
A Survey on Metamorphic Testing
Sergio Segura,Member, IEEE, Gordon Fraser,Member, IEEE, Ana B. Sanchez, and Antonio Ruiz-Cort�es

Abstract—A test oracle determines whether a test execution reveals a fault, often by comparing the observed program output to the

expected output. This is not always practical, for example when a program’s input-output relation is complex and difficult to capture

formally.Metamorphic testing provides an alternative, where correctness is not determined by checking an individual concrete output,

but by applying a transformation to a test input and observing how the program output “morphs” into a different one as a result. Since

the introduction of suchmetamorphic relations in 1998, many contributions on metamorphic testing have been made, and the technique

has seen successful applications in a variety of domains, ranging from web services to computer graphics. This article provides a

comprehensive survey on metamorphic testing: It summarises the research results and application areas, and analyses common

practice in empirical studies of metamorphic testing as well as the main open challenges.

Index Terms—Metamorphic testing, oracle problem, survey

Ç

1 INTRODUCTION

SOFTWARE testing is an essential but costly activity applied
during software development to detect faults in pro-

grams. Testing consists of executing a program with test
inputs, and to detect faults there needs to be some procedure
by which testers can decide whether the output of the pro-
gram is correct or not, a so-called test oracle [1]. Often, the test
oracle consists of comparing an expected output value with
the observed output, but this may not always be feasible. For
example, consider programs that produce complex output,
like complicated numerical simulations, or code generated
by a compiler—predicting the correct output for a given
input and then comparing it with the observed output may
be non-trivial and error-prone. This problem is referred to as
the oracle problem and it is recognised as one of the fundamen-
tal challenges of software testing [1], [2], [3], [4].

Metamorphic testing [5] is a technique conceived to allevi-
ate the oracle problem. It is based on the idea that often it is
simpler to reason about relations between outputs of a pro-
gram, than it is to fully understand or formalise its input-
output behaviour. The prototypical example is that of a pro-
gram that computes the sine function: What is the exact
value of sin ð12Þ? Is an observed output of �0:5365 correct?
A mathematical property of the sine function states that
sin ðxÞ ¼ sin ðp� xÞ, and we can use this to test whether
sin ð12Þ ¼ sin ðp� 12Þ without knowing the concrete values
of either sine calculation. This is an example of a metamor-
phic relation: an input transformation that can be used to
generate new test cases from existing test data, and an out-
put relation, that compares the outputs produced by a pair

of test cases. Metamorphic testing does not only alleviate
the oracle problem, but it can also be highly automated.

The introduction of metamorphic testing can be traced
back to a technical report by Chen et al. [5] published in 1998.
However, the use of identity relations to check program out-
puts can be found in earlier articles on testing of numerical
programs [6], [7] and fault tolerance [8]. Since its introduction,
the literature on metamorphic testing has flourished with
numerous techniques, applications and assessment studies
that have not been fully reviewed until now. Although some
papers present overviews of metamorphic testing, they are
usually the result of the authors’ own experience [9], [10],
[11], [12], [13], review of selected articles [14], [15], [16] or sur-
veys on related testing topics [3]. At the time of writing this
article, the only known survey on metamorphic testing is
written in Chinese and was published in 20091 [17]. As a
result, publications on metamorphic testing remain scattered
in the literature, and this hinders the analysis of the state of
the art and the identification of new research directions.

In this article, we present an exhaustive survey on meta-
morphic testing, covering 119 papers published between
1998 and 2015. To provide researchers and practitioners
with an entry point, Section 2 contains an introduction to
metamorphic testing. All papers were carefully reviewed
and classified, and the review methodology followed in our
survey as well as a brief summary and analysis of the
selected papers are detailed in Section 3. We summarise the
state of the art by capturing the main advances on metamor-
phic testing in Section 4. Across all surveyed papers, we
identified more than 12 different application areas, ranging
from web services through simulation and modelling to
computer graphics (Section 5). Of particular interest for
researchers is a detailed analysis of experimental studies
and evaluation metrics (Section 6). As a result of our survey,
a number of research challenges emerge, providing avenues
for future research (Section 7); in particular, there are open
questions on how to derive effective metamorphic relations,
as well as how to reduce the costs of testing with them.

� S. Segura, A.B. S�anchez, and A. Ruiz-Cort�es are with the Department of
Computer Languages and Systems, Universidad de Sevilla, Spain.
E-mail: {sergiosegura, anabsanchez, aruiz}@us.es.

� G. Fraser is with the Department of Computer Science, University of
Sheffield, Sheffield, United Kingdom. E-mail: gordon.fraser@sheffield.ac.uk.

Manuscript received 11 July 2015; revised 9 Feb. 2016; accepted 14 Feb. 2016.
Date of publication 28 Feb. 2016; date of current version 23 Sept. 2016.
Recommended for acceptance by P. Tonella.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2532875

1. Note that 86 out of the 119 papers reviewed in our survey were
published in 2009 or later.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016 805

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:


2 METAMORPHIC TESTING

Identity relations are a well-known concept in testing, and
have been used even before the introduction of metamor-
phic relations. For example, Blum et al. [7] checked whether
numerical programs satisfy identity relations such as
P ðxÞ ¼ P ðx1Þ þ P ðx2Þ for random values of x1 and x2. In the
context of fault tolerance, the technique of data diversity [8]
runs the program on re-expressed forms of the original
input; e.g., sin ðxÞ ¼ sin ðaÞ � sin ðp=2� bÞþ sin ðp=2� aÞ �
sin ðbÞ where aþ b ¼ x. The concept of metamorphic testing,
introduced by Chen [5] in 1998, generalises these ideas from
identity relations to any type of relation, such as equalities,
inequalities, periodicity properties, convergence con-
straints, subsumption relationships and many others. In
general, a metamorphic relation for a function f is
expressed as a relation among a series of function inputs
x1; x2; . . . ; xn (with n > 1), and their corresponding output
values fðx1Þ; fðx2Þ; . . . ; fðxnÞ [18]. For instance, for the sine
example from the introduction the relation between x1 and
x2 would be p� x1 ¼ x2, and the relation between fðx1Þ
and fðx2Þwould be equality, i.e.,:

R ¼ fðx1; x2; sinx1; sin x2Þ j p� x1 ¼ x2 ! sin x1 ¼ sin x2g:

This resembles the traditional concept of program invariants,
which are properties (for example expressed as assert state-
ments) that hold at certain points in programs [19]. However,
the key difference is that an invariant has to hold for every
possible program execution, whereas a metamorphic rela-
tion is a relation between different executions. A relation
between two executions implicitly defines how, given an
existing source test case (x1), one has to transform this into a
follow-up test case (x2), such that an abstract relation R (e.g.,
sinx1 ¼ sin x2) can be checked on the inputs represented by
x1 and x2, as well as the outputs produced by executing x1
and x2. The term metamorphic relation presumably refers to
this “metamorphosis” of test inputs and outputs. If the rela-
tion R does not hold on a pair of source and follow-up test
cases x1 and x2, then a fault has been detected. In this article,
we use the term metamorphic test case to refer to a pair of a
source test case and its follow-up test case.

The basic process for the application of metamorphic
testing can be summarised as follows:

1) Construction of metamorphic relations. Identify necessary
properties of the program under test and represent
them as metamorphic relations among multiple test
case inputs and their expected outputs, together with
some method to generate a follow-up test case based
on a source test case. Note that metamorphic relations
may be associated with preconditions that restrict the
source test cases towhich they can be applied.

2) Generation of source test cases. Generate or select a set
of source test cases for the program under test using
any traditional testing technique (e.g., random
testing).

3) Execution of metamorphic test cases. Use the metamor-
phic relations to generate follow-up test cases, exe-
cute source and follow-up test cases, and check the
relations. If the outputs of a source test case and its
follow-up test case violate the metamorphic relation,
the metamorphic test case is said to have failed, indi-
cating that the program under test contains a bug.

As an illustrative example, consider a program that
computes the shortest path between a source vertex s and
destination vertex d in a graph G, SP ðG; s; dÞ. A metamor-
phic relation of the program is that if the source and desti-
nation vertices are swapped, the length of the shortest path
should be equal: jSP ðG; s; dÞj ¼ jSP ðG; d; sÞj. Suppose that
a source test case ðG; a; bÞ is selected according to some
testing method (e.g., randomly). Based on the metamorphic
relation, we can now easily generate a new follow–up test
case by swapping the source and destination vertices
ðG; b; aÞ. After executing the program with both test cases,
their outputs can be checked against the relation to confirm
whether it is satisfied or not, i.e., whether the outputs are
equal. If the metamorphic relation is violated, it can be con-
cluded that the metamorphic test has failed and the pro-
gram is faulty.

As a further example, consider testing an online search
engine such as Google or Yahoo [20]. Let CountðqÞ be the
number of results returned for a search query q. Intuitively,
the number of returned results for q should be greater or
equal than that obtained when refining the search with
another keyword k. This can be expressed as the following
metamorphic relation: CountðqÞ � Countðq þ kÞ, where þ
denotes the concatenation of two keywords. Fig. 1 illus-
trates the application of this metamorphic relation on Goo-
gle. Consider a source test case consisting in a search for
the keyword “metamorphic”, resulting in “About” 4.2M
results. Suppose that a follow-up test case is constructed
by searching for the keywords “metamorphic testing”:
This leads to 8,380 results which is less than the result for
“metamorphic”, and thus satisfies the relation. If more
results were found, then that would violate the metamor-
phic relation, revealing a bug in the system.

If source test cases are generated automatically, then
metamorphic testing enables full test automation, i.e., input
generation and output checking. In the sine example pre-
sented in Section 1, for instance, metamorphic testing could
be used together with random testing to automatically gen-
erate random source test cases (x) and their respective fol-
low-up test cases (p� x), until a pair is found that violates
the metamorphic relation, or a maximum time out is

Fig. 1. Metamorphic test on the Google search engine checking the relation CountðqÞ � Countðq þ kÞ.

806 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016



reached. Similarly, in the search engine example, metamor-
phic testing could also be used together with a random
word generator to automatically construct source test cases
(e.g., “algorithm”) and their respective follow-up test cases
(e.g., “algorithm colour”) until a pair that reveals a bug is
found, if any such pairs exists.

3 REVIEW METHOD

To perform a survey on metamorphic testing we followed a
systematic and structured method inspired by the guidelines
of Kitchenham [21] andWebster et al. [22]. A similar approach
was followed by someof the authors in the context of software
product lines [23]. To report the results, we also took inspira-
tion from recent surveys on related topics such as the oracle
problem [3], search-based testing [24], automated test case
generation [2] and mutation analysis [25]. Below, we detail
themain data regarding the reviewprocess and its results.

3.1 Research Questions

The aim of this survey is to answer the following research
questions on metamorphic testing:

RQ1: What improvements to the technique have been
made?
RQ2:What are its known application domains?
RQ3: How are experimental evaluations performed?
RQ4:What are the future research challenges?

We propose RQ1 to obtain an in-depth view on metamor-
phic testing outlining the state of the art in terms of the main
advances in the application of the technique since its origi-
nal introduction. RQ2 is proposed to give an insight into the
scope of metamorphic testing and its applicability to differ-
ent domains including its integration with other testing
techniques. We also want to know how different
approaches of performing metamorphic testing are evalu-
ated including the subject programs used, types of detected
faults, evaluation metrics, and empirical studies involving
humans. Finally, based on the answer to the previous ques-
tions, we expect to identify unresolved problems and
research opportunities in response to RQ4.

3.2 Inclusion and Exclusion Criteria

We scrutinised the existing literature, looking for papers
addressing any topic related to metamorphic testing,
including methods, tools or guidelines for the application of
the technique, applications to specific testing problems,
empirical evaluations, and surveys. Articles of the same
authors but with very similar content were intentionally
classified and evaluated as separate contributions for a
more rigorous analysis. Later, in the presentation of results,
we grouped those articles with no major differences. We
excluded PhD theses as well as those papers not related to
the computer sciences field, not written in English, or not
accessible on the Web.

3.3 Source Material and Search Strategy

The search for relevant papers was carried out in the online
repositories of the main technical publishers, including
ACM, Elsevier, IEEE, Springer andWiley. We collected com-
puter science papers published between January 1st 1998

(when Chen’s report was published) and November 30th
2015 which have either “metamorphic test,” “metamorphic
testing,” “metamorphic relation” or “metamorphic relations”
in their title, abstract or keywords. We refer the reader to the
technical report [26] which contains all data forms and query
details. After a quick review of the results, we noticed that
some articles on metamorphic testing with many citations
were not among the candidate papers, including the technical
report of Chen et al. [5] where the technique was introduced.
To include those papers, we performed the search in the Goo-
gle Scholar database, and additionally selected all papers
with 5 ormore citations published outside our target publica-
tion sources2. These were merged with our previous results,
resulting in a final set of 362 candidate papers.

Next, we examined the abstracts of the papers identified
in the previous step and filtered them according to our
inclusion and exclusion criteria, checking the content of the
papers when unsure. This step was performed by two dif-
ferent authors who agreed on the results. The set of candi-
date papers was filtered to 116 publications within the
scope of our survey. Then, we contacted the corresponding
authors of the 116 selected papers and asked them to inform
us about any missing papers within the scope of our search.
Based on the feedback received, we included 3 new papers
meeting our search criteria, except for the inclusion of the
search terms in their title, abstract or keywords. As a result,
the search was finally narrowed to 119 publications that were
in the scope of this survey. These papers are referred to as
the primary studies [21]. Table 1 presents the number of pri-
mary studies retrieved from each source.

