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Notations

The following notations will be used throughout this thesis.

1. N : The monoid of natural numbers.

2. Z : The ring of integers.

3. C : The field of complex numbers.

4. R : The field of real numbers.

5.
(
n
k

)
: The binomial coefficient .

6. Zpn : The residue ring of integers modulo pn.

7. Fpn : The finite field with cardinal pn.

8. Fq : The algebraic closure of Fq.

9. |R| : The cardinal of R.

10. GR(pn,m) : The Galois ring with characteristic pn and cardinality pnm.

11. Mn(R) : The set of n× n matrices with entries from R.

12. Tn(R) : The set of all n× n upper triangular matrices with entries from R.

13. T (R,S,M) : The generalized triangular matrix ring with R,S are rings and M is an

(R,S)-bimodule

14. diag(M) : The diagonal of the matrix M .

15. C(p)( or Cp) : The companion matrix of p.

16. R∗ : The set of nonzero elements of R.

17. GLn(R) : The general linear group of n× n invertible matrices over R.

18. U(R) : The set of all units of R.

19. N(R) : The set of all nilpotent elements of R.

20. J(R) : The Jacobson radical of R.

21. Id(R) : The idealizer of R.
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22. End(R) : The set of all endomorphisms on R.

23. Aut(R) : The set of all automorphisms on R.

24. HomR(M,N) : The set of all R-homomorphisms from M into N .

25. EndR(M) : The set of all endomorphisms of the left R-module M .

26. AutR(M) : The set of all automorphisms of the left R-module M

27. R[t;σ, δ] : The skew polynomial ring (also called Ore extension).

28. (σ, δ)-PLT : The (σ, δ) pseudo-linear transformation.

29. Snk : The sum of the words in σ and δ of length n with k letters σ and n− k letters δ.

30. f∗ : The reciprocal polynomial of f .

31. er(g; f)( resp. el(g; f)) : The right (resp. left) exponent of g relatively to f .

32. er(g)( resp. el(g)) : The right (resp. left) exponents of g with respect to the variable t.

33. Ni(a) : The ith norm of a.

34. ord(σ,δ)(a) : The (σ, δ)-order of a.

35. a ∼ b : Express that a and b are (σ, δ) conjugate.

36. P.I. ring : A ring that satisfies a polynomial identity.
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Abstract

The exponent of a polynomial f(x) with nonzero constant term in Fq[x] is a classical tool in

the theory of finite field. It is connected with the order of the roots of f(x) in the multiplicative

group of the algebraic closure Fq or to the order of its companion matrix in the group GLk(Fq),

where k is the degree of f(x). This exponent also has a profound impact on the study of linear

recurrence sequences and on linearized polynomials. We refer the reader to the book by Lidl

and Niederreiter [21] for basic information about this notion. Generalizations of the concept of

exponent for polynomials belonging to the skew polynomial rings Fq[t;σ] have been investigated

in [9]. In the present work, we define exponent for polynomials g(t) ∈ S = R[t;σ, δ], where

R is a periodic ring, σ is an automorphism of R, and δ is a σ-derivation of R. Noting that the

equality tS = St is true in S = R[t;σ] but does no longer holds in R[t;σ, δ], we introduce in

this setting a notion of relative exponents and prove that, for monic polynomials f(t), g(t) ∈ S,

and under some mild assumptions, there exists a positive integer e such that g(t) divides on the

right the polynomial f(t)e − 1. This encompasses the classical case where f(t) = t ∈ Fq[t] (or

f(t) = t ∈ Fq[t;σ]).

In order to make the thesis relatively self contained and also to put the goals in good per-

spective, we present some well-known properties of periodic rings and develop new ones. This

covers most of the second section. In the third section, we define the notion of relative exponent

and prove some properties of it. We are in particular interested in the left-right symmetry of the

exponent. This leads to some cyclic properties of factorizations. In particular, we show that in

quite general situations, the fact that g(t) divides on the right a polynomial te − 1 implies that

g(t) also divides te − 1 on the left. we used the computer software SageMath and MAGMA for

preparing some examples.
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Introduction

This thesis is devoted to the study of the exponents of skew polynomials. Our focus is mainly

about investigating new properties of skew polynomials and skew polynomial rings, both, on the

arithmetical point of views (roots, polynomial factorizations), but also on the structure of ideals

(generators of ideals, radicals, polynomial identities). This should lead to interesting applica-

tions in coding theory, recurrent sequences, cryptography and more. We shall try to generalize

properties of skew polynomials over rings that are not necessarily finite nor commutative and

also examine relationship between the classical case and the skew case.

Before diving into the subject of the thesis, let us mention briefly, but concretely, some of the

areas where the classical notion of exponent is used. Let Fq be the finite field with q elements.

We recall that for a polynomial g(t) ∈ Fq[t] such that g(0) 6= 0, the exponent of g(t) is the

smallest natural number e = e(g) such that g(t) divide te−1 in Fq[t]. The least period of a linear

recurring sequence divides the order of its characteristic polynomial. When this characteristic

polynomial is irreducible and has a nonzero independent term, then the sequence is periodic

with least period equal to the order of the characteristic polynomial. More generally, the least

period of a linear recurring sequence is equal to the order of its minimal polynomial. These are

important since having sequences with large period has applications in areas such as random

number generation.

Let us now motivate the introduction of new concepts in the theory of exponents. There

are many interesting works, particularly in coding theory, where noncommutative algebra is

used. For instance, noncommutative semigroups, group rings and skew polynomials of the

automorphism type Fq[t;σ] have shown their efficiency in finding good codes. Our interest is

focused in the last point, i.e., developing the tool of exponent in general Ore extensions of the

form R = A[t;σ, δ] (see section 1.2 for definition). This case of Ore extension R[t;σ], where R is

a finite ring, was already developed in the work of A. Cherchem and A. Leroy, in [9]. There are

several difficulties that appear when dealing with a general Ore extension. The first one is that

the evaluation of polynomials and the underlying "norms" are much more complex, the second
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one is that the indeterminate t is not necessarily suitable for developing the exponent since Rt is

no longer a two-sided ideal. The last difficulty comes from our desire (natural in the context of

exponent) to develop the theory when the base ring A is a periodic ring instead of a finite ring.

To motivate this last point, let us mention that in Lemma 2.1 in [9], it is shown that for f and

g in a ring R, the existence of the left exponent of f relative to g is based on the fact that the

passage to the quotient R/Rg is finite, therefore f i +Rg = fk +Rg for some integers i > k > 0.

This last point led us to think of periodic ring.

A ring R is called periodic if for any x ∈ R, there exist two different positive integers m

and n such that xm = xn. The term " periodic " was first introduced by Chacron [7]. For

other characterizations of periodic rings, see [10], [8]. Examples of periodic rings are finite

rings, Boolean rings, nil rings, and direct sums of matrix rings over finite fields. In recent years,

many mathematicians studied periodic rings. Amongst others, we shall mention M. Chacron,

H. E. Bell, R. R. Khazal, A. Yaqub, H. Chen, and M. Sheibani. Regarding periodic rings, we can

distinguish two main directions of research :

• The first is to find sufficient conditions for the commutativity of a periodic ring.

• The second direction is to find structural results for the periodic rings.

In our work we will be interested in the skew polynomials rings built on periodic rings. Of

course, this is also related to automorphisms and skew derivations over such rings. This thesis

is divided into four chapters. The organization of the present work is as follows:

− In the first chapter we recall some necessary background. We start by briefly introducing

all the concepts and basic but essential terminology in ring theory used in this thesis. Then

we give some preliminaries about skew polynomial rings and we pay a particular attention

to pseudo-linear transformations, as they are a fundamental tool in studying Ore extensions

R = A[t;σ, δ] over a ring A that is not necessarily a division ring. These transformations appear

naturally associated with module over an extension of Ore. This property is at the heart of eval-

uation theory which is itself strongly related to exponents.

− In the second chapter, we give a brief survey of the work done by A. Cherchem and A.

Leroy, in [9], who studied the skew exponents of polynomials on a finite field Fq. Then we

transform the relation given in [27], between exponent over finite field Fpm and the Galois ring

GR(pn,m) from the classical case to the skew case. After that, we generalize the study of the

exponent over a finite field to an arbitrary finite ring. We finish this chapter by giving a commu-

tativity relation of the divisors of te − 1 in R[t, θ]. We develop new programs and commands in
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magma for the skew polynomials ring R[t, θ].

− The third chapter is dedicated to the investigation of periodic rings. In the first part of this

chapter, we show some properties of periodic elements, we present a relationship between the

Jacobson radical and the periodic ring, and we relate periodic ring with other kind of rings. Most

part of this chapter is extracted from the literature but in a form adapted to the thesis. Moreover,

there are also some novelty, in particular, we establish a new characterization of periodic ring

(see Theorem 8). Other new results related to periodic rings are developed in the second part of

this chapter where we study graded periodic rings and give a necessary and sufficient condition

for a finite graded ring to be periodic (see corollary 3). In the last part, we try to answer the

natural question : if R is periodic, is the ring of matrices Mn(R) periodic ? In fact, we do not

have an explicit answer to this question, but we found a positive answer for some special cases.

We also answer questions related to matrices over a given periodic ring, which were suggested

in [10]. Examples are presented all along the thesis.

− The fourth chapter is in fact the heart of this work. We will look at the (relative) exponent

of polynomials and their properties in the case of skew polynomial ring with derivation (general

Ore extensions) S = R[t;σ, δ]. We first work in a general ring and then we concentrate on Ore

extensions with periodic base rings. In the general context of an Ore extensions with nonzero

σ derivation, it is not always possible to define an exponent. But, under some conditions, we do

get the existence of the (relative) exponents. This is the case for instance for P.I. periodic rings

(cf. Corollary 7). For this relative exponent we also have a left-right symmetry (cf. Lemma 15).

Classically the exponent of a polynomial is equal to the order of its companion matrix inside

the group of invertible matrices. The analogue of this in the case of a polynomial belonging to

an Ore extension R[t;σ, δ] is give in theorem 16, where the order of the companion matrix in a

(σ, δ) setting is used.



Chapter 1

Preliminaries

In the first section of this chapter, we will give a quick description of the basic notions used in the

thesis. In later sections we will be more specific and present the definitions and most important

results related to skew polynomials and pseudo-linear transformations. We will present all the

necessary tools and techniques used in the second and third chapters.

1.1 Basic terminology

In this part, we give definitions of the notions and concepts used later (even the most ele-

mentary). This will give us the opportunity to fix notations and will make the reading easier.

Definition 1. A ring is a setR together with operations + and . (called addition and multiplication)

and distinguished elements 0 and 1, which satisfy the following properties:

1. (R,+) is an abelian group.

2. (R, .) is a monoid.

3. a(b+ c) = ab+ ac and (b+ c)a = ba+ ca for all a, b, c in R.

A ring with identity is a ring R that contains an element 1 such that: 1.r = r.1 = r, for all r ∈ R.

If ab = ba for all a, b in R, we say R is commutative. A subring of a ring is a subset which is itself a

ring with the same operations + and . and having the same distinguished elements 0, 1.

We note R∗ the set of nonzero elements in R.

Definition 2. Let R be a ring with identity 1. The characteristic of R (written Char(R)) is the

smallest positive integer q such that q1 = 0, where q1 is an abbreviation for 1+1+ . . .+1 (q times).

If q1 is never 0, we say that R has characteristic 0.
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Definition 3. Let R be a ring and I ⊆ R. I is called a left ideal of R if

1. (I,+) is a group.

2. For every r ∈ R and every x ∈ I, the product rx is in I.

A right ideal is defined similarly. A two-sided ideal (or just an ideal) is both a left and right

ideal.

Let R be a nonzero ring. We say that R is a division ring (or skew field) if for all r ∈ R∗, there

exist s ∈ R∗, such that rs = sr = 1R.

A field is a division ring where the multiplication is commutative. A finite field is a field that

contains a finite number of elements. A simple ring R is nonzero ring whose only (two-sided) ideals

are R itself and zero.

Let us mention the fact that every commutative simple ring is a field.

Definition 4. Let (R,+, .) and (S,u, ∗) be rings with identity. A map φ : R −→ S is a ring

homomorphism if :

1. φ(r1 + r2) = φ(r1) u φ(r2), for all r1, r2 ∈ R.

2. φ(r1.r2) = φ(r1) ∗ φ(r2), for all r1, r2 ∈ R.

3. φ(1R) = 1S .

A ring homomorphism φ : R −→ S that is bijective (resp. injective, surjective) is called an

isomorphism (resp. a monomorphism, an epimorphism). We say that two rings R1 and R2 are

isomorphic if there exists an isomorphism between them.

An injective ring homomorphism is called an embedding.

An endomorphism is a homomorphism from the ring to itself. The set of all endomorphisms

on R is denoted End(R).

A ring automorphism of a ring R is an isomorphism from the ring onto itself. The set of all

automorphisms on R is denoted Aut(R).

Example 1. Crucial examples in coding theory are the finite fields. Let p be a prime number and

n ∈ N. There is a unique (up to isomorphism) finite field with q = pn elements usually denoted Fq.

This is a Galois extension of the field Fp = Z/pZ with cyclic group of automorphisms generated by

the Frobenius map denoted θ and defined by θ(a) = ap for any a ∈ Fq.

The group of automorphisms of Fq is cyclic of order n generated by the Frobenius automorphism.

Aut(Fq) = {Id, θ, θ2, . . . , θn−1}.



11

In the context of coding theory, as mentioned earlier, rings that are not fields (or even not

commutative) are more and more used. It is thus not surprising that for linear codes vector

spaces are replaced by modules. So, we just briefly recall the definition.

Definition 5. Given a ring R with identity 1R. We define a left R-module to be an abelian group

M (written additively), together with a map R×M −→M called scalar multiplication, satisfying

the following laws for all ri in R and xi in M :

1. r(x1 + x2) = rx1 + rx2

2. (r1 + r2)x = r1x+ r2x

3. (r1r2)x = r1(r2x)

4. 1Rx = x

A right R-module M is an abelian group with scalar multiplication M × R −→ M satisfying

the right-handed version of these laws.

A submodule of an R-module M (or an R-submodule), is an additive subgroup N closed under

the given scalar multiplication, i.e.: for any n ∈ N and any r ∈ R, the product r.n (or n.r for a

right R-module) is in N .

A (left or right) module M over a ring R is simple if M is non-zero and have no non-zero

proper submodules.

A module is indecomposable if it is non-zero and cannot be written as a direct sum of two

non-zero submodules.

A module over a ring is said to be semisimple if it is a direct sum of simple submodules.

A ring is semisimple if it is semisimple as a left module over itself, or, equivalently, if every

(left) module over it is semisimple

Definition 6. Let R be a ring and M be a left R-module. Then:

The module M is said to be finitely generated if there exist E = {e1, . . . , en} a subset of M , such

that M =
∑n

i=1Rei. We say that E is a set of generators for M .

The set of generatorsE is linearly independent (or free generators) if for every subset {e1, e2, . . . , em}

of distinct elements of E and r1, r2, . . . , rm in R, we have r1e1 + r2e2 + · · · + rmem = 0M implies

that r1 = r2 = · · · = rm = 0R. A linearly independent generating set for M is called a basis for M ,

and a free module is a module with a basis.

Remark 1. In general, working with modules quickly lead to problems that do not occur in the

case of vector spaces. There are modules that are not free, there are modules that are free but
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with bases having different cardinals, there are elements with nonzero annihilators...This last

point will be more relevant to us and is the subject of the next definition.

Definition 7. Let R be a ring, and let M be a left R-module. For any element m ∈M , the left ideal

Ann(m) = {r ∈ R : rm = 0} is called the annihilator ofm. The idealAnn(M) = {r ∈ R : rm = 0

for all m ∈M} is called the annihilator of M . The module M is called faithful if Ann(M) = (0).

Definition 8. Let R be a ring, M and N be left R-modules. A map φ : M −→ N is called an

R-homomorphism if:

1. φ(m+m
′
) = φ(m) + φ(m

′
)

2. φ(rm) = rφ(m)

for all r ∈ R and all m,m
′ ∈M . We denote by HomR(M,N) the set of all R-homomorphisms

from M to N . An R-homomorphism is an isomorphism if it is bijective.

Elements of HomR(M,M) are called endomorphisms and the set of endomorphisms of the left

R-module M will be denoted by EndR(M). This is a ring under usual composition and addition of

endomorphisms. In case M is a free module, this ring is isomorphic to matrices over R. Many con-

cepts initially defined for rings have analogues for modules by just considering the endomorphism

ring of the module.

An isomorphism in EndR(M) is called an automorphism and the set of automorphisms of the

left R module M is denoted by AutR(M).

Let R and S be two rings. Then an (R,S)-bimodule is an abelian group (M,+) such that:

1. M is a left R-module and a right S-module.

2. For all r in R, s in S and m in M : (rm)s = r(ms).

An (R,R)-bimodule is also known as an R-bimodule.

To every right R module MR we can attach an (S,R)-bimodule where S = EndR(M) via the

obvious action. For us this structure is particularly important in the frame of skew evaluation.

In particular, it leads to nice way of "denumbering" the zeros of a skew polynomial generalizing

Gordon-Motzkin Theorem (cf. [19], for instance).

