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Abstract—System specifications have long been expressed through automata-based languages, which allow for compositional

construction of complex models and enable automated verification techniques such as model checking. Automata-based verification

has been extensively used in the analysis of systems, where they are able to provide yes/no answers to queries regarding their

temporal properties. Probabilistic modelling and checking aim at enriching this binary, qualitative information with quantitative

information, more suitable to approaches such as reliability engineering. Compositional construction of software specifications reduces

the specification effort, allowing the engineer to focus on specifying individual component behaviour to then analyse the composite

system behaviour. Compositional construction also reduces the validation effort, since the validity of the composite specification should

be dependent on the validity of the components. These component models are smaller and thus easier to validate. Compositional

construction poses additional challenges in a probabilistic setting. Numerical annotations of probabilistically independent events must

be contrasted against estimations or measurements, taking care of not compounding this quantification with exogenous factors, in

particular the behaviour of other system components. Thus, the validity of compositionally constructed system specifications requires

that the validated probabilistic behaviour of each component continues to be preserved in the composite system. However, existing

probabilistic automata-based formalisms do not support specification of non-deterministic and probabilistic component behaviour

which, when observed through logics such as pCTL, is preserved in the composite system. In this paper we present a probabilistic

extension to Interface Automata which preserves pCTL properties under probabilistic fairness by ensuring a probabilistic branching

simulation between component and composite automata. The extension not only supports probabilistic behaviour but also allows for

weaker prerequisites to interfacing composition, that supports delayed synchronisation that may be required because of internal

component behaviour. These results are equally applicable as an extension to non-probabilistic Interface Automata.

Index Terms—Behaviour models, probability, interface automata, model checking

Ç

1 INTRODUCTION

MODELLING languages are envisioned with the objective
of capturing and conveying relevant aspects of a sys-

tem design, many times resorting to diverse languages to
describe separate aspects of the system. In the realm of soft-
ware engineering in particular, many such languages have
been introduced into general use, including automata-based
languages which have the advantage of being simple
enough to be used as a means to exhibit design and docu-
mentation, but also formal enough to be used as artefacts
amenable to automated validation and verification.

Techniques that automatically explore automata-based
models in order to gain increased assurance regarding the
absence of errors have been investigated for some time. A
notable example is model checking [1] where an exhaustive
search of the model yields, in its most basic and widespread
form, a yes/no response to the question of whether the
model satisfies a specific property.

Although obtaining binary results from model checkers
has been shown to be useful for validation and verification,
when the model checker returns a negative answer this can

represent insufficient information. This is acknowledged,
for instance, in the software reliability community where
the interest is not in whether certain properties hold, for
example because they are known to be unavoidable (e.g.,
failures due to uncontrollable network transmissions),
impractical to fix (e.g., hardware-based failures on deployed
satellites, or similarly inaccessible systems), or simply
because fixing them is uneconomical (e.g., mass product
recalls). Alternatively, the focus is on measuring the likeli-
hood of the properties being violated.

Compositional automata-basedmodel construction allows
building complex models by specifying the behaviour of sys-
tem components, and then computing automatically the
behaviour of the system resulting from having components
execute concurrently and synchronising over their public
interfaces. Compositionality allows structuring the specifica-
tion similarly to how complex systems are built and greatly
simplifies the specification effort

In theory, compositional construction also reduces the
validation effort as the validity of the composite specifica-
tion should be dependent on the validity of the components,
which are smaller and thus easier to validate. However, this
requires the models to fulfil two fundamental conditions.
First, it must be possible to isolate the behaviour of a com-
ponent in such a way that its behaviour can be described
independently of the environment it may execute in. Sec-
ond, a composition operation is required that can guarantee
to preserve in the composite system the independent behav-
iour of each component.

In constructing probabilistic automata compositionally,
measuring the likelihood of a component making a choice
independently of the behaviour of its environment can be
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notoriously difficult [2]. Doing so may require careful
decomposition of probabilities that were estimated or mea-
sured from an existing composite system’s execution log.
These compound probabilities need to be decomposed into
conditional ones, that can be incorporated into a component
description that will form part of a new composite system
that is expected to replace the system used for measure-
ment. For instance, the likelihood of a user selecting coffee
in a vending machine must be extracted conditionally from
the different available choices the user may have had at the
moment of selecting the beverage.

Having specified and validated probabilistic behaviour
component-wise, the expectation is that the probabilistic
properties that are guaranteed by the numerical annotations
of probabilistically independent events in the component
descriptions continue to be preserved over the composite
system. For example, a vending machine user’s overall like-
lihood of selecting coffee, independently of the system it is
interacting with, is guaranteed to be between 0 and max;
where 0 represents the worst case in which the vending
machine never offers coffee, while max is the maximum
likelihood of choosing coffee for some combination of
offered drinks. The expectation is that, no matter what
vending machine is used, the system level probability of
coffee being selected will continue to be between 0 andmax,
as this range of probabilities is dependent on the user
behaviour alone.

Although many variations of probabilistic automata
(e.g., [3], [4], [5], [6]) and composition operators (see [7] for
a survey) have been proposed, none of these support speci-
fication of non-deterministic and probabilistic component
behaviour which, when observed through appropriate log-
ics, is preserved in the composite system. The problems
they exhibit can be characterised as a lack of an appropri-
ate treatment of the notion of action controllability in com-
bination with probabilistic descriptions. This leads to a
number of problems including i) unclear semantics of the
probabilities of the environment model, ii) unintuitive
probability distributions in the composite model, and as a
consequence iii) a lack of preservation of components’
probabilistic properties over the composition [6], [8]. These
shortcomings work against the goal of being able to reason
about separate components, and have an assurance that
the individually validated behaviours still hold once the
composite system is built.

In this paper we propose a novel formalism for reasoning
quantitatively in such a way that individual component
behaviour is guaranteed to be preserved over a composition.
This approach achieves the goal by combining, and adding
to, notions taken from Input-Output Probabilistic Autom-
ata [3] and Interface Automata [9]. Thus, the main contribu-
tion of the paper is a formalism that supports compositional
construction and validation of probabilistic models. We
establish the correctness of our approach by showing that
parallel composition of our models is such that it preserves a
weak probabilistic simulation [10], thus preserving the
desired behaviour over the composite system.

A second contribution of this paper is that we weaken the
constraints imposed by Interface Automata to specify when
two automata may be composed. Interface Automata
requires a component to be able to accept environmental

inputs immediately, disallowing internal computation even
if the component is guaranteed to always allow the input at
the end of such internal computation. In this paper, we pro-
pose a delayed synchronisation mechanism that relaxes the
Interface Automata composition precondition and allows
for richer modelling of internal computation.

The remainder of the paper is organised as follows: in
Section 2 we use an example to motivate our approach,
comparing to existing ones. In Section 3 we present some
building blocks for our work, while in Section 4 we present
our novel approach to the problem of probabilistic compo-
nent-based verification. In Section 4.2 we show the main
results of the paper; that is, composition over this new for-
malism is correct in terms of the semantics intended and
property preservation. Along the paper, we illustrate our
ideas with a motivating example and expand the ideas on a
case study in Section 5. Finally, we discuss the relation of
our work with previous efforts in Section 6 and offer our
conclusions and prospects of future work on the subject.

2 MOTIVATION

In this section we present a simple example to motivate the
problem of compositional construction and analysis of
probabilistic models. We also highlight the main issues
related to the modelling of non-determinism and probabili-
ties that threaten the compositional construction approach.

We first discuss the model for the machine presented in
Fig. 1. This coffee machine has a digital tactile screen with
which it interacts with the user, showing the user various
options at different times during operation. First, the coffee
machine offers the user, through the screen, a beverage
choice between either an espresso or a latte. Once the user
chooses her selection, the machine clears its screen and pos-
sibly shows a message telling the user to wait for beverage
preparation. At this point, in a way unknown to the user,
the machine prepares the beverage. Then, the machine
informs the user it has finished the preparation. Now, the
screen prompts for the addition of sugar or sweetener, and
finally delivers the prepared drink when the choice is made.
However, this coffee machine is known to sometimes over-
heat, requiring manual drainage. We have some informa-
tion about the conditions under which the machine
overheats, so we add this information to the model.

Without the need of having a model of the user, we can
already validate some behaviour on this coffee machine
model. For example, we may be interested in knowing
whether the machine can overheat after it has added coffee
to the cup, as at this point the coffee may boil and spill

Fig. 1. A simple coffee machine.
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violently towards the user, posing a safety hazard. By
observing the trace that traverses states 0, 2, 5, 6, 8, 3, we see
that such an error is clearly possible. Moreover, note that
there is always at least a 0:05 chance that this behaviour will
manifest independently of user choices. It could be even
worse if the machine always overheats at state 4, but we do
not have the probabilistic information to quantify this claim.
All we know is that the likelihood of the unsafe behaviour
lies between 0:05 and 1.

For the sake of argument, assume for a moment that it is
uneconomical to fix this behaviour unless the likelihood of
it surpasses some probability threshold poverheat > 0:05.
Once we have the user model and compose it with our cof-
fee machine, we could answer whether this threshold is
met or not. For example, if the user were such that she
never orders a latte, then the probability of overheating is
exactly 0:05 and therefore there is no need for a fix. How-
ever, if she does order lattes, then it could overheat every
time this happens.

In other words, we are interested in quantifying the
occurrence of this error based on the expected behaviour of
the environment interacting with the coffee machine.

In order to achieve this objective, we set out to produce a
probabilistic model of the user’s behaviour. However, not
every modelling formalism will suit our compositional con-
struction approach. Some choices may lead to problems
which may not be immediately obvious, and these may
arise from both the probabilistic aspect of the modelling
and the non-deterministic as well.

2.1 Issues Arising from Probabilistic Modelling

There exist two main approaches for modelling probabili-
ties over transitions of a behaviour model; namely model-
ling them via a generative [4] approach or a reactive [5] one.

Generative models are characterised by having a transi-
tion relation that defines, for each source state, a distribu-
tion on the cartesian product of the set of states and actions.
That is, for each transition, both an action and a destination
state are probabilistically selected. This choice of distribu-
tions leads to some well-known problems when trying to
compose a generative model with another [6].

First, the generative paradigm forces all transitions to be
probabilistically annotated. This is true even in the case of
states that may transition because of both input and output
actions. Probabilistically quantifying such choices would
encode the probabilities of the resolution of this race between
actions, an aspect that is usually outside the control of either
component. A second problem arises if a component speci-
fies a certain probability for an output action that is not
accepted, or an input action that may never be received. In
such a case, the probability of that action being triggered is
obviously zero in the composition, yet the component speci-
fied a non-zero probability. This contradiction needs to be
resolved at composition time. Although some solutions have
been proposed to redistribute this missing probability [6],
they are all arbitrary in that they need to guesswhat the com-
ponent would have done if the actionwere not present.

These problems can be explained technically in terms of a
lack that generativemodels have inmodelling non-determin-
ism, and a lack of clear semantics for the concurrent composi-
tion in such cases. Not allowing non-determinismmeans that

thesemodels are at a losswhen it comes tomodelling external
actions the environmentmust act in response to.

Alternatively, the environment can be modelled under
the reactive paradigm [5], under which each action on each
state has a probabilistic distribution that defines the next
state. Under the reactive paradigm, the action at each state
is chosen in a non-probabilistic fashion (even allowing for
non-determinism between different distributions for a same
action), and only then the destination state is determined
probabilistically. Reactive models, contrary to their genera-
tive counterpart, do allow for non-determinism, but do not
allow probabilistic choice between different actions. There
is a workaround for this, however, using hidden internal
actions. State 6 in the coffee machine model of Fig. 1 shows
an example of this workaround.

The use of a reactive probabilistic model solves many of
the issues of the generative paradigm. However, in general,
reactive probabilistic models allow for behaviour that does
not necessarily consider input/output restrictions between
components. Recall the property that the machine may
overheat after dispensing coffee. We have already seen that
this property holds with probability at least 0:05 for our
modelled system. Yet, we can model a user environment
that chooses to never synchronise on the overheat action,
effectively blocking it. Oddly, the result obtained using
standard composition [5] and analysis [11] is that the proba-
bility of the composite system overheating in an unsafe way
is now zero, which means the error has probability 0 which
is below the lower bound to error (0:05) that we had estab-
lished when validating the machine model in isolation. The
reason for such an unintuitive result is that the environment
constrains the occurrence of a transition that should be con-
trolled by the coffee machine.

The result in the previous analysis is quite unintuitive.
There is a property that holds for the machine, and that
does not depend on the environment to hold; but when
composed with a certain environment it does not hold any
more. Such a contradiction indicates that something is
wrong with the way we have modelled either the system or
the environment; in the way we composed them together,
or in the probability computation. Again, this lack of behav-
iour preservation makes our goal of performing early prob-
abilistic validation impossible.

It is important to note that, contrary to the case of genera-
tive modelling, these problems do not relate strictly to the
probabilistic annotations. Rather, they arise as a conse-
quence of the inappropriate treatment of the notion of con-
trollability. However, they do have an impact in terms of
preservation of component properties. As such, we will
make use of reactive modelling for the introduction of prob-
abilities into the environment, but will need to resolve the
synchronisation issues to ensure that components cannot
restrict what other components are intended to control.

2.2 Issues Arising from Action Controllability

Most of the aforementioned synchronisation semantics prob-
lems have been tackled by introducing a semantic distinction
between input, output and internal (also called hidden) actions.
These sets of actions represent those that the component can
listen to (in the case of input actions) and emit (in the case of
output actions). The set of internal actions represents those
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that cannot be observed from outside the component, and do
not take part of the interface of the component. The most
well-know approaches to modelling that take this action seg-
regation idea are those of Input/Output Automata [12] and
Interface Automata [9]. Input/Output automata require that
each component is input-enabled, that is, that they accept
every possible input at every state. Interface Automata
relaxes this condition a little by only enforcing that input
synchronisations are always possible, but do not force an
input to be enabled at a given state if it is known that it will
not be triggered at that state.