It is possible that our search has failed to find all papers
since we focused on a subset of reputed publishers. How-
ever, we remain confident that the overall trends we report
are accurate and provide a fair picture of the state of the art
on metamorphic testing.

3.4 Data Collection

All 119 primary studies were carefully analysed to answer
our research questions. For each study, we extracted the
following information: full reference, brief summary, type
of contribution (e.g., case study), application domains,
integration with other testing techniques, number of meta-
morphic relations proposed, evaluation details, lessons
learned and suggested challenges. To facilitate the process,
we filled in a data extraction form for each primary study.
All data forms were collected and published in a technical
report [26].

TABLE 1
Search Engines and Number of Primary Studies

Search engine Primary studies

ACM digital library 15
Elsevier ScienceDirect 6
IEEEXplore digital library 65
Springer online library 13
Wiley InterScience 4
Google Scholar (+5 citations) 16

Total 119

2. The search was performed on December 30th, 2015.

SEGURA ETAL.: A SURVEYON METAMORPHIC TESTING 807



Primary studies were read at least twice by two different
authors to reducemisunderstandings ormissing information.
As a sanity check, we contacted the corresponding author of
each primary study and sent them the technical report to con-
firm that the information collected from their papers was cor-
rect. Some minor changes were proposed and corrected. We
also asked them to inform us about any missing paper within
the scope of our search as described in the previous section.

3.5 Summary of Results

The following sections summarise the primary studies in
terms of publication trends, authors, venues, and research
topics on metamorphic testing.

3.5.1 Publication Trends

Fig. 2a illustrates the number of publications on metamor-
phic testing published between January 1st 1998 and
November 30th 2015. The graph shows a constant flow of
papers on the topic since 2001, in particular from 2010
onwards. The cumulative number of publications is illus-
trated in Fig. 2b. We found a close fit to a quadratic function
with a high determination coefficient (R2 ¼ 0:997), indicat-
ing a strong polynomial growth, a sign of continued health
and interest in the subject. If the trend continues, there will
be more than 170 metamorphic testing papers by 2018, two
decades after the introduction of the technique.

3.5.2 Researchers and Organisations

We identified 183 distinct co-authors from 74 different
organisations in the 119 primary studies under review.

Table 2 presents the top authors onmetamorphic testing and
their most recent affiliation. Unsurprisingly, Prof. T. Y.
Chen, with 44 papers, is themost prolific author on the topic.

3.5.3 Geographical Distribution of Publications

We related the geographical origin of each primary study to
the affiliation country of its first co-author. Interestingly, we
found that all 119 primary studies originated from only 11
different countries with Australia and China ahead, as pre-
sented in Table 3. By continents, 37 percent of the papers orig-
inated from Asia, 30 percent from Oceania, 19 percent from
Europe and 14 percent from America. This suggests that the
metamorphic testing community is formed by amodest num-
ber of countries but fairly distributed around theworld.

3.5.4 Publication Venues

The 119 primary studies under review were published in 72
distinct venues. This means that the metamorphic testing
literature is very dispersed, probably due to its applicability
to multiple testing domains. Regarding the type of venue,
most papers were presented at conferences and symposia
(58 percent), followed by journals (23 percent), workshops
(16 percent) and technical reports (3 percent). Table 4 lists
the venues where at least three metamorphic testing papers
have been presented.

3.5.5 Types of Contributions and Research Topics

Fig. 3a classifies the primary studies according to the type of
contribution. We found that half of the papers present case

Fig. 2. Metamorphic testing papers published between January 1st 1998 and November 30th 2015.

TABLE 2
Top 10 Co-Authors on Metamorphic Testing

Author Institution Papers

T. Y. Chen Swinburne University of Technology 44
T. H. Tse The University of Hong Kong 20
F.-C. Kuo Swinburne University of Technology 17
Z. Q. Zhou University of Wollongong 14
W. K. Chan City University of Hong Kong 11
H. Liu RMIT University 9
C. Murphy Columbia University 9
G. Kaiser Columbia University 8
X. Xie Swinburne University of Technology 7
B. Xu Nanjing University 7

TABLE 3
Geographical Distribution of Publications

Country Papers

Australia 36
China 25
United States 17
Hong Kong 12
Germany 8
Spain 7
India 5
United Kingdom 3
Switzerland 3
Malaysia 2
France 1

808 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016



studies (50 percent), followed by new techniques and meth-
odologies (31 percent), and assessments and empirical stud-
ies (10 percent). We also found a miscellany of papers (7
percent) including related surveys, tutorial synopsis, and
guidelines. Only two of the papers (2 percent) presented a
tool as their main contribution.

A similar classification based on the main research topic
is presented in Fig. 3b. Interestingly, we found that 49 per-
cent of the papers report applications of metamorphic test-
ing to different problem domains. The rest of papers
address the construction of metamorphic relations (19 per-
cent), integration with other testing techniques (10 percent),
assessment of metamorphic testing (6 percent), execution of
metamorphic test cases (5 percent) and generation of source
test cases (4 percent). Finally, a few papers (7 percent) pres-
ent brief overviews on the technique, its applications and
research directions.

4 STATE OF THE ART IN METAMORPHIC TESTING

In this section, we address RQ1 by summarising the main
contributions to metamorphic testing in the literature. First,
we review the papers studying the properties of effective
metamorphic relations. Then, approaches are classified
according to the step they contribute to in the metamorphic
testing process presented in Section 2, namely, construction
of metamorphic relations, generation of source test cases,
and execution of metamorphic test cases.

4.1 Properties of Good Metamorphic Relations

The effectiveness of metamorphic testing is highly depen-
dent on the specific metamorphic relations that are used,
and designing effective metamorphic relations is thus a crit-
ical step when applying metamorphic testing. For most
problems, a variety of metamorphic relations with different
fault-detection capability can be identified [9], [16], [18],
[27], [28], [29], [30], [31], [32], [33], [34], [35]. Therefore, it is
advisable to use a variety of diverse metamorphic relations
to effectively test a given program. Several authors even
suggest using as many metamorphic relations as possible
during testing [28], [29], [36], [37]. However, because defin-
ing metamorphic relations can be difficult, it is important to
know how to select the most effective ones. In this section,
we review papers studying the properties that make meta-
morphic relations good at detecting faults.

Defining good metamorphic relations requires knowledge of the
problem domain.Chen et al. [27] compared the effectiveness of
metamorphic relations solely based on the theoretical

knowledge of the problem (black-box) versus those derived
from the program structure (white-box) using two case stud-
ies. They concluded that theoretical knowledge of the prob-
lem domain is not adequate for distinguishing good
metamorphic relations. Instead, goodmetamorphic relations
should be preferably selected with regard to the algorithm
under test following a white-box approach. However, this
was later disputed by Mayer and Guderlei [38], who studied
six subject programs for matrix determinant computation
with seeded faults. They concluded that metamorphic rela-
tions in the form of equalities or linear equations3 as well as
those close to the implementation strategy have limited effec-
tiveness. Conversely, they reported that good metamorphic
relations are usually strongly inspired by the semantics of
the program under test. Other studies have also emphasised
the knowledge of the problem domain as a requirement for
the application of metamorphic testing [30], [39], [40].

Metamorphic relations should make execution of the follow-up
test case as different as possible from the source test case. Chen
et al. [27] reported that good metamorphic relations are
those that can make the execution of the source-test case as
different as possible to its follow-up test case. They defined
the “difference among executions” as any aspects of pro-
gram runs (e.g., paths traversed). This observation has been
confirmed by several later studies [9], [41], [42], [43], [44],
[45]. In particular, Asrafi et al. [46] hypothesised that the
higher the combined code coverage of the source and fol-
low-up test cases, the more different are the executions, and
the more effective is the metamorphic relation. Their study
on two subject programs showed a strong correlation
between coverage and fault-detection effectiveness in one of
the two. In a similar study, Cao et al. [47] assessed the rela-
tion between fault-detection effectiveness of metamorphic
relations and test case dissimilarity. An extensive experi-
ment with 83 faulty programs and 7 distance metrics
between the execution profiles of source and follow-up test
cases revealed a strong and statistically significant correla-
tion between the fault-detection capability of metamorphic
relations and the distance among test cases, in particular
when using branch coverage Manhattan distance [48].

Metamorphic relations derived from specific parts of the system
are more effective than those targeting the whole system. Several
authors have explored the applicability of metamorphic
testing for integration testing with some helpful conclusions
for the construction of good metamorphic relations. Just
and Schweiggert [49], [50] assessed the applicability of
metamorphic testing for system and integration testing in
the context of an image encoder. Among other results, they
concluded that the metamorphic relations derived from the
components of a system are usually better at detecting faults
than those metamorphic relations derived from the whole
system. This finding was later confirmed by Xie et al. [51],
who reported that metamorphic relations targeting specific
parts of the program under test are easier to construct, more
constrained, and therefore more effective in detecting faults
than metamorphic relations at the system level.

Metamorphic relations should be formally described. Chan
et al. [52] formally described metamorphic relations and

TABLE 4
Top Venues on Metamorphic Testing

Venue Papers

Int Conference on Quality Software 9
Int Computer Software & Applications Conference 8
Int Workshop on Automation of Software Test 4
Int Conference on Software Engineering 4
IEEE Transactions on Software Engineering 4
Software Testing, Verification and Reliability 4
Int Conf on Software Testing, Verification and Validation 3
Information and Software Technology 3

3. The authors literally refer to “equations with linear combinations
on each side (with at least two terms on one of the sides)”.

SEGURA ETAL.: A SURVEYON METAMORPHIC TESTING 809



metamorphic testing for a precise definition of the tech-
nique. Their formalisation was reused by several authors
[29], [36] and later revised by Chan and Tse [12]. Hui and
Huang [53] pointed out that most metamorphic relations in
the literature are informally described using natural lan-
guage, which makes them easily misunderstood, ambigu-
ous and hard to reuse. The authors suggested that good
metamorphic relations should be formally described and
proposed a formal model for the rigorous description of
metamorphic relations using predicate logic, inspired by
the work of Chan et al. [52]. In particular, they proposed
representing a metamorphic relation as a 3-tuple composed
of iÞ relation between the inputs of source and follow-up
test cases, iiÞ relation between the outputs of source and fol-
low-up test cases, and iiiÞ program function.

4.2 Construction of Metamorphic Relations

Constructing metamorphic relations is typically a manual
task that demands thorough knowledge of the program
under test. In this section, we review proposed alternative
ways to create metamorphic relations, either by combining
existing relations, or by generating them automatically.

Liu et al. [54] proposed a method named Composition of
Metamorphic Relations (CMR) to construct new metamorphic
relations by combining several existing relations. A similar
idea had been superficially explored previously by Dong
et al. [55]. The rationale behind this method is that the result-
ing relations should embed all properties of the original
metamorphic relations, and thus they should provide similar
effectiveness with a fewer number of metamorphic relations
and test executions. Intuitively, Liu et al. defined two meta-
morphic relations as “compositable” if the follow-up test cases
of one of the relations can always be used as source test case
of the other. The composition is sensitive to the order of
metamorphic relations and generalisable to any number of
them. Determining whether two metamorphic relations are
composable is a manual task. The results of a case studywith
a bioinformatics program processing an input matrix show
that the composition of a set of metamorphic relations usu-
ally produces a composite relation with higher (or at least
similar) fault-detection effectiveness than the original meta-
morphic relations, provided that all component relations

have similar “tightness.” The tightness of a relation deter-
mines how hard it is to satisfy it by mere chance—the tighter
a relation is, the more difficult it is to satisfy it with some ran-
dom outputs; e.g., sin ðxÞ ¼ sin ðp� xÞ is tighter than
sin ðxÞ 6¼ sin ðp� x=2Þ. They also concluded that the CMR
method delivers higher cost-effectiveness than classic meta-
morphic testing since it involves fewer test executions.

Kanewala and Bieman [56], [57] proposed a method that
determines, given a predefined set of relations that they
believe to hold for many numerical programs, which of
these are exhibited by a given numerical program. Their
method works by extracting a function’s control flow graph
and building a predictive model using machine learning
techniques; i.e., it is a white-box method that requires static
access to the source code. The approach was evaluated by
constructing a prediction model using a code corpus of 48
mathematical functions with numerical inputs and outputs.
The model was designed to predict three specific types of
metamorphic relations: permutative, additive and inclu-
sive [58]. In addition, they checked the fault–detection effec-
tiveness of the predictive metamorphic relations using
seeded faults. The results revealed that 66 percent of the
faults (655 out of 988) were detected by the predicted meta-
morphic relations. In later work [59], the authors extended
their method using graph kernels, which provide various
ways of measuring similarity among graphs. The intuition
behind their approach was that functions that have similar
control flow and data dependency graphs may have similar
metamorphic relations. Empirical results on the prediction
of six different types of metamorphic relations on a corpus
of 100 numerical programs revealed that graph kernels lead
to higher prediction accuracy.

Zhang et al. [60] proposed a search-based approach for
the inference of polynomial metamorphic relations. More
specifically, the algorithm searches for metamorphic rela-
tions in the form of linear or quadratic equations (e.g.,

cos ð2xÞ ¼ 2 cos 2ðxÞ � 1). Relations are inferred by running
the program under test repeatedly, searching for relations
among the inputs and outputs. It is therefore a black-box
approach which requires no access to the source code. Since
running the program with all the possible input values is
rarely possible, the relations identified are strictly referred

Fig. 3. Classification of primary studies by publication type and research topic.

810 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016



to as likely metamorphic relations, until they are confirmed
by a domain expert. Their work was evaluated inferring
hundreds of likely metamorphic relations for 189 functions
of 4 commercial and open source mathematical libraries.
The results showed that the generated metamorphic rela-
tions are effective in detecting mutants. Notice that in con-
trast to the work of Kanewala and Bieman [56], [57], this
approach does not predict whether the program exhibits a
previously defined metamorphic relation, but rather infers
the metamorphic relation from scratch.