Definition 9. Let R be a ring with identity 1R and let r ∈ R. We say that r is

1. of finite order (or root of unity) e if e is the least positive integer such that re = 1R;
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2. left invertible (or left unit) if r 6= 0 and there is u ∈ R such that ru = 1R, right inverses (right

unit) are defined in a similar manner;

3. left zero-divisor if r 6= 0 and there is non-zero b ∈ R such that rb = 0, right zero-divisors are

defined in a like manner;

4. periodic if there exist different positive integers m, n such that rm = rn;

5. potent if there exists some positive integer m, such that rm = r;

6. nilpotent if there exists some positive integer n, such that xn = 0;

7. idempotent if r2 = r, and

(a) Two idempotents a and b are called orthogonal if ab = ba = 0 and a set of idempotents

ei is said to be orthogonal if eiej = 0 for all i 6= j.

(b) A non-zero idempotent e is said to be primitive if it cannot be written as a sum of non-

zero orthogonal idempotents e = f1 + f2. Equivalently, Re indecomposable as a right

R-module.

(c) A local idempotent e is an idempotent such that eRe is a local ring. This implies that eR

is directly indecomposable, so local idempotents are also primitive.

Many types of rings are related to the above notions and will be used in the thesis. For

instance a ring is called Dedekind finite (resp. reversible) if for any a, b ∈ R we have ab = 1R

implies ba = 1R (resp. ab = 0 implies ba = 0). Fortunately, all our rings will be Dedekind finite

but they will generally not be reversible. For later use, let us just collect the most important rings

structure associated to the type of elements described above. These types of rings are important

for us in particular since they are defined elementwise.

Definition 10. Let R be a ring with identity 1R. We say that R is

1. strongly clean if every element is the sum of a unit and an idempotent which commute;

2. strongly π-regular if for every a in R, there exist a positive integer n(a) and an element b in

R satisfying an(a) = an(a)+1b;

3. periodic if its elements are periodic;

4. potent if its elements are potent;

5. graded if there exists a family of additive subgroups {Ri}i∈Z of R, where R = ⊕i∈ZRi and

RnRm ⊆ Rn+m for all n,m ∈ Z;
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6. locally finite if any finitely generated subring of R is finite;

7. stable range one, if for any a, b ∈ R with Ra + Rb = R, there exists y ∈ R such that

a+ yb ∈ U(R)

We recall that a ring R, is said to be left (resp. right) Noetherian if, it does not contain an

infinite ascending chain of left (resp. right) ideals, i.e. given any increasing sequence of left (or

right) ideals : I1 ⊆ I2 ⊆ I3 ⊆ · · · , there exists an N ∈ N such that : IN = In, for n > N (This is

called the ascending chain conditions). A ring is said to be Noetherian if it is both left and right

Noetherian. For a ring R, the following are equivalent :

1. R is left (resp. right) Noetherian.

2. Every non-empty set of left (resp. right) ideals in R has a maximal element.

3. Every ascending chain of left (resp. right) ideals in R is stationary.

4. Every left (resp. right) ideal in R is finitely generated.

We have also that, If R is a Noetherian ring, then the polynomial ring R[t] is Noetherian by

the Hilbert’s basis theorem, and If I is a two-sided ideal of R, then the quotient ring R/I is also

Noetherian.

Another type of rings, which is related to the Noetherian rings, is Artinian ring. A ring is left

(resp. right) Artinian if there is no infinite descending sequence of left (resp. right) ideals, i.e.

for any decreasing sequence of left (resp. right) ideals B1 ⊇ B2 ⊇ B3 ⊇ . . . , there exists an

M ∈ N such that Bm = BM , for m >M (This is called the descending chain conditions). A ring

is called Artinian if it is both left and right Artinian.

The Artin–Wedderburn theorem characterizes every simple Artinian ring as a ring of matrices

over a division ring. We have previously said that Noetherian and Artinian rings are related, and

this is clearly shown by the Hopkins-Levitzki theorem : Let R be a right (resp, left) Artinian ring

with identity. Then R is right (resp, left) Noetherian.

Definition 11. Let R be a ring and let A ⊆ R. We say that A is nil if its elements are nilpotent. Let

us notice that these rings don’t have an identity.

An ideal of R is a nil ideal if it is a nil subset of R.

An ideal I of R is said to be a nilpotent ideal if there exists k ∈ N∗, such that Ik = 0.

The Jacobson radical of a ring R, denoted by J(R), is defined to be the intersection of the

maximal ideals of R.The Jacobson radical is named after Nathan Jacobson, who was the first to

study it. The following proposition characterizing the elements of J(R).
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Proposition 1. [18] Let R be a ring with identity and y ∈ R, the following statements are equiva-

lent:

1. y ∈ J(R);

2. 1− xy is left-invertible for any x ∈ R;

3. yM = 0 for any simple left R-module M.

Mention here that:

− A semilocal ring R is a ring for which R/J(R) is a semisimple ring.

− A ring R is called semiperfect if R is semilocal, and idempotents of R/J(R) can be lifted to R.

− The Jacobson radical of an Artinian ring is nilpotent and contains every one-sided nil ideal.

A ring R satisfies a polynomial identity, and we say that R is P.I., if there is a polynomial f ∈ R

in non commuting variables, which vanishes under substitutions from R. For example, commutative

rings satisfy the polynomial identity

f(x, y) = xy − yx.

Definition 12. Let R be a ring and S be a subring of R. We say that S is finitely generated subring

(also called a subring of finite type) if there exists a finite set of elements r1, ..., rn of R such that

every element of S can be expressed as a polynomial in r1, ..., rn, with coefficients in R.

Definition 13. Let R be a ring, and p(t) =
n∑
i=0

ait
i be a monic polynomial in R[t]. The companion

matrix of p, denoted by C(p), is defined by

C(p) =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1


∈Mn(R)

We recall that a ring R is periodic if for each x ∈ R, the multiplicative set of all powers of

x; {x, x2, x3, . . . } is finite, equivalently to, for each x ∈ R, there are different positive integers

m, n such that xm = xn. We give in the next proposition a characterization of periodic rings,

which was mentioned in Theorem 3.4 [10].

Proposition 2. Let R be a ring. The following are equivalent:
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1. R is a periodic ring.

2. For each a ∈ R, a = f + b, where fn = f for some integer n > 2, af = fa and b ∈ Nil(R).

3. For each a ∈ R, a = ev+ b = ve+ b, where e2 = e ∈ R, vn−1 = 1 for some integer n > 2 and

b ∈ Nil(R) with ab = ba.

4. For each a ∈ R, a− an ∈ Nil(R) for some integer n > 2.

5. For each a ∈ R, there exists an integer m > 1 such that am is strongly nil clean in R.

In chapter 3, we examine in detail periodic rings, we relate periodic ring with other kind of rings,

and we will examine the direct product of periodic rings, and the direct limit of periodic rings. In

the following, we recall the definition of direct limit of rings.

Definitions 1.

1. A directed set I is a set with a partial order 6 such that for every i, j ∈ I there is k ∈ I such

that i ≤ k and j ≤ k.

2. Let R be a ring. A directed system of R-modules indexed by a direct set I, is a family of R-

modules (Mi)i∈I with an R-module homomorphisms µij : Mi −→ Mj , for each pair i, j ∈ I

with i 6 j, such that :

i) µii is the identity mapping of Mi, for all i ∈ I;

ii) for any i 6 j 6 k in I, µij ◦ µjk = µik.

The modules Mi and homomorphisms µij are said to form a direct system over the directed

set I, denoted by (Mi;µij).

3. Let (Mi)i∈I be a direct system of R-modules, then there exists an R-module M with the

following properties:

(a) There are R-module homomorphisms µi : Mi −→M for each i ∈ I, satisfying

µi = µj ◦ µij whenever i 6 j.

(b) If there is an R-module N such that there are R-module homomorphisms νi : Mi −→ N

for each i and νi = νj ◦ µij whenever i 6 j; then there exists a unique R-module

homomorphism ν : M −→ N , such that νi = ν ◦ µi.

This module M is called the direct limit of the direct system (Mi)i∈I , and denoted by

M = lim−→Mi.
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4. Let (Ai)i∈I be a family of rings indexed by a directed set I, and for each pair i 6 j in I let

φi,j : Ai −→ Aj be a ring homomorphism, satisfying conditions (i) and (ii) of 2. Regarding

each Ai as a Z-module we can then form the direct limit A = lim−→Ai. The ring A is the direct

limit of the system (Ai, φi,j).

Galois rings are special finite rings. They play an important role in the theory of finite rings.

Galois rings are useful in classical information theory, especially in coding theory (in particular for

linear codes). They are also of interest in quantum information.

A finite (commutative) ring R with identity, such that the set of its zero divisors including 0 con-

stitutes a principal ideal m = pR with p prime (i.e. R/pR is an integrity ring) is called a Galois

ring. For example. Let p is a prime number and n is a positive integer, and let Zpn be the ring of

integers modulo pn, is a Galois ring with pn elements and a unique maximal ideal pZpn .

Let h(t) ∈ Zpn [t], If h(t) (i.e. h(t) modulo p), is an irreducible (resp. primitive) polynomial in

Fp[t], then h(t) is called a basic irreducible (resp. primitive) polynomial.

Let p ∈ N be a prime number and m,n ∈ N are a positive integers, let h (t) be a basic irre-

ducible polynomial of degree m over Zpn . A Galois ring GR(pn,m) = R with characteristic pn and

cardinality pnm is constructed as quotient ring Zpn [t]/(h (t)). The ring R is a commutative local

ring with maximal ideal pR and residue field Fpm . Let denote the natural homomorphism from

R to Fpm . This homomorphism naturally induces a ring homomorphism from R [t] to Fpm [t], we

also denote it by the same notation .

If ξ is root of h (t) of order pm − 1, then R = Zpn [ξ] and all elements of R can be expressed

uniquely as

a0 + a1ξ + a2ξ
2 + ...+ am−1ξ

m−1, for ai ∈ Zpn .

The set Γm =
{

0, 1, ξ, ..., ξp
m−2} is called the Teichmüller set of R, and any element c ∈ R can be

written uniquely as

c = c0 + c1p+ c2p
2 + ...+ cn−1p

n−1, for ci ∈ Γm.

This is called the p-adic representation of the element c.

The Frobenius automorphism θ of R over Zpn is defined by

θ (c) = cp0 + cp1p+ cp2p
2 + ...+ cpn−1p

n−1, for ci ∈ Γm.

The group of automorphisms Aut(GR(pn,m)) of the Galois ring GR(pn,m) is cyclic of order m and

is generated by θ. The Frobenius automorphism θ ∈ Aut(GR(pn,m)) fixes pointwise the subring

GR(pn, 1) = Zpn of GR(pn,m). For more information and details on Galois rings, we refer the

reader to [26].
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1.2 Skew polynomial rings R[t;σ, δ]

Let R be a ring, σ ∈ End(R) and δ a σ-derivation of R. Recall that δ is an additive map

such that for any a, b ∈ R, δ(ab) = σ(a)δ(b) + δ(a)b. Of course, when σ = Id, δ is a usual

derivation. As another example of σ-derivation, let us mention the inner σ-derivation induced

by an element a ∈ R, and denoted by δa. This is defined by putting δa(x) = ax − σ(x)a, for all

x ∈ R. It is not difficult to show that the map δa indeed defines a σ-derivation of the ring R.

The skew polynomial ring S = R[t;σ, δ] is a ring whose elements are polynomials
∑n

i=0 ait
i and

the product is based on the commutation rule

∀r ∈ R, tr = σ(r)t+ δ(r). (1.1)

By associativity and distribution, we have:

tnr =
n∑
k=0

Snk (r)tk, ∀n ∈ N, ∀r ∈ R, (1.2)

where the additive maps Snk satisfy the recursion formula

Snk = δ ◦ Sn−1k + σ ◦ Sn−1k−1 and S0
0 = Id, S1

0 = δ, S1
1 = σ. (1.3)

This means that Snk (0 ≤ j ≤ n) is a sum of all monomials in σ and δ of degree k in σ and degree

n− k in δ, e.g. :

Snn = σn, Snn−1 = σn−1δ + σn−2δσ + · · ·+ δσn−1.

We call S the skew polynomial ring in t over R determined by σ and δ (a.k.a Ore extension).

These rings were introduced and systematically studied by Oystein Ore in [24]. Such a ring is

a commutative ring if and only if R is commutative, σ = Id., and δ = 0. If only δ = 0 instead

of R[t;σ, 0] we write R[t;σ], and if σ is the identity we write R[t; δ]. This last ring is called a

differential polynomial ring in the literature. It appears first in works by Schlesinger (1897) and

Landau (1902). If δ = 0 and σ = Id, then R[t; 1, 0] is just R[t] the usual polynomial ring in a

central indeterminate t (This case is usually referred to as the classical case). Let us mention the

following basic but important lemma:

Lemma 1. Let R be a ring, σ ∈ End(R) and δ be a σ-derivation.

1. If there exists c in the center of R such that σ(c) − c is invertible, then δ is an inner σ-

derivation determined by the element (c− σ(c))−1δ(c).

2. If δ = δa, then S = R[t;σ, δa] = R[t− a;σ].
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The last statement of this lemma says that in fact we can sometimes "erase the derivation".

For more on this topic, we refer the reader to a paper by G. Cauchon. (see [6]).

Let us present some properties of Snk .

Proposition 3. Let R be a ring, σ ∈ End(R) and δ a σ-derivation of R. We have :

1. Snk is the sum of the words in σ and δ of length n with k letters σ and n− k letters δ.

2. Snk (ab) =
n∑
j=k

Snk (a)Skj (b). (This generalizes the Leibniz rule)

3. Suppose σδ = δσ, then Snk =
(
n
k

)
σkδn−k.

4. Snk = δ(Sn−1k ) + σ(Sn−1k−1 ), n > i+ 1

5. Sn+mk =
∑

i+j=k

Sni S
m
j .

Let f(t) ∈ R[t;σ, δ], as in the classical case f has unique written as f(t) = ant
n + · · ·+ a0, if

an 6= 0 we define the degree of f as deg(f) = n. we say that f is monic if an = 1.

Definition 14. A polynomial f ∈ S = R[t;σ, δ] is called right invariant if fS ⊆ Sf (this means

that the left ideal Sf is two-sided ideal of S). A polynomial g(t) ∈ S = R[t;σ, δ] is called right

semi-invariant if gR ⊆ Rg. Left invariant and left semi-invariant polynomials are defined similarly.

Examples 1.

1. The complex skew polynomial ring C[t;−] consists of all polynomials with complex co-

efficients and commutation rule ta = āt, where ā is the complex conjugate of a. let

P, Q ∈ C[t;−], where P = it+ 1 and Q = t+ i, we have

PQ = it2 + īit+ t+ i = it2 + 2t+ i

and

QP = īt2 + t− t+ i = −it2 + i.

The center of this ring is R[t2] , the ring of all real polynomials in t2. The residue class ring

mod x2 + 1 is the field of real quaternions. Let us also notice that, since t + i divides QP

on the right we might say that −i is a right root of PQ, but replacing t by −i does not give

zero. So the evaluation of a polynomial needs to be defined in another way. This will be

analyzed later.
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2. Let F4 [t; θ] be the skew polynomial ring with F4 =
{

0, 1, a, a2 = a+ 1
}

and θ (a) = a2.

Consider the polynomial f (t) = t− a and g(t) = at+ a2. We have

f(t)g(t) = θ(a)t2 + θ(a2)t+ a2t+ w3

= a2t2 + t+ 1

and

g(t)f(t) = at2 + aθ(a2)t+ a2t+ a3

= at2 + at+ 1.

We can see that in general the skew polynomial ring is not a unique factorization domain,

for example, if we take p(t) = t6 + at3 ∈ F4 [t; θ], we find that

p(t) = (t4 + at)t2

= (t4 + at3 + t2)(t2 + at)

= (t4 + at3)(t2 + at+ 1)

3. LetK be a field andD = K(x) the field of rational functions in an indeterminate x overK.

Let δ be the derivation given by the usual derivative on D, i.e., for f ∈ D, δ(f) = f
′

=
df

dx
.

This gives rise to a skew polynomial ring S = D[t; Id, ddx ], the ring of differential operators.

Consider the field of rational functions over F2 and the derivation δ given by the usual

derivative, i.e. δ(f(x)) = f
′
(x). Hence, let S = F2(x)[t; δ]. It is easy to see that t is not

invariant in S, as in the following : tx = xt+ (x)
′

= xt+ 1.

Remarks 1. Let R[t;σ, δ] the skew polynomial ring, then :

1. We have seen earlier that if the σ-derivation δ is inner, induced by an element a ∈ R (i.e.:

δ(r) = ar−σ(r)a, r ∈ R ), then putting t
′

= t−a, we have t
′
r = (t−a)r = (σ(r)t+δ(r))−ar

= σ(r)t + ar − σ(r)a − ar = σ(r)t
′
. In this situation R[t;σ, δ] = R[t − a;σ]. It is worth to

mention that t − a is an example of a CV polynomials (CV=change of variables). Other

such polynomials are the invariant and semi-invariant polynomials. These polynomials

have their own arithmetic. Let us notice, for instance, that if p(t) ∈ S is a monic invariant

polynomial of degree n then we have p(t)a = σn(a)p(t), for any a ∈ R. These polynomials

play an essential role in the study of the center of the Ore extension S as well as in the

study of the simplicity of S. They also determine the rings morphisms between different

polynomial rings. (for more information on this subject in the case when the base ring R

is a division ring, we refer the reader to [17] and[16] ).
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2. Similarly, if σ is an inner automorphism induced by u ∈ U(R) (i.e. : σ(r) = uru−1, r ∈ R),

and δ is a σ-derivation. We can use the change of variable by writing t
′

= u−1t, we find

that t
′
r = u−1tr = u−1(σ(r)t+ δ(r)) = ru−1t+ u−1δ(r), hence t

′
r = rt

′
+ u−1δ(r), for all

r ∈ R. Then u−1δ is a usual derivation and R[t;σ, δ] = R[u−1t; Id, u−1δ] = R[u−1t;u−1δ].

