively).

TABLE 3
Duration, in Seconds Unless Otherwise Noted,

of Each Analysis Step

uClibc BusyBox eCos Linux

File PC Extraction manual 7 N/A 20

T
y
p
eC

h
e
f Lexing 7 � 3 9 � 1 10 � 6 25 � 12

Parsing 17 � 7 20 � 3 72 � 1.6 108 � 1.9
Type checking 4 � 3 5 � 1 3 � 5 41 � 14
Symbol Table
creation

0.1 � 0.1 0 � 0.03 3 � 20 2 � 2

Sum for all files (Sequential) 13 hr 5 hr 7 hr 376 hr

F
A
R
C
E

Feature effect—
Build Constr.

3 3 N/A 24

Feature effect
Constr.

20 8 1200 1.7 hr

Preprocessor
Constr.

0.7 0.7 8 1 hr

Parsing Constr. 16 4 8 39 min
Type Checking
Constr.

15 6 5 1.3 hr

Linker Constr. 120 60 840 5 hr

Total FARCE Time 3 min 1.4 min 34 min 10 hr

Average time per file and standard deviation shown for analysis using
TypeChef. Global analysis time shown for post-processing using FARCE.

828 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

Note that the total analysis time shown in the table assumes
sequential execution of all files. In practice, the analysis of
each file is independent which allows parallel execution.
Our experience suggests that our analysis scales reasonably
where a system as large as Linux can be analyzed in parallel
within twelve hours on our hardware.

5.2.1 Accuracy Discussion

Our approach is highly accurate given the complexity of our
real-world subjects. While further increasing accuracy is
conceptually possible: improving our prototypes into
mature tools would require significant, industrial-scale
engineering effort, beyond the scope of a research project.

False positives are hard to manually analyze since the
reported constraints are often complex to understand. Pres-
ence condition simplification techniques [71] can be used to
overcome this. However, we already identify the following
three reasons for the false positives we examined. First, the
variability model and the implementation have bugs. In
fact, our earlier work found several errors in BusyBox and
reported them to the developers [36]. We also identified one
in our current work and reported it on the uClibc mailing
list. In this case, our type analysis reported an error when
feature LINUXTHREADS_NEW is selected without feature UCLIB-

C_HAS_REALTIME, because symbol nanosleep is undefined.
We confirmed that this holds by building uClibc under this
configuration and observing the error. We suggested add-
ing this constraint to the variability model, but we did not
receive a response from the uClibc developers.

Second, all steps involved in our analysis are nontrivial.
For example, we re-implemented large parts of a type sys-
tem for GNU C and reverse-engineered details of the Kcon-
fig and CDL languages, as well as the KBUILD build system.
Little inaccuracies or incorrect abstractions are possible. For
example, we found that many of the false positive linker
constraints in uClibc occur due to incorrectly (manually)
extracted file presence conditions. One example is as fol-
lows. Our linker analysis reports the following constraint,
UCLIBC_HAS_IPV4 _ UCLIBC_HAS_IPV6, because there is a symbol
inet_ntoa_r that gets defined in file inet_ntoa.c under condi-
tion UCLIBC_HAS_IPV4 _ UCLIBC_HAS_IPV6. This symbol then
gets used in libc/inet/addr.c under the condition True,
which leads to the constraint extracted above. In other
words, the implementation suggests that either of these fea-
tures must be present in a valid configuration. This seems
too strict, and we suspect that this is indeed a false positive
due to an incorrect extraction of the presence condition of
file libc/inet/addr.c. In our analysis, we mark that this file
is always compiled, while upon closer examination of the
comments in the Makefiles, it seems that addr.c is a “multi-
source” file that gets compiled under the same condition
above, which would lead to no constraint being extracted.
However, such details are hard to determine using manual
analysis and advanced build system analysis techniques are
needed. In general, intricate details in Makefiles, such as
shell calls [14], complicate their analysis [64].

Third, our subjects implement their own mechanisms
for providing and generating header files at build-time,
according to the configuration. We implemented emula-
tions of these project-specific mechanisms to statically

mimic their behavior, but such emulations are likely
incomplete. We plan to investigate using symbolic execu-
tion of build systems [64], [79] in order to accurately
identify which header files need to be included under
different configurations.

5.2.2 Scalability Discussion

Our evaluation shows that our approach scales, in partic-
ular to systems sharing the size and complexity of the
Linux kernel. However, we face many scalability issues
when combining complex constraint expressions into one
formula, mainly in Linux and eCos. Feature-effect con-
straints are particularly problematic due to the unique
existential quantification (see Section 3.2.3), which causes
an explosion in the number of disjunctions in many
expressions, thus adding complexity to the SAT solver.
To overcome this, we omit expressions including more
than ten features when aggregating the feature effect for-
mula. This resulted in using only 17% and 51% of the fea-
ture-effect constraints in Linux and eCos, respectively.
The threshold was chosen due to the intuition that larger
constraints are too complex and likely not modeled by
developers.

We faced similar problems in deriving other formulas,
such as the type formula in Linux, but mainly due to the
huge number of constraints and not their individual com-
plexity. This required several workarounds and led to high
memory consumption in the conversion of the formula into
conjunctive normal form, as required by the SAT solver.
Thus, we conclude that extracting constraints according to
our rules scales, but can require workarounds or filtering
expressions to deal with the explosion of constraint formu-
las. We refer to our online appendix [4] for more details,
available in the online supplemental material.

5.3 O2: Recoverability

We now investigate how many variability-model con-
straints can be automatically extracted from the code. In
Tables 4 and 5, we show how many of the variability mod-
els’ hierarchy and cross-tree constraints, respectively, can
be recovered automatically from code. We show the number
(and percentage) of constraints recovered by each source
(i.e., parsing errors, type errors, feature effect, etc.) as well
as the number recovered overall by each rule. Recall that
the formula of each rule is the conjunction of the individual
formulas related to that rule (see Section 3.2.4). We also
show the number and percentage recovered by the overall
code formula (fcode). Since Tables 4 and 5 split the hierarchy
and cross-tree constraints, we provide a summary of the
overall aggregated recoverability results in Table 6. In all
three tables, we highlight the values mentioned in the text
for easier referencing.

As shown in Tables 4 and 5, combining the extracted con-
straints from all sources used leads to recovering more vari-
ability-model constraints. This suggests that the constraints
enforced in the variability model are global in the sense that
they stem from an interaction among different parts of
the system: for example, a combination of preventing a type
error and preventing meaningless selections. Note that the
same constraint may be recovered via multiple sources.

NADI ET AL.: WHERE DO CONFIGURATION CONSTRAINTS STEM FROM? AN EXTRACTION APPROACH AND AN EMPIRICAL STUDY 829

Therefore, the overall code formulas in each table show
the total number (and percentage) of unique variability-
model constraints recovered from analyzing the code.
Overall, across the four systems, we recover 31% of

hierarchy constraints, and 23% of cross-tree constraints.
Our overall recoverability across the four systems for all
types of constraints using both rules (as shown in
Table 6) is 28%.

TABLE 5
Number (and Percentage) of Variability-Model Cross-Tree Constraints Recovered from Each Code Analysis

uClibc BusyBox eCos Linux

of VM Cross-tree Constraints 118 265 315 7,759
Count (%) Recovered from code

Rule 1
Preprocessor Constr. (fpreprocessor) 2 (2%) 1 (0%) 5 (2%) 6 (0%)
Parser Constr. (fparser) 0 (0%) 0 (0%) 9 (3%) 2 (0%)
Type Checking Constr. (ftype) 9 (8%) 15 (6%) 1 (0%) 3 (0%)
Linker Constr. (flinker) 11 (9%) 21 (8%) 1 (0%) 19 (0%)

Rule 1 (frule1) 17 (14%) 39 (15%) 26 (8%) 1,522 (17%)

Rule 2
Feature effect Constr. (ffeffect) 7 (6%) 14 (5%) 2 (1%) 58 (1%)
Feature effect - Build Constr. (ffeffect build) 4 (3%) 0 (0%) - 316 (4%)

Rule 2 (frule2) 8 (7%) 14 (5%) 2 (1%) 374 (6%)

Full Code Constraints (fcode) 25 (21%) 57 (22%) 28 (9%) 4,461 (62%)

TABLE 4
Number (and Percentage) of Variability-Model Hierarchy Constraints Recovered from Each Code Analysis1

uClibc BusyBox eCos Linux

of VMHierarchy Constraints 54 366 588 4,999
Count (%) Recovered from code

Rule 1
Preprocessor Constr. (fpreprocessor) 0 (0%) 0 (0%) 0 (0%) 1 (0%)
Parser Constr. (fparser) 0 (0%) 0 (0%) 3 (1%) 1 (0%)
Type Checking Constr. (ftype) 0 (0%) 1 (0%) 0 (0%) 0 (0%)
Linker Constr. (flinker) 0 (0%) 1 (0%) 0 (0%) 1 (0%)

Rule 1 (frule1) 1 (2%) 2 (1%) 4 (1%) 306 (6%)

Rule 2
Feature effect Constr. 8 (15%) 251 (69%) 48 (8%) 325 (6%)
Feature effect - Build Constr. 4 (7%) 0 (0%) - 1,337 (27%)

Rule 2 (frule2) 9 (17%) 251 (69%) 48 (8%) 1,663 (33%)

Full Code Constraints (fcode) 14 (26%) 265 (72%) 53 (9%) 2,569 (51%)

1Highlighted numbers are those used in the text for easier referencing.

