IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.42, NO.7, JULY 2016 605

A Game-Theoretic Foundation for the Maximum
Software Resilience against Dense Errors

Chung-Hao Huang, Doron A. Peled, Sven Schewe, and Farn Wang

Abstract—Safety-critical systems need to maintain their functionality in the presence of multiple errors caused by component failures
or disastrous environment events. We propose a game-theoretic foundation for synthesizing control strategies that maximize the
resilience of a software system in defense against a realistic error model. The new control objective of such a game is called
k-resilience. In order to be k-resilient, a system needs to rapidly recover from infinitely many waves of a small number of up to % close
errors provided that the blocks of up to k errors are separated by short time intervals, which can be used by the system to recover. We
first argue why we believe this to be the right level of abstraction for safety critical systems when local faults are few and far between.
We then show how the analysis of k-resilience problems can be formulated as a model-checking problem of a mild extension to the
alternating-time p-calculus (AMC). The witness for k resilience, which can be provided by the model checker, can be used for providing
control strategies that are optimal with respect to resilience. We show that the computational complexity of constructing such optimal
control strategies is low and demonstrate the feasibility of our approach through an implementation and experimental results.

Index Terms—Fault tolerance, resilience, formal verification, model-checking, game, strategy, complexity

1 INTRODUCTION

ODAY’S software systems can consist of tens of million

lines of code. Such a system may interact with hundreds
of distributed processes that are created and destroyed
dynamically in an evolving environment. With such a scale
of complexity and unpredictability, users and developers
have learned to deal with the reality that software systems
most likely still contain defects after delivery. In fact, vari-
ous empirical studies show that the defect density of com-
mercial software systems varies from 1 to 20 defects in
every 1,000 lines of source code [41]. Programmers and soft-
ware designers have developed many engineering techni-
ques to contain the damage that could be caused by such
defects. For example, when observing that a critical service
request is not acknowledged, a software system may have
several measures to its disposal to avoid system failure,
including resending the request, resetting the server, clear-
ing the communication buffers, etc. But, in general, it is dif-
ficult to estimate how to organize the measures for the
maximal resilience of the system against realistic errors. At
the moment, an automated support for the synthesis of con-
trol mechanism to defend a system against software errors
is missing. Such an automated support, if available, can

o C.-H. Huang is with the Graduate Institute of Electronic Engineering,
National Taiwan University, Taiwan 106, ROC.
E-mail: yyergg@gmail .com.

o D.A. Peled is with the Department of Computer Science, Bar Ilan Univer-
sity, Ramat Gan, Israel. E-mail: doron.peled@gmail.com.

o S. Schewe is with the Department of Computer Science, University of Liv-
erpool, Liverpool, United Kingdom. E-mail: sven.schewe@liverpool.ac.uk.

o F. Wang is with the Department of Electrical Engineering, National
Taiwan University, Taiwan 106, ROC, and the Graduate Institute of
Electronic Engineering, National Taiwan University, Taiwan 106, ROC.
E-mail: farn@ntu.edu.tw.

Manuscript received 26 May 2015; revised 17 Oct. 2015; accepted 22 Nov.
2015. Date of publication 16 Dec. 2015; date of current version 22 July 2016.
Recommended for acceptance by R.R. Lutz.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2015.2510001

suggest defense techniques against software defects to
development teams, and help these development teams to
identify the vulnerabilities of software systems. We use a
game-theoretic approach to study this aspect and have
carried out experiments to observe how our techniques can
be used in synthesizing the most resilient defense of soft-
ware systems against multiple errors.

Intuitively, the defensive strength of a software system
should be proportional to the number of errors that it can
endure. A subtle issue in designing the foundation is the
realistic assumption on how many errors a system can
endure before running into disasters. Apparently, no non-
trivial system can endure an unlimited flood of errors with-
out degrading to inevitable system failure. Thus, if we do
not employ a realistic error model, then no meaningful anal-
ysis of the resilience level of these systems to software errors
can proceed, and no practical control mechanism can be
devised to defend them against errors. We are interested in
fending the system against a more restricted error model,
but still want to provide the error model with a quantifiable
level of power in order to be able to defend the system
against many error scenarios.

Considering that most software systems have a life-time
much longer than the duration needed for a reasonably
designed software system to recover from an error, a rea-
sonable foundation needs to take the difference between
these two time scales into account. In this work, we pro-
pose to evaluate control mechanism of software systems
on how many errors the control can endure before recov-
ery to safe behavior. We then present an algorithm to syn-
thesize a control strategy that can endure the maximal
number of such errors.

Before proceeding further, let us standardize the basic
terms. In embedded systems, a design defect in software or
hardware is called a fault. Different to a fault, an error (some-
times called component failure in the literature) is the effect of
a fault that results in a difference between the expected and

0098-5589 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:

606 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.42, NO.7, JULY 2016

TABLE 1
Probabilities of £ Dense Errors
k 0 1 2 3 4 5 6
k errors 0.865 0.594 0.333 0.143 0.053 0.017 0.005
k dense errors 0.865 2.107* 2.107? 2.107H 2.1071 2.107% 2.107%

the actual behavior of a system, e.g., measurement errors,
read/write errors, etc. An error does not necessarily lead to
a system failure, but may instead be repaired by, e.g., a
defense mechanism in the software. That is, an error may be
detected and corrected/neutralized before it creates any
harm to the whole system or its users. Only when the effect
of an error creates faulty behaviors that can be observed by
the users, it becomes a failure.

Our specific goal is to develop a technique for synthesizing
a control mechanism of a software system against the maxi-
mal number of dense errors without degrading to failure.
We took our inspiration from methods for resilient avionic
systems [39], where fault tolerance is designed to recover
from a bounded number of errors. The number of errors a sys-
tem needs to tolerate can be inferred from the given maximal
duration of a flight and the mean time between errors
(MTBEs) of the individual components. To demonstrate the
difference between the objective to tolerate up to k errors and
sequences of separated blocks of up to k dense errors in a short
period, we exemplify the quality guarantees one obtains for a
system (e.g., an airplane) with an operating time of 20 hours
and a mean time between exponentially distributed errors of
10 hours, assuming a repair time of 3.6 seconds. The mean
time between dense errors (consecutive errors before system
recovery) is calculated in Table 1.

The figures for k errors (component failures) are simply
the values for the Poisson distribution with coefficient 2. To
explain the figures for k dense errors, consider the density
of two dense errors occurring in close succession. If an error
occurs, the chance that the next error occurs within the
repair time (3.6 seconds) is approximately 1555 The goal to

tolerate an arbitrary number of up to k-dense errors is, of
course, much harder than the goal of tolerating up to k
errors, but, as the example shows, the number k can be
much smaller. Tolerating an arbitrary number of errors
(with a distance of at least 3.6 seconds between them) cre-
ates the same likelihood to result in a system failure as toler-
ating up to 9 errors overall, and tolerating up to 15 errors
still results in a 70 percent higher likelihood of a system fail-
ure than tolerating blocks of up to two errors in this exam-
ple. Only errors for which this is the case could cause a
system failure. The mean time between blocks of two dense
errors is therefore not ten hours, but 100,000 hours. Like-
wise, it increases to 1,000,000,000 (one billion) hours for
blocks of three dense errors, and so forth. Maximizing the
number of dense errors that are permitted before full recov-
ery is therefore a natural design goal. After full recovery,
the system is allowed again the same number of errors.
Now, if the mean time between errors is huge compared to the
time the system needs to fully recover, then the mean time
between system failures (MTBF) grows immensely.

We view the problem of designing a resilient control
mechanism towards dense errors as a two-player game,

called safety resilience game, between the system (protago-
nist," ‘he’ for convenience) and a hostile agent (antagonist,
‘she’ for convenience) that injects errors into the system
under execution. The protagonist wants to keep the system
from failure in the presence of errors, while the antagonist
wants to derail the system to failure. Specifically, system
designers may model their system, defense mechanism, and
error model as a finite game graph. The nodes in the graph
represent system states. These system states are partitioned
into three classes: the safe states, the failure states, and the
recovery states. Some transitions are labeled with errors
while others are considered normal transitions. The game is
played with respect to a resilience level k. If a play ever
enters a failure state, then the antagonist wins in the play.
Otherwise, the protagonist wins.

The protagonists plays by selecting a move, intuitively
the ‘normal’ event that should happen next (unless an error
is injected). The antagonist can then decide to trigger an
error transition (injecting an error) with the intention to
eventually deflect the system into a failure state. Our error
model, however, restricts the antagonist to inject at most &
errors before she allows for a long period of time that the
system may use to recover to the safe states. (If the antago-
nist decides to use less than k errors, the protagonist does
not know about this. It proves that this information is not
required, as we will show that the protagonist can play
memoryless.) After full recovery by the protagonist to the
safe states, the antagonist is allowed again to inject the same
number of errors, and so forth.

If the system can win this game, then the system is called
k-resilient. For k-resilient systems, there exists a control strat-
egy—even one that does not use memory—to make the sys-
tem resilient in the presence of blocks of up to k dense
errors. We argue that, if the component MTBF is huge com-
pared to the time the system needs to fully recover, then the
expected time for system breakdown grows immensely.

Besides formally defining safety resilience games, we also
present algorithms for answering the following questions.

e Given an integer k, a set I of failure states, and a set
S of safe states (disjoint from F), is there a recovery
mechanism that can endure up to k dense errors,
effectively avoid entering F, and quickly direct the
system back to S. Sometimes, the system designers
may have designated parts of the state space for the
recovery mechanism. The answer to this question
thus also implicitly tells whether the recovery mech-
anism is fully functional in the recovery process.

e Given an integer k and the set of failure states, what is
the maximal set of safe states, for which the system
has a strategy to maintain k-resilience? In game theory,

1. In game theory, a protagonist sometimes is also called player 1.
2. In game theory, an antagonist sometimes is also called player 2.

HUANG ETAL.: AGAME-THEORETIC FOUNDATION FOR THE MAXIMUM SOFTWARE RESILIENCE AGAINST DENSE ERRORS 607

this means that safety resilience games can be used
for synthesizing safety regions for a given bound on
consecutive errors before the system is fully recovered.

The question can be extended to not only partition
the states into safety, recovery, and failure states, but
also for providing memoryless control on the safety
and recovery states.

e Given a set of failure states, what is the maximal
resilience level of the system that can be achieved
with proper control? We argue that this maximal
resilience level is a well-defined and plausible indi-
cator of the defense strength of a control mechanism
against a realistic error model.

With our technique, software engineers and system
designers can focus on maximizing the number of dense
errors that the system can tolerate infinitely often, providing
that they are grouped into blocks that are separated by
a short period of time, which is sufficient for recovery.

We investigate how to analyze the game with existing
techniques. We present an extension to alternating-time
p-calculus (AMC) and propose to use the AMC model-
checking algorithm on concurrent games to check resil-
ience levels of embedded systems. We present reduction
from safety resilience games to AMC formulas and concur-
rent game structures. Then we present a PTIME algorithm
for answering whether the system can be controlled to tol-
erate up to a given number of dense errors. The algorithm
can then be used to find the maximal resilience level that
can be achieved of the system. The evaluation is construc-
tive: it provides a control strategy for the protagonist,
which can be used to control a system to meet this prede-
fined resilience level.

The remainder of the article is organized as follows.
Section 2 reviews some standard terminology and results.
Section 3 outlines our work and motivates it on three exam-
ples. Section 4 defines safety resilience game. Section 5
defines a variation of the alternating-time jp-calculus (AMC)
for specifying our k-resilience properties. Section 6 presents
our resilience level evaluation algorithm. We report on our
implementation and the experimental evaluation of our tech-
niques in Section 7. Section 8 reviews related work. Finally,
Section 9 summarizes the work.