In the following theorem, we see that the properties of R, reflected in those R[t;σ, δ], see

[23]

Theorem 1. [23] Let S = R[t;σ, δ] the skew polynomial ring in t over R determined by σ and δ,

then we have

1. If σ is injective and R is an integral domain, then S is an integral domain.

2. If σ is injective and R is a division ring, then S is a principal right ideal domain.

3. If σ is an automorphism and R is prime ring, then S is prime ring.

4. If σ is an automorphism and R is right (resp. left) Noetherian, then S is right (resp. left)

Noetherian.

Classically the exponent of a polynomial is in close relation with its roots. Our next objective

is to introduce the "skew evaluation", in other words the evaluation of polynomial from a skew

polynomial ring S = R[t;σ, δ]. Let f(t) and g(t) be in R[t;σ, δ]. If the leading coefficient of

g(t) is invertible, then there exists q(t), r(t) ∈ R[t;σ, δ], such that f(t) = g(t)q(t) + r(t) and

deg(r(t)) ≤ deg(g(t)). We call q(t) (resp. r(t) ) the right quotient (resp. the right remainder ) of

f(t) by g(t). if r(t) = 0 then g(t) is a right divisor of f(t) in R[t;σ, δ]. The division results on the

right and on the left are naturally different. This division process is at the base of the definition

of right evaluation of a skew polynomial, as we see in the following definition.

Definition 15. Let R be a ring, σ an endomorphism of R and δ a σ-derivation of R.

1. For a polynomial f(t) ∈ S = R[t;σ, δ] and a ∈ R, we define fr(a), the right evaluation of f(t)

at a, to be the only element in R such that f(t)−f(a) ∈ S(t−a) i.e. f(t) = q(t)(t−a)+fr(a),

for some polynomial q(t) ∈ R[t;σ, δ]. An element a ∈ R is a right zero of f(t) =
∑n

i=0 fit
i in

S, if fr(a) = 0 i.e. if f(t) is right divisible by t− a in S.

2. Two elements a, b ∈ R are (σ, δ) conjugate if there exists c ∈ U(R), such that b = σ(c)ac−1

+δ(c)c−1
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We will use the notations a ∼ b to express that a and b are (σ, δ) conjugate and

ac := σ(c)ac−1 + δ(c)c−1. It is easy to check that ∼ is an equivalence relation on R.

Examples 2. 1. Let us evaluate the powers of the indeterminate tn ∈ S = R[t;σ, δ]. We

have t = (t − a) + a so that, as usual, t evaluated at a is a. Let us continue and compute

t2 = t(t − a) + ta = t(t − a) + σ(a)t + δ(a) = (t + σ(a))(t − a) + σ(a)a + δ(a), so that t2

evaluated at a is σ(a)a+ δ(a). When δ = 0, live is much more easier and, in this case, we

can quickly get the following: tn evaluated at a ∈ R is σn−1(a)σn−2(a) . . . σ(a)a. This looks

like a norm defined by σ and motivates the notation we will use in our next definition.

2. Let us remark that a skew polynomial ring even when its coefficients belong to a commu-

tative field can have infinitely many nonzero right roots. For instance the right roots of

t2−1 ∈ C[t;−] are all the elements of C of norm one. We will mention later in this section

the right way of evaluating the "number of roots".

3. Let S = F4 [t; θ] as described in examples 1(2), f(t) = t+ a and g(t) = at+ 1 are in S. We

have f(t) = a2g(t) + 1 and f(t) = g(t)a + 0. We see that g(t) is a left divisor of f(t) but

not a right divisor.

Remarks 2. 1. It is, of course possible to define the left evaluation. In case when σ is an

automorphism, this comes from the fact that, denoting the opposite ring of a ring R by

Rop, we can check that Sop = Rop[x;σ−1,−δσ−1]. If an element b ∈ R is not in the image

of σ-evaluating on the left the polynomial bt at a ∈ R is not possible.

One of the important formulas for evaluating skew polynomials is the product formula. We

first introduce this formula in the case when R = K is a division ring. We will place it in a more

general context later in the text. Let K be a field, σ an endomorphism and δ a σ-derivation of

the division ring K. Recalling that ac := σ(c)ac−1 + δ(c)c−1

Theorem 2. For f(t), g(t) ∈ S = K[t;σ, δ] and a ∈ K, we have

(fg)r(a) =


0 if gr(a) = 0,

f(agr(a))rgr(a) if gr(a) 6= 0.

Proof.

• If gr(a) = 0 it means that t − a divides g(t) on the right and since g(t) divide f(t)g(t) on the

right, hence fg is also divisible on the right by t− a, so (fg)r(a) = 0.
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• Otherwise, since gr(a) = c 6= 0, we put b = ac. Therefore, there exist q(t), h(t) ∈ S, such that

g(t) = q(t)(t− a) + c and f(t) = h(t)(t− b) + fr(b). Noticing that

(t− b)c = tc− bc

= σ(c)t+ δ(c)− acc

= σ(c)t+ δ(c)−
(
σ(c)ac−1 + δ(c)c−1

)
c

= σ(c)t+ δ(c)− σ(c)a− δ(c)

= σ(c)t− σ(c)a

= σ(c)(t− a),

we can use this last equality to write the product f(t)g(t), we obtain that

f(t)g(t) = f(t)q(t)(t− a) + f(t)c

= f(t)q(t)(t− a) + h(t)(t− b)c+ fr(b)c

= f(t)q(t)(t− a) + h(t)σ(c)(t− a) + fr(b)c

=
[
f(t)q(t) + h(t)σ(c)

]
(t− a) + fr(b)c

and fr(b)c = f(agr(a))rgr(a). Which gives the desired formula.

Definition 16. Let R be a ring. For a ∈ R, we define the ith norm Ni(a), by induction:

N0(a) = 1, for i ≥ 0, Ni+1(a) = σ(Ni(a))a+ δ(Ni(a)).

In general, if δ = 0, therefore Ni(a) = σi−1(a)σi−2(a) · · ·σ(a)a.

The following lemma enables us to generalize the classical way of evaluating a polynomial.

Lemma 2. Let f(t) =
∑n

i=0 fit
i ∈ R[t;σ, δ] and a ∈ R. Then fr(a) =

∑n
i=0 fiNi(a)

Example 2. 1. For S = K(x)[t; Id, ddx ] (the ring of differential operators), we have :

N2(x) = x2 + 1.

N3(x) = x3 + 3x.

N4(x) = x4 + 6x2 + 3.

Definition 17. LetR, σ, δ be a ring, an automorphism and a σ-derivation, respectively. An element

a ∈ R is of finite (σ, δ)-order if there exists a positive integer l such that Nl(a) = 1. When it exists,

the smallest l > 0 such that Nl(a) = 1 is called the (σ, δ)- order of a and denoted by ordσ,δ(a) = l.
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Now, we introduce the definition of the norm in the special case when δ = 0 and R is finite,

and study some of its elementary properties.

Definitions 2. Let G be a finite group and σ ∈ Aut(G).

1) Let g ∈ G and n ∈ N. We define the n′th norm of g, denoted Nn(g) by N0(g) = 1and, for

n > 1,

Nn(g) = σn−1(g)σn−2(g) · · ·σ(g)g.

2) An element g ∈ G is of finite σ-order if there exists l ∈ N such that Nl(g) = 1. In this case

ordσ(g) is the smallest l such that Nl(g) = 1

(3) For two elements x, g ∈ G we define x◦
σ
g := σ(x)gx−1. We say that two elements g, h ∈ G

are σ-conjugate if there exists an element x ∈ G such that h = σ(x)gx−1.

In the particular case when δ = 0 and R is finite, we have the following properties of the

norm Ni.

Proposition 4. Let g be an element of a finite groupG and σ ∈ Aut(G). Then we have the following

a) Nl+s(g) = σl(Ns(g))Nl(g) = σs(Nl(g))Ns(g).

b) For l, q ∈ N we have Nlq(g) = σl(q−1)(Nl(g))σl(q−2)(Nl(g)) · · ·σl(Nl(g))Nl(g).

c) Every element g ∈ G is of finite σ-order.

d) Nr(g) = 1 if and only if ordσ(g) divides r.

e) If τ ∈ Aut(G) is such that στ = τσ, then ordσ(g) = ordσ(τ(g)).

f) For any s ∈ N, Ns(σ(g)hg−1) = σs(g)Ns(h)g−1. With our notations this means:

Ns(g◦σh) = g ◦
σs
Ns(h).

g) If σl = id, then

i) σ(Nl(g)) = gNl(g)g−1.

ii) For any i ∈ N, Nil(g) = Nl(g)i.

iii) ordσ(g)|l · ord(Nl(g)).
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Proof. a) We have Nl+s(g) = σl+s−1(g) · · ·σ(g)g = σl
(
σs−1(g) · · ·σ(g)g

)
σl−1(g) · · ·σ(g)g

= σl(Ns(g))Nl(g). The second equality is shown similarly.

b) This follows easily from the statement a) above.

c) Since the group G is finite, for any g ∈ G, there must exist l, s ∈ N with s 6= 0, such that

Nl+s(g) = Nl(g). The statement a) above then implies that Ns(g) = 1. This yields the result.

d) Let us put l := ordσ(g). By definition we must have Nl(g) = 1 and l ≤ r. Let us write

r = lq + s, where s < l. We have 1 = Nr(g) = Nlq+s(g) = σs(Nlq(g))Ns(g). The point b) above

then implies that 1 = Ns(g). Since s < l this shows that s = 0, as desired. Conversely, suppose

that l := ordσ(g) is such that l divides r, say r = ls for some s ∈ N. Using statement (b) above

we get Nr(g) = Nls(g) = σl(s−1)(Nl(g))σl(s−2)(Nl(g)) · · ·σl(Nl(g))Nl(g). Since Nl(g) = 1 we get

that Nr(g) = 1, as desired.

e) Let us put l := ordσ(g), therefore Nl(g) = 1, so we have σl−1(g)σl−2(g) · · ·σ(g)g = 1. Ap-

ply τ , to this last equality, we get τ
(
σl−1(g)σl−2(g) · · ·σ(g)g

)
= τ

(
σl−2(g)

)
· · · τ

(
σ(g)

)
τ(g), and

since στ = τσ, we get σl−1(τ(g))σl−2(τ(g)) · · ·σ(τ(g))τ(g) = 1, This means that ordσ(τ(g)) = l,

so ordσ(g) = ordσ(τ(g)).

f) For any S ∈ N, we have

Ns(σ(g)hg−1) = σn−1(σ(g)hg−1)σn−2(σ(g)hg−1) · · ·σ(σ(g)hg−1)σ(g)hg−1

= σn(g)σn−1(h)σn−1(g−1)σn−1(g)σn−2(h)σn−2(g−1) · · ·σ2(g)σ(h)σ(g−1)σ(g)hg−1

= σn(g)
[
σn−1(h)σn−2(h) · · ·σ(g)

]
g−1

= σs(g)Ns(h)g−1.

This yields the result.

g) i) We have

σ(Nl(g)) = σ
(
σl−1(g)σl−2(g) · · ·σ(g)g

)
= σl(g)σl−1(g) · · ·σ2(g)σ(g)

and since σl = id, we find that

σl(g)σl−1(g) · · ·σ2(g)σ(g) = gσl−1(g) · · ·σ2(g)σ(g)gg−1

= gNl(g)g−1

ii) comes from the statement b) above.

For iii), we compute: σ(Nl(g)) = σl(g)σl−1(g) · · ·σ(g) = gNl(g)g−1.

iv) Since σl = id., statement ii) above shows that Nls(g) = Nl(g)s. If s is the order of

Nl(g) in G, we get Nls(g) = Nl(g)s = 1. Part d) above then implies that ordσ(g) divides

ls = l · ord(Nl(g)).
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In the case of a finite cyclic group, the last point of the previous lemma is more precise.

Corollary 1. Let G =< g > be a finite cyclic group and let l be the order of an automorphism

σ ∈ Aut(G). Then we have ordσ(g) = l · ord(Nl(g)).

Proof. We already know that ordσ(g) divides l · ord(Nl(g)). Let p, n ∈ N be such that σ(g) = gp

and n := |G| = ord(g). Since σl = id, we have that gp
l

= σl(g) = g and hence gp
l−1 = 1.

Since n = ord(g), we conclude that n divides pl − 1. We write ordσ(g) = il + r for i ∈ N and

0 ≤ r < l and, using the above lemma, we have 1 = Nil+r(g) = Nl(g)iNr(g) = gi[l]+[r], where

[l] = pl−1
p−1 and [r] = pr−1

p−1 . This implies that n divides i[l] + [r]. Hence there exists m ∈ N such

that n(p − 1)m = i(pl − 1) + (pr − 1). The fact that n divides pl − 1 implies that n also divides

pr − 1. This shows that, for any g ∈ G, σr(g) = gp
r

= g. Since 0 ≤ r < l and l is the order of

σ, we must have r = 0 and 1 = gi[l] = Nl(g)i. This yields that ord(Nl(g)) divides i and hence

l · ord(Nl(g)) divides li = ordσ(g), as desired.

1.3 Pseudo-linear transformations

In this part, we give the most important result of pseudo-linear transformations used in the

next chapters. For more information see [20]. Let us remind a few technical matters.

Definition 18. Let R be a ring, σ an endomorphism of R and δ a σ-derivation of R. Let also V

stand for a left R-module. A map T : V −→ V such that,

1. T (v1 + v2) = T (v1) + T (v2) for all v1, v2 ∈ V ,

2. T (αv) = σ(α)T (v) + δ(α)v for α ∈ R and v ∈ V ,

is called a (σ, δ) pseudo-linear transformation (or a (σ, δ)-PLT, for short).

In case V is a finite dimensional vector space and σ is an automorphism, the pseudo-linear

transformations were introduced by Jacobson in [14]. They appear naturally in the context of

modules over an Ore extension S = R[t;σ, δ]. This is explained in [19].

If V is a finitely generated free left R-module, e = {e1, . . . , en} is an ordered set of free gen-

erators of V , and T is an endomorphism of the left R-module V , let us write T (ei) =
∑n

j=1 aijej ,

aij ∈ R, or with matrix notation T (e) = Ae, where A = (aij) ∈ Mn(K). The matrix A will be

denoted Me(T ).

Proposition 5. Let R be a ring, σ ∈ End(R) and δ a σ-derivation of R. For an additive group

(V,+), the following conditions are equivalent:
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(1) V has a left S = R[t;σ, δ]-module structure;

(2) V is a left R-module endowed with a (σ, δ) pseudo-linear transformation T : V −→ V ;

(3) There exists a ring homomorphism Λ : S −→ End(V,+).

Examples 3. 1. If a ∈ R, Ta : R −→ R given by Ta(r) = σ(r)a + δ(r) is a (σ, δ)-PLT. Remark

that T0 = δ.

2. As is well known (cf.[19], [20]), if f(t) =
∑n

i=0 ait
i, we have f(a) =

∑n
i=0 aiNi(a). In fact,

we also have f(a) = f(Ta)(1) =
∑n

i=0 ai(Ta)
i(1).

3. If g(t) ∈ S = R[t;σ, δ], the (σ, δ)-PLT corresponding to S/Sg (cf. Proposition 5) is given

by the action of t. If g(t) is monic of degree n, S/Sg is a left R-free module with basis

(1, t, . . . , tn−1) and the elements of S/Sg correspond to vectors in Rn. With this point of

view, the left multiplication by t on S/Sg corresponds to the PLT Tg : Rn −→ Rn given by

Tg(v) = σ(v)Cg + δ(v), where Cg is the companion matrix of g(t) (cf. [19]).

We will need the following lemma that can be found in [20], Lemma 3.3 (b).

Lemma 3. Let V be a left free R-module with basis e = (e1, ..., en) and T : V → V a (σ, δ)-PLT.

Let A = (aij) = Me(T ) ∈ Mn(R) be the matrix representing T in this basis. Let g(t) ∈ R[t;σ, δ].

Then g(T )(ei) =
∑n

j=1 g(A)ijej for i = 1, ..., n or in matrix form

Me(g(T )) = g(Me(T )),

where σ and δ are naturally extended to matrices and the evaluation of g at Me(T ) is as given in

the above definition.

In the next proposition we give a formula which generalizes the standard one (theorem 2 )

for the evaluation of a product of polynomials at a point c ∈ R .

Proposition 6. [20] Let R be a ring, σ an endomorphism of R and δ a σ-derivation of R and let

f(t), g(t) be polynomials in S = R[t;σ, δ]. Then for any c ∈ R we have :

(f(t).g(t))r(c) = f(Tc)r(gr(c)).

