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INTRODUCTION

Our study is in the framework of the nonlinear differential equations with boundary condi-

tions. The mathematical models try to reproduce in quantitative mode the experimental

observations and make qualitatively possible to describe certain phenomena such as for

example the transmission of information at the neural level. A neuron is an electrically

active cell and its activity is manifested by the emission of variation in its membrane

potential, called the action potential. The action potential results from intermembrane

currents mainly made up of sodium ions and potassium ions. In 1952 A.L Hodgkin and

A.F. Huxley developed a mathematical model which describes the initiation and the prop-

agation of action potential. The Hodgkin and Huxley model is represented by a system

of four equations with four unknowns which are the action potential, the activation func-

tion of potassium current, the activation function of sodium current and a variable which

measures the inactivation of the sodium current. For more information in this subject,

see [33, 57]. This model consists in reproducing the different behaviors of the action

potential observed experimentally. Hodgkin and Huxley have obtained a solution by the

numerical Euler’s method. Many research led to the reduction of the number of variables

and the one of the most famous reduced models is the FitzHugh-Nagumo (1961) model,

with only two dimension. The scientist’s goal is to establish a rigorous mathematical link

between mathematical solving tools and the activity in a neuron through a model which

reproduces the activity of a neuron to predict anomalies. As an example, Danziger and

Elemergreen (see [31] p.133) have obtained the third-order linear differential equations:

α3θ
′′′ + α2θ

′′ + α1θ
′ + (1 + k)θ = kc, θ < c and

α3θ
′′′ + α2θ

′′ + α1θ
′ + θ = kc, θ > c

4



INTRODUCTION 5

These equations describe the variation of thyroid hormone with time. Here θ = θ(t) is

the concentration of thyroid hormone at time t and α3, α2, α1, k and c are constants. One

of the reduced models of Hodgkin and Huxley model is that of Nagumo, he suggested a

class of the third-order differential equations

u′′′ − cu′′ + f ′(u)u′ − b

c
u = 0.

And in the field of physical phenomena, we will quote the Kuramoto-Sivashinsky equation

ut + uxxxx + uxx +
1

2
u2 = 0

which is introduced to describe pattern formulation in reaction-diffusion systems and to

model the instability of flame front propagation ( see Y.Kuramoto and T.Yamada [46] and

D.Michelson [52]). A traveling wave solutions u = φ(x−ct) satisfies, after one integration,

the third-order equation

λφ′′′(x) + φ′(x) + f(φ) = 0,

where λ is a parameter and f is an even function. A three-layered beam is formed from

parallel layers of different materials. For a loaded beam of this type, Krajcinovic in [44]

has proved that the vector u is governed by the third-differential equation

−u′′′ + k2u′ = a

where k and a are the physical parameters which depend on the elasticity of the layers.

Study of existence of positive solutions for third-order bvps has received a great deal of

attention and was the subject of many articles, see, for instance, [29, 30, 32, 38, 37, 50, 58,

61, 65, 66, 67, 72], for third-order bvps posed on finite intervals and [1, 7, 16, 24, 25, 26,

27, 41, 43, 48, 49, 55, 60] for such bvp’s posed on the half-line. Our goal in this work is to

explain how the Hypothesis we have imposed on the nonlinearity term could have led to

solve the third-order value problem in each of cases we studied with the same boundary

conditions. For this, we divide our work in four chapters.

The first Chapter is devoted for the needed background, where we recall some basic

facts of fixed point theory in cones, from the reminder of cones and properties, the posi-

tivity and compactness of operators, the spectral theory which we exhibit the importance
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of the first eigenvalue to the fixed point theorems to the bounded value problems under

different conditions on the nonlinear operator.

In Chapter 2, we consider the problem −u′′′(t) + k2u′(t) = f(t, u(t)), t > 0

u(0) = u′(0) = u′(+∞) = 0,
(1)

where f : R+ × R+ → R+ is continuous. We use the technique of Strongly Index-Jump

Property(SIJP for short) developed in [10], to prove under eigenvalue criteria existence

and non existence of positive solution to the bvp (1), (see Theorems 1.2, 1.3 and 1.4 in

[13]). More precisely, we first begin by proving in Proposition 1.1 in [13] existence of

the positive eigenvalue µ of the linear problem associated to the bvp (1) under a suitable

hypothesis. To prove the solvability results, namely Theorems 1.3 and 1.4 to the fixed

point equation, we assume that the nonlinearity f is controlled by the limits

g+
i,ν(q) = lim sup

u→v

(
max
t≥0

g(t, pi(t)u)

pi(t)q(t)u

)
, g−i,ν(q) = lim inf

u→v

(
min
t≥0

g(t, pi(t)u)

pi(t)q(t)u

)
,

with respect to the positive eigenvalue µ, this leads to assumptions of Theorems 1.19 and

1.20 cited in Abstract background. In Theorem 1.2 in [13] we prove that bvp (1) has

no solution. Particularly, we prove that depending on whether f takes a particular form

given in Corollaries 1.5, 1.6 and 1.7, the nonexistence and existence of a positive solution.

We use the main tool which is the SIJP of the positive compact operator to prove the

existence of a positive solution to the bvp (1) in the Theorems cited above. Also, the

additional interest in this work is to demonstrate under which condition, the problem (1)

has the positive and bounded solution. We give an example of a nonlinearity f which

satisfies the assumptions of the Theorems 1.3 and 1.4 and we discuss the different cases

of obtaining a bounded solution and an unbounded solution.

In Chapter 3, we consider the case where the nonlinearity is positive and additionally

depends on the derivative of the solution u. Namely, we consider the problem −u′′′(t) + k2u′(t) = φ(t)f(t, u(t), u′(t)), t > 0

u(0) = u′(0) = u′(+∞) = 0,
(2)

where φ ∈ L1(0,+∞) and doesn’t vanish identically on (0,∞) and the function f :

R+ × (0,+∞)× (0,+∞) → R+ may be singular at u = 0 and u′ = 0. Naturally, in such
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boundary value problems, the nonlinearity may have a singular dependence on time or

on the space variable. This was the case in the papers [8, 24, 25, 26, 49, 50, 61, 65, 66],

which motivated this work. We use the Theorem "Fixed point theorem of cone expansion

and compression" under conditions (6) in [11] about the nonlinearity f to prove existence

of a positive solution to the bvp (2) (see Theorem 1 in [11]). We give a detail in Remark

1 in [11] to explain why we impose the two conditions separately on the limit and the

integral on the function φ. Also the polynomial growth condition on f given in Remark 2,

is the particular case where condition (6) is satisfied. About Remark 3 in [11], we prove

that the integral of φ is finite. This result plays a role in the proof of the main Theorem

in [11]. To illustrate our results, we give an example where the functions f and φ verify

conditions of Theorem 1 and we tack under the calculations at the existence of a positive

solution to the bvp (2). We complete this chapter by some comments at first by proving

that our positive solution of the problem (2) is bounded and in other hand we discuss

the possibility to find constants in order to optimize the interval of location of the limits

respectively

f 0 = lim
|(w,z)|→0

f(t, ektw, ektz)

w + z
, f∞ = lim

|(w,z)|→∞

f(t, ektw, ektz)

w + z
,

with as a reminder that we have found the constants which represent the bounds of these

limits, are important to achieve existence of a positive solution for the problem (2).

In Chapter 4, we investigate the existence of a positive solution to the singular problem −u′′′(t) + k2u′(t) = f(t, u(t), u′(t)), t > 0

u(0) = u′(0) = u′(+∞) = 0,
(3)

where the function f : (0,+∞) × (0,+∞) × (0,+∞) → R is a Carathéodory function,

that is

• f(., u, v) is mesurable function for all u, v ∈ I(I := (0,+∞), and

• f(t, ., .) is continuous for a.e. t ∈ I,

semipositone and may be singular at t = 0, u = 0 and u′ = 0. We use the Theorem 1.1

in [12]) namely the "Fixed point theorem of cone expansion and compression" to prove
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under a suitable Hypothesis of the nonlinearity f the existence of a positive solution to

the bvp (3) (see Theorem 3.1 in [12]). We prove by the two Lemmas 2.3 and 2.4 the

existence of the radii of the open bounded sets of the Banach space which are necessary

to use the Theorem 1.1 in [12]), and by the Lemma 1.4 we demonstrate that the solution

is positive and bounded. We prove that the bvp (3) admits a positive solution in the

Corollary 3.1 under suitable Hypothesis which permit us to use the Theorem 3.1. To

illustrate our results, we build an example and proved that Hypothesis in Corollary 3.1

are the sufficient conditions to demonstrate that the bvp (3) with a given nonlinearity f

admits a positive solution with k large enough and a special radius R.

This thesis is ended by a conclusion.



Chapter 1

Abstract background

1.1 Preliminaries

1.1.1 Compactness

First, recall some basic facts of compactness whose importance will be seen throughout

this work.

Definition 1.1. Let E be a topological space. A subset M ⊂ E is called compact if every

open covering of M has an finite covering, i.e., if M ⊂
⋃
i∈I Vi, where Vi is an open subset

of E for all i ∈ I, then there exist ij ∈ I, j = 1, 2, ..., k, such that M ⊂
⋃k
j=1 Vij .

In case of a normed space E, M ⊂ E is compact if every sequence (xn) ⊂ M has a

convergent subsequence with limit in M.

Let us recall by way of example the subsets in R which are compact.

Example 1.1.

A subset A ⊂ R is compact if and only if it is closed and bounded.

Therefore, R is not compact because not bounded.

Definition 1.2. M is called relatively compact if M is compact.

In what follows, we consider E and F are Banach spaces and Ω a subset of E.

In general, an application which maps bounded sets into relatively compact sets is not

necessarily continuous, hence the following definitions.

9
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Definition 1.3 ([21]). Let T : Ω → F . T is said to be compact if it is continuous and

such that T (Ω) is relatively compact.

Definition 1.4. Let T : Ω→ F . T is said to be completely continuous if it is continuous

and maps bounded subsets of Ω into relatively compact sets.

Theorem 1.1. If M is a compact set of E, then Id : M →M is compact.

In other words, M is compact if and only if Id : M → M is compact map. This

equivalence shows that the notion of compactness joins the sets and maps.

It is well known that if L : E → F is a linear operator, then L is continuous if and

only if L is bounded.

We have grouped together some assertions in the following Remark which connects

the definitions of the compactness cited above .

Remark 1.1. Let T : Ω→ E an operator.

1. If T is compact, then T is completely continuous.

2. If T is a linear operator and maps bounded subsets of Ω into relatively compact sets

then T is continuous.

3. If T is a linear compact operator then T is continuous.

4. If T is a linear operator, the two concepts compactness and completely continuous

coincide.

5. If Ω is a bounded subset of E, T is compact then T is completely continuous and

vice versa.

Remark that the compact subsets in E with dimE =∞ are scarce or rare, hence the

interest of the compactness criteria that we will state in the following Theorems which

are based on the two notions of equicontinuity and equiconvergence. These are Cesar

Arzela and Giulio Ascoli who introduced the notion of equicontinuity in the late 19th.

The equicontinuity of a family of continuous functions is certainly important to prove

these Theorems, this is why we recall here the Definition of this notion and we continue

with Remarks.
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Let (E, d) a compact metric space, F a Banach space and denote by C(E,F ) the

Banach space of continuous functions f from E to F, endowed with the norm:

||f || = sup
x∈E
||f(x)||F

and let H the subset of C(E,F ).

Let’s look now from a topological point of view the definition of equicontinuity of H

before stating it in metric space to avoid confusion with the well-known continuity notion.

Definition 1.5. H is said to be equicontinuous at a point x0 in E if,

∀ε > 0,∃Uε ∈ V (x0),∀x ∈ E,

(x ∈ Uε ⇒ f(x) ∈ B(f(x0), ε)), ∀f ∈ H.

H is equicontinuous if it is equicontinuous at every point x0 ∈ E, where V (x0) is the

neighborhood of x0.

Note that continuity of the function f at x0 means that given f and given ε > 0, there

exists a neighborhood U of x0 such that ||f(x)− f(x0)|| < ε for x ∈ U. Equicontinuity of

H means that a single neighborhood U can be chosen that will work for all the functions

f ∈ H.

Remark 1.2. H is equicontinuous if and only if (it is uniformly equicontinuous) :

∀ε > 0, ∃δ, ∀x, y ∈ E,

||x− y|| < δ ⇒ ||f(x)− f(y)||F < ε),∀f ∈ H.

Counterexample: The sequence of functions fn(x) = arctan(nx), is not equicontin-

uous because the definition is violated at x0 = 0.

The Ascoli-Arzela Theorem which we will state hereafter, is a fundamental result of

mathematical analysis to prove the compactness of subsets of C(E,F ). This Theorem

characterize the relatively compact sets of continuous functions space from a compact

space to a metric space. The equicontinuity of the family of functions is the main condition

in this Theorem which is the basis of many proofs for instance the ordinary differential

equations theory.
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Theorem 1.2 (Ascoli-Arzela’s Theorem[28]). A subset H of C(E,F ) is relatively

compact if and only if

(1)H is equicontinuous,

(2) ∀x ∈ E, the set H(x) = {f(x), f ∈ H} is relatively compact.

Example 1.2. Set fn(t) = sin(nx), x ∈ [0, 2π] and H = {fn(.) : n ∈ N}. Then H is

bounded; however it is not equicontinuous in C([0, 2π],R) (for this, consider the sequence

xn = x + π
2n
). Hence H is not relatively compact, i.e. we cannot extract a convergent

subsequence.

Denote by Cb(R,R) the vector space of all bounded and continuous functions defined

on R, Cl([t0, T ),Rn) the space of all continuous maps from [t0, T ) to Rn such that

lim
t→T

= xT ∈ Rn

and the subset Cl of Cb(R,R), where

Cl =

{
u ∈ C(R,R) : lim

t→±∞
u(t) exist

}
.

To the question of the compactness of a subsetH of Cl([t0, T ),Rn), first, the idea was to

identify an element x(t) ∈ Cl([t0, T ),Rn) to x(t) ∈ Cl([t0, T ],Rn) as follows: x(t) = x(t)

for t ∈ [t0, T ) and x(T ) = xT , and this leads to an isomorphism between the spaces

Cl([t0, T ),Rn) and Cl([t0, T ],Rn), when T < +∞. The same approach is used if T = +∞.

Hence the condition of equiconvergence of H

lim
t→T

x(t) = xT exists uniformly with respect to x ∈ H

which is the necessary and sufficient condition which, together with the two conditions

already mentioned in the Ascoli-Arzela Theorem constitute, the compactness criterion in

Cl([t0, T ),Rn), namely Corduneanu Compactness Criterion. Introduced by Constantin

Corduneanu, this Theorem provide the characterization of the relatively compact sets of

continuous and bounded functions space from the whole real line R to R. Unlike the

Ascoli-Arzela Theorem, the Corduneanu Compactness Criterion does not require that E

be compact, it is an unavoidable way to prove the compactness of the subsets of C(E,F ).

We recall here the definition of equiconvergence before to state the Corduneanu Theorem

in Cl.
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Definition 1.6. A family H ⊂ Cl is called equiconvergent if

∀ε > 0,∃T = Tε > 0, ∀t1, t2 ∈ R,

|t1| > T, |t2| > T ⇒ ||f(t1)− f(t2)|| < ε,∀f ∈ H.

Remark 1.3. Equivalently, H is equiconvergent if for any ε > 0, there exists some T =

T (ε) > 0 such that ||f(t)− l+f || ≤ ε and ||f(t)− l−f || ≤ ε for all |t| ≥ T for all f ∈ H; here

l+f := limt→+∞ f(t) and l−f := limt→−∞ f(t).

Theorem 1.3 (Corduneanu’s compactness criterion in Cb(R,R)[19, 20]). A nonempty

subset H of Cl is relatively compact if the following conditions hold:

(a) H is uniformly bounded in Cb.

(b) H is equicontinuous on every compact interval of R.

(c) H is equiconvergent.

1.1.2 Elementary spectral theory

In this part, let E a Banach space, we denote by L (E) the set of all linear bounded

self-mapping defined on E and Id is the Identity operator x→ x in E.

It is well known that each linear operator on a finite dimensional space can be rep-

resented by a matrix A = (aij)i=,..,n;j=,..n. The spectrum of A is the set of µ such that

µId − A is not invertible. The spectrum contains the roots of det(µId − A) which are

the eigenvalues of A. In the infinite dimension, the definition of the spectrum of a linear

bounded operator is not the same at in finite dimension. The object of the spectral theory

is the study the properties of the inverse of µId−A, if it exists, which called the resolvent

operator. For this, we recall first some needed definitions and some results about the

existence of the inverse of a linear bounded operator and its properties.

Definition 1.7. An operator L ∈ L(E) is said to be continuously invertible (or just

invertible) if there exists an operator L−1 ∈ L(E) (the inverse of L) such that

L−1L = LL−1 = Id.
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In the case of the operator Id − T with T ∈ L(E), the Theorem cited below shows

under which condition the inverse of Id−T exists. Before this, we remember the definition

of the norm of a linear operator.

Definition 1.8. The norm of linear operator T : E → F between normed spaces is

nonnegative extended real number ||T || defined by

||T || = sup
||x||≤1

||Tx|| = min{M ≥ 0 : ||Tx|| ≤M ||x|| for all x ∈ E}.

Theorem 1.4 (Lemma 1.1 [59]). Let T ∈ L(E), have a norm strictly less that 1, i.e.

||T || < 1. Then A = Id− T is continuously invertible. Moreover,

A−1(= (Id− T )−1) =
∞∑
i=0

T n (1.1)

where the sum on the right-hand side is defined as the uniform limit of the polynomials

Sn = Id+ T + T 2 + ...+ T n. Moreover, ||(Id− T )−1|| ≤ 1
(1−||T ||) .

We give hereafter the definition of the spectrum of an operator L ∈ L ∈ L(E) and

fundamental properties.

Definition 1.9. The spectrum of L is defined by

σ(L) = {µ ∈ C, µId− L is not invertible} (1.2)

Theorem 1.5. The spectrum σ(L) of L is a nonempty and closed subset of C.

Proposition 1.1 (Proposition 1.16. [59] ). Let L ∈ L(E). Then λ ∈ σ(L) if and only if

there is a sequence {xn} ⊂ E, ||xn|| = 1, such that

lim
n→∞

||λxn − Lxn|| = 0. (1.3)

The complement Ω of σ(L) is called the resolvent set of L; it consists of values of C

for which the operator (µId− L)−1 =: R(µ, L) is well defined and belongs to L(E). The

operator R(µ, L) is called the resolvent of L. The study of the operator Rλ(A) considerably

simplifies that of A, so we will remember the definition of the resolvent operator as a map

λ → Rλ(A) from C to the set of linear operator and the resolvent properties. These

reminders lead us to the definition of the spectral radius which plays an important role

in the fixed point theory.
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Theorem 1.6 ((The resolvent identity) Theorem 1.5 [59]). Let λ, µ /∈ σ(L). Then

(λId− L)−1 − (µId− L)−1 = (µ− λ)(λId− L)−1(µId− L)−1. (1.4)

The spectrum σ(L) of L can be divided into three disjoints pieces:

σ(L) = Pσ(L) ∪ Cσ(L) ∪Rσ(L) (1.5)

where

• Pσ(L) is the set of all complex numbers λ ∈ C such that λId − L has no inverse

(neither bounded or not bounded) on E; Pσ(L) is called the point spectrum of L.

• Cσ(L) is the set of λ ∈ L(E) such that λId − L has an inverse operator which is

defined on a dense subset of E, but the operator (λId−L)−1 is not bounded; Cσ(L)

is called the continuous spectrum of L.

• Rσ(L) is the set of λ ∈ C such that the operator (λId−L)−1 is defined on a domain

which is not dense in E; Rσ(L) is the residual spectrum of L.

From the next result we will know what an eigenvalue of the operator is. The interest of

the eigenvalue and its use will intervene throughout this study.

Proposition 1.2 (Proposition 1.15 [59] ). A complex number λ belongs to Pσ(L) if and

only if the equation

Lx = λx (1.6)

has a nonzero solution x 6= 0 in E.

In this case the number λ ∈ C is called an eigenvalue of L and the solution of the

equation Lx = λx is called an eigenvector of L corresponding to λ.

The subspace

N(λId− L) = {x ∈ E; (λId− L)x = 0} (1.7)

is called an eigensubspace of L corresponding to the eigenvalue λ.

Note that λ is an eigenvalue of L if N(λId − L) 6= {0}. And if L is compact linear

operator, the following proposition provide the results of the sets N(Id−L) and the range

of L R(L)(:= {Lx : x ∈ E}).
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Proposition 1.3. Let L ∈ L(E) be compact, the set N(Id − L) has a finite dimension

and the set R(L) is closed.

We illustrate these notions by examples on a concrete sets.

Example 1.3. Let E = L2[0, 1] be the Hilbert space of equivalence classes of complex-

valued square integrable functions on [0, 1], and let A : E → E be defined by

Ax(t) = tx(t), x(= x(t)) ∈ E. (1.8)

Then A has no eigenvalues, since the equation

(λId− A)x = (λ− t)x(t) = 0 (1.9)

is satisfied for all t ∈ [0, 1] if and only if x(t) = 0 almost everywhere.

Thus Pσ(A) = ∅. Nevertheless, the spectrum σ(A) is no empty and consists of the

elements of the continuous spectrum, i.e.

σ(A) = Cσ(A) = [0, 1]. (1.10)

Indeed, if λ /∈ [0, 1], then (λId−A)−1 ∈ L(E). On the other hand, if λ ∈ [0, 1], the one can

show that there is a sequence {xn} ⊂ E, ||xn|| = 1, such that (λId−A)xn → 0 asn→∞.

Thus (λId− A)−1 is not bounded for such λ.

And now, let give some properties which verified by the spectrum to introduce the

spectral radius.

Proposition 1.4. Let L ∈ L(E). Then σ(L) is compact in C and

σ(L) ⊂ [−||L||, ||L||].

Proof. Let λ ∈ C with |λ| > ||L||; let prove that L− λId is bijective - which proves that

σ(L) ⊂ [−||L||, ||L||]. Let f ∈ E the equation

Lu− λu = f (1.11)

has a unique solution because (1.11) is the same equation as

u =
1

λ
(Lu− f) (1.12)
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and we can apply Banach Fixed point Theorem.Prove now that resolvent the set

Ω = {λ ∈ R, (L− λId) is bijective from E into E}

is open. Let λ0 ∈ ρ(L). Let λ ∈ R (neighborhood of λ0) and f ∈ E we want to solve

(1.11). And (1.11) is written Lu− λ0u = f + (λ− λ0)u .ie.

u = (L− λ0Id)−1(f + (λ− λ0)u) (1.13)

We apply again Banach Fixed point Theorem and we see that (1.13) has a unique fixed

point if |(λ− λ0)|||(L− λ0Id)−1|| < 1.

The spectrum of L is bounded then we can set the definition of the spectral radius of

L ∈ L(E).

Definition 1.10. The spectral radius of L is the number

r(L) = sup{|λ| : λ ∈ σ(L)}. (1.14)

The following Theorem precise r(T ).

Theorem 1.7 (Spectral radius formula). If L ∈ L(E), then

r(L) = lim
n→∞

||Ln||
1
n = inf

n≥1
||Ln||

1
n . (1.15)

Note that equation (1.15) implies that

r(L) ≤ ||L||. (1.16)

And in the case of a compact linear bounded operator, some properties which verified

by the spectrum are collected in the following Proposition.

Proposition 1.5 (Proposition 3.24.[47]). Let L ∈ L(E) be compact. Then

(i) 0 ∈ σ(L),

(ii) if λ 6= 0 then λ ∈ σ(L) if and only if λ is an eigenvalue of L,

(iii) σ(L) is finite or σ(L) is a sequence which converge to 0.
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Proof. (i)By contrary, suppose that 0 /∈ σ(L), then L is bijective and Id = LoL−1 is

compact (because L is compact ) and the unit ball B(0, 1) is compact then dimE <∞.

(ii)Let λ ∈ σ(L), λ 6= .0 Prove that λ is an eigenvalue of L. By contrary, suppose that

KerL− λId = {0}. Then R(L− λId) = E and λ ∈ ρ(L) which is absurd.

For (iii), let us prove this lemma:

Lemma 1.1 (Lemma VI.2[18]). Let (λn)n ≥ 1 a sequence of distinct reals with λn → λ

and λn ∈ σ(L)\{0}∀ n. Then λ = 0 which means that the points of σ(L)\{0} are clusters.

Proof. We know that λn are eigenvalues of L. Let en 6= 0 such that (L − λn)en = 0. Let

En = span[e1, e2, ....en]. Prove that En  En+1 for all n. It sufficient to prove that all

vectors e1, e2, ....en are linearly independents. By induction with respect to n. We admit

the result true at n and suppose en+1 =
∑n

i=1 αiei.

Then Len+1 =
∑n

i=1 αiλiei =
∑n

i=1 αiλn+1ei. Hence, αi(λi − λn+1) = 0 for all i = 1, 2..n

and then αi = 0 for all i = 1, 2...n which is absurd. Then En  En+1 for all n.

In the other hand, it is clear that (L−λn)En ⊂ En−1. By the Riesz Theorem we construct

a sequence (un)n≥1 such that un ∈ En, ||un|| = 1 and dist(un, En−1) ≥ 1/2 for all n ≥ 2.

Let 2 ≤ m < n such that

Em−1 ⊂ Em ⊂ En−1 ⊂ En

We have

‖ Lun
λn
− Lum

λm
‖= ||(Lun − λnun)

λn
− (Lum − λmum)

λm
+ un − um|| ≥ dist(un, En−1) ≥ 1/2

If λn → λ 6= 0 we end up with a contradiction since (Tun) has a convergent subsequence,

ending Lemma.

For all n ≥ 1 the set σ(L) ∩ {λ ∈ R; |λ| ≥ 1
n
} is empty or finite (if the set contains an

infinity of distinct points, we would have a cluster point-since σ(L) is compact- and we

end up with a contradiction.When σ(L)\{0} contains an infinity distinct points which we

can tidy in a sequence which converge to 0.
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1.2 Topological degree

1.2.1 The Leray Schauder degree

Let E be a Banach space, Ω ⊂ E an open bounded and denote by Ω, ∂Ω be the closure

and the boundary of Ω ⊂ E respectively, f : Ω→ E a compact perturbation of Identity (f

= Id - K). Set y0 ∈ E\f(∂Ω) and we let δ = dist(y0, f(∂Ω)). Let Kε : Ω→ X a continuous

function, compact with values in a space Nε which contains y0 and dim(Nε) < ∞ such

that sup ||Kε(x)−K(x)|| < δ
2
. Then, we have

Proposition 1.6. Let F ⊂ X be a closed and bounded, A function f : F → X. f is

compact if and only if f is a limit of a sequence of compact functions (fn) of finite rank.

Recall the definition of the Brouwer degree in order to define the Leray-Schauder

degree.

Definition 1.11. The Brouwer degree d((Id−Kε)|Ω∩Nε ,Ω ∩Nε, y0) is well defined.

Let Kε the approximation of K (see Proposition 1.6), then the following definition of

the Leray-Schauder degree.