2 Two-PLAYER CONCURRENT GAME
STRUCTURES

To facilitate our explanation of resilience analysis in a
game’s perspective, we start by reviewing the game con-
cepts related to our work. A concurrent game may involve
several players, who make concurrent move decisions at the
same time during transitions. The destination of a transition
is jointly determined by the moves chosen by all players.
Such a game model is very expressive and handy in describ-
ing interactions in a complex system. In this work, we adapt
the finite concurrent games from [3] with event concepts on
transitions. For the analysis of system resilience, we only
have to consider two players in the game, the first is the sys-
tem, and the second is the error model.

Definition 1 (Two-player concurrent game structure). A
concurrent game structure is a tuple K = (Q,r, P, \, E, Es,
3), where

Q is a finite set of states.

r 1s the initial state in Q.

P is a finite set of atomic propositions.

A :Q — 2 is a proposition-labeling function of the
states.

E, and E, are finite sets of move symbols that the pro-
tagonist and the antagonist can respectively choose
in transitions. A pair in E; x Ey is called a move
vector.

o §isa function that maps from Q x E; x Ey to Q. 8 is
called the transition function and conceptually speci-
fies a successor state that results from a state and
moves of the players.

Given a state g€ Q and a vector [ei,es] € Ey X E,

8(g, e1,e2) is the successor state from q when each player
a € {1,2} chooses her respective move e,.

We prefer to represent the moves available to the players
by symbols (rather than integers as in [3]), as move (or
event) symbols can be used to reflect some physical mean-
ing. For example, a move can correspond to the turning-off
of a switch, the detection of an airplane, or the execution of
an error handling routine. (Technically, representing moves
as either integers or symbols does, of course, make no
difference.)

For convenience, we assume that we are in the context of
a given two-player concurrent game structure = (Q,r, P,
A, By, B, 8). In the following, we review some standard con-
cepts from game theory.

Definition 2 (Plays and play prefixes). A play prefix p of
length h is a sequence qy, €q,q1, €1, ..,qu—1 that alternates
between states and move vectors (starting and ending in a
state), such that, for all i € [0, 1), 8(qi, &) = gi+1 holds. Simi-
larly, a play p is an infinite sequence qo, €, q1, €1, G2, €2, - - -
that alternates between states and move vectors (starting and
ending in a state), such that §(g;, €)= qiy1 holds.

In both cases, we use p(i) = q; and p,(i) = ¢ by abuse of
notation.

The following notations are for the ease of presentation.
Given a play prefix p = qo, €9, q1, €1 - .. qn—1, we denote the
length of p, h, by |pl|. For plays, we write |p| = co. Given two
integers jand % in [0, |p|) with j < h, we use p[j, h] to denote
the play prefix p(j), 0, (7). p,(j + 1) p(j +1).-.., p(h). For
play prefixes p, we use last(p) o p(lp| — 1) to denote the
last state in p.

We may also use regular expressions to represent sets of
play prefixes. Specifically, given two sets A and B of play
prefixes, AB represents the set of concatenation of play pre-
fixes p;p, such that p; € A and p, € B. A* then represents
finite concatenation of play prefixes from A. For example,
a, abe, abcacbcbebe are all elements of {a, be, ac}”.

Please recall that a play has infinite length. A play p with
p(0) = qis called a g-play. When choosing moves at a state, a
player may look up the play prefix that leads to the current
state, investigate what decisions the other players have
made along the prefix, and select his or her next move. Such
decision-making by a player can be captured by a strategy.

Definition 3 (Strategy). A strategy is a function from finite
play prefixes to a move symbol. Formally, a strategy o, for a

608 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.42, NO.7, JULY 2016

safe recovering

=)

Fig. 1. Framework of resilience design.

failure

J

@

player a € {1,2} is a function from play prefixes to E,. The
next state after a play prefix p € (Q(Ey x E»))’Q is deter-
mined as §(last(p),o1(p), 02(p)).

A strategy o is memoryless (positional) if the choice of o
only relies on the current state, that is, if, for every two play
prefixes p and o', last(p) = last(p") implies o(p) = o(p'). If o
is not memoryless, it is called memoryful.

Given regular expressions [24] 1y, ..., n, with alphabet Q)
and move symbols ej,...,e, € E, we may use
[n +— e1,...,n, — €] to (partially) specify a strategy. For a
strategy o, a rule like n; — e; means that, for every play prefix
p €n,;, o(p) =e;. To disambiguate the interpretation of the
strategy, a rule with index i supercedes all rules with indices
> 4. Moreover, to make a strategy complete, we may require
1, to be (Q(E; x EQ))*Q, the set of strings of interleaving
states and move vectors that end in a state (which includes
the set of all play prefixes). For example, a memoryless strat-
egy of the protagonist can be specified with [(Q(E; x
EQ))*Q(] —er, (Q(Er x EQ))*% e, (Q(Er x EQ))* — e3).
A memoryful strategy of the protagonist can be specified
with [go +— e, (Q(Ey x E2)>+QO — e2, (Q(Ey x EQ))*QS e,
(Q(E1x E»)) Q + e3).

Note that, in Definition 3, we do not distinguish between
the strategies of the players. We call a play p o-conform for a
strategy o of player a if, for all i € N, there are e, and e,
with p(i + 1) = 8(p(i), e1,e2) and e, = o(p).

In the remainder of the article, we denote the set of all
strategies by 2 and the set of all memoryless strategies by

3O, Together with an initial state r, strategies 01,09 € % of
the m players respectively, define a unique play, which con-
forms to 01, 02. We denote this play by play(r, o1, 02).

3 MOTIVATION

3.1 Background
Resilience to errors in computer systems is usually achieved
through error recovery design as illustrated in Fig. 1.

The system states can be partitioned into three regions:
safe, recovery, and failure. The left part of the figure repre-
sents the safety region. The states in this safe region can be
viewed as those for ‘normal’ operation. When an error
occurs, the system goes through a recovery stage, where it
follows some recovery mechanism. This is shown as the
“recovering” area in Fig. 1. In this region, the system intui-
tively tries to repair the effects of an error and thus to
recover to the safety region.

During the recovery (or: in the recovery region), however,
errors may still happen. In general, fault-tolerant systems are

built under the assumption that error detection and recovery

is speedy and that there can only be a few errors during the

process of recovery. If the recovery mechanism is not resil-

ient enough, a few errors may drive the system into failure.
We illustrate this on the following examples.

Example 1 (Fault-tolerant computer architectures). In com-
puter architectures, fault-tolerance is usually achieved
via hardware duplication. Consider an example of a
multi-processor system that includes n processor copies
and m memory copies. The n processors each can follow
the instructions of the original system, or be engaged in
memory recovery. When a copy of the memory fails, a
processor can be assigned to recover it. Majority check
can be used to detect that a processor is faulty or that
memory copy is faulty (often, both would happen at the
same time). For recovery, we can set a free processor to
recover some memory copy, or make a processor follow
the code of the majority of processors.

The key to error resilience is to decide whether to
make a processor follow the execution of the majority,
or to assign it to recover faulty memory. If too many
errors occur in a short while before the errors can be
recovered from, then there may be no more processors
left to carry out any more recovery. When such a critical
situation arises, the system enters failure state when
another error is induced.

The recovery mechanism described above is typical
in the design of fault-tolerant systems [36]. As
explained, a practical recovery mechanism usually does
not rely on the detailed structure of the system. Instead,
error-detection techniques such as parity checks, voting
(for majority checks), etc., are usually employed. In fact,
the number of duplicates is usually critical to the resil-
ience of the system to errors. As long as the majority of
the duplicate modules can be recovered in time (i.e.,
before the next wave of errors), resilience of the system
can be achieved.

Example 2 (Exception handling). At the operating system
level, errors are usually signaled via interrupt lines and
handled with routines called handlers. The first thing
that needs to be done by a handler is to save the CPU
state of the interrupted process. In some operating sys-
tems, a static memory space is used for this purpose for
each handler. In such a scheme, if the same error hap-
pens again while executing the error handler, then the
system can run into the risk that the CPU states of the
interrupted handler can be overwritten and destroyed.

Another scheme is to use a stack to save the CPU
states of the interrupted processes. Such a scheme seems
resilient to errors that happen during the execution of
error handlers. Still, too many errors that happen during
the execution of error handlers can deny critical func-
tions of the system and incur failures, including missed
timer updates and priority inversions. Thus, a proper
assumption on the timely error recovery by the error
handling routines is critical to the design of error resil-
ience in such cases.

Example 3 (Security attacks). Security in the Internet also
relies on resilience to attacks of hackers, viruses, malware,

HUANG ETAL.: AGAME-THEORETIC FOUNDATION FOR THE MAXIMUM SOFTWARE RESILIENCE AGAINST DENSE ERRORS 609

etc. For example, one common technique of attacks to
communication modules is to overflow the communi-
cation buffers. In such attacks, the sizes of the buffers
and the ability of the security procedures to detect
and recover from such overflowing attacks is crucial
to the resilience design.

These examples show that recovery is a crucial concept
for designing systems that are resilient to errors. When sys-
tem errors are detected in such a system, the system acti-
vates a recovery mechanism so as to remove the effect of the
errors. When designing such systems, the system designers
usually have in mind what errors and failures the systems
can expect, according to the specification. To avoid failures
in the occurrence of dense errors, the system designers
usually incorporate many error recovery mechanism in the
system, e.g., exception handlers and hardware/software
redundancy. But, in general, it would be difficult for the
designers to evaluate how effective their recovery mecha-
nism is to dense errors. To overcome this difficulty, we
believe that it is important to support them with automated
analytical tools with a solid foundation.

Resilience has also been used in [8], [19] with a similar
goal. When synthesising code, one relies on assumptions of
the behavior of the environment, and the formal specifica-
tion would only ask for the provision of guarantees under
the condition that the assumptions are satistied. When
assessing the quality of an implementation, the behavior in
cases where the environment does not comply with the
assumption matters. In [8], [19], the resilience model we
have introduced in the conference version [25] of this paper
has been followed up upon, and proven to be well suited
for reactive synthesis.

In this work, we use these observations to design a theo-
retical framework for synthesizing a control mechanism
that provides the maximal resilience against software errors
in a realistic error model.

3.2 Resilience in a Nutshell
From Example 1 to 3 in Section 3.1, it is easy to see the com-
mon paradigm of error recovery in software systems.

When errors are detected, a recovery mechanism will be
activated to avoid failures and try to get back to normal
execution.

Moreover, such a recovery mechanism usually needs to
operate under the assumption that more errors may also
happen during the recovery process. In practice, system
designers have already implemented many defensive
modules, e.g., exception handlers, which are certainly
good candidates for the recovery segments. Thus, the
recovery scheme we discuss is likely to have arisen in an
ad-hoc fashion as a natural concept when software archi-
tects and programmers designed recovery mechanisms
for critical software.

The vast state spaces of critical systems make an auto-
mated support for and a solid foundation of evaluating
design alternatives particularly valuable.

In the following, we will use the examples from the previ-
ous section as a motivation for defining a new game, called
safety resilience game, between the recovery mechanism (the

,/
@*
N,

/

:non-error transition

»Y

“ . error transition

Fig. 2. lllustration of the recovery operation.

protagonist) and the error-injecting agent (the antagonist).
The game is specified with a set F' of failure states, a set S of
safe states (the safety region), the moves by the antagonist to
inject errors, and the resilience level k that the designers
want to achieve. The objective of the protagonist is to identify
a control strategy so that the whole system can achieve the
prescribed level (or the highest level) & of resilience for safety
region S (a set of states) and failure state set F'.

The game is played round by round. When the antago-
nist issues an error move, the play may be deflected into a
recovery segment. If there are no more than k — 1 errors in
the recovery segment, then a k-resilient control mechanism
must direct the recovery segment to end at a safe state. The
above observation suggests that a safety region can be
abstracted as a fixed point to the recovery procedure that
transforms a safe state to another safe state via the recovery
segment with at most & — 1 errors. Conceptually, a fixed
point to a procedure f(z) is a set S of elements in the
domain of z such that S = {f(z)|z € S}. To calculate the
fixed point of the recovery procedure, we can use the great-
est fixed point algorithm. The idea is to start from a superset
of the recovery procedure fixed point. For convenience, we
call a superset of the fixed point a pseudo fixed point (PFP).
Then we iteratively check every state ¢ in the PFP and elimi-
nate ¢ from the PFP if, after at most k errors from ¢, the
recovery mechanism either cannot avoid failure or cannot
direct the system back to the PFP. As the iterative checking
and elimination goes on, the PFP will shrink and eventually
stabilize. Note that its size is always finite, since the initial
PFP must be no bigger than (). The final PFP is then a great-
est fixed point to the recovery mechanism for k-resilience
and is the legitimate safety region.