In particular if g(c) is invertible in R we have (f(t).g(t))r(c) = f(cgr(c))rgr(c).



Chapter 2

Exponents in general finite rings

We are going to attach an integer to a nonzero polynomial, this is known as the exponent (or

order) of polynomial. We define the exponent of the polynomial f(t) as the least positive integer

e such that f(t) divides te − 1. In [21], chapter 3, part 1, we find a study of this notion over

finite field (i.e. exponent of polynomial over Fq[t]), we refer the reader to review this part for

more information and to have a clear view of this concept.

Exponent of polynomial is very important in the theory of polynomials over finite fields

and in coding theory, it also has great importance in linear recurring sequences. In 2016, A.

Cherchem and A. Leroy generalized the notion of exponent from the classical case over Fq[t]

to the skew case Fq[t; θ], and introduced the notion of a relative exponent for two elements in

a finite ring and apply this to define and study the skew exponent of a polynomial in an Ore

extension of the form Fq[t; θ].

In this chapter we present a short survey of this work. We focus our attention to important

results that shall motivate next sections and the last chapter of this thesis and we propose pro-

grams in computer software MAGMA.The interested reader may consult [9] for more properties

and details. We begin by the definition of the exponent over a ring.

Definition 19. Let R be a ring and f(t) ∈ R[t]. If there exists a positive integer e = e(f) such that

f(t)| te − 1, the least such e is called the exponent of f(t) (a.k.a. order or period of f(t) ).

We note that the polynomial t is invariant in the polynomial ring R[t;σ] i.e. Rt = tR, but

in a general Ore extension R[t;σ, δ] the polynomial t is no longer invariant. However, there will

often exists an invariant polynomial that can play its role. This leads us to define the relative

exponent of two polynomials in a quite general setting.
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Definition 20. Let R be a ring and f, g ∈ R. The right exponent of g relative to f is the smallest

strictly positive integer e = er(g, f), when it exists, such that fe− 1 ∈ Rg, i.e. g is a right divisor of

fe − 1. Similarly, we can define the notion of left exponent of g relative to f .

The next lemma examines the existence of the relative exponent over finite rings and gives

some conditions for this. We will only prove part (b), as it will be the starting point for a

generalization of the relative exponent, presented in chapter 4.

Lemma 4. [9] Let R be a finite ring with 1R ∈ R and f , g ∈ R be such that fg ∈ Rf . Let

rg : R/Rf → R/Rf the right multiplication by g. Consider the following statements:

(i) The map rg is one-to-one.

(ii) For any h ∈ R, if hg ∈ Rf then h ∈ Rf .

(iii) There exists a positive integer e such that fe − 1 ∈ Rg.

(iv) The map rg is onto.

(v) Rg +Rf = R.

Then:

a) We always have (i)⇔(ii) and (iii)⇒(iv)⇔(v).

b) If |R/Rg| <∞ and f is not a zero divisor and is such that fR = Rf , we also have (ii)⇒(iii).

c) If conditions b) are satisfied and moreover |R/Rf | < ∞, then statements (i) to (v) are

equivalent.

Proof. (b) Since |R/Rg| < ∞, there exist integers 0 < l < s such that (1 − fs−l)f l ∈ Rg and

hence there exists h ∈ R such that (1 − fs−l)f l = hg ∈ Rf . Statement (ii) and the fact that

Rf = fR ensure that there exists q1, q′1 ∈ R such that h = q1f = fq′1. Since f is not a zero

divisor we have f l−1(1 − fs−l) = q′1g ∈ Rf . Repeating this argument leads to the existence of

q′2, q
′
3, . . . , q

′
l ∈ R such that f l−i(1− fs−l) = q′ig. In particular, we have 1− fs−l = q′lg ∈ Rg.

Remarks 3. In the proof we only use Rf ⊆ fR. But for the analogue of the above result for right

modules we will need the other inclusion. Moreover when f is a non zero divisor and R/Rf is finite

the inclusion Rf ⊆ fR is equivalent to fR ⊆ Rf .

Let us give some basic properties related to the notion of relative exponent.
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Lemma 5. [9] Suppose that f, g, h ∈ R such that er(g, f) and er(h, f) exist. Then:

a) g is a right factor of f l − 1 if and anly if er(g, f) divides l;

b) g is a right factor of h if and anly if er(g, f) divides er(h, f);

c) if Rg∩Rh = Rm, then er(m, f) exists and it is equal to the least common multiple of er(g, f)

and er(h, f).

2.1 Skew exponents over Fq[t; θ]

Now let’s take the finite field as an example. Let n ∈ N∗, p a prime, and q = pn. Consider

the skew polynomials ring Fq[t; θ], where θ : Fq → Fq is the Frobenius automorphism defined

by : θ(a) = ap. Let f(t), g(t) ∈ Fq[t; θ] such that g(0) 6= 0 and f(t) = t, so that condition (i) of

Lemma 4 is satisfied . This leads to the following proposition.

Proposition 7. Let Fq be a finite field and θ be the Frobenius automorphism of Fq, and let f(t)

∈ Fq [t; θ]. If f (0) 6= 0, then there exists a positive integer e such that f(t)|xe − 1 on the right.

The right exponent of f is defined to be the least integer e such that f(t)|xe − 1. We denote

it by er (f) := er(f, t).

Example 3. Let F4 [t; θ] be the skew polynomial ring with F4 =
{

0, 1, a, a2 = a+ 1
}

and θ (a) = a2.

Consider the polynomial f (t) = t − a. In the classical case, when f ∈ F4 [t], the exponent is 3.

However, when f ∈ F4 [t; θ] , we have
(
t− a2

)
(t− a) = t2 − ta− a2t+ a3 = t2 − (θ (a) + a2)t+ 1

= t2 − 1. Then er (f) = 2.

In the sequel, we shall write e (f) for the (right) exponent of f .

The study of exponents is related to a notion of order of an element in a group with an

automorphism. We introduce this definition and study some of its elementary properties.

Definitions 3. Let G be a group and σ ∈ Aut(G).

1) Let g ∈ G and n ∈ N. We define the nth norm of g, denoted Nn(g) by N0(g) = 1 and, for

n > 1,

Nn(g) = σn−1(g)σn−2(g) · · ·σ(g)g.
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2) An element g ∈ G is of finite σ-order if there exists l ∈ N∗ such that Nl(g) = 1. In this case

ordσ(g) is the smallest l such that Nl(g) = 1.

(3) For two elements x, g ∈ G. We define x◦
σ
g := σ(x)gx−1. We say that two elements g, h ∈ G

are σ-conjugate if there exists an element x ∈ G such that h = σ(x)gx−1.

We give in the following proposition some relations between the above definitions.

Proposition 8. [9] Let q = pl, where p is prime, l ∈ N∗, and let g, g1, ..., gs be monic polynomials

in Fq[t; θ] with nonzero constant terms. Then:

a) the polynomial g is a right (resp., left) factor of tc − 1, where c is a positive integer, if and

only if e(g) divides c;

b) if g is a right (resp., left) factor of h, then e(g) divides e(h);

c) we denote by [g1, ..., gs]l the least left common multiple of g1, . . . , gs. We have :

e([g1, . . . , gs]l) = lcm(e(g1), . . . , e(gs));

d) for α ∈ F∗q , e(t− α) = ordθ(α);

e) if α is a primitive element of Fq = Fpl , then e(t− α) = l(p− 1);

f) If α ∈ Fq is such that t−α is a right (resp., left) factor of g(t) in Fq[t; θ] and g(t) is irreducible

in Fq[t; θ], then e(g) = ordθ(α).

Example 4. Let us denote F4 = F2(a) with a2 + a+ 1 = 0 and F16 = F4(b) with b2 + b+ a = 0.

Consider R = F16[t; θ], where θ is the Frobenius automorphism defined by θ(c) = c2, for all

c ∈ F16. One can check that the left R-modules R/R(t − a) and R/R(t − ab) are isomorphic

(i.e. the two polynomials t − a and t − ab are similar) but the exponents of these polynomials

are different. Indeed, we easily check that θ(a)a = 1 and hence the θ-order of a is 2 and, by the

statement (d) in the proposition 8, the exponent of t−a is two as well (look also at Example 3).

Now, the θ-order of ab is equal to 4, is bigger than 2 and hence the exponent of t − ab is bigger

than two as well.

If C = (cij)0≤i,j≤n is a matrix with entries in Fq,we set θ (C) = (θ(cij))0≤i,j≤n. One can check

easily that θ is then an automorphism of GLn (Fq) . In the next theorem we present concrete

ways of computing this exponent over the ring Fq [t; θ].
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Theorem 3. [9] Let g (t) = tn + gn−1t
n−1 + · · ·+ g0 ∈ Fq [t; θ] and

Cg =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−g0 −g1 −g2 · · · −gn−1


the companion matrix of g. Then:

(a) ordθ (Cg) = er(t− Cp);

(b) er (g) = ordθ (Cg) .

Proof. (a) Remarking that t − Cp ∈ Mn(Fq[t; θ]) this is then an immediate consequence of the

fact (d) in Proposition 8 (and the remark following it).

(b) Put m := ordθ(Cp) and remark that, thanks to the part (a) of the Theorem, there exists a

polynomial q(t) = (qij(t)) ∈Mn(Fq)[t; θ] = Mn(Fq[t; θ]) such that q(t)(t−Cp) = tm−1. Equating

the first row entries on both side we get

• q11(t)t+ q1n(t)a0 = tm − 1 for the (11) entry,

• −q1i(t)t+ q1,i+1(t)t+ q1,n(t)ai = 0 for the entries (1, i) and 2 ≤ i ≤ n− 2,

• −q1,n−1(t) + q1,n(t)(t+ an−1) = 0 for the (1, n) entries.

Going backwards we then get successively q1,n−1(t) = q1,n(t)(t + an−1) and replacing q1,n−1(t)

in the previous equation leads to q1,n−2(t) = q1,n(t)(t2 + an−1t + an−2). More generally, for

1 ≤ i ≤ n− 1, we obtain

q1,n−i(t) = q1,n(t)(ti + an−1t
i−1 + · · ·+ an−i) for 1 ≤ i ≤ n− 1.

In particular, q1,1(t) = q1,n(t)(tn−1 + · · · + a2t + a1). Replacing this value in the first equation

q11(t)t+q1n(t)a0 = tm−1 above we get q1,np(t) = tm−1. This shows that er(p(t)) divides m. For

the converse suppose that e = er(p(t)) and let q(t)p(t) = te − 1 ∈ R := Fq[t; θ] ⊂ Mn(Fq)[t; θ].

We have te − 1 ∈ Rp and hence by Theorem 1.10 in [19] we have that (T ep − 1)(I, 0, . . . , 0) =

(0, 0, . . . , 0) where the entries of the vectors are square matrices of size deg(p). This leads to

θe(I, 0, . . . , 0)Ne(Cp) = (I, 0, . . . , 0) and hence Ne(Cp) = I. So that ordθ(Cp) divides e. This

yields the desired result.

Theorem 4. [9] The left and right exponent of a monic polynomial g(t) ∈ Fq[t; θ] are equal.
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Proof. We must show that, for e = er(g), g(t) divides te − 1 on the right and on the left. Now

er(g) = ordθ(Cg). Working in Ms(Fq)[t; θ] with s = deg g(t), we have ordθ(Cg) = er(t− Cg). In

Ms(Fq)[t; θ] t− Cg, is a right factor of te − 1 if and only if

θe−1(Cg) · · · θ(Cg)Cg = 1.

Appling θ1−e to this equality, we get

Cgθ
−1(Cg) · · · θ1−e(Cg) = 1.

This means that t− Cg is a left factor of te − 1. Hence er(t− Cg) = el(t− Cg).

From Theorem 3, we can see that the computing of exponent, is in fact an algebraic calcu-

lation in the finite field Fq. The following program defines a command Exp(f, pi) in MAGMA

which determines the exponent of any skew polynomial f(t) ∈ Fq[t; θ], with θ(r) = rp
i

for all

r ∈ Fq. We note here that in [25], the authors give a program in MAGMA to compute the

exponent of skew polynomials of degree 2 only.

Program 1.

q:= ... ;

F<a>:=GF(q);

R<t>:=PolynomialRing(F);

f(t):= ... ;

FrobM:=function(M,n,theta)

for i in [1..n], j in [1..n] do

M[i][j]:=M[i][j]^theta;

end for;

return M;

end function;

Exp:= function(poly,theta)

M:=CompanionMatrix(poly);

n:=Nrows(M);

pr:=1;
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Id:=Matrix(IdentitySparseMatrix(Parent(M[1][1]),n));

i:=0;

repeat

pr:=M*pr;

M:=FrobM(M,n,theta);

i:=i+1;

until (pr eq Id);

return i;

end function ;

Exp(f, ... );

Example 5. Let F27 = F3(b) be a finite field with b3+2b+1 = 0 and θ the Frobenius automorphism

defined by θ(r) = r3 for all r ∈ F27. Consider R = F[t; θ] and Let f(t) = t3 + t + b ∈ R. Let’s use

Program 1 to calculate the exponent

# We begin by definir our ring and f(t).

F<b>:=GF(3^3);

R<t>:=PolynomialRing(F);

f:=t^3+t+b;

# We implement the program on Magma.

FrobM:=function(M,n,theta)

for i in [1..n], j in [1..n] do

M[i][j]:=M[i][j]^theta;

end for;

return M;

end function;

Exp:= function(pol,theta)

M:=CompanionMatrix(pol);

n:=Nrows(M);

pr:=1;

Id:=Matrix(IdentitySparseMatrix(Parent(M[1][1]),n));

i:=0;
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repeat

pr:=M*pr;

M:=FrobM(M,n,theta);

i:=i+1;

until (pr eq Id);

return i;

end function ;

# We use command Exp(f,3) to compute the exponent of f(t).

Exp(f,3);

We find that Exp(f,3)=9 and (t9 − 1) = (t3 + t + b)(x6 + 2x4 + a14x3 + x2 + a22x + a12). We

can check the results obtained using the following commands in MAGMA.

F<b>:=GF(27);

R<t>:=SkewPolynomialRing(F,1);

f:=t^3+t+b;

(t^9-1) mod f;

We have seen, in (f), Theorem 8, that if we have g(t) ∈ F[t; θ] is irreducible and α ∈ Fq is a

root of g(t) in Fq[t; θ] (i.e. t− α is a right factor of g(t) in Fq[t; θ] ), then e(g) = ordθ(α). So, as

in the classical case, we can compute the exponent of a polynomial using the θ-order of its root.

In the following we give a program on MAGMA to compute the exponent using the θ-order of

its root. Before that, let’s mention some basic definitions and skills.

Proposition 9. Let f(t) =
n∑
i=0

ait
i ∈ Fq[t; θ] and α ∈ Fq, then the right remainder of the Euclidean

division on the right of f(t) by t− α is:
n∑
i=0

aiNi(α).

Proof. Let f(t) = ant
n + · · ·+ a0 ∈ Fq[t; θ], then we have the following equality, for any integer

i > 1:

ti −Ni(α) =
[
ti−1 + θi−1(α)ti−2 + θi−1(α)θi−2(α)ti−3 + · · ·+Ni(α)

]
(t− α).

Multiplying these equations by ai and summing over i, with 1 ≤ i ≤ n, we get:
n∑
i=1

ait
i − aiNi(α) = Q(t)(t− α).

By adding a0, we get:
n∑
i=0

ait
i − aiNi(α) = Q(t)(t− α).
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This proves the proposition.

Corollary 2. Let f(t) =
n∑
i=0

ait
i ∈ Fq[t; θ] and α ∈ Fq, then α is a root of f(t) if and only if:

n∑
i=0

aiNi(α) = 0.

We observe that if θ(α) = αq0 and θ 6= id, then Ni(α) = θi−1(α) . . . (α) = αq
i−1
0 . . . α, then :

Ni(α) = α

i−1∑
j=0

qj0
= α

qi0 − 1

q0 − 1 .

We deduce the following proposition:

Proposition 10. Let f(t) =
n∑
i=0

ait
i ∈ Fq[t; θ] and α ∈ Fq, then α is a root of f(t) if and only if α

is root of the following polynomial of Fq[Y ] :

Pf =
n∑
i=0

aiY

qi0 − 1

q0 − 1 .

This polynomial Pf is a polynomial of the commutative ring Fq[Y ], is denoted with the

indeterminate Y to not confuse it with skew polynomials.

In [19], we find a study of the polynomial Pf (called [p]-polynomial) previously defined.

They show that the question of the irreducibility of a polynomial f(t) ∈ Fq[t; θ] can be translated

in terms of factorization in Fq[x], as the following proposition show and in the case of a skew

polynomial ring Fq[t; θ] where q = pn and θ is the Frobenius automorphism, the splitting field of

a polynomial f(t) ∈ Fq[t; θ] is the splitting field of the polynomial Pf over Fq[Y ].

Proposition 11. [19] A polynomial f(t) ∈ Fq[t; θ] is irreducible if and only if Pf ∈ Fq[Y ] has no

non trivial factor belonging to Fq[Y ].

In the following MAGMA program, we define a command RemPol(f(t), pi) which gives the

polynomial Pf of the skew polynomial f(t) ∈ Fq[t; θ], with θ(r) = rp
i

for all r ∈ Fq.

Program 2.