Carzinaga et al. [61] proposed to generate oracles by
exploiting the redundancy contained in programs. Given a
source test case, they generate a test with the same code in
which some operations are replaced with redundant ones.
For instance, in the AbstractMultimap<K,V> class of
the Google Guava library,4 the methods put(k,v) and
putAll(k,c) are equivalent when c is a collection con-
taining a single element v. If the outputs of both test cases
are not equal, the code must contain a bug. The author pre-
sented an implementation of their approach using aspects.
The identification of redundant methods is a manual task.
Although the core of their contribution was not related to
metamorphic testing, their approach can be considered a
specific application of the technique. In a related article,
Goffi et al. [62], [63] presented a search-based algorithm for
the automated synthesis of likely-equivalent method sequen-
ces in object-oriented programs. The authors suggest that
such likely-equivalent sequences could be used as metamor-
phic relations during testing. The approach was evaluated
using 47 methods of 7 classes taken from the Stack Java
Standard Library and the Graphstream library. The algo-
rithm automatically synthesised 87 percent (123 out of 141)
of the equivalent method sequences manually identified.

Su et al. [64] presented an approach named KABU for the
dynamic inference of likely metamorphic relations inspired
by previous work on the inference of program invari-
ants [19]. The inference process is constrained by searching
for a set of predefined metamorphic relations [58]. A Java
tool implementing the approach was presented and evalu-
ated on the inference of likely metamorphic relations in two
sample programs. As a result, KABU found more likely
metamorphic relations than a group of 23 students trained
in the task. Authors also proposed a method, Metamorphic
Differential Testing (MDT), built upon KABU, to compare
the metamorphic relations between different versions of the
same program reporting the differences as potential bugs.
Experimental results on different versions of two classifica-
tion algorithms showed that MDT successfully detected the
changes reported in the logs of the Weka library.

Chen et al. [65] presented a specification-based methodol-
ogy and associated tool called METRIC for the identification
of metamorphic relations based on the category-choice
framework [66]. In this framework, the program specification
is used to partition the input domain in terms of categories,
choices and complete test frames. Roughly speaking, a com-
plete test frame is an abstract test case defining possible
combinations of inputs, e.g., {type of vehicle, weekday, parking
hours}. Given a set of complete test frames, METRIC guides
testers on the identification of metamorphic relations and

related source and follow-up test cases. The results of an
empirical study with 19 participants suggest that METRIC is
effective and efficient at identifyingmetamorphic relations.

4.3 Generation of Source Test Cases

As mentioned in Section 6.2, most contributions on meta-
morphic testing use either random test data or existing test
suites for the creation of source test cases. In this section, we
review the papers proposing alternative methods for the
generation of source test cases.

Gotlieb and Botella [67] presented a framework named
Automated Metamorphic Testing (AMT) to automatically gen-
erate test data for metamorphic relations. Given the source
code of a program written in a subset of C and a metamor-
phic relation, AMT tries to find test cases that violate the
relation. The underlying method is based on the translation
of the code into an equivalent constraint logic program over
finite domains. The solving process is executed until a solu-
tion is found or a timeout is reached. The supported types
of metamorphic relations are limited to numeric expressions
over integers. The framework was evaluated using three
laboratory programs with seeded faults.

Chen et al. [28] compared the effectiveness of “special
values” and random testing as source test cases for meta-
morphic testing. Special values are test inputs for which the
expected output is well known (e.g., sin ðp=2Þ ¼ 1). Since
test cases with special values must be manually constructed
we consider them as manual testing. The authors found that
manual and metamorphic testing are complementary tech-
niques, but they also note that random testing has the
advantage of being able to provide much larger test data
sets. In a closely related study, Wu et al. [68] concluded that
random source test cases result in more effective metamor-
phic test cases than those derived from manual test cases
(special values). Segura et al. [69] compared the effective-
ness of random testing and a manually designed test suite
as the source test cases for metamorphic testing, and their
results also showed that random source test cases are more
effective at detecting faults than manually designed source
test cases in all the subject programs. Even though this sug-
gests that random testing is more effective, there are also
indications that combining random testing with manual tests
may be even better: Chen et al [28] concluded that random
testing is an efficient mechanism to augment the number of
source test cases; Segura et al. [69] observed that combining
manual tests with random tests leads to faster fault detec-
tion compared to using random tests only.

Batra and Sengupta [41] presented a genetic algorithm
for the selection of source test cases maximising the paths
traversed in the program under test. The goal is to generate
a small but highly effective set of source test cases. Their
algorithm was evaluated by generating source test cases for
several metamorphic relations in a small C program, which
determines the type of a triangle, where 4 mutants were
generated and killed. In related work, Chen et al. [42]
addressed the same problem from a black-box perspective.
They proposed partitioning the input domain of the pro-
gram under test into equivalence classes, in which the pro-
gram is expected to process the inputs in a similar way.
Then, they proposed an algorithm to select test cases that
cover those equivalence classes. Evaluation on the triangle4. https://github.com/google/guava.

SEGURA ETAL.: A SURVEYON METAMORPHIC TESTING 811

https://github.com/google/guava


program suggests that their algorithm can generate a small
set of test cases with high detection rate.

Dong and Zhang [44] presented a method for the con-
struction of metamorphic relations and their corresponding
source test cases using symbolic execution. The method first
analyses the source code of the program to determine the
symbolic inputs that cause the execution of each path. Then,
the symbolic inputs are manually inspected and used to
guide the construction of metamorphic relations that can
exercise all the paths of the program. Finally, source test
cases are generated by replacing the symbolic inputs by real
values. As in previous work, the approach was evaluated
using a small C program with seeded faults.

4.4 Execution of Metamorphic Test Cases

The execution of a metamorphic test case is typically per-
formed in two steps. First, a follow-up test case is generated
by applying a transformation to the inputs of a source test
case. Second, source and follow-up test cases are executed,
checking whether their outputs violate the metamorphic
relation. In this section, we present those articles that either
propose a different approach for the execution of metamor-
phic test cases, or to automate part of the process.

Several papers have contributed to the execution and
assessment of metamorphic test cases. Wu [70] presented a
method named Iterative Metamorphic Testing (IMT) to sys-
tematically exploit more information from metamorphic
tests, by applying metamorphic relations iteratively. In
IMT, a sequence of metamorphic relations are applied in a
chain style, by reusing the follow-up test case of each meta-
morphic relation as the source test case of the next metamor-
phic relation. A case study was presented with a program
for sparse matrix multiplication and more than 1,300
mutants. The results revealed that IMT detects more faults
than classic metamorphic testing and special value testing.
Dong et al. [71] presented an algorithm integrating IMT and
program path analysis. The algorithm runs metamorphic
tests iteratively until a certain path coverage criterion is sat-
isfied. Segura et al. [69], [72], [73] presented a metamorphic
testing approach for the detection of faults in variability
analysis tools. Their method is based on the iterative appli-
cation of a small set of metamorphic relations. Each relation
relates two input variability models and their correspond-
ing set of configurations, (i.e., output). In practice, the pro-
cess can generate an unlimited number of random test cases
of any size. In certain domains, it was necessary to apply
the metamorphic relations in a certain order. Their
approach was proven effective in detecting 19 real bugs in 7
different tools.

Guderlei and Mayer [74] proposed Statistical Metamorphic
Testing (SMT) for the application of metamorphic testing to
non-deterministic programs. SMT does not consider a single
execution, but is based on studying the statistical properties
of multiple invocations to the program under test. The
method works by generating two or more sequences of out-
puts by executing source and follow-up test cases. Then, the
sequences of outputs are compared according to their statis-
tical properties using statistical hypothesis tests. The appli-
cability of the approach was illustrated with a single
metamorphic relation on a subject program with seeded
faults. In later work, Murphy et al. [75], [76] successfully

applied SMT to the detection of faults in a health care simu-
lation program with non-deterministic time events.

Murphy et al. [77], [78] presented an extension of the Java
Modelling Language (JML) [79] for the specification and
runtime checking of metamorphic relations. Their approach
extends the JML syntax to enable the specification of meta-
morphic properties, which are included in the Java source
code as annotations. The extension was designed so it could
express the typical metamorphic relations observed by the
authors in the domain of machine learning [80]. Addition-
ally, they presented a tool, named Corduroy, that pre-pro-
cesses the specification of metamorphic relations and
generates test code that can be executed using JML runtime
assertion checking, ensuring that the relations hold during
program execution. For the evaluation, they specified 25
metamorphic relations on several machine learning applica-
tions uncovering a few defects.

Murphy et al. [81] presented a framework named
Amsterdam for the automated application of metamor-
phic testing. The tool takes as inputs the program under
test and a set of metamorphic relations, defined in an
XML file. Then, Amsterdam automatically runs the pro-
gram, applies the metamorphic relations and checks the
results. The authors argue that in certain cases slight var-
iations in the outputs are not actually indicative of errors,
e.g., floating point calculations. To address this issue, the
authors propose the concept of heuristic test oracles, by
defining a function that determines whether the outputs
are “close enough” to be considered equals. This idea was
also used in a later empirical study [75] comparing the
effectiveness of three different techniques to test pro-
grams without oracles: “niche oracle” (i.e., inputs with
known expected outputs), metamorphic testing and asser-
tion checking. The study revealed that metamorphic test-
ing outperforms the other techniques, also when testing
non-deterministic programs.

Ding et al. [43] proposed a method named Self-Checked
Metamorphic Testing (SCMT) combining metamorphic test-
ing and structural testing. SCMT checks the code cover-
age of source and follow-up test cases during test
execution to evaluate the quality of metamorphic rela-
tions. It is assumed that the higher the coverage, the
more effective the metamorphic relation. The test cover-
age data obtained may be used to refine test cases by cre-
ating, replacing or updating metamorphic relations and
their test data. It is also suggested that unexpected cover-
age outcomes could help detect false-positive results,
which they define as a metamorphic relation that holds
despite the program being faulty. The approach was eval-
uated using a cellular image processing program with
one seeded bug.

Zhu [82] presented JFuzz, a Java unit testing tool
using metamorphic testing. In JFuzz, tests are specified
in three parts, namely i) source test case inputs (x), ii)
possible transformations on the test inputs (y ¼ p� x),
and iii) metamorphic relations implemented as code
assertions ( sin ðxÞ ¼ sin ðp� xÞ). Once these elements are
defined, the tool automatically generates follow-up test
cases by applying the transformations to the source test
inputs, it executes source and follow-up test cases, and
checks whether the metamorphic relations are violated.

812 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016



5 THE APPLICATION OF METAMORPHIC TESTING

In this section, we answer RQ2 by investigating the scope of
metamorphic testing and its applications. In particular, we
review applications of metamorphic testing to specific prob-
lem domains, and summarise approaches that use meta-
morphic testing to enhance other testing techniques.

5.1 Application Domains

In this section, we review those papers where the main con-
tribution is a case study on the application of metamorphic
testing to specific testing problems (58 out of 119). Fig. 4
classifies these papers according to their application
domain. In total, we identified more than 12 different appli-
cation areas. The most popular domains are web services
and applications (16 percent) followed by computer
graphics (12 percent), simulation and modeling (12 percent)
and embedded systems (10 percent). We also found a vari-
ety of applications to other fields (21 percent) such as finan-
cial software, optimisation programs or encryption
programs. Each of the other domains is explored in no more
than four papers, to date. Interestingly, we found that only

4 percent of the papers reported results in numerical pro-
grams, even though this seems to be the dominant domain
used to illustrate metamorphic testing in the literature.

Fig. 5 shows the domains where metamorphic testing
applications have been reported in chronological order.
Domains marked with (T) were only explored theoretically.
As illustrated, the first application of metamorphic testing
was reported in the domain of numerical programs back in
2002. While in the subsequent years the potential applica-
tions of metamorphic testing were mainly explored at a the-
oretical level, there are applications in multiple domains
from 2007 onwards. The rest of this section introduces the
papers reporting results in each application domain.

5.1.1 Web Services and Applications

Chan et al. [83], [84] presented a metamorphic testing meth-
odology for Service-Oriented Applications (SOA). Their
method relies on the use of so-called metamorphic services to
encapsulate the services under test, execute source and fol-
low-up test cases and check their results. Similarly, Sun
et al. [34], [85] proposed to manually derive metamorphic
relations from the WSDL description of web services. Their
technique automatically generates random source test cases
from the WSDL specification and applies the metamorphic
relations. They presented a tool to partially automate the
process, and evaluated it with three subject web services
and mutation analysis. In a related project, Castro-Cabrera
and Medina-Bulo [86], [87] presented a metamorphic test-
ing-based approach for web service compositions using the
Web Service Business Process Execution Language (WS-
BPEL) [88]. To this end, they proposed to analyse the XML
description of the service composition to select adequate
metamorphic relations. Test cases were defined in terms of
the inputs and outputs of the participant services.

In a related set of papers, Zhou et al. [20], [89] used meta-
morphic testing for the detection of inconsistencies in online
web search applications. Several metamorphic relations
were proposed and used in a number of experiments with
the web search engines Google, Yahoo! and Live Search.
Their results showed that metamorphic testing effectively
detected inconsistencies in the searches in terms of both
returned content and ranking quality. In later work [90], the
authors performed an extensive empirical study on the web

Fig. 4. Metamorphic testing application domains.

Fig. 5. Timeline of metamorphic testing applications. Domains marked with (T) were only explored theoretically.