TABLE 6
Summary of Overall Recoverability Results1

uClibc BusyBox eCos Linux Overall
(Geom. Mean)

Rule 1
Hierarchy 1 (2%) 2 (1%) 4 (1%) 306 (6%) 2%
Cross-tree 17 (14%) 39 (15%) 26 (8%) 1,522 (17%) 13%
All constraints 18 (10%) 41 (6%) 30 (3%) 1,828 (14%) 7%

Rule 2
Hierarchy 9 (17%) 251 (69%) 48 (8%) 1,663 (33%) 24%
Cross-tree 8 (7%) 14 (5%) 2 (1%) 374 (6%) 4%
All constraints 17 (10%) 265 (42%) 50 (6%) 2,037 (16%) 14%

Full Code (Rules 1 & 2 conjoined)
Hierarchy 14 (26%) 265 (72%) 53 (9%) 2,569 (51%) 31%
Cross-tree 25 (21%) 57 (22%) 28 (9%) 4,461 (62%) 23%
All constraints 39 (23%) 322 (51%) 81 (9%) 7030 (55%) 28%

1Highlighted numbers are those used in the text for easier referencing.

830 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

To compare the two rules we use to extract solution-space
constraints, we show the overlap between the total number
of recovered variability-model constraints (both hierarchy
and cross-tree) aggregated across both rules in the Venn dia-
grams in Fig. 4. These illustrate that in all systems, a higher
percentage of the variability-model constraints reflects
feature-effect constraints in the code (Rule 1) and that
minimum overlap occurs between constraints recovered by
both rules.

5.3.1 Recoverability Discussion

We can see a pattern in terms of where variability-model
hierarchy and cross-tree constraints are reflected in the
code. Table 4 shows that a large percentage of hierarchy
constraints can be automatically extracted. Specifically as
shown in Table 6, 31% of the hierarchy constraints can be
automatically extracted. This suggests that the structure of
the variability model (hierarchy constraints) often mirrors
the structure of the code. Rule 2 alone can extract an average
24% of the hierarchy constraints (see Table 6). An interesting
case is Linux where already 27% of the hierarchy constraints
are mirrored in the nested directory structure in the build
system (i.e., file presence conditions) as shown in Table 4.
We conjecture that this results from the highly nested code
structure, where most individual directories and files are
controlled by a hierarchy of Makefiles, almost mimicking
the variability model hierarchy [14], [45].

On the other hand, although harder to recover, Table 5 sug-
gests that cross-tree constraints seem to be scattered across
different places in the code (e.g., linker and type information),
and seemmore related to preventing build errors than hierar-
chy constraints are. Interestingly, Fig. 4 shows that there is no
overlap (with the exception of four constraints in uClibc and
Linux) between the two rules we use to recover constraints.
This aligns with the different reasoning behind them: one is
based on avoiding build errors while the other ensures that product
variants are different. The fact that our static analysis of the
code could only recover 28% of the variability-model con-
straints suggests that many of the remaining constraints
require different types of analysis or stem from sources other
than the implementation.We look at this issue inmore details
in our third objective in the next section.

6 CONSTRAINT CLASSIFICATION

To classify the different types of configuration constraints in
order to addressObjective 3, we aggregate and cross-validate
data from four types of analyses that act as different data
sources. First, we elicit developer feedback in the form of
phone interviews and online questionnaires and use
grounded theory [20] to analyze this data. Second, we use
the recoverability results from our automated analysis.
Third, we conduct a manual analysis of a sample of the non-
recovered results to understand why these constraints are
enforced. Fourth, we perform additional automated analysis
to count certain types of constraints which were discovered
using one or more of the previous three analyses.

6.1 Setup and Preliminary Results

We now describe the setup for the four types of analyses we
use to understand and classify constraints. We also show
the raw results where applicable. The raw results from the
four types of analyses are later aggregated into classification
categories in Section 6.1.5.

6.1.1 Developer Interviews

We elicit feedback about configuration constraints from 27
developers across the four systems. We describe how we
contact developers, gather the data, and analyze it below.

Developer recruitment. For each of the four subject sys-
tems, we query each system’s respective source control
repository to identify a list of developers who have made
changes to the configuration files encoding the variability
models. We then contact the identified developers via email,
and give them the choice to participate through a phone
interview or a questionnaire. This is done to cater for differ-
ent developer preferences and availability. A total of 22
developers answered our questionnaires and we conducted
phone interviews with 5 developers. Table 7 shows the
number of developers per system who participated in our
study through both questionnaires and phone interviews.

Questionnaire/interview structure. Online questionnaires
had a specific set of open-ended questions for the develop-
ers to answer without our intervention. For each system, we
additionally provided three to four examples of constraints
that we could not recover and asked developers to explain
why such dependencies are enforced. Interviews, on the
other hand, were semi-structured [55] and lasted an average
of 34 minutes. While we had the same list of questions and
examples from the questionnaire in mind during the phone
interviews, we allowed the conversation to steer away from

Fig. 4. Overlap between Specifications 1 and 2 in recovering variability-
model constraints. An overlap means that the same model constraint
can be recovered by both rules.

TABLE 7
Number of Developers Interviewed through Questionnaires

and Phone Conversations

System Questionnaires Phone
Interviews

Total

uClibc 2 1 3
BusyBox 1 2 3
eCos 1 0 1
Linux 18 2 20

Total 22 5 27

NADI ET AL.: WHERE DO CONFIGURATION CONSTRAINTS STEM FROM? AN EXTRACTION APPROACH AND AN EMPIRICAL STUDY 831

these fixed questions depending on the developer’s
responses. Thus, each interview was shaped by the
developer’s responses and their willingness to share infor-
mation. Questions in both the interviews and questionnaires
revolved around the following themes:

� When is a feature added to the variability model?
� When is a dependency enforced?
� How can we extract configuration constraints?
Answers from all three themes help us understand when

dependencies are enforced and how they can be extracted.
For the third question, we ask developers about our two
extraction rules. This included their view on valid versus
invalid configurations as well as nesting of #IFDEF s in code.

Data analysis. To analyze the data we collected from the
27 developer responses, we first transcribe all phone inter-
views. Since our study is of exploratory nature, we use
grounded theory [20] to analyze the data from both inter-
views and questionnaires where we use open-coding to
identify key sources of dependencies. For the interview
data, participants are coded for anonymity. We give each
developer a code showing the system (UC for uClibc, BB for
BusyBox, EC for eCos, and LI for Linux) followed by a
number.

6.1.2 Automated Classification

To facilitate parts of the investigation, we use the recover-
ability results from Section 5.3 to automatically classify a
large number of constraints as technical and statically dis-
coverable. Specifically, our analysis shows that 28% of the
constraints are code dependencies which can be automati-
cally extracted (see Table 6).

6.1.3 Manual Analysis

To understand what other categories of constraints exist,
we randomly sample 144 non-recovered constraints (18
hierarchy and 18 cross-tree constraints from each subject
system). We then divide these constraints among the
authors of the paper for manual investigation. The goal is

for each author to try to identify the reason behind
enforcing these non-recovered constraints by manually
looking at the implementation as well as reading the doc-
umentation of the features involved. In the process, we
also try to understand why these constraints could not be
recovered using our automated analysis. Each author
records the findings for each of their assigned set of con-
straints. At the end of the process, one author went
through all the recorded reasons in order to categorize
them. Thus, 75% of the studied constraints are cross-vali-
dated by two authors. In Table 8, we show the raw data
from this analysis, where we summarize the five cases
that explain the analyzed sample of non-recovered con-
straints. In the last column, we show the percentages gen-
eralized to the general constraint population,2 which we
use in the results below.

6.1.4 Additional Automated Analysis

Our interviews and manual analysis showed that there
are certain patterns of constraints such as those contain-
ing feature(s) not used in the code or those containing
features related to hardware or platform restrictions. We
automatically count the first case by checking all variabil-
ity-model constraints to see how many constraints have
such features. We find that 21% of constraints across the
four systems have at least one feature not used in the
code. For the second case, we count the constraints in
BusyBox which contain the hardware feature PLATFORM_LI-
NUX which we came across in the manual analysis and
which was also discussed during the interviews. We find
that 110 out of the 366 cross-tree constraints in BusyBox
contain this feature.