Input enabledness introduces two modelling problems.
First, it clutters models with unnecessary transitions. For
example, we can look at the models in Figs. 2a and 2b. In
this figure, the Input/Output automaton 2a models a coffee
machine somewhat simpler to the one discussed above,
while Input/Output automaton 2b models a potential envi-
ronment that will interact with the coffee machine. It is note-
worthy that the requirement for input enabledness does
make the modelling more cumbersome.

The second problem is that input-enabledness restric-
tions are unrealistic for modelling some systems. It is usu-
ally the case that a component will accept some inputs in
one state, while it will accept a different set of inputs in
another. In fact, it may not accept any inputs at all until it
finishes some internal computation, at which point it will
accept new inputs. The need for immediate synchronisation
with intended output actions hampers an iterative refine-
ment approach where this internal behaviour is gradually
modelled. As an example of how this problem arises, refer
back to Figs. 2a and 2b. An engineer may now decide that
the level of abstraction used to depict the behaviour of the
coffee machine is too high, and she may decide to model
some of the internal behaviour of the component. In particu-
lar, the engineer decides it would be interesting to note that

the machine needs to heat the water for the beverages prior
to preparing them. The result of this decision is a new
model depicted in Fig. 3a. However, this new model is now
not an Input/Output automaton respective to the environ-
ment model, as the grey state is blocking inputs from the
environment that, at this point, may choose the beverage,
and later choose whether to add sugar or not.

In order to turn this model into a valid Input/Output
automaton it becomes necessary to take into account that
the environment model expects a single push of the
espresso button to prepare the drink, and a second one
for the sweetener choice. Simply adding loops and ignoring
the environment espresso, sugar and nosugar actions
is insufficient, as the environment would now be expecting
the beverage to be dispensed, and such an action would
never happen. The model depicted by the automaton shown
in Fig. 3b fulfils both this requirement and Input/Output
synchronisation. It is easy to see that it is overly complex
because of this need to remember user choices that may
have happened during the internal actions of the machine.
This complexity arises even for the very simple behaviour
exhibited for this machine. Of course, an alternative model-
ling could consider signalling the environment that
although the input actions are enabled, they are being
ignored. However, such a decision involves a rework on the
environment itself. Worse, such changes are a result of try-
ing to fit a methodology rather than an attempt at modelling
the actual interaction.

2.2.1 Interface Automata

Interface Automata [9] have been proposed as an alternative
formalism, but one that still retains the notion of segregating
interfacing actions. The Interface Automata formalism stipu-
lates that the composition of a pair of componentswill be legal
only if components do not block each other, that is, if every
time that one component intends to exercise one of its output

Fig. 2. Input/Output models for the simple coffee machine.

Fig. 3. Approaches to refinement of the coffee machine model.
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actions, the other component enables such action (as part of its
own input actions). In this case, it is not necessary to spuri-
ously enable input actions, as only those that are actually
needed are mandatory to be enabled. In this sense, Interface
Automata allow for succinct modelling of interfacing proto-
cols than their Input/Output counterpart, which assumes
input-enabledness. However, similarly to Input/Output
automata, they do require that the non-blocking behaviour be
immediate, that is, whenever a component wants to emit one
of its output actions, the corresponding input action must be
immediately enabled at its counterpart component.

Except for the immediacy restrictions depicted above,
Interface Automata seem to be a natural choice for model-
ling synchronisation and controllability. From an engineer-
ing point of view, it is natural to model the restriction of
certain actions at selected states as long as these restrictions
are compatible with the behaviour of the component that
controls them.

In this way, assumptions about the behaviour of cooper-
ating models can be encoded directly, easing the task of
modelling interactions such as protocols enforcing ordered
method calls, internal uninterruptible behaviour or system
exceptions, among other useful system properties. This
results in more concise models, as the engineer is released
from the obligation of having to explicitly model responses
for interactions that are known to not occur in the reality
being modelled.

It is important to note, however, that specifying a similar
formalism to the one we will present, but using Input/Out-
put automata-like modelling is feasible. The choice of
Input/Output Automata over Interface Automata is of no
consequence regarding the solutions to the problems
described in the previous sections, and the way to resolve
them would be similar in both cases.

Regarding the immediate enabledness requirements dis-
cussed above, a formalism that allows for modelling such
delayed synchronisation is thus desirable. Of course, an
important requirement for such a model is that it can be
guaranteed that for every possible future behaviour, the
synchronisation point will always be available. Such guar-
antees will require some restrictions on unfair behaviour of
the system under analysis that may hamper such guaran-
tees. We will study these guarantees when we present our
modelling formalism in Section 4.

2.3 Combining Probabilities Modelling
and Synchronisation Semantics

Summarising the previous paragraphs, in order to model
the probabilistic behaviour of the environment and com-
pose it with a non-probabilistic behaviour model of the sys-
tem to obtain meaningful quantitative results, a formalism
is needed that can i) allow for modelling of both non-deter-
ministic behaviour and probabilistic behaviour, ii) address
notions of controllability and monitorability of actions by
the environment and system (including synchronisation
notions and delayed behaviour), and iii) preserve probabi-
listic properties of the environment after composition.

In the following sections we propose a formalism which
distinguishes output/controlled and input/monitored act-
ions, and also supports probabilistic and non-deterministic
behaviour. Our formalism is inspired on probabilistic reactive

models for introducing probabilities, as we discussed ab-
ove. Synchronisation will be modelled inspired on Interface
Automata. This combination allows for satisfying objective
i) in the above paragraph, as well as ii).

However, challenges arise from the combination of these
two formalisms. The previous discussion hints at some of
these challenges, and we elaborate on our solution on the
next sections. We focus especially on the mechanisms that
allow us to ensure that iii) is satisfied.

We will also tackle the problem of the need for immedi-
ate synchronisation. To this end, we will introduce a notion
of fairness for executions of these automata that allows us to
distinguish those cases where future synchronisation of
delayed actions is guaranteed from those where it is not.
Further, we will also present a suitable composition opera-
tor for these automata and in Theorem 4.1 we demonstrate
the required results of property preservation.

3 BACKGROUND

In this section we present some building blocks for our
work. We will recall Interface Automata and related
notions, as well as the base probabilistic model in which our
new formalism is based.

We will also make use of various concepts related to
measure and probability theory when referring to probabi-
listic models and its characteristics. Although various con-
cepts will be summarily introduced, the interested reader is
referred to [13] for in-depth discussion. We will also intro-
duce some other concepts relating to probabilistic automata
theory as the need arises.

3.1 Interface Automata Notions

3.1.1 Model and Executions

Definition 3.1 (Interface Automata [9]). An Interface
Automaton is a tuple P ¼< SP ; s

0
P ; A

I
P ; A

O
P ;A

H
P ;RP >

where:

� SP is a finite set of states.
� s0P 2 SP is a distinct initial state.
� AI

P ;A
O
P ;A

H
P are finite and mutually disjoint sets of

input, output and hidden actions respectively. We

denote the set of all actions AP ¼ AI
P [AO

P [AH
P .

� RP � SP �AP � SP is the transition relation.

We will write AI
P ðsÞ, AO

P ðsÞ and AH
P ðsÞ for a state s 2 SP to

denote the subset of actions in AI
P , A

O
P and AH

P , respectively,
that are enabled at s. An action a 2 AP is said to be enabled
at state s 2 SP if there exists t 2 SP such that ðs; a; tÞ 2 RP .
Alternatively, we may say that the transition ðs; a; tÞ itself is
enabled if the previous condition holds. Analogously, we
denote AP ðsÞ the subset of actions enabled at state s, regard-
less of them being input, output or hidden actions. Without
loss of generality, we require that for each state s 2 SP , there
exists s0 2 SP ; a 2 AP such that ðs; a; s0Þ 2 RP .

In essence, an Interface Automaton is a labelled transi-
tion system (LTS) [14] where its action set has been further
subdivided to distinguish the input, output and hidden
actions. As we will see, this does not make a syntactic differ-
ence, but it does semantically. Also, note that we have
reduced the original set of initial states to a single one with-
out loss of generality.
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Definition 3.2 (Execution fragment and executions). An
execution fragment of an Interface Automaton P is a (possi-
bly infinite) sequence a ¼ s0a1s1a2s2 . . . of alternating states
and action labels. Execution fragments always start with a
state and, if finite, also end with a state. Each subsequence
siaiþ1siþ1 within an execution fragment of P is such that
ðsi; aiþ1; siþ1Þ 2 RP .

Given an execution fragment a, firstðaÞ denotes the first
state of the fragment, while tailðaÞ denote the execution frag-
ment from its second state. tailðaÞ might be empty if a is finite
and consists of only one state. If a is finite, lastðaÞ denotes its
final state.

An execution of an Interface Automaton P is an execution

fragment a of P such that firstðaÞ ¼ s0P , the initial state of P .
As executions are execution fragments themselves, they can
also be finite or infinite.

We will also note fragmentsðP Þ and fragments�ðP Þ to
denote the set of execution fragments of P and the set of
finite execution fragments of P , respectively. Accordingly,
we will note execsðP Þ and execs�ðP Þ for the set of execu-
tions and finite executions of P . For convenience, we also
define length : fragmentsðP Þ ! N [1 to be the number of
states traversed by the execution fragment. Finally, we
define projectors as

i and aa
i that return the ith state and ith

transition label respectively. Note that as
i is defined from 0

through lengthðaÞ � 1, while aa
i is defined from 1 through

lengthðaÞ � 1. Finally, we will note a � a0 to indicate that
the execution fragment a is a prefix of execution fragment a0;
that is, for each 0 � i � lengthðaÞ � 1, as

i ¼ a0s
i and for each

1 � j � lengthðaÞ � 1, aa
j ¼ a0a

j . Accordingly, suffixða; iÞ is

defined for every i < lengthðaÞ and obtains the execution
fragment that results of dropping the first i states and
actions from an execution fragment. Therefore, for an execu-
tion fragment a ¼ s0a1s1a2s2a3s3 . . ., suffixða; 0Þ ¼ a,
suffixða; 1Þ ¼ s1a2s2a3s3 . . . and so on.

3.1.2 Parallel Composition

The notion of action segregation in Interface Automata
allows for the notion of composability of Interface Automata:

Definition 3.3 (Composability [9]). Let P and Q be two Inter-
face Automata. We say P and Q are composable if it holds

simultaneously that AH
P \AQ ¼ ;, AP \AH

Q ¼ ;, AI
P \AI

Q

¼ ;, and AO
P \AO

Q ¼ ;.
Furthermore, when referring to the interaction of two

Interface Automata P and Q, it is usual to allude to its
shared set of actions, SharedðP;QÞ ¼ AP \AQ. Note that
if P and Q are composable, then SharedðP;QÞ ¼
ðAI

P \AO
QÞ [ ðAO

P \AI
QÞ. We recall the definition of Interface

Automata product and illegal states.

Definition 3.4 (Product [9]). Let P and Q be two composable
Interface Automata. Their product P �Q is another Interface
Automaton defined by states SP�Q ¼ SP � SQ; initial state

s0P�Q ¼ ðs0P ; s0QÞ; action sets AI
P�Q ¼ ðAI

P [AI
QÞ n Shared

ðP;QÞ; AO
P�Q ¼ ðAO

P [AO
QÞ n SharedðP;QÞ and AH

P�Q ¼
AH

P [AH
Q [ SharedðP;QÞ. Its transition relation RP�Q is

defined by the set

fððs; tÞ; a; ðs0; tÞÞ such that ðs; a; s0Þ 2 RP^
t 2 SQ ^ a =2 SharedðP;QÞg [

fððs; tÞ; a; ðs; t0ÞÞ such that ðt; a; t0Þ 2 RQ^
s 2 SP ^ a =2 SharedðP;QÞg[

fððs; tÞ; a; ðs0; t0ÞÞ such that a 2 SharedðP;QÞ^
ðs; a; s0Þ 2 RP ^ ðt; a; t0Þ 2 RQg

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

Since the behaviour of a composite Interface Automa-
ton is directly related to the behaviour of each of its com-
ponents, there is a close relationship between the
executions (and executions fragments) of a composite
system, and those of its components. However, this
depends on the semantics of the interface. The action seg-
regation introduced in the definition of Interface Autom-
ata is essentially a description language tool. Although it
has no bearing in the previous formal definitions, it intro-
duces the notion of illegal composition states. Intuitively, a
composition state will be regarded as illegal if, somehow,
it violates the enabledness of the intended actions of each
component.

Definition 3.5 (Illegal states [9]). Given two composable Inter-
face Automata P and Q, their product’s illegal states are
defined by the set IllegalðP;QÞ � SP � SQ. For any s 2 SP ,
q 2 SQ, ðs; qÞ 2 IllegalðP;QÞ if 9a 2 SharedðP;QÞ such that

a 2 AO
P ðsÞ ^ a =2 AI

QðqÞ, or conversely 9a 2 SharedðP;QÞ
such that a =2 AI

P ðsÞ ^ a 2 AO
QðqÞ.

Informally, the idea behind illegal states is that, for a
composition to be legal, component systems should not be
able to block each other’s enabled output actions. We will
abuse notation and say that the product P �Q of two Inter-
face Automata P and Q is legal if the product has no reach-
able illegal states.

The notions of composability and illegal states make it
possible to define what a valid environment for a given Inter-
face Automaton is.

Definition 3.6 (Valid environment [9]). Given a non-empty
Interface Automaton P (that is, P has at least one state),
another Interface Automaton Q is a valid environment for P
if all the following hold: iÞ P and Q are composable; iiÞ
AI

Q ¼ AO
P ; iiiÞ no state in IllegalðP;QÞ is reachable in P �Q;

and ivÞ P �Q is non-empty as well.