Definition 1.12. d(Id−K,Ω, y0) = d(Id−Kε,Ω, y0)

This definition permits to state the following theorem to define the Leray-Schauder

degree and some properties related to this degree.

Theorem 1.8 (Theorem 8.1.[21]). Let Ac the set of triplets (Id − A,Ω, y) where Ω an

open bounded subset of E, y ∈ E and A : Ω→ E is compact such that y /∈ (Id−A)(∂Ω).

Then there exists exactly one function d : Ac → Z such that:

• Normality. d(Id,Ω, y) = 1 for any y ∈ Ω.

• Additivity. If y /∈ (Id − A)(Ω\(Ω1 ∪ Ω2)), whenever Ω1,Ω2 are two disjoint open

subsets of Ω then,

d(Id− A,Ω, y) = d(Id− A,Ω1, y) + d(Id− A,Ω2, y)
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• Homotopy invariance. Let H : [0, 1] × Ω → E is a compact function and,

y(t) continuous function such that y : [0, 1] → E and for all t ∈ [0, 1], y(t) /∈

(Id−H(t, .))(∂Ω) then

d(Id−H(0, .))Ω, y(0)) = d(Id−H(1, .))Ω, y(1))

This property is interest because we say that two functions are homotopic if they

have the same degree.

• Translation invariance. d(Id− A,Ω, y) = d(Id− A− y,Ω, 0),

d is called a topological degree of Leray-Schauder.

1.2.2 Some properties of the degree

The Leray Schauder degree verify the following properties:

1. Solution property. If d(Id−A,Ω, y) 6= 0 then it exists x ∈ Ω such that x−A(x) =

y.

2. Excision property. d(Id − A,Ω, y) = d(Id − A,Ω0, y) whenever Ω0 is an open

subset of Ω and y /∈ (Id− A)(Ω\Ω0).

3. For all z ∈ E, d(Id− A,Ω, y) = d(Id− A,Ω, y − z).

4. d(Id− A,Ω, .) is constant on the connected component of E\(Id− A)(∂Ω).

5. Boundary value property. d(Id − A,Ω, y) = d(Id − G,Ω, y) whenever A(x) =

G(x) for any x ∈ ∂Ω.

The following Proposition states en important property of the degree.

Proposition 1.7. Let L ∈ L(E) and L is compact, φ = Id−L. If 1 is not a characteristic

value of L then, for all R > 0,

d(φ,BR(0), 0) = (−1)β,

where β is the sum algebraic multiplicities of the characteristic values of L which are

between 0 and 1.
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Proof. First, Recall the definition of the algebraic multiplicities of the eigenvalue µ:

m(µ) := dim

∞⋃
k=0

{x ∈ E : (µId− L)kx = 0}.

The degree is well defined because 0 is a unique solution of φ(u) = 0 (1 is not a character-

istic value of L). By Proposition 1.5 the set of characteristic values µi is at most countable

and its unique cluster point is +∞.

This implies that the number of characteristic values of L in the bounded set of R is finite.

Say µ1, µ2..., µp as characteristic values of L in (0, 1).

Let

Ni =
∞⋃
n=1

N(µiL− Id)n = N(µiL− Id)αi

where αi ∈ N, i = 1, 2..., p et let N is the direct sum of Ni. From the Fredholm alternative

N is invariant by L and the dim(N) <∞. Since N
⊕

F = E by the product formulation

of degree (see proposition 8.4 [21])

d(Id− L,Br(0), 0) = d(Id− L|N , Br(0) ∩N, 0)d(Id− L|F , Br(0) ∩ F, 0)

In Br(0) ∩ F we consider the deformation Id − tL, 0 ≤ t ≤ 1 ( if (Id − tL)(x) = 0, x ∈

F then x = 0). Then

d(Id− L,Br(0), 0) = d(Id− L|N , Br(0) ∩N, 0) = (−1)β (1.17)

As an application of the degree we recall this Theorem.

Theorem 1.9 (Schauder’s fixed point[21]). Let E be a real Banach space. K ⊂ E

nonempty closed bounded and convex, and A : K → K compact. Then A has a fixed point:

it exists x ∈ K such that A(x) = x.

Proof. If there exists a fixed point on ∂K then we are done. Otherwise we suppose that

A(x) 6= x for all x ∈ ∂K. Since A doesn’t have a fixed point on ∂K, we have d(Id −

A,K, 0) ∈ Ac which Ac is defined in Theorem 1.8, we will prove that d(Id−A,K, 0) = 1

and by solvability property we conclude that Id−A has at least one zero in K and then
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A has fixed point in K. Let H(t, x) = tA(x), which is compact on [0, 1] × K. If for

t0 ∈ [0, 1] and x0 ∈ ∂K we have x0 −H(t0, x0) = 0 then t0A(x0) = x0; since |x0| = 1 and

|A(x0)| ≤ 1 (A : K → K) this implies that t0 = 1 and x0 = A(x0), then x0 is a fixed point

on ∂K contradicts our supposition. We can use normality and homotopy properties (for

t = 0 and t = 1) of degree whose give

1 = d(Id−H(0, .), K, 0) = d(Id−H(1, .), K, 0)

since (H(0, .) = 0 and H(1, .) = A) ending the proof.

1.3 Cones and ordered Banach space

1.3.1 Cones

As the real numbers, the comparison between the functions needs an order on the set

of functions. That is why we recall the definition of the order. First, we begin by the

definition of the set which induces this order.

Definition 1.13. A nonempty closed convex (λx + µy ∈ K, ∀λ ≥ 0, µ ≥ 0, x, y ∈ K)

subset of E such that K ∩ (−K) = {0} and tK ⊂ K for all t ≥ 0 is called a cone in E.

A cone K induces a partial order in the Banach space E.We write for all x, y ∈ E, x �

y if y − x ∈ K, x ≺ y if y − x ∈ K and x 6= y, x � y if y − x /∈ K and x ≺≺ y represents

y − x ∈ int(K) if int(K) 6= ∅ (int(K) is the interior of K). Notations �,�,� and ��

denote the inverse situations.

We give an example of a cone.

Example 1.4. Let X = C(M), space of continuous functions on a bounded set M in Rn.

We set K = {f ∈ X : f(x) ≥ 0 on M}. Then K is an order cone in X and we have

f ≤ g if and only if f(x) ≤ g(x) for all x ∈M (1.18)

f << g if and only if f(x) < g(x) for all x ∈M (1.19)
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In what follows, K is a cone on the Banach space E.

We introduce in the following definitions some characteristics and the basic properties

of the cone.

Definition 1.14. K is said to be normal cone with a constant nK > 0 if for all u, v ∈

K, u � v implies ||u|| ≤ nK ||v||.

Geometrically, normality means that the angle between two positive unit vectors has

to be bounded away from π. In other words, a normal cone cannot be too large.

Recall the result which is useful in case of a normal cone K , for this let’s begin by

this definition.

Definition 1.15. The set [x, y] = {z ∈ E, x � z � y} is called the order interval.

Proposition 1.8 (Proposition 7.11 [71]). If K is normal, then every order interval [x, y]

is bounded.

Proof. If x � w � y then 0 � w − x � y − x and hence ||w − x|| ≤ c||y − x||.

Definition 1.16. K is said to be solid if int(K) 6= ∅ where int(K) is the interior of K.

We give some examples of a cone having some of these properties.

Example 1.5. Let E = Lp(Ω), the space of Lebesgue mesurable functions which are pth

power summable on Ω ⊂ Rn, where p ≥ 1 and 0 < mesΩ < +∞. Let P = {x(t) ∈

Lp(Ω)\x(t) ≥ 0} is a normal cone in Lp(Ω) but P is not solid.

Example 1.6. Let E = C(G), space of continuous functions on a bounded closed set G

in Rn and P = {x(t) ∈ E : x(t) ≥ 0 and
∫
G0
x(t)dt ≥ ε0||x||E} where G0 is a closed

subset of G and ε0 is a given number satisfying 0 < ε0 < 1. P is a solid and normal cone

in E.

Definition 1.17. K is said to be reproducing if K −K = E.

If int(K) 6= ∅, then K is reproducing, in fact, take x0 ∈ int(K) and r > 0 such that

B(x0, 2r) ⊂ K, where B(x0, 2r) = {y, ||y − x0|| < 2r}. For any x ∈ E with x 6= 0, we

have x0 + r||x||−1x ∈ K. Moreover,

x = ||x||r−1(x0 + r||x||−1x)− ||x||r−1x0 ∈ K −K,
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thus K is reproducing, ending the proof.

Definition 1.18. K is said to be total if K −K = E, i.e., the set {x− y, x, y ∈ K} is

dense in E.

1.3.2 Positive operators

Let E,F two ordered Banach spaces and K is a cone on E.

Recall the definitions of the positive and monotone mapping T : D(T ) ⊂ E → F .

Definition 1.19. T is said to be positive if and only if both T (0) � 0 and for all x ∈ D(T ),

x � 0 implies Tx � 0.

T is strongly positive as the symbol � is replaced by �� .

Definition 1.20. T is said to be monotone increasing if and only if it is true for all

x, y ∈ D(T ) that

x ≺ y implies Tx � Ty.

T is called strictly, strongly monotone increasing if and only if the symbol � is replaced

by ≺ or ≺≺ respectively.

Definition 1.21. T is said to be monotone decreasing if and only if it is true for all

x, y ∈ D(T ) that

x ≺ y implies Tx � Ty.

T is called strictly, strongly monotone decreasing if and only if the symbol � is replaced

by � or �� respectively.

Remark that in case of linear operators, positivity is equivalent to monotonicity.

Definition 1.22. Let T : E → E be a positive operator. T is said to be lower bounded

on the cone K, if

c = inf {‖Tu‖ : u ∈ K ∩ ∂B(0E, 1)} > 0.

In this case we have ||Tu|| ≥ c||u|| for all u ∈ K.
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We remember in the following definitions the minorant (resp. the majorant) for an

operator, for this let K be a subset in E and T1, T2 : K → K be continuous mappings.

Definition 1.23. We write T1 � T2 if T1x � T2x for all x ∈ K.

Definition 1.24. If T1x � T2x for x ∈ K, then T1 is called a minorant for T2 on K, T2

is called a majorant for T1.

The interest of the recalling of cones, properties of cone and positivity of operator

materializes in the study of the equations

λx− Tx = y, y � 0, (1.20)

and the corresponding homogeneous equation

Tx = λx, x � 0. (1.21)

and the existence of a positive solution x 6= 0 for the homogeneous equation (1.21) was

facilitated by the Krein-Rutman Theorem by proving under conditions of T and the cone

K, existence of a positive eigenvalue of T which is the spectral radius of L. The notion of

the spectral radius is evoked in the section Elementary spectral theory. The well known

Krein-Rutman theorems, which we will state hereafter, are the famous result in the linear

positive compact operator theory. Those theorems are a generalization of the Perron-

Frobenius Theorem to infinite Banach spaces. They were proved in 1948 and since then

they haven’t stopped being mentioned. The various applications of those theorems are in

Bifurcation theory, the investigation of nonlinear problems, stability analysis of solutions

to elliptic equations and steady-state of the corresponding parabolic equations ...

Hereafter, the first version of those Theorems.

Theorem 1.10 (Krein-Rutman Theorem.Theorem 19.2. [21]). Assume that the cone

K is total and L ∈ L (E) compact and positive with r (L) > 0. Then r (L) is a positive

eigenvalue of L.

The second version of the Krein-Rutman Theorem require more than the positivity of

T with the cone which is not total.
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Theorem 1.11 (Krein-Rutman Theorem.Theorem 19.3. [21]). Assume that K ⊂ E

a cone with int(K) 6= ∅ and L ∈ L(E) compact and strongly positive. Then we have

(a) r(L) > 0, r(L) is a algebraically simple eigenvalue with an eigenvector v ∈ int(K) and

there is no other eigenvalue with a positive eigenvector.

(b) |λ| < r(L) for all eigenvalues λ 6= r(L).

The following result answers about existence of a positive solution of the inhomoge-

neous problem (1.20) in the form of consequence of the Theorems cited above.

Corollary 1.1 (Corollary 7.27 [71]). For every y > 0, the equation (1.20) has exactly one

solution x > 0 if λ > r(T ) and no solution if λ ≤ r(T ).

λx − Tx = µy and x > 0, y > 0 implies sgn(µ) = sgn(λ − r(T )). Here λ and µ are

real numbers.

1.3.3 Fixed point Index

The notion of the fixed point index was introduced and discussed by Nussbaum [54](see

also [3, 5]). The purpose being to investigate the fixed points of some nonlinear operators,

we combine the properties of cones with the fixed point index. We take back the properties

of the Leray-Schauder degree for the fixed point index in the following Theorem because

the definition of the index emanates from the Leray-Schauder degree theory.

A subsetK ⊂ E is called a retract of E if there exists a continuous mapping r : E → K,

and a retraction, when r(x) = x, x ∈ K. From a Theorem due to Dugundji (see Dugundji

[l]), and particularly, every cone of E is a retract of E.

Theorem 1.12 (Theorem 2.3.1,[34]). Let K be a retract of E, then for every relatively

bounded open subset U of K and every compact operator A : U → K which has no fixed

point on ∂U , there exists an integer i(A,U,K) satisfying the following conditions:

1. Normality: i (A,U,K) = 1 if Ax = x0 ∈ U for all x ∈ U.

2. Homotopy invariance: Let H : [0, 1] × U → K be a compact mapping such that

H (t, x) 6= x for all (t, x) ∈ [0, 1] × ∂U. The integer i(H (t, ·) , U,K) is independent

of t.
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3. Additivity:

i (A,U,K) = i (A,U1, K) + i (A,U2, K)

whenever U1 and U2 are two disjoint open subsets of U such that A has no fixed

point in U r (U1 ∪ U2) .

4. Permanence: If P is a retract of K with A
(
U
)
⊂ P then

i (A,U,K) = i (A,U ∩ P, P ) .

5. Solution property: If i (A,U,K) 6= 0 then A admits a fixed point in U.

6. Excision property: i (A,U,K) = i (A,U0, K) whenever U0 is an open subset of U

such that A has no fixed points in U\U0.

Moreover, let

{(A,U,K) where K retract of E, U open bounded in K,

A : U → K compact and Ax 6= x on ∂U}.

Then there exists exactly one function d : M → Z satisfying 1 − 4. In other words,

i(A,U,K) is uniquely defined. i(A,U,K) is called the fixed point index of A on U with

respect to K.

Proof. First we prove the uniqueness of the fixed point index. Let {i(A,U,K)} be any

family satisfying conditions 1− 4. We define

d(Id− A,U, p) = i(A+ p, U,E) (1.22)

where U bounded open of E, f(x) 6= p on ∂U, i.e. A+ p has no fixed point on ∂U . From

the conditions 1− 4 and (1.22) it is easy to show that the function d(f, U, p) has the four

properties which characterize the Leray-Schauder degree and hence, by the uniqueness of

the Leray-Schauder degree, we have

d(f, U, p) = d(Id− A,U, p) (1.23)
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Taking p = 0 in (1.22) and (1.23), we get

i(A,U,E) = d(Id− A,U, 0) (1.24)

Suppose now that K is an arbitrary retract of E and denote by r : E → K an arbitrary

retraction. For open subset U ofK, we choose a ball BR = {x ∈ E such that ||x|| < R}

such that BR ⊃ U . Then, by the Permanence property and (1.24) we have

i(A,U,E) = i(Aor,BR ∩ r−1(U), E) = d(Id− Aor,BR ∩ r−1(U), 0) (1.25)

Hence, (1.25) and the uniqueness of the Leray-Schauder degree imply the uniqueness of

the fixed point index.

By the above uniqueness proof we are led to define

i(A,U,K) = d(Id− Aor,BR ∩ r−1(U), 0) (1.26)

where r : E → K an arbitrary retraction and BR ⊃ U . Evidently, BR ∩ r−1(U) is a

bounded open set of E and

BR ∩ r−1(U) ⊂ r−1(U) ⊂ r−1(U).

It is easy to see that

x0 ∈ r−1(U), Aor(x0) = x0 implies x0 ∈ U,Ax0 = x0 (1.27)

Now, we prove that i(A,U,K) defined by (1.26) is independent of the choice of R and r.

Let R1 > R. Since

U ⊂ BR ∩ r−1(U) ⊂ BR1 ∩ r−1(U),

by (1.27) we know that Aor has no fixed point in BR1 ∩ r−1(U)\(BR1 ∩ r−1(U)), and

consequently, by the excision property of Leray-Schauder degree

d(Id− Aor,BR ∩ r−1(U), 0) = d(Id− Aor,BR1 ∩ r−1(U), 0),

i.e. i(A,U,K) is independent of the choice of R. Next, let r1 : E → K be another

retraction of E and let V = BR ∩ r−1(U) ∩ r−1
1 (U). Then V is a bounded open set of E
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and V ⊃ U . By (1.27) we know that Aor has no fixed points in BR ∩ r−1(U)\V and Aor1

has no fixed points in BR ∩ r−1
1 (U)\V . Hence,

d(Id− Aor,BR ∩ r−1(U), 0) = d(Id− Aor, V, 0) (1.28)

and

d(Id− Aor1, BR ∩ r−1
1 (U), 0) = d(Id− Aor1, V, 0) (1.29)

Now, let h(t, x) = x−H(t, x) where H(t, x) = r(tAor(x) + (1− t)Aor1(x)).

Clearly, H : [0, 1]× V → E is compact. We now prove 0 /∈ h(t, ∂V ) for any t ∈ [0, 1]. In

fact, if there exists t0 ∈ [0, 1] and x0 ∈ ∂V such that h(t0, x0) = 0 then x0 = r(t0Aor(x0)+

(1− t0)Aor1(x0)) ∈ K.

As a result, r(x0) = x0, r1(x0) = x0andx0 = Ax0.

And so, by (1.27), x0 ∈ U ⊂ V, in contradiction with x0 ∈ ∂V. Thus, using the homotopy

invariance property of the Leray-Schauder degree and observing that that

H(0, x) = r(Aor1(x)) = Aor1(x)

and

H(1, x) = r(Aor(x)) = Aor(x)

we have

d(Id− Aor1, V, 0) = d(Id− Aor, V, 0). (1.30)

It follows from (3.7), (1.29) and (1.30) that

d(Id− Aor,BR ∩ r−1(U), 0) = d(Id− Aor1, BR ∩ r−1
1 (U), 0) (1.31)

which shows that i(A,U,E) is dependent of the choice of r.

The conditions 1 − 4 are the same basic conditions as the Leray-Schauder degree. We

prove the conditions 5− 6.

Let U1 = U and U2 = ∅ in additivity property; we get i (A, ∅, K) = 0. From this and

setting U1 = U0 and U2 = ∅ in additivity, we obtain i (A,U,K) = i (A,U0, K) then the

property 6 is proved.

If A has no fixed point in U, letting U0 = ∅ in excision property, we get

i (A,U,K) = i (A, ∅, K) = 0.
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and hence property 5 is proved.

Using properties of the index cited below, the following Lemmas provide computations

of the index useful for the next Theorems. For this, let A : KR → K be compact,

where KR = K ∩ B(0, R) , B(0, R) the unit ball in E. KR is bounded, its boundary is

∂KR = K ∩ ∂B(0, R) and K ∩B(0, R) = K ∩B(0, R).

Lemma 1.2 (Lemma 2.3.1[34]). If Ax 6= λx for all x ∈ ∂KR and λ ≥ 1 then

i (A,KR, K) = 1. (1.32)

Proof. Let H(t, x) = tAx. Then H : [0, 1] × (K ∩ B(0, R)) → K is continuous, and the

continuity of H(t, x) in t is uniform with respect to x ∈ KR. We have H(t, .) : KR → K

is compact for all t ∈ [0, 1] because A is compact. We have H(t, x) 6= x for all x ∈ KR

and 0 ≤ t ≤ 1. Hence by the homotopy invariance and normality of fixed point, we have

i(A,KR, K) = i(H(1, .), KR, K) = i(H(0, .), KR, K) = i(0, KR, K) = 1

Lemma 1.3 (Lemma 2.3.2[34]). Suppose that B : K ∩ ∂B(0, R)→ K is compact and

(a) inf
x∈∂KR

||Bx|| > 0

(b)x− Ax 6= tBx for all x ∈ ∂KR, t ≥ 0,

Then

i(A,KR, K) = 0

Lemma 1.4 (see Corollary 2.3.1, page 91[34]). Let operator A : KR → K be compact. If

there exists a u0 > 0 such that

x− Ax 6= tu0 ∀x ∈ ∂KR, t ≥ 0, (1.33)

then i(A,KR, K) = 0

Proof. This Lemma follows directly from Lemma 1.3 by putting Bx = u0 for any x ∈

∂KR.

Lemma 1.5 (Lemma 2.3.3[34]). Let A : KR → K be compact and suppose that

(i) inf
x∈KR

||Ax|| > 0
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(ii)Ax 6= µx for all x ∈ KR, t ≥ 0,

Then

i(A,KR, K) = 0

Proof. Taking B = A in Lemma1.3, we see that condition (a) of Lemma 1.3 is the same at

condition (i) in Lemma1.5. Also, condition (b)of Lemma 1.3 is true. In fact, if there exist

x0 ∈ KR and t ≥ 0 such that x0 − Ax0 = t0Ax0, then Ax0 = µ0x0 where µ0 = (1 + t0)−1.

Evidently, 0 < µ0 ≤ 1, which contradicts the condition (ii). Thus,

i(A,KR, K) = 0

follows from Lemma 1.3.

Lemma 1.6. If Ax � x for all x ∈ ∂KR then i (A,KR, K) = 1.

Lemma 1.7. If Ax � x for all x ∈ ∂KR then i (A,KR, K) = 0.

The proof of these two Lemmas are part of the proof of theorem cited below.

1.3.4 Fixed point of cone expansion and compression

The two following theorems are the fundamental theorems in fixed point theory. The

Theorem 1.13, namely The fixed point of cone expansion and compression, is due to

Krasnoselskii (see [45]) and the Theorem 1.14, namely The fixed point of cone expansion

and compression with norm type, is due to Guo (see [35, 36]). Those Theorems are used

on the ordered Banach spaces to prove that a compact operator under conditions which

called expansion and compression of the cone has a fixed point. The fixed point index

computations have been used a lot to prove these Theorems. Known to be difficult to

apply, it is an unavoidable way for a lot of fixed point on a cone problems also for the

location of the fixed point in the space. To state these Theorems, let Ω1 and Ω2 be two

bounded open sets in E such that 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let operator A : K∩(Ω2\Ω1)→ K

be compact.

Theorem 1.13 (Theorem 2.3.3.[34]). Suppose that one of the two conditions:

(H1) Ax � x,∀x ∈ K ∩ ∂Ω1 and Ax � x, ∀x ∈ K ∩ ∂Ω2 (expansion of the cone)

(1.34)
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(H2) Ax � x,∀x ∈ K∩∂Ω1 and Ax � x,∀x ∈ K∩∂Ω2 (compression of the cone) .

(1.35)

is satisfied. Then A has at least one fixed point in K ∩ (Ω2\Ω1).

Proof. First we assume that (H1) is satisfied, i.e., it is the case of cone expansion. It is

easy to see that

Ax 6= µx ∀x ∈ K ∩ ∂Ω1, µ ≥ 1 (1.36)

since, otherwise, there exist x0 ∈ K ∩ ∂Ω1 and µ0 ≥ 1 such that Ax0 = µ0x0 ≥ x0, in

contradiction with (H1). Now from (1.36) and Lemma 1.2, we obtain

i(A,K ∩ Ω1, K) = 1 (1.37)

On the other hand, choosing an arbitrary u0 > 0, we have

x− Ax 6= tu0 ∀x ∈ K ∩ ∂Ω2, t ≥ 0. (1.38)

In fact, if there exist x1 ∈ K∩∂Ω2 and t ≥ 0 such that x1−Ax1 = tu0 ≥ 0 then x1 ≥ Ax1

in contradiction with (H2). Hence, by (1.38) and Lemma 1.4 we have

i(A,K ∩ Ω2, K) = 0 (1.39)

It follows therefore from additivity property of fixed point that

i(A,K ∩ (Ω2\Ω1), K) = i(A,K ∩ Ω2, K)− i(A,K ∩ Ω1, K) = −1 6= 0. (1.40)

Hence, by the solution property of fixed point index, A has at least one fixed point in

(Ω2\Ω1).

Similarly, when H2 is satisfied, instead of (1.37), (1.39) and (1.40), we have i(A,K ∩

Ω1, K) = 0, i(A,K ∩ Ω2, K) = 1, and i(A,K ∩ (Ω2\Ω1), K) = 1. As a result we also can

assert that A has at least one fixed point in Ω2\Ω1.

Theorem 1.14 (Theorem 2.3.4.[34]). Suppose that one of the two conditions:

(H3) ||Ax|| ≤ ||x||, ∀x ∈ K ∩ ∂Ω1 and ||Ax|| ≥ ||x||,∀x ∈ K ∩ ∂Ω2. (1.41)

(H4) ||Ax|| ≥ ||x||, ∀x ∈ K ∩ ∂Ω1 and ||Ax|| ≤ ||x||,∀x ∈ K ∩ ∂Ω2. (1.42)

is satisfied. Then A has at least one fixed point in K ∩ (Ω2\Ω1).
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Proof. We only need to prove this theorem under condition (H3), since the proof is similar

when (H4) is satisfied. By the extension theorem, A can be extended to a compact

operator from (K ∩ Ω2) into K. We may assume that A has no fixed points on (K ∩ Ω1)

and (K∩Ω2). It is easy to see that (1.36) holds, since otherwise, there exists x0 ∈ (K∩Ω1)

and µ0 > 1 such that Ax0 = µ0x0 and hence ||Ax0|| = µ0||x0|| > ||x0|| in contradiction

with (H3). Thus, by (1.36) and Lemma 1.2, (1.37) holds. On the other hand, it is also

easy to verify

Ax 6= µx ∀x ∈ K ∩ ∂Ω2, 0 ≥ µ ≥ 1 (1.43)

In fact, if there are x1 ∈ K ∩ ∂Ω2 and 0 < µ1 < 1 such that Ax1 = µ1x1, then ||Ax1|| =

||µ1x1|| < ||x1||, in contradiction with (H3). In addition, by (H3) we have

inf
x∈K∩∂Ω2

||Ax|| ≥ inf
x∈K∩∂Ω2

||x|| > 0 (1.44)

It follows from (1.43), (1.44) and Lemma 2.3.2 in [34] that i(A,K ∩ ∂Ω2, K) = 0 holds.

As before,

i(A,K ∩ (Ω2\Ω1), K) = i(A,K ∩ Ω2, K)− i(A,K ∩ Ω1, K) = 0− 1 = −1 6= 0 (1.45)

and therefore A has at least one fixed point in Ω2\Ω1.