TABLE 8
Manual Analysis of Non-Recovered Constraints1

Case Description Number of
Constraints

% Adjusted to
Constraint Population

1. Additional analysis required Can be recovered using more expensive
analysis

30 16%

1.1 Data-flow analysis or testing 16 9%
1.2 More specific analysis 14 8%
2. More relaxed code constraints Extraction relates two features but is less

strict than the variability model
27 15%

3. Domain knowledge At least one of the features is not used in
the code & relation can only be identified
through expert knowledge

40 22%

3.1 Configurator-related 27 15%
3.2 Platform or hardware knowledge 13 7%
4. Limitation in extraction We do not support non-boolean

comparisons and C++ code
5 2%

5. Unknown We could not determine the rationale
behind the enforced constraint

42 23%

1We could explain 58% of the non-recovered constraints through four cases, but could not determine the rationale for the remaining constraints. Highlighted
numbers are those used in the text for easier referencing.

2. To determine the generalized percentages, we have to also con-
sider that we have already automatically recovered 28% of the existing
configuration constraints. Thus, there is a remainder of 72% of non-
recovered constraints from which we obtain our sample. Thus, getting
the generalized percentage of constraints representing domain knowl-
edge in Table 8 can be found as follows: ð40=144Þ � 0:72 ¼ 20%. The
same can be applied for the other cases.

832 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

6.1.5 Integrating Our Results

Our results from the four types of analyses above sug-
gest that there are four cases for enforcing configuration
constraints: (1) enforcing low-level code dependencies, (2)
ensuring correct run-time behavior, (3) improving the user’s
configuration experience, and (4) avoiding corner cases. In the
next four sections, we describe each of the four cases
along with relevant examples and supporting findings.
Our aim is to understand when dependencies are
enforced and if such dependencies can be automatically
extracted. Thus, for each case, we provide examples,
describe how developers think such dependencies can be
identified, and deduce what implications this might have
on automatic extraction tools. We summarize how the
classification categories are supported by the different
data sources in Table 9.

6.2 Enforcing Low-Level Code Dependencies

Large configurable systems are designed to be modular
such that there is a procedure, file, or component that is
responsible for each functionality. Due to such modular
design, it is common that one feature may need to use cer-
tain functionalities offered by another feature. This can be
in the form of low-level code dependencies such as using
symbols defined in a different feature. When such relation-
ships exist, dependencies between the related features have
to be enforced in the variability model to allow the system
to build successfully, as pointed out by many of the inter-
viewed developers. For example, one of the uClibc develop-
ers explains it as follows:

“Kconfig dependencies usually express requirements
[related to] internal libraries inside the project [as well
as] requirements to avoid build failures because of func-
tionality [needed from other modules].” (UC_1)

6.2.1 Examples

When a module in the system relies on the definition of cer-
tain symbols from a different module, such dependency is
marked in the variability model. We provided an example
of such a low-level dependency between features X and Y in
Listing 1a in Section 2.2.1. A real example from BusyBox is
feature WHO which depends on feature FEATURE_UTMP. The
WHO utility displays the current logged-in user. In order to
display that user, the WHO applet needs access to the /var/
run/utmp file which keeps track of the logged in users.
This file is controlled by FEATURE_UTMP. On a low level, WHO

uses function getutent to identify the current logged in user
which is only defined if FEATURE_UTMP is selected.

6.2.2 Identification

We find that low-level dependencies represent at least 45%
of configuration constraints as shown by our recoverability
analysis and manual analysis results. This is based on the
28% recovered by our analysis, 9% related to data-flow (see
Table 8), and 8% related to additional code analysis (see
Table 8). We believe that 45% represents a lower bound
since our manual analysis may have missed specific depen-
dencies. Our interview data also suggests that low-level
dependencies are the most common reason behind enforc-
ing configuration constraints.

We now discuss specific code analysis techniques which
can identify the various types of low-level dependencies we
found in our data.

Build and linker analysis. Our recoverability results
show that 28% of the constraints can be extracted using
our TypeChef and FARCE infrastructures. Rules 1 and 2
rely on ensuring that the system builds and links cor-
rectly (i.e., all low-level dependencies are respected) and
that the selection of a feature changes something in the
code. This is confirmed by the developers we inter-
viewed, who explained that low-level code dependencies
can be found by analyzing the source code files as well as
the build files. They mainly suggest studying def/use
chains of symbols and looking into linker failures to
determine missing symbols signifying dependencies.
Most of them suggested that imitating the linker and the
C preprocessor would be the best way to determine such
dependencies. A Linux developer summarizes the best
way to identify low-level code dependencies as follows,
confirming our extraction methodology:

“[I would] identify interfaces (functions, variables, mac-
ros) protected by #ifdefs, and identify translation units
that use the protected interfaces and whether the use is
also protected by other #ifdefs. [I would also] look into the
build files. [However,] this would only identify build-
time dependencies.” (LI_7)

Data-flow analysis. During the interviews, one developer
pointed out that dependencies may result from code that
implicitly depends on initialization or value updates that
are done somewhere else. Detecting such cases requires
data-flow analysis. This is also confirmed through our man-
ual analysis where we found that 9% of constraints might
be recovered through data-flow analysis. While our extrac-
tion infrastructure does not yet support data-flow analysis,
there is existing research that can be used as a basis to create
a variability-aware data-flow analysis which can scale to
large systems [18], [19], [39].

TABLE 9
Summary of the Supporting Data Sources for Each Category of Configuration Constraints

Developer
Interviews

Automated Recovery
Results

Manual Analysis Additional Automated
Analysis

Enforcing Low-level Code Dependencies @ @ @
Ensuring Correct Run-time Behavior @ @ @
Improving the User’s Configuration
Experience

@ @ @

Avoiding Corner Cases @

NADI ET AL.: WHERE DO CONFIGURATION CONSTRAINTS STEM FROM? AN EXTRACTION APPROACH AND AN EMPIRICAL STUDY 833

Additional analysis. Our manual analysis shows that 8% of
configuration constraints can be recovered through more
specific analysis. This includes more advanced build system
analysis than what we currently support or system-specific
analysis such as the use of applets in BusyBox or the kernel
module system in the Linux kernel.

6.2.3 Implications for Extraction Tools

The above discussion shows that dependencies extractable
from the code and build files (with varying degree of cost)
can account for a large portion of configuration constraints.
This is promising for automatic extraction tools. However,
there are still some challenges preventing a complete extrac-
tion which we show with the following two cases we learn
from developer interviews.

Deferring problems to runtime. Developers explain that
they often use static inline function stubs to prevent build-time
errors from occurring as shown in Fig. 5. In this case, func-
tion PCI_REGISTER_DRIVER IN PCI.H (Fig. 5a) is defined if feature
PCI is selected and is defined as a static inline function
returning zero if PCI is not selected. The function is then
used in QL4_OS.C (Fig. 5b), which is only compiled if features
SCSI_QLA_ISCSI and SCSI are selected. A developer looking at
this code can understand that there is a relationship
between SCSI_QLA_ISCSI and PCI, since function PCI_REGISTER_-
DRIVER registers this SCSI driver only if PCI is selected. In the
case when PCI is not selected, the function will be defined as
the empty stub returning zero, which would result in the
driver not being registered. However, a regular compiler, or
a static analysis infrastructure such as ours, would not
detect this relationship, since the static inline function pre-
vents any type errors from occurring. As one uClibc devel-
oper points out:

“A lot of projects like the Linux kernel will provide static
inline stubs which replace the actual implementation
when a specific Kconfig symbol is turned on/off, specifi-
cally to avoid build failures.” (UC_1)

This suggests that developers may intentionally push
handling meaningless or incorrect behavior to runtime
rather than handling such problems at build-time. Using
static inline functions to accomplish such behavior is actu-
ally part of the recommended practices in the Linux kernel
guidelines.3 Detecting such situations would require proj-
ect-specific heuristics which are hard to generalize (and
automate).

Mixing run-time and build-time behavior. Several develop-
ers also mention the tendency to move to using C-based if
checks rather than preprocessor-based #IFDEF checks, which
represents a second challenge for automatic extraction tools.
With if-based checks, code elimination is left to the compiler
where a new macro that is defined to 1 is created if the fea-
ture is selected. If the feature is not selected, this new macro
is defined to 0 (triggering dead-code elimination). We show
such an example in Fig. 6, where the same conditional com-
pilation is achieved with the C preprocessor or through a
regular C if check, assuming dead-code elimination in the
compiler. This achieves a similar effect to the C preproces-
sor, but while avoiding syntax error problems (often
appearing in certain configurations only) which may be
caused by #IFDEF checks. On the contrary, if there is a syntax
error in the if check, the build will break on all configura-
tions and not just a specific one, making it easier to debug
(BB_3). This involvement of run-time behavior again com-
plicates dependency extraction for automated tools, since

Fig. 5. Static inline function definitions may prevent tools from detecting low-level code dependencies.