3.1.3 Non-Determinism and Schedulers

Finally, it is important to note that the distinct execution
fragments generated by an Interface Automata depend on
how the choice between different transitions is resolved.
That is, whenever two or more actions can be chosen in a
state, the choice of which action to take is left unspecified,
and can only be resolved by an external agent. In order to
distinguish this choice from the probabilistic choices that
will appear later in the paper, we will refer to these choices
as non-deterministic choices. Note that this is slightly differ-
ent from a common meaning of non-determinism which is
limited to the choice between different transitions with the
same label. In this paper we refer to non-deterministic
choices to those that are not probabilistic in nature.

In order to characterise this external agent, and thus
the different non-deterministic choices and the execution
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fragments that they induce, we will introduce the notion of
a scheduler.

Definition 3.7 (Scheduler). A scheduler s for an Interface

Automaton P ¼< SP ; s
0
P ; AP ;RP > (also called an adver-

sary) is a total function s : execs�ðP Þ ! RP , such that sðaÞ
is a transition starting from lastðaÞ; and whenever
sðaÞ ¼ ðlastðaÞ; a; sÞ it must be that ðlastðaÞ; a; sÞ 2 RP . The
notation SchedðP Þ refers to the set of all possible schedulers for
the automaton P ; while sðaÞa and sðaÞs refer to the scheduled
action and destination state given an execution a, respectively.

The idea behind schedulers is that they drive the execu-
tion of the automaton by resolving all possible non-deter-
minism. As such, they restrict the set of possible execution
fragments. Extending this notion, a set of schedulers defines
a set of possible executions and execution fragments.

Definition 3.8 (Scheduler-generated executions). Given an
Interface Automaton P , a scheduler sP and an execution
a 2 execsðP Þ, we say that sP generates a over P if and only
if for each 0 � i < lengthðaÞ it holds that sP ðas

0a
a
1 . . .a

s
i Þ

¼ ðas
i ;a

a
iþ1;a

s
iþ1Þ.

Note that once a scheduler s is set for an Interface
Automaton P , this scheduler eliminates all possible branch-
ing. That is, it generates a single infinite execution fragment,
along with its infinite set of finite prefixes.

Some schedulers will not be very useful to our approach,
as they may model invalid behaviours. In particular, we are
interested in schedulers that are fair in their choices of non-
determinism resolution, as they have desirable properties
which will be discussed later. The following definitions deal
with our requirements for fairness, which have been
adapted from [15], [16], [17].

Definition 3.9 (Fair executions). Let a be an infinite execution
over an Interface Automaton P . For each s 2 SP , let
Traversalsða; sÞ ¼ fi 2 N0 	 as

i ¼ sg, that is Traversals

ða; sÞ denotes the indexes in a where state s is traversed. Simi-
larly, define Traversalsða; ðs; a; s0ÞÞ to be the indexes in a

where the transition ðs; a; s0Þ is taken.
We say that a is a fair execution if for each s 2 SP such

that Traversalsða; sÞ is an infinite set it holds that whenever
ðs; a; s0Þ is an enabled transition from s (that is,
ðs; a; s0Þ 2 RP ), then the set Traversalsða; ðs; a; s0ÞÞ is
also infinite.

Informally, an execution is fair if, every time that it passes
through a state t infinitely often, then it also progresses over
each of its enabled transitions infinitely often. In other
words, whenever a transition is enabled and the execution
has the opportunity to take it, a fair execution cannot indefi-
nitely avoid taking it. We will extend this notion of fairness
to schedulers.

Definition 3.10 (Strictly fair schedulers [1]). A scheduler s is
strictly fair (also called strong fair) if the infinite execution it
generates is itself fair.

The reasons behind the choice of words on defining
schedulers as strictly fair in Definition 3.10 will be made
more clear once we examine schedulers for probabilistic
models.

3.1.4 Logics for Property Description

Several temporal logics have been put forth for reasoning
about the protocols described by automata-like formalisms.
As we will see later when we discuss property preservation,
we need to preserve the branching structure of components
within the composition. We will therefore express these
behaviour properties with the logic CTL (Computational Tree
Logic) [18], or some variants of it. ACTL [19] (not to be con-
fused with the universal fragment of CTL) in particular is a
temporal logic equivalent to CTL. The main difference is
that, while CTL focuses its predicates on states, ACTL does
so on the set of actions. ACTL will become useful to us, as it
allows us to express directly the restrictions that pertain to
the availability of actions for synchronisation, which will
allow us to expand the notion of composability in Section 4.

Definition 3.11 (ACTL Syntax [19]). The set of ACTL formulae
is defined as the smallest set of state formulae such that

� True is a state formula;
� if f1 and f2 are state formulae, then :f1 and f1 ^ f2

are also state formulae;
� if c is a path formula, then :c is also a path formula;
� if c is a path formula then 9c is a state formula;
� if f1 and f2 are state formulae and a is an action label,

thenXaf1, f1Uf2 and f1Uwf2 are path formulae.

Definition 3.12 (ACTL Semantics [19]). Let M ¼ <

SM; s0M;AI
M;AO

M;AH
P ;RM > be an Interface Automaton.

The semantics of an ACTL formula are given by a satisfaction
relation, which is defined for M over execution fragments
a 2 fragmentsðMÞ for path formulae c (noted M;a 
 c),
and over states s 2 SM for state formulae f (noted M; s 
 f).
The satisfaction relation is defined inductively as follows,
where f1;f2 denote state formulae and c denotes a path for-
mula, and a 2 AM :

M; s 
 True always holds
M; s 
 :f , :ðM; s 
 fÞ
M; s 
 f1 ^ f2 , M; s 
 f1 ^M; s 
 f2

M; s 
 9c , 9a 2 fragmentsðMÞ such that
as
0 ¼ s ^ a 
 c

M;a 
 :c , :ðM;a 
 cÞ
M;a 
 Xaf , lengthðaÞ > 1 ^ aa

0 ¼ a^
M;as

1 
 f

M;a 
 f1Uf2 , ð90 � j < lengthðaÞÞð80 � i < jÞ
M;as

i 
 f1 ^M;as
j 
 f2

M;a 
 f1Uwf2 , ðM;a 
 f1Uf2Þ_
ð80 � i < lengthðaÞÞM;as

i 
 f1

:

We will abuse notation and, given a finite set of actions A,
note XAf as an equivalent to

W
a2A Xaf. Also, we can further

refine the satisfaction relation to ask whether a formula f is
satisfied by an Interface Automaton M when under a given
scheduler s. The satisfaction semantics are kept almost the
same, except thatwheneverwe need to check for fragments in
fragmentsðMÞ, wemust restrict them to those generated by s.

3.2 Probabilistic Automata

The previously presented definitions push us halfway
towards our goal of providing a suitable language for
the specification of probabilistic user environments. The
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probabilistic semantics are introduced via a well-known
reactive probabilistic formalism, that of Segala’s Simple
Probabilistic Automata [10], [20]. As we will see, this model
extends classic LTSs by modifying the transitions so that
they no longer reach a single state, but a probabilistic distri-
bution over a set of destination states instead.

Definition 3.13 (Segala’s Simple Probabilistic Automaton
(SPA)). A Simple Probabilistic Automaton is defined by a
tupleM ¼< SM; s0M;AM;RM > where

� SM is a finite set of states.
� s0M 2 SM is a distinct initial state.
� AM is a finite set of actions.
� RM � SM �AM �DðSMÞ is a transition relation,

where DðSMÞ denotes the set of probabilistic distri-
butions over the set of states SM . Further, RM is
required to be finite.

Wewill note RMðsÞ to denote the set of all transitions that
originate on state s, that is, those tuples in RM where the
first component is s. Similarly, we will note RMðs; aÞ to note
the set of transitions originating in s through action a. For
convenience and without loss of generality, we will assume
that for all states s 2 SM , the transition relation is such that
RMðsÞ 6¼ ; [21].

In a manner similar to other automata-based behaviour
description formalisms, Simple Probabilistic Automata can
be constructed compositionally as the product of other,
smaller Simple Probabilistic Automata.

Definition 3.14 (Simple Probabilistic Automata prod-
uct [10]). Let M1 ¼< S1; s

0
1; A1; R1 > and M2 ¼< S2; s

0
2;

A2; R2 > be two Simple Probabilistic Automata. Their prod-
uct M1 �M2 is another Simple Probabilistic Automaton

M ¼< SM1�M2
; s0M1�M2

; AM1�M2
; RM1�M2

> , such that

� SM1�M2
¼ ðS1 � S2Þ

� s0M1�M2
¼ ðs01; s02Þ

� AM1�M2
¼ A1 [A2

� given ðs; tÞ 2 S1 � S2, a 2 A1 [A2 and d 2 D
ðSM1�M2

Þ, RM1�M2
is such that ððs; tÞ; a; dÞ 2

RM1�M2
if and only if any of the following is satisfied:

1) a 2 A1 ^ a =2 A2 ^ 8s0 2 S1 ð9d1 2 DðS1Þ such
that ðs; a; d1Þ 2 R1 ^ 8s0 2 S1; dððs0; tÞÞ ¼
d1ðs0ÞÞ

2) a 2 A2 ^ a =2 A1 ^ 8t0 2 S2 ð9d2 2 DðS2Þ such
that ðt; a; d2Þ 2 R2 ^ 8t0 2 S2; dððs; t0ÞÞ ¼ d2ðt0ÞÞ

3) a 2 A1 \A2 ^ 9d1 2 R1ðs; aÞ ^ 9d2 2 R2ðt; aÞ
such that 8s0 2 S1; t

0 2 S2; dððs0; t0ÞÞ ¼ d1ðs0Þ �
d2ðt0Þ.

As was the case for Interface Automata earlier in the
paper, SPAs are composed through an asynchronous prod-
uct, but synchronising on shared actions. This distinction is
made clear when defining the transition relation for the
product SPA. Clauses 1 and 2 state that, whenever an action
is not shared by both processes, the possible distributions
governing transitions in the product are exactly those that
come from each component process. Clause 3 describes
the synchronising nature of the Simple Probabilistic Autom-
ata product. The distributions for transitions where the
action label is shared are computed as the product of the

distributions for each of the components. Note that, when
composing states from different components, if at any of
these states the shared action is not enabled (i.e., the state
does not provide an outgoing transition through the shared
action), then no distribution is present and the product can-
not be computed. In that case, the product state does not
have an outgoing transition on the shared action—it does
not synchronise.

The definitions for execution fragments and complete
executions still apply to Simple Probabilistic Automata, as
we are still interested in the possible traces of the Simple
Probabilistic Automaton.

Definition 3.15 (SPAs’ execution fragments and execu-
tions). An execution fragment of a Simple Probabilistic
Automaton M is a (possibly infinite) sequence a ¼ s0ða1;
p1Þs1ða2; p2Þs2 . . . of alternating states and transitions, where
these transitions are annotated by their governing action and
associated probability. Execution fragments always start with
a state and, if finite, also end with a state. Each sequence
siðaiþ1; piþ1Þsiþ1 within an execution fragment of M is such
that there exists a probabilistic distribution d such that
ðsi; aiþ1; dÞ 2 RP , and dðsiþ1Þ ¼ piþ1.

Given an execution fragment a, firstðaÞ denotes the first
state of the fragment, while tailðaÞ denotes the execution frag-
ment from its second state. tailðaÞ might be empty if a is finite
and consists of only one state. If a is finite, lastðaÞ denotes its
final state.

An execution of a Simple Probabilistic Automaton M

is an execution fragment a of M such that firstðaÞ ¼ s0M ,
the initial state of the automaton. As executions are execu-
tion fragments themselves, they can also be finite or
infinite.

As was the case for Interface Automata, we will also note
fragmentsðMÞ and fragments�ðMÞ to denote the set of exe-
cution fragments of M and the set of finite execution frag-
ments of M, respectively. Additionally, we will note
execsðMÞ and execs�ðMÞ for the set of executions and finite
executions of M. We also define length : fragmentsðMÞ !
N [1 to be the number of states traversed by the execution
fragment. For additional convenience, we define projectors
as
i , a

a
i and ap

i that return the ith state, ith transition label and

ith associated probability respectively. Note that as
i is defined

from 0 through lengthðaÞ � 1, while aa
i and a

p
i are defined

from 1 through lengthðaÞ � 1. Finally, we will note a � a0 to
indicate that the execution fragment a is a finite prefix of exe-
cution fragment a0. Again, suffixða; iÞ is defined for every
i < lengthðaÞ and obtains the execution fragment that results
of dropping the first i states and probability-action pairs from
an execution fragment. Therefore, for an execution fragment
a ¼ s0ða1; p1Þs1ða2; p2Þs2ða3; p3Þs3 . . ., suffixða; 0Þ ¼ a, suffix
ða; 1Þ ¼ s1ða2; p2Þs2ða3; p3Þs3 . . . and so on.

The notion of schedulers for resolving non-determinism
is also preserved, but note that instead of scheduling an
action and a destination state, it schedules a distribution on
destination states instead.

Definition 3.16 (Scheduler for Simple Probabilistic
Automata). A scheduler s for a Simple Probabilistic Autom-

aton M ¼< SM; s0M;AM;RM > (also called an adversary)
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is a total function s : execs�ðMÞ ! AM �DðSMÞ, such that
if sðaÞ ¼ ða; dÞ it must be that ðlastðaÞ; a; dÞ 2 RM .

For ease of reading, we will note sðaÞa to refer to the
scheduled action label, and sðaÞd to refer to the chosen dis-
tribution. That is, if sðaÞ ¼ ða0; d0Þ, then sðaÞa ¼ a0 and
sðaÞd ¼ d0.

It is noteworthy, however, that resolving non-determin-
ism via a scheduler for an SPA does not, as was the case for
Interface Automata, produce a unique execution. Rather,
resolving non-determinism induces a fully probabilistic
process, specifically a Discrete Time Markov Chain (DTMC)
which, in turn induces a set of execution fragments. For
more insight on these probabilistic processes the reader
may refer to [22], [23].