This recovery procedure can be illustrated as in Fig. 2 for
resilience to two errors.

In this figure, the states in set S’ are computed as the
precondition of states in S through those transitions in
the figure. Each path from S’ to S is a recovery segment.
S and S’ may overlap. The blue circles represent states in
the recovery segments. If we calculate S’ out of S, then,
for each state ¢ € S’, we can find a path from ¢ € ' via a
path in the recovery segment to another state ¢ € S. The
maximal number of errors in a recovery segment is 2.
Thus the protagonist has a strategy to recover from errors
in S’ to S even when 2 errors happen in the correspond-
ing recovery segment. When S =S, then S is a fixed
point to the precondition operator through the recovery
segments in the figure.

Now we formally define the concept that we explained
with Fig. 2.

610 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.42, NO.7, JULY 2016

Fig. 3. An example for calculating sfrch;.

Definition 4 (k-safety). Given a k € N, a state q is called k-safe
with respect to a safety region S C Q \ F of non-failure states,
denoted q € sfrchy(S), if there is a strategy for the protagonist
to guarantee that we can reach back to S from q, provided that
the overall count of errors is at most k.

However, the definition can be subtle in its interpreta-
tion. Specifically, the ability to stand against one wave of k
errors is not the same as that against repeated recovery
from waves of k errors. If the recovery mechanism is not
designed properly, the system may gradually lose a bit of
control after each wave of k errors and eventually degrade
to system-level failure.

Example 4 (Fault-tolerant computer architectures). Con-
sider Example 1 with 2k + 1 processor copies, with the
objective to maintain majority checks and to identify the
bad processors. Indeed, according to the first, naive solu-
tion, any safe state with a recovery strategy to @\ F is
good. After k processor copies fail, the majority checks
are still capable to maintain the correctness of the com-
bined behavior to follow the design of the original sys-
tem. There seems to be nothing to do after & errors. Thus,
naively, we can choose those states as the safety region if,
at those states, majority checks still work.

However, there is no expectation that the system will
be able to recover at any point in the future into a situa-
tion where it can bear another wave of k errors. It will
fail and lose the function of majority checks just after one
more error. In contrast, in this work, we aim to propose a
dense error resilience criterion that given no more errors
for enough time to allow recovery, the system will even-
tually recover to resilience to k dense errors again.

To look at this issue in more detail, please consider the
transition system with four states, including a single failure
state (state 4, marked by a double line) shown in Fig. 3.
The controlled transitions are depicted as black solid
arrows, the error transitions are depicted as red dashed
arrows. For S=@Q\ F={1,2,3}, all states in S are in
sfrchy(S). For all k£ > 1, we have sfrch;(S) = {1, 2}: the pro-
tagonist can simply stay in {1,2} during the safety phase of
the game, and once the antagonist plays an error transition,
the game progresses into the recovery segment, where the
protagonist’s objective is satisfied immediately. This out-
lines the difference between k-sfrch-ty and the linear time
property of being able to repeatedly tolerate waves of up to
k errors, which would only be satisfied by states 1 and 2 for
k =1, and only for state 1 for k = 2.

This difference raises the question if the rules of our
game are depriving the antagonist of some of the k errors
that she should intuitively be allowed to insert in a wave.
The answer is that this is not the case if we use any fixed
point of sfrch, as S. In this case, the protagonist would
regain the capability to endure a wave of k errors when
reaching a safe state after recovery. Instead of depriving the
antagonist, one could say that we reset the number of errors

in any recovery segment that the antagonist can inject to k.
Thus such a fixed point of sfrch; should consist of states,
from which we can use a control mechanism to fend off
repetitive waves of k dense errors in the recovery segments.
For convenience, we call states in such a fixed point of
sfrchy, the k-resilient states.

For a state to be in sfrch;(.5), the system (protagonist) has
a strategy to recover to S, given that a long enough execu-
tion commenced without another round of & errors happen-
ing. We say that two successive errors are in the same group
of dense errors if the sequence of states separating them was
not long enough for recovery to the safety region. Vice
versa, if two successive errors are far enough apart such
that the protagonist can guarantee recovery in this separa-
tion, then they do not belong to the same group.

To check whether recovering to S by the protagonist (the
fault-tolerance mechanism) is always possible, provided
that at most k errors occurred during a recovery segment,
observe that nesting sfrch;, once, i.e., sfrchy(sfrchy(-)), corre-
sponds to tolerating up to two rounds of up to k dense
errors, and so forth. Thus, for S to be a target of recovery for
k-resilience, S must be a fixed point of the operator sfrchy,
from Definition 4, or, equivalently, S = sfrch;(.S) must hold.
Moreover, if S is the greatest fixed point to k-resilience, then
we we can apply sfrch;() any number of times to S and still
obtain S. Computationally, the greatest fixed point of sfrch;,
can be constructed as by executing

sfrchy (sfrehy(sfrehy (. .. sfreh,(S) ...))),

using a sufficiently deep nesting that a fixed point is
reached.

Note that this fixed point x to = = sfrch;(x) is what we
are really interested in, while sfrch;(S) for a given S is
an intermediate result that does not guarantee survival of
the systems after waves of dense errors. If this greatest
fixed point

R= [J{X CS|X =sfrch,(X)}

is non-empty, the protagonist’s strategy for the fixed point
(guaranteeing eventual recovery to a state in the fixed point
within no more than k errors, i.e., k-resilience) can be used
to control the recovery mechanism, constraining its transi-
tions to follow its winning strategy.

As explained in the introduction, there can be several
natural control problems in our safety resilience game. First,
the system designers may want to know whether the chosen
safety region S can be supported by the recovery mecha-
nism for resilience level k. Second, they may want to get
design support for choosing the safety region for achieving
resilience level k. Finally, they may want to know the maxi-
mal resilience level that they can achieve.

With the explanation in the above, in the rest of the man-
uscript, we will focus on the algorithm for constructing
sfrchy () and evaluating k-resilient states.

4 SAFETY RESILIENCE GAMES

A system is k-resilient if it can be controlled to tolerate infi-
nitely many groups of up to k dense errors, provided that
the system is given enough time to recover between these

HUANG ETAL.: AGAME-THEORETIC FOUNDATION FOR THE MAXIMUM SOFTWARE RESILIENCE AGAINST DENSE ERRORS 611

groups. As we have explained, in systems developed with
defensive mechanism against errors, when errors are
detected, recovery procedures should be activated. The
major challenge is to decide given a set of failure states and
a safety region, whether the recovery mechanism can sup-
port a resilience level required by the users. Our goal is to
develop techniques with a solid foundation to assist the
system designers in evaluating the resilience of their sys-
tems, to synthesize the controller strategy for the required
resilience level, and to achieve the maximal resilience level.

We now formally define the safety resilience game
played between a system (the protagonist) and an error-
injector (the antagonist). Initially, the two players are given
a two-player concurrent game structure /C, a pebble in r, a
set F' C @ of failure states, and a safety region S C Q \ F.
Then the recovery region consists of states in @ \ (F'US).
The two players together make decisions and move the peb-
ble from state to state. The antagonist tries to deflect a play
into F' by injecting sufficiently many errors, while the pro-
tagonist tries to avoid that the pebble reaches F. To achieve
this, the protagonist can use the recovery region as the
safety buffer and try to get back to S as soon as the play is
deflected from S to the recovery region. If a system is resil-
ient to k errors, then it means that the protagonist can han-
dle up to k— 1 errors while in the recovery region. Thus
when checking whether a system is resilient to k errors, we
only need to check those recovery segments with no more
than k — 1 errors.

In the following, we formalize the concept.

Definition 5 (Safety resilience game structure). Such a
structure is a pair (I, ') with the following restrictions.

o K is a two-player concurrent game structure (Q,r, P,
X\, By, By, 8). Conceptually, the first player represents
the system | the protagonist, while the second player
represents the error model [the antagonist.

o Ey is partitioned into error and and non-error moves
Eerror and Eoerr, respectively. We require that only
the second player can issue error moves. Moreover,
E. err must be non-empty.

o Fisthe set of failure states in QQ with r ¢ F.

The antagonist can choose if she wants to respond on a move
of the protagonist with an error move. We allow for different
non-error moves to reflect ‘normal’ nondeterministic behavior,
e.g., caused by abstraction. We allow for different error moves
to reflect different errors that can occur in the same step.

For a party A C {1,2}, we refer with A = {1,2} \ A to the
players not in the party, and by E, to the moves made by the
players in A, that is, By = E1 X By, By = By, etc.

We sometimes refer to transitions with error moves by
the antagonist as error transitions and to transitions with
noerr moves by the antagonist as controlled transitions.
The antagonist can use both error and non-error moves to
influence the game. In a simple setting, the antagonist may
only have the choice to insert error-moves, while there is
only a single controlled transition. In this simple case, the
protagonist can choose the successor state alone unless the
antagonist plays an error transition. Specifically, a safety
resilience game structure is simple if E, contains only one
error move. Considering simple safety resilience game

structures leads to lower complexities, as it changes reduc-
tions from reachability in games (PTIME-complete [26]) to
reachability in graphs (NL-complete [33]).

Note that, in the game structure, only one system player
and one error model player are allowed. This is purely for
the simplicity of algorithm presentation. With proper reduc-
tion techniques, we can easily convert a game structure with
more than one system player and more than one error
model player to the structure in Definition 5. The standard
technique would be using the transition rules of the product
automata of the system players for the protagonist while
using the transition rules of the product automata of the
error model players for the antagonist. In fact, we indeed
use this reduction technique in our experiment for analyz-
ing the resilience levels of multi-agent systems.

From now on, we assume that we are in the context of a
given safety resilience game structure G = (K, F).

Definition 6 (Recovery segements). We need to rigorously
define recovery segments. A play prefix p is a recovery seg-
ment fo safety region S C Q \ F if it satisfies the following
constraints.

e p(0)es.

o If |p|=o00, then all states in p[l,c0) are in
Q\ (SUF). In this case, p is called a failed recovery
segment.

o If |p| # oo, then all states in p[l,|p| —2] are in
Q\ (SUF)and last(p) = p(|p| — 1) is either in F or
S. If last(p) € F, p is also a failed recovery segment;
otherwise, it is a successful one.

We use level(p, S) to denote the number of error moves

between states in p with respect to the safety region S:

tevel(p, S) < |{i € 0, 1p] = 1) (i) F Eerror}.

As stated in the introduction, we propose a game-theo-
retic foundation for resilience analysis of software systems.
With this perspective, the protagonist acts as a maximizer,
who wants to maximize the resilience levels along all plays.
For this, the protagonist fixes a strategy that describe what
he is going to do on each play prefix. The antagonist acts as
a minimizer, who wants to minimize the resilience level.
She can resolve nondeterminism and inject errors in order
to achieve this, and (although this plays no major role in
this setting) she knows the strategy the protagonist has fixed
and can use this knowledge in principle.

The goal of the protagonist is therefore the same as the
goal of the system designer: to obtain a strategy that offers a
maximal level of resilience in a safety game. However, in
order to avoid degenerate behavior where the protagonist
benefits from being in the recovery phase and from the
antagonist therefore being allowed less errors in the current
wave of errors she may inject, we have to strengthen his
obligation to eventually recover to the safe states when the
environment chooses not to inject further errors. This way,
the protagonist has no incentive to cycle in the recovery
region. Consequently, he can recover to the safe region
within |@Q| moves after the antagonist has inserted the last
error of the current wave, irrespective of whether the antag-
onist would be allowed to insert further errors in this wave.
This is the key reason why memoryless optimal control

612 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.42, NO.7, JULY 2016

exists for this error model, why it is reasonable to assume
swift recovery, and, consequently, why it is a posteriori jus-
tified to leave the separation time between two waves
implicit: the time to traverse |(Q)| states suffices.

