
Test Case Prioritization Using
Lexicographical Ordering

Sepehr Eghbali and Ladan Tahvildari, Senior Member, IEEE

Abstract—Test case prioritization aims at ordering test cases to increase the rate of fault detection, which quantifies how fast faults are

detected during the testing phase. A common approach for test case prioritization is to use the information of previously executed test

cases, such as coverage information, resulting in an iterative (greedy) prioritization algorithm. Current research in this area validates

the fact that using coverage information can improve the rate of fault detection in prioritization algorithms. The performance of such

iterative prioritization schemes degrade as the number of ties encountered in prioritization steps increases. In this paper, using the

notion of lexicographical ordering, we propose a new heuristic for breaking ties in coverage based techniques. Performance of the

proposed technique in terms of the rate of fault detection is empirically evaluated using a wide range of programs. Results indicate that

the proposed technique can resolve ties and in turn noticeably increases the rate of fault detection.

Index Terms—Regression testing, test case prioritization, lexicographical ordering

Ç

1 INTRODUCTION

SOFTWARE evolution and modification are essential ingre-
dients of any software development process. While

changes are continuously made to the software in order to
introduce new functionalities and/or to repair detected
faults, they can adversely inject new faults into the
unchanged parts. Software regression testing attempts at
reducing this risk by re-running a set of test cases after mod-
ifying the software. The dominant strategy in regression
testing is to re-run all test cases applied to the earlier ver-
sions of the software. However, the size of the test suite
tends to grow as the software evolves which can make the
cost of executing the test suite prohibited. For example, run-
ning the entire test suite for an industrial project reported
in [1] and [2] has taken seven weeks. As another example, at
Google, developers modify code more than 20 times per
minute requiring 100 million test executions per day [3].

Researchers have studied techniques to reduce the cost of
regression testing. These techniques can be categorized into
two groups: Regression Test case Selection (RTS) and Regres-
sion Test case Prioritization (RTP). Test case selection techni-
ques focus on covering the changed code between versions
of the software under test [4], [5], [6], [7], [8], [9], [10], [11],
[12]. On the other hand, test case prioritization techniques
concern the identification of ideal ordering of test cases that
enhances the rate of fault detection [2], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22]. While these two approaches
differ in their ideas and goals, they share common features.
Techniques in both classes rely on extracting relevant fea-
tures from test cases. Prioritization and selection techniques

incorporate such features to differentiate between test cases.
Therefore, different techniques may favour dissimilar
orderings based on their selected features.

The test case prioritization problem is defined as finding
a permutation of test cases for which the value of an objec-
tive function is maximized. Rothermel et al. [18] formally
define the test case prioritization problem as follows:

Given: T, a test suite; PT, the set of permutations of T; g, a
function from PT to the real numbers.

Problem: Find T 0 2 PT such that

8T 00 2 PT; gðT 0Þ � gðT 00Þ:

Ideally, test case prioritization should search for an
ordering of test cases that results in early fault detection.
However, the faults are not known before execution of the
test suite. Therefore, a surrogate has to be used which statis-
tically or heuristically correlates with the faults, expecting
that maximizing the surrogate will lead to maximizing the
rate of fault detection. Many techniques for test case prioriti-
zation adopt code coverage information obtained through
instrumentation and execution of the software under
test [17], [23], [24]. Accordingly, these are referred to as cov-
erage-based techniques. No consensus has emerged yet
whether there is a high correlation between coverage and
fault detection. While many studies have emphasized the
presence of such a correlation [25], [26], [27], others indicate
that coverage is not always positively correlated with fault
detection [28], [29].

Two well-studied iterative and greedy coverage-based
techniques are Total Technique (TT) and Additional Technique
(AT) [18], [21], [30]. Both techniques iterate n times, where n
is the number of test cases. In each iteration (step), they
select one test case (from the pool of not-so-far-selected test
cases) to be inserted into the ordering as the next item. TT
prioritizes test cases through maximizing the total number
of covered entities, while AT chooses the test case that cov-
ers the highest number of entities that have not been

� The authors are with the Department of Electrical and Computer Engineer-
ing, 200 University Ave West, University of Waterloo, Waterloo, Ontario
N2L 3G1. E-mail: {s2eghbal, ltahvild}@uwaterloo.ca.