RemPol:=function(poly,theta)

p:=theta;

t:=Coefficients(poly);

s:=t[1];

for i in [2..#t] do



37

s:=s+t[i]*t^((p^(i-1)-1) div (p-1) );

end for;

return s;

end function;

Example 6. Let us denote F4 = {0, 1, a, a + 1}. Consider R = F4[t; θ], where θ(a) = a2. Let

f(t) = t2 + at+ 1 ∈ R, let’s compute Pf in MAGMA with Program 2.

# We define our ring and f(t).

F<a>:=GF(4);

R<x>:=PolynomialRing(F);

po:=x^2+a*x+1;

# We implement the program on MAGMA.

RemtPol:=function(poly,theta)

p:=theta;

t:=Coefficients(poly);

s:=t[1];

for i in [2..#t] do

s:=s+t[i]*x^((p^(i-1)-1) div (p-1) );

end for;

return s;

end function;

# We use the command RemPol(f,2).

RemPol(f,2);

>x^3 + a*x + 1

We get Pf (Y ) = Y 3 + aY + 1.

We recall that for an element a ∈ Fq, the nth norm Nl(a) = θn−1(a)θn−2(a) . . . θ(a)a and a is

of finite θ-order, if there exists l ∈ N such that Nl(a) = 1. The smallest l such that Nl(a) = 1 is

the θ-order of a, and it is denoted by ordθ(a). We propose in the following a program to compute

it, using the command ThetaOrd(a, pi), where θ(a) = ap
i

.

Program 3.

ThetaOrd:=function(elem,theta)

p:=1;
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i:=0;

repeat

p:=p*elem;

elem:=elem^theta;

i:=i+1;

until (p eq 1);

return i;

end function;

Now, with Programs 2 and 3 we are able to use MAGMA to compute the exponent of irreducible

polynomial in Fq[t; θ] using the θ-order of its root in Fq.

Example 7. Let f(t) = t2 + at + 1 ∈ F4[t; θ], where θ(a) = a2, as described in Example 6 above.

let’s compute e(f, t) with MAGMA.

# We define our ring and f(t).

F<a>:=GF(4);

R<x>:=PolynomialRing(F);

f:=x^2+a*x+1;

# We implement programs 2 and 3 on MAGMA.

RemPol:=function(poly,theta)

p:=theta;

t:=Coefficients(poly);

s:=t[1];

for i in [2..#t] do

s:=s+t[i]*x^((p^(i-1)-1) div (p-1) );

end for;

return s;

end function;

ThetaOrd:=function(elem,theta)

p:=1;

i:=0;

repeat

p:=p*elem;
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elem:=elem^theta;

i:=i+1;

until (p eq 1);

return i;

end function;

# We use the command RemPol(f,2) to compute P(f).

RemPol(f,2);

>x^3 + a*x + 1

# we test the irreducibility of P(f).

Factorization(x^3 + a*x + 1);

[

<x^3 + a*x + 1, 1>

]

# We define the splitting field of P(f)

F1<w>:=ext<F | x^3+a*x+1>;

# We use the command ThetaOrd(w,2) to compute the O-order of the root w of P(f).

ThetaOrd(w,2);

>6

Therefore ordθ(w) = 6, where w ∈ F4[t]

(Pf )
and Pf (w) = 0, then Exp(f, t) = 6.

In next theorem, we generalize a relationship (see [27]) between the exponent in a finite

field and in a Galois ring from the classical case to the skew case. We follow the same proof

method used in ([27]). For this we need the following lemma.

Lemma 6. Let f ∈ GR(pn,m) [t; θ] and l ∈ N∗. If f ≡ 1
[
pl
]
, then fp ≡ 1

[
pl+1

]
.

Proof. We have the classical equality in a noncommutative ring :

bi − ai = (b− a)bi−1 + a(b− a)bi−2 + · · ·+ ai−1(b− a).

From this equality, we can deduce the decomposition of fp − 1 :

fp − 1 = (f − 1)fp−1 + (f − 1)fp−2 + ...+ (f − 1)

= (f − 1)
(
fp−1 + fp−2 + ...+ 1

)
.

we have by hypothesis f ≡ 1
[
pl
]
, then pl divides (f − 1) and

fp−1 + fp−2 + ...+ 1 ≡ 1 + · · ·+ 1
[
pl
]

≡ p
[
pl
]
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So p divides (fp−1 + fp−2 + · · ·+ 1), therefore pl+1|(f − 1)(fp−1 + fp−2 + ...+ 1) , we get then

pl+1|fp − 1 and fp ≡ 1
[
pl+1

]
.

In the following theorem, we use the notation eθ(f) (resp. eθ(f)) to express the exponent

e(f, t) in the skew polynomials ring GR(pn,m) [t, θ] (resp., Fpm [t, θ]).

Theorem 5. Let R = GR(pn,m) be a Galois ring and f (t) =
k∑
i=0

ait
i be a skew polynomial in

R [t, θ]. Then,we have the following :

1) f(t) have an exponent if and only if a0 ∈ U(R) ;

2) If eθ(f) = e , then eθ(f) = pie, where 0 ≤ i < n.

Proof. 1) If f(t) have an exponent, so there exist a positive integer e ∈ N∗ and a polynomial

g (t) ∈ R [t; θ] such that te − 1 = f (t) g (t), then f (0) g (0) = −1 and clearly f(0) = a0 is

unite. Conversely, if a0 6= 0, the condition (i) of Lemma 4 is satisfied, then f(t) have an

exponent.

2) Now suppose a0 ∈ U(R), so then there exists e ∈ N∗ with f (t) |te−1 in Fpm [t; θ]. Suppose

g (t) ∈ GR(pn,m) [t; θ] such that te − 1 = f (t) g (t) (mod p), so te − f (t) g (t) = 1(mod p).

Taking pi-th powers on both sides, by Lemma 6, we have :

(te − f (t) g (t))p
i

= 1(mod.pi+1)

Note that pn is the characteristic of GR(pn,m). Letting i = n− 1, we have :

(te − f (t) g (t))p
n−1

= 1

which leads to,

tep
n−1

= 1 (mod.f (t))

then, r|pn−1e, where r = eθ(f). On the other hand, from f (t) |(tr − 1) ,we get f(t)|tr − 1

and e|r. Thus r = pie, where 0 ≤ i < n.

Example 8. Let GR(4, 2) = Z4 [ξ] = {0, 1, 2, 3, ξ, ξ + 1, ..., 3ξ, 3ξ + 1, 3ξ + 2, 3ξ + 3}, where

ξ2 = −ξ − 1 and θ (a0 + a1ξ) = a0 + a1ξ
2, for ai ∈ Z4.

The exponent of f (t) = t2 + t+ ξ ∈ GR(4, 2) [t; θ] is 8, and we have

t8 − 1 =
(
t6 + 3t5 + (3ξ + 1)t4 + 2t3 + (2ξ + 1)t2 + t+ ξ + 1

) (
t2 + t+ ξ

)
The exponent of f (t) = t2 + t+ a ∈ F4 [t; θ] is 4, and we have

t4 − 1 =
(
t2 + t+ a2

) (
t2 + t+ a

)
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2.2 Skew exponents in general finite ring R

Somewhat more generally, we can consider a finite ring A, an automorphism σ ∈ Aut(A)

and f(t) = t ∈ R = A[t;σ]. If g(t) ∈ R is such that its independent term is invertible then

Rg +Rt = R and all the conditions of the Lemma 4 will be satisfied.

Theorem 6. Let R be finite ring with identity 1R and σ ∈ Aut(R) be such that σl = idR for some

l ∈ N∗. Let f(t) = tn + an−1t
n−1 + · · ·+ a0 ∈ R[t, σ] with a0 ∈ U(R) and let

Cf =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1


∈Mn(R)

be the companion matrix of f (t) . Then er(f) = ordσ(Cf ).

Proof. Let f(t) =
n∑
i=0

ait
i ∈ R[t;σ]. We denote R[t;σ]f(t) by (f) and put T = R[t;σ]/(f). let

V k denote the transpose of the vector (tk, tk+1, tk+2, ... , tk+n−1), where t = t + (f) and k ∈ N.

Firstly, let us prove that

Nk(Cf ).V 0 = V k,∀k ∈ N∗. (2.1)

For k = 1, we find that Cf .V 0 = V 1. We suppose that equality (2.1) is true for all positive

integers smaller or equal to k, and we prove it for k + 1.

We have Nk+1(Cf ).V 0 = σk(Cf ).Nk(Cf ).V 0 = σk(Cf ).V k by hypothesis. Since tn = −
n−1∑
i=0

aiti

in T , then tk+n = tktn = −
n−1∑
i=0

tkaiti = −
n−1∑
i=0

σk(ai)tk+i, therefore σk(Cf ).V k = V k+1.

Now, the ring Mn(R) is periodic because R is finite, so a nonzero divisor matrix must be in-

vertible. If we suppose that Cf is a zero-divisor, then there exists 0 6= M ∈ Mn(R) such that

MCf = 0. But the fact that a0 ∈ U(R) implies that M = 0, a contradiction. Hence Cf is invert-

ible. This leads to σk(Cf ) is invertible, for all k ∈ N. Notice also that Nk(Cf ) ∈Mn(S), where S

is the subring of R generated by {σk(ai), 0 ≤ k ≤ l, 0 ≤ i < n}. This implies that Mn(S) is fi-

nite. By Proposition 4, (c), in [9], Cf is of finite σ-order r, where r is a positive integer. If we put

k = r in (2.1), we get Nr(Cf )V 0 = InV
0 = V r, so tr = 1. This yields that er(f) divides r, from

(a) of lemma 5. On the other hand, if we set er(f) = e, then f divides te − 1 on the right, hence

te = 1. Now if we put k = e in (2.1), we get Ne(Cf )V 0 = V e = V 0, so (Ne(Cf ) − Id)V 0 = 0.

Since {1, t, t2, ... , tn−1} is a basis of T as a left R-module, then Ne(Cf ) = Id, which means that

e divides ordσ(Cf ) .
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Now, we give a commutativity relation of te − 1 in R [t; θ]. We prove that in quite general

situations, the fact that g(t) divides on the right the polynomial te − 1 implies that g(t) also

divides te − 1 on the left.

Theorem 7. Let R be a ring and f(t), g(t) ∈ R [t; θ] be such that f is monic and f0g0 = g0f0,

where f0 and g0 are the constant terms of f(t) and g(t) respectively. Assume that f(t)g(t) = te − 1

for a positive integer e. Then we have also g(t)f(t) = te − 1.

Before going on into the proof we need the following lemma.

Lemma 7. Let k be a non-zero positive integer and a(i, r) be a formula in i and r. Then we have

(i)
k∑
i=1

i∑
r=1

a(i, r) =
k∑
i=1

k−i∑
r=0

a(i+ r, i),

(ii)
k∑
i=1

k−i∑
r=0

a(i, r) =
k∑
i=1

a(i, 0) +
k−1∑
i=1

k−i∑
r=1

a(i, r).

Proof. (i) We shall use the following formula mentioned in [[11], page 36]:

k∑
i=1

k∑
r=1

a(i, r) =
k∑
r=1

k∑
i=r

a(i, r) =
k∑
i=1

k∑
r=i

a(r, i).

We use the change of variable s = r − i, so we have

k∑
i=1

k∑
r=1

a(i, r) =

k∑
i=1

k∑
r=i

a(r, i) =

k∑
i=1

k−i∑
s=0

a(i+ s, i).

Replacing s by r, we obtain

k∑
i=1

k∑
r=1

a(i, r) =
k∑
i=1

k−i∑
r=0

a(i+ r, i).

(ii) The proof is trivial.

Proof. of the theorem

Let f(t) =
n∑
i=0

fit
i and g(t) =

m∑
j=0

gjt
j , so

f(t)g(t) =
n∑
i=0

m∑
j=0

fiθ
i(gj)t

i+j =
m+n∑
k=0

Akt
k,

where Ak =
∑

i+j=k

fiθ
i(gj). Similarly

g(t)f(t) =

m∑
j=0

n∑
i=0

gjθ
j(fi)t

i+j =

n+m∑
k=0

Bkt
k
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with Bk =
∑

i+j=k

gjθ
j(fi).

Assume that f(t)g(t) = tn+m − 1. Then we have

A0 = −1,

A1 = A2 = .... = An+m−1 = 0,

An+m = 1.

We shall prove that

B0 = −1,

B1 = B2 = .... = Bn+m−1 = 0,

Bn+m = 1.

We have A0 = f0g0 = −1, so B0 = g0f0 = −1, and An+m = Bn+m = 1 since f and g are monic.

Now we need to prove that

B1 = B2 = .... = Bn+m−1 = 0.

In order to do that, we use finite induction. First, we verify that B1 = 0, where B1 = g0f1 +

g1θ(f0). We have

B0 = g0f0 = −1 and A1 = f0g1 + f1θ(g0) = 0. Multiplying A1 by g0 on the left and by θ(f0) on

the right, we obtain

g0A1θ(f0) = (g0f0)g1θ(f0) + g0f1θ(g0).θ(f0)

= (g0f0)g1θ(f0) + g0f1θ(g0f0)

= −g1θ(f0)− g0f1 = −B1

Thus A1 = 0 implies B1 = 0, and the first step of induction is proved.

Now we suppose that Bt = 0 for all t ∈ {1, 2, ..., k} and we prove that Bk+1 = 0, where

0 < k < m+ n− 1.

For that, we will show that

g0Ak+1θ
k+1(f0) = −Bk+1. (2.2)
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We know that

Bk+1 =
∑

i+j=k+1

giθ
i(fj)

=
k+1∑
i=0

giθ
i(fk−i+1)

= g0fk+1 +
k∑
i=1

giθ
i(fk−i+1) + gk+1θ

k+1(f0),

and

Ak+1 =
∑

i+j=k+1

fiθ
i(gj)

=

k+1∑
i=0

fiθ
i(gk−i+1)

= f0gk+1 +
k∑
i=1

fiθ
i(gk−i+1) + fk+1θ

k+1(g0).

As in the first step, multiplying Ak+1 by g0 on the left and by θk+1(f0) on the right, we obtain

g0Ak+1θ
k+1(f0) = g0(f0gk+1 +

k∑
i=1

fiθ
i(gk+1−i) + fk+1θ

k+1(g0)θ
k+1(f0)

= −gk+1θ
k+1(f0) + g0

k∑
i=1

fiθ
i(gk−i+1)θ

k+1(f0)− g0fk+1

= −g0fk+1 + g0

k∑
i=1

fiθ
i(gk−i+1)θ

k+1(f0)− gk+1θ
k+1(f0)

Identifying the coefficients of Bk+1 and g0Ak+1θ
k+1(f0), we see that proving the equality (1) is

equivalent to showing that

g0

k∑
i=1

fiθ
i(gk+−i+1)θ

k+1(f0) = −
k∑
i=1

giθ
i(fk−i+1).

Let us evaluate g0
k∑
i=1

fiθ
i(gk+−i+1)θ

k+1(f0).

By hypothesis Bi = 0 for all i, where 0 < i 6 k, and Bi =
∑

r+s=i
grθ

r(fs) =
i∑

r=0
grθ

r(fi−r).

Multiplying Bi on the right by θi(gk−i+1), and summing up from i = 1 to k, we obtain

k∑
i=1

Biθ
i(gk−i+1) =

k∑
i=1

i∑
r=0

grθ
r(fi−r)θ

i(gk−i+1) = 0.

By isolating the term when r = 0 in the last sum, we get
k∑
i=1

g0fiθ
i(gk−i+1) = −

k∑
i=1

i∑
r=1

grθ
r(fi−r)θ

i(gk−i+1).
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From lemma 7, (i), we find
k∑
i=1

g0fiθ
i(gk−i+1) = −

k∑
i=1

k−i∑
r=0

giθ
i(fr)θ

i+r(gk−i−r+1).

Using lemma 7, (ii), we deduce that
k∑
i=1

g0fiθ
i(gk−i+1) = −

k∑
i=1

giθ
i(f0)θ

i(gk−i+1)−
k−1∑
i=1

k−i∑
r=1

giθ
i(fr)θ

i+r(gk−i−r+1)

= −
k∑
i=1

giθ
i(f0gk−i+1)−

k−1∑
i=1

k−i∑
r=1

giθ
i(fr)θ

i+r(gk−i−r+1).

Now, we evaluate f0gk−i+1. We know that Ak−i+1 = 0 for all 0 < i ≤ k, so

Ak−i+1 =
∑

r+s=k−i+1

frθ
r(gs) =

k−i+1∑
r=0

frθ
r(gk−i−r+1) = 0.

When we pick out the term for r = 0, we obtain

f0gk−i+1 = −
k−i+1∑
r=1

frθ
r(gk−i−r+1).

Replacing f0gk−i+1 by its value, we get
k∑
i=1

g0fiθ
i(gk−i+1) = −

k∑
i=1

giθ
i(−

k−i+1∑
r=1

frθ
r(gk−i−r+1))−

k−1∑
i=1

k−i∑
r=1

giθ
i(fr)θ

i+r(gk−i−r+1)

=
k∑
i=1

k−i+1∑
r=1

giθ
i(fr)θ

i+r(gk−i−r+1)−
k−1∑
i=1

k−i∑
r=1

giθ
i(fr)θ

i+r(gk−i−r+1).