Besides obtaining this from intuition, we can also consider
the tree of successful recoveries for any protagonist strategy
that can endure & error moves by the antagonist. The tree of
recoveries from up to k errors is finite according to the defini-
tion of successful recovery segments. Then for any subtree ¢
in this tree of recoveries with a node v in t such that v is
labeled with the same state as the root of ¢ with no error on
the path, we can always replace ¢ with the subtree rooted at
v. After the replacement, we have a tree of recoveries with no
greater depth than the original one. After repeating such
replacements, this immediately provides a translation from
such a strategy with unrestricted memory to one with mem-
ory of size k (the resilience level). The restriction to memory-
less strategies follows from the construction we give in
Section 6, which does not depend on the memory and still
yields a strategy, which is memoryless. Thus, in this work,
we should define the resilience level of software systems
based on memoryless protagonist strategies.

Based on the argument above, the gain of the protagonist
in a play can be defined as follows.

Definition 7 (Gain). Given safety region S C Q) \ F, the gain of
a play p to S, in symbols gain(p, S), denotes the maximal inte-
ger k € N such that, for all recovery segments p, to S in p, if
level(p,, S) < k, then p, is a successful recovery segment to S.

The resilience level of a safety resilience game is defined
as the maximum gain that the protagonist can guarantee in
all plays with a memoryless strategy.

Definition 8 (Safety resilience game). Such a game is zero-sum
and defined on a safety resilience game structure G = (KC, F') and
a safety region S C Q\ F. The gain of G to S, in symbols
gain(G, S), is defined as the maximum gain that the protagonist
can manage with memoryless strategies. Rigorously,

gain(G, S) Y max <(0) min gain(play(r, o, o’), S).
oc o'es

Please be recall that play(r,o,d’) is the play from r according
to strategies o and o’ respectively of the two players. Moreover

3 is the set of memoryless strategies.

We say that the resilience level of G to S is gain(G, S). A
strateqy w for the protagonist is optimal to S if minycs
gain(play(r, w,d’), §) = max__ominyes gain(play(r,o,d’), 5).
When S is not given, we say that G is k-resilient if there exists

a non-empty S C Q \ F with gain(G, S) > k.

Remark. While the option of using memoryless strategies
plays a minor role in the technical argument, it plays a
paramount role in the usefulness of the resulting control
strategy: choosing memoryless strategies implies that all
recovery segments are short. In particular, all sub-paths
(recovery segments) between two waves of dense errors
injected by the antagonist are shorter—and usually sig-
nificantly shorter—than the size of G. In consequence,
any time span long enough for traversing the recovery
segment will lead to a full recovery. It is therefore suffi-
cient for a temporal distance we have to assume between
two waves of dense errors.

5 ALTERNATING-TIME p~-CALCULUS WITH EVENTS
(AMCE)

We propose to solve our resilience game problems with an
existing technology, i.e., model-checking of alternating-time
p-calculus (AMC) formulas. AMC is a propositional tempo-
ral logic with fixed point operators. For example, the follow-
ing formula

uX.(safe v (1) O X) (@))

uses least fixed point operator i to declare a fixed point var-
iable X for a set of states. Subformula (1) O ¢ existentially
quantifies over the protagonist strategies that can direct the
plays to a successor state satisfying ¢. Together, the formula
specifies a set X of states that can inductively reach a safe
state with the control of the protagonist. Specifically, the for-
mula says that a state is in X if either it is safe or the protago-
nist can direct to a successor state known to be in X. For our
game structures, we only need strategy quantification of up
to two players.

However, we need extend AMC with some simple syn-
tax sugar. There are two extensions. The first is for Boolean
combinations of path modalities in the scope of strategy
quantification. For example, the following AMCE formula

(1) ((smoke = QalarmOn) V QuwindowClosed) (2)

says that the protagonist can enforce either of the following
two path properties with the same strategy.

e If there is smoke, then the alarm will be turned on in

the next state.

e The window will always be closed in the next state.

Such a formula is not in ATL and AMC [3].

The second extension is for restricting transitions that
may participate in the evaluation of path formulas. The
restriction is via constraints on moves on transitions and
can, in our extension to AMC, be specified with a move
symbol set to the next-state modal operators. For example,
the following AMCE formula

<1> ((OZ:ermralarmOn) A (OﬂQ:error_‘alarmOn)) (3)

says that the protagonist can

e turn on the alarm when an error occurs; and

e keep the alarm silent when no error occurs.

Before we formally present AMCE, we need define
expressions for constraints on moves of players in transi-
tions. We adapt an idea from [44]. Specifically, a move expres-
sion 1 is of the following syntax

nu=ace|n Vnyl-n.

Here, a is a player index in {1,2} and e is a move symbol in
E; U E,. V and — are standard disjunction and negation. Typi-
cal shorthands of Boolean operations can also be defined out
of V and —. A total move vector can be expressed as [e;, €3]
where for all a € {1, 2}, e, € E, is the move by player a speci-
fied in the vector. We say [ej,es] satisfies 7, in symbols
[e1,e2] =, if and only if the following constraints are
satisfied.

HUANG ETAL.: AGAME-THEORETIC FOUNDATION FOR THE MAXIMUM SOFTWARE RESILIENCE AGAINST DENSE ERRORS 613

e [e1,e0] Ea:eif and onlyif, ¢, ise.

o [er,ed) Eny VvV if, and only if, [ej,es] En; or
[617 2} ': UbR

[e1, €2]

e1,es] = -y if, and only if, [y, es] £ ;.

e
e
[]

5.1 Syntax
A formula ¢ in AMCE has the following syntax.

¢ == p|X|o V| g | uX.gy| (A
Y= [Y V| = | OF ¢

Here, ¢ is a state formula, ¥ is a path formula, p is an atomic
proposition symbol in P (atomic proposition set, as in Defi-
nition 1), and X is a set variable for subsets of). The Bool-
ean connectors are the common ones: V for disjunction and
— for negation. Note that we allow for Boolean combinations
of the next operators () under strategy quantification (A).
This is one major difference of AMCE from AMC.

Formula puX.¢, is the usual least fixed point operation to
¢,. According to the tradition in [3], we require that all free
occurrences of X in ¢; must occur within an even number of
scopes of negations. This is because sentences with a negative
occurrence, like £ X.— X, have no natural semantics. A set var-
iable X is bound in a formula ¢ if it is inside a declaration scope
of X.Ifitis not bound, then it is free. An AMCE sentence is an
AMCE state formula without free set variables. In most cases,
we are interested in specifications given as AMCE sentences.

The A in (A) is a finite set of player indices in [1,2]. Con-
ceptually, (A)y means that players in A can collaborate to
make y true. For example, ({1,2}) O p means that players 1
and 2 can collaborate to make p true in the next state. We
follow the notations in [3] and omit the parentheses in for-
mulas like (A)y. For example, ({2}) Op and ({1,2}) Op
will be abbreviated as (2) O p and (1,2) O p respectively.

We allow event restrictions as superscripts in ()"¢; with
a move expression 7. The operator is important in support-
ing the evaluation of safety resilience levels with traditional
model-checking technology. Note that since AMC [3] only
allows for the next-state temporal modality, only the choice
of moves to the next states of a strategy matters. Formula
(O"¢, is thus evaluated at states with respect to move vec-
tors satisfying constraint n. The formula is true of a move
vector [e1, eo] if and only if [e1, €3] = n implies the satisfac-
tion of ¢ at state 8(q, 1, e2). Also O'F1¢, can be written as
O¢, in AMC [3] and the superscript to () can be omitted.

We also adopt shorthands in the below. The g refers to
state or path formulas

true = pV-p
false dof “pAD
BinBy = (=) V (=B))
Bi=p E (B)Vh
vX.¢ o —uX.—¢
Ay = ~(A)-y.

5.2 Semantics

In the following, we adapt the presentation style of [3]
to define the semantics of AMCE inductively over the

structure of the subformulas. The value of a state formula
at a state is determined by the interpretation of the set
variables. Such an interpretation / maps set variables to
subsets of (). In comparison, the value of a path formula
at a state is determined by both the interpretation of the
set variables and the move vector chosen by the players.
For convenience and conciseness of presentation, we
extend the definition of interpretation of [3] also to record
the chosen move vector by some players. Specifically, we
use an auxiliary variable “move” for the present chosen
move vector in the evaluation of path formulas. Given an
interpretation 7, I(move) records the chosen move vector
of all players in I. For example, I(move) = [setAlarm, 1]
means the chosen move vector that player 1 sets on an
alarm while player 2 does nothing under interpretation /.

We need the following concept for collaborative choices
of moves to the next states by some players. An enforced
move vector set by A C [1,2] is a maximal set of move vectors
that agree on the choices of moves by players with indices
in A. Specifically, given an enforced move vector set C by A4,
we require that, for every [e1, es] € C, [¢],¢,] € C,and a € A4,
e, = ¢,. For convenience, we let ' denote the set of all
enforced move sets by A.

Following the semantics style of [3], we can extend I to
be an interpretation of all state and path formulas. Intui-
tively, given a state or path formula g, () is the set of states
that satisfy B according to the assumption on values of set
variable values and auxiliary variable “move.” More pre-
cisely, I(B) is a subset of () that satisfies the following induc-
tive rules.

e o o o
====
=
<
=
NI
I
~
—
=
C
=
=
N

I[X — Y](¢;), where I[X — Y] is a new interpreta-
tion identical to I except that X is interpreted as Y.

e I((A)y) is the set of states such that there is an
enforced move vector set C' by A such that, for all
move vectors € € C, I[move — ¢|(y) holds:

I(A)Y) = | popa [) I[move —](v).

ecC
e Given I(move)=lej,e], if [er,e2] En, then
HO"¢1) ={q € Qld(g,e1,e2) € I(¢1)}; otherwise

I(O"1) = Q.

A concurrent game structure is a model of an AMCE sen-
tence ¢, if its initial state r is in the interpretation of ¢
(r € 1(¢)) for any interpretation /.

Note that, strictly speaking, AMCE does not add much
to the expressiveness of AMC. In the literature, proposi-
tions have often been used to record events. Intuitively, we
would need one atomic proposition for each event to mark
that it has just occurred. This event marker would be true
exactly at states right after the event happened. (One
would possibly have to create multiple copies of states to
reflect this.)

As discussed in [43], such a modeling technique leads to
an unnecessary blow up of the state space, which could be
exponential in the number of players in general concurrent
games. By properly selecting the transitions with respect to

614 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.42, NO.7, JULY 2016

operators like ()", such auxiliary propositions are not neces-
sary when encoding the state space. Thus, AMCE can also
be of interest to practitioners for the efficient analysis and
verification of general concurrent games.

6 RESILIENCE LEVEL CHECKING ALGORITHM

In Section 3.2, we have proposed the idea of the sfrchy(-)
operator and proposed to use its greatest fixed point for the
evaluation of k-resilience. In the following, we first establish
some properties of k-safety and then use AMC model-
checking technology to solve the safety resilience games.

6.1 High-Level Description of the Algorithm
The following lemma shows the sufficiency of k-safety as a
building block for solving safety resilience games.

Lemma 5. For a safety resilience game G, sfrchy(-) has a greatest
fixed point.

Proof. The lemma follows from the facts that the function
sfrch;, is monotonic (S C " implies sfrch,(S) C sfrch,(S")
because a winning strategy for the protagonist for S'is also a
winning strategy for S’ for all states in sfrch;(S)) and oper-
ates on a finite domain.

For the example in Fig. 3, considering S = {1}
({1} = sfrchy({1,2,3})), the only state in S, state 1, is 2-resil-
ient: it can recover with the recovery strategy to always go
to the left.