This combination of a scheduler s and an SPA M defines
a probability measure d on the s-algebra generated by the
cones (also called cylinder sets in the literature) of execution
fragments.

Definition 3.17 (Cones and probability measure [20]).
Given a finite execution fragment a of an SPAM, the cone of a
is the set of execution fragments Ca ¼ a0 2 fragmentsðMÞ	
a � a0. The measure of a coneCa under scheduler s is defined as

dðCa;M; sÞ ¼
YlengthðaÞ

i¼1

IsSchedðs;a; i� 1;aa
i Þ � dSchedðs;a; i� 1Þðas

i Þ;

where dSched : SchedðMÞ � fragments�ðMÞ �N ! DðSMÞ,
and IsSched : SchedðMÞ �fragments � ðMÞ �N�AM !
f0; 1g are such that dSchedðs;a; nÞ ¼ sða0 . . .anÞd and

IsSchedðs;a; n; aÞ ¼ 1 if sða0 . . .anÞa ¼ a
0 otherwise:

�

In other words, dSched obtains the distribution corresponding to
the next scheduled transition, while IsSched checks whether in
fact a is the next scheduled action.

Cone measure as defined in Definition 3.17 can easily be
extended for sets of non-overlapping cones. Given a SPAM,
a scheduler s, and a set G of finite execution fragments such
that for every ai;aj 2 G neither is a prefix of the other, we can
define themeasure of the set G (noted dðG;M; sÞ) as follows:

dðG;M; sÞ ¼
X
a2G

dðCa;M; sÞ:

The notion of cones is essential for the definition of the
s-algebra underlying SPAs, since it gives us a way to mea-
sure sets of traces. As we will see later, this concept will
have a strong relation with the logics we will employ to rea-
son about SPA behaviour.

Leveraging on the previous definitions, we can character-
ise the set of execution fragments generated by a scheduler
s on an SPAM.

Definition 3.18 (Simple Probabilistic Automaton sched-
uled fragments). Let M be a Simple Probabilistic Auto-
maton, and s a scheduler for M. The set of scheduled
execution fragments of M through s is the set of execution
fragments fragmentsðM; sÞ � fragmentsðMÞ such that a 2

fragmentsðM; sÞ , ð8a0 2 fragments�ðMÞ 	 a0 � a ) d

ðCa0 ;M; sÞ > 0Þ.
In other words, fragmentsðM; sÞ is the set of the execu-

tion fragments of SPA M that may be generated probabilis-
tically given a scheduler. Each scheduler for an SPA
generates a (possibly infinite) set of executions and execu-
tion fragments, instead of a single execution as was the case
for automata that do not exhibit probabilities. Therefore,
schedulers alone are not enough to exercise complete con-
trol over the executions of an SPA, as probabilities also have
an influence on possible behaviour. In particular, this
implies that the notion of scheduler fairness needs to be
adjusted. Consider for example the case of the SPA depicted
in Fig. 4, and two possible schedulers s1 and s2 that behave
roughly as described beside the automaton. In both cases, a
nonfair execution is possible – 0a1b1b1 . . . b1b1b1 . . . in the
case of scheduler s1, and 0a1c0a1c0a1 . . . c0a1c0a1 . . . in the
case of scheduler s2. Under the previous definition, neither
of these schedulers are themselves fair. However, note that
the probability of the nonfair executions under s2 is actually
zero, while those under s1 have nonzero probability. This
important distinction leads to the definition of probabilisti-
cally fair schedulers. Once again, this definition has been put
forth previously in [15], [16], [17].

Definition 3.19 (Probabilistically fair schedulers). A sched-
uler s is probabilistically fair for an SPA M if it either is
strictly fair, or else the measure of the subset of nonfair execu-
tions within its scheduled fragments set fragmentsðM; sÞ
(that is, the measure of the cones that describe the set) is zero.

In other words, a probabilistically fair scheduler gener-
ates fair execution fragments almost surely, while they almost
never produce unfair execution fragments. For the remain-
der of this paper, when we refer to fair schedulers for SPAs,
we will be implicitly referring to probabilistically fair ones,
unless specifically noted.

3.2.1 Simulations for Probabilistic Automata

The notion of simulations [24] is useful to compare the
behaviours of automata, and is a step forward to establishing
equivalence between them. In the context of probabilistic

Fig. 4. A simple probabilistic automaton and two unfair schedulers. s2 is
probabilistically fair.
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automata the concept of simulations has also been stud-
ied [7]. In this work we will leverage on the particular notion
of probabilistic branching simulations [20]. We will employ
these simulations to show that our approach to composabil-
ity preserves behaviour, in the form of establishing these
kind of simulations between different automata.

Before we can define probabilistic branching simula-
tions properly, we need to understand the basic blocks
with which they are built. Probabilistic branching simu-
lations must show that the probabilistic information is
simulated between different automata. The main mecha-
nism through which this is achieved is by showing that
a probability distribution on the simulated system can be
embedded into a probability distribution over the system
that simulates it.

Definition 3.20 (Distribution embedding [10]). Let
R � S � T be a relation between two sets S and T ; and let
dS 2 DðSÞ and dT 2 DðT Þ be two distributions on each of those
sets. We say dS and dT are in relation vR, noted dS vR dT if
there exists a weight functionw : S � T ! ½0; 1� such that
1) for each s 2 S,

P
t2T wðs; tÞ ¼ dSðsÞ;

2) for each t 2 T ,
P

s2S wðs; tÞ ¼ dT ðtÞ;
3) for each ðs; tÞ 2 S � T , wðs; tÞ > 0 ) sRt.

The notion of distribution embedding bears a close rela-
tionship to embedding a probabilistic transition of one sys-
tem into a combination of several transitions on the other,
and vice versa. The notion of combined steps captures this
relationship.

Definition 3.21 (Combined step [10]). Let M be an SPA and
s 2 SM an arbitrary state. Let dC 2 DðAM � SMÞ. We say
ðs; dCÞ is a combined step of M if there exists a weight func-
tion w : RMðsÞ ! R such that for each action a in AM the fol-
lowing hold:

� P
ðt;a;dÞ2RM ðsÞ wððt; a; dÞÞ ¼ 1; and

� for every s0 2 SM it holds that dCða; s0Þ ¼P
ðt;a;dÞ2RM

wðt; a; dÞdðs0Þ.
In other words, a combined step of M at state s is a con-

vex combination of the transitions allowed by M at state s.

We will note s �!C
a;p

s0 every time that there exists a com-
bined step C ¼ ðs; dCÞ such that dCða; s0Þ ¼ p.

A related notion is that of weak combined steps. A weak
combined step is essentially a product of many combined
steps where at most one of them is via a non-internal action,
while the rest are internal.

Definition 3.22 (Internal combined step [10]). Let M be an
SPA, s 2 SM and dIC 2 DðSMÞ. ðs; dICÞ is an internal com-
bined step if either

1) dICðsÞ ¼ 1; or
2) there exists a combined step ðs; dCÞ such that for every

ða; tÞ 2 AM � SM such that dCða; tÞ > 0 it holds that
a) a 2 AH

M ;
b) there exists an internal combined step ðt; dðs;a;tÞÞ

noted stepðs; a; tÞ; and
c) for every state s0 2 SM , dICðs0Þ ¼

P
ða;tÞ2AM�SMdCða; tÞ � dðs;a;tÞðs0Þ; where dðs;a;tÞ is the dis-

tribution given by the combined step stepðs; a; tÞ.

Essentially, an internal combined step is a combination
of subsequent combined steps where each combined step
is such that it assigns non-zero probabilities only to inter-
nal actions. Fig. 5 shows an example of an internal com-
bined step. In this case, all actions are hidden so no labels
on transitions are necessary. Different transition distribu-
tions are told apart by the arc between the transitions.
The combined transition depicted is obtained through an
embedded distribution. This embedded distribution is the
result of combining the distributions from state 0 with a
factor of 0:5 on each distribution; and from state 1 using
factors 0:3 (distribution shown on left) and 0:7 (distri-
bution shown on right). In this case the combined step
“skips” state 1.

There is a combination of combined steps and internal
combined steps that is of important interest, which is the
case when a state can be reached by any combination of
exactly one action in AI

M [AO
M and countably many inter-

leavings of actions in AH
M in between. We shall denote these

as weak combined steps.

Definition 3.23 (Weak combined step [10]). Let M be an

SPA, s 2 SM and a 2 ðAI
M [AO

MÞ. ðs; a; dCÞ is a weak com-

bined step if and only if there exists a combined step ðs; d0CÞ
such that every time that dCðaction; stateÞ > 0 the following
hold:

Fig. 5. An internal combined step.
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1) action ¼ a _ action 2 AH
M ; and

2) if action ¼ a then either d0CðstateÞ > 0 or else
there exists an internal combined step denoted
stepðs; a; stateÞ ¼ ðstate; d0ICÞ;

3) otherwise, if action 2 AH
M , there exists a weak combined

step denoted stepðs; action; stateÞ ¼ ðstate; a; dCÞ;
4) and finally, for every state t 2 SM it holds that dCðtÞ ¼P

ðaction;stateÞ2AM�SM
d0CðstateÞ � ds;action;stateðtÞ, where

ds;action;state is the distribution of stepðs; action; stateÞ.
Fig. 6a shows an example of distributions that can be

combined as a weak combined step. Inside the arc corre-
sponding to a distribution we note the triggering action.
a is an action that is presumably shared with an external
environment, while h is an internal action to the compo-
nent we are modelling in this case. Fig. 6b shows the
resulting weak combined step. In this case, we obtained
this step by combining the first two transitions (originat-
ing from state 0) with factors of 0:5 each; on state 3 we
use factors 0:3 and 0:7. In this case, the combination is
far more complex, as hidden actions may appear before
or after the action a, and even multiple times. However,
it can easily be seen that the resulting step is much more
simpler as well.

Definition 3.24 (Probabilistic branching simulation
(PBS) [10]). Given two Simple Probabilistic Automata M1

and M2, a probabilistic branching simulation is a relation
R � SM1

� SM2
such that

1) the initial state ofM1 is related throughR with the ini-
tial state ofM2;

2) for each s1Rs2 and each possible transition
ðs1; a; d1Þ 2 R1 then:
a) if a 2 AM2

, there exists a weak combined step
ðs2; a; d2Þ such that the distribution d1 can be
embedded into d2 throughR, that is, d1 vR d2.

b) if a =2 AM2
, there exists an internal combined step

ðs2; d2Þ such that d1 vR d2.
3) every time that s1Rs2, it must be that if s1 �!ai for

a set of actions ai 2 AM1
, then s2 ¼)a as well for

at least one of these actions ai; where s �!a denotes
that there is a transition from s with action a; and

s ¼)a denotes that s can weakly transition to
some other state on action a. That is, it either has a

enabled, or there is a path of internal transitions to
a state where a is enabled. In other words, whenever
s2 weakly enables some actions, at least one of them
must be weakly enabled in s1. This establishes a liv-
eness condition.1

Whenever there exists such a simulation relation R
between M1 and M2 we will say that M2 simulates M1,
and note it M1 vR M2 (or succinctly M1 v M2 if we do
not care about the particular relation R).

Property 3.1 (Reflexivity and Transitivity [10]). Probabilistic
branching simulations are both reflexive and transitive.

3.2.2 Logics for Property Description

In order to express and analyse properties over probabi-
listic models such as SPAs, these automata are coupled
with modal logics whose formulae express said proper-
ties. For the specific case of probabilistic models, the
temporal logic pCTL* [25] has been introduced as an
extension of the well known temporal logic CTL*. Essen-
tially, pCTL* replaces path quantifiers present in CTL*
for probabilistic quantification bounds on the related path
formulae.

pCTL* Syntax and Semantics. pCTL* formulae are
built from state and path formulae, just as CTL*. Let AP

be a finite set of atomic propositions. If f stands for
a state formula, and c for a path formula, then pCTL*
formulae are built as follows

f ! true j a 2 AP j :f jf ^ f jP�pc

c ! Xf jfUf jfU�kf
:

In the above, �2 f< ;�;¼;; > g and p 2 R; p 2 ½0; 1�.
Given an SPA Q and a mapping of states to atomic prop-

ositions V : SQ ! 2AP defining the subset of atomic

propositions that are valid for each state, we can define
the satisfaction of pCTL* formulae by a state s 2 SQ, a

scheduler s 2 SchedðQÞ and an execution fragment
a 2 fragmentsðQÞ as follows

Fig. 6. A weak combined step on action a:

1. In [10] liveness is required on every action, although it is men-
tioned that it can be relaxed in the way we state here.
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s; s 
 true , true

s; s 
 a , a 2 V ðsÞ
s; s 
 :f , :ðs; s 
 fÞ

s; s 
 f1 ^ f2 , ðs; s 
 f1Þ ^ ðs; s 
 f2Þ
s; s 
 P�pc ,

X
a2csat

dðCa; s; QÞ � p;

where a 2 csat iff a; s 
 c and

for every other a0 2 csat neither

a � a0 nor a0 � a:

a; s 
 Xf , as
1; s 
 f

a; s 
 f1U
�kf2 , 90 � i � k 	 as

i ; s 
 f2^
80 � j < i 	 as

j ; s 
 f1

a; s 
 f1Uf2 , 90 � k 	 a; s 
 f1U
�kf2:

For convenience, we will note that a SPA Q and
scheduler s satisfy a formula (noted Q; s 
 f) if the ini-

tial state s0Q is such that s0Q; s 
 f. We can also generalise

the satisfaction relation to set of schedulers. Given a set
of schedulers S � SchedðQÞ, we say Q satisfies f under
S, noted Q;S 
 f if for every s 2 Sigma, Q; s 
 f. Fur-
ther, whenever S ¼ SchedðQÞ we simply note Q 
 f.