1.3.5 Index jump property

The previous Theorems 1.13 and 1.14 are useful for demonstrating, by means of the

concept of fixed point index and compactness of a nonlinear operator, existence of a

positive solution in a cone of the boundary value problem, but their assumptions are

difficult to show. In order to overcome this difficulty and drawing inspiration from the

work of Webb in [64] (see Theorems 4.4, 4.5 and 4.7) which gives the different results of

the fixed point index, assuming that in addition to the fact of the comparison between the

nonlinear mapping T and the linear operator L, together with according to the position

of r(L) with respect to 1, Benmezai in his work [10](see Theorems 3.24 and 3.25) use the

hypothesis of the comparison of T and the approximative L by introducing the condition

of the Strongly Index-Jump Property (SIJP for short) that should check by the minorant L

of T , with according the positive spectrums respectively of the minorant and the majorant
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of T , which located oppositely by 1 (not necessarily r(L) as cited in previous Theorems in

[64] ) gives different results of fixed point index by exploiting its properties. In practice,

it is often difficult to prove existence of SIJP of L, this is why we resort to prove that

L is a limit for a nondecreasing sequence of operators having the SIJP (see the proof of

Theorem 1.16), that is another advantage of using the SIJP. It turns out to be a powerful

tool to prove for applications to the bvp’s. Before developed the notion of the SIJP, let

introduce the sets ΓL and ΛL for a linear compact operator on a Banach space E. For

this, let K, P be two cones in E with P ⊂ K and the set

LPK (E) = {L ∈ L(E) compact operator : L(K) ⊂ P} ,

where for all L ∈ LPK (E), V PL,K denotes the set of all positive eigenvalues of L and we

set so,

λ−L,K = inf V PL,K and λ+
L,K =

 supV PL,K if V PL,K 6= ∅,

0 if V PL,K = ∅.

If L ∈ LPK (E) then L is positive because L(K) ⊂ P ⊂ K . In the case of P = K, we

denote LK(E) instead of LPK (E).

The cone K is a natural cone which is related to the space E and the cone P is related

to the operator L and it represents in some manner, the regularity of L. The permanence

property of the fixed point index allows to have for all compact mapping, L : KR → K

with L (x) 6= x for all x ∈ ∂KR, i(L,KR, K) = i(L, PR, P ).

Also, for L ∈ LPK (E) , we define the subsets

ΓL = {θ ≥ 0 : there exists u ∈ P r {0E} such that Lu � θu } ,

ΛL = {θ ≥ 0 : there exists u ∈ P r {0E} such that Lu � θu} .

Observe that

• 0 ∈ ΛL and if θ ∈ ΛL then [0, θ] ⊂ ΛL.

• if θ ∈ ΓL then [θ,+∞[ ⊂ ΓL.

When these two quantities exists, we set

θ+
L,P = inf ΓL and θ−L,P = sup ΛL.
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The following results show the properties of these quantities and the sets that contain

them.

Lemma 1.8 (Lemma 3.1. [10]). Assume that 0 < θ−L,P , θ
+
L,P < ∞ then for all R > 0 we

have

i (γL,KR, K) =

 1, if γθ−L,P < 1,

0, if γθ+
L,P > 1.

Proof. Let γ > 0 be such that γθ−L,P < 1. Suppose that for some u ∈ ∂PR, γLu � u

then we have Lu � u/γ and 1/γ ∈ ΛL, leading to the contradiction γθ−L,P ≥ 1 because

1/γ ≤ θ−L,P . So, we have proved that γLu � u for all u ∈ ∂PR and Lemma 1.6 leads to,

i (γL,KR, K) = i (γL, PR, P ) = 1.

The case γθ+
L,P > 1 is checked similarly by means of Lemma 1.7.

Lemma 1.9 (Lemma 3.2. [10]). For all L ∈ LPK (E) we have

θ+
L,P ≤ θ−L,P . (1.46)

Proof. Indeed, if θ+
L,P > θ−L,P we have from Lemma 1.8, for γ ∈

(
1/θ+

L,P , 1/θ
−
L,P

)
, the

contradiction

i (γL,KR, K) =

 1, if γθ−L,P < 1,

0, if γθ+
L,P > 1.

Remark 1.4. Clearly, we have for all L ∈ LPK (E) , V PL,K ⊂
[
θ+
L,P , θ

−
L,P

]
.

Lemma 1.10 ([15]). For all L ∈ LPK (E) , the set ΓL is not empty.

Proof. Let λ > ||L|| = sup||u||=1 ||Lu|| and e ∈ P\{0E} and consider the equation

u = Lλ(u, t) (1.47)

where for all u ∈ P and t ∈ [0, 1] Lλ(u, t) = (t/λ)Lu + e. Clearly, Lλ(P × [0, 1]) ⊂ P

and equation (1.47) has no solution in ∂PR with R > max(λ||e||/λ− ||L||, ||e||). Thus, by

homotopoy and normality properties of the fixed point index, we conclude that

i(Lλ(., 1), PR, P ) = i(Lλ(., 0), PR, P ) = 1 (1.48)

then, equation Lλ(u, 1) = u admits a solution u0 ∈ PR\{0} and λ ∈ ΓL.
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The following result shows once again the importance of r(L).

Lemma 1.11 (Theorem 2.7 in [63]). For all operator L ∈ LPK (E) the set ΛL is bounded

from above by r (L).

Proof. Let θ > r(L) and Rθ =
∑

k∈N
Lk

θk
and note that Rθ = Id + Rθ(L/θ). Moreover,

we have Rθ(P ) ⊂ P since for all k, Lk(P ) ⊂ P. Now, by the contrary, suppose that there

exits u ∈ ∂P such that Lu ≥ θu and set v = θ−1Lu. We have then the contradiction

Rθ(v) ≥ Rθ(u) = u+Rθ(v) > Rθ(v). (1.49)

This shows that ΛL is bounded by r(L).

The Proposition below shows the relation between the sets ΓLi and ΛLi where Li ∈

LPK (E)(i = 1, 2).

Proposition 1.9. Let L1, L2 ∈ LPK (E) and assume that L1 � L2. Then we have

ΛL1 ⊂ ΛL2 and ΓL2 ⊂ ΓL1 .

and

θ+
L2,P
≤ θ+

L1,P
and θ−L1,P

≤ θ−L2,P
.

Proof. By Definition 1.23, L1 � L2 means that L1u � L2u for all u ∈ P. If θ ∈ ΛL1 then

it exists u ∈ P\{0} such that L1u � θu and this implies θu � L1u � L2u and we get

θ ∈ ΛL2 . The same proof for ΓL2 ⊂ ΓL1 .

It exists u ∈ P\{0} such that θ−L1
u � L1u � L2u, then θ−L1

∈ ΛL2 hence θ−L1,P
≤ θ−L2,P

.

The same proof for θ+
L2,P
≤ θ+

L1,P
.

The following proposition shows the importance of the constant θ+
L,P .

Proposition 1.10 ( Proposition 3.6 [10]). Let L ∈ LPK (E) with θ+
L,P > 0 and consider

for y ∈ P r {0E} the equation

λu− Lu = y. (1.50)

Then Equation (1.50) has no solution in P r {0E} for all λ ∈
(
0, θ+

L,P

)
.
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The condition for nonexistence of positive solutions to Equation (1.50) in Proposition

1.10 is more naturel to that given in Theorem 2.16 in [45].

Remark 1.5. Let L ∈ LPK (E) and set

θ+
L,K = inf {θ ≥ 0 there exists u � 0E such that Lu � θu}

and

θ−L,K = sup {θ ≥ 0 there exists u � 0E such that Lu � θu} .

Note that if θ+
L,K > 0 then for all y � 0E, Equation (1.50) has no positive solution.

Let L ∈ LPK(E) and γ ∈ (0,+∞)r V PL,K . The integer i (γL,KR, K) is defined for all

R > 0 and the excision property of the fixed point index, make it independent of R. This

justifies the following definition.

Definition 1.25. An operator L ∈ LPK (E) is said to have the IJP if there exists µL > 0

such that for all R > 0 and all γ ∈ (0,+∞)r V PL,K , we have

i (γL,KR, K) =

 1, if γµL < 1,

0, if γµL > 1.

Clearly the real number µL in Definition 1.25 is unique.

The following Theorem give the condition under which L has an IJP.

Theorem 1.15 ( Theorem 3.9.[10]). Let L ∈ LPK (E) . Then L has the IJP if and only if

V PL,K 6= ∅. Moreover, we have that µL = λ+
L,K .

Proof. Let L ∈ LPK (E) having the IJP at µL and by the contrary suppose that µL is not

an eigenvalue. Then i
(

1
µL
L,KR, K

)
is defined and from the continuity property of the

fixed point index, yields the contradiction

i

(
1

µL
L,KR, K

)
= lim

γ
<→1/µL

i (γL,KR, K) = 1

i

(
1

µL
L,KR, K

)
= lim

γ
>→1/µL

i (γL,KR, K) = 0.

Thus, we have proved that V PL,K 6= ∅.
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Now, we need to prove that if µ0 is a positive eigenvalue of L, Then i (γL,KR, K) = 0

for all γ ∈ (1/µ0,+∞) r V PL,K and R > 0. To this aim, let e > 0E be the eigenvector

associated with the eigenvalue µ0. We claim that for all λ ∈ (0, µ0)r σ (L) and all t > 0

equation

λu− Lu = te (1.51)

admits no positive solution. Indeed, from the Riesz-Schauder theory, there is two sub-

spaces N (µ0) and R (µ0) such that

dim (N (µ0)) <∞, R (µ0) is closed,

E = N (µ0)⊕R (µ0) ,

L (N (µ0)) ⊂ N (µ0) , L (R (µ0)) ⊂ R (µ0)

and µ0 is the unique eigenvalue of Lµ0 , the restriction of L to N (µ0) . Moreover, if P,Q

are respectively the projections of E on N (µ0) and R (µ0) , we have that PL = LP and

QL = LQ.

Thus, Equation (1.51) is equivalent to the system λv − Lv = te

λw − Lw = 0.
(1.52)

where v = Pu and w = Qu. Since λ /∈ σ (L) , the second equation in System (1.52)

has w = Qu = 0 as a unique solution.

For the first equation in System (1.52), there exists a basis B = {ei}i=ni=1 where n =

dim (N (µ0)) and e1 = e in which the matrix Mµ0 of Lµ0 has the Jordan form

µ0 m1,2 0 · · 0

0 µ0 m2,3 0 ·

· 0 · · ·

· · · 0

· · · mn−1,n

0 0 · · 0 µ0


where for i = 1, · · ·, n− 1, mi,i+1 = 1 or 0.
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Therefore, if X and b are respectively the coordinate matrices of v = P (u) and te in

the basis B, then, the first equation in System (1.52) take the matricial form

(λI −Mµ0)X = b

having the unique solution

X =



t/ (λ− µ0)

0

·

·

·

0


and so, u = t

λ−µ0 e /∈ K is the unique solution of Equation (1.51). The claim is proved.

Let γ ∈ (1/µ0,+∞) with 1/γ /∈ ΛL,K and let us compute i (γL,KR, K). We distinguish

two cases:

-) 1/γ ∈ (0, µ0) r σ (L) , in this case if (Tn) is a sequence of positive operators such

that Tn(u) = γL(u)+tne where (tn) is a sequence of positive real numbers with lim tn = 0,

then we have since the equation

u− γLu = tne

has no solution in KR,

i (γL,KR, K) = lim i (Tn, KR, K) = 0.

=) 1/γ ∈ (σ (L)r ΛL,K) ∩ (0, µ0) , then there is a sequence (γn) such that 1/γn ∈

(0, µ0)r σ (L) and lim γn = γ; thus, we have

i (γL,KR, K) = lim i (γnL,KR, K) = 0.

Reciprocally, suppose that V PL,K 6= ∅ and let γ > 0. We have from the above that

i (γL,KR, K) = 0 if 1/γ ∈
(
0, λ+

L,K

)
rΛL,K , so, let us discuss the case 1/γ ∈

(
λ+
L,K ,+∞

)
.

Assume that for some λ ≥ 1 and u ∈ ∂KR, γLu = λu. Then λ/γ is a positive eigenvalue

of L and we have the contradiction

1/γ ≤ λ/γ ≤ λ+
L,K < 1/γ.
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Therefore, Lemma 1.2 leads to i (γL,KR, K) = 1. Thus, we have proved that L has the

IJP at λ+
L,K and by uniqueness, we have λ+

L,K = µL, ending the proof.

Remark 1.6. Let L ∈ LPK(E) and assume that the cone K is total and r(L) > 0. We

have from Lemma 1 in [53] that L has the IJP at r(L). Clearly, Theorem 1.15 generalize

this lemma to the case where the cone K is not total.

Remark 1.7. Let L ∈ LPK(E), the Schauder index has the jump property (see Corollary

14.6 in [71]) and the jump happens at any eigenvalue of L having an odd algebraic mul-

tiplicity. This means that the Schauder index can jumps infinitely many times. However,

for the fixed point index, the jump can happens at most one time and this happens only

at the largest positive eigenvalue of L.

Corollary 1.2 (Corollary 3.12 [10]). Assume that L∈ LPK (E) . Then V PL,K 6= ∅ if and

only if θ−L,K > 0 (i.e. there exists θ > 0 and u � 0E such that Lu � θu).

Proof. Let θ0 > 0 and e � 0E be such that Le � θ0e and consider the cone

K0 = {u ∈ K : Lu � θ0u} .

Since K0 6= {0E} and L (K0) ⊂ K0, the constants θ+
L,K0 , θ

−
L,K0 are well defined and one

can check easily that

0 < θ0 ≤ θ+
L,K0 ≤ θ−L,K0 ≤ r(L).

Thus, we understand from Lemma 1.8 that L has the IJP on the cone K0, then we have

from Theorem 1.15 that σK0 (L) 6= ∅. Ending the proof.

The properties of the limit of a sequence of operators having an IJP are given in the

Proposition below.

Proposition 1.11 (Proposition 3.13. [10]). Let (Ln) ⊂ LPK (E) be such that for all integer

n, Ln has the IJP at µn and assume that Ln → L in operator norm. Then either

• limµn = 0 or

• L has the IJP at some µ > 0.
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Proof. First, since lim ‖Ln‖ = ‖L‖, there exists c > 0 such that

0 < µn ≤ ‖Ln‖ ≤ ‖L‖+ c.

Clearly if limµn 6= 0, the real number µ = lim supµn is positive. Assume that is the

case and let (µnk) be a subsequence of (µn) converging to µ. We have from Lemma 1.12

that µ is a positive eigenvalue of L. So, let us compute i (γL, PR, P ) for any R > 0 and

γ ∈ (0,+∞) r σK (L) . If γ ∈ (0, 1/µ) r σK (L) , then there exists k0 ∈ N such that

γ < 1/µnk for all k ≥ k0 and in this case, i (γLnk , PR, P ) = 1 for all k ≥ k0 and we have

i (γL, PR, P ) = lim i (γLnk , PR, P ) = 1.

If γ ∈ (1/µ,+∞)rσK (L) then there exists k1 ∈ N such that γ > 1/µnk for all k ≥ k0

and in this case i (γLnk , PR, P ) = 0 for all k ≥ k0 and we have

i (γL, PR, P ) = lim i (γLnk , PR, P ) = 0.

So, L has the IJP at its largest positive eigenvalue µ and this ends the proof.

In order to state the Theorems of existence and non existence of the fixed point of a

non linear operator, we introduce the SIJP for this purpose.

Definition 1.26. An operator L ∈ LPK (E) is said to have the SIJP if θ+
L,P > 0. In the

particular case where θ+
L,P = θ−L,P = µ > 0 we say that L has the SIJP at µ.

Remark 1.8. Clearly, If L ∈ LPK (E) has the SIJP, then L has the IJP.

In the following, we look for the sufficient conditions for operators LPK (E) having the

SIJP.

Proposition 1.12 (Proposition 3.16. [10]). Let L ∈ LPK (E) be strongly positive. Then

L has the SIJP at r (L).

Proof. First, we have from Theorem 1.11, Remark 1.4 and Lemma 1.11 that

0 ≤ θ+
L,P ≤ r (L) ≤ θ−L,P ≤ r (L)

that is 0 < θ−L,P = r (L) .
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Now, assume that θ+
L,P < r (L) and let θ0 ∈

(
θ+
L,P , r (L)

)
and u0 ∈ P \ {0E} be such

that L(u0) ≤ θ0u0. In fact, we have that L(u0) < θ0u0 indeed, if L(u0) = θ0u0, then

uniqueness in Theorem 1.11 leads to the contradiction r(L) = θ0 < r(L). Thus, one has

that the equation

λu− Lu = y

has a positive solution for λ = θ0 < r(L) and y = θ0u0−Lu0, contradicting Corollary 1.1.

This completes the proof.

Proposition 1.13 (Proposition 3.17. [10]). Let L ∈ LPK (E) and assume that L is lower

bounded on the cone P. Then L has the SIJP.

Proof. Because of definition of the SIJP, we have to show that θ+
L,P > 0. Set cL,P =

inf {‖Lu‖ : u ∈ ∂P} > 0 and suppose that there exists sequences (θn) and (un) ⊂ Pr{0E}

with lim θn = 0 and ‖un‖ = 1 such that

Lun � θnun. (1.53)

Since ‖θnun‖ = θn we have that lim θnun = 0E. Consequently up to a subsequence

limLun = 0E. So the contradiction

0 < cL,P ≤ lim ‖Lun‖ = 0.

This shows that θ+
L,P > 0, ending the proof.

Proposition 1.14 (Proposition 3.18. [10]). Let L ∈ LPK (E) and assume that there exists

L1, L2 ∈ LPK (E) having the SIJP such that L1 � L � L2. Then L has the SIJP.

Proof. Indeed, we have from Proposition 1.9 that

ΓL2 ⊂ ΓL ⊂ ΓL1 and ΛL1 ⊂ ΛL ⊂ ΛL2

and so

0 < θ+
L2,P
≤ θ+

L,P ≤ θ+
L1,P

and θ−L1,P
≤ θ−L,P ≤ θ−L2,P

<∞.
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A sufficient condition that a compact positive operator admits an eigenvalue is given

in the Lemma below.

Lemma 1.12. Let for all integer n, Ln be a compact operator in L (E) and positive

having a positive eigenvalue λn. If Ln → L in operator norm and (λn) converges to some

real number λ > 0 then λ is a positive eigenvalue of L.

Proof. Let φn be the eigenvector associated with λn such that ‖φn‖ = 1 and set ψn = Lφn.

Since L is compact and the sequence (φn) is bounded, we have up to a subsequence

ψn → ψ ∈ K . Thus, we obtain the following estimates,

‖λnφn − ψ‖ = ‖Lnφn − ψ‖

≤ ‖Lnφn − Lφn‖+ ‖Lφn − ψ‖

≤ ‖Ln − L‖+ ‖ψn − ψ‖

leading to

limλnφn = ψ and ‖ψ‖ = lim ‖λnφn‖ = limλn = λ > 0.

Also, we have ∥∥Lnφn − 1
λ
Lψ
∥∥ =

∥∥∥ 1
λn
Ln (λnφn)− 1

λ
Lψ
∥∥∥

≤
∥∥∥ 1
λn
Ln (λnφn)− 1

λ
Ln (λnφn)

∥∥∥+
∥∥ 1
λ
Ln (λnφn)− 1

λ
L (λnφn)

∥∥+
∥∥ 1
λ
L (λnφn)− 1

λ
Lψ
∥∥

≤
∣∣∣ 1
λn
− 1

λ

∣∣∣λn ‖Ln‖+ λn
λ
‖Ln − L‖+ 1

λ
‖L‖ ‖λnφn − ψ‖

leading to

limLnφn =
1

λ
Lψ.

Thus, letting n→∞ in equation Lnφn = λnφn we obtain Lψ = λψ that is λ is a positive

eigenvalue of L. This ends the proof.

In what remains, we let Γ (E) be the class of operators L ∈ LPK (E) such that there

exists a sequence of cones (P n) and an increasing sequence of operators (Ln), such that

for all n ∈ N, P n ⊂ P, Ln has the SIJP at λn and Ln → L in operator norm.

Clearly, all the above classes of positive operators considered in Propositions 1.12, 1.13

are contained in Γ (E) . So, let us prove that operators in Γ (E) have also the SIJP.
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Theorem 1.16 (Theorem 3.23.[10]). Assume that L ∈ Γ (E) . Then L has the SIJP and

θ+
L,P is the unique positive eigenvalue of L (at which it has the IJP). Moreover if the cone

K is total then L has the SIJP at r (L) .

Proof. Let (P n) , (Ln) and (λn) be the sequences making of L an operator in the class

Γ (E) and let φn be the normalized eigenvector associated with λn.

First, we have that {θ ≥ 0 : ∃u ∈ P n\{0} such that Lnu ≥ θu} = ΛLn . Indeed; it

is obvious that {θ ≥ 0 : ∃u ∈ P n\{0} such that Lnu ≥ θu} ⊂ ΛLn and if θ > 0, u ∈

P r {0E} are such that Lnu ≥ θu then Ln (u) ∈ P n r {0E} and Ln (Lnu) ≥ θLnu. This

shows that θ ∈ {θ ≥ 0 : ∃u ∈ P n\{0} such that Lnu ≥ θu} and ΛLn ⊂ {θ ≥ 0 : ∃u ∈

P n\{0} such that Lnu ≥ θu}.

Since Ln has the SIJP at λn, we have λn = θ−Ln,Pn = θ−Ln,P then from Proposition

1.11, (λn) is a nondecreasing bounded sequence (λn ≤ ‖L‖ + C for some C > 0). Set

λL = limλn. We have from Proposition 1.11 that λL is the largest positive eigenvalue of

L. Also, we have from Proposition 1.10 that

θ+
Ln,P
≤ θ+

Ln,Pn
= λn ≤ θ+

L,P

in which letting n→∞ we get since λL is an eigenvalue of L,

θ+
L,P ≤ λL = limλn = lim θ+

Ln,Pn
≤ θ+

L,P

that is λL = θ+
L,P .

We conclude from all the above that

0 < θ+
L,P = λL ≤ θ−L,P ≤ r (L)

that is L has the SIJP and θ+
L,P = λL is the unique positive eigenvalue of L.

Moreover, if the coneK is total then we have from Theorem 1.10 that r(L) is a positive

eigenvalue of L and so,

0 < θ+
L,P = λL = θ−L,P = r (L) .

This ends the proof.

Let introduce the following class of operators. Set

SIJP (E) =
{
L ∈ LPK (E) : L has the SIJP

}
.
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In the following two theorems, we make a new control of the mapping T which has

asymptotically a majorant and a minorant in special classes of operators in SIJP (E).

Theorem 1.17 (Theorem 3.24[10]). Let T : K → K be a completely continuous mapping

and assume that the cone K is normal and there exists three operators L1, L2, L3 ∈ LPK (E)

and three continuous functions F1, F2, F3 : K → K such that

L2 ∈ SIJP (E) , θ−L1,P
< 1 < θ+

L2,P

and for all u ∈ K

Tu � L1u+ F1u,

L2u− F2u � Tu � L3u+ F3u. (1.54)

If either

F1u = ◦ (‖u‖) as u→ 0 and Fiu = ◦ (‖u‖) as u→∞, i = 2, 3 (1.55)

or

F1u = ◦ (‖u‖) as u→∞ and Fiu = ◦ (‖u‖) as u→ 0, i = 2, 3, (1.56)

then T has a positive fixed point.

Proof. We present the proof in the case where (1.55) holds, the other case is checked

similarly. We have to prove existence of 0 < r < R such that

i(T, Pr, P ) = 1 and i(T, PR, P ) = 0.

In such a situation, additivity and solution properties of the fixed point index imply that

i(T, PR r Pr, P ) = i(T, PR, P )− i(T, Pr, P ) = −1

and T has a positive fixed point u with r < ‖u‖ < R.

Now, consider the function H1 : [0, 1]×K → K defined by H1(t, u) = (1− t)Tu+ tL2u

and let us prove existence of R > 0 large enough, such that for all t ∈ [0, 1] equation

H1(t, u) = u has no solution in ∂PR. By the contrary, suppose that for all integer n ≥ 1

there exist tn ∈ [0, 1] and un ∈ ∂Pn such that

un = (1− tn)Tun + tnL2un.
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Note that vn = un/ ‖un‖ ∈ ∂P1 and satisfies

vn = (1− tn)
Tun
‖un‖

+ tnL2vn.

Thus, the inequalities

L2vn −
F2un
‖un‖

� Tun
‖un‖

� L3vn +
F3un
‖un‖

combined with the normality of the cone K and the fact that Fi(un) = ◦ (‖un‖) as n→∞

for i = 2, 3, implies that the sequence (Tun/ ‖un‖) is bounded. This and because of the

compactness of L2, there exists a subsequence denoted also (vn) converging to v ∈ ∂P1,

satisfying v � L2v. Therefore, we have 1 ≥ θ+
L2,P

, contradicting θ+
L2,P

> 1.

For such a radius R > 0, homotopy property of the fixed point index leads to

i(T, PR, P ) = i(H1(0, ·), PR, P ) = i(H1(1, ·), PR, P ) = i(L2, PR, P ) = 0.

In similar way, consider the function H2 : [0, 1] × K → K defined by H2(t, u) =

(1 − t)Tu + tL1u and let us prove existence of r > 0 small enough, such that for all

t ∈ [0, 1] equation H2(t, u) = u has no solution in ∂Pr. By the contrary suppose that for

all integer n ≥ 1 there exist tn ∈ [0, 1] and un ∈ ∂Pn such that

un = (1− tn)Tun + tnL1un.

Note that vn = un/ ‖un‖ ∈ ∂P1 and satisfies

vn = (1− tn)
Tun
‖un‖

+ tnL1vn.

Thus, the inequality
Tun
‖un‖

� L1 (vn) +
F1un
‖un‖

combined with the normality of the cone K and the fact that F1(un) = ◦ (‖un‖) as n→∞

implies that the sequence (F1un/ ‖un‖) is bounded. This and because of the compactness

of L1, there exists a subsequence denoted also (vn) which converges to v ∈ ∂P1 satisfying

v � L1v. Therefore, we have1 ≤ θ−L1,P
contradicting θ−L1,P

< 1.

For such a radius r > 0, homotopy property of the fixed point index leads to

i(T, Pr, P ) = i(H2(0, ·), Pr, P ) = i(H2(1, ·), Pr, P ) = i(L, Pr, P ) = 1.

This completes the proof
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Theorem 1.18 ( Theorem 3.25[10]). Let T : K → K be a completely continuous mapping

and assume that there exists two operators L1, L2 ∈ LPK(E) and two continuous functions

F1, F2 : K → K such that
L1 is lower bounded on P,

θ−L2,P
< 1 < θ+

L1,P

and for all u ∈ K

L1u− F1u � Tu � L2u+ F2u.

If either

F1u = ◦ (‖u‖) as u→∞ and F2u = ◦ (‖u‖) as u→ 0 (1.57)

or

F1u = ◦ (‖u‖) as u→ 0 and F2u = ◦ (‖u‖) as u→∞, (1.58)

then T has a positive fixed point.

Proof. We present the proof in the case where (1.57) holds, the other case is checked

similarly. We have to prove existence of 0 < r < R such that

i(T, Pr, P ) = 1 and i(T, PR, P ) = 0.

In such a situation, additivity and solution properties of the fixed point index imply that

i(T, PR r Pr, P ) = i(T, PR, P )− i(T, Pr, P ) = −1

and T has a positive fixed point u with r < ‖u‖ < R.