Fig. 6. Relying on the C compiler (b) versus relying on the C preprocessor (a) for conditional compilation.

3. http://www.kernel.org/doc/Documentation/SubmittingPatches

834 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

runtime checks which cannot be evaluated at build-time can
be mixed with the feature check in the if condition. Several
researchers have investigated means to track such some
configuration options through some variations of slicing,
which might be a starting point for such tooling [6], [40],
[52], [75], [78].

6.3 Ensuring Correct Run-Time Behavior

Apart from enforcing low-level dependencies that are found
in the system’s implementation, we find that dependencies
are also enforced to ensure correct run-time behavior as
indicated by all four data sources. That is, the system may
use external libraries or platform functionalities that are
only known at runtime. Additionally, this category of con-
straints prevents functionalities which will not be beneficial
on certain platforms from being selected.

6.3.1 Examples

As an example of a runtime dependency enforced by config-
uration constraints, any feature in BusyBox which relies on
the proc file system would only work on Linux environ-
ments. Therefore, such a feature would always depend on
the PLATFORM_LINUX feature. As a developer explains, such
features might compile normally without the PLATFORM_LI-
NUX selected, but then if they try to open files in proc, noth-
ing will happen since the proc file system is not available on
non-Linux platforms.

A similar example from the Linux kernel found during
our manual analysis is SERIO_CT82C710 ! X86_64. The first
feature controls the port connection on that particular chip,
but only works with an X86_64 architecture. We can also tell
that such platform restrictions are common from our man-
ual analysis and our additional automated analysis. From
our manual analysis, we find that 7% of constraints have at
least one feature that is not used in the code and is related
to some platform or hardware restriction. In the specific
example of BusyBox, our additional automated analysis
shows that 110 out of 366 cross-tree constraints involve the
feature PLATFORM_LINUX indicating that such hardware
restrictions are very common.

A different yet similar example provided by developers
is including code that uses a PIE executable (Position Inde-
pendent Executable) on a platform that cannot benefit from
it, increasing the binary size by 20% for no purpose. Such an
example shows that the objective behind runtime depen-
dencies is not only to prevent a run-time error from occur-
ring, but also to prevent functionalities which will not be
beneficial on a specific platform.

6.3.2 Identification

Run-time dependencies are very common. We find that run-
time dependencies are usually identified through domain
knowledge or testing.

Domain knowledge. Our interviews show that often devel-
opers simply rely on their domain knowledge to identify
run-time dependencies. Different developers across the sub-
ject systems provide similar comments about how identify-
ing many of these dependencies basically ends up coming
down to experience. This experience is gained from work-
ing with several hardware boards and knowledge of

previous, similar problems which might have occurred.
This aligns with our manual analysis findings where we
could not explain 29% of the constraints we manually ana-
lyzed in our sample4 or found constraints where the rela-
tionship can only be determined through domain
knowledge.

Testing. During our interviews, we find that developers
do not always know of all such dependencies. Some of these
run-time dependencies are only found through testing. As
explained to us by several developers, what happens in
practice is a trial and error process. When the system is
being configured for a new board, for example, developers
select the configuration they believe should work (based on
their expertise). They then test this configuration and correct
any problems which may arise. Simply put, “you configure
it until it works” (LI_19). However, since there are many dif-
ferent hardware devices to test for, some of the dependen-
cies are not known until a user reports some problem on a
specific board, for example. Thus, additional configuration
constraints may be identified at a later stage through user
testing. The following two quotes illustrate this:

“In my experience, there is also a great deal of empirical
build testing which implied adding a dependency. Since
[the build system] only takes care of [the] build time
aspect of a specific software, runtime dependencies are
sorted out differently.” (UC_1)

“You catch everything with your knowledge, and the
remainder comes from user testing (which then expands
your knowledge, obviously).” (BB_2)

This aligns with findings from configuration testing in
other domains (e.g., [24]).

6.3.3 Implications for Extraction Tools

Since identifying run-time dependencies stems from either
testing or domain knowledge, this seems like a limitation
for automatic extraction tools. Static analysis of the code
would not reveal these dependencies. An option would be
to perform some testing on each, or a representative sample,
of the supported platforms to see which configurations
work or fail [47]. However, this is a very costly and time-
consuming process due to its reliance on the availability of
hardware components. That said, there may also be ways to
find such dependencies from the code as we show below.

Relying on feature effect. While many of the features repre-
senting hardware components or platform support may not
be used in the code, some of them are. For example, checks
for PCI or 64 bit support are sometimes used in the code in
the form of #IFDEF checks or in the form of file presence con-
ditions. In this case, our feature effect heuristic reflected in
Rule 2 may be used to recover such dependencies. As
shown in our empirical, recoverability results, Rule 2 alone
can already extract 24% of the hierarchy constraints. A
quick look at the hierarchy constraints suggests that several
of them are related to hardware features, such as PCI or
NET_ETHERNET. However, this can only be used as a heuristic
and will not be able to identify all such constraints, as some
developers may not add such checks in the code and will

4. From Table 8: 42/144 = 29 %.

NADI ET AL.: WHERE DO CONFIGURATION CONSTRAINTS STEM FROM? AN EXTRACTION APPROACH AND AN EMPIRICAL STUDY 835

rely on the variability model enforcing the right feature
combinations. One BusyBox developer elaborates about this
when explaining why a dependency in the variability model
might be more strict than its corresponding check in the
code:

“You do not need to test for things that are already cov-
ered implicitly by something else elsewhere. You basically
only need tests that prevent something you do not want.
If the thing you do not want cannot happen anyways, you
do not need to test for [it].” (BB_3)

Apart from the above problem, the feature effect heuris-
tic also cannot differentiate between feature dependencies
and feature interactions. We provide more details about this
problem in Appendix A, available in the online supplemen-
tal material.

To overcome such challenges, relying on experts’ domain
knowledge might be the best alternative depending on the
availability of such experts. After automatically detecting
build-time dependencies, and feature effect dependencies,
the information can be presented to such experts where
they can add the dependencies related to run-time behavior.
This is of course a manual process, but it might be the most
effective method for identifying such dependencies when
starting with partial knowledge. This is also supported by
the fact that our additional automated analysis found that
21% of the existing model constraints have at least one fea-
ture not used in the implementation, which means that such
constraints cannot be automatically extracted.

6.4 Improving the User’s Configuration Experience

In all the systems we analyzed, the variability model is used
as a backend to a configurator that guides the user during
the configuration process. Such a configurator contains
menus and sub-menus, as well as other groupings, which
facilitate the configuration process such that the user is not
overwhelmed with all features at once. According to devel-
opers, as well as our manual analysis, some dependencies
exist in the variability model only to support such an
organization.

We believe that such dependencies are common. Our
manual analysis shows that 15% of constraints are related to
organizing things in the configurator. Our additional auto-
mated analysis shows that 21% of configuration constraints
contain at least one feature not used in the code. However,
we cannot automatically determine if such feature(s) are
related to the configurator or not. They might instead repre-
sent hardware features as discussed in the previous section.

6.4.1 Examples

In Kconfig-based systems, menu and menuconfig items are
mainly used to create menus and groupings, even though
they could still be used in the code. BusyBox developer
BB_3 tells us that menu symbols or grouping symbols are
used to avoid overwhelming the user with complexity. For
example, you cannot select specific network cards in the
configurator unless the NETWORKING feature is switched on.
Thus, in some cases, a hierarchy constraint may exist
for presentation purposes in the configurator rather than
because of any technical dependencies.

A similar example is that of the Linux kernel hierarchy
constraint ipc ns! namespaces, which we could not
recover. In this example, NAMESPACES is not used in the code
at all even though it is a regular feature (not a menu or
menuconfig). From the developers, we learn that NAMESPACES

is just used in Kconfig for organization purposes, such that
all namespace-related features can be disabled/enabled
with one click rather than individually choosing the fea-
tures. It is interesting to note that in subsequent releases of
the Linux kernel, NAMESPACES has been changed into a menu-
config item instead of a config item, which makes its organi-
zation role in Kconfig more obvious.

A similar example is the BusyBox feature DESKTOP. A
dependency on DESKTOP is added to features which only
work on desktop environments. Thus, users configuring a
non-desktop environment would not even see these fea-
tures, preventing clutter and confusion with non-relevant
features during configuration.

6.4.2 Identification

It seems that identifying which features need to be grouped
together and how features should appear in the configura-
tor is mainly related to common sense and domain knowl-
edge. Developers know which features are related and,
thus, group them together in the same menu. We come up
with the same conclusion from our manual analysis as well.

