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Abstract—Software fault localization, the act of identifying the locations of faults in a program, is widely recognized to be one of the

most tedious, time consuming, and expensive – yet equally critical – activities in program debugging. Due to the increasing scale and

complexity of software today, manually locating faults when failures occur is rapidly becoming infeasible, and consequently, there is a

strong demand for techniques that can guide software developers to the locations of faults in a program with minimal human

intervention. This demand in turn has fueled the proposal and development of a broad spectrum of fault localization techniques, each of

which aims to streamline the fault localization process and make it more effective by attacking the problem in a unique way. In this

article, we catalog and provide a comprehensive overview of such techniques and discuss key issues and concerns that are pertinent

to software fault localization as a whole.

Index Terms—Software fault localization, program debugging, software testing, execution trace, suspicious code, survey
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1 INTRODUCTION

SOFTWARE is fundamental to our lives today, and with its
ever-increasing usage and adoption, its influence is

practically ubiquitous. In fact, at present, software is not
just employed in, but is critical to, many security and
safety-critical systems in industries such as medicine, aero-
nautics, and nuclear energy. Not surprisingly, this trend has
been accompanied by a drastic increase in the scale and
complexity of software. Unfortunately, this has also resulted
in more software bugs, which often lead to execution fail-
ures with huge losses [260], [275], [365]. Furthermore, soft-
ware faults in safety-critical systems have significant
ramifications, including not only financial loss, but also
potential loss of life, which is an alarming prospect [368].
A 2002 report from the National Institute of Standards and
Technology (NIST) [304] indicated that software errors are
estimated to cost the U.S. economy $59.5 billion annually
(0.6 percent of the GDP); the cost has undoubtedly grown
since then. Over half the cost of fixing or responding to
these bugs is passed on to software users, while software
developers and vendors absorb the rest.

Even when faults in software are discovered due to erro-
neous behavior or some other manifestation of the fault(s),1

finding and fixing them is an entirely different matter. Fault

localization, which focuses on the former, i.e., identifying
the locations of faults, has historically been a manual task
that has been recognized to be time consuming and tedious
as well as prohibitively expensive [347], given the size and
complexity of large-scale software systems today. Further-
more, manual fault localization relies heavily on the soft-
ware developer’s experience, judgment, and intuition to
identify and prioritize code that is likely to be faulty. These
limitations have led to a surge of interest in developing
techniques that can partially or fully automate the localiza-
tion of faults in software while reducing human input.
Though some techniques are similar and some very differ-
ent (in terms of the type of data consumed, the program
components focused on, comparative effectiveness and effi-
ciency, etc.), they each try to attack the problem of fault
localization from a unique perspective, and typically offer
both advantages and disadvantages relative to one another.
With many techniques already in existence and others
continually being proposed, as well as with advances being
made both from a theoretical and practical perspective, it is
important to catalog and overview current techniques in
fault localization in order to offer a comprehensive resource
for those already in the area as well as those interested in
making contributions to it.

In order to provide a complete survey coveringmost of the
publications related to software fault localization since the
late 1970s, we created a publication repository that includes
331 papers published from 1977 to November 2014. We also
searched for Masters’ and Ph.D. theses closely related to soft-
ware fault localization, which are listed in Table 1.

All papers in our repository2 are sorted by year, and the
result is displayed in Fig. 1. As shown in the figure, the num-
ber of publications grew rapidly after 2001, indicating that
more and more researchers began to devote themselves to
the area of software fault localization over the last 10 years.

Also, as per our repository, Fig. 2 gives the number of
publications related to software fault localization that have

1. In this survey the terms ‘software’ and ‘program’ are used inter-
changeably. Also ‘fault’ and ‘bug’ are used interchangeably.
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TABLE 1
A List of Recent Ph.D. and Master’s Theses on Software Fault Localization

Author Tittle Degree University Year

Ehud Y. Shapiro [325] Algorithmic Program Debugging Ph.D. Yale University 1983
Hiralal Agrawal [17] Towards Automatic Debugging of Computer Programs Ph.D. Purdue University 1991
Hsin Pan [276] Software debugging with dynamic instrumentation and test-based

knowledge
Ph.D. Purdue University 1993

W. Bond. Gregory [131] Logic Programs for Consistency-based Diagnosis Ph.D. Carleton University 1994
Benjamin Robert Liblit [221] Cooperative Bug Isolation Ph.D. The University of California, Berkeley 2004
Bernhard Peichl [289] Automated Source-Level Debugging of Synthesizeable VHDL

Designs
Ph.D. Graz University of Technology 2004

Haifeng He [153] Automated Debugging using Path-based Weakest Preconditions Master University of Arizona 2004
Alex David Groce [135] Error Explanation and Fault Localization with Distance Metrics Ph.D. Carnegie Mellon University 2005
Emmanuel Renieris [302] A Research Framework for Software-Fault Localization Tools Ph.D. Brown University 2005
Daniel K€ob [197] Extended Modeling for Automatic Fault Localization in Object-Ori-

ented Software
Ph.D. Graz University of Technology 2005

David Hovemeyer [166] Simple and Effective Static Analysis to Find Bugs Ph.D. University of Maryland 2005
Peifeng Hu [167] Automated Fault Localization: A Statistical Predicate Analysis

Approach
Ph.D. The University of Hong Kong 2006

Xiangyu Zhang [412] Fault Localization via Precise Dynamic Slicing Ph.D. The University of Arizona 2006
Rafi Vayani [346] Improving Automatic Software Fault Localization Master Delft University of Technology 2007
Ramana Rao Kompella [199] Fault Localization in Backbone Networks Ph.D. University of California, San Diego 2007
Andreas Griesmayer [132] Debugging Software: From Verification to Repair Ph.D. Graz University of Technology 2007
Tao Wang [351] Post-Mortem Dynamic Analysis For Software Debugging Ph.D. Fudan University 2007
Sriraman Tallam [342] Fault Location and Avoidance in Long-Running Multithreaded

Applications
Ph.D. The University of Arizona 2007

Ophelia C. Chesley [73] CRISP-A fault localization Tool for Java Programs Master Rutgers, The State University of New Jersey 2007
Shan Lu [229] Understanding, Detecting and Exposing Concurrency Bugs Ph.D. University of Illinois at Urbana-Champaign 2008
Naveed Riaz [306] Automated Source-Level Debugging of Synthesizable Verilog

Designs
Ph.D. Graz University of Technology 2008

James Arthur Jones [183] Semi-Automatic Fault Localization Ph.D. Georgia Institute of Technology 2008
Zhenyu Zhang [413] Software Debugging through Dynamic Analysis of Program Struc-

tures
Ph.D. The University of Hong Kong 2009

Rui Abreu [5] Spectrum-based Fault Localization in Embedded Software Ph.D. Delft University of Technology 2009
Dennis Jefferey [171] Dynamic State Alteration Techniques for Automatically Locating

Software Errors
Ph.D. University of California Riverside 2009

Xinming Wang [354] Automatic Localization of Code Omission Faults Ph.D. Hong Kong University of Science and
Technology

2010

Fabrizio Pastore [286] Automatic Diagnosis of Software Functional Faults by Means of
Inferred Behavioral Models

Ph.D. University of Milan Bicocca 2010

Mihai Nica [270] On the Use of Constraints in Automated Program Debugging
–From Foundations to Empirical Results

Ph.D. Graz University of Technology 2010

Zachary P.Fry [118] Fault Localization Using Textual Similarities Master The University of Virginia 2011
Hua Jie Lee [182] Software Debugging Using Program Spectra Ph.D. The University of Melbourne 2011
Vidroha Debroy [89] Towards the Automation of Program Debugging Ph.D. The University of Texas at Dallas 2011
Alberto Gonzalez Sanchez [318] Cost Optimizations in Runtime Testing and Diagnosis Ph.D. Delft University of Technology 2011
Jared David DeMott [98] Enhancing Automated Fault Discovery and Analysis Ph.D. Michigan State University 2012
Xin Zhang [404] Secure and Efficient Network Fault Localization Ph.D. Carnegie Mellon University 2012
Xiaoyuan Xie [383] On the Analysis of Spectrum-based Fault Localization Ph.D. Swinburne University of Technology 2012
Alexandre Perez [292] Dynamic Code Coverage with Progressive Detail Levels Master University of Porto 2012
Raul Santelices [319] Change-effects Analysis for Effective Testing and Validation of

Evolving Software
Ph.D. Georgia Institute of Technology 2012

George. K. Baah [41] Statistical Causal Analysis for Fault Localization Ph.D. Georgia Institute of Technology 2012
Swarup K. Sahoo [316] A Novel Invariants-based Approach for Automated Software Fault

Localization
Ph.D. University of Illinois at Urbana-Champaign 2012

Birgit Hofer [163] From Fault Localization of Programs written in 3rd level Language
to Spreadsheets

Ph.D. Graz University of Technology 2013

Aritra Bandyopadhyay [47] Mitigating the Effect of Coincidental Correctness in Spectrum based
Fault Localization

Ph.D. Colorado State University 2013

Shounak Roychowdhury [312] A Mixed Approach to Spectrum-based Fault Localization Using
Information Theoretic Foundations

Ph.D. The University of Texas at Austin 2013

Shaimaa Ali [26] Localizing State-Dependent Faults Using Associated Sequence Min-
ing

Ph.D. The University of Western Ontario 2013

Christian Kuhnert [206] Data-driven Methods for Fault Localization in Process Technology Ph.D. Karlsruhe Institute of Technology 2013
Dawei Qi [295] Semantic Analyses to Detect and Localize Software Regression

Errors
Ph.D. Tsinghua University 2013

William N. Sumner [337] Automated Failure Explanation Through Execution Comparison Ph.D. Purdue University 2013
Mark A. Hays [151] A Fault-based Model of Fault Localization Techniques Ph.D. University of Kentucky 2014
Sang Min Park [284] Effective Fault Localization Techniques for Concurrent Software Ph.D. Georgia Institute of Technology 2014
Gang Shu [327] Statistical Estimation of Software Reliability and Failure-causing

Effect
Ph.D. Case Western Reserve University 2014

Lucia [233] Ranking-based Approaches for Localizing Faults Ph.D. Singapore Management University 2014
Seok-Hyeon Moon [259] Effective Software Fault Localization using Dynamic Program

Behaviors
Master Korea Advanced Institute of Science and

Technology
2014

Yepang Liu [228] Automated Analysis of Energy Efficiency and Performance for
Mobile Applications

Ph.D. The Hong Kong University of Science and
Technology

2014

Cuiting Chen [68] Automated Fault Localization for Service-Oriented Software Sys-
tems

Ph.D. Delft University of Technology 2015

Matthias Rohr [308] Workload-sensitive Timing Behavior Analysis for Fault Localiza-
tion in Software Systems

Ph.D. Kiel University 2015
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appeared in top quality and leading journals and conferen-
ces that focus on Software Engineering – IEEE Transactions
on Software Engineering, ACM Transactions on Software
Engineering and Methodology, International Conference on
Software Engineering, ACM International Symposium on
Foundations of Software Engineering, and ACM Interna-
tional Conference on Automated Software Engineering –
from 2001 to November 2014. This trend again supports the
claim that software fault localization is not just an important
but also a popular research topic and has been discussed
very heavily in top quality software engineering journals
and conferences over the last ten years.

There is thus a rich collection of literature on various
techniques that aim to facilitate fault localization and make
it more effective.3 Despite the fact that these techniques
share similar goals, they can be quite different from one
another and often stem from ideas that originate from sev-
eral different disciplines. While we aim to comprehensively
cover as many fault localization techniques as possible, no
article, regardless of breadth or depth, can cover all of them.
In this survey, our primary focus is on the techniques for

Fig. 1. Papers on software fault localization from 1977 to November 2014.

Fig. 2. Publication of software fault localization in top venues from 2001 to November 2014.

3. Refer to Section 5 for more details on how to evaluate the effec-
tiveness of a software fault localization technique.
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locating Bohrbugs [139]. Those for diagnosing Mandelbugs
[139] such as performance bugs, memory leaks, software
bloats, and security vulnerabilities are not included in the
scope. Also, due to space limitations, we group techniques
into appropriate categories for collective discussion with an
emphasis on the most important features and leave other
details of these techniques to their respectively published
papers. This is especially the case for techniques targeting a
specific application domain, such as fault localization for
concurrency bugs and spreadsheets. For these, we provide
a review that helps readers with general understanding.

The following terms appear repeatedly throughout this
article, and thus for convenience, we provide definitions for
them here per the taxonomy provided in [37]:

� A failure is when a service deviates from its correct
behavior.

� An error is a condition in a system that may lead to a
failure.

� A fault is the underlying cause of an error, also
known as a bug.

The remainder of this article is organized in the following
manner: we begin by describing traditional and intuitive fault
localization techniques in Section 2, moving on to more
advanced and complex techniques in Section 3. In Section 4,
we list some of the popular subject programs that have been
used in different case studies and discuss how these programs
have evolved through the years. Different evaluation metrics
to assess the effectiveness of fault localization techniques are
described in Section 5, followed by a discussion of fault locali-
zation tools in Section 6. Finally, critical aspects and conclu-
sions are presented in Sections 7 and 8, respectively.

2 TRADITIONAL FAULT LOCALIZATION

TECHNIQUES

This section describes traditional and intuitive fault locali-
zation techniques, including program logging, assertions,
breakpoints, and profiling.

2.1 Program Logging

Statements (such as print) used to produce program logging
are commonly inserted into the code in an ad-hoc fashion to
monitor variable values and other program state informa-
tion [105]. When abnormal program behavior is detected,
developers examine the program log in terms of saved log
files or printed run-time information to diagnose the under-
lying cause of failure.

2.2 Assertions

Assertions are constraints added to a program that have to
be true during the correct operation of a program. Develop-
ers specify these assertions in the program code as condi-
tional statements that terminate execution if they evaluate
to false. Thus, they can be used to detect erroneous program
behavior at runtime. More details of using assertions for
program debugging can be found in [309], [310].

2.3 Breakpoints

Breakpoints are used to pause the program when execution
reaches a specified point and allow the user to examine the

current state. After a breakpoint is triggered, the user can
modify the value of variables or continue the execution to
observe the progression of a bug. Data breakpoints can be
configured to trigger when the value changes for a specified
expression, such as a combination of variable values. Condi-
tional breakpoints pause execution only upon the satisfac-
tion of a predicate specified by the user. Early studies (e.g.,
[80], [155]) use this approach to help developers locate bugs
while a program is executed under the control of a symbolic
debugger. The same approach is also adopted by more
advanced debugging tools such as GNU GDB [121] and
Microsoft Visual Studio Debugger [255].