Isolating the term for r = k − i+ 1, we obtain
k∑
i=1

g0fiθ
i(gk−i+1) =

k∑
i=1

giθ
i(fk−i+1)θ

k+1(g0) +
k−1∑
i=1

k−i∑
r=1

giθ
i(fr)θ

i+r(gk−i−r+1)

−
k−1∑
i=1

k−i∑
r=1

giθ
i(fr)θ

i+r(gk−i−r+1),

then
k∑
i=1

g0fiθ
i(gk−i+1) =

k∑
i=1

giθ
i(fk−i+1)θ

k+1(g0).

Finally, we multiply the last equality from the right side by θk+1(f0), then we have

g0

k∑
i=1

fiθ
i(gk−i+1)θ

k+1(f0) =

k∑
i=1

giθ
i(fk−i+1)θ

k+1(g0)θ
k+1(f0)

=
k∑
i=1

giθ
i(fk−i+1)θ

k+1(g0f0)

= −
k∑
i=1

giθ
i(fk−i+1),



46

therefore,

g0

k∑
i=1

fiθ
i(gk−i+1)θ

k+1(f0) = −
k∑
i=1

giθ
i(fk−i+1).

The last equality proves that g0Ak+1θ
k+1(f0) = −Bk+1, and since Ak+1 = 0, we conclude that

Bk+1 = 0.

This completes the proof



Chapter 3

Periodic graded rings and P.I. rings

3.1 New characterizations of periodic rings

If R is a periodic ring, then the element 1R + 1R is periodic and this easily leads to the first

statement of the following lemma. The second is true for any ring of positive characteristic.

Lemma 8. Let R be a periodic ring, then

1. R has a positive characteristic.

2. If q > 0 is the characteristic of R and q = pn1
1 . . . pnss is a decomposition of q as product

of prime integers, then the ring R is isomorphic to R1 × · · · × Rs, where, for 1 ≤ i ≤ s,

Ri = q

p
ni
i

R.

Remark 2. We mention that, if R is periodic and R = R1 × · · · × Rs is the decomposition from

Lemma 8, then the rings Ri, 1 ≤ i ≤ s, are stable under the action of σ and δ. This leads to the

decomposition S = R[t;σ, δ] = R1[t1;σ1, δ1]× · · · ×Rs[ts;σs, δs] with the obvious notations.

Periodic rings have many nice properties. First, let us notice some properties of periodic

elements.

Lemma 9. 1. Let r be a periodic element in a ring R. If rn = rm with m < n, then for any

k ∈ N and j ≥ m, we have rk(n−m)+j = rj .

2. If S is a finite subset of periodic elements in a ring R, there exist positive integers l, n with

l > n such that, for every s ∈ S, sl = sn.

3. If u ∈ U(R) is periodic, there exists a positive integer n such that un = 1.

4. The periodic elements of the Jacobson radical are nil.

5. If a ∈ R is periodic, there exists l = l(a) ∈ N such that al is an idempotent.
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6. If a, b ∈ R are such that ab is periodic, then ba is periodic.

Proof. (1) We have rmrn−m = rm, this easily gives that for any k ∈ N, rmrk(n−m) = rm and

hence also rk(n−m)+j = rj for all j ≥ m.

(2) It is enough to consider the case when S has two elements, say s0, s1. Since R is periodic,

there exist integers l0 > n0 and l1 > n1 such that sl00 = sn0
0 and sl11 = sn1

1 . From Part 1 above, we

get s(l0−n0)(l1−n1)+j
0 = sj0 and s(l0−n0)(l1−n1)+j

1 = sj1 for any j ≥ max{n0, n1}.

(3) If u ∈ U(R) is periodic, there exist integers m > n such that um = un, then um−n = 1.

(4) If a ∈ J(R) is periodic, there exist integers m < l such that am(al−m − 1) = 0. Since

al−m ∈ J(R), al−m − 1 ∈ U(R) and am = 0.

(5) If a ∈ R and l > m are integers such that al = am, and if k ∈ N is such that j := k(l−m)−

m > 0, then, according to the point 1 above, we have a2(m+j) = a2k(l−m) = am+j+k(l−m) = am+j .

(6) We have (ab)m = (ab)n, with m,n an integers and m > n. Multiplying both sides of the

previous equation by a on the right and b on the left, we obtain (ba)m+1 = (ba)n+1.

Let us now give a useful characterization of periodic rings. This can be obtained from results

in the literature but we offer here a short independent proof.

Proposition 12. Let R be a ring and J = J(R) its Jacoson radical. Then R is periodic if and only

if J is nil and R/J is periodic.

Proof. Assume J nil and R/J periodic. These hypotheses imply that, for any a ∈ R, there exist

l,m, s ∈ N such that l < m and (am − al)s = 0. This is true in particular for the element

2 = 1R + 1R ∈ R. This shows that there exists 0 6= q ∈ N such that qR = 0. Using the

above equality we get that, for any a ∈ R, there exists r ≥ 1 such that ar =
∑r−1

i=0 αia
i, where

αi ∈ {0, 1, . . . , q − 1}. This shows that the subring generated by a in R is finite and hence a is

periodic. The converse is an immediate consequence of Part 4 of the precedent lemma.

We now relate periodic rings with other kind of rings. Let us first recall, that a ring is strongly

π-regular (resp. strongly clean) if and only if for any a ∈ R, there exists n ≥ 1 (resp. there exist

e = e2 and u ∈ U(R)) such that an ∈ an+1R (resp. a = e+ u and ue = eu). A ring R has stable

range 1 if whenever a, b ∈ R are such that aR + bR = R, there exists x ∈ R with ax + b right

invertible. As it is well-known this notion is left-right symmetric.

Proposition 13. Let R be a periodic ring. Then

1. R is Dedekind finite.
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2. R is strongly π-regular.

3. R has stable range 1.

4. R is strongly clean.

Proof. (1) Let a, b ∈ R be such that ab = 1, we know that there exist l, s ∈ N such that al = as

and l > s. Define eij = bi(1 − ba)aj , then we have for any i, j, k, l ∈ N, eijekl = 0 if j 6= k and

eijekl = eil if j = k, so eiseli = 0. This implies that

0 = bi(1− ba)asbl(1− ba)ai

= bi(1− ba)albl(1− ba)ai

= bi(1− ba)(1− ba)ai

= bi(1− ba)ai

Left and right multiplying by ai and bi respectively, we get ba = 1.

(2) Since a ring R is strongly π-regular if and only if for any a ∈ R the descending chain

aR ⊇ a2R ⊇ a3R . . . (equivalently Ra ⊇ Ra2 ⊇ Ra3 . . . ) is finite.

(3) According to a Theorem 4 of P. Ara (cf. [1]), every strongly π-regular ring has stable

range 1.

(4) We must show that any element a ∈ R can be written as a = e + u, where e2 = e is

an idempotent, u is an invertible element and moreover ue = eu. Thanks to Lemma 9 (3),

we know that there exists n ∈ N such that f = an is an idempotent. We can check that

(a− (1− f))(an−1f − (1 + a+ · · ·+ an−1)(1− f)) = 1. This yields the thesis

We will now give one more characterization of periodic rings. We will need the following

easy lemma.

Lemma 10. Let R be a ring of positive characteristic q. If a, b ∈ R are periodic and ab = ba, then

a+ b is periodic.

Proof. It is enough to show that the set P := {(a+ b)i : i ∈ N} of powers of a+ b is finite. Since

a and b are periodic and commute, there is only a finite number of words in a and b. This means

that the set {aibj : i, j ∈ N} is finite. So, for any i ∈ N, (a + b)i is a sum of words αaibj , where

i and j are both bounded (since a and b are periodic), and α ∈ {0, 1, 2, . . . q − 1} (since qR = 0,

where q denote the finite characteristic of R) . This yields that P is finite, as desired.
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Remark 3. Let us remark that a similar proof as in 10 shows that if a and b are periodic elements

and p(t) ∈ Z[t] such that ab = p(a)b, then a+ b is periodic. We will not need this fact.

Theorem 8. A ring R is periodic if and only if the followings hold:

1. R is of positive characteristic,

2. R is strongly clean,

3. The invertible elements of R are roots of unity.

Proof. Thanks to Lemmas 8 and 9 and Proposition 13, we only need to prove that the above

conditions are sufficient for the ring R to be periodic.

Assume that R is a ring that satisfies (1), (2) and (3), let a ∈ R. We can thus write a = u+ e,

where u is invertible, e is an idempotent element and eu = ue. So, we have e2 = e, and there

exists n ∈ N such that un = 1 so that the elements e and u are periodic and commute. Lemma

10 above shows that a is then periodic, as required.

3.2 Periodic graded rings

Theorem 9. Let R = ⊕i∈NRi be a graded ring such that R0 is a periodic ring. Let f = a0 + a1 +

...+ am ∈ R, ai ∈ Ri for i ∈ {0, ...,m} and fn =
nm∑
k=0

Ank , where Ank is the homogeneous component

of fn of degree k. Then, for all k ∈ N, there exist l, s ∈ N with l > s and Alk = Ask.

Proof. Let f =
∑m

i=0 ai ∈ R. Since R0 is periodic, there exist positive integers e, p with p < e

and ae0 = ap0. Let us notice that Ank is the sum of all words in a0, a1, ..., am of length n and degree

k. Any word in a0, a1, ..., am of length n and degree k is of the form aj10 ac1a
j2
0 ac2 ...acya

jy+1

0 , with

0 ≤ jl ≤ e and
∑y

b=1 cb = k. The number, say h, of such words is finite and is independent of

n. If w1, ..., wh are all the words in a0, a1, ..., am of length n and degree k, then for all n ∈ N,

Ank = α1w1 + ...+ αhwh, αi ∈ N. Lemma 8 shows that 0 ≤ αi ≤ q − 1. Therefore, for all k ∈ N,

there exist l, s ∈ N, l > s such that Alk = Ask, as desired.

Corollary 3. Let R = ⊕i∈NRi be a graded ring and l ∈ N. Suppose that Ri = 0 for i ≥ l. Then R

is periodic if and only if R0 is periodic.
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Proof. It is enough to use Part 2 of Lemma 9.

We saw in Theorem 9 that the homogeneous components Ak are periodic. In the next

proposition, we give a period for each homogeneous component. We keep the notations used in

Theorem 9.

Proposition 14. Let R = ⊕i∈NRi be a graded ring with R0 periodic, and such that qR0 = 0 for

q ∈ N∗. Then, for f =
m∑
k=0

ak ∈ R, with ak ∈ Rk for 0 ≤ k ≤ m and a0 6= 0, we have

1. For any positive integers n and k,

Ank =

n−1∑
i=0

k−1∑
j=0

Aik−j−1aj+1a
n−i−1
0 .

2. If al0 = as0 with l, s ∈ N and l > s, then, for all k ∈ N, Aq
kl
k = Aq

ks
k . Moreover, for all a, b ∈ N

with b > qks, A
aqk(l−s)+b
k = Abk.

Proof. 1. Let f =
m∑
k=0

ak ∈ R, and fn−1 =
(n−1)m∑
k=0

An−1k , then

fn−1f =

(n−1)m∑
i=0

m∑
j=0

An−1i aj =
nm∑
k=0

Ank ,

where Ank =
∑

i+j=k

An−1i aj =
k∑
j=0

An−1k−j aj , A
0
0 = 1 and A0

i = 0, i > 0.

It is clear that An0 = an0 for all n ∈ N∗. Let us prove that, for any positive integers k and n,

we have

Ank =
n−1∑
i=0

k−1∑
j=0

Aik−j−1aj+1 a
n−i−1
0 .

First, for n = 1 and k ∈ N∗, we have A1
k =

k−1∑
j=0

A0
k−j−1 aj+1 = ak. We suppose that the

formula giving Ank is true for all positive integers k and n, and we prove that it is true for

An+1
k . For all k ∈ N∗, we have

An+1
k =

k∑
j=0

Ank−jaj = Anka0 +
k∑
j=1

Ank−jaj

=
n−1∑
i=0

k−1∑
j=0

Aik−j−1aj+1 a
n−i
0 +

k−1∑
j=0

Ank−j−1aj+1

=
n∑
i=0

k−1∑
j=0

Aik−j−1 aj+1 a
n−i
0 ,

as desired.
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2. We have Al0 = As0, and from Part 1 of Lemma 9, Aa(l−s)+b0 = Ab0 for all a, b ∈ N with b > s

. We use now induction on k. We suppose that

Aq
λl
λ = Aq

λs
λ and Aaq

λ(l−s)+b
λ = Abλ

for all λ ∈ {0, 1, ..., k} and for all positive integers a, b with b > qλs, and we prove that

Aq
k+1l
k+1 = Aq

k+1s
k+1 and Aaq

k+1(l−s)+b
k+1 = Abk+1,

with a, b ∈ N and b > qk+1s . From (1), we have

A
aqk+1(l−s)+b
k+1 =

aqk+1(l−s)+b−1∑
i=0

k∑
j=0

Aik−j aj+1 a
aqk+1(l−s)+b−i−1
0 .

Divide the first sum on the right into three parts. Firstly, we note that, for each

λ ∈ {0, 1, ..., k} and v ∈ N∗, we have

qks−1∑
i=0

Aiλ av a
aqk+1(l−s)+b−i−1
0 =

qks−1∑
i=0

Aiλ av a
b−i−1
0 ,

because of b− i− 1 > s. Secondly, we also have

aqk+1l−qks(aq−1)−1∑
i=qks

Aiλ av a
aqk+1(l−s)+b−i−1
0 = q

qkl−1∑
i=qks

Aiλ av a
aqk+1(l−s)+b−i−1
0 = 0,

since it is easy to see, thanks to our hypothesis, that

qkl−1∑
i=qks

Aiλ av a
aqk+1(l−s)+b−i−1
0 =

2qkl−qks−1∑
i=qkl

Aiλ av a
aqk+1(l−s)+b−i−1
0

...

=

aqk+1l−qks(aq−1)−1∑
i=qkl(aq−1)−qks(aq−2)

Aiλ av a
aqk+1(l−s)+b−i−1
0 .

Thirdly, we now show the following equality

aqk+1(l−s)+b−1∑
i=aqk+1l−qks(aq−1)

Aiλ av a
aqk+1(l−s)+b−i−1
0 =

b−1∑
i=qks

Aiλ av a
b−i−1
0 .

For that, we use the change of variable u = i− aqk+1(l − s), then

aqk+1(l−s)+b−1∑
i=aqk+1l−qks(aq−1)

Aiλ av a
aqk+1(l−s)+b−i−1
0 =

b−1∑
u=qks

A
aqk+1(l−s)+u
λ av a

b−u−1
0 ,
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and, since u > qks, then, by hypothesis

b−1∑
u=qks

A
aqk+1(l−s)+u
λ av a

b−u−1
0 =

b−1∑
u=qks

Auλ av a
b−u−1
0 .

Using the values of these three parts, we finally conclude that for all λ ∈ {0, 1, ..., k} and

for all integers a, b, v such that v > 0 and b > qk+1s, we have

aqk+1(l−s)+b−1∑
i=0

Aiλ av a
aqk+1(l−s)+b−i−1
0 =

b−1∑
i=0

k∑
j=0

Aiλ av a
b−i−1
0 .

Therefore,

A
aqk+1(l−s)+b
k+1 = Abk.

The following lemma is well-known, but we give a short proof for the sake of completeness.

Lemma 11. A finite direct product of periodic rings is periodic.

Proof. Let n ∈ N∗ and R =
n∏
i=1
Ri, where, for every 1 ≤ i ≤ n, Ri is a periodic ring. Let

r = (r1, r2, ..., rn) ∈ R with ri ∈ Ri. For every i ∈ {1, 2, ..., n}, there exist si < li ∈ N such that

rlii = rsii . Thanks to Part 1 of Lemma 9, rk(li−si)+ji = rji for any positive integer k and any j > si.

So, if we choose s = max{si : i ∈ {1, 2, ..., n}} and l =
n∏
i=1

(li−si)+s, then l > s and rl = rs.

3.3 Periodic matrix rings

Let T (R,S,M) denote the generalized (or formal) triangular matrix ring, that is, a ring

of the form

R M

0 S

 under the usual matrix operations, where R,S are rings and M is an

(R,S)-bimodule.

Theorem 10. Let T (R,S,M) be the generalized triangular matrix ring. Then R and S are periodic

if and only if T (R,S,M) is periodic.

Proof. Let R and S be periodic rings. We can consider T = T (R,S,M) as a graded ring with

T = T0
⊕
T1, where T0 =

R 0

0 S

 and T1 =

0 M

0 0

. Therefore, from Lemma 11, T0 is

periodic and then, by Corollary 3, T is periodic. The converse is obvious.
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By an easy induction, this theorem can be extended to the more general situation of gener-

alized triangular matrix rings. Such rings are denoted T (Ri,Mij | 1 ≤ i < j ≤ n), where Ri

and Mi,j are respectively periodic rings and (Ri, Rj)-bimodules equipped with maps guarantee-

ing that the multiplication of the matrices is well defined and satisfies the usual associativity

property. If n = 3, this gives that the triangular matrix ring S =


R1 M12 M13

0 R2 M23

0 0 R3

 is periodic,

because S =

A M

0 R3

, with A =

R1 M12

0 R2

 and M =

M13

M23

, where R1, R2, R3 are peri-

odic rings, and M12,M23,M13 are respectively (R1, R2)-,(R2, R3)-,(R1, R3)-bimodules equipped

with a map ψ : M1,2 ×M2,3 −→M1,3.