The set of k-resilient states of G, can be calculated as the
greatest solution to S = sfrch;(S) with S C @\ F. Techni-
cally we can start the inductive calculation of the greatest
fixed point from base case S) = @) \ F, and successively cal-
culate S;;; = sfrchy(S;), for each ¢ > 0. The set of k-resilient
states is then the limit S,,. As soon as we have S;;.; = 5;, a
fixed point is reached. We then have S; = S, and can stop
the inductive construction. Since S is finite and S;;; C S;
holds for all ¢ >0, we will eventually reach a j with
Sjt1=95; = Sx.

6.2 Realization with AMCE Model-Checking

We need formally define the interaction among strategies of
players. We borrow the notation of function composition.
Given two partial functions 8, and B,, we use 8, o B, to rep-
resent their composition. Specifically, we have the following
definition:

e [B@
ﬁl ﬁ2() {lgi(a)

if B,(a) is undefined,
otherwise.

For our purpose, a partial strategy vector is a mapping from
{1,2} to X and can be undefined for some players in {1, 2}.
It is for a party A C {1,2} if it is defined only for players
in A and represents a collaborative strategy of the players
with a defined strategy in A. It is total if it is defined for
all players.

For convenience, we also define partial move vectors as
mappings from {1,2} to E. A partial move vector is for a
party A C {1,2} if it is defined only for players in A. It is
total if it is defined for all players in {1, 2}. Given two partial
move vectors y; and y,, we define y; o y, to represent the
composition of the two vectors.

Given an S, we propose to construct sfrch(S) in an
induction on k. We need the following preliminary concepts
for the presentation.

Definition 9 (Traps). For A C {1,2}, a trap for A is a subset
Q' C Q that party {1,2} \ A has a strategy vector p to keep all
plays from leaving Q'. Formally, we require that, for every
q € Q' and partial move vector y for A, there exists a partial
move vector y' for {1,2}\ A such that §(q,yoy'(1),...,
yoy'(m)) e Q"

6.2.1 Base Case, sfrch(.5)

In the base case, sfrchy(S) characterizes those states, from
which the protagonist can direct the plays to S and stay
there via a protagonist strategy when there is no error
injected by the antagonist. Thus sfrchy(S) is the greatest
trap for the antagonist to S when no error happens and the
greatest solution to the following equation.

X = qEXﬂS,eEEh
K Ve' € Ey(e' # noerr = §(q,e,¢') € X) [°

In AMCE, we can alternatively define sfrchy(S) as follows:

sfrchy(S) &of VX.(S A (1) O7Zermor X)),

This is the usual safety kernel of S, which consists of those
states, from which any controlled transition is safe. It can be
computed by the usual greatest fixed point construction.

Lemma 6. sfrchy(.S) can be constructed, together with a suitable
memoriless control strategy, in time linear to the size of G.

Proof. A state g € S can stay in sfrchy(.9) if there is a choice
e € E) such that for all f € Ey, 8(q, e, f) € sfrchy(S). Basi-
cally, we can use the typical approach of iterative
elimination to calculate sfrchy(S). That is, we first let
Ky)=Q — S. Then we a sequence of mutually disjoint
sets Ky, K,,...,K;,... such that for all i > 1, states in
K11 can be shown to be not in sfrchy(S) by evidences of
states in K; U...U Kj. Linear time can be achieved with
careful book-keeping of the choices of moves at all states
in S. We need a counter ¢, for each ¢ € S initialized to
|Ey| for the initial number of candidate choices of moves.
Then for each [g,e] € S x |, we need a Boolean flag by,
initialized to ¢rue to represent that {[e, f]| f € E»} is still
a valid choice of moves at ¢ to satisfy sfrchy(S). For each
state ¢, we also need to maintain a list of transition source
states. That is, for each §(¢,e, f) =¢q, we need record
[d, e, f] in list L,. Then the iterative elimination proceeds
as the algorithm in Table 2. O

The algorithm is linear time since each transition §(g, ¢, f)
is checked exactly once.

6.2.2 Inductive Cases, sfrch;(5)

Now we explain how to define the inductive cases of
sfrch;(S). The condition is for those states from which plays
can be directed to S via a recovery segment in Q) \ (SU F)
with £ or less errors injected by the antagonist. An interme-
diate step for the construction of k-sfrch states is the con-
struction of an attractor that controls, through controlled

HUANG ETAL.: AGAME-THEORETIC FOUNDATION FOR THE MAXIMUM SOFTWARE RESILIENCE AGAINST DENSE ERRORS 615

TABLE 2
Algorithm for sfrch,(S) by lterative
Elimination

sfrchy(.5)

1: for g € S do ¢, = |E1| end for

2:forg € S,e € E; do by = true end for
3:Leti=0and Ky =Q — S.

4: while K; # () do

5. Let K; 1 =10.

6: forqg € K;and [¢,e, f] € L, do

7: if byy o is true then

8: Let Cq/ = Cq/ — 1.

9: if ¢y is 0 then add ¢ to K. end if
10: end if

11: Set bjy ¢ to false.

12: end for

13: Increment: by 1.
14: end while

15:return S — (Ko U... U K;).

moves, the play prefixes to stay in a subset L C Q \ F' of
non-failure states. As only controlled (non-error) moves are
allowed, this is merely a backward reachability cone.

The controlled limited attractor set of a set X for a limited
region L C (), denoted coney,(X) is the set from which there
is a protagonist strategy to move to X without leaving L
and errors injected by the antagonist. Technically, cone (X)
is the least solution to equation:

- qe€ L,ec Fy,
Y=Xu {q ’ Ve € By \ {error}(8(q,e,€') €Y) }

The controlled limited attractor set coner(X) can be con-
structed using simple backward reachability for X of con-
trolled transitions through states of L. In AMCE, this can be
constructed as follows:

cone, (X) & uvi(X v (L A (1) Q72 Y)).

Note that the protagonist must use the same move irre-
spective of the move of the antagonist to both stay in L
and approach X, provided that the antagonist does not
inject an error.

The controlled limited attractor set coney,(X) is used in the
construction of sfrch;(.S). We further construct a descending
chain V5 D V) O ... D Vj_1 of limited attractors V;. From V;
we have an attractor strategy towards S for the protagonist,
which can tolerate up to ¢ further errors. The respective V; are
attractors that avoid failure states. Moreover, from a state in
Vi withi > 1, any error transition leads to V;_;.

A state g € @ is fragile for a set B C Q) if, for all moves of
the protagonist, at least one of its successors is outside of B.
(The intuition is that this is an error move, and for simple
safety resilience game structures, we can restrict the defini-
tion to failure states.) The set of fragile states for B is

frag(B) def

{q|Ve € E13€ € Ey(8(g,e,€') ¢ B)}.
In AMCE, we have the following formulation of frag(B)

frag(B) & [1] O —-B.

Technically, it is, however, easier to construct its dual

Q\frag(B) = (1) O B.

This dual can be constructed using a controlled backward
reachability to B with any strategy of the protagonist.

The limited regions L, of states allowed when approach-
ing S also form a descending chain Ly D L; D ... D L.
Using these building blocks, we can compute the k-sfrch
states as follows. The states in L;,; are the non-failure
states from which all error transitions lead to a state in V.
The sets V; contain the states from which there is a con-
trolled path to S that progresses through L;; all error tran-
sitions originating from any state of this path lead to V;_;.
Vb is therefore just the set of states from which there is a
controlled path to S.

From all states in Vj,_;, the protagonist therefore has an
optimal strategy in the recovery segment of the game
described earlier: if the antagonist can play at most k£ — 1
errors, then the protagonist can make sure that .S is reached.

Starting with L o @ \ F that characterizes cones on the
way to S without any errors, we define the V;'s and L;’s
inductively by

L, ¥ L, \ frag(Q \ coney, (S5)).
In AMCE, this can be defined inductively as follows:
Ly ™ -F
L, aof Lo A (1) O coner, ,(S).
Finally, we choose sfrch;,(S) def sfrchy(S N Ly). In AMCE,
this can be expressed as follows:

sfrch (S) & sfrehy (S A L),

6.2.3 Algorithm for the Set of k-Resilient States

Finding a control strategy for k-sfrch control within
sfrchy,(S) is simple: as long as we remain in sfrch,(S) =
sfrchy (SN Ly), we can choose any control move that does
not leave sfrch,(S). Once sfrch,(S) is left through an error
transition to Vj_1, Vi, ..., we determine the maximal i for
which it holds that we are in V; and follow the attractor
strategy of coney, (S) towards S.

In summary, we present our algorithms for the set of
k-resilient states in Table 3.

In fact, we have presented two algorithms. The first con-
structs sfrch(.S), which can be used for checking whether
the safety region S provided by the users is indeed a good
one. The way to do it is to simply check whether S is a solu-
tion to sfrchy(z) = .

Then our second algorithm calculates res;(G) as the
greatest fixed point S of sfrch,(.) as the recommendation
for the safety region:

resy(G) = | J {S € Q| S = sfrchy(S) and SUF = 0}.

In this way, the users do not have to calculate and provide
the safety region, which would be error prone. According to
the argument and lemmas from above, we get the following
theorem.

616 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42,

NO.7, JULY 2016

Algorithm for k-Resilient States

SFAQL) Ouy.SV (Li-1 A1) O y AN OLg-1),

TABLE 3
Ly def —-F.
Ly dgf
sfrchy(.5) def ve.(S A (1) O x),
sfrchy,(.S) dgf sfrchy(S A Ly,),
resy(G) def

vS.((Q \ F) A sfrchy(S)) : the set of k-resilient states.

Theorem 7. G is k-resilient if, and only if, r € res;(G).

6.3 Complexity

A rough complexity of our resilience level checking algo-
rithm straightforwardly follows the complexity of AMC
model-checking. Specifically, the following lemma explains
the maximal resilience level that we need consider. For con-
venience, let k.« be the maximal resilience level of G.

Lemma 8. Ky, is either infinite or no greater than |Q \ F|.

Proof. We assume that k. is greater than |@ \ F/| but not
infinite. This means that there exists a failed recovery
segment p with £+ 1 errors injected by the antagonist.
Since the protagonist can only use memoryless strate-
gies, there must be two position indices i < j < |p| — 1
with p(i) = p(j) in the recovery segment such that at
p(i) and p(j), the protagonist makes the same move
while the antagonist makes different moves. This
implies the existence of a shorter failed recovery seg-
ment p[0,i]p[j + 1,|p| — 1]. By repeating the above argu-
ment, we can eventually identify a failed recovery
segment of length < |\ F| that contradicts the assump-
tion and establishes the lemma.]

With Lemma 8, we can use the complexity of AMC
model-checkin% problem [3] to straightforwardly establish
the O(kwax|E)* = O(|Q \ F| - |E|)* complexity of resy(G)
when £ is kyax. In the following, we present a more detailed
analysis of the complexity of our resilience level checking
algorithm. All individual steps in the construction (intersec-
tion, difference, predecessor, and attractor) are linear in the
size of the safety resilience game, and there are O(k) of these
operations in the construction. This provides a bi-linear (lin-
ear in k and |G|) algorithm for the construction of sfrch;, and
a strategy for the protagonist.

Lemma 9. A memoryless control strateqy for the states in
sfrchy(S) can be constructed in time linear in both k and the
size |G| of the safety resilience game G.

The construction of res;(G) uses the repeated execution of
(Q\ F) A sfrchy(-). The execution of sfrchy(-) needs to be
repeated at most | \ F'| times until a fixed point is reached,
and each execution requires at most O(k-|G|) steps by
Lemma 9.

For the control strategy of the protagonist, we can simply
use the control strategy from sfrch,(S«) from the fixed
point S,.. This control strategy is memoryless (cf. Lemma 9).

Lemma 10. res;.(G) and a memoryless k-resilient control strategy
for res;.(G) can be constructed in O(k - |Q \ F| - |G]) time.

Finding the resilience level k.. for the initial state r
requires at most O(log ky.x) many constructions of res;(G).
We start with i =1, double the parameter until k.. is
exceeded, and then use logarithmic search to find k.