Now consider the function H3 : [0, 1]×K → K defined by H3(t, u) = (1− t)Tu+ tL1u

and let us prove existence of R > 0 large enough, such that for all t ∈ [0, 1] , equation

H3(t, u) = u has no solution in ∂PR. By the contrary, suppose that for all integer n ≥ 1

there exist tn ∈ [0, 1] and un ∈ ∂Pn such that

un = (1− tn)Tun + tnL1un.

Note that vn = un/ ‖un‖ ∈ ∂P1 satisfies

vn = (1− tn)
Tun
‖un‖

+ tnL1vn
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then

L1vn = (1− tn)L1

(
Tun
‖un‖

)
+ tnL1 (L1vn) . (1.59)

Because of the lower boundedness of L1 we have

‖L1vn‖ ≥ cL1,P > 0

where cL1,P = inf {‖L1u‖ , u ∈ ∂P1} . We distinguish two cases.

Either (tn) admits a subsequence denoted also (tn) such that tn → 1. In this case

letting n → ∞ in (1.59), we get from the compactness of L1 and the boundedness of

(L1vn) that v = limL1vn satisfies

v = L1v and ‖v‖ = lim ‖L1vn‖ ≥ cL1,P > 0.

This leads to the contradiction

1 < θ+
L1,K
≤ λ−L1,K

≤ 1 ≤ λ+
L1,K

.

Or there exists ε ∈ (0, 1) such that tn < 1 − ε for all n ∈ N. In this case we have from

(1.59) ∥∥∥∥ Tun‖un‖

∥∥∥∥ ≤ (1− tn)−1 (1 + tn ‖L1‖) ≤ ε−1 (1 + ‖L1‖)

and the sequence (Tun/ ‖un‖) is bounded. As above, v = limL1vn satisfies

v � L1v and ‖v‖ = lim ‖L1vn‖ ≥ cL1,P > 0

leading to θ+
L1,P
≤ 1 which contradicts the hypothesis 1 < θ+

L1,P
.

Thus, there exists R > 0 large such that H5 (t, u) 6= u for all t ∈ [0, 1] and u ∈ ∂PR
and for such a radius R > 0, homotopy property of the fixed point index implies that

i(T, PR, P ) = i(H3(0, ·), PR, P ) = i(H3(1, ·), PR, P ) = i(L1, PR, P ) = 0.

Arguing as in proof of Theorem 1.17, we prove existence of r > 0 small enough, such

that i(T, Pr, P ) = 1 and this completes the proof

The following two theorems are respectively adapted versions of the two Theorems

above. They provide solvability results to the equation u = Tu under eigenvalue criteria.
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Theorem 1.19. Assume that the cone K is normal and there exists three operators

L1, L2, L3 in LK (E) and three functions F1, F2, F3 : K → K such that

L1 has the SIJP at r(L1),

0 < r (L1) < 1 < r (L2) and

Tu � L1u+ F1u,

L2u− F2u � Tu � L3u+ F3u for all u ∈ K.

If either

F1u = ◦ (‖u‖) as u→ 0 and Fiu = ◦ (‖u‖) as u→∞ for i = 2, 3 (1.60)

or

F1u = ◦ (‖u‖) as u→∞ and Fiu = ◦ (‖u‖) as u→ 0 for i = 2, 3, (1.61)

then T has a positive fixed point.

Theorem 1.20. Assume that there exists two operators L1, L2 ∈ in LK (E) and two

continuous functions F1, F2 : K → K such that

L1 has the SIJP at r (L1)

L1 is lower bounded on K,

r (L2) < 1 < r (L1) and

L1u− F1u � Tu � L2u+ F2u for all u ∈ K.

If either

F1u = ◦ (‖u‖) as u→∞ and F2u = ◦ (‖u‖) as u→ 0 (1.62)

or

F1u = ◦ (‖u‖) as u→ 0 and F2u = ◦ (‖u‖) as u→∞, (1.63)

then T has a positive fixed point.

Let T : K → K be a completely continuous mapping. The following proposition

provide under eigenvalue criteria a nonexistence result for fixed point to the mapping T.

Proposition 1.15. Assume that there exists L ∈ LK(E) having the SIJP at µ such that

one of the following conditions (1.64) and (1.65) holds true,

µ > 1 and Tu � Lu for all u ∈ K (1.64)
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µ < 1 and Tu � Lu for all u ∈ K. (1.65)

Then T has no positive fixed point.

Proof. We present the proof in the case of (1.64) holds, the other case is checked similarly.

To the contrary, suppose there exists u � 0X such that Tu = u. In this case we have that

u = Tu � Lu,

1 ∈ {θ ≥ 0 : ∃ u � 0X such that Lu � θu}

and

µ = inf ΛL ≤ 1.

This contradicts the hypothesis µ > 1 in (1.64).



Chapter 2

Eigenvalue criteria for existence and

nonexistence of bounded and

unbounded positive solution to a

third-order BVP on the half line

2.1 Introduction and main results

Because they arise in modeling various physical phenomenons, the study of existence

of solutions to boundary value problems (bvp for short) associated with third-order or-

dinary differential equations, has becomed an important area of applied mathematics.

For instance, Danziger and Elemergreen (see [31], p. 133) have obtained the following

third-order linear differential equations:

α3u
′′′ + α2u

′′ + α1u
′ + (1 + k)u = kc, θ < c, and

α3u
′′′ + α2u

′′ + α1u
′ + u = 0, θ > c.

(2.1)

These equations describe the variation of thyroid hormone with time. Here u = u(t)

is the concentration of thyroid hormone at time t and α3, α2, α2, k and c are constants.

In [42], Jackiewicz et al. have investigated the asymptotic behaviour of the solutions

of Volterra integro-differential equations of the form

51
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u′(t) = γu(t) +
∫ 1

0
(λ+ µt+ ϑs)u(s)ds t ≥ 0,

u(0) = 1,

with the help of third-order differential equations of the type

u′′′ = γu′′ + (λ+ (µ+ ϑ) t)u′ + (2µ+ ϑ)u, (2.2)

where λ, γ, µ and ϑ are real parameters and µ+ ϑ = 0.

A reduced version of the Hodgkin–Huxley model was proposed by Nagumo. He sug-

gested the class of third-order differential equation

u′′′ − cu′′ + f ′(u)u′ − b

c
u = 0 (2.3)

as a model exhibiting many of the features of the Hodgkin–Huxley equations, where f is a

regular function. Recall that the Hodgkin–Huxley model describes the ionic mechanisms

underlying the initiation and propagation of action potentials in the squid giant axon.The

model has played a vital role in biophysics and neuronal modeling. For more details of

Nagumo’s equations, we refer to the paper by McKeen [51].

The Kuramoto–Sivashinsky equation

ut + uxxxx + uxx +
1

2
u2 = 0

arises in a wide variety of physical phenomena. It was introduced to describe pattern

formulation in reaction diffusion systems, and to model the instability of flame front

propagation (see Y. Kuramoto and T. Yamada [46] and D. Michelson [52]). A traveling

wave solutions u = φ(x− ct) satisfies, after one integration, the third-order equation

λφ′′′(x) + φ′(x) + f(φ) = 0, (2.4)

where λ is a parameter depend on the constant c and f is an even function.

A three-layer beam is formed by parallel layers of different materials. For an equally

loaded beam of this type, Krajcinovic in [44] proved that the deflection u is governed by

the third order differential equation

−u′′′ + k2u′ = a, (2.5)
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where k and a are physical parameters depending on the elasticity of the layers.

Especially, study of existence of positive solutions for third-order bvps has received a

great deal of attention and was the subject of many articles, see, for instance, [29, 30,

32, 38, 37, 50, 58, 61, 65, 66, 67, 72], for third-order bvps posed on finite intervals and

[1, 7, 16, 24, 25, 26, 27, 41, 43, 48, 49, 55, 60] for such bvp’s posed on the half-line.

In this chapter, we establish under eigenvalue criteria, nonexistence and existence

results for positive solutions to the third-order bvp: −u′′′(t) + k2u′(t) = f(t, u(t)), t > 0

u(0) = u′(0) = u′(+∞) = 0,
(2.6)

where k is a positive constant, the function f : R+ × R → R+ is continuous (R+ :=

[0,+∞)) and observe that the form of the differential equation in (2.6) is more general

to those of (2.1)-(2.4). Here the constant k which may have a physical signification as

in (2.5), will play an important role in finding a suitable framework for a fixed point

formulation of bvp (2.6).

By a positive solution to the bvp (2.6), we mean a function u ∈ C3 (R+,R+) with

u(t∗) > 0 for some t∗ > 0 satisfying all equations in the bvp (2.6).

When looking for positive solutions by means of the fixed point theory in cones, authors

often make use of the compression and expansion of a cone principle in a Banach space.

This principle states that if P is a cone in a Banach space (B, ‖·‖), T : Pr,R → P is a

compact mapping where Pr,R = {u ∈ P : r ≤ ‖u‖ ≤ R} and one of the following situations

a) and b) holds:

a) ‖Tu‖ ≥ ‖u‖ for all u ∈ P , ‖u‖ = r and ‖Tu‖ ≤ ‖u‖ for all u ∈ P , ‖u‖ = R,

b) ‖Tu‖ ≤ ‖u‖ for all u ∈ P , ‖u‖ = r and ‖Tu‖ ≥ ‖u‖ for all u ∈ P , ‖u‖ = R,

then T has a fixed point w such that r ≤ ‖w‖ ≤ R.

This principle has advantage to be applicable on any region of the cone P and it has

the flaw that the realization of the inequality ‖Tu‖ ≥ ‖u‖ requires a specific cone, see,

for instance [30, 32, 50, 66, 67].

Also we will use in this work the fixed point theory in cones. The operator of our

fixed point formulation associated to bvp (2.6) is defined on the Banach space of con-

tinuous functions u satisfying limt→+∞
u(t)
t

= 0. Notice that this space is imposed
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by the boundary condition in (2.6) limt→+∞ u
′(t) = 0, since by the L’Hopital’s rule

limt→+∞
u(t)
t

= limt→+∞ u
′(t) = 0. Unfortunately, the cone of nonnegative function ly-

ing in the above space does not offer the possibility to realize the inequality ‖Tu‖ ≥ ‖u‖ .

To overcome this difficulty we use the approach exposed in Section 3. This approach

gives a necessary condition for existence of positive solution (see Proposition 1.15), and

has the advantage to be applicable in any cone. However, it has the inconvenient that

the radii r and R must be taken near 0 and +∞ respectively. In other words we loss the

localization established in the compression and expansion of a cone principle in a Banach

space, r ≤ ‖w‖ ≤ R.

Since a function u satisfying limt→+∞
u(t)
t

= 0 may be bounded or unbounded (as

u(t) = ln(1 + t)), we provide in each existence result established in this paper sufficient

conditions for the boundedness or unboundedness of the obtained positive solution.

In all this paper, we let :

Γ = {q ∈ C(R+,R+) : q(s) > 0 a.e. s > 0} ,

Γ0 =
{
q ∈ Γ : sups≥0 q(s) <∞

}
,

Γ1 = {q ∈ Γ : lims→+∞ q(s) = 0} ,

Γ2 =
{
q ∈ Γ : lims→+∞ q(s) = 0 and

∫ +∞
0

q(s)ds <∞
}
,

∆i = {q ∈ Γ : qpi ∈ Γi} for i = 0, 1, 2,

∆3 = {q ∈ Γ : qp3 ∈ Γ1} ,

∆ = ∆1 ∪∆2,

where

p1(t) = 1 + t p0(t) = p2(t) = 1 p3(t) = ekt.

Notice that Γ2 ⊂ Γ1 ⊂ Γ0, ∆2 = Γ2, ∆3 ⊂ ∆1 ∩∆2, ∆1 r∆2 6= ∅ and ∆2 r∆1 6= ∅.

Indeed, for

q1(s) =
1

(1 + s) ln (4 + s)
, q2(s) =

m(s)

1 + s
,

where

m(s) =


2n4s− n(2n4 − 1) if s ∈

[
n− 1

2n3 , n
]
,

−2n4s+ n(2n4 + 1) if s ∈
[
n, n+ 1

2n3

]
,

0 if not,
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we have q1 ∈ ∆1 r∆2 and q2 ∈ ∆2 r∆1.

A continuous mapping g : R+ × R→ R is said to be a:

• Γi-Caratheodory function for i = 0, 1, 2, if for all r > 0 there exists a function

ψr ∈ Γi such that

|g(t, pi(t)u)| ≤ ψr (t) for all t ≥ 0 and u ∈ [−r, r] .

• Γ2+i-Caratheodory function for i = 1, 2, if for all r > 0 there exists a function

ψr ∈ Γi such that

|g(t, p3(t)u)| ≤ ψr (t) for all t ≥ 0 and u ∈ [−r, r] .

Consider for q ∈ ∆, the linear eigenvalue problem associated with the bvp (2.6) −u′′′(t) + k2u′(t) = µq(t)u(t), t > 0

u(0) = u′(0) = u′(+∞) = 0,
(2.7)

where µ is a real parameter.

A positive real number µ0 is said to be a positive eigenvalue of the bvp (2.7), if there

exists a function φ ∈ C3 (R+,R+) such that φ(t0) > 0 for some t0 > 0 and the pair (µ0, φ)

satisfies all equations in the bvp (2.7).

The first result of this paper concerns existence of the positive eigenvalue of the bvp

(2.7).

Proposition 2.1. For all q ∈ ∆, the eigenvalue problem (2.7) admits a unique positive

eigenvalue µ(q) > 0 having an eigenfunction φ. Moreover, if q ∈ ∆2 then φ is bounded

and if not (i.e.
∫ +∞

0
q(s)ds = +∞), then φ is unbounded, i.e. limt→+∞ φ(t) = +∞.

Theorem 2.1. Assume for i = 1 or 2, the nonlinearity f is a Γi-Caratheodory function

and there exists a function q in ∆i such that either

inf

{
f(t, pi(t)u)

pi(t)q(t)u
: t, u > 0

}
> µ(q) (2.8)

or

sup

{
f(t, pi(t)u)

pi(t)q(t)u
: t, u > 0

}
< µ(q). (2.9)

Then the bvp (2.6) admits no positive solution.
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The statements of the following existence results need additional notations. Let g :

R+ × R → R be a function. If g is a Γi-Caratheodory function we set for q ∈ ∆i with

i ∈ {0, 1, 2, 3} and ν = 0,+∞,

g+
i,ν(q) = lim supu→ν

(
maxt≥0

g(t, pi(t)u)

pi(t)q(t)u

)
,

g−i,ν(q) = lim infu→ν

(
mint≥0

g(t, pi(t)u)

pi(t)q(t)u

)
.

Theorem 2.2. Assume for i = 1 or 2 the nonlinearity f is a Γi-Caratheodory function

and there exist two functions q0 and q∞ in ∆i such that either

f+
i,∞(q∞)

µ(q∞)
< 1 <

f−i,0(q0)

µ(q0)
≤
f+
i,0(q0)

µ(q0)
<∞ (2.10)

or
f+
i,0(q0)

µ(q0)
< 1 <

f−i,+∞(q∞)

µ(q∞)
≤
f+
i,∞(q∞)

µ(q∞)
<∞. (2.11)

Then the bvp (2.6) admits a solution u in Ki. Moreover, if i = 2 then u is bounded and

if i = 1 and  limt→+∞
∫ t

1
f(s, p1(s)λ)ds = +∞ uniformly

for λ in compact intervals of (0,+∞) ,
(2.12)

then u is unbounded.

In Theorem 2.2 Conditions (2.10) and (2.11) impose to the nonlinearity f to be sub

linear at +∞, that is there is a positive constants d and a function c ∈ Γi such that

f(t, u) ≤ c (t)u for all u ≥ d and t ≥ 0. To avoid such a condition, we have been led to

look for positive solutions in a largest Banach space. We have obtained then the following

result.

Theorem 2.3. Assume that the nonlinearity f is a Γ3-Caratheodory function and there

exist two functions q0 and q∞ in ∆3 such that either

f+
3,∞(q∞)

µ(q∞)
< 1 <

f−3,0(q0)

µ(q0)
, (2.13)

or
f+

3,0(q0)

µ(q0)
< 1 <

f−3,∞(q∞)

µ(q∞)
. (2.14)
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Then the bvp (2.6) admits a positive solution u. Moreover, if the nonlinearity f is a

Γ4-Caratheodory function then the solution u is bounded, and if limt→+∞
∫ t

1
f(s, p3(s)λ)ds = +∞ uniformly

for λ in compact intervals of (0,+∞) ,
(2.15)

then u is unbounded.

Consider now, the particular version of the bvp (2.6) where the nonlinearity f takes

the form f(t, u) = q∗(t)h(t, u); Namely, we consider the bvp −u′′′(t) + k2u′(t) = q∗(t)h(t, u(t)), t > 0

u(0) = u′(0) = u′(+∞) = 0,
(2.16)

where q∗ ∈ Γ and h : R+ × R→ R+ is a continuous function.

If h/pi is a Γ0-Caratheodory function for i = 1, 2 or 3, we set then for ν = 0,+∞

h+
i,ν = h+

i,ν(1) h−i,ν = h−i,ν(1).

We obtain respectively from Theorems 2.1, 2.2 and 2.3 the following corollaries:

Corollary 2.1. Assume for i = 1 or 2 that q∗ ∈ ∆i, the function h/pi is Γ0-Caratheodory

and either

inf

{
h(t, pi(t)u)

pi(t)u
: t, u > 0

}
> µ(q),

or

sup

{
f(t, pi(t)u)

pi(t)u
: t, u > 0

}
< µ(q).

Then the bvp (2.16) has no positive solution.

Corollary 2.2. Assume for i = 1 or 2 that q∗ ∈ ∆i, the function h/pi is Γ0-Caratheodory

and either

h+
i,∞ < µ(q∗) < h−i,0 ≤ h+

i,0 <∞,

or

h+
i,0 < µ(q∗) < h−i,∞ ≤ h+

i,∞ <∞.
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Then the bvp (2.16) admits a positive solution. Moreover, if i = 2 then u is bounded and

if i = 1 and  limt→+∞
∫ t

1
q∗(s)h(s, p1(s)λ)ds = +∞ uniformly

for λ in compact intervals of (0,+∞) ,

then u is unbounded.

Corollary 2.3. Suppose that q∗ ∈ ∆3, the function h/p3 is Γ0-Caratheodory and either

h+
3,∞ < µ(q∗) < h−3,0,

or

h+
3,0 < µ(q∗) < h−3,∞.

Then the bvp (2.16) admits a positive solution. Moreover, if q∗ ∈ ∆2 then u is bounded

and if and  limt→+∞
∫ t

1
q∗(s)h(s, p3(s)λ)ds = +∞ uniformly

for λ in compact intervals of (0,+∞) ,

then u is unbounded.

2.2 Example

Consider for i = 1, 2, 3 the bvp (2.6) with

f(t, u) = Fi(t, u) = Aq0(t)
pi(t)u

(pi(t))
2 + u2

+Bq∞(t)
u2

pi(t) + u
,

where A and B are positive real numbers and q0, q∞ ∈ ∆i.

It is easy to see that Fi is a Γi-Caratheodory function and if

0 < inf
t≥0

q∞(t)

q0(t)
≤ sup

t≥0

q∞(t)

q0(t)
<∞,

then

f−i,0(q0) = f+
i,0(q0) = A and f−i,∞(q∞) = f+

i,∞(q∞) = B.

We deduce from Theorems 2.2 and 2.3 that for such a nonlinearity f, the bvp (2.6) admits

a solution if either

A < µ(q0) and B > µ(q∞)
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or

A > µ(q0) and B < µ(q∞).

Evidently for i = 2, the obtained solution u is bounded and for i = 1, if
∫ +∞

0
q0p1ds =

+∞ then u is unbounded. Indeed, for any interval [a, b] ⊂ (0,+∞) we have∫ t

1

f(s, p2(s)λ)ds ≥ A

∫ t

1

q0(s)p1(s)
λ

1 + λ2
ds

≥ Aa

1 + a2

∫ t

1

q0(s)p1(s)ds→ +∞ as t→ +∞.

For instance if q0(t) = q∞(t) = (1 + t)−2 the obtained solution is unbounded.

In the case i = 3, if
∫ +∞

1
q0(s)p3(s)ds < +∞ then the solution is bounded and if∫ +∞

1
q0(s)p3(s)ds = +∞, the same computations as above lead to u is unbounded. For

example if q0(t) = q∞(t) = (1 + t)−1 e−kt, then the obtained solution is unbounded.

2.3 Abstract background

Remark 2.1. We have from Proposition 3.14 and Proposition 3.15 in [14] that if L ∈

LK (X) has the SIJP at µ then µ is the unique positive eigenvalue of L.

Remark 2.2. It is easy to see that if L ∈ LK (X) has the SIJP at µ and L (K) ⊂ P ⊂ K

where P is a cone in E, then L ∈ LP (X) has the SIJP at µ.

In this work, the problem of existence and nonexistence of positive solutions to the

bvp (2.6) will be converted to that of existence and nonexistence of fixed point for a

completely continuous mapping defined on a cone of an appropriate functional space.

2.4 Fixed point formulation

In all this paper we let

E0 = {u ∈ C(R+,R) : limt→+∞ u(t) = 0},

E1 = {u ∈ C(R+,R) : limt→+∞
u(t)
1+t

= 0},

E2 = {u ∈ C(R+,R) : limt→+∞ u(t) = l ∈ R},

E3 = {u ∈ C(R+,R) : limt→+∞ e
−ktu(t) = 0}.
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Endowed respectively with the norms

‖u‖1 = sup
t≥0

|u(t)|
1 + t

, ‖u‖2 = sup
t≥0
|u(t)| and ‖u‖3 = sup

t≥0
e−kt |u(t)| ,

E1, E2 and E3 become Banach spaces.

We let also, K1, K2 and K3 be respectively the cones in E1, E2 and E3 defined by

K1 = {u ∈ E1 : u(t) ≥ 0 for all t ≥ 0 and u is nondecreasing},

K2 = {u ∈ E2 : u(t) ≥ 0 for all t ≥ 0},

K3 = {u ∈ E3 : u(t) ≥ γ(t)||u||3 for all t ≥ 0}

where

γ(t) =
1

3k

(
e−3kt − 3e−kt + 2

)
.

Let G : R+ × R+ → R be the function given by

G(t, s) =
1

k2

 e−ks (cosh(kt)− 1) if t ≤ s

−e−kt sinh(ks) + (1− e−ks) if s ≤ t.

The functions G and
∂G

∂t
are continuous and they have the following properties:

G(t, s) > 0 for all t, s > 0, (2.17)

∂G

∂t
(t, s) > 0 for all t, s > 0, (2.18)

G(0, s) =
∂G

∂t
(0, s) = 0 for all s ∈ R+ (2.19)

lim
t→+∞

G(t, s) =
1

k2
(1− e−ks) for all s ∈ R+ (2.20)∫ +∞

0

G(t, s)ds =
1

k2
t− 1

k3
(1− e−kt) for all t ≥ 0, (2.21)

sup
t≥0

1

1 + t

∫ +∞

0

G(t, s)ds =
1

k2
, (2.22)∫ +∞

0

|G(t2, s)−G(t1, s)| ds ≤
2

k2
|t2 − t1| for all t2, t1 ≥ 0, (2.23)

Properties (2.17)-(2.21) and (2.22) are obvious and Property (2.23) is obtained from

Property (2.21) for each of the cases t2 ≥ t1 and t2 ≤ t1.
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Lemma 2.1. For all functions v in E0, u(t) =
∫ +∞

0
G(t, s)v(s)ds is the unique solution

of the bvp  −u′′′(t) + k2u′ = v, in (0,+∞)

u(0) = u′(0) = u′(+∞) = 0.
(2.24)

Moreover u belongs to E1.

Proof. Let v ∈ E0. For any t ≥ 0 we have by Property (2.21),

|u(t)| =
∣∣∣∣∫ +∞

0

G(t, s)v(s)ds

∣∣∣∣ ≤ ‖v‖2

∫ +∞

0

G(t, s)ds <∞.

Furthermore, for any t1, t2 ≥ 0, we have by Property (2.23),

|u(t2)− u(t1)| =

∣∣∣∣∫ +∞

0

G(t2, s)v(s)ds−
∫ +∞

0

G(t1, s)v(s)ds

∣∣∣∣
≤

∫ +∞

0

|G(t2, s)−G(t1, s)| ds ‖v‖2

≤ 2 ‖v‖2

k2
|t2 − t1| .

The above estimates show that u is well defined and u is continuous on R+.

Differentiating three times in the identity

u(t) = −e
−kt

k2

∫ t

0

sinh(ks)v (s) ds+
1

k2

∫ t

0

(1−e−ks)v (s) ds+
cosh(kt)− 1

k2

∫ +∞

t

e−ksv (s) ds,

we find

u′(t) =
1

k

(
e−kt

∫ t

0

sinh(ks)v (s) ds+ sinh(kt)

∫ +∞

t

e−ksv (s) ds

)
,

u′′(t) = −e−kt
∫ t

0

sinh(ks)v (s) ds+ cosh(kt)

∫ +∞

t

e−ksv (s) ds,

u′′′(t) = k

(
e−kt

∫ t

0

sinh(ks)v (s) ds+ sinh(kt)

∫ +∞

t

e−ksv (s) ds

)
− v(t)

= k2u′(t)− v(t).

Hence, u satisfies −u′′′(t) + k2u′ = v. Since (4.4) gives u(0) = u′(0) = 0, it remains to

prove that limt→+∞ u
′(t) = limt→+∞

u(t)
1+t

= 0. We have

u′(t) =

∫ +∞

0

∂G

∂t
(t, s)v(s)ds =

1

k
e−kt

∫ t

0

sinh(ks)v(s)ds+
1

k
sinh(kt)

∫ +∞

t

e−ksv(s)ds.
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Using L’Hopital’s formula, we obtain

lim
t→+∞

e−kt
∫ t

0

sinh(ks)v(s)ds = lim
t→+∞

∫ t
0

sinh(ks)v(s)ds

ekt
= lim

t→+∞

sinh (kt)

kekt
v(t) = 0

and

lim
t→+∞

(
sinh(kt)

∫ +∞

t

e−ksv(s)ds

)
= lim

t→+∞

sinh(kt)

ekt

∫ +∞
t

e−ksv(s)ds

e−kt

= lim
t→+∞

∫ +∞
t

e−ksv(s)ds

e−kt
= lim

t→+∞

v(t)

k
= 0.

This completes the proof.

Lemma 2.2. Assume for i = 1 or 2 the function g : R+ × R→ R is a Γi-Caratheodory.

Then the operator T ig : Ei → Ei where for u ∈ Ei, T igu(t) =

∫ +∞

0

G(t, s)g(s, u(s))ds, is

well defined and if g(t, x) ≥ 0 for all t, x ≥ 0 then T ig (Ki) ⊂ Ki. Moreover, if u ∈ Ei is a

fixed point of T ig then u is a solution to the bvp −u′′′(t) + k2u′ = g(t, u), in (0,+∞)

u(0) = u′(0) = u′(+∞) = 0.
(2.25)

Proof. Since Γ2 ⊂ Γ1, in both the cases i = 1 or 2, g is a Γ1-Caratheodory function.