6.4.3 Implications for Extraction Tools

Since configurator-related dependencies are not necessarily
reflected in the code, there is no way for automatic detection
tools to extract them. However, using certain heuristics may
work depending on the project. For example, if the list of all
features is available, a name-based heuristic similar to that
used by She et al. [58] can be used to identify related fea-
tures which may appear in the same menu. For example,
CONFIG_NET_KEY may be nested under a CONFIG_NET menu
because their names are similar.

6.5 Avoiding Corner Cases

Our interview data reveals that developers may enforce
dependencies to prevent reasonable corner cases that are
not supported yet. Only a couple of developers mentioned
this so we believe it is not as common as the previous three
cases. As a Linux developer puts it:

“Programmers are not interested in all corner cases, so
support for these configurations may be papered over
using dependencies.” (LI_11)

6.5.1 Examples

One BusyBox developer (BB_3), who is also familiar with
the Linux kernel, points out that there was a configuration
option BROKEN where unsupported functionalities would
depend on it to indicate that they are not fully supported.

Another developer provides a more specific example
from the Linux kernel where a crash occurred because of
the futex5 code on the m68k architecture. Rather than

5. Short for “fast user-space mutex”, which is a Linux kernel system
call that programmers can use to implement basic locking.

836 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

generalizing the futex code to work properly on all architec-
tures, the code was changed such that the check causing the
crash can be skipped depending on the value of feature
HAVE_FUTEX_CMPXCHG. On any architecture that suffers from
this runtime crash, a dependency from the feature repre-
senting that architecture to the FUTEX_CMPXCHG feature is
added to prevent the crash. As the developer explains,

“If the various architectures represent corner-cases, the
Kconfig solution avoids the need to generalize the futex
code to cope with them all.” (LI_11)

6.5.2 Identification

Developers are familiar with the system and its domain and
can determine which cases should be supported and which
cases may be very rare such that they can be temporarily or
permanently ignored.

6.5.3 Implications for Extraction Tools

Knowledge of which configurations are prevented due to
avoiding corner cases is hard to automatically detect, unless
developers explicitly mark such corner cases with #ERROR

directives or explicitly document them otherwise. In this
case, these dependencies can be identified with extraction
tools such as ours. Otherwise, automatic extraction tools
(even if performing runtime analysis) cannot identify such
cases. We believe documenting dependencies (when appli-
cable) with #ERROR directives is a good practice since it
makes it easier to ensure that they are enforced in the vari-
ability model. Using #ERROR directives also makes it easier to
understand the rationale behind an enforced constraint as
well as clearer mapping from the variability model to where
the constraint is enforced in the code.

6.6 Constraint Classification Discussion

Our recoverability results from Section 5.3 show that 28%
of existing configuration constraints are low-level code
dependencies, statically discoverable from the code. Based
on data from our other data sources, we believe that low-
level implementation dependencies represent at least 45%
of configuration constraints, which is very promising to
automated tools.

On the other hand, the three other categories of configu-
ration constraints we found show that automated analysis
is not sufficient to extract a complete variability model. We
presented heuristics that may be used in conjunction with
developer input. Such heuristics suggest that some of devel-
opers’ domain knowledge may still be found in the imple-
mentation. However, since identifying many of the
problem-space constraints relies on domain knowledge
from developers, this emphasizes the need for explicit vari-
ability models to document such knowledge.

Finally, the constraint categories we identified can be
used to enhance the user’s experience during configuration.
For example, the user might only want to see dependencies
related to implementation details or those related to hard-
ware restrictions. Studies which examine if such knowledge
enhances the user’s experience can be done in the future.
Existing studies [30] show that one of the challenges config-
urator users face is understanding the dependencies that

need to be satisfied in order to enable an inactive option.
Presenting the sources of the constraints involving each con-
figuration option might facilitate this process, and our work
provides a starting point for this.

7 THREATS TO VALIDITY

7.1 Internal Validity

Tool accuracy. Our analysis extracts solution-space con-
straints by statically finding configurations that produce
build-time errors. Conceptually, our tools are sound and
complete with regard to the underlying analyses (i.e., they
should produce the same results achievable with a brute-
force approach, compiling all configurations separately).
Practically however, instead of well-designed academic pro-
totypes, we deal with complex real-world artifacts written
in several different, decades-old languages. Our tools sup-
port most language features, but do not cover all corner
cases (e.g., some GNU C extensions, some unusual build-
system patterns), leading to minor inaccuracies, which can
have rippling effects on other constraints. We manually
sample extracted constraints to confirm that inaccuracies
reflect only a few corner cases that can be solved with addi-
tional engineering effort (which however exceeds the
scope/resources of a research prototype). We argue that the
achieved accuracy, while not perfect, is sufficient to demon-
strate feasibility and support our quantitative analysis.

Completeness. Our static analysis techniques currently
exploit all possible sources of constraints addressing build-
time errors. We are not aware of other classes of build-time
errors checked by the gcc/clang infrastructure. We could
also check for warnings/lint errors, but those are often
ignored and would lead to many false positives. Other
extensions could include looking for annotations or
comments inside the code, which may provide variability
information. However, even in the best case, this is a semi-
automatic process. Furthermore, dynamic analysis techni-
ques, test cases or more expensive static techniques, such as
data-flow analysis, may also extract additional information,
as we discussed. Finding a cost-effective way of performing
such analyses needs investigation.

Scalability. The percentage of recovered variability-
model constraints in Linux and eCos may effectively be
higher, since we limit the number of constraints we use in
the comparison due to scalability issues. Therefore, we can
safely use the reported numbers as the worst-case perfor-
mance of our tools in these settings. Additionally, we can-
not analyze non-C codebases, which also decreases our
ability to recover technical constraints in systems such as
eCos, where 13% of the codebase comprises C++ and
assembler code, which we excluded.

Classification. Our classification categories are based on
our interpretation and grouping of the data, but since we
rely on several data sources, we benefit from cross-valida-
tion of findings. However, there may be additional catego-
ries which have not been revealed from our data sources.

7.2 Construct Validity

Different transformations or interpretations of the variabil-
ity model may lead to different comparison results than
the ones achieved (e.g., additionally looking at ternary

NADI ET AL.: WHERE DO CONFIGURATION CONSTRAINTS STEM FROM? AN EXTRACTION APPROACH AND AN EMPIRICAL STUDY 837

relationships). Properly comparing constraints is a difficult
problem. We believe the comparison methods we choose
provide meaningful results that can also be qualitatively
analyzed. Additionally, this strategy allowed us to use the
same interpretation of constraints in all subject systems.
More details about the comparison problem can be found in
Appendix B, available in the online supplemental material.

7.3 External Validity

Developer feedback. In our qualitative study, we managed to
get the feedback of only one eCos developer due to the poor
response rate. However, due to the similar nature of eCos to
the other systems (apart from using a different configura-
tion language), we believe that comments from the develop-
ers of the other systems would still apply to it. This is
especially true since the comments from the eCos developer
we interviewed aligned well with many of our findings
from the other developers.

Number and nature of systems. Due to the significant engi-
neering effort for our extraction infrastructure, we limit our
study to Boolean features and to one language: C code with
preprocessor-based variability. We apply our analysis to
four different systems that include the largest publicly
available systems with explicit variability models. Although
our systems vary in size and cover two different notations
of variability models, all systems are open source, devel-
oped in C, and from the systems domain. Thus, our results
may not generalize beyond that setting.

8 RELATED WORK

This work builds upon, but significantly extends our prior
work. We reuse the existing TypeChef analysis infrastruc-
ture for analyzing #ifdef-based variability in C code with
build-time variability [35], [36], [39]. However, we use it for
a different purpose and extract constraints from various
intermediate results in a novel way, including an entirely
novel approach to extract constraints from a feature-effect
heuristic. Furthermore, we double the number of subject
systems in contrast to prior work (before the conference ver-
sion of this paper). The work is complementary to our prior
reverse-engineering approach for feature models [58] (an
academic variability modeling notation [33]), where we
showed how to get from constraints to a feature model suit-
able for end users and tools. Now, we focus on deriving
constraints in the first place which also involves under-
standing where these constraints come from. This paper is
an extended version of a previous conference publication
[43]. We extended the comparisons to include a global code
formula aggregated from all extracted constraints from dif-
ferent sources to account for interactions between con-
straints from different analyses, which better represents the
recoverability results in Section 5.3. Doing this increases the
recoverability of existing variability-model constraints from
19% in the previous conference publication [43] to 28% in
this paper. We significantly extended our analysis of differ-
ent constraints in practice, adding a qualitative study (inter-
views and surveys), several additional automated analyses,
and a new analysis triangulating all those results into the
categories presented in Section 6. These additional analyses

enable our discussion of when configuration constraints are
enforced in practice.