SEGURA ETAL.: A SURVEYON METAMORPHIC TESTING 813



search engines Google, Bing, Chinese Bing and Baidu. As a
novel contribution, metamorphic relations were defined
from the user perspective, representing the properties that a
user expects from a “good” search engine, regardless of
how the engine is designed. In practice, as previously
noticed by Xie et al. [31], this means that metamorphic rela-
tions are not only suitable to detect faults in the software
under test (verification) but also to check whether the pro-
gram behaves as the user expects (validation). The authors
also proposed using metamorphic testing to assess quality
related properties such as reliability, usability or perfor-
mance. Experimental results revealed a number of failures
in the search engines under test.

5.1.2 Computer Graphics

Mayer and Guderlei [91], [92] compared several random
image generation techniques for testing image processing
programs. The study was performed on the implementation
of several image operators as the Euclidean distance trans-
form. Several metamorphic relations were used for the gen-
eration of follow-up test cases and the assessment of test
results. Chan et al. [93], [94] presented a testing approach
for mesh simplification programs using pattern classifica-
tion and metamorphic testing. Metamorphic relations were
used to detect test cases erroneously labelled as passed by a
trained pattern classifier. Just and Schweiggert [95] used
mutation analysis to evaluate the effectiveness of test data
generation techniques and metamorphic relations for a
jpeg2000 image encoder. Kuo et al. [33] presented a meta-
morphic testing approach for programs dealing with the
surface visibility problem. A real bug was revealed in a
binary space partitioning tree program. Finally, Jameel et al.
[96] presented a case study on the application of metamor-
phic testing to detect faults in morphological image opera-
tions such as dilation and erosion. Eight metamorphic
relations were reported and assessed on the detection of
seeded faults in a binary image dilation program.

5.1.3 Embedded Systems

Tse et al. [97] proposed the application of metamorphic
testing to context-sensitive middleware-based software
programs. Context-based applications adapt their behav-
iour according to the information from its environment
referred to as context. The process of updating the context
information typically relies on a middleware. Intuitively,
their approach generates different context situations and
checks whether the outcomes of the programs under test
satisfy certain relations. This work was extended to deal
with changes in the context during test execution [52], [98].
Chan et al. [99] applied metamorphic testing to wireless
sensor networks. As a novel contribution, they proposed to
check not only the functional output of source and follow-
up test cases but also the energy consumed during the exe-
cution, thus targeting both functional and non-functional
bugs. Kuo et al. [100] reported a case study on the use of
metamorphic testing for the detection of faults in a wireless
metering system. A metamorphic relation was identified
and used to test the meter reading function of a commer-
cial device from the electric industry in which two real
defects were uncovered. Finally, Jiang et al. [101] presented

several metamorphic relations for the detection of faults in
Central Processing Unit (CPU) scheduling algorithms. Two
real bugs were detected in one of the simulators under test.

5.1.4 Simulation and Modelling

Sim et al. [102] presented an application ofmetamorphic test-
ing for casting simulation, exploiting the properties of the
medial axis geometry function. Several metamorphic rela-
tions were introduced but no empirical results were pre-
sented. Chen et al. [103] proposed the application of
metamorphic testing to check the conformance between net-
work protocols and network simulators. A case study was
presented testing the OMNeT++ simulator [104] for confor-
mance with the ad-hoc on-demand distance vector protocol.
In a related project, Chen et al. [37] proposed usingmetamor-
phic testing for the detection of faults in open queuing net-
work modelling, a technique for planning the capacity of
computer and communication systems. Ding et al. [105] pre-
sented a case study on the detection of faults in a Monte
Carlo modelling program for the simulation of photon prop-
agation. Based on their previous work [43], the authors used
code coverage criteria to guide the selection of effective
metamorphic relations and the creation of test cases.Murphy
et al. [76] proposed usingmetamorphic relations to systemat-
ically test health care simulation programs, and presented a
case studywith two real-world simulators andmutation test-
ing. More recently, N�u~nez andHierons [106] proposed using
metamorphic relations to detect unexpected behaviour
when simulating cloud provisioning and usage. A case study
using two cloud models on the iCanCloud simulator [107]
was reported. Ca~nizares et al. [108] presented some prelimi-
nary ideas on the use of simulation and metamorphic testing
for the detection of bugs related to energy consumption in
distributed systems as cloud environments.

5.1.5 Machine Learning

Murphy et al. [58] identified six metamorphic relations that
they believe exist in most machine learning applications,
namely: additive, multiplicative, permutative, invertive,
inclusive, and exclusive relations. The effectiveness of the
relations was assessed on three specific machine learning
tools in which some real bugs were detected. In a related
project, Xie et al. [31], [109] proposed using metamorphic
testing for the detection of faults in supervised classifiers. It
was argued that metamorphic relations may represent both
necessary and expected properties of the algorithm under
test. Violations of necessary properties are caused by faults
in the algorithm and therefore are helpful for the purpose of
verification. Violations of expected properties indicate
divergences between what the algorithm does and what the
user expects, and thus are helpful for the purpose of valida-
tion. Two specific algorithms were studied: K-Nearest
neighbors and Na€ıve Bayes classifier. The results revealed
that both algorithms violated some of the necessary proper-
ties identified as metamorphic relations indicating faults or
unexpected behaviours. Also, some real faults were
detected in the open-source machine learning tool Weka
[110]. Finally, Jing et al. [111] presented a set of metamor-
phic relations for association rule algorithms and evaluated
them using a contact-lenses data set and the Weka tool.

814 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016



5.1.6 Variability and Decision Support

Segura et al. [69], [72] presented a test data generator for fea-
ture model analysis tools. Test cases are automatically gen-
erated from scratch using step-wise transformations that
ensure that certain constraints (metamorphic relations) hold
at each step. In later work [73], the authors generalised their
approach to other variability domains, namely CUDF docu-
ments and Boolean formulas. An extensive evaluation of
effectiveness showed, among other results, fully automatic
detection of 19 real bugs in 7 tools. In a related domain,5

Kuo et al. [45] presented a metamorphic testing approach
for the automated detection of faults in decision support
systems. In particular, they focused on the so-called multi-
criteria group decision making, in which decision problems
are modelled as a three-dimensional matrix representing
alternatives, criteria and experts. Several metamorphic rela-
tions were presented and used to test the research tool
Decider [45], where a bug was uncovered.

5.1.7 Bioinformatics

Chen et al. [40] presented several metamorphic relations for
the detection of faults in two open-source bioinformatics
programs for gene regulatory networks simulations and
short sequence mapping. Also, the authors discussed how
metamorphic testing could be used to address the oracle
problem in other bioinformatics domains such as phyloge-
netic, microarray analysis and biological database retrieval.
Pullum and Ozmen [112] proposed using metamorphic test-
ing for the detection of faults in predictive models for dis-
ease spread. A case study on the detection of faults in two
disease–spread models of the 1918 Spanish flu was pre-
sented, revealing no bugs. In a related project, Ramanathan
et al. [113] proposed using metamorphic testing, data visu-
alisation, and model checking techniques to formally verify
and validate compartmental epidemiological models.

5.1.8 Components

Beydeda [114] proposed a self-testing method for commer-
cial off-the-shelf components using metamorphic testing. In
this method, components are augmented with self-testing
functionality including test case generation, execution and
evaluation. In practice, this method allows users of a com-
ponent to test it even without access to its source code. Lu
et al. [115] presented a metamorphic testing methodology
for component–based software applications, both at the unit
and integration level. The underlying idea is to run test
cases against the interfaces of the components under test,
using metamorphic relations to construct follow-up test
cases and to check their results.

5.1.9 Numerical programs

Chen et al. [116] presented a case study on the application of
metamorphic testing to programs implementing partial dif-
ferential equations. The case study focused on a practical
problem in thermodynamics, namely the distribution of
temperatures in a square plate. They injected a seeded fault

in the program under test and compared the effectiveness
of “special” test cases and metamorphic testing in detecting
the fault. Special test cases were unable to detect the fault,
while metamorphic testing was effective at revealing it
using a single metamorphic relation. Aruna and Prasad [117]
presented several metamorphic relations for multiplication
and division of multi-precision arithmetic software applica-
tions. The work was evaluated with four real-time mathe-
matical projects and mutation analysis.

5.1.10 Compilers

Tao et al. [118] presented a so-called “equivalence preserva-
tion” metamorphic relation to test compilers. Given an
input program, the relation is used to generate an equiva-
lent variant of it, checking whether the behaviours of the
resulting executables are the same for a random set of
inputs. The authors proposed three different strategies for
the generation of equivalent source programs, such as
replacing an expression with an equivalent one (e.g.,
e� 2 � eþ e). The evaluation of their approach revealed
two real bugs in two C compilers. A closely related idea
was presented by Le et al. [119]. Given a program and a set
of input values, the authors proposed to create equivalent
versions of the program by profiling its execution and prun-
ing unexecuted code. Once a program and its equivalent
variant are constructed, both are used as input of the com-
piler under test, checking for inconsistencies in their results.
So far, this method has been used to detect 147 confirmed
bugs in two open source C compilers, GCC and LLVM.

5.1.11 Other Domains

Zhou et al. [39] presented several illustrative applications of
metamorphic testing in the context of numerical programs,
graph theory, computer graphics, compilers and interactive
software. Chen et al. [120] claimed that metamorphic testing
is both practical and effective for end-user programmers. To
support their claim, the authors briefly suggested how
metamorphic relations could be used to detect bugs in
spreadsheet, database and web applications. Sim et al. [121]
presented a metamorphic testing approach for financial
software. Several metamorphic relations were integrated
into the commercial tool MetaTrader [122] following a self-
testing strategy. Source and follow-up test cases were
derived from the real-time input price data received at dif-
ferent time periods. Metamorphic testing has also been
applied to optimisation programs using both stochastic
[123] and heuristic algorithms [32]. Yao et al. [124], [125],
[126] presented preliminary results on the use of metamor-
phic testing to detect integer overflows. Batra and
Singh [127] proposed using UML diagrams to guide the
selection of metamorphic relations and presented a small
case study using a banking application. Sun et al. [128]
reported several metamorphic relations for encryption pro-
grams. Aruna and Prasad [129] presented a small case study
on the application of metamorphic testing to two popular
graph theory algorithms. Finally, Lindvall et al. [130] pre-
sented an experience report on the use of metamorphic test-
ing to address acceptance testing of NASA’s Data Access
Toolkit (DAT). DAT is a huge database of telemetry data
collected from different NASA missions, and an advance

5. Note that variability models can be used as decision models dur-
ing software configuration.

SEGURA ETAL.: A SURVEYON METAMORPHIC TESTING 815



query interface to search and mine the available data. Due
to the massive amount of data contained in the database,
checking the correctness of the query results is challenging.
To address this issue, metamorphic testing was used by for-
mulating the same query in different equivalent ways, and
asserting that the resulting datasets are the same. Several
issues were detected with this approach.

5.2 Other Testing Applications

Besides direct application as a testing technique, metamor-
phic testing has been integrated into other testing techniques,
in order to improve their applicability and effectiveness. In
this section, we review these approaches.

Chen et al. [18], [131] proposed using metamorphic test-
ing with fault-based testing. Fault-based testing uses sym-
bolic evaluation [132], [133] and constraint solving [133]
techniques to prove the absence of certain types of faults in
the program under test. The authors used several numerical
programs to illustrate how real and symbolic inputs can be
used to discard certain types of faults even in the absence of
an oracle. In a related project [30], [134], the authors pre-
sented a method called semi-proving integrating global sym-
bolic execution and constraint solving for program proving,
testing and debugging. Their method uses symbolic execu-
tion to prove whether the program satisfies certain meta-
morphic relations or identify the inputs that violate them. It
also supports debugging by identifying violated constraint
expressions that reveal failures.

Dong et al. [135] proposed improving the efficiency of
Structural Evolutionary Testing (SET) using metamorphic
relations. In SET, evolutionary algorithms are used to gener-
ate test data that satisfy a certain coverage criteria (e.g., con-
dition coverage). This is often achieved by minimising the
distance of the test input to execute the program conditions
in the desired way. To improve the efficiency of the process,
the authors proposed to use metamorphic relations during
the search to consider both source and follow-up test cases
as candidate solutions, accelerating the chances of reaching
the coverage target. Their approach was evaluated with two
numerical programs.

Xie et al. [136], [137] proposed the combination of meta-
morphic testing and Spectrum-Based Fault Localisation
(SBFL) for debugging programs without an oracle. SBFL
uses the results of test cases and the corresponding cover-
age information to estimate the risk of each program entity
(e.g., statements) of being faulty. Rather than a regular test
oracle, the authors proposed to use the violation or non-
violation information from metamorphic relations rather
than the actual output of test cases. Among other results,
their approach was used to uncover two real bugs in the
Siemens Suite [138]. In a related project, Lei et al. [139]
applied the same idea to address the oracle problem in a
variant of SBFL named Backward-Slice Statistical Fault
Localisation (BSSFL) [140]. Rao et al. [141] investigated the
ratio between non-violated and violated metamorphic rela-
tions in SBFL. They concluded that the higher the ratio of
non-violated metamorphic relations to violated metamor-
phic relations, the less effective the technique. Aruna et al.
[142] proposed integrating metamorphic testing with the
Ochiai algorithm [143] for fault localisation in dynamic
web applications. Five metamorphic relations for a

classification algorithm were presented as well as some
experimental results.

Liu et al. [144] presented a theoretical description of a
new method called Metamorphic Fault Tolerance (MFT). In
MFT, the trustworthiness of test inputs is determined in
terms of the number of violated and non-violated metamor-
phic relations. The more relations are satisfied and the fewer
relations are violated, the more trustworthy the input is.
Also, if an output is judged as untrustworthy, the outputs
provided by metamorphic relations can be used to provide
a more accurate output.