Hence for any u ∈ Ei, g(t, u) belongs to E0 and T igu belongs to E1 and satisfies the bvp

(2.24) within v = g(t, u). In the case i = 2, for u ∈ E2 we have g(t, u) belongs to Γ2 (i.e.∫ +∞
0

g(s, u(s))ds < ∞). Therefore, Lebesgues convergence theorem and Property (2.20)

lead to

lim
t→+∞

T 2
g u(t) =

1

k2

∫ +∞

0

(
1− e−ks

)
g(s, u(s))ds ≤ 1

k2

∫ +∞

0

g(s, u(s))ds <∞.

This shows that T 2
g is well defined.

At the end, it follows from Lemma 2.1 that if u ∈ Ei is a fixed point of T ig then u is a

solution to the bvp (2.25) and it is easy to see that if g is nonnegative then T ig(Ki) ⊂ Ki

for i = 1, 2.

Lemma 2.3. Assume for i = 1 or 2 the function g : R+ × R→ R is a Γ3-Caratheodory.

Then the operator T 3
g : E3 → E3 where for u ∈ E3, T 3

g u(t) =

∫ +∞

0

G(t, s)g(s, u(s))ds, is

well defined and if g(t, x) ≥ 0 for all t, x ≥ 0 then T 3
g (K3) ⊂ K3. Moreover, if u ∈ E3 is

a fixed point of T 3
g then u is a solution to the bvp (2.25).
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Proof. Since g is a Γ3-Caratheodory function, for any u ∈ E3 we have |g(t, u)| belongs to

Γ1 (i.e. lims→+∞ g(s, u(s)) = 0). Hence Lemma 2.1 guarantees that T 3
g u ∈ E1 and and

satisfies the bvp (2.24) within v = g(t, u). Furthermore, for any u ∈ E3 we have

e−kt
∣∣T 3
g u(t)

∣∣ ≤ sup
s≥0
|g(s, u(s))|

(
e−kt

∫ +∞

0

G(t, s)ds

)
→ 0 as t→ +∞.

This shows that T 3
g is well defined.

Clearly, if u ∈ E3 is a fixed point of T 3
g then u is a solution to the bvp (2.25). So let

us prove that if g is nonnegative then T 3
g (K3) ⊂ K3.

Let u ∈ E3, taking in consideration Lemma 2.3 in [27], we obtain

T 3
g u(t) =

∫ t

0

dT 3
g u

dt
(ξ)dξ =

∫ t

0

∫ +∞

0

∂G

∂t
(ξ, s)g(s, u(s)dsdξ

=

∫ t

0

ekξ
∫ +∞

0

e−kξ
∂G

∂t
(ξ, s)g(s, u(s)dsdξ

≥
∫ t

0

∫ +∞

0

ekξγ̃(ξ)e−kτ
∂G

∂t
(τ, s)g(s, u(s)dsdξ

≥
(∫ t

0

ekξγ̃(ξ)dξ

)(
e−kτ

∫ +∞

0

∂G

∂t
(τ, s)g(s, u(s)ds

)
where γ̃(ξ) =

(
e2kξ − 1

)
e−4kξ. This leads to

T 3
g u(t) ≥

(∫ t

0

ekξγ̃(ξ)dξ

)∥∥∥∥dT 3
g u

dt

∥∥∥∥
3

. (2.26)

Because dT 3
g u

dt
∈ E3, we have

T 3
g u(t) =

∫ t
0

dT 3
g u

dt
(ξ)dξ =

∫ t
0
ekξ
(
e−kξ

dT 3
g u

dt
(ξ)
)
dξ ≤

∫ t
0
ekξdξ

∥∥∥dT 3
g u

dt

∥∥∥
3

≤ (ekt−1)
k

∥∥∥dT 3
g u

dt

∥∥∥
3
≤ ekt

k

∥∥∥dT 3
g u

dt

∥∥∥
3
.

Leading to ∥∥∥∥dT 3
g u

dt

∥∥∥∥
3

≥ k
∥∥T 3

g u
∥∥

3
. (2.27)

Combining (2.26) with (2.27), we obtain

T 3
g u(t) ≥ γ (t)

∥∥T 3
g u
∥∥

3
.

Ending the proof.
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The following lemma is an adapted version for the case of the space Ei, i = 1, 2, 3, of

Cordeneanu’s compactness criterion ([19], p. 62). It will be used in this work to prove

that some operators are completely continuous.

Lemma 2.4. A nonempty subset M of Ei i = 1, 2, 3, is relatively compact if the following

conditions hold:

(a) M is bounded in Ei,

(b) the set
{
u : u(t) =

x(t)

pi (t)
, x ∈M

}
is locally equicontinuous on [0,+∞), and

(c) the set
{
u : u(t) =

x(t)

pi (t)
, x ∈M

}
is equiconvergent at +∞.

Lemma 2.5. Let g : R+ × R → R be a Γ1-Caratheodory function. The operator T 1
g is

completely continuous.

Proof. Let us prove first that the operator T 1
g is continuous. To this aim let (un) be a

sequence in E1 with limun = u in E1, and let R > 0 and ψR ∈ Γ2 ⊂ Γ0 be such that

‖un‖1 ≤ R for all n ≥ 1 and∣∣∣∣g(t, p1(t)

(
u

p1(t)

))∣∣∣∣ ≤ ψR(t) for all t ≥ 0 and
(

u

p1(t)

)
∈ [−R,R] .

We have then ∥∥T 1
g un − T 1

g u
∥∥

1
= sup

t≥0

∣∣T 1
g un (t)− T 1

g u (t)
∣∣

p1(t)
≤ sup

t≥0
Φn(t),

where

Φn(t) =
1

p1(t)

∫ +∞

0

G(t, s) |g(s, un(s))− g(s, u(s))| ds

=
1

1 + t

∫ +∞

0

G(t, s)

∣∣∣∣g(s, p1(s)

(
un (s)

p1(s)

))
− g

(
s, p1(s)

(
u (s)

p1(s)

))∣∣∣∣ ds
≤ 2

p1(t)

∫ +∞

0

G(t, s)ψR(s)ds

≤ ‖ψR‖2 sup
t≥0

(
2

p1(t)

∫ +∞

0

G(t, s)ds

)
=

2 ‖ψR‖2

k2
.

Let (tn) be such that Φn(tn) = supt≥0 Φn(t) and let (tnl) be such that lim Φnl(tnl) =

lim sup Φn(tn) . Therefore, we have to prove that lim Φnl(tnl) = 0. We distinguish then

two cases:
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·) (tnl) is bounded by c > 0; In this case we have

Φnl(tnl) =

(
1

p1(tnl)

∫ +∞

0

G(tnl , s) |g(s, unl(s))− g(s, u(s))| ds
)

≤
∫ +∞

0

G(c, s) |g(s, unl(s))− g(s, u(s))| ds,

lim
n→+∞

G(c, s) |g(s, un(s))− g(s, u(s))| = 0,

|g(s, un(s))− g(s, u(s))| =

∣∣∣∣g(t, p1(s)

(
un (s)

p1(s)

))
− g

(
t, p1(s)

(
u (s)

p1(s)

))∣∣∣∣
≤ 2ψR(s),

for all s > 0 and by (2.21)
∫ +∞

0
G(c, s)ψR(s)ds < ∞. Hence the dominated convergence

theorem leads to lim Φnl(tnl) = lim sup Φn(tn) = 0.

··) lim tnl = +∞ (up to a subsequence); In this case we have from Lemma 2.2,

Φnl(tnl) =

(
1

p1(tnl)

∫ +∞

0

G(tnl , s) |g(s, unl(s))− g(s, u(s))| ds
)

≤ 2

p1(tnl)

∫ +∞

0

G(tnl , s)ψR(s)ds→ 0 as l→∞.

Thus, we have proved that limT 1
g unl = T 1

g u in E1 and T 1
g is continuous.

Now we prove by means of Lemma 2.4 that T 1
g maps bounded sets of E1 into relatively

compact sets of E1. To this aim, let Ω be a subset of E1 bounded by R > 0 and let ψR ∈ Γ1

be such that

|g(s, p1(s)u)| ≤ ψR(s) for all s ≥ 0 and all u ∈ [−R,R] .

For any u ∈ Ω we have by Property (2.22),

∥∥T 1
g u
∥∥

1
= sup

t≥0

∣∣∣∣T 1
g u (t)

p1(t)

∣∣∣∣ = sup
t≥0

(
1

p1(t)

∫ +∞

0

G(t, s)

∣∣∣∣g(s, p1(s)

(
u(s)

p1(s)

))∣∣∣∣ ds)
≤ sup

t≥0

(
1

p1(t)

∫ +∞

0

G(t, s)ψR(s)ds

)
≤ sup

t≥0

(
1

p1(t)

∫ +∞

0

G(t, s)ds

)
‖ψR‖1 =

1

k2
‖ψR‖1 .

Hence T 1
g (Ω) is bounded in E1.
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Let t1, t2 ∈ [η, ζ] ⊂ R+ with t1 ≤ t2. For all u ∈ Ω we have∣∣∣∣T 1
g u (t2)

p1(t2)
−
T 1
g u (t1)

p1(t1)

∣∣∣∣ ≤ ∫ t1

0

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds

+

∫ t2

t1

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds

+

∫ +∞

t2

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds,

∫ t1

0

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds

≤ 1

k2

(
e−kt1

p1(t1)
− e−kt2

p1(t2)

)∫ ζ

0

sinh(ks)ψR(s)ds

+
1

k2

(
1

p1(t1)
− 1

p1(t2)

)∫ ζ

0

(1− e−ks)ψR(s)ds

≤ C1(k)

k2

(∫ ζ

0

ψR(s)ds

)
(t2 − t1)

∫ t2

t1

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds

≤ 1

k2

∫ t2

t1

(
e−kt2

p1(t2)
sinh(ks) +

1− e−ks

p1(t2)
+

cosh (kt1)− 1

p1(t1)
e−ks

)
ψR(s)ds

≤ C2(k)

k2
(t2 − t1)

and ∫ +∞

t2

∣∣∣∣G (t2, s)

p1(t2)
− G (t1, s)

p1(t1)

∣∣∣∣ψR(s)ds

≤ 1

k2

∣∣∣∣cosh (kt2)− 1

p1(t2)
− cosh (kt1)− 1

p1(t1)

∣∣∣∣ ∫ +∞

η

e−ksψR(s)e−ksds

≤ C3(k)

k2
(t2 − t1) ,

where

C1(k) = (k + 1) sinh(kζ) + 1,

C2(k) =

(
sinh(kζ)e−kη

1 + η
+ 1 +

cosh (kζ)− 1

1 + ζ

)
sup
s∈[η,ζ]

ψR(s),

C3(k) = sup
t∈[η,ζ]

(
cosh (kt)− 1

1 + t

)′
.
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All the above calculations lead to∣∣∣∣T 1
g u (t2)

p1(t2)
−
T 1
g u (t1)

p1(t1)

∣∣∣∣ ≤ C1(k) + C2(k) + C3(k)

k2
(t2 − t1) .

Hence T 1
g (Ω) is equicontinuous on compact intervals of R+.

We have for all u ∈ Ω and t ≥ 0∣∣T 1
g u(t)

∣∣
1 + t

≤
∫ +∞

0

G(t, s)

1 + t
|g(s, u(s))| ds

≤ 1

1 + t

∫ +∞

0

G(t, s)ψR(s)ds := H̃(t).

Since Lemma 2.2 guarantees that limt→+∞ H̃(t) = 0, we conclude that T 1
g (Ω) is equicon-

vergent at +∞. This ends the proof.

Lemma 2.6. Let g : R+ × R→ R be a Γ2-Caratheodory function. Then the operator T 2
g

is completely continuous.

Proof. First, let us prove that T 2
g is continuous. To this aim let (un) be a sequence in E2

with limun = u in E2, and let R > 0 and ψR be such that ‖un‖2 ≤ R for all n ≥ 1 and

|g(t, p2(t)u)| ≤ ψR(t) for all t ≥ 0 and u ∈ [−R,R] . Hence we have

∥∥T 2
g un − T 2

g u
∥∥

2
= sup

t≥0

∣∣T 2
g un (t)− T 2

g u (t)
∣∣ ≤ ∫ +∞

0

G(∞, s) |g(s, un(s))− g(s, u(s))| ds

with

lim
n→+∞

|g(s, un(s))− g(s, u(s))| = 0

and

|g(s, un(s))− g(s, u(s))| = |g(s, p2(s)un(s))− g(s, p2(s)u(s))| ≤ 2ψR(s).

for all s > 0. Since ψR ∈ L1(R+), we conclude by means of the dominated convergence

theorem that limT 2
g un = T 2

g u in E2, proving the continuity of T 2
g .

Now we prove by means of Lemma 2.4 that T 2
g maps bounded sets of E2 into relatively

compact sets of E2. To this aim, let Ω be a subset of E2 bounded by a constant R > 0

and let ψR ∈ Γ2 be such that

|g(s, p2(s)u)| ≤ ψR(s) for all s ≥ 0 and all u ∈ [−R,R] .
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Hence for all u ∈ Ω, we have by Property (2.18) and (2.20)∥∥T 2
g u
∥∥

2
≤ supt≥0

∫ +∞
0

G(t, s) |g(s, u(s))| ds = supt≥0

∫ +∞
0

G(t, s) |g(s, p2(s)u(s))| ds

≤
∫ +∞

0
G(∞, s)ψR(s)ds <∞.

This estimate proves that T 2
g (Ω) is bounded in E2.

Let t1, t2 ∈ [η, ζ] ⊂ R+ and u ∈ Ω. We obtain from Property (2.23) of the function G

that ∣∣T 2
g u (t2)− T 2

g u (t1)
∣∣ ≤ ∫ +∞

0

|G(t2, s)−G(t1, s)| ds ‖ψR‖1 ≤
2 ‖ψR‖1

k2
|t2 − t1| .

Proving that T 2
g (Ω) is equicontinuous on compact intervals of R+.

We have for all u ∈ Ω and t ≥ 0∣∣T 2
g u(∞)− T 2

g u(t)
∣∣ ≤ ∫ +∞

0

(G(∞, s)−G(t, s))ψR(s)ds := H(t).

Taking in account Property (2.20) and the fact that

(G(∞, s)−G(t, s))ψR(s) ≤ 1

k2
ψR(s) for all s > 0,

where ψR ∈ L1 (R+), we obtain by means of the dominated convergence theorem that

limt→+∞H(t) = 0. Thus T 2
g (Ω) is equiconvergent at +∞ and the proof is complete.

Lemma 2.7. Let g : R+ × R → R be a Γ3-Caratheodory function with i = 1 or 2. Then

the operator T 3
g is completely continuous.

Proof. Observe that since g is Γ3-Caratheodory, for all u ∈ E3 we have T 3
g u ∈ E1. There-

fore considering the operator T 1,3
g : E3 → E1 with T 1,3

g u(t) = T 3
g u(t) and arguing as in the

proofs of Lemmas 2.5, we obtain that T 1,3
g is completely continuous. Since T 3

g = I1 ◦ T 1,3
g ,

where I1 is the continuous embeding of E1 in E3, we have that T 3
g is completely continu-

ous.

We obtain from Lemmas 2.5, 2.6 and 2.7 the following fixed point formulation for the

bvp (2.6).

Corollary 2.4. Assume that the nonlinearity f is a Γi-Caratheodory function for some

i ∈ {1, 2, 3}. Then ui ∈ Ei is a positive solution to the bvp (2.6) if and only if ui is a

fixed point of T if where T if : Ki → Ki is completely continuous.
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2.5 Proofs of main results

2.5.1 Auxilliary results

Let for q ∈ ∆i with i = 1, 2, 3, Liq : Ei → Ei be the linear operator defined by

Liqu(t) =

∫ +∞

0

G(t, s)q(s)u(s)ds for u ∈ Ei.

We have from Lemmas 2.5, 2.6 and 2.7 that for i = 1, 2, 3, the linear operator Liq is

compact. The main goal of this subsection is to prove that for i = 1, 2, 3, the operator Liq
has the SIJP at its spectral radius r(Liq) and in particular, L3

q is lower bounded on K3.

These results are requirement of Proposition 1.15, Theorem 1.19 and Theorem 1.20, and

so are needed for the proofs of the main results of this article. We start by introducing

some notations.

Let for T > 0, GT : R+ × R+ → R be the function defined by

GT (t, s) =

 G(t, s) if t ≤ T

G(T, s) if t ≥ T.

and for i = 1, 2,

ET =
{
u ∈ C

(
R+
)

: u(0) = 0 and u(t) = u(T ) for t ≥ T
}
,

XT =
{
u ∈ ET ∩ C2[0, T ] : u′(0) = 0

}
,

YT = XT ∩ C3[0, T ].

Equipped respectively with the norms

‖u‖T = supt∈[0,T ] |u(t)| for all u ∈ ET ,

‖u‖X = max(‖u‖T , ‖u′‖T , ‖u′′‖T ) for all u ∈ XT and

‖u‖Y = max(‖u‖X , ‖u′′′‖T ) for all u ∈ YT ,

ET , XT and YT become Banach spaces.

In what follows E+
T and X+

T denote respectively the cones of nonnegative functions in

the Banach spaces ET and XT .
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Let for q ∈ ∆ and T > 0, Liq,T : Ei → Ei, Lq,T : ET → ET , Aq,T : XT → XT ,

L̃q,T : ET → YT , and Ãq,T : XT → YT be the linear bounded operators defined by

Liq,Tu(t) =
∫ +∞

0
GT (t, s)q(s)u(s)ds for u ∈ Ei,

L̃q,Tu = Lq,Tu = Liq,Tu for u ∈ ET and

Aq,Tu(t) = Ãq,Tu = Lq,Tu for u ∈ XT .

Let I, J be respectively the compact embedding of YT into ET and YT into XT . Since

Lq,T = I ◦ L̃q,T and Aq,T = J ◦ Ãq,T , we have that Lq,T and Aq,T are compact operators.

Moreover, arguing as in the proofs of Lemmas 2.5 and 2.6, we obtain that for i = 1, 2,

Liq,T is a compact operator.

Lemma 2.8. The set OT defined by

OT = {u ∈ XT : u′ > 0 in (0, T ] and u′′(0) > 0} ,

is open in the Banach space XT .

Proof. We have Oc
T = F1 ∪ F2 where

F1 = {u ∈ XT : u′(t0) ≤ 0 for some t0 ∈ (0, T ]},

F2 = {u ∈ XT : u′′(0) ≤ 0}.

Since F2 is a closed set in XT , we have to show that F1 ⊂ F1 ∪ F2. To this aim, let

(un) ⊂ F1 with limun = u and let (xn) ⊂ (0, T ] be such u′(xn) ≤ 0 and limxn = x. We

distinguish the following two cases:

Case 1. x ∈ (0, T ]; In this case we have

u′(x) = limu′n(xn) ≤ 0,

proving that u ∈ F1.

Case 2. x = 0; In this case we have

u′′(0) = lim
n→∞

u′n(xn)

xn
≤ 0,

proving that u ∈ F2.
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Lemma 2.9. For i = 1 or 2, q in ∆i and T > 0, the operator Liq,T has the SIJP at its

spectral radius r(Liq,T ).

Proof. First, we prove that the operator Aq,T is strongly positive. Let u ∈ X+
T r {0} and

v = Aq,Tu, we have from Property (2.18) of the function G that

v′(t) =

∫ T

0

∂GT

∂t
(t, s)q(s)u(s)ds > 0 for all t ∈ (0, T ). (2.28)

Moreover, we have

v′′(0) =

∫ T

0

∂2GT

∂t2
(t, s)q(s)u(s)ds > 0. (2.29)

Clearly, (2.28) and (2.29) show that v = Aq,Tu ∈ OT ⊂ int
(
X+
T

)
, proving that

Aq,T
(
X+
T r {0}

)
⊂ OT ⊂ int

(
X+
T

)
and Aq,T is strongly positive. Therefore, we conclude

from Proposition 1.12 that the operator Aq,T has the SIJP at r(Aq,T ).

Now, we are able to prove that the operator Lq,T has the SIJP at r(Lq,T ). Let µ0 > 0

and u ∈ E+
T r {0} such that Lq,Tu ≥ µ0u, then U = Lq,Tu ∈ X+

T r {0} and satisfies

Lq,TU = Aq,TU ≥ µ0U. Hence, we have that µ0 ∈ ΛAq,T and µ0 ≤ sup ΛAq,T = r(Aq,T ).

Similarly if η0 ≥ 0 and v ∈ E+
T r {0} are such that Lq,Tv ≤ η0v, then V = Lq,Tv ∈

X+
T r {0} and satisfies Lq,TV = Aq,TV ≤ η0V. Therefore, we have that η0 ∈ Γ

Aq,T
and

η0 ≥ inf ΓAq,T = r(Aq,T ).

Therefore, we have proved that

sup ΛLq,T ≤ r (Aq,T ) = inf ΓAq,T = sup ΛAq,T ≤ inf ΓLq,T

and this combined with (1.46) leads to inf ΓLq,T = sup ΛLq,T = r(Aq,T ) and Lq,T has

the SIJP at r(Aq,T ). Since the cone E+
T is total in the Banach space ET , we have that

r (Lq,T ) is a positive eigenvalue. Hence taking in consideration Remark 2.1, we obtain

that r (Lq,T ) = r (Aq,T ) and Lq,T has the SIJP at r(Lq,T ).

Noticing that for all u ∈ Ki r {0} , U = Liq,Tu ∈ E+
T r {0} and Liq,TU = Lq,TU , then

arguing as above we obtain that Liq,T has the SIJP at r(Liq,T ). Ending the proof.

Theorem 2.4. For i = 1 or 2 and q in ∆i the operator Liq has the SIJP at its spectral

radius r(Liq).
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Proof. In order to make the use of Theorem 1.16 possible we prove that for a function q

in ∆i, T → Liq,T is increasing and limT→+∞ L
i
q,T = Liq. Let q in ∆i and T1, T2 be such that

0 < T1 < T2 <∞. For u ∈ Ki we have

Liq,T2u(t)− L1
q,T1

u(t) =


∫ +∞

0
(G(t, s)−G(t, s)) q(s)u(s)ds = 0 if t ≤ T1∫ T1

0
(G(t, s)−G(T1, s)) q(s)u(s)ds ≥ 0 if T1 < t ≤ T2∫ T1

0
(G(T2, s)−GT1(T1, s)) q(s)u(s)ds ≥ 0 if T2 < t,

proving that Liq,T2u− L
i
q,T1

u ∈ Ki and Liq,T1 ≤ Liq,T2 .

If i = 1, for u ∈ E1 with ‖u‖1 = 1 we have∣∣∣L1
qu(t)−L1

q,Tu(t)

p1(t)

∣∣∣ ≤ 1
1+t

∫ +∞

0

(G(t, s)−GT (t, s)) q(s)ds

=

 0 if t ≤ T

1
1+t

∫ +∞
0

(G(t, s)−G(T, s)) q(s)ds if t ≥ T.

Therefore,

supt≥0

∣∣∣L1
qu(t)−L1

q,Tu(t)

1+t

∣∣∣ = supt≥T

(
1

1+t

∫ +∞
0

(G(t, s)−G(T, s)) q(s)ds
)

≤ supt≥T

(
1

1+t

∫ +∞
0

G(t, s)q(s)ds
)
.

Since

lim
t→+∞

(
1

1+t

∫ +∞

0

G(t, s)q(s)ds

)
= 0,

we have

limT→+∞

(
sup‖u‖1=1

∥∥L1
qu− L1

q,Tu
∥∥

1

)
= limT→+∞

(
sup‖u‖1=1

(
supt≥0

∣∣∣L1
qu(t)−L1

q,Tu(t)

1+t

∣∣∣))
≤ limT→+∞

(
supt≥T

(
1

1+t

∫ +∞
0

G(t, s)q(s)ds
))

= 0.

Hence we obtain by Theorem 1.16 that the operator L1
q has the SIJP at its spectral

radius r(L1
q).

If i = 2, for u ∈ E2 with ‖u‖2 = 1 we have

∣∣L2
qu(t)− L2

q,Tu(t)
∣∣ ≤ ∫ +∞

0

(G(t, s)−GT (t, s)) q(s)ds

=

 0 if t ≤ T∫ +∞
0

(G(t, s)−G(T, s)) q(s)ds if t ≥ T.
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Hence we have∥∥L2
q − L2

q,T

∥∥ = sup
‖u‖2=1

∥∥L2
qu− L2

q,Tu
∥∥

2
≤
∫ +∞

0

(G(t, s)−G(T, s)) q(s)ds,

then by Lebesgue dominated convergence theorem we conclude that L2
q,T → L2

q as T →

+∞. By Theoerem 1.16 we obtain that the operator L2
q has the SIJP at its spectral radius

r(L2
q).

Theorem 2.5. For i = 1 or 2 and q in ∆3 the operator L3
q has the SIJP at its spectral

radius r(L3
q) and L3

q is lower bounded on the cone K3.

Proof. Notice first that for all u ∈ K3, L
3
qu ∈ K1. Indeed, we have for u ∈ K3 and for all

t > 0
L3
qu(t)

1 + t
≤ ||u||3

1 + t

∫ +∞

0

G(t, s)
(
eksq(s)

)
ds→ 0 as t→ +∞,

since lims→+∞ e
ksq(s) = 0, and(

L3
qu
)′

(t) =

∫ +∞

0

∂G

∂t
(t, s)q(s)u(s)ds > 0.

Let now, λ0 > 0 and u ∈ K3 r {0} be such that L3
qu ≤ λ0u. Then U = L3

qu satisfies

L1
qU = L3

qU ≤ λ0U and we have λ0 ≥ inf ΓL1
q

= r(L1
q). Similarly if θ0 > 0 and u ∈ K3r{0}

are such that L3
qu ≥ θ0u then U = L3

qu ∈ K1 r {0} and satisfies L1
qU = L3

qU ≥ θ0U and

we have θ0 ≤ sup ΛL1
q

= r(L1
q).

The above leads to r(L1
q) = inf ΓL1

q
= sup ΛL1

q
and the operator L3

q has the SIJP at

r(L1
q). Since the coneK3 is total in the Banach space E3 and Remark 2.1 claims that r

(
L1
q

)
is the unique positive eigenvalue of the positive operator L3

q, we have that r
(
L3
q

)
= r

(
L1
q

)
and L3

q has the SIJP at r(L3
q).

It remains to show that L3
q is lower bounded on K3. Let u ∈ K3, with ‖u‖3 = 1, we

have then for all t ≥ 0,

L3
qu(t) =

∫ +∞

0

G(t, s)q(s)u(s)ds ≥
∫ +∞

0

G(t, s)q(s)γ(s)ds,

leading to

inf
{∥∥L3

qu
∥∥

3
: u ∈ K3 ∩ ∂B(0E3 , 1)

}
≥ sup

t≥0
e−kt

∫ +∞

0

G(t, s)q(s)γ(s)ds > 0

and the operator L3
q is lower bounded on the cone K3. This ends the proof.
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2.5.2 Proof of Proposition 2.1

Let q ∈ ∆, we have from Lemma 2.2 that µ is a positive eigenvalue of the linear eigenvalue

problem (2.7) if and only if µ−1 is a positive eigenvalue of the compact operator Liq for

i = 1 or 2. Since Theorem 2.4 claims that Liq has the SIJP at r(Liq), we have from

Remark 2.1 that r(Liq) is the unique positive eigenvalue of Liq. Therefore, we have that

µ(q) = 1/r(Liq) is the unique positive eigenvalue of the linear eigenvalue problem (2.7).