Of course, the usual upper triangular matrix over a ring R can be seen in this perspective

and we get the point one of the following corollary. The second point of this result is an easy

consequence of Part 2 of Proposition 14.

Corollary 4. Let R be a periodic ring.

1. The ring of all upper triangular matrices Tn(R) is periodic.

2. Let M ∈ Tn(R). Then there exist integers l, s in N and l > s such that diag(M)l = diag(M)s

and (M)q
nl = (M)q

ns, where q ∈ N∗ is such that qR = 0.

Examples 4. let R be a periodic ring and 2R = 0, and let M =


a11 a12 a13

0 a22 a23

0 0 a33

 where

(a11, a22, a33)
2 = (a11, a22, a33), then M16 = M8.

We need the following theorem " the classical commutativity theorem ", due to Jacobson (cf.

[12], Theorem 3.1.2).

Theorem 11 (Jacobson). Let R be a ring in which for every a ∈ R there exists an integer n(a) > 1,

depending on a, such that an(a) = a, then R is commutative.

Remarks 4. 1. Part 1 of Corollary 4 was proved in [8] with different techniques.

2. We can now answer the following two questions, which were raised in [10].

• If R is a ring such that the equality xm = x holds for all x ∈ R and a fixed m ∈ N∗,

when is the ring Mn(R) periodic?
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• If R is a ring with nil Jacobson radical and such that R/J(R) is a finite direct product

of periodic rings, is R periodic?

Since a ring R such that for any x ∈ R, there exists n ∈ N, with xn = x is commutative and

hence P.I., the first question is an obvious consequence of Theorem 14 below. The answer to the

second question is also positive. This is a direct consequence of Lemma 11 and Proposition 12.

In Section 3, we will use the assumption that for some ring R, the ring Mn(R) is periodic.

We will now mention some cases where this assumption is satisfied.

Lemma 12. If a ring R is locally finite, then, for any n ≥ 1, Mn(R) is periodic.

Proof. For any matrix A ∈ Mn(R) and for any l ∈ N, we have Al ∈ Mn(S), where S is the ring

generated by the entries of A. Our hypothesis implies that S is a finite ring and hence so is

Mn(S). This gives the result.

Proposition 15. Let D be a division ring that is periodic. Then

1. D is a field.

2. D is locally finite.

3. For any n ≥ 1, Mn(D) is periodic.

Proof. (1) Since D is periodic and any nonzero d ∈ D is invertible, we get that for any d ∈ D,

there exists 0 6= nd ∈ N such that dnd = d and theorem 11, implies that D is commutative.

(2) This is clear since D is periodic commutative and there exists a positive integer q such

that qD = 0.

(3) This is a direct consequence of Lemma 12.

Proposition 16. Let R be an Artinian periodic ring, then Mn(R) is periodic for any n ≥ 1.

Proof. Since R is periodic, J(R) is nil and hence nilpotent because R is also Artinian. This

implies that J(Mn(R)) = Mn(J(R)) is also nilpotent. On the other hand, Mn(R)/J(Mn(R))

= Mn(R/J) and R/J is artinian semisimple. Now, R/J is artinian semisimple and hence,

by the Wedderburn-Artin theorem, R/J ∼=
∏s
i=1Mli(Di), where D1, . . . , Ds are division rings.

Since R/J is periodic, the division rings D1, . . . , Ds are periodic and Proposition 15 implies that

Mn(R/J) ∼=
∏s
i=1Mnli(Di) is periodic. The conclusion follows since, according to Proposition

12, a ring R is periodic if and only if R/J is periodic and J is nil.

Theorem 12. Let R be a left (right) Noetherian periodic ring. Then
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1. The Jacobson radical J(R) is nilpotent.

2. R/J(R) is semisimple artinian.

3. For any n ≥ 1, Mn(R) is periodic.

Proof. (1) Since R is periodic, Lemma 9 shows that J(R) is nil, and the fact that R is left

Noetherian implies that J(R) is nilpotent.

(2) Let us first notice that the ring R is Noetherian, and hence doesn’t contain an infinite set

of orthogonal idempotents. We claim that primitive idempotents in R are in fact local idempo-

tents. Theorem 1 in [22] will then show that R is semiperfect and hence R/J(R) is semisimple

artinian. So, let e be a primitive idempotent. We need to show that e is a local idempotent,

i.e. that eRe is a local ring. Let x ∈ eRe \ J(eRe). We have to prove that x is invertible in

eRe. The left ideal eRex of eRe cannot be nil since it is not contained in J , hence there exists

0 6= b ∈ eRex that is not nilpotent. Since R is periodic, a power of b is a nonzero idempotent,

say f , and we have Rf ⊆ Rx ⊆ Re. The fact that e is primitive leads to Rf = Re = Rx. Writing

e = rx for some r ∈ R , we get (ere)x = erx = e, showing that x is indeed invertible in eRe. By

Mueller’s result mentioned above, we get that R/J is semisimple artinian.

(3) By (1), we know that J(R) is nilpotent and hence the same holds for J(Mn(R)). On

the other hand, R/J is Artinian and hence Theorem 16 implies that Mn(R/J) ∼= Mn(R)
J(Mn(R)) is

periodic. Proposition 12 then implies that Mn(R) is periodic.

Theorem 13. [13] Let R be a periodic P.I. ring and let S be a finitely generated subring of R.

Then S is a finite ring.

Theorem 14. Let R be a P.I. ring and n ∈ N∗. Then R is periodic if and only if the matrix ring

Mn(R) is periodic.

Proof. If R is a periodic P.I. ring, then Theorem 13 implies that R is locally finite, and the above

Lemma 12 shows that Mn(R) is periodic. Since R is a subring of Mn(R), the converse statement

is clear.

Corollary 5. Let R be a potent ring. Then, for any n ≥ 1, the matrix ring Mn(R) is periodic.

Proof. The classical commutativity theorem implies that a potent ring is commutative. The

corollary is then an obvious consequence of Theorem 14.
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Definition 21.

Let e ∈ N∗. A ring R is called periodic of bounded index of periodicity e if for every x ∈ R, there

exist m,n ∈ N such that xn = xm with m < n ≤ e. A ring R is called periodic of bounded index of

nilpotence if R is periodic and there exists n ∈ N∗ such that, for every x ∈ N(R), xn = 0.

Lemma 13. Any periodic ring of bounded index (of nilpotence or periodicity) satisfies a polynomial

identity.

Proof. Let x ∈ R. Since the ring is periodic, there exist m,n ∈ N, such that xn = xm with

n > m ∈ N. Therefore, xk(n−m)+j = xj for each positive integer k and each j > m. Now, as R

is of bounded index of periodicity e, then n −m ∈ {1, 2, ..., (e − 1)}, so for all x in R, we have

x(e−1)!+e = xe. This gives a P.I. for R.

The case of bounded index of nilpotence is proved in Proposition 1 in [13].

Corollary 6. Let R be a periodic ring. If R is of bounded index (of nilpotencity or periodicity), then

Mn(R) is a periodic ring.

Some infinite matrix rings over a periodic ring can also give rise to periodic rings. Let us

briefly mention two examples. Let R be a periodic ring such that, for any n ≥ 1, Mn(R) is also

periodic. Consider the ring T of matrices with entries in R whose rows and columns are indexed

by an infinite set J . Let S be the subring of T consisting of the matrices that are of the form

A + rI, where A is an infinite matrix that has only a finite number of nonzero rows and rI is

the diagonal matrix having the same element r all along the diagonal. It can be shown that this

ring S is indeeed periodic. The ring S contains the ring T of matrices of the form A+ rI, where

A is a finite matrix.

In fact, in case J is the set of natural numbers, T can also be viewed as a direct limit of

the set of finite matrix rings, and the fact that T is periodic can be deduced from the following

proposition.

Proposition 17. A direct limit of periodic rings is periodic.

Proof. Let I be a direct set, and let (Ri)i∈I a family of periodic rings. Put R = lim−→Ri, and let

r ∈ R. Then there exist i ∈ I, a ring homomorphism φi : Ri −→ R, and an element ri ∈ Ri

satisfying φi(ri) = r. Since the ring Ri is periodic, there exist positive integers m < n such that

rmi = rni . Therefore, rm = φi(r
m
i ) = φi(r

n
i ) = rn.
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In 1930, G.Köthe raised the following question which is known as the Köthe conjecture:

Does a ring R with nonzero one-sided nil ideal have a nonzero two-sided ideal ?. Despite

the considerable efforts of many researchers, it still remains open. However, many equivalent

properties have been found. Below we list some of them. The followings are equivalent. [see

[18], p 171]

1. The Köthe conjecture. (the sum of two nil left ideals in any ring is nil)

2. In any ring, the sum of two one-sided nil ideals is nil.

3. For any ring R and for any nil ideal I of R, the matrix ideal M2(I) is a nil ideal of M2(R).

4. For any ring R and for any nil ideal I of R, the matrix ideal Mn(I) is a nil ideal of Mn(R)

for every n.

Remark 4. Since periodic rings have a nil Jacobson radical, the class of periodic rings satisfy the

Köthe conjecture, i.e. if I and J are two right (left) nil ideals of a periodic ring, then the sum I + J

is also nil. The question whether the matrix rings Mn(R) are periodic when R is periodic is strongly

connected to the Köthe conjecture itself. We intend to come back to this problem in a future work.



Chapter 4

Exponents of polynomials over P.I.

periodic rings

We begin this section with the following proposition, which shows that periodic rings may ap-

pear as homomorphic image of a skew polynomial ring.

Proposition 18. Let R be a periodic ring with positive characteristic q, and let n ∈ N∗. Then the

ring R[t;σ]/[tn] is periodic.

Proof. The polynomial ring R[t;σ] is a Z-graded ring with Ri = Rti for i > 0, and Ri = 0 for

i < 0. Let f(t) ∈ R[t;σ]. Since R is periodic, Theorem 9 shows that the coefficients of the same

degree in the successive powers of f form a finite set. Then, in the quotient ring R[t;σ]/(tn), all

the coefficients of all the powers of f form a finite set. This shows that {fk + (tn) : k ∈ N} must

be finite and hence f(t) + (tn) is periodic.

Example 9. Let R be a periodic ring of characteristic 2 and σ ∈ End(R). Let f(t) = at + b in

R[t;σ]/(t2) with b3 = b . Then we have f(t)2 = b2 + (ba + aσ(b))t and f(t)3 = b + αt, where

α = b2a+baσ(b)+aσ(b2). Therefore, f(t)3f(t)3 = b2+(bα+ασ(b))t and bα+ασ(b) = ba+aσ(b),

hence f(t)6 = f(t)2.

The notion of exponent is a classical one for polynomials with coefficients in a finite field.

More general concepts have been introduced in [9]. The following definition recalls this notion

in a general setting.
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Definition 22. Let f, g be two elements in a ring S. When it exists, the smallest nonzero integer

e ∈ N such that fe − 1 ∈ Sg (resp. fe − 1 ∈ gS) is called the right (resp. left) exponent of g

relatively to f and denoted er(g, f) (resp. el(g, f)). In the more classical case, when f(t) = t, the

exponents of g with respect to the variable t will be denoted by er(g) and el(g).

The notion of relative exponent appears naturally while working with polynomials of a gen-

eral Ore extensions S = R[t;σ, δ]. In this setting, it is not always possible to define an exponent

of g ∈ S with respect to t, but, under some circumstances (related to the non simplicity of S,

for instance), we might find an invariant (semi invariant) polynomial f ∈ S for which we have

fa = σn(a)f , for a ∈ R and n = degf . It is then often possible to compute the exponent of g

with respect to f . We will be particularly concerned with exponents of polynomials g ∈ R[t;σ, δ]

with respect to t when R is a periodic ring. Notice that the exponent may not exist (e.g. er(0, f)

exists only if f is root of unity) and some conditions will be imposed to obtain existence of the

relative exponents. We first work in a general ring and then will concentrate on Ore extensions

with periodic base rings.

Lemma 14. Let f, g, f1 be elements of a ring S such that g is neither a left nor a right zero divisor

in S, gf = f1g, and Sg + Sf = S. Suppose that the endomorphism ring End(S/Sg) is periodic,

then

1. End(S/gS) is also periodic.

2. gS + f1S = S.

3. There exists a positive integer e such that fe − 1 ∈ Sg and fe1 − 1 ∈ gS.

4. If fg ∈ gS, there exists e ∈ N such that fe − 1 ∈ Sg ∩ gS.

Proof. (1) The idealizer Idl(Sg) = {h ∈ S : gh ∈ Sg} is a subring of S which is the maximal

one in which Sg is a two-sided ideal. Moreover, the quotient T = Idl(Sg)/Sg ∼= EndS(S/Sg).

Elements of EndS(S/Sg) are right multiplication by elements from Idl(Sg). If c ∈ Idl(Sg),

there exists c1 ∈ S with gc = c1g. But then c1 ∈ Idl(gS) and left multiplication by c1 gives

rise to an element of End(S/gS). Since g is not a zero divisor, the element c1 coresponding to

c is unique and, writing the endomorphisms on the opposite side of the action of S, the map

ψ : EndS(S/Sg)→ EndS(S/gS) sending the right multiplication by c to the left multiplication

by c1 is indeed a ring isomorphism. This allows us to conclude that EndS(S/gS) is also periodic.

(2) The assumption that Sg+Sf = S can be translated by saying that the right multiplication

by f , denoted Rf , in EndS(S/Sg) is onto. Since EndS(S/Sg) is periodic and hence Dedekind
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finite (cf. Proposition 13), Rf is in fact an isomorphism. Let us denote the left multiplication by

f1 as Lf1 . We have ψ(Rf ) = Lf1 , where ψ is the ring isomorphism defined in (1) above. This

implies that Lf1 is also an isomorphism and, in particular, it is onto. Hence, we get gS+f1S = S.

(3) Since the ring EndS(S/Sg) is periodic, hence Dedekind finite, we have seen in (2) above

that Rf ∈ End(S/Sg) is an isomorphism. Part 3 of Lemma 9 implies that fe − 1 ∈ Sg. Similarly

the element Lf1 ∈ EndS(S/gS) is invertible and we get fe1 − 1 ∈ gS.

(4) Let us suppose that fg = gf2. The second equality of the above statement (3), with f1

replaced by f , leads to fe − 1 ∈ gS and gives the conclusion.

Let us now consider the existence of relative exponents in the case of skew polynomials.

Theorem 15. Let R be a ring and n ≥ 1 be such that Mn(R) is a periodic ring, and let g be a

monic polynomial in S = R[t;σ, δ] of degree n. Then

1. The ring T = Idl(Sg)/Sg is periodic, where Idl(Sg) = {h ∈ S : gh ∈ Sg}.

2. If f ∈ S is a monic polynomial such that Sf +Sg = S, and gf ∈ Sg, then there exists e ∈ N∗

such that fe − 1 ∈ Sg. In particular, er(g, f) exists.

Proof. (1) The set Idl(Sg) = {h ∈ S : gh ∈ Sg} is the idealizer of Sg. Since any S-endomorphism

of S/Sg is also an R-endomorphism, we have an embedding of T = Idl(Sg)/Sg ∼= EndS(S/Sg)

in EndR(S/Sg). The fact that g is monic implies that the module S/Sg is a free left R-module of

dimension n. We thus have that EndS(S/Sg) is embedded in Mn(R) and our hypothesis implies

that T = Idl(Sg)/Sg is periodic.

(2) Since T = Idl(Sg)/Sg is periodic, the above Lemma 14 yields the conclusion.

Remarks 5. 1) Of course, a statement similar to that of Theorem 15 holds if, with the same

notations, we have gS + fS = S and fg ∈ gS.

2) As an obvious consequence of Part 1 of Theorem 15, let us mention that if g ∈ S is monic

and such that Sg = gS, then S/Sg is periodic.

3) There is a more concrete point of view on the eigenring T in the proof above. As mentioned

T ∼= EndS(S/Sg) and this ring is in fact isomorphic to the kernel of the additive map TC − LC

acting on Mn(R), where n = deg(g), C is the companion matrix of g, LC is the left multiplication

by C, and TC is the (σ, δ) pseudo-linear transformation induced by C (i.e. Tc(B) = σ(B)C + δ(B)

for any B ∈Mn(R)).

The following corollary is an immediate consequence of Theorems 15 and 14.
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Corollary 7. Let R be a periodic P.I. ring, and let f, g ∈ S = R[t;σ, δ] be monic polynomials such

that fS = Sf . If Sf + Sg = S, then there exists a positive integer e such that fe − 1 ∈ Sg.

The next result is then obtained from the above corollary 7 and lemma 13..

Corollary 8. Let R be a bounded periodic ring and g ∈ R[t;σ] with invertible constant term. Then

there exists a positive integer e such that te − 1 ∈ R[t;σ]g.

We now give some properties of exponents.

Proposition 19. Let f, f1, f2, g, h be elements in a ring R, and suppose that g is neither a right nor

a left zero divisor.

1. Suppose gf = f1g. For any e ≥ 1, we have fe − 1 = hg if and only if fe1 − 1 = gh.

2. Suppose that gf = f1g and fg = gf2. For any e ≥ 1, we have fe − 1 = hg if and only if

fe − 1 = gh.