2.4 Profiling

Profiling is the runtime analysis of metrics such as execution
speed and memory usage, which is typically aimed at pro-
gram optimization. However, it can also be leveraged for
debugging activities, such as the following:

� Detecting unexpected execution frequencies of dif-
ferent functions (e.g., [43]);

� Identifying memory leaks or code that performs
unexpectedly poorly (e.g., [150]);

� Examining the side effects of lazy evaluation (e.g.,
[313]).

Tools that use profiling for program debugging include
GNU’s gprof [120] and the Eclipse plugin TPTP [108].

3 ADVANCED FAULT LOCALIZATION TECHNIQUES

With the massive size and scale of software systems today,
traditional fault localization techniques are not effective in iso-
lating the root causes of failures. As a result, many advanced
fault localization techniques have surfaced recently using the
idea of causality [215], [288], which is related to philosophical
theories with an objective to characterize the relationship
between events/causes (programbugs in our case) and a phe-
nomenon/effect (execution failures in our case). There are dif-
ferent causality models [288] such as counterfactual-based,
probabilistic- or statistical-based, and causal calculus models.
Among these, probabilistic causality models are the most
widely used in fault localization to identify suspicious code
that is responsible for execution failures.

In this survey, we classify fault localization techniques
into eight categories, including slice-based, spectrum-based,
statistics-based, program state-based, machine learning-
based, data mining-based, model-based and miscellaneous
techniques. Many studies that evaluate the effectiveness of
specific fault localization techniques have been reported [8],
[10], [11], [12], [25], [31], [36], [49], [53], [91], [93], [94], [102],
[124], [178], [185], [191], [207], [209], [253], [266], [267], [296],
[299], [335], [366], [390], [391], [393], [420], [406], [410], [424].
However, none of them offer a comprehensive discussion
on all these techniques.

3.1 Slice-Based Techniques

Program slicing is a technique to abstract a program into a
reduced form by deleting irrelevant parts such that the
resulting slice will still behave the same as the original pro-
gram with respect to certain specifications. Hundreds of
papers on this topic have been published [52], [344], [394]
since Weiser first proposed static slicing in 1979 [361].
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One of the important applications of static slicing [360] is
to reduce the search domain while programmers locate
bugs in their programs. This is based on the idea that if a
test case fails due to an incorrect variable value at a state-
ment, then the defect should be found in the static slice asso-
ciated with that variable-statement pair, allowing us to
confine our search to the slice rather than looking at the
entire program. Lyle and Weiser extend the above approach
by constructing a program dice (as the set difference of two
groups of static slices) to further reduce the search domain
for possible locations of a fault [235]. Although static slice-
based techniques have been experimentally evaluated and
confirmed to be useful in fault localization [207], one prob-
lem is that handling pointer variables can make data-flow
analysis inefficient because large sets of data facts that are
introduced by dereferences of pointer variables need to be
stored. Equivalence analysis, which identifies equivalence
relationships among the various memory locations accessed
by a procedure, is used to improve the efficiency of data-
flow analyses in the presence of pointer variables [220].
Two equivalent memory locations share identical sets of
data facts in a procedure. As a result, data-flow analysis
only needs to compute information for a representative
memory location, and data-flow for other equivalent loca-
tions can be garnered from the representative location.
Static slicing is also applied for fault localization in binary
executables [192], and type-checkers [343].

A disadvantage of static slicing is that the slice for a given
variable at a given statement contains all the executable state-
ments that could possibly affect the value of this variable at
the statement. As a result, it might generate a dice with cer-
tain statements that should not be included. This is because
we cannot predict some run-time values via a static analysis.
To exclude such extra statements from a dice (as well as a
slice), we need to use dynamic slicing [20], [202] instead of
static slicing, as the former can identify the statements that do
affect a particular value observed at a particular location,
rather than possibly affecting such a value as with the latter.
Studies such as [18], [24], [28], [96], [104], [188], [192], [201],
[219], [227], [237], [257], [277], [297], [334], [356], [378], [379],
[406], [407], [410], which use the dynamic slicing concept in
program debugging, have been reported. In [379], Wotawa
combines dynamic slicing with model-based diagnosis to
achieve more effective fault localization. Using a given test
suite against a program, dynamic slices for erroneous varia-
bles discovered are collected. Hitting-sets are constructed,
which contain at least one statement from each dynamic slice.
The probability that a statement is faulty is calculated based
on the number of hitting-sets that cover that statement.
Zhang et al. [407] propose the multiple-points dynamic slic-
ing technique, which intersects slices of three techniques:
Backward Dynamic Slice (BwS), Forward Dynamic Slice
(FwS), and Bidirectional Dynamic Slice (BiS). The BwS cap-
tures any executed statements that affect the output value of
a faulty variable, while the FwS is computed based on the
minimal input difference between a failed and a successful
test case, isolating the parts of the input that trigger a failure.
The BiS flips the values of certain predicates in the execution
of a failed test case so that the program generates a correct
output. Qian and Xu [297] propose a scenario-oriented pro-
gram slicing technique. A user-specified scenario is identified

as the extra slicing parameter, and all program parts related
to a special computation are located under the given execu-
tion scenario. There are three key steps to implementing the
scenario-oriented slicing technique: scenario input, identifi-
cation of scenario relevant codes, and, finally, gathering of
scenario-oriented slices.

One limitation of dynamic slicing-based techniques is that
they cannot capture execution omission errors, which may
cause the execution of certain critical statements in a program
to be omitted and thus result in failures [411]. Gyimothy et al.
[142] propose the use of relevant slicing to locate faulty state-
ments responsible for execution omission errors. Given a
failed execution, the relevant slicing first constructs a dynamic
dependence graph in the same way that classic dynamic slic-
ing does. It then augments the dynamic dependence graph
with potential dependence edges, and a relevant slice is com-
puted by taking the transitive closure of the incorrect output on
the augmented dynamic dependence graph. However, incor-
rect dependencies between program statements may be
included to produce oversized relevant slices. To address this
problem, Zhang et al. [411] introduce the concept of implicit
dependencies, inwhich dependencies can be obtained by predi-
cate switching. A similar idea has been used by Weeratunge
et al. [358] to identify root causes of omission errors in concur-
rent programs, in which dual slicing, a combination of
dynamic slicing and trace differencing, is used.

An alternative approach to static and dynamic slicing is
the use of execution slicing based on data-flow tests to locate
program bugs [21] in which an execution slice with respect
to a given test case contains the set of statements executed
by this test. The reason for choosing execution slicing over
static slicing is that a static slice focuses on finding state-
ments that could possibly have an impact on the variables
of interest for any inputs, versus statements that are exe-
cuted by a specific input. This implies that a static slice does
not make any use of the input values that reveal the fault
and violates a very important concept in debugging that
suggests programmers analyze the program behavior under
the test case that fails and not under a generic test case. Col-
lecting dynamic slices may consume excessive time and file
space, even though different algorithms [51], [204], [408],
[409] have been proposed to address these issues. Con-
versely, it is relatively easy to construct the execution slice
for a given test case if we collect code coverage data from
the execution of the test. Different execution slice-based
debugging tools have been developed and used in practice
such as xSuds at Telcordia (formerly Bellcore) [22], [427]
and eXVantage at Avaya [372]. Agrawal et al. [21] apply the
execution slice to fault localization by examining the execu-
tion dice of one failed and one successful test to locate pro-
gram bugs. Jones et al. [186], [187] and Wong et al. [375]
extend that study by using multiple successful and failed
tests based on the following observations:

� The more successful tests that execute a piece of
code, the less likely it is for the code to contain a bug.

� The more failed tests with respect to a given bug that
execute a piece of code, the more likely that it con-
tains this bug.

We use the following example to demonstrate the differ-
ences among static, dynamic, and execution slicing. Use the
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code in column 2 of Table 2 as the reference. Assume it has
one bug at s7. The static slice for the output variable, product,
contains all statements that could possibly affect the value
of product, s1, s2, s4, s5, s7, s8, s10, and s13, as shown in the
third column. The dynamic slicing for product only contains
the statements that do affect the value of product with
respect to a given test case, which includes s1, s2, s5, s7, and
s13 (as shown in the fourth column) when a ¼ 2. The execu-
tion slice with respect to a given test case contains all state-
ments executed by this test. Therefore, the execution slice
for a test case, a ¼ 2, consists of s1, s2, s3, s4, s5, s6, s7, s12, s13
as shown in the fifth column of Table 2.

One problem with the aforementioned slice-based tech-
niques is that the bug may not be in the dice. Even if a bug
is in the dice, there may still be too much code that needs to
be examined. To overcome this problem, an inter-block data
dependency-based augmentation and a refining method is
proposed in [373]. The former includes additional code in
the search domain for inspection based on its inter-block
data dependency with the code which is currently being
examined, whereas the latter excludes less suspicious code
from the search domain using the execution slices of addi-
tional successful tests. Additionally, slices are problematic
because they are always lengthy and hard to understand. In
[205], the notion of using barriers is proposed to provide a
filtering approach for smaller program slices and better
comprehensibility. Authors of [330] propose thin slicing in
order to find only producer statements that help compute and
copy a value to a particular variable. Statements that explain
why producer statements affect the value of a particular
variable are excluded from a thin slice.

3.2 Program Spectrum-Based Techniques

Following the discussion in the beginning of Section 3, we
would like to emphasize that many spectrum-based techni-
ques are inspired by the probabilistic- and statistical-based
causality models. With this understanding, we now explain
the details of these techniques.

A program spectrum details the execution information
of a program from certain perspectives, such as execution
information for conditional branches or loop-free intra-
procedural paths [149]. It can be used to track program

behavior [305]. An early study by Collofello and Cousins [79]
suggests that such spectra can be used for software fault
localization. When the execution fails, such information can
be used to identify suspicious code that is responsible for the
failure. Code coverage, or Executable Statement Hit Spec-
trum (ESHS), indicates which parts of the program under
testing have been covered during an execution. With this
information, it is possible to identify which components
were involved in a failure, narrowing the search for the
faulty component that made the execution fail.

3.2.1 Notation

P a program
NCF number of failed test cases that cover a

statement
NUF number of failed test cases that do not cover a

statement
NCS number of successful test cases that cover a

statement
NUS number of successful test cases that do not

cover a statement
NC total number of test cases that cover a statement
NU total number of test cases that do not cover

a statement
NS total number of successful test cases
NF total number of failed test cases
ti the ith test case

3.2.2 Techniques

Early studies [19], [201], [203], [341] only use failed test cases
for spectrum-based fault localization, though this approach
has subsequently been deemed ineffective [21], [185], [366].
Later studies achieve better results using both the successful
and failed test cases and emphasizing the contrast between
them. Set union and set intersection are proposed in [303].
The set union focuses on the source code that is executed by
the failed test but not by any of the successful tests. Such
code is more suspicious than others. The set intersection
excludes the code that is executed by all the successful tests
but not by the failed test. Renieris and Reiss [303] propose

TABLE 2
An Example Showing the Differences among Static, Dynamic, and Execution Slicing

Code with a bug at s7 Static slice for product Dynamic slice for product
with respect to a test case a ¼ 2

Execution slice for product
with respect to a test case a ¼ 2

s1 input(a) input(a) input(a) input(a)
s2 i ¼ 1; i ¼ 1; i ¼ 1; i ¼ 1;
s3 sum ¼ 0; sum ¼ 0;
s4 product ¼ 1; product ¼ 1; product ¼ 1;
s5 if (i < a){ if (i < a){ if (i < a){ if (i < a){
s6 sum ¼ sum þ i; sum ¼ sum þ i;
s7 product ¼ product � i;

//bug product ¼ product � 2i
product ¼ product � i; product ¼ product � i; product ¼ product � i;

s8 }else{ }else{
s9 sum ¼ sum - i;
s10 product ¼ product / i; product ¼ product / i;
s11 }
s12 print (sum); print (sum);
s13 print (product); print (product); print (product); print (product);
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another ESHS-based technique, nearest neighbor, which
contrasts a failed test with a successful test that is most simi-
lar to the failed one in terms of the distance between them. If
a bug is in the difference set, it is located. For a bug that is
not contained in the difference set, the process continues by
first constructing a program dependence graph (PDG) and
then including and checking adjacent un-checked nodes in
the graph step by step until all the nodes in the graph are
examined. The idea of nearest neighbor is similar to Lewis’
counterfactual reasoning [216], which claims that, for two
events A and B, A causes B (in world w) if and only if, in all
possible worlds that are maximally similar to w, A does not
take place and B also does not happen. The theory of coun-
terfactual reasoning is also found in other studies such as
[137], [179], [400].

Intuitively, the closer the execution pattern of a statement
is to the failure pattern of all test cases, the more likely the
statement is to be faulty, and consequently the more suspi-
cious the statement seems. By the same token, the farther the
execution pattern of a statement is to the failure pattern, the
less suspicious the statement appears to be. Similarity coef-
ficient-based measures can be used to quantify this closeness,
and the degree of closeness can be interpreted as the suspi-
ciousness of the statements.

A popular ESHS-based similarity coefficient-based tech-
nique is Tarantula [186], which uses the coverage and
execution results (success or failure) to compute the suspi-
ciousness of each statement as (NCF=NF Þ=ðNCF=NF þ
NCS=NS). A study on the Siemens suite [185] shows that
Tarantula inspects less code before the first faulty state-
ment is identified, making it a more effective fault localiza-
tion technique when compared to others such as set union,
set intersection, nearest neighbor and cause transition [77].
Based on the suspiciousness computed by Tarantula, stud-
ies like [186], [187] use different colors (from red to yellow
to green) to provide a visual mapping of the participation
of each program statement in the execution of a test suite.
The more failed test cases that execute a statement, the
brighter (redder) the color assigned to the statement will
be. In [94], Debroy et al. further revise the Tarantula tech-
nique. Statements executed by the same number of failed
test cases are grouped together, and then groups are
ranked in descending order by the number of failed test

cases. Using Tarantula, statements are ranked by suspi-
ciousness within each group.

For discussion purposes, let’s use the code in Table 2
again. Assume that we have two successful test cases (a ¼ 0
and a ¼ 1) and one failed test case (a ¼ 2). The suspicious-
ness value of each statement can be computed, for example,
using the Tarantula technique discussed above. The results
are as shown in Table 3.

The third to fifth columns in Table 3 represent the state-
ment coverage of the three test cases. An entry with a “�”
means the statement is covered by the corresponding test
case, while an empty entry means the statement is not. The
values of NCF and NCS for each statement are given in the
sixth and seventh columns. Based on the definition of
Tarantula, the suspiciousness value of each statement is
computed and displayed in the eighth column. The ranking
of each statement is given in the rightmost column. As we
can observe, the faulty statement s7 has the highest ranking.