Techniques to extract features and their constraints have
been developed before, mainly to support the re-engineer-
ing, maintenance, and evolution of highly-configurable sys-
tems. From a process and business perspective, researchers
have developed approaches to re-engineer existing systems
into an integrated configurable system [9], [17], [59], [62].
These approaches include strategies to make decisions:
when to mine, which assets to mine, and whom to involve.
Others have developed re-engineering approaches by ana-
lyzing non-code artifacts, such as product comparisons [23],
[28]. In contrast to techniques using non-code and domain
information, we extract technical constraints from code
with #IFDEF variability. However, once the constraints are
extracted, previous feature model synthesis algorithms
used in non-code based extractions [5] can also be used for
code-based extractions.

From a technical perspective, previous work has also
attempted to extract constraints from code with #IFDEF vari-
ability [37], [58], [65]. Most attempts focus on the preproces-
sor code exclusively [37], [65], looking for patterns in
preprocessor use, but do not parse or even type check the
underlying C code. That is, they are (at most) roughly
equivalent to our partial-preprocessor stage. Prior attempts
to parse unpreprocessed code typically relied on heuristics
(unsound) [48] or could only process specific usage patterns
(incomplete) [8]. For instance, our previous work [58] used
an inexact parser to approximate parts of our Rules 1 and 2.
Our new infrastructure is sound and complete [35], allow-
ing accurate subsequent syntax, type, and linker analyses.

Complementary to analyzing build-time #IFDEF variabil-
ity, researchers in the systems community have focused on
load-time variations through program parameters and con-
figuration files. Such configuration bugs are very common
[76], but actionable in the sense that users can easily change
the configuration. Whereas compile-time macros are rela-
tively easy to identify, several researchers first attempt to
map external configuration parameters to variables in the
program [53], [75]. Once the options are mapped, several
researchers trace them through the program and identify
their dependencies or interactions, through different forms
of static analysis, including symbolic execution [54] and var-
ious forms of static slicing [6], [40], [52], [75], [78]. While
some approaches exploit statistical similarities [72], [77] or
explore runtime effects of potential changes [63], others
attempt to recover some form of constraints:

� Both Rabkin and Katz [53] and Xu et al. [75] identify
potential value ranges of load-time configuration
options. If the analyzed program rejects inputs out-
side this range, this could be considered as a rough
runtime equivalent of our rule one (“all valid config-
uration parameters should pass the input checks”).

� Beyond value ranges, Xu et al. [75] identify control
dependencies among options and report them as
configuration constraints, conservatively excluding
ineffective configurations, roughly a runtime equiva-
lent of our second rule. Along similar lines, Reisner
et al. [54] symbolically execute a system’s test
cases to identify interactions among configuration

838 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

parameters, and conversely combinations of options
that do not impact the program, again in line with
our second rule. Finally, Angerer et al. [6] detect
dead code in configurable systems, another potential
source of constraints similar to rule two, through a
variability analysis of the system dependence graph.

Such static analysis of potential runtime behavior can also
potentially complement our analysis to identify additional
constraints, as discussed in Section 6.2.2. In future work,
although challenging to scale, we plan to investigate
whether we can incorporate additional analysis approaches
that track load-time variability. Data-flow analysis, sym-
bolic execution, and testing tailored to variability [18], [39],
[46], [54] are interesting starting points.

Finally, researchers have investigated the maintenance
and evolution of highly configurable systems. There has
been a lot of research directed at studying and ensuring the
consistency of the problem and solution spaces [68]. How-
ever, most of this work has analyzed features in isolation,
either in the problem space [16], [50], [57], [69] or in the solu-
tion space [38], [61] to identify modeling practices and fea-
ture usage. Some work has also looked at both sides to
study co-evolution [41], [49] or to detect bugs due to incon-
sistencies between variability models and realizations [35],
[36], [42], [44], [65], [66]. While our results can enhance these
consistency checking mechanisms, our goal is to clarify
where constraints arise from and to demonstrate to what
extent we can extract model constraints from the code.

9 CONCLUSION

As large configurable systems become more common, vari-
abilitymodels will becomemore essential to effectively man-
age and maintain such systems. Identifying configuration
constraints is directly related to creating such variability
models. However, there has not been enough work about
howdevelopers identify configuration constraints in practice
and what knowledge do such constraints reflect. Addition-
ally, there are no automated techniques to accurately identify
configuration constraints in large-scale systems.

We address both problems by engineering static analy-
ses to extract configuration constraints and by performing
a large-scale study of constraints in four real-world sys-
tems. The objectives of this study are to (1) evaluate accu-
racy and scalability, (2) evaluate recoverability, and (3)
classify constraints.

Our results show that manually extracting technical con-
straints is very hard for non-experts of the systems, even
when they are experienced developers. We experienced
this first-hand, giving a strong motivation for automating
the task. With respect toObjective 1, we show that automati-
cally extracting accurate configuration constraints from
large codebases is feasible to a large degree and that our
analyses scale. We can recover constraints that in almost all
(93%) cases assure a correct build process. Additionally,
our new feature effect heuristic is surprisingly effective
(77% accurate). With respect toObjective 2, we find that var-
iability models contain much more information than we
can recover from code. Although our scalable static analysis
can recover more than a quarter (28%) of the model con-
straints, additional analyses and external information may

be needed. With respect toObjective 3, our qualitative study
involving 27 developers and manual analysis identifies
four cases where configuration constraints are enforced in
the variability model:

� Enforcing low-level code dependencies to ensure that the
system builds correctly. Build and linker analysis as
well as data-flow analysis can extract such
dependencies.

� Ensuring correct run-time behavior such that the sys-
tem runs correctly and only contains functionality
that would actually work at run-time. This usually
involves platform dependencies where some func-
tionalities only work on certain hardware. Such
dependencies are usually identified from domain
knowledge as well as testing (including user-
testing).

� Improving the user’s configuration experience through
feature groupings and better constraint propagation
in the configurator. Identifying which features are
related usually depends on domain knowledge.

� Avoiding corner cases such that combinations of fea-
tures leading to known, unsupported behavior are
avoided. These can be identified through system
expertise and domain knowledge as well as cases
where this is explicitly marked by #ERROR directives.

Apart from the first case, we find that identifying the
other cases creates obstacles for automated analysis tools
since these are often known through expert knowledge or
through user testing. We believe that using automated
extraction tools such as ours in addition to eliciting domain
knowledge and feedback from expert developers may be
the best way to create complete variability models.

ACKNOWLEDGMENTS

The authors would like to thank all the developers who par-
ticipated in our study. This work has been partly supported
by NSERC CGS-D2-425005, ARTEMIS JU grant no. 295397
VARIES, Ontario Research Fund (ORF) Project on Software
Certification, and NSF grant CCF-1318808. Sarah Nadi is the
corresponding author.

REFERENCES

[1] CDLTools [Online]. Available: https://bitbucket.org/tberger/
cdltools

[2] KBuildMiner [Online]. Available: http://code.google.com/p/
variability/wiki/PresenceConditionsExtraction

[3] LVAT [Online]. Available: http://code.google.com/p/linux-vari-
ability-analysis-tools

[4] Online appendix [Online]. Available: http://gsd.uwaterloo.ca/
farce

[5] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P.
Collet, and P. Lahire, “On extracting feature models from product
descriptions,” in Proc. Int. Workshop Variability Model. Softw.-Inten-
sive Syst., 2012, pp. 45–54.

[6] F. Angerer, H. Pr€ahofer, D. Lettner, A. Grimmer, and P.
Gr€unbacher, “Identifying inactive code in product lines with con-
figuration-aware system dependence graphs,” in Proc. Int. Softw.
Product Line Conf., 2014, pp. 52–61.

[7] L. Aversano, M. Di Penta, and I. Baxter, “Handling preprocessor-
conditioned declarations,” in Proc. Int. Workshop Source Code Anal.
Manipulation, 2002, pp. 83–92.

[8] I. Baxter and M. Mehlich, “Preprocessor conditional removal by
simple partial evaluation,” in Proc. Working Conf. Reverse Eng.,
2001, pp. 281–290.

NADI ET AL.: WHERE DO CONFIGURATION CONSTRAINTS STEM FROM? AN EXTRACTION APPROACH AND AN EMPIRICAL STUDY 839

[9] J. Bayer, J.-F. Girard, M. W€urthner, J.-M. DeBaud, and M. Apel,
“Transitioning legacy assets to a product line architecture,”
in Proc. Eur. Softw. Eng. Conf./Found. Softw. Eng., 1999, pp. 446–463.

[10] D. Benavides, S. Segura, and A. Ruiz-Cort�es. (2010). “Automated
analysis of feature models 20 years later: A literature review,” Inf.
Syst. [Online]. 35(6), pp. 615–636. Available: http://www.
sciencedirect.com/science/article/pii/S0306437910000025

[11] T. Berger, D. Nair, R. Rublack, J. Atlee, K. Czarnecki, and A.
Wąsowski, “Three cases of feature-based variability modeling in
industry,” in Proc. Int. Conf. Model Driven Eng. Lang. Syst., 2014,
vol. 8767, pp. 302–319.