Now, let φ be the eigenfunction associated with µ(q). Clearly if q ∈ ∆2 then φ is

bounded and if not then φ satisfies

φ(t) =
∫ +∞

0
G(t, s)q(s)φ(s)ds ≥ 1

k2

∫ t
1

(
−e−kt sinh(ks) + (1− e−ks)

)
q(s)φ(s)ds

≥ (1−e−k)
2

2k2

∫ t
1
q(s)φ(s)ds

≥ (1−e−k)
2

2k2
φ(1)

∫ t
1
q(s)ds.

(2.30)

Thus, by the contrary if φ is bounded then passing to the limits in (2.30), we obtain the

contradiction

+∞ > lim
t→+∞

φ(t) = lim
t→+∞

(
1− e−k

)2

2k2
φ(1)

∫ t

1

q(s)ds = +∞.

Ending the proof.

2.5.3 Proof of Theorem 2.1

Assume that Hypothesis (2.8) holds true (the case where (2.9) holds is checked similarly).

Let ε > 0 be small such that for i = 1, 2,

inf

{
f(t, pi(t)u)

pi(t)q(t)u
: t, u > 0

}
≥ (µ(q) + ε) .

Hence for all u ∈ Ki, we have

T ifu(t) =

∫ +∞

0

G(t, s)f(s, u(s))ds

=

∫ +∞

0

G(t, s)f(s, pi(s)
u(s)

pi(s)
)ds

≥ (µ(q) + ε)

∫ +∞

0

G(t, s)q(s)u(s)ds

= (µ(q) + ε)Liqu(t) := L̂iqu(t),
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and

r(L̂iq) =
µ(q) + ε

µ (q)
> 1.

Since Theorems 2.4 and 2.5 state that the operator L̂iq has the SIJP at r(L̂iq), Hypothesis

(1.64) holds and Proposition 1.15 guarantees that the operator T if has no fixed point in

Ki. At end, we conclude by Corollary 2.4 that the bvp (2.6) has no positive solution.

2.5.4 Proof of Theorem 2.2

Step 1. Existence in the case where (2.10) is satisfied:

Let ε ∈
(
0, µ(q∞)− f+

i,+∞(q∞)
)
there is R large such that

f(t, pi(t)u) ≤ (µ (q∞)− ε) pi(t)q∞(t)u for all t ≥ 0 and u ≥ R.

Since the nonlinearity f is a Γi-Caratheodory function, there is ψR ∈ Γi such that

f(t, pi(t)u) ≤ (µ (q∞)− ε) pi(t)q∞(t)u+ ψR (t) for all t, u ≥ 0,

and this leads to

f(t, u) ≤ (µ (q∞)− ε) q∞(t)u+ ψR (t) for all t, u ≥ 0. (2.31)

Let ε ∈
(
0, f−i,0(q0)− µ(q∞)

)
there is r > 0 such that for all t ≥ 0 and u ∈ [0, r]

(
f−i,0(q0) + ε

)
pi(t)q0(t)u ≥ f(t, pi(t)u) ≥ (µ (q∞) + ε) p1i(t)q0(t)u,

leading to

(
f−i,0(q0) + ε

)
q0(t)u ≥ f(t, u) ≥ (µ (q∞) + ε) q0(t)u for all t ≥ 0 and u ∈ [0, r] .

Therefore, for all t, u ≥ 0 we have

(
f−i,0(q0) + ε

)
q0(t)u+ f̂(t, u) ≥ f(t, u) ≥ (µ (q0) + ε) q0(t)u− f̃(t, u) (2.32)

where

f̃(t, u) = sup (0, (µ (q∞) + ε) q0(t)u− f(t, u)) ,

f̂(t, u) = sup
(
0, f(t, u)−

(
f−i,0(q0) + ε

)
q0(t)u

)
.
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Therefore, we obtain from (2.31) and (2.32) that

T ifu ≤ Liq∞u+ F∞u for all u ∈ Ki

and

Liq0u− F0u ≤ T ifu ≤ Liq0u+ F̂0u for all u ∈ Ki

where
F0u(t) =

∫ +∞
0

G(t, s)f̃(t, u (s))ds,

F̂0u(t) =
∫ +∞

0
G(t, s)f̂(t, u (s))ds,

F∞u(t) =
∫ +∞

0
G(t, s)ψR (s) ds,

r
(
Liq∞

)
=

(µ (q∞)− ε)
µ (q∞)

< 1 < r
(
Liq0
)

=
(µ (q0) + ε)

µ (q0)
.

We conclude from Theorem 2.4, Theorem 1.19 and Corollary 2.4 that the bvp (2.6)

admits a positive solution u ∈ Ki.

Step 2. Existence in the case where (2.11) is satisfied:

Let ε ∈
(
0, µi(q0)− f+

i,0(q0)
)
there is r > 0 small such that

f(t, pi(t)u) ≤ (µ (q∞)− ε) pi(t)q∞(t)u for all t ≥ 0 and u ≤ r,

leading to

f(t, u) ≤ (µ (q0)− ε) q0(t)u for all t ≥ 0 and u ≤ r.

Therefore, for all t, u ≥ 0 we have

f(t, u) ≤ (µ (q0)− ε) q0(t)u+ f̂(t, u) (2.33)

with

f̂(t, u) = sup (0, f(t, u)− (µ (q0)− ε) q0(t)u) .

Let ε ∈
(
0, f−i,∞(q∞)− µi(q∞)

)
there is R > 0 such that for all t ≥ 0 and u ≥ R,

(µ (q∞) + ε) pi(t)q∞(t)u ≤ f(t, pi(t)u) ≤
(
f+
i,∞(q∞) + ε

)
pi(t)q∞(t)u,

Since the nonlinearity f is a Γi-Caratheodory function, there is ψR ∈ Γi such that

f(t, u) ≤
(
f+
i,∞(q∞) + ε

)
q∞(t)pi(t)u+ ψR (t) for all t, u ≥ 0 .
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Therefore, for all t, u ≥ 0 we have

(µi (q∞) + ε) q∞(t)u− f̃(t, u) ≤ f(t, u) ≤
(
f+
i,∞(q∞) + ε

)
q∞(t)u+ ψR (t) (2.34)

where

f̃(t, u) = sup (0, (µ (q∞) + ε) q∞(t)u− f(t, u)) .

Therefore, we obtain from (2.33) and (2.34) that

T ifu ≤ Liq0u+ F0u for all u ∈ Ki

and

Liq∞u− F∞u ≤ T ifu ≤ Liq∞u+ F̂∞u for all u ∈ Ki

where
F0u(t) =

∫ +∞
0

G(t, s)f̂(t, u (s))ds,

F̂∞u(t) =
∫ +∞

0
G(t, s)ψR (s) ds,

F∞u(t) =
∫ +∞

0
G(t, s)f̃(t, u (s))ds,

r
(
Liq0
)

=
(µ (q∞)− ε)
µ (q∞)

< 1 < r
(
Liq∞

)
=

(µ (q0) + ε)

µ (q0)
.

We conclude from Theorem 2.4, Theorem 1.19 and Corollary 2.4 that the bvp (2.6)

admits a positive solution u ∈ Ki.

Step 3. Boundedness and unboundedness of the solution:

Evidently, if i = 1 the solution u is bounded. If i = 2 and Hypothesis (2.12) is fulfilled,

then the solution u satisfies

u(t) =
∫ +∞

0
G(t, s)f(s, u(s))ds ≥ (1−e−k)

2

2k2

∫ t
1
f(s, u(s))ds

=
(1−e−k)

2

2k2

∫ t
1
f(s, p1(s)

(
u(s)
p1(s)

)
)ds.

(2.35)

Thus, by the contrary if the solution u is bounded then passing to the limits in (2.35), we

obtain the contradiction

+∞ > lim
t→+∞

u(t) = lim
t→+∞

(
1− e−k

)2

2k2

∫ t

1

f(s, p1(s)

(
u(s)

p1(s)

)
)ds = +∞.

Ending the proof.
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2.5.5 Proof of Theorem 2.3

Step 1. Existence in the case where (2.13) is satisfied:

Let ε ∈
(
0, µ(q∞)− f+

i,3,∞(q∞)
)
, there is R large such that

f(t, p3(t)u) ≤ (µ (q∞)− ε) p3(t)q∞(t)u for all t ≥ 0 and u ≥ R.

Since the nonlinearity f is a Γ3-Caratheodory function, there is ψR ∈ Γ1 such that

f(t, p3(t)u) ≤ (µ (q∞)− ε) p3(t)q∞(t)u+ ψR (t) for all t, u ≥ 0,

and this leads to

f(t, u) ≤ (µ (q∞)− ε) q∞(t)u+ ψR (t) for all t, u ≥ 0 (2.36)

Also, we have from f−3,0(q0) > µ(q0) that for ε ∈
(
0, f−3,0(q0)− µ(q∞)

)
there is r > 0 such

that

f(t, p3(t)u) ≥ (µ (q∞) + ε) p3(t)q0(t)u for all t ≥ 0 and u ∈ [0, r] ,

leading to

f(t, u) ≥ (µ (q∞) + ε) q0(t)u for all t ≥ 0 and u ∈ [0, r] .

Therefore we have

f(t, u) ≥ (µ (q0) + ε) q0(t)u− f̃(t, u) for all t, u ≥ 0 (2.37)

where

f̃(t, u) = sup (0, (µ (q∞) + ε) q0(t)u− f(t, u)) .

Hence, we obtain from (2.36) and (2.37) that

L3
q0
u− F0u ≤ T 3

f u ≤ L3
q∞u+ F∞u for all u ∈ K3

where
F0u(t) =

∫ +∞
0

G(t, s)f̃(t, u (s))ds,

F∞u(t) =
∫ +∞

0
G(t, s)ψR (s) ds,

r
(
L3
q∞

)
=

(µ (q∞)− ε)
µ (q∞)

< 1 < r
(
L3
q0

)
=

(µ (q0) + ε)

µ (q0)
.
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We conclude from Theorem 2.5, Theorem 1.20 and Corollary 2.4 that the bvp (2.6)

admits a positive solution.

Step 2. Existence in the case where (2.14) is satisfied:

Let ε ∈
(
0, µ(q0)− f+

3,0(q0)
)
, there is r > 0 small such that

f(t, p3(t)u) ≤ (µ (q0)− ε) p3(t)q0(t)u for all t ≥ 0 and u ≤ r.

Hence for all t, u ≥ 0 we have

f(t, u) ≤ (µ (q0)− ε) q0(t)u+ f̃(t, u) (2.38)

where

f̃(t, u) = sup (0, (f(t, u)− (µ (q0)− ε) q0(t)u) .

Let ε ∈
(
0, f−3,∞(q0)− µ(q∞)

)
there is R > 0 largr such that

f(t, p3(t)u) ≥ (µ (q∞) + ε) p3(t)q∞(t)u for all t ≥ 0 and u ≥ R,

leading to

f(t, u) ≥ (µ (q∞) + ε) q∞(t)u for all t ≥ 0 and u ≥ R.

Therefore, we have

f(t, u) ≥ (µ (q∞) + ε) q∞(t)u− f̂(t, u) for all t, u ≥ 0 (2.39)

where

f̂(t, u) = sup(0, (µ (q∞) + ε) q∞(t)u− f(t, u)).

Hence, we obtain from (2.38) and (2.39) that

L3
q∞u− F∞u ≤ T 3

f u ≤ L3
q0
u+ F0u for all u ∈ K3

where
F0u(t) =

∫ +∞
0

G(t, s)f̃(t, u (s))ds,

F∞u(t) =
∫ +∞

0
G(t, s)f̂(t, u (s))ds,

r
(
L3
q0

)
=

(µ (q0)− ε)
µ (q0)

< 1 < r
(
L3
q∞

)
=

(µ (q∞) + ε)

µ (q∞)
.

We conclude from Theorem 2.5, Theorem 1.20 and Corollary 2.4 that the bvp (2.6)

admits a positive solution.
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Step 3. Boundedness and unboundedness of the solution:

Evidently, if f is a Γ4-Caratheodory function the solution u is bounded. If Hypothesis

(2.15) is fulfilled, then the solution u satisfies

u(t) =
∫ +∞

0
G(t, s)f(s, u(s))ds ≥ (1−e−k)

2

2k2

∫ t
1
f(s, u(s))ds

=
(1−e−k)

2

2k2

∫ t
1
f(s, p3(s)

(
u(s)
p3(s)

)
)ds.

(2.40)

Thus, by the contrary if the solution u is bounded then passing to the limits in (2.40) we

obtain the contradiction

lim
t→+∞

u(t) = lim
t→+∞

(
1− e−k

)2

2k2

∫ t

1

f(s, p3(s)

(
u(s)

p3(s)

)
)ds = +∞.

Ending the proof.



Chapter 3

Positive solution for singular

third-order BVPs on the half line with

first-order derivative dependence

3.1 Introduction and main results

Boundary value problems for third-order differential equations arise in many branches of

physics and engineering where, for physical considerations, the positivity of the solution

is required. For instance, Danziger and Elemergreen (see [31], p. 133) have studied the

following third-order linear differential equations:

α3u
′′′ + α2u

′′ + α1u
′ + (1 + k)u = kc, θ < c and

α3u
′′′ + α2u

′′ + α1u
′ + u = 0, θ > c.

(3.1)

These equations describe the variation of thyroid hormone with time. Here u = u(t)

is the concentration of thyroid hormone at time t and α3, α2, α2, k and c are constants.

A reduced version of the Hodgkin–Huxley model was proposed by Nagumo. He sug-

gested the class of third-order differential equation

u′′′ − cu′′ + f ′(u)u′ − b

c
u = 0 (3.2)

as a model exhibiting many of the features of the Hodgkin–Huxley equations, where f

is a regular function. The Hodgkin–Huxley model is a system of nonlinear differential

81
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equations that approximates the electrical characteristics of excitable cells such as neu-

rons and cardiac myocytes. Recall that the Hodgkin–Huxley model describes the ionic

mechanisms underlying the initiation and propagation of action potentials in the squid

giant axon.The model has played a vital role in biophysics and neuronal modelling. For

more details of Nagumo’s equations, we refer to the paper by McKeen [51].

The Kuramoto–Sivashinsky equation

ut + uxxxx + uxx +
1

2
u2 = 0

arises in a wide variety of physical phenomena. It was introduced to describe pattern

formulation in reaction diffusion systems, and to model the instability of flame front

propagation (see Y. Kuramoto and T. Yamada [46] and D. Michelson [52]). A traveling

wave solutions u = φ(x− ct) satisfies, after one integration, the third-order equation

λφ′′′(x) + φ′(x) + f(φ) = 0, (3.3)

where λ is a parameter depend on the constant c and f is an even function.

A three-layer beam is formed by parallel layers of different materials. For an equally

loaded beam of this type, Krajcinovic in [44] proved that the deflection u is governed by

the third order differential equation

−u′′′ + k2u′ = a, (3.4)

where k and a are physical parameters depending on the elasticity of the layers.

Study of existence of positive solutions for third-order bvps has received a great deal

of attention and was the subject of many articles, see, for instance, [29, 30, 32, 38, 37, 50,

58, 61, 65, 66, 67, 72], for the case of finite intervals and [1, 7, 8, 16, 24, 25, 26, 27, 41, 48,

49, 55, 60] for the case posed on the half-line. Naturally, in such boundary value problems,

the nonlinearity may have a singular dependence on time or on the space variable. This

was the case in the papers [8, 24, 25, 26, 49, 50, 61, 65, 66], which motivated this work.

We are concerned in this chapter by existence of a positive solution to the boundary

value problem (bvp for short), −u′′′(t) + k2u′(t) = φ (t) f(t, u(t), u′(t)), t > 0

u(0) = u′(0) = u′(+∞) = 0,
(3.5)
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where k is a positive constant, φ : (0,+∞)→ R+ is a measurable function,

f : R+ × (0,+∞)× (0,+∞)→ R+ is a continuous function and observe that the form of

the differential equation in (3.5) is more general to those of (3.1)-(3.4). Here the constant

k which may have a physical signification as in (3.4), will play an important role in finding

a suitable framework for a fixed point formulation of bvp (3.5).

By positive solution to the bvp (3.5), we mean a function u ∈ C2 (R+)∩W 3,1 (0,+∞)

such that u > 0 in (0,+∞) and u(0) = u′(0) = limt→+∞ u
′(t) = 0, satisfying the differen-

tial equation in (3.5).

In all this chapter, we let

γ1(t) = (e2kt − 1)e−4kt,

γ̃(t) = k∗ektγ1(t) = k∗
(
1− e−kt

)
(1 + e−kt)e−kt,

γ(t) =
∫ t

0
γ̃(s)ds =

k∗

3k

(
2− 3e−kt + e−3kt

)
=
k∗

3k

(
1− e−kt

)2
(2 + e−kt)

where k∗ = min(1, k)/2 and we assume that the functions φ and f satisfy the following

condition:

for all R > 0 there exists a function ΨR : (0,+∞)× (0,+∞)→ (0,+∞)

such that ΨR nonincreasing following its two variables,

f(t, ektw, ektz) ≤ ΨR (w, z) for all t, w, z ≥ 0 with |(w, z)| ≤ R,

lims→+∞ φ (s) ΨR

(
re−ksγ(s), re−ksγ̃(s)

)
= 0 and∫ +∞

0
φ (s) ΨR

(
re−ksγ(s), re−ksγ̃(s)

)
ds <∞ for all r ∈ (0, R] .

(3.6)

Remark 3.1. Notice that functions m in L1 (0,+∞) do not satisfy limt→+∞m(t) = 0.

Indeed, the function

m0(t) =


2n4t− n(2n4 − 1) if t ∈

[
n− 1

2n3 , n
]

−2n4t+ n(2n4 + 1) if t ∈
[
n, n+ 1

2n3

]
0 if not

is integrable since
∫ +∞

0
m0(t)dt ≤

∑
n≥1

1
n2 < ∞, and limn→+∞m0 (n) = limn→+∞ n =

+∞.

Hence, the condition
∫ +∞

0
φ (s) ΨR

(
re−ksγ(s), re−ksγ̃(s)

)
ds < ∞ in Hypothesis (3.6)

does not imply that lims→+∞ φ (s) ΨR

(
re−ksγ(s), re−ksγ̃(s)

)
= 0.



Positive solution for singular third-order BVPs 84

Remark 3.2. Observe that the case where the nonlinearity f satisfies the polynomial

growth condition

f(t, u, v) ≤ C (1 + uσ + vµ)

with c, σ, µ > 0, lims→+∞ φ (s) = 0 and
∫ +∞

0
φ (s) ds < ∞, is a particular case where

Condition (3.6) is satisfied.

Remark 3.3. Notice that if Hypothesis (3.6) holds then |φ|1 =
∫ +∞

0
φ (s) ds <∞. Indeed,

for R = 1 we have

∞ >

∫ +∞

0

φ (s) Ψ1

(
e−ksγ(s), e−ksγ̃(s)

)
ds ≥ Ψ1

(
γ+, γ+

)
|φ|1 ,

where γ+ = maxs>0

(
e−ks (γ(s) + γ̃(s))

)
.

The statement of the main result needs to introduce the following notations. Let

f 0 = lim sup
|(w,z)|→0

(
sup
t≥0

f(t, ektw, ektz)

w + z

)
, f∞ = lim sup

|(w,z)|→+∞

(
sup
t≥0

f(t, ektw, ektz)

w + z

)
,

f0 (θ) = lim inf
|(w,z)|→0

(
min
t∈Iθ

f(t, ektw, ektz)

w + z

)
, f∞ (θ) = lim inf

|(w,z)|→+∞

(
min
t∈Jθ

f(t, ektw, ektz)

w + z

)
,

where |(w, z)| = |w|+ |z|, for θ > 0 Iθ = [0, θ] and for θ > 1 Jθ = [1/θ, θ] .

Let also,

Γ = (Γ1 + Γ2)−1 ,

Θ0(θ) = (Θ1,0(θ) + Θ2,0(θ))−1 if θ > 0,

Θ∞(θ) = (Θ1,∞(θ) + Θ2,∞(θ))−1 if θ > 1,

where
Γ1 = supt>0

(
e−kt

∫ +∞
0

G(t, s)φ(s)ds
)
,

Γ2 = supt>0

(
e−kt

∫ +∞
0

G̃(t, s)φ(s)ds
)
,

Θ1,0(θ) = supt>0

(
e−kt

∫ θ
0
G(t, s)φ(s)e−ksγ (s) ds

)
,

Θ2,0(θ) = supt>0

(
e−kt

∫ θ
0
G̃(t, s)φ(s)e−ksγ (s) ds

)
,

Θ1,∞(θ) = supt>0

(
e−kt

∫ θ
1/θ
G(t, s)φ(s)e−ksγ (s) ds

)
,

Θ2,∞(θ) = supt>0

(
e−kt

∫ θ
1/θ
G̃(t, s)φ(s)e−ksγ (s) ds

)
,

and notice that Remark 3.3 guarantees that the constants Γ1 and Γ2 are finite.
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Theorem 3.1. Assume that Hypothesis (3.6) holds and one of the following conditions

f 0 < Γ, Θ∞(θ) < f∞ (θ) for some θ > 1 (3.7)

f∞ < Γ, Θ0(θ) < f0 (θ) for some θ > 0 (3.8)

is satisfied. Then the bvp (3.5) admits at least one positive solution.

Remark 3.4. For the particular case where f(t, u, v) =
(
e−kt(u+ v)

)σ with σ > 0 and

σ 6= 1, we have f 0 = 0 and f∞ (θ) = +∞ for all θ > 0 if σ > 1, and f∞ = 0 and

f0 (θ) = +∞ for all θ > 0 if σ < 1. Hence, Conditions (3.7) and (3.8) in Theorem 3.1

correspond to the superlinear case and the sublinear case of the nonlinearity f, respectively.

3.2 Example

Consider the case of the bvp (3.5) where φ(t) = e−αt, α > 0 and

f(t, u, v) = A

(
u+ v

ekt + u+ v

)p
+B

(
u+ v

ekt

)q
,

with A,B > 0, p ≤ 1 and q ≥ 1.

Thus, for all t, w, z > 0 we have

f(t, ektw, ektz) = A

(
w + z

1 + w + z

)p
+B (w + z)q ,

and if |(w, z)| = w + z < R, then

f(t, ektw, ektz) = A

(
w + z

1 + w + z

)p
+B (w + z)q ≤ ΨR (w, z) ,

where

ΨR (w, z) =

 ARp +BRq if p ≥ 0,

A (w + z)p (1 +R)−p +BRq if p < 0.

Thus, if p ≥ 0 then

lim
s→+∞

φ(s)ψR
(
Re−ksγ (s) , Re−ksγ̃ (s)

)
= (ARp +BRq) lim

s→+∞
e−αs = 0,

∫ +∞

0

φ(s)ψR
(
Re−ksγ (s) , Re−ksγ̃ (s)

)
ds =

ARp +BRq

α
<∞,
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and if p < 0 then

φ(s)ψR
(
Re−ksγ (s) , Re−ksγ̃ (s)

)
= BRqe−αs+

A (1 +R)−p (k∗R)p e−(α+pk)s
(
1− e−ks

)p
ρ(s),

where

ρ(s) =

(
1

3k

(
1− e−ks

) (
2 + e−ks

)
+ e−ks

(
1 + e−ks

))p
satisfies (

max

(
2,

2

3k

))p
≤ ρ(s) ≤

(
min

(
2,

2

3k

))p
.

Therefore, we have

lim
s→+∞

φ(s)ψR
(
Re−ksγ (s) , Re−ksγ̃ (s)

)
= 0 if and only if α > −pk

and ∫ +∞
0

φ(s)ψR
(
Re−ksγ (s) , Re−ksγ̃ (s)

)
ds <∞ if and only if

α > −pk and p > −1.

Straightforward computations lead to

f∞ = f∞ (θ) = f∞ =

 +∞ si q > 1,

B si q = 1,
for all θ > 1

f 0 = f0 (θ) = f0 =


+∞ si p < 1,

A si p = 1 < q,

A+B si p = q = 1,

for all θ > 0.

We conclude from Theorem 3.1 and all the above calculations that this case of the

bvp (3.5) admits a positive solution in each of the following situations:

1. p = 1, q = 1, B < Γ and A+B > Θ0 (θ) for some θ > 0,

2. p = 1, q > 1, and A > Θ0 (θ) for some θ > 0,

3. p ∈ [0, 1) , q = 1 and B < Γ,

4. p ∈ (−1, 0) , q = 1, B < Γ and α > −pk.
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3.3 Fixed point formulation

In all this paper, we let

E = {u ∈ C1(R+,R) : limt→+∞ e
−ktu(t) = 0, limt→+∞ e

−ktu′(t) = 0}.

Endowed with the norm ‖u‖ = ‖u‖k +‖u′‖k where ‖u‖k = supt≥0

(
e−kt|u(t)|

)
, E becomes

a Banach space.

The following lemma is an adapted version for the case of the space E of Corduneanu’s

compactness criterion ([19], p. 62). It will be used in this work to prove that some operator

is completely continuous.

Lemma 3.1. A nonempty subset M of E is relatively compact if the following conditions

hold:

(a) M is bounded in E,

(b) the sets {u : u(t) = e−ktx(t), x ∈ M} and {u : u(t) = e−ktx′(t), x ∈ M} are locally

equicontinuous on [0,+∞), and

(c) the sets
{
u : u(t) = e−ktx(t), x ∈M

}
and

{
u : u(t) = e−ktx′(t), x ∈M

}
are equicon-

vergent at +∞.

In all this work, P denotes the cone in E defined by

P = {u ∈ E : u′(t) ≥ γ̃(t)||u|| and u(t) ≥ γ(t)||u|| for all t > 0} .

Let G, G̃ : R+ × R+ → R+ be the functions defined by

G(t, s) =
1

k2

 e−ks (cosh (kt)− 1) if t ≤ s,

−e−kt sinh (ks) +
(
1− e−ks

)
if s ≤ t,

G̃(t, s) =
∂G

∂t
(t, s) =

1

k

 e−ks sinh (kt) if t ≤ s,

e−kt sinh (ks) if s ≤ t.

Lemma 3.2. The functions G and G̃ satisfy:

(a) For all t, s ∈ R+ we have G(t, s) ≥ 0 and G̃(t, s) ≥ 0.
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(b) The functions G and G̃ are continuous and for all s ≥ 0, we have

G(0, s) = G̃(0, s) = 0. (3.9)

(c) For all t, s ≥ 0, we have

G(t, s) ≤ 1

k2
(1− e−ks) ≤ 1

k2
, G̃(t, s) ≤ G̃(s, s) ≤ 1

2k
.