In recent years, other techniques have also been pro-
posed that perform at the same level with, or even surpass,
Tarantula in terms of their effectiveness at fault localization.
The Ochiai similarity coefficient-based technique [11] is gen-
erally considered more effective than Tarantula, and its for-
mula is as follows:

SuspiciousnessðOchiaiÞ ¼ NCF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NF � ðNCF þNCSÞ
p :

There are two major differences between Ochiai and the
nearest neighbor model: 1) The nearest neighbor model uti-
lizes a single failed test case, while Ochiai uses multiple
failed test cases, and 2) The nearest neighbor model only
selects the successful test case that most closely resembles
the failed test case, while Ochiai includes all successful test
cases. Ochiai2 [267] is an extension of Ochiai, and its for-
mula is as follows:

SuspiciousnessðOchiai2Þ
¼ NCF �NUS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðNCF þNCSÞ � ðNUS þNUF Þ � ðNCF þNUF Þ � ðNCP þNUSÞ
p :

In [267], Naish et al. propose two techniques, O and OP

(defined as follows). The technique O is designed for pro-
grams with a single bug, while OP is better applied to

TABLE 3
An Example Showing the Suspiciousness Value Computed Using the Tarantula Technique

Code with a bug at s7 a ¼ 0 a ¼ 1 a ¼ 2 NCF NCS Suspiciousness Ranking

s1 input(a) � � � 1 2 0.5 3
s2 i ¼ 1; � � � 1 2 0.5 3
s3 sum¼ 0; � � � 1 2 0.5 3
s4 product¼ 1; � � � 1 2 0.5 3
s5 if (i < a){ � � � 1 2 0.5 3
s6 sum¼ sum þ i; � 1 0 1 1
s7 product ¼ product � i;

//bug product ¼ product� 2i
� 1 0 1 1

s8 }else{ � � 0 2 0 10
s9 sum¼ sum - i; � � 0 2 0 10
s10 product ¼ product / i; � � 0 2 0 10
s11 } � � 0 2 0 10
s12 print (sum); � � � 1 2 0.5 3
s13 print (product); � � � 1 2 0.5 3

Execution Results Successful Successful Failed
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programs with multiple bugs. Data from their experiments
suggest that O and OP are more effective than Tarantula,
Ochiai, and Ochiai2 for single-bug programs. On the other
hand, Le et al. [210] present a different view by showing
that Ochiai can be more effective than O and OP for pro-
grams with single bugs

SuspiciousnessðOÞ ¼ h�1; if NUF > 0
NUS; otherwise:

Table 4 lists 31 similarity coefficient-based techniques,
along with their algebraic forms, which have been used in
different studies such as [75], [364], [371]. A few additional
techniques using similar approaches can be found in [230].
Tools like Zoltar [170] and DEPUTO [9] are available to com-
pute the suspiciousness with respect to selected techniques.

Empirical studies have also shown that techniques pro-
posed in [366], [367], [369], [370], [371] are, in general, more
effective than Tarantula. Especially in the case of DStar
[371], results from empirical evaluations against all 31 simi-
larity coefficient-based techniques listed in Table 4 – as well
as Tarantula, Ochiai, Ochiai2, Crosstab [369], H3b and H3c
[366], and RBF [367] – suggest that DStar outperforms all
compared techniques in most cases.

Comparisons among different spectrum-based fault local-
ization techniques are frequently discussed in recent studies
[12], [210], [267], [371]. However, there is no technique claim-
ing that it can outperform all others under every scenario. In
other words, an optimum spectrum-based technique does
not exist, which is supported by Yoo et al.’s study [397].

A few additional examples of program spectrum-based
fault localization techniques are listed below.

� Program Invariants Hit Spectrum (PIHS)-based: This
spectrum records the coverage of program invariants
[107], which are the program properties that remain
unchanged across program executions. PIHS-based
techniques try to find violations of program proper-
ties in failed program executions to locate bugs.
Potential invariants [294], also called likely invariants
[317], are program properties that are observed to
hold in some sets of successful executions but, unlike
invariants, may not necessarily hold for all possible
executions. The major obstacle in applying such
techniques is how to automatically identify the nec-
essary program properties required for the fault
localization. To address this problem, existing PIHS-
based techniques often take the invariant spectrum
of successful executions as the program properties.
In study [27], Alipour and Groce propose extended
invariants by adding execution features such as the
execution count of blocks to the invariants. They
claim that extended invariants are helpful in fault
localization.

� Predicate Count Spectrum (PRCS)-based: PRCS
records how predicates are executed and can be
used to track program behaviors that are likely to be
erroneous. These techniques are often labeled as sta-
tistical debugging techniques because the PRCS infor-
mation is analyzed using statistical methods. Fault

TABLE 4
Similarity Coefficient-Based Techniques

Coefficient Algebraic Form Coefficient Algebraic Form

1 Braun-Banquet NCF
maxðNCFþNCS;NCFþNUF Þ 17 Harmonic

Mean

ðNCF�NUS�NUF�NCS ÞððNCFþNCS Þ�ðNUSþNUF ÞþðNCFþNUF Þ�ðNCSþNUS ÞÞ
ðNCFþNCS Þ�ðNUSþNUF Þ�ðNCFþNUF Þ�ðNCSþNUS Þ

2 Dennis ðNCF�NUS Þ�ðNCS�NUF Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�ðNCFþNCS Þ�ðNCFþNUF Þ

p 18 Rogot2 1
4 ð NCF

NCFþNCS
þ NCF

NCFþNUF
þ NUS

NUSþNCS
þ NUS

NUSþNUF
Þ

3 Mountford NCF
0:5�ððNCF�NCS ÞþðNCF�NUF ÞÞþðNCS�NUF Þ 19 Simple

Matching

NCFþNUS
NCFþNCSþNUSþNUF

4 Fossum n�ðNCF�0:5Þ2
ðNCFþNCS Þ�ðNCFþNUF Þ

20 Rogers &

Tanimoto

NCFþNUS
NCFþNUSþ2ðNUFþNCS Þ

5 Pearson n�ððNCF�NUS Þ�ðNCS�NUF ÞÞ2
NC�NU�NS�NF

21 Hamming NCF þNUS

6 Gower NCFþNUSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NF�NC�NU�NS

p 22 Hamann NCFþNUS�NUF�NCS
NCFþNUFþNCSþNUS

7 Michael 4�ððNCF�NUS Þ�ðNCS�NUF ÞÞ
ðNCFþNUS Þ2þðNCSþNUF Þ2

23 Sokal 2ðNCFþNUS Þ
2ðNCFþNUS ÞþNUFþNCS

8 Pierce ðNCF�NUF ÞþðNUF�NCS Þ
ðNCF�NUF Þþð2�ðNUF�NUS ÞÞþðNCS�NUS Þ

24 Scott 4ðNCF�NUS�NUF�NCS Þ�ðNUF�NCS Þ2
ð2NCFþNUFþNCS Þð2NUSþNUFþNCS Þ

9 Baroni-Urbani
& Buser

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNCF�NUS Þ

p
þNCFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNCF�NUS Þ
p

þNCFþNCSþNUF

25 Rogot1 1
2 ð NCF

2NCFþNUFþNCS
þ NUS

2NUSþNUFþNCS
Þ

10 Tarwid ðn�NCF Þ�ðNF�NC Þ
ðn�NCF ÞþðNF�NC Þ

26 Kulczynski NCF
NUFþNCS

11 Ample NCF
NCFþNUF

� NCS
NCSþNUS

�
�
�

�
�
�

27 Anderberg NCF
NCFþ2ðNUFþNCS Þ

12 Phi (Geometric

Mean)

NCF�NUS�NUF�NCSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNCFþNCS Þ�ðNCFþNUF Þ�ðNCSþNUS Þ�ðNUFþNUS Þ

p 28 Dice 2NCF
NCFþNUFþNCS

13 Arithmetic

Mean

2ðNCF�NUS�NUF�NCS Þ
ðNCFþNCS Þ�ðNUSþNUF ÞþðNCFþNUF Þ�ðNCSþNUS Þ

29 Goodman 2NCF�NUF�NCS
2NCFþNUFþNCS

14 Cohen 2ðNCF�NUS�NUF�NCS Þ
ðNCFþNCS Þ�ðNUSþNCS ÞþðNCFþNUF Þ�ðNUFþNUS Þ

30 Jaccard NCF
NCFþNUFþNCS

15 Fleiss 4ðNCF�NUS�NUF�NCS Þ�ðNUF�NCS Þ2
ð2NCFþNUFþNCS Þþð2NUSþNUFþNCS Þ

31 Sorensen-Dice 2NCF
2NCFþNUFþNCS

16 Zoltar NCF

NCFþNUFþNCSþ10000�NUF�NCS
NCF
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localization techniques in this category include
Liblit05 [222], SOBER [223] etc. See Section 3.3 for
more details. Authors of [266] suggest that using
PRCS could achieve a better fault localization effec-
tiveness than that using ESHS.

� Method Calls Sequence Hit Spectrum (MCSHS)-
based: Information regarding the sequences of
method calls covered during program execution is
collected. In one study, Dallmeier et al. [84] collect
execution data from Java programs and demonstrate
fault localization through the identification and anal-
ysis of method call sequences. Both incoming
method calls (how an object is used) and outgoing
calls (how it is implemented) are considered. In
another study, Liu et al. [225] construct software
behavior graphs from collected program execution
data, including the calling and transition relation-
ships between functions. They define a framework
to mine closed frequent graphs based on behavior
graphs and use them to train classifiers that help
identify suspicious functions.

� Time Spectrum-based: A time spectrum [396]
records the execution time of every method in suc-
cessful or failed executions. Observed behavior mod-
els are created using time spectra collected from
successful executions. Deviations from these models
in failed executions are identified and ranked as
potential causes of failures.

Other program spectra such as those in Table 5 [149] can
also be applied to identify suspicious code in a program.

3.2.3 Issues and Concerns

A variety of issues and concerns about spectrum-based fault
localization has also been identified and studied in depth.
One problem is that most spectrum-based techniques do not
calibrate the contribution of failed and successful tests. In
[385], all statements are divided into suspicious and unsus-
picious groups. The suspicious group contains statements
that have been executed by at least one failed test case, while
the unsuspicious group contains the remaining statements.
Risk is only calculated for suspicious statements, and unsus-
picious statements are simply assigned the lowest value. It is
possible, however, that successful test cases may also con-
tain bugs. In [366], Wong et al. focus on the question of how
each additional failed or successful test case can aid in locat-
ing program bugs. They describe that with respect to a piece
of code, the contribution of the first failed test case that
executes it in computing its suspiciousness is larger than or

equal to that of the second failed test case that executes it,
which in turn is larger than or equal to that of the third failed
test case that executes it, and so on. This principle is also
applied to the contribution provided by successful test cases.
In addition, the total contribution from all the successful test
cases that execute a statement should be less than the total
contribution from all the failed tests that execute it. Recog-
nizing that fault localization often proceeds by comparing
information associated with a failed test case to that with a
successful test case, Wong and Qi [373] and Guo et al. [140]
attempt to answer the question of which successful test case
should be selected for comparison, in the interests of more
effective fault localization. Choosing the successful test case
whose execution sequence is most similar to that of a failed
test case, according to a control flow-based difference metric,
can minimize the search domain of the fault.

For most spectrum-based techniques, if statements
exhibit the same execution pattern, there is a high likelihood
that the suspiciousness score assigned to these statements
will be exactly the same. Statements with the same suspi-
ciousness will result in ties in the ranking. To break these
ties, the information related to statement execution fre-
quency in addition to statement coverage can also be uti-
lized [7], [213]. In [393], Xu et al. evaluate different tie-
breaking strategies, including statement order-based strat-
egy, confidence-based strategy, and data dependency-based
strategy. Tie-breaking methods will be further discussed in
Section 7.6. Another problem is that almost all spectrum-
based techniques have assumed that a test oracle exists,
which restricts their practical applicability. Thus, Xie et al.
[387] propose a fault localization technique based on the
integration of metamorphic relations and slices, in which a
program execution slice is replaced by a metamorphic slice;
an individual test case is replaced by a metamorphic test
group; and the success/failure result of a test case is
replaced by the violation/non-violation result of a meta-
morphic test group. Authors of [71] also use metamorphic
relations with symbolic testing for program debugging.
However, all these techniques rely strongly on the meta-
morphic relations derived from program specifications.
Proper identification of such relations can be not only diffi-
cult but also time consuming in practice.

Zhao et al. [421], [422] posit that using only individual
coverage information may not reveal the execution paths.
Therefore, they first use the program control-flow graph to
analyze the program execution and then map the distribu-
tion of failed executions to different control flows. They use
bug proneness to qualify how each block contributes to the

TABLE 5
Additional Program Spectra Relevant to Fault Localization

Name Description

BHS Branch Hit Spectrum conditional branches that are executed
CPS Complete Path Spectrum complete path that is executed
PHS Path Hit Spectrum intra-procedural, loop-free path that is executed
PCS Path Count Spectrum number of times each intra-procedural, loop-free path is executed
DHS Data-dependence Hit Spectrum definition-use pairs that are executed
DCS Data-dependence Count Spectrum number of times each definition-use pair is executed
OPS Output Spectrum output that is produced
ETS Execution Trace Spectrum execution trace that is produced
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failure and bug free confidence to quantify the likelihood of
each block being bug-free by comparing the distributions of
blocks on the same failed execution path.

Instrumentation overhead is another issue, which intro-
duces a considerable cost in the fault localization process,
especially in a resource-constrained environment. In order
to mitigate this problem, Perez et al. [291] propose coined
dynamic code coverage by using coarser instrumentation to
reduce such overhead. This technique starts by analyzing
coverage traces for large components of the program (e.g.,
package or class) and then progressively increases the
instrumentation granularity for possible faulty components
until the statement level is reached.

3.3 Statistics-Based Techniques

A statistical debugging technique (Liblit05) that can isolate
bugs in programs with instrumented predicates at particu-
lar points is presented in [222]. For each predicate P, Liblit05
first computes the probability that P being true implies fail-
ure, Failure(P), and the probability that the execution of P
implies failure, Context(P). Predicates that have Failure(P) –
Context(P) � 0 are discarded. The remaining predicates are
prioritized based on their importance scores, which give an
indication of the relationship between predicates and pro-
gram bugs. Predicates with a higher score should be exam-
ined first. Chilimbi et al. [74] propose that replacing
predicates with path profiles may improve the effectiveness
of Liblit05. Path profiles are collected during execution and
are aggregated across the execution of multiple test cases
through feedback reports. The importance score is calculated
for each path and the top results are selected and presented
as potential root causes.