[12] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K.
Czarnecki, and A. Wąsowski, “A survey of variability modeling
in industrial practice,” in Proc. Int. Workshop Variability Modell.
Softw.-Intensive Syst., 2013, pp. 7:1–7:8.

[13] T. Berger and S. She. Formal semantics of the CDL language. tech-
nical Note [Online]. Available: www.informatik.uni-leipzig.de/
~berger/cdl_semantics.pdf, 2010.

[14] T. Berger, S. She, K. Czarnecki, and A. Wąsowski. (2010). Feature-
to-Code mapping in two large product lines [Online]. Available:
http://informatik.uni-leipzig.de/~berger/tr/2010-berger.pdf,
Dept. Comput. Sci., Univ. Leipzig, Leipzig, Germany, Tech. Rep.

[15] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “A
study of variability models and languages in the systems software
domain,” IEEE Trans. Softw. Eng., vol. 39, no. 12, pp. 1611–1640,
Dec. 2013.

[16] T. Berger, S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki,
“Variability modeling in the real: A perspective from the operat-
ing systems domain,” in Proc. Int. Conf. Autom. Softw. Eng., 2010,
pp. 73–82.

[17] J. Bergey, L. O’Brian, and D. Smith, “Mining existing assets for
software product lines,” SEI, Pittsburgh, PA, USA, Tech. Rep.
CMU/SEI-2000-TN-008, 2000.

[18] E. Bodden, M. Mezini, C. Brabrand, T. Tolêdo, M. Ribeiro, and P.
Borba. (2013, Jun.). Spllift-Statically analyzing software product
lines in minutes instead of years. in Proc. Conf. Programm. Lang.
Design Implementation, pp. 355–364. [Online]. Available: http://
www.bodden.de/pubs/bmb+13spllift.pdf

[19] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba, “Intraprocedural
dataflow analysis for software product lines,” in Proc. Int. Conf.
Aspect-Oriented Softw. Develop., 2012, pp. 13–24.

[20] J. Corbin and A. Strauss, Basics of Qualitative Research. Techniques
and Procedures for Developing Grounded Theory, 3rd ed. Newbury
Park, CA, USA: Sage, 2008.

[21] K. Czarnecki and U. W. Eisenecker, Generative Programming: Meth-
ods, Tools, and Applications, Boston, MA, USA: Addison-Wesley,
2000.

[22] K. Czarnecki and K. Pietroszek, “Verifying feature-based model
templates against well-formedness OCL constraints,” in Proc. Int.
Conf. Generative Programm. Component Eng., 2006, pp. 211–220.

[23] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang,
and P. Heymans, “Feature model extraction from large collections
of informal product descriptions,” in Proc. Eur. Softw. Eng. Conf./
Found. Softw. Eng., 2013, pp. 290–300.

[24] N. Devos, C. Ponsard, J.-C. Deprez, R. Bauvin, B. Moriau, and G.
Anckaerts, “Efficient reuse of domain-specific test knowledge: An
industrial case in the smart card domain,” in Proc. Int. Conf. Softw.
Eng., Jun. 2012, pp. 1123–1132.

[25] D. Dhungana, P. Gr€unbacher, and R. Rabiser, “The DOPLER
meta-tool for decision-oriented variability modeling: A multiple
case study,” Autom. Softw. Eng., vol. 18, no. 1, pp. 77–114, 2011.

[26] M. Ernst, G. Badros, and D. Notkin, “An empirical analysis of C
preprocessor use,” IEEE Trans. Softw. Eng., vol. 28, no. 12,
pp. 1146–1170, Dec. 2002.

[27] D. Ganesan, M. Lindvall, C. Ackermann, D. McComas, and M.
Bartholomew, “Verifying architectural design rules of the flight
software product line,” in Proc. Int. Softw. Product Line Conf., 2009,
pp. 161–170.

[28] N. Hariri, C. Castro-Herrera, M. Mirakhorli, J. Cleland-Huang,
and B. Mobasher, “Supporting domain analysis through mining
and recommending features from online product listings,” IEEE
Trans. Softw. Eng., vol. 39, no. 12, pp. 1736–1752, Dec. 2013.

[29] P. G. Hinman, Fundamental of Mathematical Logic. New York, NY,
USA: Taylor & Francis, 2005.

[30] A. Hubaux, Y. Xiong, and K. Czarnecki, “A user survey of config-
uration challenges in Linux and eCos,” in Proc. Int. Workshop Vari-
ability Modell. Softw.-Intensive Syst., 2012, pp. 149–155.

[31] C. Hunsen, J. Siegmund, O. Leßenich, S. Apel, B. Zhang, C.
K€astner, and M. Becker, “Preprocessor-based variability in open-
source and industrial software systems: An empirical study,”
Empirical Softw. Eng., 2015, Doi: http://dx.doi.org/10.1007/
s10664-014-9355-3.

[32] H. P. Jepsen and D. Beuche, “Running a software product line-
Standing still is going backwards,” in Proc. Int. Softw. Product Line
Conf., 2009, pp. 101–110.

[33] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” SEI,
Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-90-TR-21, 1990.

[34] C. K€astner, S. Apel, T. Th€um, and G. Saake, “Type checking anno-
tation-based product lines,” ACM Trans. Softw. Eng. Methodol.,
vol. 21, no. 3, pp. 14:1–14:39, Jul. 2012.

[35] C. K€astner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann,
and T. Berger, “Variability-aware parsing in the presence of lexi-
cal macros and conditional compilation,” in Proc. Int. Conf. Object-
Oriented Programm., Syst., Lang. Appl., Oct. 2011, pp. 805–824.

[36] C. K€astner, K. Ostermann, and S. Erdweg, “A variability-aware
module system,” in Proc. Int. Conf. Object-Oriented Programm.,
Syst., Lang. Appl., 2012, pp. 773–792.

[37] D. Le, H. Lee, K. Kang, and L. Keun, “Validating consistency
between a feature model and its implementation,” Safe Secure
Software Reuse. New York, NY, USA: Springer, 2013, vol. 7925,
pp. 1–16.

[38] J. Liebig, S.Apel, C. Lengauer, C.K€astner, andM. Schulze, “An anal-

ysis of the variability in forty preprocessor-based software product

lines,” in Proc. Int. Conf. Softw. Eng., 2010, vol. 1, pp. 105–114.
[39] J. Liebig, A. von Rhein, C. K€astner, S. Apel, J. D€orre, and C. Lenga-

uer, “Scalable analysis of variable software,” in Proc. Eur. Softw.
Eng. Conf./Found. Softw. Eng., 2013, pp. 81–91.

[40] M. Lillack, C. K€astner, and E. Bodden, “Tracking load-time config-
uration options,” in Proc. Int. Conf. Autom. Softw. Eng., 2014,
pp. 445–456.

[41] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wąsowski,
“Evolution of the Linux kernel variability model,” in Software
Product Lines: Going Beyond. New York, NY, USA: Springer, 2010,
vol. 6287, pp. 136–150.

[42] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and G. Saval,
“Disambiguating the documentation of variability in software
product lines: A separation of concerns, formalization and auto-
mated analysis,” in Proc. Int. Requirements Eng. Conf., 2007,
pp. 243–253.

[43] S. Nadi, T. Berger, C. K€astner, and K. Czarnecki, “Mining configu-
ration constraints: Static analyses and empirical results,” in Proc.
Int. Conf. Softw. Eng., 2014, pp. 140–151.

[44] S. Nadi and R. Holt, “Mining Kbuild to detect variability anoma-
lies in Linux,” in Proc. Eur. Conf. Softw. Maintenance Reeng., 2012,
pp. 107–116.

[45] S. Nadi and R. Holt, “The Linux kernel: A case study of build sys-
tem variability,” J. Softw.: Evol. Process., vol. 26, no. 8, pp. 730–746,
Aug. 2014.

[46] H. V. Nguyen, C. K€astner, and T. N. Nguyen, “Exploring variabil-
ity-aware execution for testing plugin-based web applications,”
in Proc. Int. Conf. Softw. Eng., 2014, pp. 907–918.

[47] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011.

[48] Y. Padioleau, “Parsing C/C++ code without pre-processing,”
in Proc. Int. Conf. Compiler Construction, 2009, pp. 109–125.

[49] L. Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wąsowski, and P.

Borba, “Coevolution of variability models and related artifacts: A

case study from the Linux kernel,” in Proc. Int. Softw. Product Line
Conf., 2013, pp. 91–100.

[50] L. Passos, M. Novakovic, Y. Xiong, T. Berger, K. Czarnecki, and A.
Wąsowski, “A study of non-Boolean constraints in variability
models of an embedded operating system,” in Proc. Int. Softw.
Product Line Conf., 2011, pp. 2:1–2:8.