Corollary 11. For the initial state r, we can determine the resilience
level kyax = max{i € N|r eres;(Q\ F)} of r, resy,..(Q\
F), and a memoryless kmay-resilient control strateqy for
reSyu (@ \ F) in O(|Q \ F| - |G| - kmax10g kax) time.

Simple safety resilience game structures. For simple safety
resilience game structures, checking if a state is in sfrchy(.5) is
NL-complete.

Lemma 12. Testing if a state is in sfrchy(S) is NL-complete.

Proof. NL completeness can be shown by reduction to and
from the repeated ST-reachability [33] (the question
whether there is a path from a state S to a state T and
from T to itself in a directed graph). O

Likewise, the controlled limited attractor set conep(S)
can be constructed using simple backwards reachability for
G of controlled transition through states of L. For
A = coney(S), determining whether a state is in A is NL-
complete (see [33]).

The complexity of determining whether or not a state ¢ is
in sfrchy,(S) thus depends on whether or not we consider k
to be a fixed parameter. Considering £ to be bounded (or
fixed) is natural in our context, because k is bounded by the
redundancy.

Lemma 13. For a fixed parameter k, testing if a state s of a simple
safety resilience game structures is in sfrchy(S) is NL-
complete.

Proof. Testing if a state is in L is in NL. By an inductive
argument, we can show that

e provided that testing if a state is in L; is in NL, we
can test if a state is in A; = coney, (S) by using the
nondeterministic power to guess a path towards
S, while verifying that we are in L; in every state
we pass before S is reached; and

e if we can check if a state is in 4; in NL, then we
can check if it is in Q \ 4; [27], in frag(Q \ A4;)
(with one nondeterministic transition), and in

Testing that a state is in .S N L, is therefore in NL and

testing if it is in sfrchy (S N L) reduces to guessing a state
t in sfrch(G) and an ST path (a path from s to ¢ followed
by a loop from ¢ to t), verifying for all states on the path
that they are in S N L;.

HUANG ETAL.: AGAME-THEORETIC FOUNDATION FOR THE MAXIMUM SOFTWARE RESILIENCE AGAINST DENSE ERRORS 617

For hardness, note that the last step of the construction
alone is NL-complete (Lemma 6).]

If k is considered an input, then reachability in AND-OR
graphs can easily be encoded in LOGSPACE: It suffices to
use the nodes of an AND-OR graph as the states, the outgo-
ing edges of OR nodes as the result of the choice of the pro-
tagonist only (while the move of the antagonist has no
influence on the outcome, no matter whether or not she indu-
ces an error), and to model the AND nodes as a state, where
the no-error move of the antagonist will lead in cycling in the
state, while the antagonist can choose the successor from the
graph when inducing an error. Choosing & to be the number
of nodes of the AND-OR graph and F to be the target nodes
of the AND-OR graph, the target nodes of the AND-OR
graph are not reachable from a state s iff s € sfrch;(Q \ F).

Given that reachability in AND-OR graphs is PTIME-
complete [26], this provides:

Lemma 14. If k is considered an input parameter, then testing if a
state s of a simple safety resilience game structures is in
sfrchy,(S) is PTIME-complete.

The complexity of res;(.5) is (almost) independent of the
parameter £:

Theorem 15. The problem of checking whether or not a state s is
k-resilient for a set S is PTIME-complete for all k > 0 and
NL-complete for k = 0.

Proof. We have shown inclusion in PTIME in Lemma 10.
For hardness in the & > 0 case, we can use the same
reduction from the reachability problem in AND-OR
graphs as for sfrchy,(9).

For k =0, sfrchy(G) = sfrchy(sfrchy(G)) implies res
(G) = sfrchy(G). The problem of checking if a state is in
resy(G) is therefore NL-complete by Lemma 12. O

Hardness for general safety resilience game structures. For
general resilience game structures, we can again use a LOG-
SPACE reduction from the reachability in AND-OR graphs:
We again use the nodes of an AND-OR graph as the states,
and the outgoing edges of OR nodes are selected based on
the choice of protagonist only. For the AND nodes, we leave
the choice to the antagonist only, whithout the need to
invoke an error. (That is, errors play no role in this reduc-
tion. The antagonist may be allowed to insert one, but she
can always obtain the same transition without doing so.)

Marking F as the target nodes, we get res,(Q \ F) =
sfrch;(Q \ F) for all non-negative integers k,/, and s €
sfrchy(Q \ F)) iff the target nodes of the AND-OR graph are
not reachable from s. With Lemmas 9 and 10, we get the fol-
lowing theorem.

Theorem 16. For all k > 0, the problems of checking whether
or not a state s is in res,(Q \ F') and res,(Q \ F), respec-
tively, are PTIME-complete for general safety resilience
game structures.

7 TooL IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In the following, we report our implementation and
experiment with our constructions. Our implementation

is based on symbolic on-the-fly model-checking techni-
ques and built on the simulation/model-checking library
of REDLIB in https://github.com/yyergg/Resil+
for fast implementation. Our implementation and bench-
marks can also be found in the same page.

We adopt communicating extended finite-state machine
(CEFSM) [7] as a convenient language for the description of
abstract models of our concurrent game structures. A
CEFSM consists of several finite-state machines extended
with shared variables for the modeling of shared memory
and with synchronizations for the modeling of message-
passing in distributed systems. This is justifiable since the
fault-tolerant algorithms may themselves be subject to
restrictions in concurrent or distributed computation.
Indeed, we found CEFSM very expressive in modeling the
benchmarks from the literature [12], [38].

The translation from our CEFSMs to state transition sys-
tems, such as finite Kripke structures, is standard in the lit-
erature. All state spaces, conditions, preconditions, post-
conditions, fixed points, etc., are represented as logic formu-
las. The logic formulas are then implemented with multi-
value decision diagrams (MDD) [32].

We then took advantage of the support of REDLIB for
writing down template automatas for constructing complex
models. We specified a template automata with REDLIB to
describe the moves of the players. Conceptually, the player
automatas are constructed as an instance of the template
automata. Then the whole game structure is constructed as
the product of all player automatas. Finally, we use the API
of REDLIB to do on-the-fly construction of the game struc-
ture which can be advantageous since unreachable states
will never be generated.

7.1 Benchmarks

We use the following five parameterized benchmarks to
check the performance of our techniques. Each benchmark
has parameters for the number of participating modules in
the model. Such parameterized models come in handy for
the evaluation of the scalability of our techniques with
respect to concurrency and model sizes.

1. We use the example of a fault-tolerant computer
architecture (Example 1) as our first benchmark. An
important feature of this benchmark is that there is
an assumed mechanism for detecting errors of the
modules. Once an error is detected, a processor can
be assigned to recover the module, albeit to the cost
of a reduced redundancy in the executions.

2. Voting is a common technique for fault tolerance
through replication when there is no mechanism to
detect errors of the modules [36]. In its simplest
form, a system can guarantee correctness, provided
less than half of its modules are faulty. This bench-
mark implements this simple voting mechanism.
Every time a voting is requested, the modules sub-
mit their ballots individually. Then we check how
many module failures the system can endure and
recover.

3. This is a simplified version of the previous voting
benchmark, where we assume that there is a black-
board for the client to check the voting result.

https://github.com/yyergg/Resil+ for fast implementation
https://github.com/yyergg/Resil+ for fast implementation

618 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.42, NO.7, JULY 2016

\se.:.:?;l

Fig. 4. CEFSM templates of n processors and m memory copies.

4. Practical Byzantine fault-tolerance (PBFT) algorithm:
We use an abstract model of the famous algorithm
by Castro and Liskov [12]. It does not assume the
availability of an error-detection mechanism but
uses voting techniques to guarantee the correct-
ness of computations when less than one third of
the voters are faulty. This algorithm has impact on
the design of many protocols [2], [14], [15], [23],
[29] and is used in Bitcoin [1], a peer-to-peer digi-
tal currency system.

5. Fault-tolerant clock synchronization algorithm: Clock
synchronization is a central issue in distributed
computing. In [38], Ramanathan, Shin, and Butler
presented several fault-tolerance clock synchroni-
zation algorithms in the presence of Byzantine
faults with high probability. We use a nondeter-
ministic abstract model of the convergence averag-
ing algorithm from their paper. The algorithm is
proven correct when no more than one third of the
local clocks can drift to eight time units from the
median of all clock readings.

7.2 Modeling of the Fault-Tolerant Systems

Appropriate modeling of the benchmarks is always impor-
tant for the efficient verification of real-world target sys-
tems. Many unnecessary details can burden the verification
algorithm and blow up the computation, while sketchy
models can then give too many false alarms and miss cor-
rect benchmarks. We have found that there is an interesting
aspect in the modeling of the above benchmarks. Replica-
tion and voting are commonly adopted techniques for
achieving fault-tolerance and resilience. Such fault-tolerant
algorithms usually consist of several identical modules that
use the same behavior templates. This observation implies
that the identity of individual modules can be unimportant
for some benchmarks. For such benchmarks, we can use
counter abstraction [20], [31] in their models. Specifically,
with counter abstraction, we can model all system players
with one player that keeps a counter ¢({) for each control
location [in the template automatas. Then at a state of the
whole game graph, ¢(l) records the number of system play-
ers at location /. With this technique, a system with m — 1
system player and one error model player is then reduced
to two players: one counter-abstraction player for all the
system players and one remaining error model player. If a
system player enters a location [in a global transition, then

in the model, ¢(I) is incremented by one in the abstract
global transition. If a system player leaves / in the global
transition, then c¢(I) is decremented by one in the abstract
global transition. But the succession of location movements
of a particular player is omitted from the abstraction.

We found that we can use counter abstraction to prove
the correctness of benchmarks 1, 2, and 3. In contrast, the
PBFT and the clock synchronization algorithms use coun-
ters for each module to model the responses received from
its peer modules. As a result, we decided not to use counter
abstraction to model these two algorithms in this work.

In the following, we explain how to apply our techni-
ques to analyze the resilience levels of the avionic sys-
tems in Example 1. The application is achieved in three
steps. We first model the system under analysis either as
a plain CEFSM or with counter abstraction (if our analy-
sis tool cannot handle the complexity of the plain
CEFSM). We then build the product automaton of the
CEFSM as the resilience game structure except for the
move vectors. Finally, we convert the labels on the tran-
sitions of the product automaton to move vectors of the
two players. Note that the moves may not correspond to
the transition labels of the CEFSM.

7.2.1 Step 1: The Construction of the CEFSM

We first present the CEFSM model template of Example 1 in
Fig. 4.

The CEFSM model has n processors and m memory mod-
ules. Figs. 4a and 4b are for the abstraction of processors and
memory copies, respectively. The ovals represent local states
of a processor or a memory module, while the arrows repre-
sent transitions. The transitions of a CEFSM are labeled with
‘error’, ‘C’ (for Control), or ‘R’ (for recovery).

We also use synchronizers to bind process transitions.
For example, when a memory module moves into a faulty
state, an idle processor may issue an £d (error-detected)
event and try to repair the module by copying memory
contents from normal memory modules. Such error-detec-
tion is usually achieved with standard hardware. Note
that the benchmarks are models that reflect the recovery
mechanism, abstracting away the details of the original
systems. A central issue in the design of this recovery
mechanism is then the resilience level of the controlled
systems. We need three synchronizers: fd for error detec-
tion by a processor, rs for recovery success, and rf for
recovery failure. The three synchronizers are used to bind

HUANG ETAL.: AGAME-THEORETIC FOUNDATION FOR THE MAXIMUM SOFTWARE RESILIENCE AGAINST DENSE ERRORS

error
#e\Pr P
[
1

error
pe- pft;

619
error
pmr=; mft;
[

Fig. 5. Counter abstraction of the CEFSM templates of n processors and m memory copies.

a transition from a processor and another from a memory
module into a synchronized transition. For example, a
processor at state pidle and a memory module at state
mfaulty may simultaneously enter their pcopy and mcopy
states respectively through synchronizers !fd (for sending
the synchronizer) and ?fd (for receiving). We also conve-
niently use a variable ¢ in this synchronized transition to
capture the identifier of the memory module receiving
the synchronizer. A transition without synchronization
labels is considered a trivial synchronized transition. The
transition system of the CEFSM operates with interleav-
ing semantics at the abstraction level of the synchronized
transitions.