It is interesting to note that satisfaction verification of a
pCTL* formula can be reduced to a reachability problem
coupled with an optimization problem if more than one
scheduler is possible [25]. Informally, given a path formula
f, a typical pCTL* state formula takes the form of a restricted
classic CTL* state formula, but where path quantifiers have
been replaced by the probabilistic operator P�a. Thus, a state
formula P�af (resp. Paf), is true at a given state of the sys-
tem if its possible evolutions from that state satisfy the for-
mula fwith probability at most (resp. at least) a.

Note that whether a formula is satisfied or not by a SPA
depends heavily on schedulers. Under two different schedu-
lers, the same pCTL* formula may be satisfiable or not. This
plays a critical role especially in the case of probabilistic
operator formulae (that is P�pc) as two different schedulers
may assign distinct probabilities. In general, the scheduler is
unknown when evaluating the satisfaction of a formula.
Therefore, it is more interesting to know if a formula holds
for any possible scheduler. In that case, for a probabilistic for-

mula c, there will exist a scheduler sc
min that induces a mini-

mum probability on the formula being satisfied; and another

one sc
max (not necessarily distinct) that induces a maximum

probability. Then, we will usually employ a different form of
the probabilistic operator to query whether the minimum or
maximum probabilities satisfy our requirements. We will

usually replace the operator P�p by two other operators Pmin
�p

and Pmax
�p , which are evaluated globally for every scheduler.

Satisfaction of these operators will be defined as follows:

s 
 Pmin
�p c , s; sc

min 
 P�pc

s 
 Pmax
�p c , s; sc

max 
 P�pc
:

It is important to note that there is a close relationship
between pCTL* satisfaction and the notion of cones defined
in Definition 3.17. We can see from the semantics definition

of pCTL* that s; s 
 P�pc if the measure of the set of traces
that satisfy c holds the relation � p. We have already estab-
lished that cones induce a s-algebra (in particular, a mea-
sure). The set of traces that satisfy c can be characterised by
a (possibly infinite, but numerable) set of disjoint cones,
based on the prefixes of the traces. Therefore, the set of
traces that satisfy c has a definite measure induced by the
cones that characterise it.

Finally, note that in the context of this work we will focus
on a restriction of pCTL*, namely its weak fragment, which
we denote as WpCTL*. A WpCTL* formula is restricted in
the sense that the X and U�p operators are prohibited. Such
a restriction is reasonable when the aim of the approach is
to allow further refinement by modelling internal computa-
tion of components. The next and bounded until operators,
which we choose to avoid, distinguish models based on
these internal computations. However, from the point of
view of an external observers, such internal computation
should not be discernible.

3.2.3 Simulations and Property Preservations

There is a close relationship between automata that can be
shown to be in a probabilistic branching simulation, and the
sets of WpCTL* formulae that they satisfy. However, since
an automata that simulates another will probably have
more behaviour than the simulated one, it is necessary to
take into account some precautions regarding fairness if we
wish to study these sets of properties. As we will see, this
idea has a close relationship to that of probabilistically fair
schedulers 3.19.

Definition 3.25 (Probabilistically convergent autom-
ata [10]). A Simple Probabilistic Automaton M is probabilis-
tically convergent under a set of schedulers Sch if for every
state s 2 SM and s 2 Sch, the probability of diverging (that
is, performing infinitely many internal actions and no input or
output actions) from state s is 0.

Definition 3.26 (Induced subgraph, (Bottom) strongly con-
nected component). Given a digraph G ¼ ðV;EÞ where V is
the set of vertices and E the set of directed edges, the subgraph
induced by V0 � V is the graph G0 ¼ ðV0; E0Þ such that
E0 � E includes all edges between vertices in V0, and no other
edges.

An induced subgraph G0 ¼ ðV0; E0Þ of G is a strongly
connected component (SCC) of G if every vertex in V0 is
reachable from every other vertex in V0 through edges in E0.

An SCCG0 ¼ ðV0; E0Þ of G is a bottom SCC (BSCC) if no
vertex from V0 can reach a vertex in V n V0 through edges inE.

Proposition 3.1 (Convergence of SPAs). Let M be a Simple
Probabilistic Automaton such that its underlying graph has no
BSCC whose edges contain only internal actions. Let Sch a set
of probabilistically fair schedulers forM. Then, it holds thatM
is probabilistically convergent under Sch.

Proof. The proof is immediate from the definition of proba-
bilistically fair schedulers. The only way for an infinite
sequence of internal actions to have a measure larger
than zero is that there is only a finite number of probabi-
listic choices with probability less than 1. For having
such a situation be possible, there should be only a finite
number of non-deterministic choices made in favour of
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input/output actions instead of internal actions. How-
ever, such a choice would be in direct violation of proba-
bilistically fair schedulers, therefore no probabilistically
fair scheduler may result in a divergent automaton.

Note that the requirement of M having no purely
internal BSCCs is reasonable and stems from the fact that
they are trivially divergent, and largely uninteresting
from a modelling point of view, since they would model
only unobservable behaviour. In the remainder of the
paper assume that the SPAs under study comply with
this requirement. tu
Finally, we recall a central theorem from [20] regarding

probabilistic branching simulations and convergent SPAs.

Theorem 3.1 (PBSs preserve WpCTL* [10]). Let M1 and M2

be two SPAs and such that M1 v M2. Let f ¼ Ppc be a
WpCTL* formula. Then, it holds that M2;S2 
 f implies that
M1;S1 
 f as well, where the formula satisfaction is consid-
ered only under the subsets S1 � SchedðM1Þ and
S2 � SchedðM2Þ of fair schedulers .
In other words, Theorem 3.1 states that, under the condi-

tions described, if the minimum probability of M1 satisfying
c is p, then the minimum probability of M2 satisfying c is at
least asmuch.Note that the theoremalso applies tomaximum
probabilities, since theminimumprobability pmin of satisfying
a given formula is equal to 1� p:max where p:max is the maxi-
mum probability of satisfying the negation of that same for-
mula. In the remainder of this paper, we will focus on fair
schedulers, so we will note M 
 f to implicitly refer to satis-
faction under the subset of fair schedulersS (that isM;S 
 f).

This notion of probabilistic branching simulations and
property preservation is central, as we will show that our
approach is such that the composition establishes a probabi-
listic branching simulation between the components and
the composite system, and therefore preserves WpCTL*
behaviour. This will be stated in Theorem 3.1.

4 PROBABILISTIC INTERFACE AUTOMATA

In this section we present our new modelling formalism
designed to overcome the shortcomings other probabilistic
modelling formalisms have, as was discussed in Section 2.

4.1 Definitions, Relations with IA and SPA

Leveraging on the definitions presented in previous sec-
tions, we can attain our aim of merging the notion of SPAs
with that of Interface Automata. As a way to attain this
objective, we define Probabilistic Interface Automata based on
SPAs.

Definition 4.1 (Probabilistic Interface Automata). A Proba-
bilistic Interface Automaton (PIA) is a tuple of the form

M ¼< SM; s0M;AI
M;AO

M;AH
M;RM > where the sets AI

M ,

AO
M and AH

M are mutually disjoint, and such that defining

AM ¼ AI
M [AO

M [AH
M yields a Simple Probabilistic Automa-

tonMSPA ¼< SM; s0M;AM;RM > .

Therefore, a Probabilistic Interface Automaton is an
SPA that shares the input, output and hidden action
semantics from Interface Automata. Note that since a Proba-
bilistic Interface Automaton must induce an SPA, then

RM � SM �AM �DðSMÞ. Note also that a Probabilistic
Interface Automaton A has an underlying Interface Automata,
noted A # and defined as follows:

Definition 4.2 (Underlying IA). Given a Probabilistic Interface
Automaton E, we define its underlying Interface Automa-
ton as the classic Interface Automaton E #¼< SE#;
s0E#; AE#; RE# > such that SE# ¼ SE , s

0
E# ¼ s0E , AE# ¼ AE

and for all s; s0 2 SE#, a 2 AE#, ðs; a; s0Þ 2 RE# if and only if
there exists a distribution d 2 REðs; aÞ such that dðs0Þ > 0.

Simply put, the underlying Interface Automaton of a
Probabilistic Interface Automaton is a non-deterministic
automaton with the same state and edge structure, where
all probabilities have been forgotten and replaced by non-
deterministic transitions, leaving all other information
unchanged. Conversely, it is also worth noting that a classic
Interface Automata can be embedded in a Probabilistic
Interface Automata by restricting RM to Dirac distributions.
This definition is akin to that of underlying graph of Markov
chains [20], but this definition makes explicit the fact that
the obtained graph is an Interface Automaton.

The notion of underlying Interface Automaton turns out
to be useful for a natural way to define Probabilistic Inter-
face Automata composability.

4.1.1 Composability and Product

Definition 4.3 (Composability). Given P and Q two Probabi-
listic Interface Automata, we will say that P and Q are com-
posable if their underlying Interface Automata P # and Q #
are themselves composable (see Definition 3.3).

The concepts of execution fragments and schedulers still
apply to Probabilistic Interface Automata. Since these
automata can be directly embedded into an SPA, we will
refer to the SPA definitions for these concepts while work-
ing with PIAs. Probabilistic Interface Automata product,
however, does express some differences regarding the com-
position of the transition relation.

Definition 4.4 (Product). Given P and Q two composable Prob-
abilistic Interface Automata, their product P �Q is defined by
the Probabilistic Interface Automaton:

P �Q ¼< SP�Q; s
0
P�Q;A

I
P�Q;A

O
P�Q;A

H
P�Q;RP�Q > ;

where SP�Q ,s0P�Q, A
I
P�Q, A

O
P�Q and AH

P�Q are defined in the
same way as Interface Automata composition. Its transition
relation RP�Q � SP�Q �AP�Q �DðSP�QÞ however, is con-
structed in the same way as it was constructed for SPAs
(Definition 3.14).

Note that we are overloading the operator� to refer to all
of IA, SPA and PIA composition. The specific meaning in
each case, however, can be easily understood from the con-
text in which we use the operator. Refer to Fig. 7 for an
example of two-state composition, where a? denotes a is an
input action for the automaton, and a! denotes it is an out-
put. Unannotated actions are internal. Recall that we would
like the notion of Probabilistic Interface Automata to exceed
a syntactic notion and actually have an interesting semantic
bearing, as otherwise its usefulness would be drastically
reduced. We will see to this objective in Theorem 4.1.
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Property 4.1 (Commutativity). As is the case for Interface
Automata, composition of PIAs is commutative, that is
A�B ¼ B�A.

Property 4.2 (Composition and # operator). The probabilistic
composition operator and the underlying Interface Automata
operator are distributable over one another. That is, if P and Q
are two Probabilistic Interface Automata, then ðP �QÞ
#¼ P # � Q # .

Property 4.3 (Composition preserves refinement). Let A, B,
C be PIAs and R a PBS such that A vR B. Also, let A� C be
legal as well as B� C. Then, it holds that A� C vR B� C.

4.1.2 Illegal States and Valid Environments

The notions of illegal states and valid environments can also
be extended for Probabilistic Interface Automata. In
essence, they share the same definition, except for an impor-
tant difference in the illegal states concept. As we discussed
in Section 2, the original criteria for defining illegal states in
the case of Interface Automata is too stringent, as it requires
immediate enabledness of output actions in the component
to be composed with.

In the following definition, we will make use of ACTL
formulae over the underlying Interface Automaton of a
given Probabilistic Interface Automaton P .

Definition 4.5 (Illegal states). Given two composable Probabi-
listic Interface Automata P andQ, their product’s illegal states
are defined by the set IllegalProbIAðP;QÞ � SP � SQ. For any
s 2 SP , t 2 SQ, ðs; tÞ 2 IllegalProbIAðP;QÞ if it is the case that
either

1) for any action a 2 AO
P \ SharedðP;QÞ enabled in s

(respectively, actions b 2 AO
Q \ SharedðP;QÞ ena-

bled in state t) the ACTL formula 8ðXaÞ_
ðXAQnSharedðP;QÞTrueÞUðXaTrueÞ does not hold for

Q # at state t under fair schedulers (respectively
8ðXbÞ _ ðXAP nSharedðP;QÞTrueÞUðXbTrueÞ does not

hold on P # at state s); or
2) s is such that its only enabled actions on P are a

subset As of AI
P \ SharedðP;QÞ (respectively, ena-

bled actions at t on Q are a subset At of

AI
Q \ SharedðP;QÞ) and the ACTL formula

8ðXAQnSharedðP;QÞTrueÞUðXAsTrueÞ does not hold

on Q # at state t (respectively the formula
8ðXAP nSharedðP;QÞTrueÞUðXAtTrueÞ does not hold on

P at state s) when being evaluated, restricting evalua-
tion only to fair schedulers.

Note that the semantics of the U operator above is that of
a strong until. The difference between weak until (Uw) and
strong until is subtle and merits a reminder: an execution a

satisfies the path formula cUwf (that is, a 
 cUwc) if there
exists an index i such that as

i 
 c and 80 � j < i 	 as
j 
 f;

or alternatively as
k 
 f for every k  0. The strong until is

more stringent in the sense that it does not allow the second
alternative, and it needs the step as

i such that as
i 
 c to exist.

In other words, the strong until demands the formula c to be
true at some point, while weak until does not, as long as f is
never violated.