Proof. (1) Suppose we have fe−1 = hg. Left multiplying by g, we get gfe = g+ghg = (1+gh)g.

Our hypothesis then gives fe1g = (1 + gh)g. This leads to the conclusion since g is not a right

zero divisor. Retracing our steps, we get the proof of the converse statement.

(2) First, notice that we have f1g2 = gfg = g2f2. Now, suppose we have fe− 1 = hg. By the

preceding statement, we have fe1 − 1 = gh and hence fe1g
2 − g2 = ghg2. Using our hypotheses,

we successively get g2fe2 − g2 = ghg2 and hence feg2 − g2 = ghg2. The fact that g is not a right

zero divisor then gives fe − 1 = gh. The converse implication is obtained similarly or just by

symmetry.

The next lemma lists some elementary properties of the relative exponents. The last state-

ment of this lemma is a direct consequence of Proposition 19. The other statements come from

[9].

Lemma 15. Suppose that f, g, h are elements in a ring R such that er(g, f) and er(h, f) exist.

Then :

(1) g is a right factor of f l − 1 if and only if er(g, f) divides l;

(2) If g is a right factor of h, then er(g, f) divides er(h, f);

(3) If Rg∩Rh = Rm, then er(m, f) exists and it is equal to the least common multiple of er(g, f)

and er(h, f);
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(4) If g is such that gR = Rg, then er(g, f) = el(g, f).

We will now look at the properties of exponents in the case of skew polynomial rings in the

form S = R[t;σ, δ]. Remark that the classical exponent for polynomials refers to the exponent of

g(t) ∈ Fq[t] relative to the variable t. A bit more general is the case of exponents of polynomials

g(t) ∈ R[t;σ] = S with respect to t, where R is periodic. Remark that, in this case, tS = St. We

will thus assume that our polynomial f is also such that fS = Sf . This assumption will also

lead to left right symmetry, as we will show quite generally in the following proposition.

Proposition 20. Let f, g, h be a monic polynomials in S = R[t;σ, δ], and suppose that Sf = fS.

Then hg = fe − 1 if and only if gh = fe − 1. In particular, when they exist, we have:

er(g, f) = el(g, f).

Proof. Let g1 ∈ S be such that feg = g1f
e and notice that g1 is then a monic polynomial with

deg(g1) = deg(g). Multiplying hg = fe − 1 on the left by g1, we obtain g1f
e − g1 = g1hg and

hence (fe − g1h)g = g1. Since g and g1 are monic polynomials of the same degree, we get that

fe − g1h = 1, and also g = g1. The other implication is obtained similarly and leads to the

desired conclusion.

Corollary 9. Let R be a ring, R[t;σ] the skew polynomial ring over R with automorphism σ, and

g, h ∈ R [t;σ] be such that h is monic. Then hg = te − 1 for a positive integer e if and only if

gh = te − 1. In particular, if the exponent e of g exists, then e = er(g) = el(g) and the coefficients

of g are fixed by σe.

Proof. The first part of the corollary follows directly from Proposition 20 with f = t. We extend

σ to the Ore extension S = R[t;σ] by defining σ(t) = t. Since e is the order of g, there exists

h ∈ S such that gh = hg = te − 1 and we get gte − g = g(te − 1) = ghg = (te − 1)g = σe(g)− g.

This gives gte = σe(g)te and hence σe(g) = g, as desired.

When σ and δ commute, we can extend σ to the Ore extension S = R[t;σ, δ] itself by putting

σ(t) = t This can be easily checked. We continue to write σ for this extended map hence σ be-

comes an automorphism of S. With this in mind and statement (e) of Proposition 4, we have

the following corollary .

Corollary 10. Let R, σ, δ be a ring, an automorphism of R and a σ-derivation of R such that

σδ = δσ. If g(t) is a monic polynomial such that e(g) = e(g, t) exists then e(g) = e(σ(g)).
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Definition 23. Let g(t) =
∑n

i=0 ait
i ∈ S = R[t;σ], with σ an automorphism of R. The reciprocal

polynomial, denoted g∗, is defined by g∗ =
∑n

i=0 σ
i(an−i)t

i

The notion of reciprocal polynomial is important in coding theory where the reciprocal of

a check polynomial of a cyclic code is the generator polynomial of the dual code. Codes using

polynomials over Ore extensions have been studied, e.g. in [3] and [4]. The reciprocal polyno-

mial is known only in the case of Ore extension of automorphism type (i.e. δ = 0). This was

presented together with some of its properties in [3].

Proposition 21. Let g ∈ R[t;σ] and suppose that e(g) = e(g, t) is the exponent of g, then :

e(g) = e(g∗).

Proof. The proof is a direct consequence of the definition of the exponent and of the formulas

(fh)∗ = σk(h∗)f∗ and (f∗)∗ = σk(f), where k = deg(f).

Examples 5. 1. Let F16 = F2(α) be the finite field with α4 = α+ 1, and let σ be the Frobenius

automorphism defined by σ(a) = a2, a ∈ F16. The order of σ is 4. Consider the polynomials

in F16[t;σ] defined by f(t) = t3 + α5t2 + α5t+ α10 and g(t) = t3 + α10t2 + α5t+ α5. Then

we have f(t)g(t) = g(t)f(t) = t6 − 1.

If f is not monic, the result is not true as the following example shows.

2. Let F4 = F2(α) with α2 = α + 1 and let σ be the Frobenius automorphism defined by

σ(a) = a2, a ∈ F4. Now, consider the polynomials in F4[t;σ] defined by f(t) = αt3 +αt+α2

and g(t) = αt4 + αt2 + αt+ α. Then we have f(t)g(t) = t7 − 1, while g(t)f(t) = α2t7 − 1.

Corollary 9 can be useful to factorize polynomials of the form tn − 1 ∈ R[t;σ]. If we have

tn − 1 = f1...fr, with fi monic for 1 ≤ i ≤ r, then we obtain r − 1 other factorizations of tn − 1

by cyclic permutation of the factors.

We now intend to relate the exponent of a monic polynomial g(t) =
∑n

i=0 ait
i ∈ S = R[t;σ, δ]

with the order of its companion matrix C = Cg ∈ GLn(R), where

Cg =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1


∈Mn(R)
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We have seen that the left S-module V := S/Sg played an important role in the proof of The-

orem 15. The (σ, δ)-PLT attached to this module (see Proposition 5) is given by the left multi-

plication by t. The matrix corresponding to this PLT in the basis {1, t, . . . , tn−1} is just C = Cg.

Since we are working with twisted polynomials, it is expected that the order of Cg is not the

usual one. Using the definition (c) in 18, we now introduce the following notion.

Definition 24. Let R, σ, δ be a ring, an automorphism and a σ-derivation, respectively. An element

a ∈ R is of finite (σ, δ)-order if there exists a positive integer l such that Nl(a) = 1. When it exists

the smallest l > 0 such that Nl(a) = 1, is called the (σ, δ)- order of a and denoted ordσ,δ(a) = l.

When δ = 0, this notion was introduced in [9] and we refer the reader to this paper for more

details and information about the σ-order and its elementary properties. In the next proposition

we extend naturally both σ and δ to any matrix ring over R, and hence we have the notion of

(σ, δ)-order for matrices over the ring R. Let us first establish the following easy lemma.

Lemma 16. Let f(t) =
∑l

i=0 ait
i, g(t) ∈ S = R[t;σ, δ] be such that g(t) is monic of degree n, and

let us denote its companion matrix by Cg ∈Mn(R). Then

1. The left multiplication by t on S/Sg is a (σ, δ) pseudo-linear transformation. Its associated

matrix in the basis (1, t, ..., tn−1) is Cg.

2. The matrix in the basis (1, t, ..., tn−1) corresponding to the left multiplication by f(t) is given

by
∑l

i=0 aiNi(Cg).

3. If the row v ∈ Rn represents the coordinates of h(t) ∈ S/Sg, then the coordinates of f(t)h(t)

in this basis are given by
l∑

i=0

i∑
k=0

aif
i
k(v)Nk(Cg),

where the map f ik is the sum of all the words in σ and δ with k letters σ and i− k letters δ.

4. The polynomial f(t) is right divisible by g(t) if and only if
∑l

i=0 ai(1, 0 . . . , 0)Ni(Cg) =

(0, . . . , 0).

Proof. (1) This is clear.

(2) This is exactly the content of Lemma 3.

(3) It is enough to show that the matrix of left multiplication by tk is given by Nk(Cg).

We prove this by an easy induction: so, let v be a column in Rn. We have tk+1.v = t.tk.v

= t.(Nk(Cg)v) = σ(Nk(Cg))t.v + δ(Nk(Cg))v = σ(Nk(Cg))Cgv + δ(Nk(Cg))v = Nk+1(Cg)v.
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(4) Remark first that fki ((1, 0, . . . , 0)) = (0, . . . , 0), if i < k, and fkk ((1, 0, . . . , 0)) = σk((1, 0, . . . , 0))

= (1, 0, . . . , 0). Using this, the fact that f(t) ∈ Sg if and only if f(t).1 = 0 easily implies that

l∑
i=0

ai(1, 0, . . . , 0)Ni(Cg) = 0.

Theorem 16. Let R, σ, δ be a ring, an automorphism and a σ-derivation of R, respectively. Denote

by S and A the Ore extensions S = R[t;σ, δ] and A = Mn(R)[t;σ, δ]. We suppose that g ∈ S is a

monic polynomial of degree n which is such that ordσ,δ(Cg) = l. Then

1. er (t− Cg) = ordσ,δ (Cg) .

2. er (g) = ordσ,δ (Cg) .

Proof. (1) We have :

l = ordσ,δ(Cg)

= min{r ∈ N∗ : Nr(Cg) = In}

= min{r ∈ N∗ : tr − In ∈ A(t− Cg)}

= er (t− Cg)

(2) Let us denote β = {1, t, . . . , tn} the basis of S/Sg over R. The matrix of (TCg)
l relative to

this basis is Nl(Cg) = In. We thus have, in particular, (t.)l.1 = 1, i.e. tl − 1 ∈ Sg. We

conclude that er(g(t)) divides l = ordσ,δ (Cg).

Conversely, if g(t) divides tr−1 in S ⊂ A = Mn(R)[t;σ, δ], for v = (In, 0, 0, . . . , 0) ∈ (Mn(R))n,

the statement (4) in Lemma 16 l̃eads to T rg (v) = vNr(Cg). This quickly leads toNr(Cg) = In

∈Mn(R), and hence we have l = ordσ,δ(Cg) < r. This yields the conclusion.

If we use the notation introduced earlier for the evaluation of a skew polynomial, we can

write
∑l

i=0 aiNi(Cg) = f(Cg). With this in mind, we have the following corollary.

Corollary 11. Let R, σ, δ, f(t), g(t) be a ring, an automorphism of R, a σ-derivation of R, and

monic polynomials in S = R[t;σ, δ], respectively. Then, denoting Cg ∈ Mn(R) the companion

matrix of g(t), we have f(t)r − 1 ∈ Sg(t) if and only if (1, 0, . . . , 0)f r(Cg) = (1, 0, . . . , 0).

In particular,

tr − 1 ∈ Sg(t)⇐⇒ Nr(Cg) = In.
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Furthermore, when they exist, the exponent of g(t) (with respet to t) and the (σ, δ)-order of Cg are

equal.

The above corollary shows the importance of knowing when the companion matrix Cg of the

polynomial g is of finite (σ, δ)-order. In full generality, it is a very challenging question but, if

δ = 0, the situation is much more tractable.

Theorem 17. Let R be a periodic P.I. ring, and σ ∈ Aut(R) be such that σl = idR for some l ∈ N∗.

Let g(t) = tn + an−1t
n−1 + · · · + a0 ∈ R[t, σ] be a monic polynomial with a0 ∈ U(R), and denote

Cg the companion matrix of g(t). Then Cg is of finite σ-order and er(g) = ordσ(Cg).

Proof. The equality between the σ-order of Cg and the exponent comes directly from the above

theorem 16. We only have to show that Cg is indeed of finite σ-order. Now, from Theorem 14,

the ring Mn(R) is periodic, so a nonzero divisor matrix must be invertible. If we suppose that

Cg is a zero-divisor, then there exists 0 6= M ∈ Mn(R) such that MCg = 0. But the fact that

a0 ∈ U(R) implies that M = 0, a contradiction. Hence Cg is invertible. This leads to σk(Cg)

is invertible, for all k ∈ N. Notice also that Nk(Cg) ∈ Mn(S), where S is the subring of R

generated by {σk(ai) : 0 ≤ k < l, 0 ≤ i < n}. Theorem 13 implies that Mn(S) is finite. By

Statement c of Proposition 2.1 in [9], Cg is of finite σ-order.

Remark 5. One of the problems that arises when trying to extend the above Theorem 17 to the case

when δ 6= 0, is that, in this case, even if Cg is invertible, Ni(Cg) need not be invertible.

Examples 6. 1. Let R be a ring of characteristic 2, σ = Id, and let f(t) = t2 + at+ 1 ∈ R[t;σ],

with a4 = a2. The companion matrix of f(t) is Cf =

0 1

1 a

. By computing the powers of

Cf , we obtain N12(Cf ) = C12
f = I2. We can verify that

t12+1 =
(
t2 + at+ 1

)
(t10+at9+(a2+1)t8+a3t7+t6+(a3+a)t5+t4+a3t3+(a2+1)t2+at+1).

2. Consider the Galois ring R = Z/4Z [ξ] =
{
a+ bξ : a, b ∈ Z/4Z, ξ2 + ξ + 1 = 0

}
. Let σ be

an automorphism of R defined by σ (a+ bξ) = a+ bξ2, for all a, b ∈ Z/4Z. The exponent of

f (t) = t2 + t+ ξ ∈ R [t;σ] is 8, and we have

t8 − 1 =
(
t2 + t+ ξ

) (
t6 + 3t5 + (3ξ + 1)t4 + 2t3 + (2ξ + 1)t2 + t+ ξ + 1

)
.
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Example 10. If t6 − 1 ∈ F16 [t;σ] is as described in Example 5(1) above, we have

t6 − 1 = (t2 + α10)(t2 + α5)(t+ α5)(t+ α10).

By shifting the polynomials, we obtain

t6 − 1 = (t2 + α5)(t+ α5)(t+ α10)(t2 + α10)

= (t+ α5)(t+ α10)(t2 + α10)(t2 + α5)

= (t+ α10)(t2 + α10)(t2 + α5)(t+ α5).



Conclusion and Perspectives

We have shown how the notion of exponents could be generalized from their natural initial set-

ting (i.e., polynomials with coefficients in a finite field) to polynomials of the ring R = A[t;σ, δ]

where A is a periodic ring σ ∈ Aut(A) and δ is a σ-derivation. So in this definition we not only

pass from a finite field to a periodic ring, but as well twist the variables. This required the use

of relative exponents which was already introduced in a more restricted case in a paper by A.

Cherchem and A. Leroy. We have also shown how the classical results related to the exponents

can be extended to our settings. For getting these, we needed to use the notion of evaluation of

the skew polynomials and to replace the usual power of an element by the "generalized" power

Nr(a). The use of pseudo-linear maps was very helpful in all the computations, either explicitly

or in a more disguised way.

This thesis also leads to a few questions and opens new perspective and area for future

research. Let us mention briefly a few of these:

-The exponents is used in different area, in particular for periodic sequences. Classical pe-

riodic sequences are very often defined on finite fields and their minimal period is related to

the period of their attached polynomial (which gives the recurring formula) . It is thus quite

natural to introduce the skew periodic sequences and hope to get similar behaviour as the one

for "classical" periodic sequences. Some preliminary work has already been done in this area, in

particular A. Cherchem and A. Leroy are currently working on this project.

-In the recent years, there has been many works on multivariate Ore extensions. This seems

to be a very wide area where skew evaluations similar as the one that appears in this thesis

already exists. It is for sure possible to develop the theory of pseudo-linear maps in this settings

and it could be interesting to study these and insider for instance the notion of algebraicity of a

PLT, eigenvalues,...in the setting of multivariate polynomials.

-In the case when R = A[t;σ, δ] where A is a division ring, it is well known that looking

at the (skew) roots in a specific skew conjugacy class leads to the notion of exponential sums

and gives a generalization and more precise form of the Gordon-Motzkin theorem (this says
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that the number of classical conjugacy classes containing roots of a polynomial is bounded

by the degree of this polynomial). Using pseudo linear transformations as introduced in the

thesis, it is a challenging question to determine some classes of noncommutative rings where

this generalization is valid.

-Other kind of extensions Iterated Ore, quantum planes...could also be explored using the

tools developed in the thesis

-In the thesis a σ-order is defined for elements of a finite group where σ is an automorphism

of the group. It is natural to wonder what could be developed with these notions.

-Skew polynomial rings of automorphism types (more precisely of the form Fq[t;σ, δ]) have

been used to create codes with prescribed distance. It could be an interesting topic to consider

the more general kind of skew polynomial rings over finite rings and periodic rings.

-Classically the period of a polynomial p(x) ∈ Fq[x] of degree k is a factor of qk − 1. Is

it possible to get the same kind of result in our general setting assuming for instance that the

periods of the elements of the base ring are bounded?

-A very important question we will try to work on in the future, which is strongly connected

to the Köthe conjecture : if the Köthe conjecture holds, then the matrix rings Mn(R) are periodic

if and only if R is periodic.
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