For counter abstraction, we need four global variables
crp, cfp, crm, and cfm respectively to keep track of the
numbers of running processors, faulty processors, run-
ning memory modules, and faulty memory modules. We
also need a local variable idm for each processor to
record the faulty memory module identifier that the pro-
cessor is responsible for recovery. We label the controlla-
ble, error, and recovery transitions respectively with ‘C’,
‘error’, and ‘R’. We also label each transition with syn-
chronizers and actions. At any moment, the processors
and the memory modules may enter their running states,
execute a task, and generate the outcome. A processor
starts its execution from state prun while a memory mod-
ule starts from state mrun.

7.2.2 Step 2: Building the Product Automata

The product automata is a Kripke structure whose states are
of is a vector [p1,...,Pn, 01,0, S1,. .., Sm] of 2n +m ele-
ments. For all £, p;, and i), respectively represent the current
location and the current idm value of processor k while s,
represents the current location of memory module k. Then
interleaving semantics that each time only a global transition
(a single local process transition without synchronizers or
two local process transition bound by a synchronizer) is exe-
cuted is adopted to determine the transition relation from
one state to another. Such techniques are standard in model
construction. REDLIB can help in this regard by constructing
the Kripke structure in an on-the-fly style to avoid the con-
struction of those states not reachable from the initial state.

7.2.3 Step 3: The Labeling of the Move Vectors

After the second step, we have the game structure ready
except for the move vectors on the transitions. We use
E1 = {C, R, nop}, where nop represents “no operation,” and
Ey = {noerr,error}. Then we use the following three rules
to label move vectors.

e Every global transition with one component local
process transition labeled with error is labeled with
move vector [nop, error}.

e Every global transition with a component local pro-
cess transition labeled with R is labeled with move
vector [R, noerr].

e All other global transitions are labeled with move
vector [C, noerr].

7.2.4 Counter Abstraction of the Example

We also use the CEFSM in Fig. 4 to explain counter
abstraction. We need eight counter variables: pr, pi, pc,
pf, mr, mi, mc, and mf to respectively record the number
of processes in location prun, pidle, pcopy, pfaulty,
mrun, midle, mcopy, and mfaulty in a state. Then the
counter abstraction of the CEFSM is in Fig. 5.

The initial state are specified with constraint: pr =n A
pi=0 Apc=0Apf=0Amr=mAmi=0Amc=0 Amf=0
on the counters. The state in the product automata must
satisfy the following constraints: pr+ pi+pc+pf =n A
mr +mi+mec+mf =m. As can be seen, we do not care
which processor is in the idle mode, in the running mode,
etc., in this abstraction. Similarly, we do not care which
memory module is in the idle mode, in the running mode,
and etc. The local state transition only keeps tracks of the
number of processors in each mode and the number of
memory modules in each mode. We also do not care which
processor is in charge of the recovery of which memory
module. Such an abstraction can be done automatically.

The labeling of the move vectors on the transitions in the
Kripke structure (product automaton) follows the same
rules for the product automaton from the CEFSM in Fig. 4.

7.2.5 Analysis of the Game Structure

The majority outcome of the processors and memory copies
is used as the outcome of the system. A processor may enter
the faulty state. A memory module may also enter the faulty
state. Processors may control to recover themselves or a
faulty memory module by copying the contents of a func-
tioning memory module to the faulty one. At any moment,
we want to make sure that we can always recover to a global
condition with the following two restrictions.

e There are at least two more processors in the running
mode than the processors in the faulty mode.
e Thereare at least two more memory copies in the run-
ning mode than memory copies in the faulty mode.
Together, the failure condition is ¢rp —cfp < 2V erm —
cfm < 2. That is, all states in the transition system satisfy-
ingcrp—cfp < 2Verm —cfm < 2areinset F.

620 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.42, NO.7, JULY 2016
TABLE 4
Performance Data for Resilience Calculation
benchmarks concurrency k game sizes strchy, resk
#nodes #edges time memory time memory
2 processors & 2 memory modules 2 118 750 0.62s 114 M 0.85s 116 M
o 2 processors & 3 memory modules 2 414 3,252 0.94s 139 M 1.10s 153 M
avionics 3 processors & 3 memory modules 3 1,540 15,090 4.67 s 225 M 8.38s 267 M
3 processors & 4 memory modules 3 5,601 63,889 42.86 s 815 M 155s 846 M
avionics 6 processors & 6 memory modules 2 1,372 6,594 2.89s 129 M 3.54s 516 M
(counter 7 processors & 7 memory modules 3 2,304 11,396 10.7 s 216 M 23.4s 808 M
abstraction) 8 processors & 8 memory modules 3 3,645 18,432 43.8s 1,009 M 135s 2,430 M
voting 1 client & 20 replicas 9 9,922 23,551 7.01s 260 M 36.7s 297 M
1 client & 26 replicas 12 20,776 49,882 199s 474 M 79.6 s 611 M
simple 1 client & 150 replicas 74 458 1,056 0.71s 159 M 31.7s 219 M
voting 1 client & 200 replicas 99 608 1,406 1.06 s 161 M 162s 337M
1 client & 250 replicas 124 758 1,756 1.36s 163 M 307 s 499 M
PBFT 1 client & 6 replicas 2 577 897 0.34s 72M 1.05s 193 M
1 client & 9 replicas 4 2,817 4,609 13.3s 564 M 58.5s 1,657 M
clock 1 client & 15 servers 7 16,384 229,376 45.1s 3,075 M 62.4s 3,264 M
sync 1 client & 17 severs 8 65,536 1,070,421 870s 14,725 M 915s 15,433 M

s: Seconds; M: Megabytes

Tool implementation and the benchmarks used in the
experiment can all be found in our Sourceforge REDLIB
projectathttps://github.com/yyergg/Resil.

7.3 Performance Data

We report the performance data in Table 4 for the resilience
algorithms described in Section 7.1 against the parameter-
ized benchmarks in the above with various parameters. The
second column shows the concurrency sizes. The third col-
umn shows the values of k for the rows. The fourth and fifth
columns show the sizes of the concurrent game structures.
The sixth and seventh columns show the time and spaces
used to calculate sfrchy(). Similarly, the eighth and ninth
columns show the time and spaces for calculating the resy().

The benchmark in Fig. 4 does not have nodes in sfrch,(G)
and resy(G). So we changed the benchmark to see how we
check our implementation with & > 1. The change is that
the recovery transition from state pcopy to pidle of processors
are relabeled as controllable. This change significantly limits
the ability of the system errors to derail the system.

For the avionics system, the resilience level £ is set to one
less than half the number of processors. For the voting and
simple voting benchmarks, the value of k is set to one less
than half the number of replicas (voters). For the PBFT and
clock synchronization algorithm, we choose k to be one less
than one third of the number of replicas.

The performance data has been collected with a virtual
machine (VM) running opensuse 11.4 x86 on Intel i7 2600k
3.8 GHz CPU with four cores and 8 G memory. The VM
only uses one core and 4 G memory.

The time and space used to calculate resilience is a little
bit more than that to check for sfrch. The reason is that
sfrchy, is a pre-requisite for calculating res;. In our experi-
ment, sfrch;, is usually very close to res; and does not
require much extra time in calculating res;, out of sfrch;,.

The experiments show that our techniques scale
to realistic levels of redundancy. For fault-tolerant hardware,

usually the numbers of replicas are small, for example,
less than 10 replicas. Thus our techniques seem very
promising for the verification and synthesis of hardware
fault-tolerance.

On the other hand, nowadays, software fault-tolerance
through networked computers can create huge numbers of
replicas. Our experiment shows that counter abstraction can
be a useful techniques for the modeling and verification of
software resilience. Specifically, for the avionics benchmark,
we can verify models of much higher concurrency and com-
plexity with counter abstraction than without.

8 RELATED WORK

We have applied game-based techniques [13], [34], [37]
for synthesizing a control mechanism with maximal resil-
ience to software errors. The synthesis of control strategies
is essential in solving games with temporal and w-regular
objectives. For these more complex objective, synthesis
goes back to Church’s solvability problem [13] and
inspired Rabin’s work on finite automata over infinite
structures [37] and Biichi and Landweber’s works on finite
games of infinite duration [10], [11]. A right body of litera-
ture on synthesis has since been developed [6], [18], [22],
[30], [35], [39], [40].

Traditionally, fault tolerance refers to various basic
fault models [6], such as a limited number of errors [28].
These traditional fault models are subsumed by more
general synthesis or control objectives [5], [6], [42]; as
simple objectives with practical relevance, they have trig-
gered the development of specialized tools [18], [22].

Dijkstra’s self-stabilization criterion [4], [16] suggests to
build systems that eventually recover to a ‘good state’, from
where the program commences normally. Instead of con-
structing a system to satisfy such a goal, one might want to
apply control theory to restrict the execution of an existing
system to achieve an additional goal. Our control objective is

https://github.com/yyergg/Resil

HUANG ETAL.: AGAME-THEORETIC FOUNDATION FOR THE MAXIMUM SOFTWARE RESILIENCE AGAINST DENSE ERRORS 621

a recovery mechanism for up to k errors. After recovery, the
system has to tolerate up to k errors again, and so forth. In
this work, we suggest a mechanism to synthesize a recovery
mechanism for a given fault model and recovery primitives.

In [17], an interesting notion of robustness based on
Hamming and Lewenstein distance related to the number
of past states is defined. It establishes a connection between
these distances with a notion of synchronization that char-
acterizes the ability of the system to reset for combinatorial
systems. In [9], ‘ratio games’ are discussed, where the objec-
tive is to minimize the ratio between failures induced by the
environment and system errors caused by them.

Besides using our simple game model that neither refer
directly to time, nor to probabilities, one can also consider
models that make these aspects explicit. Their analysis is far
more complex (with [21] offering the best complexity
bounds), and so are the resulting strategies. If we, for exam-
ple, return to the example of airplanes with an operation
time of 20 hours referred to in Table 1, then an optimal
timed model would take the remaining operation time into
account. When the remaining time is two minutes, the
balance between being resilient against waves of two errors
and being resilient against five errors looks very different,
and the optimal control would change over time rather than
being static. Another implication of more complex models
would be that the error model would have to be more
detailed. Even if one assumes that a simple concept like safe
states persists, it depends on the fineties of such a model if a
two step path back to it where an error after step one leads
to system failure is preferable over a much longer path,
say through 10,000 intermediate states, where one error can
be tolerated during recovery.

We believe that the independence from such details is
an advantage of our technique, partly because it is sim-
pler and cheaper, and partly because the further advan-
tages one can obtain from more detailed error models
rely heavily on very knowledge of (or, realistically, on
very detailed assumptions on) how errors are distributed.

In [8], [19] the resilience model we have introduced [25]
has been applied for synthesising robust control in an
assume-guarantee setting to produce robustness against
occasional noncompliance of the environment with the
assumptions of its behavior.

9 CONCLUSION

We have introduced an approach for the development of a
control of safety critical systems that maximizes the number
of dense errors the system can tolerate. Our techniques are
inspired by the problem of controlling systems with redun-
dancy: in order to deflect the effect of individual errors,
safety critical systems are often equipped with multiple cop-
ies of various components. If one or more components fail,
such systems can still work properly as long as the correct
behavior can be identified.

This has inspired the two-phase formulation of the safety
resilience problems in this article. In the first phase, we iden-
tify a k-resilient region, while we develop a control strategy
for recovery in the second phase. After an error, the control-
ler can recover to the k-resilient region without encountering
a system failure, unless the error is part of a group of more

than £ errors that happen in close succession. Such a recover-
ing strategy is memoryless. Being memoryless on a small
abstraction in particular implies that the recovery is fast.