In [223], Liu et al. propose the SOBER technique to rank
suspicious predicates. A predicate P can be evaluated as
true more than once in the execution of one test case. Com-
pute p Pð Þ ¼ nðtÞ

nðtÞþnðfÞ ; the probability that P is evaluated as
true in each execution of a test case, where n(t) is the num-
ber of times P is evaluated as true and n(f) is the number of
times P is evaluated as false. If the distribution of p(P) in
failed executions is significantly different from that in suc-
cessful executions, then P is related to a fault. Hu et al. [168]
use a similar heuristic to rank all predicates. In addition,
they apply non-parametric hypothesis testing to determine
the degree of difference between the spectra of predicates
for successful and failed test cases. This new enhancement
has been empirically evaluated to be effective [416], [420].

The study in [369] presents a cross tabulation (a.k.a.
Crosstab) analysis-based technique to compute the suspi-
ciousness of statements. A crosstab is constructed for each
statement with two vertical categories (covered/not cov-
ered) and two horizontal categories (successful execution/
failed execution). A hypothesis test is used to provide a ref-
erence of dependency/independency between the execu-
tion results and the coverage of each statement. The exact
suspiciousness of each statement depends on the degree of
association between its coverage and the execution results.

The primary difference between Crosstab, SOBER, and
Liblit05 is that Crosstab can be generally applied to rank
suspicious program elements (i.e., statement, predicate,
function/method, etc.), whereas the last two only rank sus-
picious predicates for fault localization. For Liblit05 and

SOBER, the corresponding statements of the top k predi-
cates are taken as the initial set to be examined for locating
the bug. As suggested by Jones and Harrold in [185],
Liblit05 provides no way to quantify the ranking for all
statements. An ordering of the predicates is defined, but the
approach does not detail how to order statements related to
any bug that lies outside a predicate. For SOBER, if the bug
is not in the initial set of statements, additional statements
have to be included by performing a breadth-first search on
the corresponding program dependence graph, which can
potentially be time consuming. However, such a search is
not required for Crosstab, as all the statements of the pro-
gram are ranked based on their suspiciousness. Results
reported in [369] suggest that Crosstab is almost always
more effective in locating bugs in the Siemens suite than
Liblit05 and SOBER.

In program execution, short-circuit evaluation may occur
frequently, which means, for a predicate with more than
one condition, if the first condition suffices to determine the
results of the predicate, the following conditions will not be
evaluated (executed). Zhang et al. [414], [415] identify the
short-circuit evaluations of an individual predicate and pro-
duce one set of evaluation sequences for each predicate.
Using such information, their proposed Debugging through
Evaluation Sequences (DES) approach is compared to existing
predicated-based techniques such as SOBER and Liblit05.
You et al. [398] propose a statistical approach employing
the behavior of two sequentially connected predicates in the
execution. They construct a weighted execution graph for
each execution of a test case with predicates as vertices and
the transition of two sequential predicates as edges. For
each edge, a suspiciousness value is calculated to quantify
its fault-relevant likelihood. Authors of [38] apply causal-
inference techniques to the problem of fault localization. A
linear model is built on program control-flow graphs to esti-
mate the causal effect of covering a given statement on the
occurrence of failures. This model is able to reduce confound-
ing bias and thereby help generate better fault localization
rankings. In [39], they further enhance the linear model
toward better fault localization effectiveness by including
information on data-flow dependence. In [256], Modi et al.
explore the usage of execution phase information such as
cache miss rates, CPU and memory usages in statistical pro-
gram debugging. They suggest coupling execution phases
with predicates results in higher bug localization accuracy
as opposed to when phase information is not used.

3.4 Program State-Based Techniques

A program state consists of variables and their values at a
particular point during program execution, which can be a
good indicator for locating program bugs. One way to use
program states in software fault localization is by relative
debugging [4], in which faults in the development version
can be located via a runtime comparison of the internal
states to a “reference” version of the program. Another
approach is to modify the values of some variables to deter-
mine which one causes erroneous program execution. Zeller
and Hildebrandt propose a technique, delta debugging
[400], [401], by contrasting program states between execu-
tions of a successful test and a failed test via their memory
graphs which are described in [426]. Variables are tested for
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suspiciousness by replacing their values from a successful
test with their corresponding values from the same point
in a failed test, and repeating the program execution.
Unless the identical failure is observed, the variable is no
longer considered suspicious. Note that the idea of simpli-
fying failure-inducing inputs discussed in [400], [401] is
orthogonal to other techniques, as it significantly reduces
the original execution length. The delta tool [86] has been
widely used in industry for automated debugging. In [77],
Cleve and Zeller extend delta debugging to the cause tran-
sition technique to identify the locations and times where
the cause of a failure changes from one variable to another.
An algorithm named cts is proposed to quickly locate
cause transitions in a program execution. Similar studies
[273], [274] based on combinatorial testing are reported,
which separate input parameters into faulty-possible and
healthy-possible and identify minimal failure-inducing com-
binations of parameters.

However, the cause transition technique is a relatively
high-cost approach; there may exist thousands of states in a
program execution, and delta debugging at each matching
point requires additional test executions to narrow down the
causes. Another problem is that the identified locations may
not be where the bugs reside. Gupta et al. [141] introduce the
concept of a failure-inducing chop as an extension to the
cause transition technique to overcome this issue. First, delta
debugging is used to identify input and output variables
that are causes of failure. Dynamic slices are then con-
structed for these variables. The code at the intersection of
the forward slicing of the input variables and the backward
slicing of the output variables is considered suspicious.

Sumner et al. further improve the robustness, precision,
and efficiency of delta debugging by combining it with
more precise execution alignment techniques [338], [339],
[389]. However, there are still three limitations to delta
debugging: it fails to handle confounding of partial state
replacement, it cannot locate execution omission errors, and
it suffers from poor efficiency. To address these limitations,
Sumner and Zhang [340] propose a cause inference model,
comparative causality, to provide a systematic technique
explaining the difference between a failed execution and a
successful execution.

Predicate switching [405], proposed by Zhang et al., is
another program state-based fault localization technique
where program states are changed to forcefully alter the
executed branches in a failed execution. A predicate which,
if switched, can make the program execute successfully is
labeled as a critical predicate. The technique starts by find-
ing the first erroneous value in variables. Different search-
ing strategies, such as Last Executed First Switched (LEFS)
ordering and Prioritization-based (PRIOR) ordering, can
help determine the next candidates for critical predicates.
Wang and Roychoudhury [352] present a similar technique
that analyzes the execution path of a failed test and alters
the outcome of branches in that path to produce a successful
execution. The branch statements with outcomes that have
been changed are recorded as bugs. A deficiency of predi-
cate switching is that the alternation of program states is
never guided by program dependence analysis, even
though faults are intrinsically propagated through the chain
of program dependences. The study in [217] extends the

predicate switching technique and reduces the search space
of program states by selecting a subset of trace points in a
failed execution based on dependence analysis.

Jeffrey et al. [172] present a value profile-based technique
for fault localization to assist developers in software debug-
ging. The approach involves computing Interesting Value
Mapping Pairs (IVMPs) that show how values used in par-
ticular program statements can be altered so that failed test
cases will produce the correct output instead. Alternate sets
of values are selected from profiling information taken from
the executions of all test cases in an available test suite. Dif-
ferent alternate value sets are used to perform value
replacements in each statement instance for every failed test
case. Using these IVMPs, each statement can then be ranked
according to the number of failed executions in which at
least one IVMP is identified for that statement. In [417],
Zhang et al. claim that a bug within a statement may propa-
gate a series of infected program states before it manifests the
failure. Also, even if every failed execution executes a par-
ticular statement, this statement is not necessarily the root
cause of the failure. Thus, they use edge profiles to repre-
sent program executions and assess the suspiciousness of
the infected program states propagated through each edge.
By associating basic blocks with edges, a suspiciousness
ranking is generated to locate program bugs.

3.5 Machine Learning-Based Techniques

Machine learning is the study of computer algorithms that
improve through experience. Machine learning techniques
are adaptive and robust and can produce models based on
data, with limited human interaction. This has led to their
employment in many disciplines such as bioinformatics,
natural language processing, cryptography, computer
vision, etc. In the context of fault localization, the problem
at hand can be identified as trying to learn or deduce the
location of a fault based on input data such as statement
coverage and the execution result (success or failure) of
each test case.

Wong and Qi [374] propose a fault localization technique
based on a back-propagation (BP) neural network, one of
the most popular neural network models in practice [112].
A BP neural network has a simple structure, which makes it
easy to implement using computer programs. Also, BP neu-
ral networks have the ability to approximate complicated
nonlinear functions [154]. The coverage data of each test
case and the corresponding execution result are collected,
and they are used together to train a BP neural network so
that the network can learn the relationship between them.
Then, the coverage of a suite of virtual test cases that each
covers only one statement in the program is input to the
trained BP network, and the outputs can be regarded as the
likelihood of each statement containing the bug. Ascari
et al. [36] extend the BP-based technique [374] to object-
oriented programs. As BP neural networks are known to
suffer from issues such as paralysis and local minima,
Wong et al. [367] propose another approach based on radial
basis function (RBF) networks, which are less susceptible to
these problems and have a faster learning rate [211], [357].
The RBF network is trained using an approach similar to
the BP network. Once the training is completed, the output
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with respect to the coverage of each virtual test case is con-
sidered to be the suspiciousness of the corresponding state-
ment. There are three novelties of this approach: 1) a
method for representing test cases, coverage information,
and execution results within a modified RBF neural net-
work formalism, 2) an innovative algorithm to simulta-
neously estimate the number of hidden neurons and their
receptive field centers, 3) a weighted bit-comparison based
distance (instead of the Euclidean distance) to measure the
distance between the coverage of two test cases.

In [57] Briand et al. use the C4.5 decision tree algorithm
to construct rules that classify test cases into various parti-
tions such that failed test cases in the same partition most
likely fail due to the same causative fault. The underlying
premise is that distinct failure conditions for test cases can
be identified depending on the inputs and outputs of the
test case (category partitioning). Each path in the decision
tree represents a rule modeling distinct failure conditions,
possibly originating from different faults, and leads to a dis-
tinct failure probability prediction. The statement coverage
of both the failed and successful test cases in each partition
is used to rank the statements using a heuristic similar to
Tarantula [185] to form a ranking. These individual rank-
ings are then consolidated to form a final statement ranking
which can be examined to locate the faults.

3.6 Data Mining-Based Techniques

Along the lines of machine learning, data mining also seeks
to produce a model using pertinent information extracted
from data. Data mining can uncover hidden patterns in sam-
ples of data that may not be discovered by manual analysis
alone, especially due to the sheer volume of information.
Efficient data mining techniques transcend such problems
and do so in reasonable amounts of time with high degrees
of accuracy. The software fault localization problem can be
abstracted to a data mining problem – for example, we wish
to identify the pattern of statement execution that leads to a
failure. In addition, although the complete execution trace of
a program is a valuable resource for fault localization, the
huge volume of data makes it unwieldy for usage in practice.
Therefore, some studies have creatively applied data mining
techniques to execution traces.

Nessa et al. [269] generate statement subsequences of
length N, referred to as N-grams, from the trace data. The
failed execution traces are then examined to find the N-
grams with a rate of occurrence that is higher than a certain
threshold. A statistical analysis is conducted to determine
the conditional probability that a certain N-gram appears in
a given failed execution trace – this probability is known as
the confidence for that N-gram. N-grams are sorted in
descending order of confidence and the corresponding
statements in the program are displayed based on their first
appearance in the list. Case studies on the Siemens suite as
well as the space and grep programs have shown that this
technique is more effective at locating faults than Tarantula.

Cellier et al. [65], [66] discuss a combination of associa-
tion rules and Formal Concept Analysis to assist in fault
localization. The proposed technique tries to identify rules
regarding the association between statement coverage and
corresponding execution failures. The frequency of each
rule is measured. A threshold is decided upon to indicate

the minimum number of failed executions that should be
covered by a selected rule. A large number of rules so gener-
ated are partially ranked using a rule lattice. The ranking is
then examined to locate the fault.

In [403], the authors propose a technique taking advan-
tage of the recent progress in multi-relational data mining
for fault localization. More specifically, this technique is
based on Markov logic, combining first-order logic and
Markov random fields with weighted satisfiability testing
for efficient inference and a voted perceptron algorithm for
criminative learning. When applied to fault localization,
Markov logic combines different information sources such
as statement coverage, static program structure information,
and prior bug knowledge into a solution to improve the
effectiveness of fault localization. Their technique is empiri-
cally shown to be more effective than Tarantula on some
programs of the Siemens suite.

Denmat et al. [99] propose a technique that re-interprets
Tarantula as a data-mining problem. In this technique, asso-
ciation rules that indicate the relationship between a single
statement and a program failure are mined based on the
coverage information and execution results of a test suite.
The relevance values of these rules are evaluated based on
two metrics, conf and lift, which are commonly used by clas-
sical data mining problems. Such values can be interpreted
as the suspiciousness of a statement that may contain bugs.

3.7 Model-Based Techniques

With respect to each model-based technique, a critical con-
cern is the model’s expressive capability, which has a signif-
icant impact on the effectiveness of that technique.

While using model-based diagnosis [301], it is assumed
that a correct model of each program being diagnosed is
available. That is, these models can be served as the oracles
of the corresponding programs. Differences between the
behaviors of a model and the actual observed behaviors of
the program are used to help find bugs in the program
[249], [250]. On the other hand, for model-based software
fault localization [6], [40], [97], [117], [194], [242], [243],
[246], [248], [378], [380], [381], [382], models are generated
directly from the actual programs, which may contain bugs.
Differences between the observed program executions and
the expected results (provided by programmers or testers)
are used to identify model elements that are responsible for
such observed misbehaviors. As demonstrated by the Java
Diagnosis Experiments (JADE) in [241], [252], model-based
software fault localization can be viewed as an application
of model-based diagnosis [14].

Dependency-based models are derived from dependen-
cies between statements in a program, by means of either
static or dynamic analysis. Mateis et al. [242] present a func-
tional dependency model for Java programs that can handle
a subset of features for the Java language, such as classes,
methods, conditionals, assignments, and while-loops. In
their model, the structure of a program is described with
dependency-based models, while logic-based languages,
such as first order logic, are applied to model the behaviors
of the target program. This dependency-based model is
then extended to handle unstructured control flows in Java
programs [244], [245], such as exceptions, recursive method
calls, return and jump statements. The notion of a

718 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 8, AUGUST 2016



dependence graph has also been extended to model behav-
iors of a program over a test suite. Baah et al. [40] use a
probabilistic program dependence graph to model the inter-
nal behaviors of a program, facilitating probabilistic analy-
sis and reasoning about uncertain program behaviors,
especially those that are likely associated with faults.