(d) For all s, t, τ ≥ 0, we have

G̃(t, s)e−kt ≥ γ1(t)G̃(τ, s)e−kτ .

(e) For all t2, t1 ≥ 0, we have

∣∣e−kt2G(t2, s)− e−kt1G(t1, s)
∣∣ ≤ 3

2k
|t2 − t1| (3.10)∣∣∣e−kt2G̃(t2, s)− e−kt1G̃(t1, s)

∣∣∣ ≤ |t2 − t1| (3.11)

Proof. Assertions (a), (b) and (c) are easy to prove, Assertion (d) is proved in [23].

Assertion (e) is obtained by the mean value theorem.

Lemma 3.3. Assume that Hypothesis (3.6) holds, then there exists a continuous operator

T : P r {0} → P such that for all r, R with 0 < r < R, T
(
P ∩

(
B(0, R)rB(0, r)

))
is

relatively compact and fixed points of T are positive solutions to the bvp (3.5).

Proof. The proof is divided into four steps.

Step 1. Existence of the operator T. To this aim let u ∈ P r {0} . By means of

Hypothesis (3.6) with R = ‖u‖, for all t > 0 we have∫ +∞
0

G(t, s)φ (s) f(s, u(s), u′(s))ds

≤ 1
k2

∫ +∞
0

φ (s) f(s, u(s), u′(s))ds

= 1
k2

∫ +∞
0

φ (s) f(s, eks
(
e−ksu(s)

)
, eks

(
e−ksu′(s)

)
)ds

≤ 1
k2

∫ +∞
0

φ (s) ΨR

(
Re−ksγ(s), Re−ksγ̃(s)

)
ds <∞

and ∫ +∞
0

G̃(t, s)φ (s) f(s, u(s), u′(s))ds ≤ 1
2k

∫ +∞
0

φ (s) f(s, u(s), u′(s))ds

≤ 1
2k

∫ +∞
0

φ (s) ΨR

(
Re−ksγ(s), Re−ksγ̃(s)

)
ds <∞.
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Thus, let v and w be the functions defined by

v(t) =
∫ +∞

0
G(t, s)φ (s) f(s, u(s), u′(s))ds

w(t) =
∫ +∞

0
G̃(t, s)φ (s) f(s, u(s), u′(s))ds.

Since for all t > 0,

v(t) = − e−kt

k2

∫ t
0

sinh(ks)φ (s) f(s, u(s), u′(s))ds

+ 1
k2

∫ t
0
(1− e−ks)φ (s) f(s, u(s), u′(s))ds

+ cosh(kt)−1
k2

∫ t
0
e−ksφ (s) f(s, u(s), u′(s))ds,

we see that v is differentiable on R+ and for all t ≥ 0,

v′(t) = e−kt

k

∫ t
0

sinh(ks)φ (s) f(s, u(s), u′(s))ds

+ sinh(kt)
k

∫ +∞
t

e−ksφ (s) f(s, u(s), u′(s))ds

=
∫ +∞

0
G̃(t, s)φ (s) f(s, u(s), u′(s))ds = w(t)

,

with w continuous on R+.

At this stage we have proved that v belongs to C1(R+,R) and we need to prove that

v ∈ E. Thus, we have to show that limt→+∞ e
−ktv(t) = limt→+∞ e

−ktv′(t) = 0. Clearly for

all t > 0, v(t), v′(t) > 0 and we have

e−ktv(t) = e−kt
∫ +∞

0
G(t, s)φ (s) f(s, u(s), u′(s))ds

≤ e−kt

k2

∫ +∞
0

φ (s) ΨR

(
Re−ksγ(s), Re−ksγ̃(s)

)
ds

and
e−ktv′(t) = e−kt

∫ +∞
0

G̃(t, s)φ (s) f(s, u(s), u′(s))ds

≤ e−kt

2k

∫ +∞
0

φ (s) ΨR

(
Re−ksγ(s), Re−ksγ(s)

)
ds.

The above two estimates prove that limt→+∞ e
−ktv(t) = limt→+∞ e

−ktv′(t) = 0.

Now for all t, τ > 0, we have from Assertion (d) in Lemma 3.2

v′(t) = ekt
∫ +∞

0
e−ktG̃(t, s)φ(s)f(s, u(s), u′(s))ds

≥ ektγ1(t)
∫ +∞

0
e−kτ G̃(τ, s)φ(s)f(s, u(s), u′(s))ds

= ektγ1(t)e−kτv′(τ).

Passing to the supremum on τ , we obtain

v′(t) ≥ ektγ1(t) ‖v′‖k for all t > 0. (3.12)
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Since for all t > 0

v(t) =

∫ t

0

ekξ
(
e−kξv′(ξ)

)
dξ ≤

∫ t

0

ekξdξ ‖v′‖k ≤
ekt

k
‖v′‖k ,

we have

‖v′‖k ≥ k ‖v‖k . (3.13)

Therefore, (3.12) combined with (3.13) leads to

v′(t) ≥ kektγ1(t) ‖v‖k for all t > 0,

then to

v′(t) ≥ γ̃(t) ‖v‖ for all t > 0. (3.14)

Integrating (3.14), yields v(t) ≥ γ(t) ‖v‖ for all t > 0.

Thus, we have proved that v ∈ P and the operator T : P r {0} → P where for

u ∈ P r {0}

Tu(t) =

∫ +∞

0

G(t, s)φ (s) f(s, u(s), u′(s))ds,

is well defined.

Step 2. The operator T is continuous. Let (un) be a sequence in P r {0}

such that limn→∞ un = u∞ in E with u∞ in P r {0} and let R > r > 0 be such that

(un) ⊂ B(0, R) r B(0, r). If ΨR is the function given by Hypothesis (3.6), then for all

n ≥ 1 we have

‖Tun − Tu∞‖k = supt≥0 |Tun (t)− Tu∞ (t)|

≤ 1
k2

∫ +∞
0

φ (s) |f(s, un(s), u′n(s))− f((s, u∞(s), u′∞(s))| ds

and ∥∥(Tun)′ − (Tu∞)′
∥∥
k

= supt≥0

∣∣(Tun)′ (t)− (Tu∞)′ (t)
∣∣

≤ 1
2k

∫ +∞
0

φ (s) |f(s, un(s), u′n(s))− f((s, u∞(s), u′∞(s))| ds.

Because of

|f(s, un(s), u′n(s))− f((s, u∞(s), u′∞(s)))| → 0, as n→ +∞

for all s > 0 and

φ (s) |f(s, un(s), u′n(s))− f((s, u∞(s), u′∞(s))|

≤ 2φ (s) ΨR

(
re−ksγ(s), re−ksγ(s)

)
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with
∫ +∞

0
φ (s) ΨR

(
re−ksγ(s), re−ksγ(s)

)
ds < ∞, the Lebesgue dominated convergence

theorem guarantees that limn→∞ ‖Tun − Tu∞‖ = 0. Hence, we have proved that T is

continuous.

Step 3. For R > r > 0, T
(
P ∩

(
B(0, R)rB(0, r)

))
is relatively compact. Set

Ω = P ∩
(
B(0, R)rB(0, r)

)
and let Φr,R be defined by

Φr,R(s) = ΨR

(
re−ksγ(s), re−ksγ(s)

)
where ΨR is the function given by Hypothesis (3.6). For all u ∈ Ω, we have

‖Tu‖ ≤
(

1

k2
+

1

2k

)∫ +∞

0

φ (s) Φr,R(s)ds <∞,

proving that TΩ is bounded in E.

Now, let t1, t2 ∈ [η, ξ], for all u ∈ Ω, we have from (3.10) and (3.11) the estimates

|e−kt1Tu(t1)− e−kt2Tu(t2)| ≤
∫ +∞

0
|e−kt1G(t1, s)− e−kt2G(t2, s)|φ (s) Φr,R(s)ds

≤ 3
2k
|t2 − t1|

∫ +∞
0

φ (s) Φr,R(s)ds

and

|e−kt1(Tu)′(t1)− e−kt2(Tu)′(t2)| ≤
∫ +∞

0
|e−kt1G̃(t1, s)− e−kt2G̃(t2, s)|φ (s) Φr,R(s)ds

≤ |t2 − t1|
∫ +∞

0
φ (s) Φr,R(s)ds.

Proving the equicontinuity of TΩ on bounded intervals.

For all u ∈ Ω and t > 0, we have

|e−ktTu(t)| ≤ e−kt

k2

∫ +∞

0

φ (s) Φr,R(s)ds

and

|e−kt (Tu)′ (t)| ≤ e−kt

k

∫ +∞

0

φ (s) Φr,R(s)ds.

Thus, the equiconvergence of TΩ follows from the fact that limt→∞ e
−kt = 0. In view of

Lemma 3.1, TΩ is relatively compact in E.

Step 4. Fixed points of T are positive solutions to the bvp (3.5). Let

u ∈ P r {0} be a fixed point of T , then for all t > 0 we have

u(t) =

∫ +∞

0

G(t, s)φ (s) f((s, u(s), u′(s))ds and

u′(t) =

∫ +∞

0

G̃(t, s)φ (s) f((s, u(s), u′(s))ds.
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These with (3.9) lead to u(0) = u′(0) = 0.

Differentiating twice in

u′(t) =
∫ +∞

0
G̃(t, s)φ (s) f((s, u(s), u′(s))ds

= e−kt

k

∫ t
0

sinh(ks)φ (s) f(s, u(s), u′(s))ds

+ sinh(kt)
k

∫ +∞
t

e−ksφ (s) f(s, u(s), u′(s))ds,

we see that −u′′′ (t) + ku′(t) = φ (t) f(t, u(t), u′(t)) for all t > 0.

It remains to prove that limt→+∞ u
′(t) = 0. We have

u′(t) = 1
kekt

∫ t
0

sinh(ks)φ (s) f(s, u(s), u′(s))ds

+ sinh(kt)
k

∫ +∞
t

e−ksφ (s) f(s, u(s), u′(s))ds.

By means of Hypothesis (3.6) with R = ‖u‖ and the L’Hopital’s rule, we obtain

limt→+∞
1

kekt
∫ t

0
sinh(ks)φ (s) f(s, u(s), u′(s))ds

≤ limt→+∞
1

kekt

∫ t
0

sinh(ks)φ (s) ΨR

(
Re−ksγ(s), Re−ksγ(s)

)
ds

= limt→+∞
sinh(kt)
kekt

φ (t) ΨR

(
Re−ktγ(t), Re−ktγ(t)

)
ds = 0.

Also, we have
sinh(kt)

k

∫ +∞
t

e−ksφ (s) f(s, u(s), u′(s))ds

≤ sinh(kt)e−kt

k

∫ +∞
t

φ (s) f(s, u(s), u′(s))ds→ 0 as t→ +∞.

The above calculations show that limt→+∞ u
′(t) = 0, completing the proof of the

lemma.

3.4 Proof of Theorem 3.1

Step 1. Existence in the case where (3.7) holds

Let ε > 0 be such that (f 0 + ε) < Γ. For such a ε, there exists R1 > 0 such

that f(t, ektw, ektz) ≤ (f 0 + ε)(w + z) for all w, z with |(w, z)| ≤ R1 and let Ω1 =

{u ∈ E, ‖u‖ < R1} .

Therefore, for all u ∈ P ∩ ∂Ω1 and all t > 0, we have

e−ktTu(t) = e−kt
∫ +∞

0
G(t, s)φ(s)f(s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

)
)ds

≤ (f 0 + ε) e−kt
∫ +∞

0
G(t, s)φ(s)e−ks (u(s) + u′(s)))ds

≤ ‖u‖ (f 0 + ε) e−kt
∫ +∞

0
G(t, s)φ(s)ds

≤ Γ1 (f 0 + ε) ‖u‖ ,
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leading to

‖Tu‖k = sup
t>0

(
e−ktTu(t)

)
≤
(
f 0 + ε

)
Γ1 ‖u‖ . (3.15)

Similarly, we have

e−kt (Tu)′ (t) = e−kt
∫ +∞

0
G̃(t, s)φ(s)f(s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

)
)ds

≤ (f 0 + ε) e−kt
∫ +∞

0
G̃(t, s)φ(s)e−ks (u(s) + u′(s)))ds

≤ ‖u‖ (f 0 + ε) e−kt
∫ +∞

0
G̃(t, s)φ(s)ds

≤ (f 0 + ε) Γ2 ‖u‖ ,

leading to ∥∥(Tu)′
∥∥
k

= sup
t>0

(
e−kt (Tu)′ (t)

)
≤
(
f 0 + ε

)
Γ2 ‖u‖ . (3.16)

Summing (3.15) with (3.16), we obtain

‖Tu‖ ≤ ‖u‖
(
f 0 + ε

)
Γ−1 ≤ ‖u‖ .

Now, suppose that f∞ (θ) > Θ∞(θ) for some θ > 1 and let ε > 0 be such that

(f∞ (θ) − ε) > Θ∞(θ). There exists R̃2 > R1 such that f(t, ektw, ektz) > (f∞ (θ) −

ε) (w + z) for all t ∈ Jθ and all w, z with |(w, z)| ≥ R̃2. Let γθ = min
{
γ(s)e−ks : s ∈ Jθ

}
,

R2 = R̃2/γθ and Ω2 = {u ∈ E : ‖u‖ < R2} . For all u ∈ P ∩ ∂Ω2, and all t > 0 we have

‖Tu‖k ≥ e−ktTu(t) ≥ e−kt
∫ θ

1/θ
G(t, s)φ(s)f(s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

)
)ds

≥ (f∞ (θ)− ε)e−kt
∫ θ

1/θ
G(t, s)φ(s)

(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f∞ (θ)− ε)e−kt
∫ θ

1/θ
G(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f∞ (θ)− ε)e−kt
∫ θ

1/θ
G(t, s)φ(s)e−ksγ (s) ds

and ∥∥(Tu)′
∥∥
k
≥ e−kt

∫ θ
1/θ
G̃(t, s)φ(s)f(s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

)
)ds

≥ (f∞ (θ)− ε)e−kt
∫ θ

1/θ
G̃(t, s)φ(s)

(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f∞ (θ)− ε)e−kt
∫ θ

1/θ
G̃(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f∞ (θ)− ε)e−kt
∫ θ

1/θ
G̃(t, s)φ(s)e−ksγ (s) ds.

The above estimates lead to

‖Tu‖k ≥ (f∞ (θ)− ε)Θ1,∞(θ) ‖u‖ ,∥∥(Tu)′
∥∥
k
≥ (f∞ (θ)− ε)Θ2,∞(θ) ‖u‖
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then to

‖Tu‖ ≥ (f∞ (θ)− ε) (Θ∞(θ))−1 ‖u‖ ≥ ‖u‖ .

We deduce from Assertion (H3)of Theorem 1.14that T admits a fixed point u ∈ P with

R1 ≤ ‖u‖1 ≤ R2 which is, by Lemma 3.3, a positive solution to Problem (3.5).

Step 2. Existence in the case where (3.8) holds

Suppose that f0 (θ) > Θ0(θ) for some θ > 0 and let ε > 0 be such that (f0 (θ)− ε) >

Θ0(θ). There exists R1 such that f(t, ektw, ektz) > (f0 (θ) − ε) (w + z) for all w, z with

|(w, z)| ≤ R1. Let Ω1 = {u ∈ E : ‖u‖ < R1} , for all u ∈ P ∩ ∂Ω1 and all t > 0, we have

‖Tu‖k ≥ e−ktTu(t) ≥ e−kt
∫ θ

0
G(t, s)φ(s)f(s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

)
)ds

≥ (f0 (θ)− ε)e−kt
∫ θ

0
G(t, s)φ(s)

(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f0 (θ)− ε)e−kt
∫ θ

0
G(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f0 (θ)− ε)e−kt
∫ θ

0
G(t, s)φ(s)e−ksγ (s) ds

and∥∥(Tu)′
∥∥
k
≥ e−ktTu(t) ≥ e−kt

∫ θ
0
G̃(t, s)φ(s)f(s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

)
)ds

≥ (f0 (θ)− ε)e−kt
∫ θ

0
G̃(t, s)φ(s)

(
e−ksu(s) + e−ksu′(s)

)
ds

≥ (f0 (θ)− ε)e−kt
∫ θ

0
G̃(t, s)φ(s)e−ksu(s)ds

≥ ‖u‖ (f0 (θ)− ε)e−kt
∫ θ

0
G̃(t, s)φ(s)e−ksγ (s) ds.

The above estimates lead to

‖Tu‖k ≥ (f0 (θ)− ε)Θ1,0(θ) ‖u‖ ,∥∥(Tu)′
∥∥
k
≥ (f0 (θ)− ε)Θ2,0(θ) ‖u‖

then to

‖Tu‖ ≥ (f0 (θ)− ε) (Θ0(θ))−1 ‖u‖ ≥ ‖u‖ .

Let ε > 0 be such that (f∞ + ε) < Γ, there exists Rε > 0 such that

f(t, ektw, ektz) ≤ (f∞ + ε)(w + z) + ΨRε (w, z) , for all t, w, z > 0,

where ΨRε is the functions given by Hypothesis (3.6) for R = Rε.
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Let
Φε (t) = ΨRε

(
Rεe

−ksγ(s), Rεe
−ksγ̃(s)

)
R̃2 =

2ΨεΓ

Γ− (f∞ + ε)

with Φε = supt≥0

(
e−kt

∫ +∞
0

G(t, s)Φε (s) ds
)

and notice that Γ−1(f∞ + ε)R + 2Φε ≤ R for all R ≥ R̃2.

Let R2 > max(R1, R̃2, Rε) and Ω2 = {u ∈ E, ‖u‖ < R2} . For all u ∈ P ∩ ∂Ω2 and all

t > 0, we have

e−ktTu(t) =
∫ +∞

0
G(t, s)φ(s)f(s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

)
)ds

≤ e−kt
∫ +∞

0
G(t, s)φ(s)

(
(f∞ + ε)

(
e−ksu(s) + e−ksu′(s)

)
+Ψε

(
e−ksu(s), e−ksu′(s)

))
ds

≤ (f∞ + ε) ‖u‖ e−kt
∫ +∞

0
G(t, s)φ(s)ds+ Ψε

≤ (f∞ + ε) ‖u‖Γ1 + Ψε,

leading to

‖Tu‖k ≤ (f∞ + ε) ‖u‖Γ1 + Ψε. (3.17)

Similarly, we have

e−kt (Tu)′ (t) =
∫ +∞

0
G̃(t, s)φ(s)f(s, eks

(
e−ksu(s)

)
, eks

(
e−ksu′(s)

)
)ds

≤ e−kt
∫ +∞

0
G̃(t, s)φ(s)

(
(f∞ + ε)

(
e−ksu(s) + e−ksu′(s)

)
+Ψε

(
e−ksu(s), e−ksu′(s)

))
ds

≤ (f∞ + ε) ‖u‖ e−kt
∫ +∞

0
G̃(t, s)φ(s)ds+ Ψε

≤ (f∞ + ε) ‖u‖Γ2 + Ψε,

leading to ∥∥(Tu)′
∥∥
k
≤ (f∞ + ε) Γ2 ‖u‖+ Ψε. (3.18)

Summing (3.17) with (3.18), we obtain

‖Tu‖ ≤ (f∞ + ε) Γ−1 ‖u‖+ 2Ψε ≤ ‖u‖ .

We deduce from Assertion (H4)of Theorem 1.14that T admits a fixed point u ∈ P with

R1 ≤ ‖u‖ ≤ R2 which is, by Lemma 3.3, a positive solution to Problem (3.5).

Thus, the proof of Theorem 3.1 is complete.
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3.5 Comments

1. Notice that the obtained positive solution in Theorem 3.1 is nondecreasing and

bounded. Indeed, if u ∈ P r {0} is a fixed point of T with ‖u‖ = R, then for all

t > 0

u′(t) = (Tu)′ (t) =

∫ +∞

0

G̃(t, s)φ(s)f(s, u(s), u′(s))ds > 0

and Hypothesis (3.6) leads to

u(t) = Tu(t) =

∫ +∞

0

G(t, s)φ(s)f(s, u(s), u′(s))ds

≤
∫ +∞

0

G(t, s)φ(s)ΨR(
(
e−ksu(s)

)
,
(
e−ksu′(s)

)
)ds

≤ 1

k2

∫ +∞

0

φ(s)ΨR(Re−ksγ(s), Re−ksγ̃(s))ds <∞.

2. From the above comment arise the following question. Why we looked for solutions

in the space E instead of looking for them in the natural space

F = {u ∈ C1 (R+) : max (supt>0 |u(t)| , supt>0 |u′(t)|) <∞}?

The answer is: There is no cone in F where we can realize the inequality ‖Tu‖ ≥ ‖u‖

in Theorem 1.14.

3. Notice that for θ > 1, Γ < Θ0(θ) < Θ∞(θ) and let the interval I = (Γ,Θ∞(θ)). In

the particular case where the limits

f 0 = lim
|(w,z)|→0

f(t, ektw, ektz)

w + z
, f∞ = lim

|(w,z)|→∞

f(t, ektw, ektz)

w + z

exist, then Theorem 3.1 claims that the bvp (3.5) admits a positive solution if

f 0 and f∞ are oppositely located relatively to the interval I, that is the ratio(
f(t, ektw, ektz)/w + z

)
crosses the interval I. Two questions arise from this observa-

tion; what happens if
(
f(t, ektw, ektz)/w + z

)
> Θ∞(θ) or

(
f(t, ektw, ektz)/w + z

)
<

Γ for all t, w, z > 0?

The second question is: are the constants Γ,Θ0(θ),Θ∞(θ) the best ones? In an

other manner, does exist two positive constants α and β with Γ < α < β < Θ0(θ)

such that if f 0 and f∞ are oppositely located relatively to the interval (α, β), then

the bvp (3.5) admits a positive solution?
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4. Let p > 1 and consider the case where E is equipped with the norm ‖u‖p =

p
√
‖u‖pk + ‖u‖pk. In this case, under Hypothesis (3.6), we prove by the same argu-

ments that the bvp (3.5) admits a positive solution if f 0 < Γp < Θp
∞(θ) < f∞ (θ)

for some θ > 1 or f∞ < Γ < Θp
0(θ) < f0 (θ) for some θ > 0, where

Γp = ((Γ1)p + (Γ2)p)
−1/p

,

Θp
0(θ) = ((Θ1,0(θ))p + (Θ2,0(θ))p)

−1/p for θ > 0,

Θp
∞(θ) = ((Θ1,∞(θ))p + (Θ2,∞(θ))p)

−1/p for θ > 0.

Noticing that Γp > Γ, Θp
0(θ) > Θ0(θ) and Θp

∞(θ) > Θp,∞(θ) we understand that the

problem posed in the above comment is a serious problem.



Chapter 4

Positive solution for third-order

singular semipositone BVPs on the half

line with first-order derivative

dependence

4.1 Introduction

This article deals with existence of positive solutions to the third-order boundary value

problem (bvp for short), −u′′′(t) + k2u′(t) = f(t, u(t), u′(t)), a.e. t ∈ I

u(0) = u′(0) = u′(+∞) = 0,
(4.1)

where k is a positive constant, I = (0,+∞) and f : I3 → R is a Carathéodory function,

that is

• f(·, u, v) is a measurable function for all u, v ∈ I, and

• f(t, ·, ·) is continuous for a.e. t ∈ I.

Throughout, we assume that There exists a measurable function q : I → R+ such that∫ +∞
0

eksq(s)ds <∞ and f(t, u, v) + q(t) ≥ 0 for all t, u, v > 0,
(4.2)

98
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for all ρ > 0 there exist two functions ωρ : (0,+∞)→ R+

and Ψρ : (0,+∞)× (0,+∞)→ (0,+∞) such that

Ψρ is nonincreasing following its two variables,∣∣f(t, ektw, ektz)
∣∣ ≤ ωρ (t) Ψρ (w, z) for all t, w, z ≥ 0 with |(w, z)| ≤ ρ,

for all r ∈ (0, ρ] , lims→+∞ ωρ (s) Ψρ

(
re−ksγ(s), re−ksγ̃(s)

)
= 0 and∫ +∞

0
ωρ (s) Ψρ

(
re−ksγ(s), re−ksγ̃(s)

)
ds <∞,

(4.3)

where

γ1(t) = (e2kt − 1)e−4kt,

γ̃(t) = k∗ektγ1(t) = k∗
(
1− e−kt

)
(1 + e−kt)e−kt,

γ(t) =
∫ t

0
γ̃(s)ds =

k∗

3k

(
2− 3e−kt + e−3kt

)
=
k∗

3k

(
1− e−ks

)2
(2 + e−ks),

and k∗ = min(1, k)/2.

By positive solution to the bvp (4.1), we mean a function u ∈ C2 (R+)∩W 3,1 (I) such

that u > 0 in I and u(0) = u′(0) = limt→+∞ u
′(t) = 0, satisfying the differential equation

in (4.1).

Notice that the nonlinearity f may exhibit singular at the solution and at its derivative.

It is well known that the bvp (4.1) is called positone if q(t) = 0 a.e. t ∈ I , and

semipositone if q(t) > 0 a.e. t in some interval of I.

BVPs for third-order differential equation originate from many applications in physics

and engineering. For example, the deflection of a curved beam having a constant or

varying cross section, a three layer beam, electromagnetic waves, gravity driven flows

produce third-order boundary-value problems. During the last two decades, there has

been many works dealing with several aspects of such BVPs, see, [1, 16, 30, 39, 56, 62]

and the references therein. Often, for physical considerations, the positivity of the solution

is required and many authors established existence and multiplicity results for positive

solutions to such bvps posed on bounded intervals, where the nonlinear term is positive

and satisfies either superlinear or sublinear growth conditions, see [17, 29, 32, 58, 70, 65,

66, 68, 69] and the references therein.

Because of a lack of compactness, the case where such bvps are posed on unbounded

intervals is somewhat complicated and they has not been so extensively investigated.

This case have been considered in [7, 8, 16, 24, 25, 26, 27, 41, 48, 49, 55, 60] and, to
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the authors’ knowledge, there are no papers in the literature considering the singular

semipositone version of such bvps. Thus, the purpose of this paper is to fill in the gap in

this area.

Our approach in this work is based on a fixed point formulation of the bvp (4.1) and

the main existence result in this work is then proved by the Guo-Krasnoselskii’s version

of expansion and compression of a cone principal in a Banach space.

4.2 Fixed point formulation

In all this chapter, we let

E = {u ∈ C1(R+,R) : limt→+∞ e
−ktu(t) = 0, limt→+∞ e

−ktu′(t) = 0}.

Endowed with the norm ‖u‖ = ‖u‖k + ‖u′‖k where ‖u‖k = supt≥0 e
−kt|u(t)|, E becomes a

Banach space.

The following lemma is an adapted version to the case of the space E of Corduneanu’s

compactness criterion ([19], p. 62). It will be used in this work to prove that some

operator is compact.

Lemma 4.1. A nonempty subset M of E is relatively compact if the following conditions

hold:

(a) M is bounded in E,

(b) the sets {u : u(t) = e−ktx(t), x ∈ M} and {u : u(t) = e−ktx′(t), x ∈ M} are locally

equicontinuous on [0,+∞), and

(c) the sets {u : u(t) = e−ktx(t), x ∈ M} and {u : u(t) = e−ktx′(t), x ∈ M} are

equiconvergent at +∞.