[51] T. T. Pearse and P. W. Oman, “Experiences developing and main-
taining software in a multi-platform environment,” in Proc. Int.
Conf. Softw. Maintenance, 1997, pp. 270–277.

[52] A. Rabkin and R. Katz, “Precomputing possible configuration
error diagnoses,” in Proc. Int. Conf. Autom. Softw. Eng., 2011,
pp. 193–202.

[53] A. Rabkin and R. Katz, “Static extraction of program configuration
options,” in Proc. Int. Conf. Softw. Eng., 2011, pp. 131–140.

840 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 8, AUGUST 2015

[54] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter, “Using
symbolic evaluation to understand behavior in configurable
software systems,” in Proc. Int. Conf. Softw. Eng., 2010, pp. 445–454.

[55] P. Runeson and M. Hst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Softw.
Eng., vol. 14, no. 2, pp. 131–164, 2009.

[56] S. She and T. Berger. Formal semantics of the Kconfig language.
technical Note [Online]. Available: eng.uwaterloo.ca/ ~shshe/
kconfig_semantics.pdf, 2010.

[57] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “The
variability model of the Linux kernel,” in Proc. Int. Workshop Vari-
ability Modelling Softw.-Intensive Syst., 2010, pp. 45–51.

[58] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki,
“Reverse engineering feature models,” in Proc. Int. Conf. Softw.
Eng., 2011, pp. 461–470.

[59] D. Simon and T. Eisenbarth, “Evolutionary introduction of soft-
ware product lines,” in Proc. Int. Softw. Product Line Conf., 2002,
pp. 272–282.

[60] J. Sincero, H. Schirmeier, W. Schr€oder-Preikschat, and O. Spinc-
zyk, “Is the Linux kernel a software product line?” in Proc. Int.
Workshop Open Source Softw. Product Lines, 2007, p. 22.

[61] J. Sincero, R. Tartler, D. Lohmann, and W. Schr€oder-Preikschat,
“Efficient extraction and analysis of preprocessor-based varia-
bility,” in Proc. Int. Conf. Generative Programm. Component Eng.,
2010, pp. 33–42.

[62] C. Stoermer and L. O’Brien, “MAP—Mining architectures for
product line evaluations,” in Proc. Working Conf. Softw. Archit.,
2001, pp. 35–44.

[63] Y.-Y. Su, M. Attariyan, and J. Flinn, “Autobash: Improving
configuration management with operating system causality analy-
sis,” in Proc. ACM SIGOPS Symp. Oper. Syst. Principles, 2007,
pp. 237–250.

[64] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen,
“Build code analysis with symbolic evaluation,” in Proc. Int. Conf.
Softw. Eng., 2012, pp. 650–660.

[65] R. Tartler, D. Lohmann, J. Sincero, and W. Schr€oder-Preikschat,
“Feature consistency in compile-time-configurable system soft-
ware: Facing the Linux 10,000 feature problem,” in Proc. Eur. Conf.
Comput. Syst., 2011, pp. 47–60.

[66] S. Thaker, D. Batory, D. Kitchin, and W. Cook, “Safe composition
of product lines,” in Proc. Int. Conf. Generative Programm. Compo-
nent Eng., 2007, pp. 95–104.

[67] T. Th€um, S. Apel, C. K€astner, M. Kuhlemann, I. Schaefer, and G.
Saake, “Analysis strategies for software product lines,” School of
Comput. Sci., Univ. Magdeburg, Magdeburg, Germany, Tech.
Rep. FIN-004-2012, Apr. 2012.

[68] T. Th€um, S. Apel, C. K€astner, I. Schaefer, and G. Saake, “A classifi-
cation and survey of analysis strategies for software product
lines,” ACM Comput. Surveys, vol. 47, no. 1, p. 6, 2014.

[69] T. Th€um, D. Batory, and C. K€astner, “Reasoning about edits to fea-
ture models,” in Proc. Int. Conf. Softw. Eng., 2009, pp. 254–264.

[70] B. Veer and J. Dallaway. The eCos component writer’s guide
[Online]. Available: http://ecos.sourceware.org/docs-2.0/cdl-
guide/cdlguide.html, 2001.

[71] A. von Rhein, A. Grebhahn, S. Apel, N. Siegmund, D. Beyer, and
T. Berger, “Presence-condition simplification in highly configura-
ble systems,” in Proc. Int. Conf. Softw. Eng., 2015.

[72] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang,
“Automatic misconfiguration troubleshooting with peer-
pressure,” Proc. 6th Conf. Symp. Operating Syst. Design & Implemen-
tation, 2004, vol. 4, pp. 245–257.

[73] J. White, D. Schmidt, D. Benavides, P. Trinidad, and A. Cort�es,
“Automated diagnosis of product-line configuration errors in
feature models,” in Proc. Int. Softw. Product Line Conf., 2008,
pp. 225–234.

[74] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, “Generating range
fixes for software configuration,” in Proc. Int. Conf. Softw. Eng.,
2012, pp. 58–68.

[75] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou,
and S. Pasupathy, “Do not blame users for misconfigurations,”
in Proc. ACM Symp. Oper. Syst. Principles, 2013, pp. 244–259.

[76] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S.
Pasupathy, “An empirical study on configuration errors
in commercial and open source systems,” in Proc. ACM Symp.
Oper. Syst. Principles, 2011, pp. 159–172.

[77] S. Zhang and M. D. Ernst, “Automated diagnosis of software con-
figuration errors,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 312–321.

[78] S. Zhang and M. D. Ernst, “Which configuration option should I
change?” in Proc. Int. Conf. Softw. Eng., 2014, pp. 152–163.

[79] S. Zhou, J. Al-Kofahi, T. N. Nguyen, C. K€astner, and S. Nadi,
“Extracting configuration knowledge from build files with sym-
bolic analysis,” in Proc. Int. Workshop Release Eng., 2015.

[80] R. Zippel and contributors. kconfig-language.txt [Online]. Avail-
able: www.kernel.org

Sarah Nadi received her PhD degree from the
University of Waterloo, Canada, in 2014, where
she worked on detecting variability anomalies in
software product lines and reverse-engineering
configuration constraints. She is a postdoctoral
researcher at the Software Technology Group
(STG), Technische Universit€at Darmstadt,
Germany. Her PhD work was supported by an
NSERC Alexander Graham Bell Canada Gradu-
ate Scholarship. Her research interests include
automated support for software development and

maintenance, variability support for software product lines, build sys-
tems, and mining software repositories.

Thorsten Berger received his PhD degree from
the University of Leipzig, Germany. He is a post-
doctoral fellow in the Generative Software Devel-
opment lab, University of Waterloo, Canada. His
dissertation was supported by a PhD scholarship
from the German National Academic Foundation,
awarded for outstanding academic achieve-
ments, and by grants from the German Federal
Ministry of Education and Research, and the Ger-
man Academic Exchange Service. He also partic-
ipated in national and international research

projects funded by the Federal Ministry of Education and Research and
the European Union’s Seventh Framework Program. His research inter-
ests comprise model-driven development, variability modeling for soft-
ware product lines and software ecosystems, and variability-aware
static analyses of source code and build systems.

Christian K€astner received his PhD degree from
the University of Magdeburg, Germany, in 2010,
for his work on virtual separation of concerns. He
is an assistant professor in the School of Com-
puter Science, Carnegie Mellon University.
For his dissertation, he received the prestigious
GI Dissertation Award. His research interests
include correctness and understanding of sys-
tems with variability, including work on implemen-
tation mechanisms, tools, variability-aware
analysis, type systems, feature interactions,

empirical evaluations, and refactoring.

Krzysztof Czarnecki is a professor of electrical
and computer engineering at the University of
Waterloo, Canada. Before coming to Waterloo,
he was a researcher at DaimlerChrysler
Research (1995-2002), Germany, focusing on
improving software development practices and
technologies in the enterprise, automotive,
space, and aerospace domains. He coauthored
the book Generative Programming: Methods,
Tools, and Applications [21], which deals with
automating software component assembly based

on domain-specific languages. While at Waterloo, he has held the
NSERC/Bank of Nova Scotia Industrial Research chair in Requirements
Engineering of Service-Oriented Software Systems (2008-2013) and
has worked on a range of topics in model-driven software engineering,
including software- product lines and variability modeling, consistency
management, and bidirectional transformations, and example-driven
modeling. He received the Premier’s Research Excellence Award in
2004 and the British Computing Society in Upper Canada Award for Out-
standing Contributions to the IT Industry in 2008.

NADI ET AL.: WHERE DO CONFIGURATION CONSTRAINTS STEM FROM? AN EXTRACTION APPROACH AND AN EMPIRICAL STUDY 841

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