The system can, once recovered, tolerate and recover
from k further dense errors, and so forth. Consequently, our
control strategy allows for recovery from an arbitrary num-
ber of errors, provided that the number of dense errors is
restricted. This is the best guarantee we can hope for: our
technique guarantees to find the optimal parameter k. This
parameter is bound to be small (smaller than the number of
redundant components). Optimizing it is computationally
inexpensive, but provides strong guarantees: the likelihood
of having more than k errors appear in short succession
after an error occurred are, for independent errors, expo-
nential in k. As errors are few and far between, each level of
resilience gained reduces the likelihood of system-level fail-
ures significantly.

ACKNOWLEDGMENTS

This article is an extended version of [25]. All tool implemen-
tation and related experiment materials are available at
https:/ /github.com/yyergg/Resil. Peled is partially sup-
ported by ISF Grant 126/12: “Efficient Synthesis Method of
Control for Concurrent Systems.” Schewe is supported by the
Engineering and Physical Science Research Council (EPSRC),
grant EP/H046623/1, United Kingdom. Wang is supported
by Grant MOST 103-2221-E-002-150-MY3, Taiwan, ROC and
a research project by Research Center for Information Tech-
nology Innovation (CITI), Academia Sinica, Taiwan, ROC.
For more information, please email to farn@ntu.edu.tw.

REFERENCES

[1] (2014). Bitcoin website [Online]. Available: http://bitcoin.org/+

[2] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie,
“Fault-scalable byzantine fault-tolerant services,” in Proc. 20th
ACM Symp. Operating Syst. Principles, 2005, pp. 59-74.

[3] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time
temporal logic,” |. ACM, vol. 49, no. 5, pp. 672-713, Sep. 2002.

[4] A. Aroraand M. Gouda, “Closure and convergence: A foundation
of fault-tolerant computing,” IEEE Trans. Softw. Eng., vol. 19,
no. 11, pp. 1015-1027, Nov. 1993.

[5] E. Asarin, O. Maler, and A. Pnueli, “Symbolic controller synthesis
for discrete and timed systems,” Hybrid Systems II. New York, NY,
USA: Springer-Verlag, 1995.

[6] P. Attie, A. Arora, and E. A. Emerson, “Synthesis of fault-tolerant
concurrent programs,” ACM Trans. Program. Languages Syst.,
vol. 26, no. 1, pp. 125-185, 2004.

[7] F. Belina and D. Hogrefe, “The CCITT-specification and descrip-
tion language SDL,” Comput. Netw. ISDN Syst., vol. 16, no. 4,
pp- 311-341, Mar. 1989.

[8] R.Bloem, R. Ehlers, S. Jacobs, and R. Konighofer, “How to handle
assumptions in synthesis,” in Proc. 3rd Workshop Synthesis, Vienna,
Austria, Jul. 23-24, 2014, pp. 34-50.

[91 R. Bloem, K. Greimel, and B. J. T. A. Henzinger, “Synthesizing

robust systems,” in Proc. Formal Methods Comput.-Aided Des., 2009,

pp- 85-92.

J. Buchi, “On a decision method in restricted second order arith-

metic,” in Proc. Int. Congr. Logic, Methodol. Philosophy Sci., 1962,

pp- 1-11.

J. Bichi and L. Landweber, “Solving sequential conditions by

finite-state strategies,” Trans. Am. Math. Soc., vol. 138, no. 4,

pp- 295-311, 1969.

M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in

Proc. 3rd USENIX Symp. Operating Syst. Des. Implementation, Feb.

1999, pp. 173-186.

A. Church, “Logic, arithmetic and automata,” in Proc. Int. Congr.

Math., Aug. 1962 (Stockholm 1963), pp. 23-35.

[10]

[11]

[12]

[13]

https://github.com/yyergg/Resil

622

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
(271
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.42, NO.7, JULY 2016

A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making Byzantine fault tolerant systems tolerate byzantine
faults,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation,
Apr. 22-24, 2009, pp. 153-168.

J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “HQ
replication: A hybrid quorum protocol for byzantine fault toler-
ance,” in Proc. USENIX OSDI Symp., 2006, pp. 177-190.

E. W. Dijkstra, “A belated proof of self-stabilization,” Distrib. Com-
put., vol. 1,no. 1, pp. 5-6, 1986.

L. Doyen, T. Henzinger, A. Legay, and D. Nickovic, “Robustness
of sequential circuits,” in Proc. 10th Int. Conf. Appl. Concurrency
Syst. Des., 2010, pp. 77-84.

A. Ebnenasir, S. Kulkarni, and A. Arora, “FTSyn: A framework for
automatic synthesis of fault-tolerance,” Int. |. Softw. Tools Technol.
Transfer, vol. 10, no. 5, pp. 455471, 2008.

R. Ehlers and U. Topcu, “Resilience to intermittent assumption
violations in reactive synthesis,” in Proc. 17th Int. Conf. Hybrid
Syst.: Comput. Control (part of CPS Week), Berlin, Germany, Apr.
15-17, 2014, pp. 203-212.

E. Emerson and R. Trefler, “From asymmetry to full symmetry:
New techniques for symmetry reduction in model-checking,” in
Proc. 10th IFIP WG10.5 Adv. Res. Working Conf. Correct Hardware
Des. Verification Methods, 1999, pp. 142-156.

J. Fearnley, M. Rabe, S. Schewe, and L. Zhang, “Efficient approxi-
mation of optimal control for continuous-time markov games,” in
Proc. 31st IARCS Annu. Conf. Found. Softw. Technol. Theoretical Com-
put. Sci., 2011, pp. 399-410.

A. Girault and E. Rutten, “Automating the addition of fault toler-
ance with discrete controller synthesis,” Formal Methods Syst. Des.,
vol. 35, no. 2, pp. 190-225, 2009.

R. Guerraoui, N. Knezevi¢, M. Vukoli¢, and V. Quéma, “The next
700 BFT protocols,” in Proc. 5th Eur. Conf. Comput. Syst., 2010,
pp- 363-376.

J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages,
and Computation. Reading, MA, USA: Addison-Wesley, 1979.

C.-H. Huang, D. Peled, S. Schewe, and F. Wang, “Rapid recovery for
systems with scarce faults,” in Proc. 3rd Int. Symp. Games, Automata,
Logics Formal Verification, Naples, Italy, Sep. 6-8, 2012, pp. 15-28.

N. Immerman, “Number of quantifiers is better than number of
tape cells,” J. Comput. Syst. Sci., vol. 22, no. 3, pp. 65-72, 1981.

N. Immerman, “Nondeterministic space is closed under com-
plementation,” SIAM]. Comput., vol. 17, pp. 935-938, 1988.

H. Jin, K. Ravi, and F. Somenzi, “Fate and free will in error traces,”
Int.]. Softw. Tools Technol. Transfer, vol. 6, no. 2, pp. 102-116, 2004.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: Speculative byzantine fault tolerance,” ACM Trans.
Comput. Syst., vol. 27, no. 4, pp. 7:1-7:39, 2009.

O. Kupferman and M. Y. Vardi, “Synthesis with incomplete
informatio,” in Advances in Temporal Logic. Norwell, MA, USA:
Kluwer, 2000, pp. 109-127.

B. Lubachevsky, “An approach to automating the verification of
compact parallel coordination programs,” Acta Informatica,
vol. 21, pp. 125-169, 1984.

D. Miller and R. Drechsler, “Implementing a multiple-valued
decision diagram package,” in Proc. 28th Int. Symp. Multiple-Val-
ued Logic, 1998, pp. 52-57.

C. Papadimitriou, Computational Complexity. Reading, MA, USA:
Addison-Wesley, 1994.

A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proc. 16th ACM SIGPLAN-SIGACT Symp. Principles Program.
Languages, 1989, pp. 179-190.

A. Pnueli and R. Rosner, “On the synthesis of an asynchronous
reactive module,” in Proc. 16th Int. Collog. Automata, Languages
Program., 1989, pp. 652-671.

D. Pradhan, Fault-Tolerant Computer System Design. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1996.

M. Rabin, “Decidability of second order theories and automata on
infinite trees,” Trans. Am. Math. Soc., vol. 141, pp. 1-35, 1969.

P. Ramanathan, K. G. Shin, and R. W. Butler, “Fault-tolerant clock
synchronization in distributed systems,” IEEE Comput., vol. 23,
no. 10, pp. 33-42, Oct. 1990.

J. Rushby, “Formal specification and verification of a fault-mask-
ing and transient-recovery model for digital flight-control
systems,” in Proc. 2nd Int. Symp. Formal Techn. Real-Time Fault-
Tolerant Syst., 1992, pp. 237-257.

S. Schewe and B. Finkbeiner, “Synthesis of asynchronous sys-
tems,” in Proc. 16th Int. Symp. Logic Based Program Synthesis Trans-
formation, 2006, pp. 127-142.

[41]

[42]

[43]

[44]

I. Sommerville, Software Engineering, 8th ed. Reading, MA, USA:
Addison-Wesley, 2007.

W. Thomas, “Finite-state strategies in regular infinite games,” in
Proc. 14th Conf. Found. Softw. Technol. Theoretical Comput. Sci., 1994,
pp- 149-158.

F. Wang, “Model-checking distributed real-time systems with
states, events, and multiple fairness assumptions,” in Proc. Int.
Conf. Algebraic Methodol. Softw. Technol., 2004, pp. 553-567.

F. WAng, “Model-checking fair dense-time systems with proposi-
tions and events,” Int. |. Softw. Tools Technol. Transfer, vol. 17,
pp- 223-243, Apr. 2014.

Chung-Hao Huang received the graduate
degree in electrical engineering from NTU. He is
currently working toward the PhD degree at the
Graduate Institute of Electronics Engineering at
National Taiwan University (NTU). His research
interests are about automatic software testing,
especially on Android applications, and temporal
logic with game strategy concept.

Doron A. Peled received the graduate degree
from the Technion, Israel Institute of Technology
in 1991 and was a Bell Labs scientist at Murray
Hill. He is the Department head and a professor
of computer science at Bar llan University. He
also held the chair of Software Engineering at the
University of Warwick. His research is focused on
software reliability and synthesis. He authored
the book Software Reliability Methods and coau-
thored the book Model Checking with Ed Clarke
and Orna Grumberg.

Sven Schewe received the PhD degree with
summa cum laude from Saarland University in
2008. He is a senior lecturer at the Department of
Computer Science, University of Liverpool, where
he leads the Verification Group. Prior to the PhD
degree, he was in the Command and Control
Systems Command of the German Navy as a
systems engineer in different fields of the analy-
sis and construction of safety-critical systems,
including the specification and construction of
such systems, quality assurance, and project

management. He has received the Gl Dissertation Award—an annual

award for the best computer science dissertation in Germany, Austria,
and Switzerland, jointly awarded by the Gesellschaft fur Informatik e.V.

(Gl), Schweizer Informatik Gesellschaft (Sl), Osterreichischen Com-
putergesellschaft (OCG), and the German Chapter of the ACM
(GChACM)—and the interdisciplinary Dr. Eduard Martin Preis for his dis-

sertation on Synthesis of Distributed Systems. His research interests
are centred around automata and game theory and its applications in
the construction and analysis of safety-critical systems.

Farn Wang received the bachelor's degree in
electrical engineering from National Taiwan Uni-
versity, Taiwan, ROC in 1982, the master's
degree in computer engineering from National
Chiao-Tung University in 1984, and the PhD
degree in computer sciences from The University
of Texas at Austin in 1992. He is a professor at
the Department of Electrical Engineering,
National Taiwan University and a joint research
fellow at the Research Center for Information
Technology Innovation (CITI), Academia Sinica,

Taiwan, ROC. He is interested at temporal logics, game theory, model-
checking, formal verification, and software testing. From 1992 to 2003,

he was with the Institute of Information Science (11S) at Academia Sinica,

Taiwan, ROC.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