Throughout, P denotes the cone in E defined by

P = {u ∈ E : u′(t) ≥ γ̃(t)||u|| and u(t) ≥ γ(t)||u|| for all t > 0}
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Let G, G̃ : R+ × R+ → R+ be the functions defined by

G(t, s) =
1

k2

 e−ks (cosh (kt)− 1) if t ≤ s,

−e−kt sinh (ks) +
(
1− e−ks

)
if s ≤ t,

G̃(t, s) =
∂G

∂t
(t, s) =

1

k

 e−ks sinh (kt) if t ≤ s,

e−kt sinh (ks) if s ≤ t.

Lemma 4.2. The functions G and G̃ satisfy:

(a) For all t, s ∈ R+ we have G(t, s) ≥ 0 and G̃(t, s) ≥ 0.

(b) The functions G and G̃ are continuous and for all s ≥ 0, we have

G(0, s) = G̃(0, s) = 0. (4.4)

(c) For all t, s ≥ 0, we have

G(t, s) ≤ 1

k2
(1− e−ks) ≤ 1

k2
, G̃(t, s) ≤ G̃(s, s) ≤ 1

2k
.

(d) For all s, t, τ ≥ 0, we have

e−ksG̃(s, s) ≥ G̃(t, s)e−kt ≥ γ̃(t)G̃(τ, s)e−kτ .

(e) For all t2, t1 ≥ 0, we have∣∣e−kt2G(t2, s)− e−kt1G(t1, s)
∣∣ ≤ 3

2k
|t2 − t1| (4.5)∣∣∣e−kt2G̃(t2, s)− e−kt1G̃(t1, s)

∣∣∣ ≤ |t2 − t1| (4.6)

Proof. Assertions (a), (b) and (c) are easy to prove, Assertion (d) is proved in [26].

Assertion (e) is obtained by the mean value theorem.

Lemma 4.3. Assume that Hypothesis (4.2) holds, then the function φ where for t ∈

I, φ(t) =
∫ +∞

0
G(t, s)q(s)ds, satisfies the following upper bound:

φ(t) ≤ φ∗γ (t) , φ′(t) ≤ φ∗γ̃ (t) for all t ∈ I

where

φ∗ = max

(
sup
t>0

φ(t)

γ (t)
, sup
t>0

φ′(t)

γ̃ (t)

)
.
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Proof. For all t > 0, we have

φ′(t)

γ̃ (t)
=

3k

k∗

∫ +∞
0

G̃(t, s)q(s)ds

(1− e−kt) (1 + e−kt) e−kt
≤ 3k

k∗

∫ +∞
0

G̃(t, s)q(s)ds

(1− e−kt) e−kt

=
3

2k∗

(∫ t
0

sinh (ks) q(s)ds

(1− e−kt)
+

sinh (kt)
∫ +∞
t

e−ksq(s)ds

(1− e−kt) e−kt

)

=
3

2k∗

(∫ t
0

sinh (ks) e−kseksq(s)ds

(1− e−kt)
+

sinh (kt)
∫ +∞
t

e−2kseksq(s)ds

(1− e−kt) e−kt

)

≤ 3

2k∗
sinh (kt) e−kt

(1− e−kt)

∫ +∞

0

eksq(s)ds =
3

2k∗
(
1 + e−kt

) ∫ +∞

0

eksq(s)ds

≤ 3

k∗

∫ +∞

0

eksq(s)ds := φ.

This proves that supt>0 (φ′(t)/γ̃ (t)) <∞.

Therefore, we have

φ(t)

γ (t)
=

∫ t
0
φ′(s)ds

γ (t)
≤
∫ t

0
φγ̃(s)ds

γ (t)
= φ,

leading to supt>0 (φ(t)/γ (t)) <∞. The proof is complete.

Lemma 4.4. Assume that Hypothesis (4.2) and (4.3) hold. Then for all r, R ∈ R with

R > r > φ∗ there exists a compact operator Tr,R : P ∩
(
B (0, R)rB (0, r)

)
→ P such that

if v is a fixed point of Tr,R then u = v − φ is a positive solution to the bvp (4.1).

Proof. Let r, R be two real numbers such that R > r > φ∗ and set

Ω = P ∩
(
B (0, R)rB (0, r)

)
. In all this proof, we let by Φ the function defined by

Φ(s) = ωR (s) ΨR

(
(r − φ∗) e−ksγ(s), (r − φ∗) e−ksγ̃(s)

)
,

where ωR and ΨR are the functions given by Hypothesis (4.3) for ρ = R and φ∗ is the

constant given by Lemma 4.3. The proof is divided into four steps.

Step 1. Existence of the operator Tr,R. We have from the definition of the cone

P and Lemma 4.3 that, for all v ∈ Ω and all t > 0,

v(t)− φ (t) ≥ (‖v‖ − φ∗) γ (t) ≥ (r − φ∗) γ (t) > 0.



Positive solution for singular semipositone third-order BVPs 103

v′(t)− φ′ (t) ≥ (‖v‖ − φ∗) γ̃ (t) ≥ (r − φ∗) γ̃ (t) > 0.

Therefore, for all v ∈ Ω the expression

fr,Rv (t) = f (t, v (t)− φ (t) , v′(t)− φ′ (t)) + q (t) (4.7)

is well defined.

Let v ∈ Ω, for all s > 0 we have

fr,Rv (s) = f(s, eks
(
e−ks (v(s)− φ (s))

)
, eks

(
e−ks (u′(s)− φ′ (s))

)
) + q (s)

≤ Φ(s) + q(s),

then ∫ +∞

0

G(t, s)fr,Rv (t) ds ≤ 1

k2

∫ +∞

0

fr,Rv (s) ds ≤ 1

k2

∫ +∞

0

(Φ(s) + q(s)) ds <∞

and ∫ +∞

0

G̃(t, s)fr,Rv(s)ds ≤ 1

2k

∫ +∞

0

fr,Rv(s)ds ≤ 1

2k

∫ +∞

0

(Φ(s) + q(s)) ds <∞.

Thus, let w and z be the function defined by

w(t) =
∫ +∞

0
G(t, s)fr,Rv(s)ds , z(t) =

∫ +∞
0

G̃(t, s)fr,Rv(s)ds.

Since for all t > 0,

w(t) = −e
−kt

k2

∫ t

0

sinh(ks)fr,Rv(s)ds+
1

k2

∫ t

0

(1− e−ks)fr,Rv(s)ds

+
cosh(kt)− 1

k2

∫ t

0

e−ksfr,Rv(s)ds,

we see that w is differentiable on R+ and for all t ≥ 0

w′(t) =
e−kt

k

∫ t

0

sinh(ks)fr,Rv(s)ds+
sinh(kt)

k

∫ +∞

t

e−ksfr,Rv(s)ds

=

∫ +∞

0

G̃(t, s)fr,Rv(s)ds = z(t)

with z continuous on R+.
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At this stage, we have proved that w belongs to C1(R+,R) and we need to prove that

w ∈ E. Thus, we have to prove that limt→+∞ e
−ktv(t) = limt→+∞ e

−ktw′(t) = 0.. Clearly

for all t > 0, w(t), w′(t) > 0 and we have

e−ktw(t) = e−kt
∫ +∞

0

G(t, s)fr,Rv(s)ds ≤ e−kt

k2

∫ +∞

0

(Φ(s) + q(s)) ds

e−ktw′(t) = e−kt
∫ +∞

0

G̃(t, s)fr,Rv(s)ds ≤ e−kt

2k

∫ +∞

0

(Φ(s) + q(s)) ds.

The above two estimates show that limt→+∞ e
−ktw(t) = limt→+∞ e

−ktw′(t) = 0.

Now for all t, τ > 0, we have from Assertion (c) in Lemma 4.2

w′(t) = ekt
∫ +∞

0

e−ktG̃(t, s)fr,Rv(s)ds

≥ ektγ1(t)

∫ +∞

0

e−kτ G̃(τ, s)fr,Rv(s)ds

= ektγ1(t)e−kτw′(τ).

Passing to the supremum on τ , we obtain

w′(t) ≥ ektγ1(t) ‖w′‖k for all t > 0. (4.8)

Since for all t > 0

w(t) =

∫ t

0

ekξ
(
e−kξw′(ξ)

)
dξ ≤

∫ t

0

ekξdξ ‖w′‖k ≤
ekξ

k
‖w′‖k

we have

‖w′‖k ≥ k ‖w‖k . (4.9)

Therefore, (4.8) Combined with (4.9) leads to

w′(t) ≥ kektγ1(t) ‖w′‖k for all t > 0

then to

w′(t) ≥ γ̃(t) ‖w‖ for all t > 0. (4.10)

Integrating (4.10), yields w(t) ≥ γ(t) ‖w‖ for all t > 0.

Thus, we have proved that w ∈ P and the operator Tr,R : Ω→ P where for v ∈ Ω

Tr,Ru(t) =

∫ +∞

0

G(t, s)fr,Rv(s)ds,
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is well defined.

Step 2. The operator Tr,R is continuous. Let (vn) be a sequence in Ω such that

limn→∞ vn = v in E. For all n ≥ 1, we have

‖Tr,Rvn − Tr,Rv‖k = sup
t>0

e−kt |Tr,Rvn (t)− Tv (t)|

≤ 1

k2

∫ +∞

0

|fr,Rvn(s)− fr,Rv(s)| ds

and

∥∥(Tr,Rvn)′ − (Tr,Rv)′
∥∥
k

= sup
t>0

e−kt
∣∣(Tr,Rvn)′ (t)− (Tr,Rv)′ (t)

∣∣
≤ 1

2k

∫ +∞

0

|fr,Rvn(s)− fr,Rv(s)| ds.

Because of

|fr,Rvn(s)− fr,Rv(s)| → 0, as n→ +∞

for all s > 0 and

|fr,Rvn(s)− fr,Rv(s)| ≤ 2Φ (s) with
∫ +∞

0

Φ (s) ds <∞,

Lebesgues dominated convergence theorem guarantees that

limn→∞ ‖Tr,Rvn − Tr,Rv‖ = 0. Hence, we have proved that T is continuous.

Step 3. Tr,R is compact. For all v ∈ Ω, we have

‖Tr,Ru‖ ≤ max

(
1

k2
,

1

2k

)∫ +∞

0

(Φ (s) + q(s)ds) <∞,

proving that T (Ω) is bounded in E.

Now, let t1, t2 ∈ [η, ξ] ⊂ R+, for all v ∈ Ω, we have from (4.5) and (4.6) the estimates

|e−kt1Tr,Rv(t1)− e−kt2Tr,Rv(t2)| ≤
∫ +∞

0

|e−kt1G(t1, s)− e−kt2G(t2, s)|Φ (s) ds

≤ 3

2k
|t2 − t1|

∫ +∞

0

Φ (s) ds
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and

|e−kt1(Tr,Rv)′(t1)− e−kt2(Tr,Rv)′(t2)| ≤
∫ +∞

0

|e−kt1G̃(t1, s)− e−kt2G̃(t2, s)|Φ (s) ds

≤ |t2 − t1|
∫ +∞

0

Φ (s) ds.

Proving the equicontinuity of T (Ω) on bounded intervals.

For all v ∈ Ω and t > 0, we have

|e−ktTv(t)| ≤ e−kt

k2

∫ +∞

0

(Φ (s) + q(s)) ds

and

|e−kt (Tu)′ (t)| ≤ e−kt

k

∫ +∞

0

(Φ (s) + q(s)) ds.

Thus, the equiconvergence of T (Ω) follows from the fact that limt→∞ e
−kt = 0.

In view of Lemma 4.1, the operator is compact.

Step 4. if v is a fixed point of T then u = v − φ is a positive solution to the

bvp (4.1). Let v ∈ Ω be a fixed point of T , then for all t > 0

u(t) = v(t)− φ (t) ≥ (‖v‖ − φ∗) γ (t) ≥ (r − φ∗) γ (t) > 0,

u′(t) = v′(t)− φ′ (t) ≥ (‖v‖ − φ∗) γ̃ (t) ≥ (r − φ∗) γ̃ (t) > 0,

and u = v − φ satisfies

u(t) = −φ (t) +

∫ +∞

0

G(t, s) (f((s, u(s), u′(s)) + q(s)) ds

= −
∫ +∞

0

G(t, s)q(s)ds+

∫ +∞

0

G(t, s) (f((s, u(s), u′(s)) + q (s)) ds

=

∫ +∞

0

G(t, s)f((s, u(s), u′(s))ds

and

u′(t) =

∫ +∞

0

G̃(t, s)f((s, u(s), u′(s))ds.

These with (4.4) lead to u(0) = u′(0) = 0.
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Differentiating twice in

u′(t) =

∫ +∞

0

G̃(t, s)φ (s) f((s, u(s), u′(s))ds

=
e−kt

k

∫ t

0

sinh(ks)φ (s) f(s, u(s), u′(s))ds

+
sinh(kt)

k

∫ +∞

t

e−ksφ (s) f(s, u(s), u′(s))ds,

we see that −u′′′ (t) + ku′(t) = f(t, u(t), u′(t)) for all t > 0.

It remains to prove that lim
t→+∞

u′(t) = 0. We have

u′(t) ≤ 1

kekt

∫ t

0

sinh(ks) |f(s, u(s), u′(s))| ds+
sinh(kt)

k

∫ +∞

t

e−ks |f(s, u(s), u′(s))| ds

≤ 1

kekt

∫ t

0

sinh(ks)ΦR (s) ds+
sinh(kt)

k

∫ +∞

t

e−ksΦR (s) ds,

lim
t→+∞

sinh(kt)

k

∫ +∞

t

e−ksΦR (s) ds ≤ 1

k
lim
t→+∞

sinh(kt)

e−kt

∫ +∞

t

ΦR (s) ds = 0

and the L’Hopital’s rule leads to

lim
t→+∞

1

kekt

∫ t

0

sinh(ks)ΦR (s) ds = lim
t→+∞

sinh(kt)

kekt

∫ +∞
t

e−ksΦR (s) ds

e−kt

=
1

k
lim
t→+∞

sinh(kt)

kekt
lim
t→+∞

ΦR (t) = 0.

The above calculations show that limt→+∞ u
′(t) = 0, completing the proof of the

lemma.

4.3 Main result

The main result of this paper needs to introduce the following notations. For α ∈ L1 (I)

with α (t) ≥ 0 a.e. t > 0 and σ > 1, we let

Γ (α) = sup
t>0

e−kt
∫ +∞

0

G (t, s)α (s) ds+ sup
t>0

e−kt
∫ +∞

0

G̃ (t, s)α (s) ds,

∆ (α, σ) = sup
t>0

e−kt
∫ σ

1/σ

G(t, s)α (s) ds+ sup
t>0

e−kt
∫ σ

1/σ

G̃(t, s)α (s) ds.

Theorem 4.1. Suppose that Hypotheses (4.2) and (4.3) hold and
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(a) there exist a function α ∈ L1 (I) and R1 > max (φ∗,Γ (α)) such that

f(t, ektu, ektv) + q(t) ≤ α (t)

for a.e. t > 0 and all u, v ∈ I with |(u, v)| ≤ R1,

(b) there exist σ > 1, a function β ∈ L1 (I) and R2 ∈ (φ∗,∆ (β, σ)) with R2 6= R1 such

that

f(t, ektu, ektv) + q(t) ≥ β (t) ,

for a.e. t ∈ [1/σ, σ], all u ∈ [γσ (R2 − φ∗) , R2] and all

v ∈ [γ̃σ (R2 − φ∗) , R2] , where γσ = mins∈[1/σ,σ]

(
e−ksγ (s)

)
and γ̃σ = mins∈[1/σ,σ]

(
e−ksγ̃ (s)

)
.

Then, the bvp (4.1) admits a bounded positive solution.

Proof. Without loss of generality, assume that R1 < R2 and let T = TR1,R2 be the operator

given by Lemma 4.4. The following estimates hold, for all v ∈ P ∩∂B (0, R1) and all t > 0,

e−ktTv(t) =

e−kt
∫ +∞

0
G(t, s)f(s, eks (v(s)− φ(s)) e−ks, eks (v′(s)− φ′(s)) e−ks)ds

+e−kt
∫ +∞

0
G(t, s)q(s)ds

≤ e−kt
∫ +∞

0
G (t, s)α (s) ds

≤ supt>0 e
−kt ∫ +∞

0
G (t, s)α (s) ds.

Passing to the supremum in the above estimates, we get

‖Tv‖k ≤ sup
t>0

e−kt
∫ +∞

0

G (t, s)α (s) ds. (4.11)

Similarly, we have

e−kt (Tv)′ (t) = e−kt
∫ +∞

0

G̃(t, s) (f(s, v(s)− φ(s), v′(s)− φ′(s)) + q(s)) ds

≤ e−kt
∫ +∞

0

G̃ (t, s)α (s) ds ≤ sup
t>0

e−kt
∫ +∞

0

G̃ (t, s)α (s) ds,

leading to

‖ (Tv)′ ‖k ≤ sup
t>0

e−kt
∫ +∞

0

G̃ (t, s)α (s) ds. (4.12)
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Summing (4.11) with (4.12), we obtain

‖Tv‖ ≤ sup
t>0

e−kt
∫ +∞

0

G̃ (t, s)α (s) ds+ sup
t>0

e−kt
∫ +∞

0

G̃ (t, s)α (s) ds

= Γ (α) ≤ R1 = ‖v‖ .

For all v ∈ P ∩ ∂B (0, R2) and s ∈ [1/σ, σ],

R2 ≥ (v(s)− φ(s)) e−ks ≥ (R2 − φ∗) γ(s)e−ks = (R2 − φ∗) γσ
R2 ≥ (v′(t)− φ′(s)) e−ks ≥ (R2 − φ∗) γ̃(s)e−ks = (R2 − φ∗) γ̃σ

(4.13)

Assumption (b) and (4.13) lead to the following estimates

‖Tu‖k ≥

supt>0

(
e−kt

∫ σ
1/σ

G(t, s)f(s, eks (v(s)− φ(s)) e−ks, eks (v′(s)− φ′(s)) e−ks)ds

+e−kt
∫ σ

1/σ
G(t, s)q(s)ds

)
≥ supt>0

(
e−kt

∫ σ
1/σ

G(t, s)β (s) ds
)

and similarly

‖ (Tv)′ ‖k ≥ sup
t∈>0

(
e−kt

∫ σ

1/σ

G̃(t, s)β (s) ds

)
.

Summing the above inequalities, we obtain

‖Tv‖ ≥ supt>0

(
e−kt

∫ σ
1/σ

G̃(t, s)β (s) ds
)

+ supt>0

(
e−kt

∫ σ
1/σ

G̃(t, s)β (s) ds
)

= ∆ (β, σ) ≥ R2 = ‖v‖ .

Thus, it follows from Assertion (H3) in Theorem 1.14 that TR1,R2 admits a fixed point

v such that R1 ≤ ‖v‖ ≤ R2. Then by Lemma 4.4, u = v − φ is a positive solution to the

bvp (4.1).

Now, we have to prove that u is bounded. Since for all t > 0,

‖v‖+ ‖φ‖ ≥ e−ktu(t) = e−kt (v(t)− φ(t)) ≥ (‖v‖ − φ∗) e−ktγ(t),

‖v‖+ ‖φ‖ ≥ e−ktu′(t) = e−kt (v′(t)− φ′(t)) ≥ (‖v‖ − φ∗) e−ktγ̃(t),

we obtain from Hypothesis (4.3) for ρ = ‖u‖ ,

u(t) = Tu(t) ≤
∫ +∞

0

G(t, s) |f(s, u(s), u′(s))| ds

≤ 1

k2

∫ +∞

0

ωρ (s) Ψρ(
(
e−ksu(s)

)
,
(
e−ksu′(s)

)
)ds

≤ 1

k2

∫ +∞

0

ωρ (s) ΨR((‖v‖ − φ∗) e−ksγ(s), (‖v‖ − φ∗) e−ksγ̃(s))ds <∞.
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The proof is complete.

Set for σ > 1

fσ = lim inf
|(w,z)|→+∞

(
min

t∈[1/σ,σ]

f(t, ektw, ektz)

w + z

)
.

We obtain from Theorem 4.1 the following corollary:

Corollary 4.1. Suppose that Hypotheses (4.2) and (4.3) hold and

(c) there exists R1 > φ∗ such that Γ(α1) < R1 where

α1 = ωR1 (s) ΨR1

(
(R1 − φ∗) e−ksγ(s), (R1 − φ∗) e−ksγ̃(s)

)
+ q(s),

(d) there exists σ > 1, such that fσ∆ (β0, σ) > 1, where β0(s) = e−ksγ (s) .

Then, the bvp (4.1) admits a positive solution.

Proof. Clearly, Condition (a) of in Theorem 4.1 is satisfied for α = α1. We have to prove

that Condition (b) also is satisfied. Let ε > 0 be such that (fσ − ε)∆ (β0, σ) > 1. There

exists R∞ such that f(t, ektw, ektz) > (fσ− ε) (w + z) for all t ∈ [1/σ, σ] and all w, z with

|(w, z)| ≥ R∞. Let

R2 = 1 + sup

(
R1, φ

∗ +
R∞
γσ

,
φ∗ (fσ − ε) ∆ (β0, σ)

(fσ − ε) ∆ (β0, σ)− 1

)
and

β (t) = (fσ − ε) (R2 − φ∗) γ (s) e−ks + q(s).

where γσ = mins∈[1/σ,σ]

(
e−ksγ (s)

)
and notice that

(fσ − ε) ∆ (β0, σ) (R2 − φ∗) > R2.

We have then

∆ (β, σ) = supt>0

(
e−kt

∫ σ
1/σ

G(t, s)
(
(fσ − ε) (R2 − φ∗) γ (s) e−ks + q(s)

)
ds
)

+ supt>0

(
e−kt

∫ σ
1/σ

G̃(t, s)
(
(fσ − ε) (R2 − φ∗) γ (s) e−ks + q(s)

)
ds
)

≥ (fσ − ε) ∆ (β0, σ) (R2 − φ∗) > R2.

The proof is complete.
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4.4 Example

Consider the case of the bvp (4.1) where

f(t, u, v) = e−δt

((
u+ v

ekt

)p
+

B (u+ v)2

Bekt + u+ v
− 1

)

where δ > (1− p) k, p ∈ (−1, 0) and B > 0.

Clearly, Hypothesis (4.2) is satisfied for q(t) = e−δt and we have

f(t, ektw, ektz) = e−δt

(
(w + z)p +

Bekt (w + z)2

B + w + z
− 1

)
,

leading to

∣∣f(t, ektw, ektz)
∣∣ =

∣∣∣∣∣e−(δ−k)t

(
e−kt (w + z)p +

B (w + z)2

B + w + z
− e−kt

)∣∣∣∣∣
≤ e−(δ−k)t

(
(w + z)p +

B (w + z)2

B + w + z
+ 1

)
.

Therefore, Hypothesis (4.3) is satisfied for all ρ > 0 with

ωρ (s) = e−(δ−k)s and Ψρ (w, z) = (w + z)p +
Bρ2

B + ρ
+ 1

for all s > 0 and all w, z > 0 with |(w, z)| = w + z ≤ ρ.

We have then

ωρ (s)ψρ
(
ρe−ksγ (s) , ρe−ksγ̃ (s)

)
= e−(δ−k)s

(
1 + Bρ2

B+ρ

)
+ (k∗ρ)p e−(δ+pk−2k)s

(
1− e−ks

)p
θ(s)

where

θ(s) =

(
1

3k

(
1− e−ks

) (
2 + e−ks

)
+ e−ks

(
1 + e−ks

))p
and satisfies (

2 +
1

k

)p
≤ θ(s) ≤ 2p < 1.

Because of δ > (1− p) k and p ∈ (−1, 0) , we have

lims→+∞ ωR(s)ψR
(
Re−ksγ (s) , Re−ksγ̃ (s)

)
= 0 and∫ +∞

0
ωR(s)ψR

(
Re−ksγ (s) , Re−ksγ̃ (s)

)
ds <∞.



Positive solution for singular semipositone third-order BVPs 112

For

α1(t) = ωR(t)ψR
(
(R− φ∗) e−ksγ (t) , (R− φ∗) e−ksγ̃ (t)

)
+ q(t)

straightforward computations lead to

Γ (α1) ≤ Λ (R) = k̃

(
λ (p, δ, k) (R− φ∗)p + µ (δ, k)

B (R− φ∗)2

B + (R− φ∗)
+ η (δ, k)

)

where
k̃ =

1

k2
+

1

2k
, µ (δ, k) =

∫ +∞
0

ωR(s)ds =
1

δ − k
,

η =
∫ +∞

0
(ωR(s) + q(s)) ds =

1

δ − k
+

1

δ
.

and

λ (p, δ, k) = (k∗)p
∫ +∞

0
e−(δ+pk−k)s

(
1− e−ks

)p
θ(s)ds

≤ (k∗)p
∫ +∞

0
e−(δ+pk−k)s

(
1− e−ks

)p
ds

≤ (k∗)p
(∫ 1/k

0

(
1− e−ks

)p
ds+ (1− e−1)

p ∫ +∞
1/k

e−(δ+pk−k)sds
)

≤ (k∗)p
(

2−p
∫ 1/k

0
(ks)p (2− ks)p ds+

(1−e−1)
p

(δ+pk−k)

)
≤ (k∗)p

(
2−pkp

∫ 1/k

0
spds+

(1−e−1)
p

(δ+pk−k)

)
≤ (k∗)p

(
1

2pk(p+1)
+

(1−e−1)
p

(δ+pk−k)

)
.

We have

Λ (1 + φ∗) = k̃

(
λ (p, δ, k) + µ (δ, k)

B

B + 1
+ η (δ, k)

)
≤ k̃ (λ (δ, k) + µ (δ, k) + η (δ, k)) .

The above calculations show that for k large enough we have

Λ (1 + φ∗) ≤ 1 ≤ 1 + φ∗

and Condition (c) in Corollary 4.1 is satisfied for R = 1 + φ∗.

Clearly, we have fσ = +∞ for all σ > 1. Therefore, we conclude from Corollary 4.1

and all the above calculations that if k is large enough then this case of the bvp (4.1)

admits a positive solution.



CONCLUSION

The problem we studied is the existence of the positive solution for a certain class of the

third-order differential equations with the same boundary conditions. This problem is

converted to the problem of the fixed point and our work allowed us to give contributions

in the fixed point theory. We have imposed assumptions on the nonlinearity depending

on wether it depends on which variables and in order to extend the study to the class of

the third-order differential equations, other suitable hypothesis in the case of continuity

and singularity of the nonlinearity. In addition to the problem of the existence of the

positive solution and under suitable Hypotheses of the nonlinearity, we are interested

to the question of boundedness of the solution. The eigenvalue criteria used to prove

existence of a positive solution and the the behavior of the nonlinearity are the basis of

our results. This work will permit us to investigate of solution which is not necessarily

positive because the aim of any work is to develop other techniques to solve the differential

equations. This certainly will help to the future study for another class.
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