The illegal state definition for Probabilistic Interface
Automata relaxes that of Interface Automata, so that syn-
chronisation does not need to be available at each state,
but may be finitely delayed, under certain conditions.
Intuitively, the first clause (i) enforces the claim that
states will only be legal if they allow an output action to
be taken immediately; or else, if the current state is
momentarily blocking it, it is such that every possible
continuation of the trace from that state involves only
internal actions of the blocking component until it allows
the blocked behaviour to happen. However, it still is
required that the synchronisation be carried out, regard-
less of any internal actions the delaying component takes.
It must be noted that this future synchronisation delayed
by a component cannot depend on action requirements
by its counterpart. That is, a component may delay syn-
chronisation only through the execution of internal
actions, and every possible fair continuation of such exe-
cution fragments must eventually synchronise. Such
restrictions are essential to further probabilistic analysis,
because failure to eventually accept such behaviours
would result in missing behaviour from the environment,
along with its probability. Note that we refer to fair exe-
cutions in the sense of probabilistic fairness. In other words
the probability distributions that govern the transitions
may allow for an indefinite delay of the required syn-
chronization, but the probability of selecting this delay
indefinitely should be zero (i.e., such a situation should
almost never arise).

Clause (ii) in turn, describes that states that only allow
for shared input actions are such that they must eventually
always receive one of these input actions in order to
advance. These are states that need to receive an input in
order to advance (because the states themselves do not gen-
erate outputs and do not perform internal actions), and
must be guaranteed to eventually receive one of these
inputs and cannot be kept stuck forever. This second restric-
tion essentially imposes an advancing condition on quies-
cent states of the components. On the one hand, this forces
the counterpart component to actually have one of those
actions as an output to be processed by the blocked compo-
nent. On the other hand, fairness conditions are vital to
ensure, additionally to the fact that the action must be avail-
able, that again the action is taken at some point in the
future and is never indefinitely delayed.

Fig. 7. Probabilistic interface automata (partial) product. Only the com-
posite state 1A is shown.

856 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 9, SEPTEMBER 2016



These restrictions allow us to relax the stringent immedi-
ate blocking semantics, and let us model components’ inter-
nal behaviour in a way that doesn’t interfere with the
synchronising semantics. Also, note that these conditions
are not necessarily exclusive to Probabilistic Interface
Automata. They can be used to relax the Interface Automata
illegal states condition as well.

There is a price to pay, however, in the complexity of
checking for legality. In the case of Interface Automata, this
check was straightforward since it depends only on the
states being composed. Legality checks of PIA may require
iÞ the whole composition to be built, and iiÞ checking ACTL
formulae satisfaction. We expand on this in Section 6.

4.2 PIAs and Property Preservation

In the case of Probabilistic Interface Automata, WpCTL* is a
viable logic for property observation, since we can leverage
on their underlying SPA structure and the scheduler defini-
tion (recall Definition 3.7). The main contribution of this
paper is to convey the notion that the product of two inter-
facing probabilistic models is not merely a syntactic conve-
nience, but that it does maintain a semantic relationship
between the individual models, their composition, and their
observable properties. The following theorem and its corol-
lary see to this objective.

Theorem 4.1 (WpCTL* property preservation). Let A and B
be two composable Probabilistic Interface Automata such that
their product A�B is legal (that is, it contains no reachable
illegal states). Let fA be a WpCTL* property such that fA is
expressed only in terms of the alphabet of actions in A. Then, if
A 
 fA under fair schedulers, then it holds that A�B 
 fA

under fair schedulers as well.

Informally, the theoremprovides a validation for the com-
positional view of the component-composite model relation,
as properties formulated early in the validation process do
not lose their meaning once the components are integrated
into a whole composite model. Intuitively, this is true, since
the composition does not add new behaviour and neither
does it prohibit allowed behaviour by the environment.

We delay for a moment proving the theorem and present
a useful corollary regarding the extreme probabilities (mini-
mum and maximum) of satisfaction of a given WpCTL*
property.

Corollary 4.1 (Maximum and minimum scheduler proba-
bility). Let A and B be defined as in Theorem 4.1. Let cA be a
WpCTL* formula and smax

A be a fair scheduler for A such that
A; smax

A 
 P¼pcA, where p 2 ½0; 1�. Further, let every other
fair scheduler sA be such that A; sA 
 P�pcA. In other words,
smax
A yields the maximum probability of satisfying cA on A.
Similarly, let smaxA�B be the scheduler that yields the

maximum probability q of satisfying cA on A�B. Then, it
holds that q � p.

This same corollary applies analogously to the minimum
probabilities of satisfying cA.

Proof. Suppose that it is not the case, that is q > p, or equiv-
alently q ¼ pþ r with r > 0. Recall from earlier on the
paper that if smax

A yields the maximum probability of sat-
isfying cA on A, then it also provides the minimum prob-
ability of satisfying :cA on A, and that it is equal to

1� p. Similarly, smax
A�B yields the minimum probability of

satisfying :cA on A�B, with a value of 1� q.
Since smax

A yields the minimum probability 1� p of
satisfying :cA on A, then A 
 P1�p:cA. Because of
Theorem 4.1, it must be then that A�B 
 P1�p:cA. Yet
the scheduler smax

A�B is such that it satisfies cA with proba-

bility 1� p� r < 1� p on A�B. Contradiction. tu
We can now go back to the proof of Theorem 4.1.

Proof. Recall Theorem 3.1 that states that for two SPAs M1

and M2, and a WpCTL* formula f it holds that if
M1 v M2, then M2 
 f ) M1 
 f. Since in our setting A,
B and A�B are PIAs, they are also SPAs. If we were to
show that there exists a probabilistic branching simula-
tion R such that A�B vR A, the theorem would be
proved as a consequence of Theorem 3.1. tu
We will show that R indeed exists by construction. We

define R � SA�B � SA such that ðs; tÞRr if and only if s ¼ r.
We informally recall the four conditions of PBSs definition
(see Definition 3.24) and show they are satisfied by R and
we will prove each formally.

First, we check that the initial state of A�B is related
through R with the initial state of A. The initial state of

A�B is ðsA0 ; sB0 Þ, the product of the initial states of A (sA0 )

and B (sB0 ). By definition ofR, ðsA0 ; sB0 ÞRsA0 .
Second, we check the simulation conditions on internal

actions of A�B and those shared with A. Now take an arbi-
trary reachable state ðs; tÞ 2 SA�B. By definition ofR it holds
that ðs; tÞRs. Consider the possible steps originating on ðs; tÞ
at A�B, that is RA�Bððs; tÞÞ � AA�B �DðSA�BÞ. Let ða; dÞ
be an arbitrary transition on this set.

4.2.1 Proving for an Action a Invisible to A

If a 2 AA�B nAA, then a is an action invisible to A (internal
to A�B). In this case we need to see that there exists an
internal combined step ðs; dICÞ for A, such that d vR dIC .
Define dIC ¼ DiracðsÞ, that is, dICðsÞ ¼ 1 and 0 everywhere
else. To prove d v dIC , we refer to Definition 3.20. We need
to show the existence of a weight function w : ðSA � SBÞ
�SA ! ½0; 1� such that

1) 8r 2 SA,
P

ðx;yÞ2SA�SB
wððx; yÞ; rÞ ¼ dICðrÞ;

2) 8ðx; yÞ 2 SA � SB,
P

r2SA wððx; yÞ; rÞ ¼ dðx; yÞ; and
3) wððx; yÞ; rÞ > 0 ) ðx; yÞRr.
We define the weight function w as follows:

wððx; yÞ; rÞ ¼ dðx; yÞ if x ¼ r
0 otherwise

:

�

We prove each condition on w individually. First, let
r 2 SA. We compute

P
ðx;yÞ2SA�SB

wððx; yÞ; rÞ.
P

ðx;yÞ2SA�SB
wððx; yÞ; rÞ ¼

¼ P
y2SB wððr; yÞ; rÞ as w is defined as 0 otherwise

¼ P
y2SB dðr; yÞ

:

Now, recall that d is a distribution arising from a transi-
tion on an action invisible to A. Therefore if the originating
state was ðs; tÞ, only states of the form ðs; tiÞ will have
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nonzero probability for d. So, if r 6¼ S,
P

y2SB dðr; yÞ ¼ 0 ¼
dICðrÞ as dIC was 0 everywhere but s. If r ¼ s, thenP

y2SB dðr; yÞ ¼ P
y2SB dðr; yÞ which sums over the whole

support set of d, so equals to 1, which in turn is dICðsÞ.
Conversely, take an arbitrary ðx; yÞ 2 SA � SB. Now,P
r2SA wððx; yÞ; rÞ ¼ wððx; yÞ; xÞ as w is zero otherwise. And

wððx; yÞ; xÞ ¼ dðx; yÞ by definition.
Finally, it is easy to see that if wððx; yÞ; rÞ > 0 it must

be that r ¼ x. By definition of R, ðx; yÞRx, so the final point
is proven.

4.2.2 Proving for a Shared Action a

In this case, we need to show the existence of a weak com-
bined step ðs; a; dWCÞ on A. Action a is obviously enabled on
s as otherwise a would not synchronise and a would not be
enabled on ðs; tÞ either. Since a is a shared action, the distri-
bution d on A�B must have arisen from the product of a
distribution dA on a transition from A, and a distribution dB
on B. That is, for any ðx; yÞ 2 SA � SB, dððx; yÞÞ ¼ dAðxÞ �
dBðyÞ.

In this case, we define dWC ¼ dA, while w is defined in the
same way as it was defined before. The conditions on w are
proven in the same way as in the previous case.

4.2.3 Proving the Liveness Condition on Simulations

Finally, in order for R to be a probabilistic branching simu-
lation, we need to show that whenever ðs; tÞRs and s ena-
bles a set of actions AAðsÞ, then ðs; tÞ weakly enables a set of
actions AA�Bðs; tÞ with at least one action in common. The
proof is a direct consequence of the fact that A�B has no

illegal states. Assume s �!o s0 for at least one output action o.
Because of condition iÞ on illegal states, every internal-
action path on B must eventually enable action o to be ille-
gal-state-free. Therefore, o is weakly enabled on A�B.

Alternatively, suppose that s ¼)i only for internal
actions i. In this case, because of condition iiÞ on illegal
states, B must weakly enable at least one of them, so ena-
bledness on A�B is also guaranteed.

As an additional note, it is worth noting that composi-
tion, while preserving WpCTL* properties, may not actually
preserve the exact event probabilities for a given property.
For example, assume environment E satisfies the property
P�0:75c. Recalling the formula satisfaction definition, this
means that E satisfies c with probability at most 0:75 under
the control of any scheduler. There may, or may not, be an
actual scheduler that, when controlling E actually witness
probability 0:75 for formula c. The interesting issue is that
even if there is such a scheduler, the existence of a scheduler
for E � S witnessing probability 0:75 for c is not guaran-
teed; in fact every scheduler for E � S may witness an infe-
rior probability.

This distinction, however, is only important from a more
formal point of view. In practice, if the approach is being
used in a software engineering context, this distinction is
not as important. For example, an engineer may be inter-
ested in proving that a given component has at most a 0:05
chance of failing. That is, the engineer poses the formula
P�0:05failure, where failure is a formula capturing the
conditions under which the component actually fails. The

engineer then validates this formula over the component
and finds it to be true. Then, it is guaranteed that the proba-
bility of this same component failing over the whole compo-
sition is at most 0:05. Further, suppose that in fact the
engineer observes that the probability of failure of the iso-
lated component is exactly 0:05. However, it may very well
be that, because of behaviour restriction imposed by the
composition, the exact failing probability drops to, for
example, 0:03 or even zero in the composition. In any case,
the reliability objective posed by the engineer, although it
does not preserve the exact probability, is only reinforced
by the composition. The failing probability never increases
because of the composition, it can only decrease (and in
fact, can only decrease down to the minimum probability of
failure of the isolated component, and no further).

5 CASE STUDY

In order to illustrate our approach, we analyse quantitatively
the behaviour of an existing software system. This system is
not probabilistic in nature, however this setting is not a limi-
tation for our approach, aswe can understand it as a probabi-
listic model comprised only of Dirac distributions.

However, we do have a probabilistic model of the envi-
ronment with which this system interacts. We then set out
to analyse the whole system specification in a modular way.
That is, we will analyse first the behaviour of each compo-
nent (the software system and its environment) in isolation.
After this, we will study the system composition, and we
will compare the obtained results.

In this case study, we analyse the impact of variations of
the expected probabilistic behaviour of this environment,
which is described using a Probabilistic Interface Automata.
These environmental variations are then composed with the
non-deterministic model of the software, and we produce
bounds on the probability of environment-specific and sys-
tem-specific properties holding. In each case, we verify the
composability of the system/environment ensemble, and
analyse and validate the property preservation characteris-
tics of Probabilistic Interface Automata.

The software system we analyse is an extension of the
case study presented in [26], which was further refined
in [8]. In this paper, we further refine the models; in particu-
lar we relax the restrictions that were previously present
regarding the immediate need for synchronisation, and
allow for it to be delayed. This refinement preserves the
observable behaviour of the original system, but the refine-
ment is more complex as it models internal behaviour of the
system. Of course, our approach could also be applied to
the original system, although the analyses and findings
would not be as interesting in that case.

The software under analysis is the TeleAssistance (TA)
system; a web-based application providing remote assis-
tance to patients that, for any reason, need to remain at their
homes and need constant monitoring. In its most basic inter-
action, the patient commences operation via a startAs-

sistance command. This puts TA in an infinite loop
accepting any of the following requests:

� stopMsg, signaling the user wishes to cancel TA ser-
vice for now.
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� vitalParamsMsg. This signal allows the user to
send varied body readings via a supplied device.
The patient’s health parameters are analysed by the
application server which, if necessary, may then sug-
gest a course of action. The system may decide that a
change in the patient’s medication is needed, and
communicates this decision via either the change-

Drug or changeDose commands. If a successful
adjustment is made, the patient is notified via the
notifyPA message (with no details regarding the
kind of adjustment made). If any anomalies are
detected during the analysis, a First-Aid Squad
(FAS) is requested and sent. In the case of a FAS
being sent, the patient is informed via the attend-

ToPAmessage.
� pButtonMsg allows the patient to activate a panic

signal, if at any moment she begins to feel sick and
cannot cope. This signal triggers an alarm in the TA
service. A successful processing of the alarm results
in a FAS being sent to the patient’s home.