Jin et al. [145] presented an approach called Concolic
Metamorphic Debugging, which integrates concolic testing,
metamorphic testing, and branch switching debugging, in
order to localise potential bugs. Concolic testing is a tech-
nique that executes the program under test with both, sym-
bolic and concrete inputs, and then uses symbolic path
conditions to derive new test inputs for paths not yet
explored. Based on a failure-inducing test input, the pro-
posed method explores all possible program paths in
depth-first-order, searching for the first one that passes the
metamorphic relation. The final goal is to isolate a minimum
amount of code to obtain a passing input, and use that isola-
tion point to localise the fault. The approach, implemented
in a tool called Comedy, was evaluated on 21 small pro-
grams with seeded faults. Comedy successfully generated
debugging reports in 88 percent of the faulty programs and
precisely located the fault in 36 percent of them.

6 EXPERIMENTAL EVALUATIONS

In this section, we address RQ3 by reviewing the experi-
mental evaluations of the surveyed papers. In particular,
we summarise their main characteristics in terms of subject
programs, source test cases, types of faults, number of meta-
morphic relations and evaluation metrics. Additionally, we
review the results of empirical studies involving humans.

6.1 Subject Programs

As a part of the review process, we collected information
about the subject programs used for the evaluation of meta-
morphic testing contributions. The table provided as sup-
plemental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSE.2016.2532875, shows the name, language,
size, description and the references of the papers reporting
results for each program. In the cases where the information
was unavailable in the literature, it is indicated with “NR”
(Not Reported). The table is ordered by the number of
papers that use the subject programs. Thus, the programs at
the top of the list are the most studied subject programs in
the metamorphic testing literature. Overall, we identified
145 different subject programs. Most of them are written in
Java (46.2 percent) and C/C++ (35.5 percent), with reported
sizes ranging between 12 and 12,795 lines of code.

In experimentation, the use of real world programs, rather
than research programs, is commonly recognised as an indica-
tor of the maturity of a discipline [25]. To assess this maturity,
we studied the relationship between the use of research and
real world programs in metamorphic testing experiments.
Similarly to previous surveys [25], we consider a program to

816 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016



be a “real world” program if it is either a commercial or an
open-source program, otherwise we consider it as a “research
program”. As an exception to this rule, we consider all open
source projects that are designed as benchmarks rather than
applications as research programs (e.g., the Siemens suite).
Fig. 6 presents the cumulative view of the number of each
type of program, research and real world, by year. As illus-
trated, research programs are used since 2002, while real
world programs were not introduced in metamorphic testing
experiments until 2006. Since then, the use of both types of
programs has increased with similar trends. It is noteworthy
that the number of real world programs in 2010 was higher
than the number of research programs. The cumulative num-
ber in 2015 shows a significant advantage of research pro-
grams (83) over real world programs (62). The overall trend,
however, suggests thatmetamorphic testing ismaturing.

6.2 Source Test Cases

Metamorphic testing requires the use of source test cases
that serve as seed for the generation of follow-up test cases.
Source test cases can be generated using any traditional test-
ing techniques. We studied the different techniques used in
the literature and counted the number of papers using each
of them; the results are presented in Fig. 7. As illustrated, a
majority of studies used random testing for the generation
of source test cases (57 percent), followed by those using an
existing test suite (34 percent). Also, several papers (6 per-
cent) use tool-based techniques such as constraint program-
ming, search-based testing or symbolic execution. This
diversity of usable sources supports the applicability of
metamorphic testing. It also supports the use of random
testing as a cost-effective and straightforward approach for
the generation of the initial test suite (cf., Section 4.3).

6.3 Types of Faults

The effectiveness of metamorphic testing approaches is
assessed according to their ability to detect failures caused
by faults in the programs under test. Uncovering real bugs is
the primary goal, but they are not always available for evalu-
ation. Thus, most authors introduce artificial faults (a.k.a.
mutants) in the subject programs either manually or auto-
matically, usingmutation testing tools [25]. To study the rela-
tionship between real bugs and mutants in metamorphic
testing evaluations, we calculated the cumulative number of

papers reporting results with artificial and real bugs by year,
depicted in Fig. 8. We consider a real bug to be a latent, ini-
tially unknown, fault in the subject program. As illustrated
in Fig. 8, the first experimental results with mutants were
presented back in 2002, while the first real bugs were
reported in 2007. Since then, the number of papers reporting
results with both types of faults has increased, although arti-
ficial faults show a steeper angle representing a stronger
trend. Besides this, we also counted the number of faults
used in each paper. To date, metamorphic testing has been
used to detect about 295 distinct real faults in 36 different
tools, 23 of which are real world programs, suggesting that
metamorphic testing is effective at detecting real bugs.

6.4 Metamorphic Relations

The number of metamorphic relations used in experimenta-
tion may be a good indicator of the effort required to apply
metamorphic testing. As a part of the data collection process,
we counted the number of metamorphic relations presented
in each paper containing experimental results. Fig. 9 classi-
fies the papers based on the number of metamorphic rela-
tions reported. As illustrated, the largest portion of studies
report between five and nine metamorphic relations (39 per-
cent), followed by those presenting between one and four
metamorphic relations (24 percent). Interestingly, only nine
studies (13 percent) presented more than 25 metamorphic

Fig. 6. Research versus real world subject programs.

Fig. 7. Source test case generation techniques.

Fig. 8. Artificial versus real faults.

SEGURA ETAL.: A SURVEYON METAMORPHIC TESTING 817



relations. We took a closer look at those nine papers and
observed that all of them reported results for several subject
programs. These findings suggest that a modest number of
metamorphic relations (less than 10) is usually sufficient to
applymetamorphic testingwith positive results.

6.5 Evaluation Metrics

Numerous metrics to evaluate the effectiveness of metamor-
phic testing approaches have been proposed. Among them,
we identified two metrics intensively used in the surveyed
papers, such that they could be considered as a de-facto
standard in the metamorphic testing literature.

6.5.1 Mutation Score

This metric is based on mutation analysis, where mutation
operators are applied to systematically produce versions of
the program under test containing artificial faults
(“mutants”) [25]. The mutation score is the ratio of detected
(“killed”) mutants to the total number of mutants. Mutants
that do not change the program’s semantics and thus cannot
be detected are referred to as equivalent [25]. In theory,
equivalent mutants should be excluded from the total num-
ber of mutants, but in practice this is not always possible
since program equivalence is undecidable. Suppose a meta-
morphic test suite t composed of a set of metamorphic tests,
i.e., pairs of source and follow-up test cases. The Mutation
Score (MS) of t is calculated as follows:

MSðtÞ ¼ Mk

Mt �Me
; (1)

where Mk is the number of killed mutants by the metamor-
phic tests in t, Mt is the total number of mutants and Me is
the number of equivalent mutants. A variant of this metric
[71], [91], [121] is often used to calculate the ratio of mutants
detected by a given metamorphic relation r as follows:

MSðt; rÞ ¼ Mkr

Mt �Me
; (2)

where Mkr is the number of mutants killed by the metamor-
phic tests in t derived from r. This metric is also called
mutation detection ratio [36].

6.5.2 Fault Detection Ratio

This metric calculates the ratio of test cases that detect a
given fault [41], [55], [68], [70], [71], [101], [124], [126]. The
Fault Detection Ratio (FDR) of a metamorphic test suite t
and a fault f is calculated as follows:

FDRðt; fÞ ¼ Tf

Tt
; (3)

where Tf is the number of tests that detect f and Tt is the total
number of tests in t. A variant of this metric [27], [32], [33],
[37], [45], [54], [71] calculates the ratio of test cases that detect
a fault f using a givenmetamorphic relation r as follows:

FDRðt; f; rÞ ¼ Tfr

Tr
; (4)

where Mfr is the number of tests in t derived from the rela-
tion r that detect the fault f , and Tr is the total number of
metamorphic tests derived from r. This metric is also called
fault discovery rate [34], [85], [128].

6.6 Empirical Studies with Humans

Hu et al. [29], [36] reported on a controlled experiment to
investigate the cost-effectiveness of using metamorphic test-
ing by 38 testers on three open-source programs. The exper-
iment participants were either asked to write metamorphic
relations, or tests with assertions to check whether the final
or intermediate state of the program under test is correct.
The experiment revealed a trade-off between both techni-
ques, with metamorphic testing being less efficient but
more effective at detecting faults than tests with assertions.

Liu et al. [146] reported on a three-year experience in
teaching metamorphic testing to various groups of students
at Swinburne University of Technology (Australia). The
authors explained the teaching approach followed and the
lesson learned, concluding that metamorphic testing is a
suitable technique for end-user testing. In a later paper, Liu
et al. [4] presented an empirical study to investigate the
effectiveness of metamorphic testing addressing the oracle
problem compared with random testing. For the study, sev-
eral groups of undergraduate and postgraduate students
from two different universities were recruited to identify
metamorphic relations in five subject programs of algorith-
mic type. Metamorphic testing was compared to random
testing with and without oracle. Their experiment showed
that metamorphic testing was able to find more faults than
random testing with and without oracle in most subject pro-
grams. Furthermore, it was concluded that a small number
of diverse metamorphic relations (between 3 and 6), even
those identified in an ad-hoc manner, had a similar fault-
detection capability to a test oracle, i.e., comparing the pro-
gram output with the expected one.

7 CHALLENGES

A number of open research challenges emerge from this sur-
vey, based on problems repeatedly encountered throughout

Fig. 9. Number of metamorphic relations.

818 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016



the reviewed papers, or gaps in the literature. These chal-
lenges answer RQ4.

Challenge 1. Guidelines for the construction of good metamor-
phic relations. For most problems, a variety of metamorphic
relations with different fault-detection capability can be
identified. It is therefore key to know the properties of effec-
tive metamorphic relations and to provide systematic meth-
ods for their construction. Although several authors have
reported lessons learned on the properties of goodmetamor-
phic relations (cf., Section 4.1), these are often complemen-
tary or even contradictory (e.g., [27], [38]). Therefore, there is
a lack of reliable guidelines for the construction of effective
metamorphic relations. Such guidelines should provide a
step-by-step process to guide testers, both experts and begin-
ners, in the construction of goodmetamorphic relations.

Challenge 2. Prioritisation and minimisation of metamorphic
relations. In certain cases using all the available metamor-
phic relations may be too expensive and a subset of them
must be selected. It is therefore important to know how to
prioritise the most effective metamorphic relations. To this
end, several authors have proposed using code coverage
[43], [46] or test case similarity [47] with promising results.
However, the applicability of those approaches as domain-
independent prioritisation criteria still needs to be explored.
Furthermore, analogously to the concept of test suite mini-
misation, where redundant test cases are removed from a
suite as it evolves [147], the use of minimisation techniques
to remove redundant metamorphic relations is an open
problem where research is needed. It is worth mentioning
that test case minimisation is a NP-hard problem and there-
fore heuristic techniques should be explored.

Challenge 3. Generation of likely metamorphic relations. The
generation of metamorphic relations is probably the most
challenging problem to be addressed. Although some prom-
ising results have been reported, those are mainly restricted
to the scope of numerical programs. The generation of meta-
morphic relations in other domains as well as the use of dif-
ferent techniques for rule inference are topics where
contributions are expected. We also foresee a fruitful line of
research exploring the synergies between the problem of
generating metamorphic relations and the detection of pro-
gram invariants [64], [148].

Challenge 4. Combination of metamorphic relations. As pre-
sented in Section 4.2, several authors have explored the ben-
efits of combining metamorphic relations following two
different strategies, namely applying metamorphic relations
in a chain style (IMT) and composing metamorphic rela-
tions to construct new relations (CMR). It remains an open
problem, however, to compare both approaches and to pro-
vide heuristics to decide when to use one or the other. Also,
these techniques raise new research problems such us deter-
mining whether a given set of metamorphic relations can be
combined and in which order.

Challenge 5. Automated generation of source test cases. As
described in Section 4.3, most papers use either randomly
generated or existing test suites as source tests when apply-
ing metamorphic testing. However, there is evidence that
the source test cases influence the effectiveness of metamor-
phic relations [28], [68], [69]. Promising initial results in
generating source test cases specifically for given metamor-
phic relations have been achieved, but many open questions

remain about what constitutes the best possible source test
cases and how to generate them.

Challenge 6. Metamorphic testing tools. Only two out of all
119 presented a tool as main contribution [78], [82], and
very few of the papers on metamorphic testing mentioned
a tool implementing the presented techniques [64], [65],
[67], [73], [81], [89], [118], [145]. Indeed, if practitioners
want to apply metamorphic testing today, they would
have to implement their own tool, as there are no publicly
available and maintained tools. This is a significant obsta-
cle for a wide-spread use of metamorphic testing in empiri-
cal research as well as in practice.

8 CONCLUSIONS

In this article, we presented a survey on metamorphic test-
ing covering 119 papers published between 1998 and 2015.
We analysed ratios and trends indicating the main advances
on the technique, its application domains and the character-
istics of experimental evaluations. The results of the survey
show that metamorphic testing is a thriving topic with an
increasing trend of contributions on the subject. We also
found evidence of the applicability of the technique to mul-
tiple domains far beyond numerical programs, as well as its
integration with other testing techniques. Furthermore, we
identified an increasing number of papers reporting the
detection of faults in real world programs. All these find-
ings suggest that metamorphic testing is gaining maturity
as an effective testing technique, not only to alleviate the
oracle problem, but also for the automated generation of
test data. Finally, despite the advances on metamorphic test-
ing, our survey points to areas where research is needed.
We trust that this work may become a helpful reference for
future development on metamorphic testing as well as to
introduce newcomers in this promising testing technique.