Wotawa et al. [380] use first order logic to construct
dependency-based models based on source code analysis of
target programs to represent program structures and behav-
iors. Test cases with expected outputs are also transformed
into observations in terms of first order logic. If the execu-
tion of a target program on a test case fails, conflicts
between the test case and the models (which can be shown
as equivalent to either static or dynamic slices [378]) are
used to identify suspicious statements responsible for the
failure. For each statement, a default assumption is made to
suggest whether the statement is correct or incorrect. These
assumptions are to be revised during fault localization until
the failure can be explained. The limitation is that their
study only focuses on loop-free programs. To fix this prob-
lem, Mayer and Stumptner [246] propose an abstraction-
based model in which abstract interpretation [55], [78] is
applied to handle loops, recursive procedures, and heap
data structures. Additionally, abstract interpretation is used
to improve the effectiveness of slice-based and other model-
based fault localization techniques [247].

In addition to dependency-based and abstraction-based
models, value-based models [196], [251] that represent data-
flow information in programs are also applied to locate
components that contain bugs. However, value-based mod-
els are more computationally intensive than dependency-
based and are only practical for small programs [250].

We now discuss model checking-based fault localization
techniques that rely on the use of model checkers to locate
bugs [44], [67], [133], [134], [136], [137], [138], [200]. If amodel
does not satisfy the corresponding program specifications
(implying that the model contains at least one bug), a model
checker can be used to provide counter-examples showing
how the specifications will be violated. A counter-example
does not directly specify which parts of a model are associ-
ated with a given bug; however, it can be viewed as a failed
test case to help identify the causality of the bug [135].

Ball et al. [44] propose to use a model checker to explore
all program paths except that of the counter-example. Suc-
cessful execution paths (those that do not cause a failure)
are recorded. An algorithm is used to identify the transitions
that appear in the execution path of the counter-example
but not in any successful execution paths. Program compo-
nents related to these transitions are those that are likely to
contain the causes of bugs. This technique suffers from two
weaknesses. First, as suggested by Groce and Visser [136],
generating all successful execution paths can be very expen-
sive. Second, only one counter-example is used to locate
bugs, even though the same bug may be triggered by multi-
ple counter-examples. If this occurs, using only one example
can introduce possible bias. To overcome these problems,
Groce and Visser [136] generate a small number of execu-
tions by exploring backwards from the original counter-
example using a model checker. Additional executions so
generated may or may not cause a failure. They then ana-
lyze the differences (in terms of transitions, invariants, and

transformations) between failed and successful executions to
identify possible locations of bugs.

Inspired by Lewis’ counterfactual reasoning [216], Groce
et al. [135], [137] represent program executions as sets of
assignments to variables. They then define a distance metric
to measure the distance between two program executions.
Based on this metric, a model checker is used to generate one
successful execution which is closest to the counter-example.
The differences between the successful execution and the
counter-example provide the possible explanations and loca-
tions of bugs. A tool, explain [138], is used to implement their
technique. Chaki et al. further extend the technique of Groce
et al. by combining it with predicate abstraction [67].

Techniques such as [44], [67], [135], [136], [137], [138]
require at least one successful execution. Griesmayer et al.
[133], [134] argue that a successful execution path can be
very different from the path of the counter-example and
cannot be easily identified using the above techniques.
Instead of searching for successful execution paths with
small changes from that of the original counter-example,
they make minimal changes to the program so that the
counter-example will not fail in the revised program.
Assuming there is only one bug in one program component,
Griesmayer et al. propose a technique with two steps: 1)
revising the program specification in such a way that if any
one component in the original program is changed, then the
original specification cannot be satisfied, and 2) creating
variants of the original program such that each variant has
exactly one component replaced by a different component
with an alternative behavior. For each variant, if a model
checker can find a counter-example violating the revised
specification, then the replaced component is potentially
responsible for the failure. Since more than one component
may be responsible for the failure, programmers have to
manually inspect these components to identify the one con-
taining the bug. Experiments in [133] use the model Checker
CBMC, whereas extended studies using an additional
model checker SATABS are reported in [134].

Based on a similar idea described in [133], [134],
K€onighofer and Bloem [200] use symbolic execution to locate
bugs for imperative programs. An important point stated by
Griesmayer [134] is that the extensive use of a model
checker makes their techniques less efficient (in terms of
time) than those in [44], [67], [136], [137], [138]; however,
fault localization using model checkers can be used to
refine results from less precise techniques.

Last but not least, the idea of modifying a program so
that test cases that fail on the original program can be exe-
cuted successfully on the modified program [133], [134],
[200] is also used in other studies for automatic bug fixing
[95], [152], [189], [270].

Additional model-based fault localization techniques
also exist. They can be applied to functional programs [336],
hardware description languages like VHDL [290], [376],
and spreadsheets [163], [169]. Studies such as [272], [377]
make use of constraint solving, in which programs are auto-
matically compiled into a set of constraints. In [97], DeMillo
et al. propose a model for analyzing software failures
and faults for debugging purposes. Failure modes and fail-
ure types are defined to identify the existence of program
failures and to analyze the nature of program failures,

WONG ETAL.: A SURVEYON SOFTWARE FAULT LOCALIZATION 719



respectively. Failure modes are used to answer the ques-
tion “How do we know the execution of a program fails?”
and failure types are used to answer the question “What is
the failure?” When abnormal behavior is observed during
program execution, the failure is classified by its corre-
sponding failure mode. Referring to some pre-established
relationships between failure modes and failure types, cer-
tain failure types can be identified as possible causes for
the failure. Heuristics based on dynamic instrumentation
(such as dynamic slice) and testing information are then
used to reduce the search domain for locating the fault by
predicting possible faulty statements. A significant draw-
back of using this model is that it is extremely difficult, if
not impossible, to obtain an exhaustive list of failure
modes because different programs can have very different
abnormal behaviors and symptoms when they fail. As a
result, we do not have a complete relationship between all
possible failure modes and failure types, and we might not
be able to identify possible failure types responsible for the
failure being analyzed.

3.8 Additional Techniques

In addition to those discussed above, there are other techni-
ques for software fault localization. Many of them focus on
specific program languages or testing scenarios. Listed
below are a few examples.

Development of software systems, while enhancing func-
tionality, will inevitably lead to the introduction of new
bugs, which may not be detected immediately. Tracing the
behavior changes to code changes can be highly time-con-
suming. Bohnet et al. [54] propose a technique to identify
recently introduced changes. Dynamic, static, and code
change information is combined to reduce the large number
of changes that may have impact on faulty executions of the
system. In this way, root cause changes can be semi-auto-
matically located.

In spite of using garbage collection, Java programs may
still suffer from memory leaks due to unwanted references.
Chen and Chen [69] develop an aspect-based tool, Fin-
dLeak, utilizing an aspect to gather memory consumption
statistics and object references created during a program
execution. Collected information is then analyzed to help
detect memory leaks.

An implicit social network model is presented in [70] to
predict possible locations of faults using fault locations cited
by similar historical bug reports retrieved from BRMS (bug
report managing systems).

In [88], de Souza and Chaim propose a technique using
integration coverage data to locate bugs. By ranking themost
suspicious pairs of method invocations, roadmaps, which are
sorted lists of methods to be investigated, are created.

Gong et al. [123] propose an interactive fault localization
technique, TALK, which incorporates programmers’ feed-
back into spectrum-based fault localization techniques. Each
time a programmer inspects a suspicious program element
in the ranking generated by a fault localization technique, he
or she can judge the correctness of the element and provide
this information as feedback to re-order the ranking of ele-
ments that are not yet inspected. The authors demonstrate
that using programmers’ feedback can help increase the
effectiveness of existing fault localization techniques.

To better understand a program’s behavior, software
developers must translate their questions into code-related
queries, speculating about the causes of faults. Whyline
[195] is a debugging tool that avoids such speculation by
enabling developers to select from a set of “why did” and
“why didn’t” questions derived from source code. Using a
combination of static and dynamic slicing, and precise call
graphs, the tool can find possible explanations of failures.

Authors of [72] propose a software fault localization tech-
nique that mines bug signatures within a program. A bug
signature is a set of program elements that are executed by
most failed tests but not by successful tests in general. Bug
signatures are ranked in descending order by a discrimina-
tive significance score indicating how likely it is to be
related to the bug. This ranking is used to help identify the
location of the bug.

Maruyama et al. [238] indicate that the culprit of an over-
written variable is always the last write-access to the mem-
ory location where the bug first appeared. Removing such
bugs begins with finding the last write, followed by moving
the control point of execution back to the time when the last
write was executed. Generally, the statement that makes the
last write will be faulty.

Recently, some studies [85], [234], [298], [315], [425] have
applied information retrieval techniques to software fault
localization. These studies use an initial bug report to rank
the source code files in descending order based on their rel-
evance to the bug report. The developers can then examine
the ranking and identify the files that contain bugs. Unlike
spectrum-based fault localization techniques, information
retrieval-based techniques do not require program coverage
information, but their generated ranking is based solely on
source code files rather than on program elements with finer
granularity such as statements, blocks, or predicates.

Algorithmic debugging (also called declarative debug-
ging), first discussed in Shapiro’s dissertation [325] with
more details in [328], [402], decomposes a complex compu-
tation into a series of sub-computations to help locate pro-
gram bugs. The outcome of each sub-computation is
checked for its correctness with respect to given input val-
ues. Based on this, an algorithmic debugger is used to iden-
tify a portion of code that may contain bugs. One issue of
applying this technique in practice is that testing oracles
may not available for sub-computations.

Formula-based fault localization techniques [76], [109],
[180], [181] rely on an encoding of failed execution traces
into error trace formulae. By proving the unsatisfiability of an
error trace formula using certain tools or algorithms, the
programmer may capture the relevant statements causing
the failure. Jose and Majumdar [180], [181] propose a tech-
nique, BugAssist, which uses a MAX-SAT solver to com-
pute the maximal set of statements that may cause the
failure from a failed execution trace. In [109], Ermis et al.
introduce error invariants, which provide a semantic argu-
ment as to why certain statements of a failed execution trace
are irrelevant to the root cause of the failure. By removing
such statements, the bug can be located with less manual
effort. A common weakness of these techniques [109], [180],
[181] is that they only report a set of statements that may be
responsible for the failure without providing the exact input
values that make the executions go to those statements.
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Christ et al. [76] address this problem by reporting an
extended study based on error invariants [109] that encodes
a failed execution trace into a flow-sensitive error trace for-
mula. In addition to providing a set of statements that are
relevant to the failure, they also specify how these state-
ments can be executed using different input values.

During program maintenance, source code may be
modified to fix bugs or enhanced to support new function-
alities. Regression testing is also conducted to prevent
invalidation of previously tested functionality. If an execu-
tion fails, the programmer needs to find the failure-induc-
ing changes. Crisp [302] is a tool to build a compliant
intermediate version of the program by adding a partial
edit (i.e., a subset of recent changes) to the code before the
maintenance is performed. This tool helps programmers
focus on a specific portion of changes in the code during
the debugging.

Concurrent programs are becoming more prevalent in
applications that affect our everyday lives. However, due to
their non-determinism, it is very difficult to debug these
programs. It is proposed that injecting random timing noise
into many points within a program can assist in eliciting
bugs. Once the bug is triggered, the objective is to identify a
small set of points that indicate the source of the bug. In
[398], the authors propose an algorithm that iteratively sam-
ples a lower dimensional projection of the program space
and identifies candidate relevant points. Refer to Section 7.7
for more discussion.

3.9 Distribution of Papers in Our Repository

Fig. 3 shows the distribution of papers in our repository
across all categories. Spectrum-based is the most dominant
category with 35 percent of all the papers4 followed by
slice-based, which contains 20 percent, and model-based,
which contains 19 percent. The number of papers in each
of the statistics-based, program state-based, and others
categories is between 7 and 9 percent. The data-mining and
machine learning-based categories have the fewest number
of papers with only 1 and 2 percent.

Below we present the distribution using a different clas-
sification: static and dynamic slice-based, execution slice
and program spectrum-based, and other techniques (see
Footnote 4 for the rationale). Fig. 4 gives the number of
papers published each year with respect to this new classifi-
cation. The first (leftmost) bar gives the total number of
papers from 1977 to 1995, the last (rightmost) only counts
papers between January and November 2014, and those in
between give the number in the corresponding year. Fig. 5
displays the information from a cumulative point of view.
Each data point gives the cumulative number of papers
published up to the corresponding year. From these two fig-
ures, we make the following observations:

� Static and dynamic slice-based techniques were pop-
ular between 2002 and 2007. However, the number
of papers each year in this category has decreased
since then.

� The number of papers on execution slice and pro-
gram spectrum-based techniques has increased dra-
matically since 2008, indicating that more studies are
focused on these techniques rather than static or
dynamic slice-based techniques in the recent years.

4 SUBJECT PROGRAMS

Table 6 presents a list of popular subject programs used to
study the effectiveness of different fault localization techni-
ques. This table gives the name, the size (lines of code), a
brief description of the functionality, the programming lan-
guage, and the number of papers that use this program.

We notice that the Siemens suite is the most frequently
used. However, every program in the suite is very small-
sized with less than 600 lines of code (not including blank
lines). Another important point worth noting is that most of
the bugs used in the experiments are mutation-based artifi-
cially injected bugs. Although mutation has been shown to
be an effective approach to simulate realistic faults [29],
[103], [223], [268], some real-life bugs are very delicate and
cannot be modeled by simple first-order mutants.

With the introduction of advanced techniques in soft-
ware fault localization, more accurate cross comparisons of
their effectiveness are in demand. Furthermore, the feasibil-
ity of a technique and the benefits of using it should be dem-
onstrated in an industry-like environment, in contrast to an
academic laboratory-oriented controlled environment. In
response to these challenges, more and more studies use
larger and complex programs in their experiments. Another
trend is to use bugs actually introduced at the development
phase such as those from Bugzilla for the gcc program and
the bugs for Mozilla firefox.

5 EVALUATION METRICS

Since a program bug may span multiple lines of code, which
are not necessarily contiguous or in the same module, the
examination of suspicious code stops as long as one faulty
location is identified. This is because the focus is to help pro-
grammers find a good starting point to initiate the bug-fix-
ing process rather than to provide the complete set of code
that must be modified, deleted, or added with respect to
each bug. With this in mind, the effectiveness of a soft-
ware fault localization technique is defined as the

Fig. 3. Distribution of papers in our repository.

4. Papers that only use execution slice-based techniques (e.g., [21],
[373]) are included in the spectrum-based category because a state-
ment-based execution slice is the same as ESHS (Refer to Section 3.2).
The slice-based category contains papers only using static slicing and/
or dynamic slicing.
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percentage of code5 that needs to be examined before the
first faulty location for a given bug is identified.