We have augmented the simplified model presented
in [26] in two ways in order to introduce richer software-
environment interactions. First, by specifying that for emer-
gency reasons the panic button may be pushed at any oper-
ational state of the software, even if waiting for other
results. Second, by refining the feedback provided by the
software so that the patient is also told if no medication
adjustment is needed. We depict an abstract model of the
TA software in Fig. 8. Note that the model is as an Interface
Automaton, which is a particular case of the Probabilistic
Interface Automata introduced in this paper. As is custom-
ary, output actions are appended with ‘!’, and input actions
are appended with ‘?’, while internal actions are left with
no annotations.

The TA software exhibits a critical failure. this failure is
reached by the triggering of the failedAlarm event. This
happens if an alarm has been raised but it failed to be
acknowledged or properly handled, thus not calling and
sending the FAS. In this implementation, such an error
(state 9) is reached if the user presses the panic button

once the software has started analysing vital parameters’
data. This event sequence was not properly foreseen by
the implementation team. Relying on the software’s model
only, we can easily see that such a state is reachable.
However, actual probability of reaching said state is highly
dependent on both the environment’s behaviour and tim-
ing races regarding the interaction between both the envi-
ronment and the system. We now show how to model the
probabilistic behaviour of the environment using Probabi-
listic Interface Automata, and how this resulting model
and the theory presented in previous sections allow mean-
ingful quantification of the probability of critical failures
based on the modelled probabilistic assumptions of the
environment.

5.1 Modelling the Environment

In Fig. 9 we depict a first attempt at modelling the probabi-
listic behaviour of the environment (in this case, the patient)
of the TA software. The patient, when waiting for a vital
parameters analysis response, probabilistically chooses to
wait patiently or press the panic button. Also, it reflects a
certain degree of anxiety in the patient’s behaviour, since it
behaves quite differently depending on whether the soft-
ware determines to adjust her medication or not. If the med-
ication is not adjusted, the patient reverts to its usual
behaviour, however, if the medication is indeed adjusted,
she becomes more prone to pressing the panic button.

Although seemingly a reasonable model of this envi-
ronment, this is not the case. It is straightforward to see
that Fig. 9 is a Probabilistic Interface Automaton (see
Definition 4.1) and that it is composable (see Defini-
tion 3.3) with the TA system model (Fig. 8). However,
Fig. 9 is not a valid environment (see Definition 3.6). The
composite state consisting of state 9 in the TeleAssistance
system model; and state 9 of the environment is an ille-
gal pair (see Definition 4.5) that is reachable in the prod-
uct (see Definition 4.4) of both models via the trace:
ð0s; 0eÞ startAssistant ð1s; 1eÞ choice ð1s; 2eÞ vital-
ParamsMsg ð5s; 5eÞ analyseData ð7s; 5eÞ choice ð7s; 8eÞ
pButtonMsg ð8s; 5eÞ choice ð8s; 9eÞ failedAlarm

Fig. 8. The TeleAssistance software.
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ð9s; 9eÞ. We have suffixed each state with either e or s to
make clear whether we refer to the environmental or
system state respectively.

The fact that ð9s; 9eÞ is an illegal state highlights that
the environment is making incorrect assumptions on
the behaviour of the system and renders the probabili-
stic environment behaviour modelled meaningless. For
instance, analysing the behaviour of the probabilistic
environment it is easy to conclude that the probability of
sending a vitalParamsMsg to the system as the next
message if being at state 9e is at most 0:7, and at least
0:205 (the upper bound is obtained if the noChange/

attendToPA transition is followed, while the lower
bound is the result of the sum of the possible outcomes
of taking the notifyPA transition). However, the same
analysis on the product results in a probability inconsis-
tent with the analysis on the environment alone. The
inconsistency is that while, for the patient, the lower
bound for the property was 0:205, the lower bound was
decreased to zero (rather than increased) when com-
posed with the system. The increase of the lower bound
is due to the fact that the environment’s behaviour speci-
fied in the environment’s state 9e is restricted when the
system is in its own state 9s, hence the environment
probabilistic contribution that outgoing transitions from
9e made to the lower bound of the property are no lon-
ger possible. However, this particular environment fails
to makes a provision in modelling the possibility of such
a restriction.

In summary, if the analyses performed to validate the
probabilistic behaviour of the environment are not valid
once the environment is composed with the software, then
the model of the environment has a limited, if any, potential
for sound analysis. The definition of legal environment,
which the model in Fig. 9 does not satisfy, is aimed to guar-
antee sound analysis.

We can produce a legal environment for the TA by slightly
modifying the current one. For example, a possible solution is
to add timeout transitions from states 9e and 11e, modelling
that the environment can give up waiting for the software
response concluding that it has probably crashed in some
way. That is to say, the previous model of the environment
was establishing very strong assumptions on the system; the
environment required the system to always generate an input
at these states. This assumption, which turns out to be wrong,
results in an illegal environment as it generates illegal states
in the composition – see condition (ii) inDefinition 4.5.

The property discussed with the initial probabilistic envi-
ronment now evaluates to the interval ½0; 0:7� in this legal
environment, and this is consistent with the evaluation of
the property when composing the legal environment with
the software. In fact, due to Theorem 4.1 we know that any
property that has been used to validate the probabilistic
behaviour in this legal environment will be preserved in its
composition with the software. Asserting the validity of the
conditions for legal environments essentially entails verifi-
cation of several liveness properties. For this case study,
however, we have chosen to check the legality of the envi-
ronment directly by hand, given that the size of the model
allows for such a manual analysis. Larger models would, of
course, require an automated procedure for such validation.

5.2 Quantitative Analysis of the TA Software
System

Since we have a legal environment for the TA software, we
can now analyse quantitatively the behaviour of the TA
software system by checking the probability of system prop-
erties holding when the TA software is composed with the
legal probabilistic environment. The properties we consid-
ered for our quantitative analysis were taken from [26]. To
perform the analysis we use the model checker PRISM [11],
a well-known probabilistic verification tool.

Fig. 9. An initial environment for the TA system.
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Consider the property that states that the FAS is always
sent to the patient location when the alarm has been raised.
Clearly, the TA software does not satisfy this property (see
transition from 8 to 9 in the system model). However, it is
interesting to quantify the probability of such error under
the assumption of a particular probabilistic behaviour of the
environment. To do this we first computed the product of
the Interface Automaton for the TA software and the Proba-
bilistic Interface Automaton modelling the environment
and then using PRISM we quantify the occurrence of the
error which can be characterised by the CTL formula
error ¼ ðtrueU TA.state ¼ 9Þ. Recall that, because of non-
determinism in the TA software, we will not obtain a single
probability as the event measure, but rather an interval of
where the probability lies.

In the product of the TA software and its legal environ-
ment, the lower and upper bounds for reaching
error ¼ ðtrueU TA.state ¼ 9Þ can be characterised as

P
error1
min ¼ maxxfPxðtrueU TA.state ¼ 9Þg and respectively

Perror1
max ¼ minxfP�xðtrueU TA.state ¼ 9Þg. Computing these

values in PRISM yields Perror1
min ¼ 0 and Perror1

max � 0:9108. Note
that the lower bound does not convey much information
because of the highly non-deterministic nature of the TA
software model. There is always a non-deterministic possi-
bility that the error is never reached. In other words, there is a
scheduler that always avoids the error. If information were
available on the probabilistic behaviour of the internal
choices of the TA software (e.g., reliability information) then
the lower bound for this property could be non-zero.

The (rather high) value of Perror1
max is sensitive to the proba-

bilistic behaviour of the environment, namely the four prob-
abilistic transitions labelled with choice (states 1, 5, 6 and
10). Varying the probabilities on these transitions helps
understand the impact of the probabilistic environment on
the system behaviour. Table 1 summarises a few analyses
where these probabilities have varied and how these varia-
tions affect the final value of Perror1

max .

The table shows that the value of Perror1
max decreases notice-

ably when the probability of exiting the assistance system
(that is, transitioning from state 1 to 4 on choice) is
increased (see row 5). This is sensible as the property being
checked has an unbounded until operator, meaning that we
are interested in the occurrence of errors no matter how
long the system runs. Hence, the longer the system runs, the
more likely it is to fail; and so the more likely the environ-
ment chooses to stop the software (transition 1 to 4) the less
likely the probability of error, bringing Perror1

max down.
Another interesting analysis, taken from [26] is to under-

stand the probability of the following scenario occurring: “if

a changeDrug or changeDose occurs, the next message
received by the TA generates an alarm which fails”. Rather
than using a pCTL formula, we modelled this property by
means of an observer Interface Automaton that flags this
scenario as an error. Table 1 also summarises the results
obtained for this error measure, Perror2

max for the same distri-
butions as before, showing the relationship between distri-
butions, and the differences with Perror1

max .
Summarising, in this section we have shown how Probabi-

listic Interface Automata supports carrying out quantitative
analysis ofmodels in a compositional way. The notion of legal
environment and its related theorems are crucial, as they con-
strain the acceptable models of the probabilistic behaviour of
the environment to those that ensure that analysis performed
to validate the environment’s probabilistic behaviour is sound
and preservedwhen analysing the composite system.

6 DISCUSSION AND RELATED WORK

In this work we have dealt with the problem of enriching
behaviour models in the shape of automata with probabilis-
tic information. Our work is based on the Interface Autom-
ata [9] formalism, which introduces an optimistic approach
to composition by making explicit assumptions over its
environment. These assumptions allow for a notion of
refinement, given by weaker input assumptions and stron-
ger output guarantees.

In this work we have taken the action segregation seman-
tics of Interface Automata as a starting point for introducing
probabilities into non-deterministic systems. One of the
main results presented by Interface Automata is the refine-
ment relation between different versions of the same compo-
nent. In that sense, a more concrete version of the
component (e.g., an implementation) refines a more abstract
one (e.g., a specification). Our work also benefits from this
refinement notion. In our case, however, we require that
this refinement also takes into account the probabilistic
semantics of the component. The concept of probabilistic
branching simulations (Definition 3.24) encompasses that of
Interface Automata refinement and, additionally, it also
establishes a refinement of probabilistic behaviour. In other
words, if two Probabilistic Interface Automata A1 and A2

are in a refinement relation given by a probabilistic branch-
ing simulation (that is, A1 v A2), then it is also the case that
their underlying Interface Automata (Definition 4.2) A1 #
and A2 # are also in a refinement relation as defined by
Interface Automata (that is, A2 # refines A1 #).

Additionally, regarding the notion of compatibility and
composability of Interface Automata, we have taken only the

TABLE 1
Varying Perror1

max and Perror2
max for Different Distributions

Run R(1,choice) R(5,choice) R(6,choice) R(10,choice) Perror1
max Perror2

max

1 ð2 7! 0:7Þ,ð3 7! 0:25Þ,ð4 7! 0:05Þ ð8 7! 0:7Þ,ð9 7! 0:3Þ ð2 7! 0:15Þ,ð3 7! 0:85Þ ð1 7! 0:1Þ,ð6 7! 0:9Þ 0:9108 0:1435
2 ð2 7! 0:7Þ,ð3 7! 0:25Þ,ð4 7! 0:05Þ ð8 7! 0:7Þ,ð9 7! 0:3Þ ð2 7! 0:99Þ,ð3 7! 0:01Þ ð1 7! 0:1Þ,ð6 7! 0:9Þ 0:9304 0:6727
3 ð2 7! 0:7Þ,ð3 7! 0:25Þ,ð4 7! 0:05Þ ð8 7! 0:7Þ,ð9 7! 0:3Þ ð2 7! 0:15Þ,ð3 7! 0:85Þ ð1 7! 0:95Þ,ð6 7! 0:05Þ 0:9076 0:4707
4 ð2 7! 0:7Þ,ð3 7! 0:25Þ,ð4 7! 0:05Þ ð8 7! 0:2Þ,ð9 7! 0:8Þ ð2 7! 0:15Þ,ð3 7! 0:85Þ ð1 7! 0:1Þ,ð6 7! 0:9Þ 0:7584 0:41
5 ð2 7! 0:15Þ,ð3 7! 0:2Þ,ð4 7! 0:65Þ ð8 7! 0:7Þ,ð9 7! 0:3Þ ð2 7! 0:15Þ,ð3 7! 0:85Þ ð1 7! 0:1Þ,ð6 7! 0:9Þ 0:1441 0:105
6 ð2 7! 0:15Þ,ð3 7! 0:2Þ,ð4 7! 0:65Þ ð8 7! 0:7Þ,ð9 7! 0:3Þ ð2 7! 0:15Þ,ð3 7! 0:85Þ ð1 7! 0:95Þ,ð6 7! 0:05Þ 0:1393 0:105
7 ð2 7! 0:15Þ,ð3 7! 0:2Þ,ð4 7! 0:65Þ ð8 7! 0:2Þ,ð9 7! 0:8Þ ð2 7! 0:99Þ,ð3 7! 0:01Þ ð1 7! 0:95Þ,ð6 7! 0:05Þ 0:0458 0:0384

PAVESE ETAL.: PROBABILISTIC INTERFACE AUTOMATA 861



initial definitions from [9]. In that work, the notion of com-
patibility is also extended to pairs of components, in the sense
that a pair ðA;BÞ components are compatible if there exists a
third Interface Automaton (the environment) that is compos-
able with the product A�B. In other words, they establish
that A and B are compatible is there exists an environment
that can link their behaviours together. We find this intro-
duction of a third component unnecessary, hence we define
compatibility in terms of the original two automata.

The idea of the third environmental component is signifi-
cant if the aim of the work is, for example, to synthesise these
environments. This synthesis is not the focus of the present
work, although it is a subject of interest for future research.