ACKNOWLEDGMENTS

We would like to thank T. Y. Chen, Robert M. Hierons, Phil
McMinn, Amador Dur�an, Zhi Quan Zhou, Christian Mur-
phy, Huai Liu, Xiaoyuan Xie, Alberto Goffi, Gagandeep,
Carmen Castro-Cabrera, Yan Lei and Peng Wu for their
helpful comments in an earlier version of this article. We
are also grateful to the members of the SSE research group
led by Mark Harman for the insightful and inspiring discus-
sion during our visit at the University College London. This
work has been partially supported by the European Com-
mission (FEDER) and Spanish Government under CICYT
projects TAPAS (TIN2012-32273) and BELI (TIN2015-70560-
R), and the Andalusian Government projects THEOS (TIC-
5906) and COPAS (P12-TIC-1867).

REFERENCES

[1] E. J. Weyuker, “On testing non-testable programs,” Comput. J.,
vol. 25, no. 4, pp. 465–470, 1982.

[2] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W.
Grieskamp, M. Harman, M. J. Harrold, and P. Mcminn. (Aug.
2013). An orchestrated survey of methodologies for automated
software test case generation. J. Syst. Softw.[Online] 86(8), pp. 1978–
2001. Available: http://dx.doi.org/10.1016/j.jss.2013.02.061.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Trans. Softw.
Eng., vol. 41, no. 5, pp. 507–525, May 2015.

SEGURA ETAL.: A SURVEYON METAMORPHIC TESTING 819



[4] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively
does metamorphic testing alleviate the oracle problem?” IEEE
Trans. Softw. Eng., vol. 40, no. 1, pp. 4–22, Jan. 2014.

[5] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing:
A new approach for generating next test cases,” Dept. Comput.
Sci., The Hong Kong Univ. Sci. Technol., Hong Kong, Tech. Rep.
HKUST-CS98-01, 1998.

[6] W. J. Cody, Software Manual for the Elementary Functions. Upper
Saddle River, NJ, USA: Prentice-Hall, 1980.

[7] M. Blum, M. Luby, and R. Rubinfeld. (1993). Self-testing/correct-
ing with applications to numerical problems. J. Comput. Syst. Sci.
[Online]. 47(3), pp. 549–595. Available: http://www.sciencedir-
ect.com/science/article/pii/002200009390044W.

[8] P. E. Ammann and J. C. Knight. (Apr. 1988). Data diversity: An
approach to software fault tolerance. IEEE Trans. Comput.
[Online]. 37(4), pp. 418–425. Available: http://dx.doi.org/
10.1109/12.2185.

[9] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou, “Metamorphic
testing and beyond,” in Proc. 11th Annu. Int. Workshop Softw.
Technol. Eng. Practice, Sep. 2003, pp. 94–100.

[10] T. H. Tse, “Research directions on model-based metamorphic
testing and verification,” in Proc. 29th Annu. Int. Comput. Softw.
Appl. Conf., vol. 1, Jul. 2005, p. 332.

[11] T. Y. Chen, “Metamorphic testing: A simple approach to alleviate
the oracle problem,” in Proc. 5th IEEE Int. Symp. Service Oriented
Syst. Eng., Jun. 2010, pp. 1–2.

[12] W. K. Chan and T. H. Tse, “Oracles are hardly attain’d, and
hardly understood: Confessions of software testing researchers,”
in Proc. 13th Int. Conf. Quality Softw., Jul. 2013, pp. 245–252.

[13] T. Y. Chen, “Metamorphic testing: A simple method for alleviat-
ing the test oracle problem,” in Proc. 10th Int. Workshop Autom.
Softw. Test, 2015, pp. 53–54. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2819261.2819278.

[14] T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Q. Zhou, “Metamorphic
testing: Applications and integration with other methods: Tuto-
rial synopsis,” in Proc. 12th Int. Conf. Quality Softw., Aug. 2012,
pp. 285–288.

[15] Z. Hui and S. Huang, “Achievements and challenges of meta-
morphic testing,” in Proc. 4th World Congr. Softw. Eng., Dec. 2013,
pp. 73–77.

[16] U. Kanewala and J. M. Bieman, “Techniques for testing scientific
programs without an oracle,” in Proc. 5th Int. Workshop Softw.
Eng. Comput. Sci. Eng., May 2013, pp. 48–57.

[17] G. Dong, B. Xu, L. Chen, C. Nie, and L. Wang, “Survey of meta-
morphic testing,” J. Frontiers Comput. Sci. Technol., vol. 3, no. 2,
pp. 130–143, 2009.

[18] T. Y. Chen, T. H. Tse, and Z. Q. Zhou. (2003). Fault-based testing
without the need of oracles. Inform. Softw. Technol. [Online]. 45
(1), pp. 1–9. Available: http://dx.doi.org/10.1016/S0950-5849
(02)00129-5.

[19] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M.
S. Tschantz, and C. Xiao. (2007, Dec.). The Daikon system for
dynamic detection of likely invariants. Sci. Comput. Program.
[Online]. 69(1-3), pp. 35–45. Available: http://dx.doi.org/
10.1016/j.scico.2007.01.015.

[20] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F.-C. Kuo,
and T. Y. Chen. (Jun. 2012). Automated functional testing of
online search services. Softw. Testing, Verification Rel. J. [Online].
22(4), pp. 221–243. Available: http://dx.doi.org/10.1002/
stvr.437.

[21] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele Univ. and NICTA, Staffordshire, U.K., Tech. Rep. TR/SE-
0401, 2004.

[22] J. Webster and R. Watson. (2002). Analyzing the past to prepare
for the future: Writing a literature review. MIS Quart. [Online].
26(2), pp. xiii–xxiii. Available: http://www.misq.org/archivist/
vol/no26/issue2/GuestEd.pdf.

[23] D. Benavides, S. Segura, and A. Ruiz-Cort�es, “Automated analy-
sis of feature models 20 years later: A literature review,” Inform.
Syst., vol. 35, no. 6, pp. 615–636, 2010.

[24] Y. J.M.Harman andY. Zhang, “Achievements, open problems and
challenges for search based software testing,” in Proc. 8th IEEE Int.
Conf. Softw. Testing, Verification Validation, Apr. 2015, pp. 1–12.

[25] Y. Jia and M. Harman. (2011, Sep.). An analysis and survey of the
development of mutation testing. IEEE Trans. Softw. Eng., vol. 37,
no. 5, pp. 649–678, Sep. 2011. [Online]. Available: http://dx.doi.
org/10.1109/TSE.2010.62.

[26] S. Segura, G. Fraser, A. B. S�anchez, and A. Ruiz-Cort�es. (2016,
Feb.). Metamorphic testing: A literature review. Appl. Softw.
Eng. Res. Group, Univ. Seville, Seville, Spain. Tech. Rep. ISA-16-
TR-02. [Online]. Available: http://www.isa.us.es/sites/default/
files/isa-16-tr-02_0.pdf.

[27] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou, “Case stud-
ies on the selection of useful relations in metamorphic testing,”
in Proc. 4th Ibero-Amer. Symp. Softw. Eng. Knowl. Eng., 2004,
pp. 569–583.

[28] T. Y. Chen, F.-C. Kuo, Y. Liu, and A. Tang, “Metamorphic testing
and testing with special values,” in Proc. 5th ACIS Int. Conf. Softw.
Eng., Artif. Intell., Netw. Parallel/Distrib. Comput., 2004, pp. 128–
134.

[29] Z. Zhang, W. K. Chan, T. H. Tse, and P. Hu, “Experimental study
to compare the use of metamorphic testing and assertion
checking,” J. Softw., vol. 20, no. 10, pp. 2637–2654, 2009.

[30] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Semi-proving: An inte-
grated method for program proving, testing, and debugging,”
IEEE Trans. Softw. Eng., vol. 37, no. 1, pp. 109–125, Jan. 2011.

[31] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y.
Chen. (2011, Apr.). Testing and validating machine learning
classifiers by metamorphic testing. J. Syst. Softw. [Online]. 84
(4), pp. 544–558. Available: http://dx.doi.org/10.1016/j.
jss.2010.11.920.

[32] A. C. Barus, T. Y. Chen, D. Grant, F.-C. Kuo, and M. F. Lau, “
Testing of heuristic methods: A case study of greedy algorithm,”
in Software Engineering Techniques, Z. Huzar, R. Koci, B. Meyer, B.
Walter, and J. Zendulka, Eds. Berlin, Germany: Springer, 2011,
vol. 4980, pp. 246–260. [Online]. Available: http://dx.doi.org/
10.1007/978-3-642-22386-0_19.

[33] F.-C. Kuo, S. Liu, and T. Y. Chen, “Testing a binary space parti-
tioning algorithm with metamorphic testing,” in Proc. ACM
Symp. Appl. Comput., 2011, pp. 1482–1489. [Online]. Available:
http://doi.acm.org/10.1145/1982185.1982502.

[34] C. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y. Chen,
“Metamorphic testing for web services: Framework and a case
study,” in Proc. IEEE Int. Conf. Web Services, Jul. 2011, pp. 283–
290.

[35] Z.-W. Hui, S. Huang, H. Li, J.-H. Liu, and L.-P. Rao, “Measurable
metrics for qualitative guidelines of metamorphic relation,” in
Proc. IEEE 39th Annu. Comput. Softw. Appl. Conf., vol. 3, Jul. 2015,
pp. 417–422.

[36] P. Hu, Z. Zhang, W. K. Chan, and T. H. Tse, “An empirical com-
parison between direct and indirect test result checking
approaches,” in Proc. 3rd Int. Workshop Softw. Quality Assurance,
2006, pp. 6–13. [Online]. Available: http://doi.acm.org/10.1145/
1188895.1188901.

[37] T. Y. Chen, F.-C. Kuo, R. Merkel, and W. K. Tam, “Testing an
open source suite for open queuing network modelling using
metamorphic testing technique,” in Proc. IEEE 14th Int. Conf.
Eng. Complex Comput. Syst., Jun. 2009, pp. 23–29.

[38] J. Mayer and R. Guderlei, “An empirical study on the selection of
good metamorphic relations,” in Proc. 30th Annu. Int. Comput.
Softw. Appl. Conf., vol. 1, Sep. 2006, pp. 475–484.

[39] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang, and T. Y.
Chen, “Metamorphic testing and its applications,” in presented
at the 8th Int. Symp. Future Software Technology, Xian, China,
2004.

[40] T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie. (2009). An innovative
approach for testing bioinformatics programs using metamor-
phic testing. BioMed. Central Bioinform. J. [Online]. 10(1), p. 24.
Available: http://www.biomedcentral.com/1471-2105/10/24.

[41] G. Batra and J. Sengupta, “An efficient metamorphic testing tech-
nique using genetic algorithm,” in Information Intelligence, Sys-
tems, Technology and Management (ser. Communications in
Computer and Information Science), S. Dua, S. Sahni, and
D. Goyal, Eds., Berlin, Germany: Springer, 2011, vol. 141,
pp. 180–188. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-19423-8_19.

[42] L. Chen, L. Cai, J. Liu, Z. Liu, S. Wei, and P. Liu, “An optimized
method for generating cases of metamorphic testing,” in Proc.
6th Int. Conf. New Trends Inform. Sci. Service Sci. Data Mining, Oct.
2012, pp. 439–443.

[43] J. Ding, T. Wu, J. Q. Lu, and X. Hu, “Self-checked metamorphic
testing of an image processing program,” in Proc. 4th Int. Conf.
Secure Softw. Integr. Rel. Improvement, Jun. 2010, pp. 190–197.

820 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016



[44] G. Dong, T. Guo, and P. Zhang, “Security assurance with pro-
gram path analysis and metamorphic testing,” in Proc. 4th IEEE
Int. Conf. Softw. Eng. Service Sci., May 2013, pp. 193–197.

[45] F.-C. Kuo, Z. Q. Zhou, J. Ma, and G. Zhang, “Metamorphic test-
ing of decision support systems: A case study,” IET Softw., vol. 4,
no. 4, pp. 294–301, Aug. 2010.

[46] M. Asrafi, H. Liu, and F.-C. Kuo, “On testing effectiveness of
metamorphic relations: A case study,” in Proc. 5th Int. Conf.
Secure Softw. Integr. Rel. Improvement, Jun. 2011, pp. 147–156.

[47] Y. Cao, Z. Q. Zhou, and T. Y. Chen, “On the correlation between
the effectiveness of metamorphic relations and dissimilarities of
test case executions,” in Proc. 13th Int. Conf. Quality Softw., Jul.
2013, pp. 153–162.

[48] Z. Q. Zhou, “Using coverage information to guide test case selec-
tion in adaptive random testing,” in Proc. Comput. Softw. Appl.
Conf. Workshops, Jul. 2010, pp. 208–213.

[49] R. Just and F. Schweiggert, “Automating software tests with par-
tial oracles in integrated environments,” in Proc. 5th Workshop
Autom. Softw. Test, 2010, pp. 91–94. [Online]. Available: http://
doi.acm.org/10.1145/1808266.1808280.

[50] R. Just and F. Schweiggert. (2011). Automating unit and integra-
tion testing with partial oracles. Softw. Quality J. [Online]. 19(4),
pp. 753–769. Available: http://dx.doi.org/10.1007/s11219-011-
9151-x.

[51] X. Xie, J. Tu, T. Y. Chen, and B. Xu, “Bottom-up integration test-
ing with the technique of metamorphic testing,” in Proc. 14th Int.
Conf. Quality Softw., Oct. 2014, pp. 73–78.