The T-score [223], [303] estimates the percentage of code
a programmer need not examine before the first faulty loca-
tion is found. A program dependence graph is constructed,
and the nodes are marked as faulty if they are reported by
differencing the correct and the faulty versions of the pro-
gram, and blamed if they are reported by the localizer. For a
node n, the corresponding k-dependency sphere set (DSk) is
the set of nodes for which there is a directed path of length
no more than k that joins n and them. For example,DS0 con-
tains the node n itself. DS1 includes not only n but also all
the nodes such that there is an edge from them to n, or from
n to them. For a report R (i.e., a set of nodes the localizer

indicates as possible locations of the bug), let DS�(R) be the
smallest dependency sphere that includes a faulty node.
The T-score of a given R is computed using the ratio of
the number of nodes in its smallest dependency sphere to
the number of nodes in the entire PDG:

T -score ¼ 1� jDS�ðRÞj
jPDGj :

The use of T-score requires that programmers are able to
distinguish defects from non-defects at each location and
can do so at the same cost for each location considered [77].
Furthermore, it assumes that programmers can follow the
control- and/or data-dependency relations among state-
ments while searching for faults.

The EXAM [188], [366], [367], [369], [374] or Expense [185]
score is the percentage of statements in a program that has
to be examined until the first faulty statement is reached:

Fig. 4. Number of papers published each year with respect to three different categories.

Fig. 5. Cumulative number of papers with respect to three different categories.

5. Code can be represented in terms of statements, predicates, func-
tions, etc.
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EXAMscore

¼ Number of statements examined

Total number of statements in the program
� 100%:

In [185], the authors use the executable statements
instead of the total number of statements. For techniques
such as [224] that generate a ranking of predicates (instead
of statements) sorted in descending order of their fault rele-
vance, the EXAM score can also be computed in terms of
percentage of predicates that need to be examined. The
P-score [420], defined as follows, uses the same approach:

P -score ¼ 1� based index of P in L

number of predicates in L
� 100%;

where L is a list of sorted predicates as described above, P is
the most fault-relevant predicate to a fault, and the notation
of 1-based index means the first predicate of L is indexed by
1 (rather than 0). Studies in [366], [367], [369], [371], [374] also
provide figures that report the percentage of all the faulty
versions of a given program inwhich faults can be located by
the examination of an amount of code less than or equal to a
given EXAM score. A similar idea is subsequently used by
Gong et al. to define theN-score [124]:

TABLE 6
Summary of Popular Subject Programs Used in the Fault Localization Studies

Name Size (Lines of code) Brief Description Language Number of papers

Siemens: tcas 173 Altitude separation C 98
Siemens: schedule 412 Priority scheduler C 96
Siemens: print_tokens 565 Lexical analyzer C 96
Siemens: replace 563 Pattern recognition C 94
Siemens: print_tokens2 510 Lexical analyzer C 92
Siemens: schedule2 307 Priority scheduler C 92
Siemens: tot_info 406 Information measure C 91
grep 12,653 Command-line utility for searching plain-text

data sets
C 35

space 9,126 ADL Interpreter C 34
gzip 6,573 Data compression C 34
sed 12,062 GNU batch stream editor C 19
flex 13,892 Lexical analyzer generator C 17
NanoXML 7,646 XML parser Java 16
Unix: Cal 202 Print a calendar for a specified year or month C 13
Unix: Col 308 Filter reverse line C 13
Unix: Tr 137 Translate characters C 13
Unix: Spline 338 Interpolate smooth curves based on given data C 12
Unix: Uniq 143 Report or remove adjacent duplicate lines C 12
Unix: Chckeq 102 Report missing or unbalanced delimiters and .

EQ/.EN pairs
C 11

make 20,014 Manage building of executable and other
products from code

C 10

Ant 75,333 Java applications builder Java 10
XML-sec 21,613 library for XML encryption C 9
Unix: Look 170 Find words in the system dictionary or lines in

a sorted list
C 7

Unix: Comm 167 Select or reject lines common to two sorted
files

C 6

tar 25,854 Tool to create file archives C 6
DC 2,700 reverse-polish desk calculator Java 5
Unix: Crypt 134 Encrypt and decrypt a file using a user

supplied password
C 5

Unix: Sort 913 Sort and merge files C 5
gcc 222,196 GNU C compiler C 5
apache 85,661 Http server for hosting web applications C 5
schoolmate 4,263 A PHP/MySQL solution for administering

schools
PHP 4

faqforge 734 A tool for creating and managing documents PHP 4
webchess 2,226 An online chess game JS and PHP 4
jtopas 5,400 Text parser Java 4
timeclock 13,879 A web-based clock system C 3
phpsysinfo 7,745 Displays system information, e.g., uptime,

CPU, memory, etc.
C 3

TCC 1,900 A small and fast compiler for the C program-
ming language

C 3

Xerces 52,528 XML parser Cþþ 3
Mozilla firefox 3,4M Web browser C and Cþþ 3
tidy 31,132 A text editor for editing web content Cþþ 3
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N-score ¼ Ndet ected

Nstatistic
� 100%:

When compared to T-score, EXAM is easier to under-
stand, as it is directly proportional to the amount of code to
be examined rather than to an indirect measurement in
terms of the amount of code that does not need to be exam-
ined (as what T-score does). In summary, the lower the
EXAM score (or Expense or P-score), the more effective
the technique, whereas it is the opposite for the T-score
(i.e., the lower the T-score, the less effective the technique).

The Wilcoxon signed-rank test (an alternative to the
paired Student’s t-test when a normal distribution of the
population cannot be assumed) can also be used as a metric
to present an evaluation from a statistical point of view
[370], [371]. If we assume a technique a is more effective
than another technique b, we examine the one-tailed alter-
native hypothesis that b requires the examination of an
equal or greater number of statements than a. The confi-
dence with which the alternative hypothesis can be
accepted helps us determine whether a is statistically more
effective than b. Another metric is the total (cumulative)
number of statements that need to be examined to locate all
bugs of a given scenario [366], [367], [369], [371]. This metric
gives a global view in contrast to the Wilcoxon test, which
focuses more on individual pairwise comparisons.

An effective fault localization technique should assign a
unique suspiciousness value to each statement; in practice,
however, the same suspiciousness may be assigned to dif-
ferent statements. If this happens, two different levels of
effectiveness result: the best and the worst. The best effective-
ness assumes that the faulty statement is the first to be
examined among all the statements of the same suspicious-
ness. The worst effectiveness occurs if the faulty statement is
the last to be examined. Reporting only the worst case (such
as [28], [165]) or only the best case (such as the P-score in
[420]) may not give the complete picture because it is very
unlikely that programmers will face the worst or the best
case scenario in practice. In most cases, they will see some-
thing between the best and the worst. It is straightforward
to compute the average effectiveness from the best and
worst effectiveness. However, the converse is not true. Pro-
viding the average effectiveness offers no insights on where
the best and worst effectiveness may lie, and, more seri-
ously, can be ambiguous and misleading. For example, two
techniques can have the same average effectiveness, but one
has a smaller range between the best and the worse cases
while the other has a much wider range. As a result, these
two techniques should not be viewed as equally effective as
suggested by their average effectiveness. Thus, a better
approach is to report the effectiveness for both the best and
the worst cases such as [366], [367], [369], [374] and perform
the cross evaluation under each scenario.

All the evaluation metrics discussed above are based on
an assumption of perfect bug detection, which is the same
as having an ideal user [303] to examine suspicious code to
determine whether it contains bugs. That is, a bug in a state-
ment will be detected if the statement is examined. How-
ever, a recent study [285] indicates that such an assumption
does not always hold in practice. If so, then the number of

statements that need to be examined to find the bug may
increase.

There are other factors that may affect the effectiveness of
a software fault localization technique. Bo et al. [53] present a
metric, Relative Expense, to study the impact of test set size on
the Expense score. More discussion regarding the impact of
test cases on fault localization appears in Section 7.2.Monper-
rus [258] suggests that effectiveness should be evaluatedwith
respect to different classes of faults. It is possible that one
technique is more effective than another for bugs that can be
triggered consistently under some well-defined conditions
(namely, Bohrbugs in [139]), but less effective for bugs whose
failures cannot be systematically reproduced (namely, Man-
delbugs). Instrumentation overhead, interference within
multiple bugs, and programming language also have an
impact on effectiveness of fault localization [90], [333].

Last but not least, it is important to realize that software
fault localization techniques should not be evaluated only
in terms of effectiveness as described above [285]. Other fac-
tors such as computational overhead, time and space for
data collection, amount of human effort, and tool support
need also be considered. In addition, we also need to
emphasize user-centered aims such as how programmers
actually debug, how they reveal the cause-effect chains of
failures, and how they decide upon solutions beyond a sus-
piciousness ranking of code. Unfortunately, none of the
published studies has reported a comprehensive evaluation
covering all these aspects.

6 SOFTWARE FAULT LOCALIZATION TOOLS

One challenge for many empirical studies on software fault
localization is that they require appropriate tool support for
automatic or semi-automatic data collection and suspicious-
ness computation. Table 7 gives a list of commonly used
tools, including name, a brief description, availability, and
which papers use the tool. Of the 63 tools, two are commer-
cial, 16 are open source, 10 are openly accessible but the
source code is not available, and the rest may be acquired
by contacting their authors.

7 CRITICAL ASPECTS

In this section, we explore some critical aspects of software
fault localization.

7.1 Fault Localization with Multiple Bugs

The majority of published papers in software fault localiza-
tion focus on programs with a single bug (i.e., each faulty
program has exactly one bug). However, this is not the case
for real-life software, which in general contains multiple
bugs. Results of a study [143] based on an analysis of fault
and failure data from two large, real-world projects show
that individual failures are often triggered by multiple bugs
spread throughout the system. Another study [231] also
reports a similar finding. This observation raises doubts
concerning the validity of some heuristics and assumptions
based on the single-bug scenario. In response, studies have
been conducted using programs with multiple bugs [87],
[90], [101], [102], [125], [172], [173], [184], [224], [293], [331],
[332], [359], [395], [423].
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TABLE 7
Summary of Tools Used in the Fault Localization Studies

Name Brief Description Availability Papers using the tool

Ample Eclipse plug-in for identifying faulty classes in Java program openly accessible [12]

Apollo Automatic tool that efficiently finds and localizes malformed HTML and execution

failures in web applications that execute PHP code on the server side

via author [33]

Atomizer A dynamic atomicity checker via author [116]

ATAC/xslice Slicing and dicing tool for ANSI C programs via author [21], [96], [187]

BARINEL Framework to combine spectrum-based fault localization and model-based diagno-

sis

via author [14]

BugAssist Fault localization tool for ANSI-C programs via author [180], [181]

BugFix A machine learning-based tool for program debugging via author [174]

Chianti Impact analyzer of program changes for Java programs via author [73]

Chislice Execution slicing tool via author [21]

Chord Debugging tool for concurrent program via author [262]

CIL framework Tool for extracting control flow graph and data flow information from C programs via author [40]

Clover Tool for collecting execution trace information for Java programs commercial [91]

CnC Static checking and testing tool openly accessible [81]

CPTEST A Framework for Automatic Fault Detection, Localization & Correction of Con-

straint Programs

via author [208]

Crisp Eclipse plug-in for constructing intermediate versions of a Java program that is

being edited

via author [73]

Daikon Dynamic invariant detector open source [58], [107]

DejaVu Regression test selection tool via author [149]

Delta Tool for delta debugging open source [86]

Diablo A link-time optimizer open source [141]

DiffJ Tool for comparing different versions of programs to find bugs open source [28]

Doxygen Source code documentation generator and static analysis open source [54]

DrDebug Debugging tool integrating dynamic slicing and gdb debugger open source [104], [356]

ESC/Java Compile-time program checker to detect precondition violations open source [81]

FindLeaks Aspect-based tool to locate memory leaks in Java programs via author [69]

Gcov Profiling tool to collect program spectra open source [13], [53], [102], [213]

GNU GDB A debugger developed by GNU open source [121]

gprof GNU’s profiling tool open source [120]

GoalDebug Constraint-based spreadsheet debugging tool via author [2]

GZoltar An automated testing and debugging framework openly accessible [236], [130]

HOLMES Statistical debugging tool via author [74]

HSFal hybrid slice spectrum fault locator via author [188]

JaCoCo Java code coverage Library open source [236]

JavaPDG A new platform for program dependence analysis openly accessible [326]

JCoverage A tool for coverage analysis open source [84]

JCrasher Java test cases generator to exhibit the error open source [81]

Jhawk Java static analysis tool Commercial [31]

JMutator Mutation tool using seven mutation operators for Java programs open source [50]

JTracor Tool for collecting execution trace for Java programs via author [50]

JUMBLE Tool for detecting destructive races via author [114]

Phoenix Framework A framework for developing compilers as well as program analysis, testing and

optimization

openly accessible

(from Microsoft)

[74]

Microsoft Visual

Studio Debugger

A debugging tool embedded in Microsoft Visual Studio commercial [255]

MZoltar Automatic debugging tool for android applications via author [236]

Pinpoint Fault localization tool using Jaccard coefficient via author [12]

Penelope Tool for atomicity violations detection via author [329]

RADAR Debugging tool for regression problems in C/Cþþ programs openly accessible [287]

RacerX Debugging tool for concurrent program via author [106]

Signpost Tool for matching program behavior against known faults via author [30]

SLAM toolkit Debugging tool using static analysis openly accessible [44]

SLOCCount Tool for counting executable statements open source [168], [223]

Spyder Back-tracing debugger based on dynamic slicing via author [96]

Tarantula Fault localization tool using Tarantula openly accessible [12], [70], [187], [223]

TPTP Eclipse plugin for profiling openly accessible [108]

VIDA Visual interactive debugging tool via author [145]

VHDLDIAG A VHDL fault localization tool based on model-based diagnosis via author [376]

WhoseFault Debugging assignment tool via author [323]

Whyline An interactive debugging tool openly accessible [195]

Xlab X window system events recorder open source [238]

Zoltar Spectrum-based fault localization tool via author [170]

Zoltar-M Tool for detecting multiple bugs via author [13]

xProf Tool using execution trace to locate performance bottlenecks via author [22]

xRegress Regression test set minimization tool using program coverage and execution cost via author [22]

xSuds Tool for collecting execution trace information for C programs via author [22], [366], [367],

[369], [370], [371],

[372], [373], [374]

xVue Heuristics involving the control graph, execution trace, and the maintainer’s

knowledge to help locate features and identify feature interactions

via author [22]
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A popular assumption is that multiple bugs in the same
program perform independently. Debroy and Wong [90]
examine possible interactions that may take place between
different bugs, and they find that such interferences may
manifest themselves to either trigger or mask some execu-
tion failures. Results based on their experiments indicate
that destructive interference (when execution fails due to a
bug but no longer fails when another bug is added to the
same program) is more common than constructive interfer-
ence (when execution fails in the presence of two bugs in
the same program but does not in the presence of either bug
alone) because failures are masked more often than trig-
gered by additional bugs. It is also possible that a program
with multiple bugs suffers from both destructive and con-
structive interferences. DiGiuseppe and Jones [102] also
report that multiple bugs have an adverse impact on the
effectiveness of spectrum-based techniques.