Finally, it is important to note that the notion of weak
probabilistic simulations subsumes that of alternating simu-
lations in Interface Automata. Further, in this paper we have
extended these simulations with weak semantics, which fur-
ther extends the applicability of Interface Automata to an
engineering process where model refinement with internal
actions is desirable as a means to both converge to the design
of a software component, and provide several views of the
same component at different layers of abstraction.

Apart from these concepts inherited from Interface Au-
tomata, the focus of our work is the mechanism through
which probabilistic information is added to non-determin-
istic models, in a way that it guarantees a sensible composi-
tion semantics. In this sense, it is worth pointing out that in
the last few decades researchers have paid attention to the
concept and consequences of operational profiles in system
reliability specification and analysis [2], [27], [28], [29], [30].

One way to enrich models with probabilistic information
is to analyse and quantify the influence that components
exert over one another as well, and that can be observed as
emergent behaviour on the composition. For example [26],
[31] have proposed using a sample space of runs obtained
from an existing similar system as the source of probabilistic
behaviour. Then, using an algorithm that summarises this
information, a non-probabilistic automata model of the
composite system and environment is annotated with the
obtained probabilities. The aim of this work is to be able to
account for complex quantifiable interactions, in which the
history of execution affects the probabilistic behaviour of an
interacting component. Unlike our work, this approach is
not suitable to building a system in a modular fashion, as
the annotation is performed over the whole model. This
yields a verification artefact that is a single model contain-
ing all the relevant probabilistic transition information, both
pertaining to the environment and to the system. Also, Mar-
kov models such as these are purely probabilistic, which
may not allow us to fully model concurrent systems’ non-
deterministic behaviour.

Although operationally intuitive, annotation approaches,
such as the ones mentioned, lack a declarative characterisa-
tion of the resulting annotated composite model and its
relation to the source of probabilities. In addition, and more
importantly, they lack a notion of property preservation
regarding the source of the annotations. This is crucial
as, whatever the source of probabilities for the annotation
is, this source must have been validated according to
some criteria. If the annotation algorithm does not preserve
such criteria, then little can be said about the validity of

analysis performed on the probabilistically annotated com-
posite model.

Another problem we tackle with our approach is that of
mixing non-deterministic and probabilistic information on
a single formalism. The problems arising from trying to
mix this information in a meaningful way are not new,
and approaches to either achieving or avoiding this mixed
specification have been studied. For example, generative
models [4] aim to avoid mixing non-determinism and prob-
abilities. They do so by disallowing non-determinism to be
present on transitions. However, an asynchronous parallel
composition (�a la CSP [32]) induces such non-determinism
and must be dealt with. Works such as [6] advance in this
direction resorting to redistributing probabilities when find-
ing synchronising actions with no matching counterpart. It
is unclear if this approach is suitable when the probabilities
reflect system-environment interaction—the environment
(in the most usual case, a user) may not actually redistribute
probabilities on allowed actions when the desired one is not
allowed. Regarding purely reactive models [5] the reader
can refer to Section 2 to understand limitations regarding
our goals.

A compromise can be met by choosing to model outputs
in a generative way, while inputs are modelled reac-
tively [3], [33]. This approach however, has several limita-
tions. First, it does not allow non-determinism on output
actions, as they must be strictly generative. Second, it also
requires input-enabledness in a way similar to Input/Out-
put automata. In [33] it is noted that input-enabledness can
be skirted, but doing so imposes the restriction that models
may not have any input-input or input-output races. On the
one hand this limits the expressibility of models that can be
represented, and on the other hand such an approach ends
up modelling the scheduling of actions in an explicit way.

Itmust be noted that an important precedent to thiswork is
that of probabilistic Input/Output automata [3]. This model
enriches classic Input/Output automata [12] with probabili-
ties, establishing a hybrid between the generative and reactive
models, since output actions aremodelled in a generativeway
while input actions are modelled reactively. The approach in
itself is interesting, but the probabilistic Input/Output autom-
ata model has some characteristics we consider problematic.
In the first place, it inherits from Input/Output automata the
notion of input enabledness, that is, every component autom-
aton, at every state, must allow every possible input as a tran-
sition. As we previously argued, this is not a realistic
restriction in most cases, since systems are usually designed
with some concept of the environment in mind, and thus it is
reasonable that they restrict some inputs at certain points of
execution. Another characteristic aspect of probabilistic
Input/Output automata is that they introduce a real-valued
parameter to each state in each component automaton. This
parameter, an additional randomvariable as it happens,mod-
els a delay on each automaton state. The rationale for this delay
is the need to somehow resolve conflicting races, since at some
points when composing it would be feasible for more than
one component to synchronise its actions. This delay then
establishes an order in which the automata advance, that is,
the automata in which the state delay is the least will advance
first. This notion of resolving races between competing transi-
tions is also present in our model, as in other proposed
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models [7]. However, this choice is represented by an external
entity, the scheduler. The scheduler has no dependence on
the model itself, and the model behaves independently of the
scheduler. Additionally, the notion of a scheduler models an
unknownwithin the system under analysis. That is, it models
a behaviour that cannot be explicitly quantified; the Input/
Output automata notion of delay defeats thismodelling objec-
tive. In that sense, we argue that the idea of a built-in sched-
uler as a composite aspect of the system model-be it
probabilistic or not-is undesirable, as we aim to a separation
of concerns. Finally, a behaviour composability result is pre-
sented for probabilistic Input/Output automata, though it is
different to the one we present in this paper. Probabilistic
Input/Output automata behaviour preservation stems from
that of the original non-probabilistic Input/Output automata.
This result states that every execution trace in the composite
automata, when restricted to the actions of each component
automaton, is an execution trace of said component automa-
ton. However, this result leverages heavily on the embedded
scheduler concept depicted above. Our result does not estab-
lish such a stringent relation, since we establish that system-
environment composition does refine the specified behaviour,
but observed probabilistic behaviour in the environment is
still preserved, thus allowing for early elicitation of interesting
properties.

Apart from modelling system behaviour by means of
synchronising automata, there have also been advances in
quantitative contract-based modelling or, in a similar fash-
ion, quantitative assume-guarantee reasoning. The work by
Delahaye et al. [34] presents a contract-based approach that
shares many similarities with the work we present in this
paper. In particular, both works aim at presenting a formal-
ism that can reason about isolated components in the con-
text of a composite systems. There exist two key differences
between the approach presented here and that of [34]. First
and foremost, the object of study in [34] are contracts which
are represented by sets of traces while our work deals with
automata-like description of behaviour. This makes the
approach in [34] unable to reason about branching non-
deterministic behaviour. The use of traces allows them to
define composition and conjunction between systems (by
composing or conjuncting their contracts), while also allow-
ing for a notion of refinement between systems (that is, con-
tracts that refine other contracts that otherwise allow less or
require more). In turn, we do provide the notion of compo-
sition, but where conjunction does not have a direct ana-
logue. Our choice of automata as models allows for explicit
representation of non-deterministic choices and permits a
larger degree of expressibility than that of the contracts of
Delahaye et al. In that sense, our approach is closer to
modelling formalisms such as Segala’s Probabilistic Autom-
ata and Markov Decision Processes than those of contracts.
As an additional difference, the work in [34] analyses con-
tracts in isolation, and results in a lower bound for the prob-
ability of satisfying the contract that results of the
composition of these contracts. Our approach is also
intended for the isolated analysis of components; however
we introduce a notion of preservation of WpCTL* proper-
ties rather than bounds.

There is also work on assume-guarantee verification of
safety properties, which have some similarity to our own. The

work of Kwiatkowska et al. [35] is noteworthy. In that work
the authors model probabilistic systems through automata
much like those presented here, and perform an assume-guar-
antee analysis on properties. This approach, however, limits
itself to safety properties which are represented via determin-
istic automata. Other work [36] also presents an assume-guar-
antee approach where the object of study are Interactive
Markov Chains [37]. These models, however, establish a seg-
regation between probabilistic and labelled actions that does
not allow for modelling synchronisation on actions triggered
by different probability distributions.

The notion of refinement in automata-based formalisms
is related to that of simulation (and bisimulation). Being
that our PIAs are a restricted case of Segala’s Simple Proba-
bilistic Automata [20], the notion of (bi)simulation is well-
defined. However, bisimulation can be too strict, and not an
effective notion, in the presence of components with inter-
nal computation that needs to be abstracted away. In
regards to this question, the notion of weak bisimulation [24]
has been employed effectively in the context of non-proba-
bilistic systems. Such a notion of weak bisimulation has
been recognised, although it is problematic for probabilistic
systems [38], [39]. We do not go into detail in these aspects,
however some interesting work includes [40] where the
authors present a weak bisimulation notion along with a
decision procedure, albeit focused on fully probabilistic sys-
tems alone. Also, [10] introduces a notion of weak bisimula-
tion for systems exhibiting non-determinism, where the
bisimulation proposed includes the potential generation of
infinite probabilistic distributions representing all possible
intermediate internal steps. Philippou et al. [41] and Cattani
and Segala [42] attack this problem by restricting distribu-
tions to a certain class.

The second main result presented in this paper regards
the synchronising conditions for Interface Automata. We
found the synchronising conditions to be too strict regard-
ing the immediate necessity for synchronisation. However,
software systems that need to perform several internal
actions before allowing inputs from its environment are
commonplace. Such systems cannot be easily modelled
with Interface Automata without abstracting away such
internal behaviour, eliminating the possibility to observe
this potentially interesting behaviour. In this paper, we
have relaxed the need for immediate synchronisation in
these cases, while requiring a notion of fairness on the
schedulers allowed for the composite system. This decision
allows for further analysis. Although the fairness conditions
imposed are not esoteric or overly restrictive, it may be the
case that they can be refined and further relaxed. Prelimi-
nary analysis has shown that the fairness requirement over
some states may be relaxed in some cases-for example,
loops made up purely of internal actions, that can be
ignored if not allowed to happen-but a generalisation and
proper characterisation remain as future work.

It must be noted that our approach calls for a composi-
tion operator that performs extensive checks to allow for
this delayed synchronisation. If these checks took an inordi-
nate amount of time or memory to be performed, the
approach would suffer from applicability. Fortunately this
is not the case. Automatically checking for Probabilistic
Interface Automata illegal states during composition is
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similar to checking for illegal states in classic Interface
Automata composition. Namely, at every point in the com-
position process it must be checked that the conditions for
illegal states do not hold. For the case of Interface Automata,
this is a completely local verification step, as we only need
to validate that input actions are not blocked at any step.
The complexity is thus polynomial in the size of the com-
posite system, and it can be performed on-the-fly as the pro-
cedure for building the composite system is executed.

For the case of Probabilistic Interface Automata, the veri-
fication step is more involved, due to the fact that deferred
synchronisation is allowed. At some points, it may be possi-
ble to check legality locally. For example, picture the case of
a component that does not allow a certain input action a to
be taken, nor it allows any internal actions of its own. This
means that this action a is not enabled at this point, and will
never be enabled through internal actions. Therefore, com-
posing this component with another that intends to take its
own output action a would be illegal. In this case, it would
be easy to check illegality locally, on-the-fly.

However, in general, that may not be the case. Consider
the example depicted in Fig. 10. Here we see a partial model
of a component (dotted lines denote continuing executions).
In this case, the situation is similar to that discussed before,
as this component is still blocking input a at state 0 but,
opposed to the situation before, it allows several of its inter-
nal actions (int) to be executed. In this case, it is not possible
to check illegality locally; executions continuing from the
grey states may potentially block action a at some point in the
future, depending on the non-deterministic choices taken. It
is necessary to verify the ACTL conditions of illegal states for
all paths that sprout from taking one of these internal actions.
In the worst case, this may require an ACTL check for every
single state of the composition as it is being constructed.
However, ACTL checking is still polynomial on the size of
the system where it is being checked (which of course is
smaller than the whole composite system), and the ACTL
formula to check is of a constant size. Therefore, although
illegal state checking for Probabilistic Interface Automata is
harder than checking for Interface Automata, the complexity
is still polynomial on the size of the composite system.

7 CONCLUSIONS

Quantitativemodel checking and analysis are promising tech-
niques that complement Yes/No automatic analyses of
behaviour. This approach naturally raises several formal and
practical challenges. As a first challenge, it is important that

these probabilities be introduced in a component-wise fash-
ion. This is desirable because of two reasons. The first one is
that it is often difficult to establish the quantitative behaviour
of the system at large. In trying to do so, there is a risk that the
engineer cannot properly validate that the introduced proba-
bilities are result of a single component behaviour, and there-
fore these probabilities would lose their meaning. The second
reason for component-wise modelling is that it is much easier
for an engineer to reason individually about one component
and then integrate the resulting model with other component
models thatwere developed independently.

A second challenge is that introducing probabilities should
not interfere with the behaviour that was described previ-
ously, that is, it should not preclude behaviour that was mod-
elled and validated previously in an independent manner. In
other words, the introduction of probabilities should be per-
formed in such a way that already validated component-wise
properties are preserved over the compositemodel.

The key to these challenges is a careful treatment of con-
trollability of actions, non-determinism, and fairness assump-
tions over the behaviour of composite systems. We present
Probabilistic Interface Automata as a suitable formalism satis-
fying these requirements and show that they are composi-
tional, that is, there is a notion of property preservation
between the components and the composite system. As away
to validate our claims, we present a case study along with our
results obtained by the use of the technique. Although the
case study presented leverages on manually generated envi-
ronments, research on the generation of useful and sound
environments is the focus of future and ongoingwork.

Deeper understanding of fairness assumptions also mer-
its further work. In the particular case of this paper, we
have shown that a notion of strong fairness, relaxed for
probabilistic behaviour, is sufficient to ensure composition-
ality of Probabilistic Interface Automata. However, it
remains to be seen if such assumptions are completely nec-
essary, or if they could be weakened. If so, further analysis
is necessary for understanding under which conditions
these assumptions may be weakened and what their impact
is on modelling different environmental domains.
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