[52] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau. (2006).
Integration testing of context-sensitive middleware-based appli-
cations: A metamorphic approach. Int. J. Softw. Eng. Knowl. Eng.
[Online]. 16(5), pp. 677–704. Available: http://dblp.uni-trier.de/
db/journals/ijseke/ijseke16.html#ChanCLTY06.

[53] Z. Hui and S. Huang, “A formal model for metamorphic relation
decomposition,” in Proc. 4th World Congr. Softw. Eng., Dec. 2013,
pp. 64–68.

[54] H. Liu, X. Liu, and T. Y. Chen, “A new method for constructing
metamorphic relations,” in Proc. 12th Int. Conf. Quality Softw.,
Aug. 2012, pp. 59–68.

[55] G. Dong, B. Xu, L. Chen, C. Nie, and L. Wang, “Case studies on
testing with compositional metamorphic relations,” J. Southeast
Univ. (English Edition), vol. 24, no. 4, pp. 437–443, 2008.

[56] U. Kanewala and J. M. Bieman, “Using machine learning techni-
ques to detect metamorphic relations for programs without test
oracles,” in Proc. IEEE 24th Int. Symp. Softw. Rel. Eng., Nov. 2013,
pp. 1–10.

[57] U. Kanewala, “Techniques for automatic detection of metamor-
phic relations,” in Proc. IEEE 7th Int. Conf. Softw. Testing, Verifica-
tion Validation Workshops, Mar. 2014, pp. 237–238.

[58] C. Murphy, G. Kaiser, and L. Hu, “Properties of machine learn-
ing applications for use in metamorphic testing,” Dept. Comput.
Sci., Columbia Univ., New York NY, USA, Tech. Rep. CUCS-011-
08, 2008.

[59] U. Kanewala, J. M. Bieman, and A. Ben-Hur. (2015). Predict-
ing metamorphic relations for testing scientific software:
A machine learning approach using graph kernels. Softw.
Testing, Verification Rel. [Online]. Available: http://dx.doi.
org/10.1002/stvr.1594.

[60] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei,
“Search-based inference of polynomial metamorphic relations,”
in Proc. 29th ACM/IEEE Int. Conf. Automat. Softw. Eng., 2014,
pp. 701–712. [Online]. Available: http://doi.acm.org/10.1145/
2642937.2642994.

[61] A. Carzaniga, A. Goffi, A. Gorla, A. Mattavelli, and M. Pezz�e,
“Cross-checking oracles from intrinsic software redundancy,” in
Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 931–942. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568287.

[62] A. Goffi, A. Gorla, A. Mattavelli, M. Pezze, and P. Tonella,
“Search-based synthesis of equivalent method sequences,” in
Proc. 22nd ACM SIGSOFT Int. Symp. Found.Softw. Eng., 2014,
pp. 366–376. [Online]. Available: http://doi.acm.org/10.1145/
2635868.2635888.

[63] A. Goffi, “Automatic generation of cost-effective test oracles,” in
Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 678–681. [Online].
Available: http://doi.acm.org/10.1145/2591062.2591078.

[64] F. Su, J. Bell, C. Murphy, and G. Kaiser, “Dynamic inference of
likely metamorphic properties to support differential testing,” in
Proc. 10th Int.WorkshopAutom. Softw. Test, 2015, pp. 55–59. [Online].
Available: http://dl.acm.org/citation.cfm?id=2819261.2819279.

[65] T. Y. Chen, P. Poon, and X. Xie. (2015). METRIC: METamorphic
Relation Identification based on the category-choice framework.
J. Syst. Softw. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121215001624.

[66] T. Y. Chen, P.-L. Poon, S.-F. Tang, and T. H. Tse, “Dessert: a
divide-and-conquer methodology for identifying categories,
choices, and choice relations for test case generation,” IEEE
Trans. Softw. Eng., vol. 38, no. 4, pp. 794–809, Jul./Aug. 2012.

[67] A. Gotlieb and B. Botella, “Automated metamorphic testing,”
in Proc. 27th Annu. Int. Conf. Comput. Softw. Appl., 2003,
pp. 34–40. [Online]. Available: http://dl.acm.org/citation.
cfm?id=950785.950794.

[68] P. Wu, X. Shi, J. Tang, H. Lin, and T. Y. Chen, “Metamorphic test-
ing and special case testing: A case study,” J. Softw., vol. 16,
pp. 1210–1220, 2005.

[69] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cort�es.
Automated metamorphic testing on the analyses of feature
models. Inform. Softw. Technol. [Online]. 53(3), pp. 245–258.
Available: http://www.sciencedirect.com/science/article/pii/
S0950584910001904.

[70] P. Wu, “Iterative metamorphic testing,” in Proc. 29th Annu. Int.
Comput. Softw. Appl. Conf., vol. 1, pp. 19–24, Jul. 2005.

[71] G. Dong, C. Nie, B. Xu, and L. Wang, “An effective iterative
metamorphic testing algorithm based on program path analy-
sis,” in Proc. 7th Int. Conf. Quality Softw., Oct. 2007, pp. 292–
297.

[72] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortes,
“Automated test data generation on the analyses of feature mod-
els: A metamorphic testing approach,” in Proc. 3rd Int. Conf.
Softw. Testing, Verification Validation, Apr. 2010, pp. 35–44.

[73] S. Segura, A. Dur�an, A. B. S�anchez, D. L. Berre, E. Lonca,
and A. Ruiz-Cort�es. (2015). Automated metamorphic testing
of variability analysis tools. Softw. Testing, Verification Rel.
[Online]. 25(2), pp. 138–163. Available: http://dx.doi.org/
10.1002/stvr.1566.

[74] R. Guderlei and J. Mayer, “Statistical metamorphic testing: Test-
ing programs with random output by means of statistical
hypothesis tests and metamorphic testing,” in Proc. 7th Int. Conf.
Quality Softw., Oct. 2007, pp. 404–409.

[75] C. Murphy and G. Kaiser. (2010). Empirical evaluation of
approaches to testing applications without test oracles. Columbia
Univ. Comput. Sci., New York, NY, Tech. Rep. CUCS-039-10.
[Online]. Available: http://hdl.handle.net/10022/AC:P:10525.

[76] C. Murphy, M. S. Raunak, A. King, S. Chen, C. Imbriano, G. Kai-
ser, I. Lee, O. Sokolsky, L. Clarke, and L. Osterweil, “On effective
testing of health care simulation software,” in Proc. 3rd Workshop
Softw. Eng. Health Care, 2011, pp. 40–47. [Online]. Available:
http://doi.acm.org/10.1145/1987993.1988003.

[77] C. Murphy, “Using runtime testing to detect defects in applica-
tions without test oracles,” in Proc. Found.Softw. Eng. Doctoral
Symp., 2008, pp. 21–24. [Online]. Available: http://doi.acm.org/
10.1145/1496653.1496659.

[78] C. Murphy, K. Shen, and G. Kaiser, “Using JML runtime asser-
tion checking to automate metamorphic testing in applications
without test oracles,” in Proc. Second Int. Conf. Softw. Testing Veri-
fication Validation, 2009, pp. 436–445.

[79] (2016). “Java Modeling Language (JML). [Online]. Available:
http://www.jmlspecs.org.

[80] C. Murphy, G. Kaiser, L. Hu, and L. Wu, “Properties of machine
learning applications for use in metamorphic testing,” in Proc.
Int. Conf. Softw. Eng. Knowl. Eng., 2008, pp. 867–872.

[81] C. Murphy, K. Shen, and G. Kaiser, “Automatic system testing of
programs without test oracles,” in Proc. 18th Int. Symp. Softw.
Testing Anal., 2009, pp. 189–200. [Online]. Available: http://doi.
acm.org/10.1145/1572272.1572295.

[82] H. Zhu, “Jfuzz: A tool for automated Java unit testing based on
data mutation and metamorphic testing methods,” in Proc. 2nd
Int. Conf. Trustworthy Syst. Appl., Jul. 2015, pp. 8–15.

[83] W. K. Chan, S. C. Cheung, and K. R. P. Leung, “Towards a meta-
morphic testing methodology for service-oriented software
applications,” in Proc. 5th Int. Conf. Quality Softw., Sep. 2005,
pp. 470–476.

[84] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung. (2007). A meta-
morphic testing approach for online testing of service-oriented
software applications. Int. J. Web Serv. Res. [Online]. 4(2), pp. 61–
81. Available: http://dblp.uni-trier.de/db/journals/jwsr/jwsr4.
html#ChanCL07.

SEGURA ETAL.: A SURVEYON METAMORPHIC TESTING 821



[85] C. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y. Chen. (2012,
Jan.). Ametamorphic relation-based approach to testingweb serv-
ices without oracles. Int. J. Web Serv. Res. [Online]. 9(1), pp. 51–73.
Available: http://dx.doi.org/10.4018/jwsr.2012010103.

[86] C. Castro-Cabrera and I. Medina-Bulo, “An approach to meta-
morphic testing for WS-BPEL compositions,” in Proc. Int. Conf. e-
Bus., Jul. 2011, pp. 1–6.

[87] C. Castro-Cabrera and I. Medina-Bulo, “Application of metamor-
phic testing to a case study in web services compositions,” in
E-Business and Telecommunications (ser. Communications in Com-
puter and Information Science), M. Obaidat, J. Sevillano, and
J. Filipe, Eds., Berlin, Germany: Springer, 2012, vol. 314, pp. 168–
181. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
35755-8_13.

[88] OASIS: Web Services Business Process Execution Language.
(2007, Apr.). [Online]. Available: 2.0. http://docs.oasis-open.
org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[89] Z. Q. Zhou, T. H. Tse, F.-C. Kuo, and T. Y. Chen, “Automated
functional testing of web search engines in the absence of an
oracle,” Dept. Comput. Sci., The Univ. Hong Kong, Tech. Rep.
TR-2007-06, 2007.

[90] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing
for software quality assessment: A study of search engines,”
IEEE Trans. Softw. Eng., 2015, Doi: 10.1109/TSE.2015.2478001.

[91] J. Mayer and R. Guderlei, “On random testing of image process-
ing applications,” in Proc. 6th Int. Conf. Quality Softw., Oct. 2006,
pp. 85–92.

[92] R. Guderlei and J. Mayer. (2007). Towards automatic testing of
imaging software by means of random and metamorphic testing.
Int. J. Softw. Eng. Knowl. Eng. [Online]. 17(06), pp. 757–781.
Available: http://www.worldscientific.com/doi/abs/10.1142/
S0218194007003471.

[93] W. K. Chan, J. C. F. Ho, and T. H. Tse, “Piping classification to
metamorphic testing: An empirical study towards better effec-
tiveness for the identification of failures in mesh simplification
programs,” in Proc. 31st Annu. Int. Comput. Softw. Appl. Conf.,
vol. 1, pp. 397–404, Jul. 2007.

[94] W. K. Chan, J. C. F. Ho, and T. H. Tse. (2010, Jun.). Finding fail-
ures from passed test cases: Improving the pattern classification
approach to the testing of mesh simplification programs. Softw.
Testing, Verification Rel. J. [Online]. 20(2), pp. 89–120. Available:
http://dx.doi.org/10.1002/stvr.v20:2.

[95] R. Just and F. Schweiggert, “Evaluating testing strategies for
imaging software by means of mutation analysis,” in Proc. Int.
Conf. Softw. Testing, Verification Validation Workshops, Apr. 2009,
pp. 205–209.

[96] T. Jameel, L. Mengxiang, and C. Liu, “Test oracles based on
metamorphic relations for image processing applications,” in
Proc. 16th IEEE/ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw. Par-
allel/Distrib. Comput., Jun. 2015, pp. 1–6.

[97] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen, “Testing
context-sensitive middleware-based software applications,” in
Proc. 28th Annu. Int. Comput. Softw. Appl. Conf., vol. 1, pp. 458–466,
Sep. 2004.

[98] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau, “A meta-
morphic approach to integration testing of context-sensitive mid-
dleware-based applications,” in Proc. 5th Int. Conf. Quality Softw.,
Sep. 2005, pp. 241–249.

[99] W. K. Chan, T. Y. Chen, S. C. Cheung, T. H. Tse, and Z. Zhang, “
Towards the testing of power-aware software applications for
wireless sensor networks,” in Ada Europe 2007 - Reliable Software
Technologies, N. Abdennadher and F. Kordon, Eds., Berlin, Ger-
many: Springer, 2007, vol. 4498, pp. 84–99. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-73230-3_7.

[100] F.-C. Kuo, T. Y. Chen, and W. K. Tam, “Testing embedded soft-
ware by metamorphic testing: A wireless metering system case
study,” in Proc. IEEE 36th Conf. Local Comput. Netw., Oct. 2011,
pp. 291–294.

[101] M. Jiang, T. Y. Chen, F.-C. Kuo, and Z. Ding, “Testing central
processing unit scheduling algorithms using metamorphic
testing,” in Proc. 4th IEEE Int. Conf. Softw. Eng. Service Sci., May
2013, pp. 530–536.

[102] K. Y. Sim, W. K. S. Pao, and C. Lin, “Metamorphic testing using
geometric interrogation technique and its application,” in Proc.
2nd Int. Conf. Elect. Eng./Electron., Comput., Telecommun., Inform.
Technol., 2005, pp. 91–95.

[103] T. Y. Chen, F.-C. Kuo, H. Liu, and S. Wang, “ Conformance test-
ing of network simulators based on metamorphic testing
technique,” in Formal Techniques for Distributed Systems, D. Lee,
A. Lopes, and A. Poetzsch-Heffter, Eds., Berlin, Germany:
Springer, vol. 5522, pp. 243–248, 2009. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02138-1_19.