One way to debug a multiple-bug program is to follow
the one-bug-at-a-time approach. If a program experiences
some failures while it is executed against test cases of a
given test suite, this approach helps programmers find and
fix a bug. Then, the modified program is tested again using
all the test cases in the given test suite. If any of the execu-
tions fail, additional debugging is required to find and fix
the next bug. This process continues until no failure is
observed. At this point, even though the program may still
contain other bugs, they cannot be detected by the current
suite of test cases. This approach has been adopted in stud-
ies using the DStar technique [371] and a reasoning fault
localization technique based on a Bayesian reasoning frame-
work [14]. A potential weakness of most techniques based
on Bayesian reasoning (e.g., [14], [64], [193]) is that they all
assume program components fail independently; in other
words, interferences between multiple bugs are ignored,
which is not necessarily the case in practice.

In [184], Jones et al. suggest that multiple bugs in a pro-
gram can be located in parallel. The first step is to group
failed test cases into different fault-focusing clusters such
that those in the same cluster are related to the same bug.
Then, the Tarantula fault localization technique [185], failed
tests in each cluster, and all the successful tests are used to
identify the suspicious code for the corresponding bug.

There are different ways to cluster failed test cases. One
approach is to use execution profiles. Podgurski et al. [293]
apply supervised and unsupervised pattern classifications as
well as multivariate visualization to execution profiles of
failed test cases in order to group them into fault-focusing
clusters. Steimann and Frenkel [332] use the Weil-Kettler
algorithm, a technique widely used in integer linear pro-
gramming, to cluster failed test cases.

However, clustering based on the similarity between exe-
cution profiles may not reflect an accurate causation rela-
tionship between certain faults and the corresponding
failed executions. For example, two failed tests, even associ-
ated with the same bug, may have very different execution
profiles. It is possible for clustering techniques based on
execution profiles to separate these two failed tests into dif-
ferent clusters.

To overcome this problem, Liu and Han [173], [226] fur-
ther investigate the due-to relationship between failed tests
and underlying bugs. They apply SOBER [172] to each

failed test case and all the successful tests to generate a cor-
responding predicate ranking. The weighted Kendall tau
distance is computed between these rankings. The distance
between two rankings is small if they identify similar suspi-
cious predicates. It also implies the rank-proximity (R-prox-
imity) between them is high. Failed test cases with high R-
proximity are clustered together, as they are likely to have
the same due-to relationship.

Other variations include the use of more effective fault
localization techniques (such as Crosstab [369], RBF [367],
and DStar [371]) instead of Tarantula or SOBER, or using
only a subset (refer to Section 7.2), rather than all, of the suc-
cessful tests. These variations are yet to be explored.

7.2 Inputs, Outputs and Impact of Test Cases

In addition to failed and successful test cases, many
(although not all) techniques discussed in Section 3 also
need information about how the underlying program/
model is executed with respect to each test case. Such details
can be provided via different execution profiles (e.g., cover-
age in terms of statement, predicate, etc.).

The output of many spectrum-based (Section 3.2) fault
localization techniques (such as Tarantula) is a suspicious-
ness ranking with statements ranked in descending order of
their suspiciousness values (such as the rightmost column of
Table 3). To locate a bug, programmers will examine state-
ments at higher positions of a ranking before statements at
lower positions because the former, with higher suspicious-
ness values, are more likely to contain bugs than the latter.
On the other hand, many slice-based techniques (Section 3.1)
only return a set of statements without specific ranking.
Referring to Table 2, the static slice for the variable product is
a set of eight statements, including s1, s2, s4, s5, s7, s8, s10, and
s13. However, it does not tell programmers which statements
are more likely to contain bugs and should therefore be
examined first for possible bug locations.

Techniques discussed in Sections 3.3 (statistics-based),
3.5 (machine learning-based) and 3.6 (data mining-based)
are likely6 to generate outputs in terms of suspiciousness
rankings similar to those generated by the spectrum-based
techniques, whereas program state-based (Section 3.4) and
model-based (Section 3.7) techniques are more likely to out-
put a set of program/model components that will possibly
contain bugs but do not explicitly specify the ranking of
each component. Although both types of outputs provide
suspicious components (statements, predicates, etc.) to help
locate bugs, the former further prioritizes these components
based on their suspiciousness values, but the latter does not.

The suite of test cases used in the program debugging is
another important factor that may affect the effectiveness of
a fault localization technique. Some fault localization techni-
ques (e.g., [21], [77], [133], [134], [140], [303], [400]) focus on
locating program bugs using either a single failed test case
or a single failed test case with a few successful test cases.
Others (e.g., [185], [222], [223], [366], [367], [369], [373],
[374], [375]) use multiple failed and successful test cases.
These latter techniques take advantage of more test cases

6. Since there are many techniques in each category, it is possible
that a particular technique may behave differently from others in the
same category in terms of which types of output are generated.
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than the former, so it is likely that the latter are more effec-
tive in locating program bugs. For example, Tarantula [185]
which uses multiple failed and multiple successful tests,
has been shown to be more effective than nearest neighbor
[303], a technique that only uses one failed and one success-
ful test. However, it is important to note that by considering
only one successful and one failed test, it may be possible to
align the two test cases and arrive at a more detailed root-
cause explanation of the failure [77] when compared to the
techniques that take into account multiple successful and
failed test cases simultaneously.

Although techniques using multiple failed and multiple
successful test cases may have better fault localization effec-
tiveness, an underlying assumption is that a large set of such
tests is available. This may also lead to the assumption of
existence of an oracle that can be used to automatically deter-
mine whether an execution is successful or failed. Unfortu-
nately, this may not be true in the real world, as a test oracle
can be incomplete, out-of-date, or ambiguous. Studies such
as [160], [161] have reported that for many systems and for
much of testing as currently practiced in industry, testers do
not have formal specifications, assertions, or automated
oracles. As a result, they face the potentially daunting task of
manually checking the system’s behavior for all test cases
executed. In response to this challenge, researchers have pre-
sented various solutions [16], [147], [148]. Nevertheless, how
to generate an automated test oracle still remains an issue
that needs to be further explored. Hence, we cannot take it
for granted that there are multiple tests with all execution
results (success or failure) known.

Using a test suite that does not achieve high coverage of
the target program may have an adverse impact on the fault
localization results. During test generation, different criteria
(e.g., requirements-based boundary value analysis, or white-
box-based statement or decision coverage) can be used as
guidance. Diaz et al. [100] use a meta-heuristic technique (a
so-called Tabu Search approach) to automatically generate a
test suite to obtain maximum branch coverage. In [33], [34],
[35], Artzi et al. present a tool called Apollo to generate test
cases automatically based on combined concrete and sym-
bolic executions. Apollo first executes a program on an
empty input and records a path constraint that reflects the
program’s executed control-flow predicates. New inputs are
then generated by changing predicates in the path constraint
and solving the resulting constraints. Executing the program
on these inputs produces additional control-flow paths. Fail-
ures observed during executions are recorded. This process
is repeated until a pre-defined threshold of statements cover-
age is reached, a sufficient number of faults are detected, or
the time budget is exhausted. Authors of [176] suggest that
test suites satisfying branch coverage are better than those
satisfying statement coverage in effectively supporting fault
localization, whereas authors of [177] claim that test suites
satisfying MC/DC coverage are better than those satisfying
branch coverage.

Furthermore, in [320], Santelices et al. study the fault
localization effectiveness of Tarantula using three types of
program coverage—statements, branches, and define-use
pair. They conclude that Tarantula using define-use pair
coverage is more effective and stable than that using branch
coverage, which is more effective than that using statement

coverage. Based on this, the authors further propose to use
a combination of the three types of coverage to achieve bet-
ter fault localization effectiveness.

Some researchers argue that it is not efficient to use all the
test cases in a given test suite to locate program bugs.
Instead, they use either test case reduction by selecting only a
subset of test cases or test case prioritization by assigning dif-
ferent priorities to different cases to improve the efficiency of
fault localization techniques [45], [48], [53], [62], [63], [122],
[126], [127], [128], [146], [175], [176], [348], [362], [399]. One
approach of test prioritization is to give higher priority to
failed test cases that execute fewer statements, as they pro-
vide more information and minimize the search domain
[263]. In [119], the authors propose an approach to generate
balanced test suites in order to improve fault localization
effectiveness by cloning failed test cases a suitable number of
times to match the number of successful test cases. R€oßler
et al. [307] propose a technique, BUGEX, which applies
dynamic symbolic execution to generate test cases with a
minimal difference from the execution path of a single failed
test case. Based on the generated test cases, the branches that
are executed by more failed test cases but fewer successful
test cases are more likely to cause the failure. The study in
[179] applies a similar test case generation approach, but the
generated test cases are instead used with a spectrum-based
fault localization technique to rank basic blocks in descend-
ing order according to their suspiciousness values.

Baudry et al. [50] use a bacteriological approach (which is
an adaptation of genetic algorithms) to bridge the gap
between testing and diagnosis (fault localization) based on
a test-for-diagnosis criterion. Test cases are generated to sat-
isfy this criterion so that diagnosis algorithms can be used
more efficiently. Their objective is to achieve a better diag-
nosis (a more efficient fault localization) using a minimal
number of test cases. Studies such as [127], [253] focus on a
cross evaluation of the impact of different test reduction
and prioritization techniques on the efficiency of software
fault localization.

Test execution sequence also has an impact on program
debugging. For example, it is possible that a program execu-
tion fails not because of the current test but because of a pre-
vious test that does not set up an appropriate execution
environment for the current test. If a failure cannot be
observed unless a group of test cases are executed in a spe-
cific sequence, then these test cases should be bundled
together as one single failed test.

7.3 Coincidental Correctness

The concept of coincidental correctness, introduced by Budd
and Angluin in [59], discusses the circumstances under
which a test case produces one or more errors in the pro-
gram state but the output of the program is still correct.
This phenomenon can occur for many reasons. For example,
given a faulty statement in which a variable is assigned with
an incorrect value, in one test execution, this value may
affect the output of the program and result in a failure.
However, in another test execution, the value of this vari-
able is later overwritten. Thus, the output of the program is
not affected and failure is not triggered. Studies discussing
coincidental correctness have been reported in recent years
[44], [46], [159], [218], [239], [254], [355], [419].
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Coincidental correctness can negatively impact the effec-
tiveness of fault localization techniques. Ball et al. [44] claim
that this is the reason why their technique fails to locate
bugs in three out of 15 single-bug programs. Wang et al.
[355] conclude that the effectiveness of Tarantula decreases
when the frequency of coincidental correctness is high and
increases when the frequency is low.

To overcome this problem, Masri and Assi [239] propose a
technique to clean test suites by removing test cases that may
introduce possible coincidental correctness for better fault
localization effectiveness. Their technique is further enhanced
by using fuzzy test suites and clustering analysis [240]. Ban-
dyopadhyay and Ghosh [46] suggest a different approach by
first measuring the likelihood of coincidental correctness of a
successful test case based on the average proximity of its exe-
cution profile with that of all failed test cases. Such likelihood
is assigned as the weight of the corresponding successful test
case and used for subsequent suspiciousness computation.
Zhang et al. [419] present FOnly, a technique that relies only
on failed test cases to locate bugs statistically, even though
fault localization commonly relies on both successful and
failed tests. Authors of [418] propose a fault localization tech-
nique, BlockRank, to calculate, contrast, and propagate the
mean edge profiles between successful and failed executions to
alleviate the impact of coincidental correctness.

7.4 Faults Introduced by Missing Code

One claim that can generally be made against fault localiza-
tion techniques discussed in this survey is that they are inca-
pable of locating bugs resulting from missing code. For
example, slice-based techniques will never be able to locate
such bugs – since the faulty code is not even in the program.
Therefore, this codewill not appear in any of the slices. Based
on this, one might conclude that most fault localization tech-
niques are inappropriate for locating such bugs. Although
this argument seems to be reasonable, it overlooks some
important details. Admittedly, the missing code cannot be
found in any of the slices. However, the omission of the code
may trigger some adverse effects elsewhere in the program
execution, such as the traversal of an incorrect branch in a
decision statement. An abnormal program execution path
(and, thus, the appearance of unexpected code in the corre-
sponding slice) with respect to a given test case should hint
to programmers that some omitted statements may be lead-
ing to control-flow anomalies. This implies that we are still
able to identify suspicious code related to the omission error,
such as the affected decision branch using slice-based techni-
ques. A similar argument can also be made for other techni-
ques, including but not limited to program spectrum-based
(Section 3.2), statistics-based (Section 3.3), and program
state-based techniques (Section 3.4). Thus, even though soft-
ware fault localization techniques may not be able to pin-
point the exact locations of missing code, they can still
provide a good starting point for the search.

7.5 Combination of Multiple Fault Localization
Techniques

The effectiveness of a fault localization technique is very
much scenario dependent, affected by successful and failed
test cases, program structures and semantics, nature of the
bugs, etc. There is no single technique superior to all others

in every scenario. Thus, it makes sense to combine multiple
techniques and retain the good qualities of individual tech-
niques while mitigating the drawbacks of each. In [91], [92],
Debroy et al. propose a way to do so by combining the rank-
ings of statements generated by multiple techniques. The
advantage of this approach (i.e., combining the rankings)
over a design-based integration approach (in which the
actual techniques would somehow be incorporated to form
a new technique) is that it is more cost-effective to realize
and is always extensible. Based on a similar idea, Lucia and
Xia [232] use two normalization methods to combine results
of different fault localization techniques.

In [9], Abreu et al. address the inherent limitations of
spectrum-based fault localization techniques, stating that
component semantics of the program are not considered.
They propose a way to enhance the diagnostic quality of a
spectrum-based fault localization technique by combining it
with a model-based debugging approach using the abstrac-
tion interpretation generated by a framework called DEP-
UTO. More precisely, a model-based approach is used to
refine the ranking via filtering to exclude those components
that do not explain the observed failures when the pro-
gram’s semantics are considered.

In [350], Wang et al. use two different search algorithms,
simulated annealing and genetic algorithm, to find approxi-
mate optimal compositions from 22 existing spectrum-based
fault localization techniques. However, a search-based
approach lacks flexibility and efficiency. For flexibility, the
searchmust be re-performed to update the optimal composi-
tion whenever a new fault localization technique is included.
Also, an optimal composition for one program may not be
the optimal for another program, which means the search
process needs to be re-performed when the subject program
changes. For efficiency, the potential large size of search
spacemakes the search process very time consuming.

Spectrum-based and slice-based techniques are both
widely used. Combinations between techniques from these
two categories have been reported [28], [165], [214], [363].
For example, in [28], Alves et al. combine Tarantula and
dynamic slicing to improve fault localization effectiveness.
First, all the statements in a program are ranked based on
their suspiciousness calculated by using the Tarantula tech-
nique. Then, a dynamic slice with respect to a failure-indi-
cating variable at the failure point is generated. Statements
not in this slice will be removed from the ranking to further
reduce the search domain. In [188], Ju et al. propose a
hybrid slice-based fault localization technique combining
dynamic and execution slices. A prototype tool, hybrid slice
spectrum fault locator (HSFal), is implemented to support
this technique.

Hofer and Wotawa [165] emphasize that spectrum-based
fault localization techniques (e.g., Ochiai [12]) operated at a
basic block level do not provide fine-grained results,
whereas techniques based on slicing-hitting-set-computa-
tion (e.g., the HS-Slice algorithm [379]) sometimes produce
an undesirable ranking with statements (such as construc-
tors), which are executed by many test cases, at the top. To
eliminate these drawbacks, techniques of these two types
should be combined.

Other combinations have also been explored. In [33],
Artzi et al. combine Tarantula and a technique for output
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mapping to reduce the number of statements that need to be
examined. A similar approach is repeated in which Taran-
tula is replaced by Ochiai and Jaccard [34]. In [129],
Gopinath et al. apply spectrum-based localization in syn-
ergy with specification-based analysis to more accurately
locate bugs. The key idea is that unsatisfiability analysis of
violated specifications, enabled by SAT technology, can be
used to compute unsatisfiable cores, including statements
that are likely to contain bugs. In [61], Burger and Zeller
propose a technique, JINSI, which combines delta debug-
ging and dynamic slicing for effective fault localization.
JINSI takes a single failed execution and treats it as a series
of object interactions (e.g., method calls and returns) that
eventually produce the failure. The number of interactions
will be reduced to the minimum number required to repro-
duce the failure, which will reduce the search space needed
to locate the corresponding bug.

7.6 Ties within Fault Localization Rankings

As discussed earlier (referring to Section 3.2), statements
with the same suspiciousness are tied for the same position
in a ranking. Results of a study by Xu et al. [393], using three
fault localization techniques on four sets of programs, show
that the symptom of assigning the same suspiciousness to
multiple statements (i.e., the existence of ties in a produced
ranking) appears everywhere and is not limited to any par-
ticular technique or program. Under such a scenario, the
total number of statements that a programmer needs to
examine in order to find the bugs may vary considerably. In
response, two levels of effectiveness, the best and the worst,
are computed (see Section 5: EvaluationMetrics). In practice,
the more the ties, the bigger the difference between the best
and the worst effectiveness. Ties also make the exact effec-
tiveness of a fault localization techniquemore uncertain.

In voting scenarios when voters are unable to select
between two or more alternatives, the candidates are
ranked based on some key or natural ordering, such as an
alphabetical ordering, to break ties. Similarly, when two
statements are tied for the same ranking, the line numbers
assigned to them in a text editor can serve as the key. Other
techniques such as confidence-based strategy and data
dependency-based strategy are also used to break ties [369],
[366], [386], [393].

7.7 Fault Localization for Concurrency Bugs

Concurrent programs suffer most from three kinds of access
anomalies: data race [32], [321], atomicity violation [110],
[113], [115], and atomic-set serializability violations [24], [44].

Among the approaches that have mushroomed in recent
years, predictive analysis-based techniques haven drawn
significant attention [111], [113], [115], [116], [322], [349].
Generally speaking, these techniques record a trace of pro-
gram execution, statically generate other permutations of
these events, and expose unexercised concurrency bugs. One
potential problem of these techniques is that they may some-
times report a large number of false positives. For example,
only six of 97 reported atomicity violations in a study using
Atomizer (a dynamic atomicity checker) are real [116]. On
the contrary, a study in [329] using a different tool, Penelope,
for atomicity violations detection reports no false positive.

Tools such as Chord [262] and RacerX [106] can statically
analyze a program to find concurrency bugs. However,
since all paths need to be explored, it is impractical to apply
these tools to large, complicated programs. A runtime anal-
ysis (such as [144], [321], [392]), on the other hand, is less
powerful than a static analysis but also produces fewer false
alarms. The drawback is that only faults manifested in some
specific executions can be detected.

Another approach for bug localization in concurrent pro-
grams is to use model checking [60], [190], [261], [324]. For
instance, Shacham et al. [324] use a model checker to con-
struct the evidence for data race reported by the lockset
algorithm. However, due to the possible exponential size of
the search space, it is difficult to adopt this approach for
large-sized programs without compromising its detection
capability.

There are other techniques for detecting concurrency
bugs. For example, Flanagan and Freund use a prototype
tool JUMBLE to explore the non-determinism of relaxed
memory models and to detect destructive races in the pro-
gram [114]. Park et al. apply a CTrigger testing framework
[282] to detect real atomicity violations by controlling the
program execution to exercise low-probability thread inter-
leavings. Park also presents a study to debug non-deadlock
concurrency bugs [283]. Wang et al. [353] propose a tech-
nique to locate buggy shared memory accesses that are
responsible for triggering concurrency bugs. Authors of
[345] propose a tool, MEMSAT, to help in debugging mem-
ory models. Koca et al. [198] locate faults in concurrency
programs using an idea similar to spectrum-based fault
localization techniques.

7.8 Spreadsheet Fault Localization

Spreadsheet systems represent a landmark in the history of
generic software products. It is estimated that 95 percent of
all U.S. firms use spreadsheets for financial reporting [280],
90 percent of all analysts in the industry perform calcula-
tions in spreadsheets [280] and 50 percent of all spread-
sheets are the basis for decisions [156]. Such wide usage,
however, has not been accompanied by effective mecha-
nisms for bug prevention and detection, as shown by stud-
ies such as [278], [281]. As a result, bugs in spreadsheets are
to be blamed for a long list of real problems compiled and
available at the European Spreadsheet Risk Interest Group’s
(EuSpRIG) web site (http://www.eusprig.org/). A recent
study by Reinhart and Rogoff [300] also gives a similar con-
clusion. In response to this, many studies regarding spread-
sheet fault localization have been reported [1], [3], [23], [56],
[157], [158], [162], [164], [169], [311], [314].

A model-based spreadsheet fault localization technique
is presented in [169], using an extended hitting-set algo-
rithm and user-specified or historical test cases and asser-
tions to identify possible error causes. Hofer et al. [164],
apply a constraint-based representation of spreadsheets and
a general constraint solver to locate bugs in spreadsheets.
Another constraint-based approach for debugging faulty
spreadsheets (CONBUG) is presented by Abreu et al. [15],
taking a spreadsheet and one test case as input to compute
a set of faulty candidates. Abraham and Erwig [2] describe
a tool, GoalDebug, for debugging spreadsheets, using a con-
straint-based approach similar to that in [164]. Whenever
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the computed output of a cell is incorrect, users can provide
an expected value, which is employed to produce a list of
possible changes to the corresponding formulae that, when
applied, will generate the user-specified output. This
involves mutating the spreadsheet based on a set of pre-
defined change (repair) rules and ascertaining whether user
expectations are met. A similar approach also appears in
other studies such as [95] and [152]. Authors of [95] propose
a strategy for automatically fixing bugs in both Java and C
programs by combining mutation testing and software fault
localization. An approach of using path-based weakest pre-
conditions is discussed in [152] to generate program modifi-
cations for bug fixing.

Abraham and Erwig also present a system, UCheck,
which infers header information in spreadsheets, performs
a unit analysis, and notifies users when bugs are detected
[3]. Hermans et al. [157] suggest a way to locate spreadsheet
smells (possible weak points in the spreadsheet design) and
display them to users in data-flow diagrams. An approach
to detect and visualize data clones (caused by copying the
value computed by a formula in one cell as plain text to a
different cell) in spreadsheets is reported in [158].

Other techniques aimed at reducing the occurrence of
errors in spreadsheets include code inspection [279], refac-
toring [42], and adoption of better spreadsheet design prac-
tices [82], [83].

7.9 Theoretical Studies

Instead of being evaluated empirically, the effectiveness of
software fault localization techniques can also be analyzed
from theoretical perspectives.

Briand et al. [57] report that the formula used to compute
the suspiciousness of a given statement by Tarantula can be
re-expressed so that the suspiciousness only depends on the
ratio of the number of failed tests (NCF ) to the number of suc-
cessful tests (NCS) that execute the statement. Lee et al. [182],
[212] prove that Tarantula always produces a ranking identi-
cal to that of a technique where the suspiciousness function

is formulated as NCF
NCFþNCS

. A study by Naish et al. [267] exam-

ines over 30 formulae and divides them into groups such
that those in the same group are equivalent for ranking. Inde-
pendently, Debroy andWong [93] also report a similar study
showing that some similarity coefficient-based fault localiza-
tion techniques are equivalent to one another.

Xie et al. [384] perform a theoretical study on the effec-
tiveness of some spectrum-based fault localization techni-
ques. Based on the risk values (which is the same as
suspiciousness discussed in this survey), program statements
are assigned to one of the three sets, SR

B , S
R
F , and SR

A , based
on whether their risk values are higher than, the same as, or
lower than the value of the statement containing the bug.
The authors make three assumptions: i) a faulty program
has exactly one fault; ii) for any given single-fault program,
there is exactly one faulty statement; and iii) this faulty
statement must be executed by all failed tests. They also
assume that the underlying test suite must have 100 percent
statement coverage. Unfortunately, many of these assump-
tions are over-simplified and do not hold for real-life pro-
grams. With respect to some selected techniques (many of
which are similarity coefficient-based), they examine the

subset relation between SR
B and SR

A generated by the corre-

sponding ranking formulae and conclude that for two tech-

niques, R1 and R2, if S
R1
B � S

R2
B and S

R2
A � S

R1
A then R1 is

better (more effective) than R2 such that the number of state-
ments examined by R1 is less than that examined by R2 to
find the first faulty statement. One problem of this proof as
reported in [371] is that it does not consider statements in

SR
F . As a result, for some special cases, even though the

proof indicates that one technique is more effective than
another, the former has to examine more statements than or
the same number of statements as the latter � contradicting
the result of the proof. Another weakness is that some
advanced and more effective techniques (e.g., [14], [223],
[367], [371]) are excluded, even though they use exactly the
same input data as those included in [384]. Authors of [210]
also question the validity of [384]. They compare the effec-
tiveness of the five best fault localization techniques based
on the theoretical study in [384] with the effectiveness of
Tarantula and Ochiai, and they find that the latter are signif-
icantly more effective than the former. This directly contra-
dicts the conclusion of [384]. Xie et al. [388] also apply their
theoretical analysis framework to 30 genetic programming-
evolved formulae and show that some of them can be used
for fault localization. However, they make the same over-
simplified assumptions as those in [384].

There are other theoretical studies for single-bug pro-
grams. For example, Lee et al. [265] identify a class of strictly
rational fault localization techniques in which the suspicious
value of a statement strictly increases if this statement is
executed by more failed test cases and strictly decreases if
this statement is executed by more successful test cases. The
authors claim that strictly rational techniques do not neces-
sarily outperform those that are not. Therefore, limited
attention should be given to these strictly rational techni-
ques. In [264], Lee et al. further identify a class of optimal
fault localization techniques for locating deterministic bugs
(similar to Bohrbugs defined in [139]) that will always cause
test cases to fail whenever they are executed.

8 CONCLUSION

As today’s software has become larger and more complex
than ever before, software fault localization accordingly
requires a greater investment of time and resources. Conse-
quently, locating program bugs is no longer an easily-auto-
mated mechanical process. In practice, locations based on
intelligent guesses of experienced programmers with expert
knowledge of the software being debugged should be
examined first. However, if this fails, an appropriate fall-
back would be to use a systematic technique (such as those
discussed in this survey) based on solid reasoning and sup-
ported by case studies, rather than to use an unsubstanti-
ated ad hoc approach. This is why techniques that can help
programmers effectively locate bugs are highly in demand,
which also stimulates the proposal of many fault localiza-
tion techniques from a widespread perspective. It is impera-
tive that software engineers involved with developing
reliable and dependable systems have a good understand-
ing of existing techniques, as well as an awareness of emerg-
ing trends and developments in the area. To facilitate this,
we conduct a detailed survey and present the results so that
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software engineers at all program debugging experience
levels can quickly gain necessary background knowledge
and the ability to apply cost-effective software fault localiza-
tion techniques tailored to their specific environments.

In this survey, a publication repository has been created,
including 331 papers and 54 Ph.D. and Masters’ theses on
software fault localization from 1977 to November 2014.
These techniques are classified into eight categories: slice-
based, spectrum-based, statistics-based, program state-based,
machine learning-based, data mining-based, model-based,
and miscellaneous. The figures and tables presented in the
previous sections strongly indicate that software fault locali-
zation has become an important research topic on the front
burner and suggest the trend of ongoing research directions.

Our analysis shows that the numbers of published
papers in each category differ from each other and that the
research interest shifts from one category to another as time
moves on. For example, static and dynamic slice-based tech-
niques were popular between 2004 and 2007, whereas exe-
cution slice and program spectrum-based techniques have
dominated since 2008.

Different metrics to evaluate the effectiveness of software
fault localization techniques (in terms of how much code
needs to be examined before the first faulty location is iden-
tified) are reviewed, including T-score, EXAM score/
Expense, P-score, N-score, and Wilcoxon signed-rank test.
Subject programs and debugging tools used in various
empirical evaluations are summarized. Results of different
empirical studies using these metrics, programs, and tools
suggest that no one category is completely superior to
another. In fact, techniques in each category have their own
advantages and disadvantages.

Additionally, effectiveness of these techniques can also
be analyzed from theoretical perspectives. However, such
analyses very often make over-simplified and non-realistic
assumptions that do not hold for real-life programs. Hence,
their conclusions in general are only applicable within lim-
ited scopes. This implies that a theoretical analysis alone is
not enough. It is advisable to apply both empirical evalua-
tions and theoretical analyses to provide a more complete
assessment.

We emphasize that effectiveness is not the only attribute
of a software fault localization technique that should be con-
sidered. Other factors, including overhead for computing
the suspiciousness of each program component, time and
space for data collection, human effort, and tool support,
should be included as well. We also discuss aspects that are
critical to software fault localization, such as fault localiza-
tion on programs with multiple bugs, concurrent programs,
and spreadsheets, as well as impacts of test cases, coinciden-
tal correctness, and faults introduced by missing code.

To conclude, our objective is to use this survey to provide
the software engineering community with a better under-
standing of state-of-the-art research in software fault locali-
zation and to identify potential drawbacks and deficiencies
of existing techniques so that additional studies can be con-
ducted to improve their practicality and robustness.
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