[104] OMNeT++ system. (2015, Dec.). [Online]. Available: http://
www.omnetpp.org.

[105] J. Ding, T. Wu, D. Xu, J. Q. Lu, and X. Hu, “Metamorphic testing
of a Monte Carlo modeling program,” in Proc. 6th Int. Workshop
Autom. Softw. Test, 2011, pp. 1–7. [Online]. Available: http://doi.
acm.org/10.1145/1982595.1982597.

[106] A. Nu~nez and R. M. Hierons. (2014). A methodology for validat-
ing cloud models using metamorphic testing. Ann. Telecommun.
– annales des t�el�ecommunications [Online]. pp. 1–9. Available:
http://dx.doi.org/10.1007/s12243-014-0442-7.

[107] A. Nu~nez, J. L. Vazquez-Poletti, A. C. Caminero, G. G. Casta~ne,
J. Carretero, and I. M. Llorente. (2012). icancloud: A flexible and
scalable cloud infrastructure simulator. J. Grid Comput., 10(1),
pp. 185–209. [Online]. Available: http://dx.doi.org/10.1007/
s10723-012-9208-5.

[108] P. C. Ca~nizares, A. N�u~nez, M. N�u~nez, and J. J. Pardo, “Amethod-
ology for designing energy-aware systems for computational sci-
ence,” Procedia Comput. Sci., vol. 51, pp. 2804–2808, 2015, (Int.
Conf. Comput. Sci.) [Online]. Available: http://www.sciencedir-
ect.com/science/article/pii/S1877050915012466.

[109] X. Xie, J. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen,
“Application of metamorphic testing to supervised classifiers,”
in Proc. 9th Int. Conf. Quality Softw., Aug. 2009, pp. 135–144.

[110] J. E. Gewehr, M. Szugat, and R. Zimmer. (2007, Feb.). Bioweka—
extending the weka framework for bioinformatics. Bioinformatics.
[Online]. 23(5), pp. 651–653. Available: http://dx.doi.org/
10.1093/bioinformatics/btl671.

[111] Z. Jing, H. Xuegang, and Z. Bin. (2011). An evaluation approach
for the program of association rules algorithm based on meta-
morphic relations. J. Electron. (China) [Online]. 28(4-6), pp. 623–
631. Available: http://dx.doi.org/10.1007/s11767-012-0743-9.

[112] L. L. Pullum and O. Ozmen, “Early results from metamorphic
testing of epidemiological models,” in Proc. ASE/IEEE Int. Conf.
BioMedical Comput., Dec. 2012, pp. 62–67.

[113] A. Ramanathan, C. A. Steed, and L. L. Pullum, “Verification of
compartmental epidemiological models using metamorphic test-
ing, model checking and visual analytics,” in Proc. ASE/IEEE Int.
Conf. BioMed. Comput., Dec. 2012, pp. 68–73.

[114] S. Beydeda, “Self-metamorphic-testing components,” in Proc.
30th Annu. Int. Comput. Softw. Appl. Conf., vol. 2, pp. 265–272,
Sep. 2006.

[115] X. Lu, Y. Dong, and C. Luo, “Testing of component-based soft-
ware: A metamorphic testing methodology,” in Proc. Int. Conf.
Ubiquitous Intell. Comput. Int. Conf. Auton. Trusted Comput., Oct.
2010, pp. 272–276.

[116] T. Y. Chen, J. Feng, and T. H. Tse, “Metamorphic testing of pro-
grams on partial differential equations: A case study,” in Proc.
26th Int. Comput. Softw. Appl. Conf. Prolonging Softw. Life: Develop.
Redevelop., 2002, pp. 327–333. [Online]. Available: http://dl.acm.
org/citation.cfm?id=645984.675903.

[117] C. Aruna and R. S. R. Prasad, “Metamorphic relations to improve
the test accuracy of multi precision arithmetic software
applications,” in Proc. Int. Conf. Adv. Comput., Commun. Informat.,
Sep. 2014, pp. 2244–2248.

[118] Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing
approach for compiler based on metamorphic testing technique,”
in Proc. 17th Asia Pacific Softw. Eng. Conf., Nov. 2010, pp. 270–279.

[119] V. Le, M. Afshari, and Z. Su, “Compiler validation via equiva-
lence modulo inputs,” in Proc. 35th ACM SIGPLAN Conf. Pro-
gram. Language Des. Implementation, 2014, pp. 216–226. [Online].
Available: http://doi.acm.org/10.1145/2594291.2594334.

[120] T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou, “An effective testing
method for end-user programmers,” in Proc. 1st Workshop End-
User Softw. Eng., 2005, pp. 1–5. [Online]. Available: http://doi.
acm.org/10.1145/1082983.1083236.

[121] K. Y. Sim, C. S. Low, and F.-C. Kuo, “Detecting faults in technical
indicator computations for financial market analysis,” in Proc.
2nd Int. Conf. Inform. Sci. Eng., Dec. 2010, pp. 2749–2754.

[122] (2016). MetaTrader 4 Trading Terminal. [Online]. Available:
http://www.metaquotes.net/en/metatrader4/trading_terminal.

822 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016



[123] S. Yoo, “Metamorphic testing of stochastic optimisation,” in Proc.
3rd Int. Conf. Softw. Testing, Verification, Validation Workshops,
Apr. 2010, pp. 192–201.

[124] Y. Yao, S. Huang, and M. Ji, “Research on metamorphic testing
for oracle problem of integer bugs,” in Proc. 4th Int. Conf. Adv.
Comput. Sci. Inf. Eng., ser. Advances in Intelligent and Soft Com-
puting, 2012, vol. 168, pp. 95–100. [Online]. Available: http://dx.
doi.org/10.1007/978-3-642-30126-1_16.

[125] Y. Yao, C. Zheng, S. Huang, and Z. Ren, “Research on meta-
morphic testing: A case study in integer bugs detection,” in
Proc. 4th Int. Conf. Intell. Syst. Design Eng. Appl., 2013, Nov.
2013, pp. 488–493.

[126] Z. Hui, S. Huang, Z. Ren, and Y. Yao, “Metamorphic testing inte-
ger overflow faults of mission critical program: A case study,”
Math. Problems Eng., vol. 2013, pp. 1–6, 2013.

[127] G. Batra and G. Singh, “An automated metamorphic testing tech-
nique for designing effective metamorphic relations,” Contempo-
rary Computing (ser. Communications in Computer and
Information Science), M. Parashar, D. Kaushik, O. Rana, R. Sam-
taney, Y. Yang, and A. Zomaya, Eds., Berlin, Germany: Springer,
2012, vol. 306, pp. 152–163. [Online]. Available: http://dx.doi.
org/10.1007/978-3-642-32129-0_20.

[128] C. Sun, Z. Wang, and G. Wang. (2014). A property-based testing
framework for encryption programs. Frontiers Comput. Sci.
[Online]. 8(3), pp. 478–489. Available: http://dx.doi.org/
10.1007/s11704-014-3040-y.

[129] C. Aruna and R. S. R. Prasad, “Adopting metamorphic relations
to verify non-testable graph theory algorithms,” in Proc. 2nd Int.
Conf. Adv. Comput. Commun. Eng., May 2015, pp. 673–678.

[130] M. Lindvall, D. Ganesan, R. Ardal, and R. Wiegand,
“Metamorphic model-based testing applied on NASA DAT—An
experience report,” in Proc. 37th IEEE Int. Conf. Softw. Eng., vol. 2,
pp. 129–138, May 2015.

[131] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing in the
absence of an oracle,” in Proc. 25th Annu. Int. Comput. Softw.
Appl. Conf., 2001, pp. 172–178.

[132] C. Cadar and K. Sen. (Feb 2013). Symbolic execution for software
testing: Three decades later.Commun. ACM [Online]. 56(2), pp. 82–
90. Available: http://doi.acm.org/10.1145/2408776.2408795.

[133] I. Erete and A. Orso, “Optimizing constraint solving to better
support symbolic execution,” in Proc. Workshop Constraints Softw.
Testing, Verification, Anal., 2011, pp. 310–315.

[134] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Semi-proving: An inte-
grated method based on global symbolic evaluation and meta-
morphic testing,” in Proc. ACM SIGSOFT Int. Symp. Softw.
Testing Anal., 2002, pp. 191–195. [Online]. Available: http://doi.
acm.org/10.1145/566172.566202.

[135] G. Dong, S. Wu, G. Wang, T. Guo, and Y. Huang, “Security assur-
ance with metamorphic testing and genetic algorithm,” in Proc.
IEEE/WIC/ACM Int. Conf. Web Intell. Intell. Agent Technol., vol. 3,
pp. 397–401, Aug. 2010.

[136] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu, “Spectrum-based fault
localization: Testing oracles are no longer mandatory,” in Proc.
11th Int. Conf. Quality Softw., Jul. 2011, pp. 1–10.

[137] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu. (2013). Metamorphic
slice: An application in spectrum-based fault localization,” Inform.
Softw. Technol. [Online]. 55(5), pp. 866–879. Available: http://
www.sciencedirect.com/science/article/pii/S0950584912001759.

[138] (2016). Siemens Suite. [Online]. Available: http://sir.unl.edu/
portal/bios/tcas.php#siemens.

[139] Y. Lei, X. Mao, and T. Y. Chen, “Backward-slice-based statistical
fault localization without test oracles,” in Proc. 13th Int. Conf.
Quality Softw., Jul. 2013, pp. 212–221.

[140] Y. Lei, X. Mao, Z. Dai, and C. Wang, “Effective statistical fault
localization using program slices,” in Proc. Comput. Softw. Appl.
Conf., Jul. 2012, pp. 1–10.

[141] P. Rao, Z. Zheng, T. Y. Chen, N. Wang, and K. Cai, “Impacts of
test suite’s class imbalance on spectrum-based fault localization
techniques,” in Proc. 13th Int. Conf. Quality Softw., Jul. 2013,
pp. 260–267.

[142] C. Aruna and R. S. R. Prasad, “Testing approach for dynamic
web applications based on automated test strategies,” in ICT and
Critical Infrastructure: Proc. 48th Annu. Convention of Comput. Soc.
India—Vol II, ser. Advances in Intelligent Systems and Comput-
ing, vol. 249, pp. 399–410, 2014. [Online]. Available: http://dx.
doi.org/10.1007/978-3-319-03095-1_43.

[143] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M.
D. Ernst, “Finding bugs in dynamic web applications,” in Proc.
Int. Symp. Softw. Testing Anal., 2008, pp. 261–272. [Online]. Avail-
able: http://doi.acm.org/10.1145/1390630.1390662.

[144] H. Liu, I. I. Yusuf, H. W. Schmidt, and T. Y. Chen, “Metamorphic
fault tolerance: An automated and systematic methodology for
fault tolerance in the absence of test oracle,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 420–423. [Online]. Available: http://
doi.acm.org/10.1145/2591062.2591109.

[145] H. Jin, Y. Jiang, N. Liu, C. Xu, X. Ma, and J. Lu, “Concolic meta-
morphic debugging,” in Proc. IEEE 39th Annu. Comput. Softw.
Appl. Conf., vol. 2, pp. 232–241, Jul. 2015.

[146] H. Liu, F.-C. Kuo, and T. Y. Chen, “Teaching an end-user testing
methodology,” in Proc. 23rd IEEE Conf. Softw. Eng. Educ. Training,
Mar. 2010, pp. 81–88.

[147] S. Yoo and M. Harman. (2012). Regression testing minimization,
selection and prioritization: A survey. Softw. Testing, Verification
Rel. [Online]. 22(2), pp. 67–120. Available: http://dx.doi.org/
10.1002/stvr.430.

[148] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to support
program evolution,” in Proc. 21st Int. Conf. Softw. Eng., 1999,
pp. 213–224. [Online]. Available: http://doi.acm.org/10.1145/
302405.302467.

Sergio Segura received the PhD degree in soft-
ware engineering (with honours) from Seville Uni-
versity, Sevilla, Spain, where he currently works
as a senior lecturer. His research interests include
software testing, software variability and search-
based software engineering. He has co-authored
some highly cited papers as well as tools used by
universities and companies in various countries.
He also serves regularly as a reviewer for interna-
tional journals and conferences.

Gordon Fraser received the PhD degree from
the Graz University of Technology, Graz, Austria,
in 2007, and worked as a postdoctoral researcher
at Saarland University, Germany. He is a senior
lecturer in computer science at the University of
Sheffield, United Kingdom. His research is on
improving software quality and programmer pro-
ductivity. He is the chair of the steering committee
of the International Conference on Software Test-
ing, Verification, and Validation, and is regular
organising- and programme-committee member

of software engineering conferences and workshops. His work on soft-
ware testing has achieved wide recognition both in research (e.g., DFG
and EPSRC grants, ACM SIGSOFT distinguished and best paper
awards at FSE, ISSTA, ASE, SSBSE, and GECCO) as well as industry
(e.g., Google Focused Research Award or Microsoft Software Engineer-
ing Innovation Foundation Award).

SEGURA ETAL.: A SURVEYON METAMORPHIC TESTING 823



Ana B. S�anchez is currently working toward the
PhD degree at the Applied Software Engineering
Research Group, University of Seville where she
received the MSc degree. Her research focuses
on automating the detection of faults in highly
configurable systems.

Antonio Ruiz-Cort�es received the PhD and MSc
degrees in computer science from the University of
Seville, Spain. He is an accredited full professor
and the head of the Applied Software Engineering
ResearchGroup, University of Seville. His research
interests include the areas of service oriented com-
puting, software variability, software testing, and
business processmanagement.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

824 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