Manuscript received 2 Dec. 2014; revised 13 Jan. 2016; accepted 6 Mar. 2016.
Date of publication 20 Apr. 2016; date of current version 16 Dec. 2016.
Recommended for acceptance by M. Cohen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2550441

1178 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



covered in previous steps. Therefore, at each step, TT
searches for the test case with the maximum coverage. As a
result, each test case selection is independent of previous
selections. However, in AT, each test case selection takes
into account the effect of test cases already in the ordering.
The current literature on RTP abounds with various cover-
age based techniques. The available evidence seems to sug-
gest that additional-type techniques tend to outperform
other coverage-based alternatives [17], [21], [31]. However,
a particular test case prioritization technique often cannot
offer a superior performance in relation to all programs.

At each step of AT, there is a possibility that a tie occurs
which means more than one test case have the highest cov-
erage of not-yet-covered entities. If a tie occurs, AT implic-
itly assumes that all remaining candidates are equally
important and selects one of them randomly. Previous
empirical studies indicate that random test case ordering
can be ineffective. Traditionally, random ordering has been
considered as a lower bound control technique [18], [32],
[33]. In Section 2.2, we empirically show that, surprisingly,
ties occur with high likelihood.

Some earlier studies address the problem of tie breaking
in regression testing tasks. Jiang et al. [33] incorporate Adap-
tive Random Testing (ART) for prioritizing test cases which
can also be applied for breaking ties. Although their algo-
rithm outperforms random ordering, their results indicate
that AT outperforms ART-based algorithms. Sampath
et al. [34] propose a multi-criteria algorithm in RTS. They
use the coverage information as the primary criterion and
usage-based requirements as the tie-breaker. Similarly, Lin
and Huang [35] incorporate an additional criterion for
breaking ties. They use branch coverage as the primary cri-
terion and definition-use pair coverage as the tie-breaker.

To break ties, instead of random selection or incorporating
additional criteria, we propose a coverage-based technique
for test case prioritization based on the notion of lexicographi-
cal ordering. The proposed technique uses the coverage infor-
mation of previously executed test cases to break ties. Our
proposed technique, unlike traditional coverage based alter-
natives, does not categorize software entities into distinct
groups as covered and not-yet-covered. Instead, different entities
of the software are ranked based on the number of times they
are covered until the current step. Using this approach, all
entities are considered in the selection of the next test case;
while entities that are covered less are given a higher priority.

To simplify the explanation, the article first presents the
main idea behind our proposed technique in the form of a
basic algorithm. Subsequently, the basic algorithm is modi-
fied to reduce the computational cost while maintaining the
same functionality. Then, we prove that these algorithms
are equivalent and return the same ordering. Next, the pro-
posed technique is compared with some other existing pri-
oritization techniques on some well-known programs.

In particular, the contributions of this paper are as follows:

� An algorithm, called Generalized AT using Lexico-
graphical Ordering (GeTLO), is proposed for breaking
ties inAT using the notion of lexicographical ordering.

� As the proposed algorithm may face ties of its own, a
recursive technique is proposed for further breaking
of ties.

� The performance of the proposed technique is
gauged on 6 Java programs available from Software-
artifact Infrastructure Repository (SIR) [32].

The rest of the paper is organized as follows. Section 2
presents the proposed technique for test case prioritization.
Section 3 introduces the enhanced algorithm for breaking
ties. Section 4 presents the evaluation of the proposed tech-
nique and its comparison with some existing alternatives.
Section 5 describes the related work. Finally, Section 6 con-
cludes the paper and presents some potential directions for
future research.

2 PROPOSED TECHNIQUE

2.1 Notations

Sets are shown by calligraphic letters such as X . The cardi-

nality of a set is shown by jXj, i.e., X ¼ fxigjXji¼1. Matrices
appear in bold capital letters e.g., X. More specifically, a
matrix of size a� b is shown by X ¼ ½xði; jÞ�a�b. Vectors are
shown using bold small letters e.g., x. A vector of size 1� a
is shown by x ¼ ½xðiÞ�1�a. The transpose of matrix X is

shown by Xt.
Consider a certain version of a program composed of n

software entities (class, method or statement), O ¼ foigni¼1,
and a test suite, T , which consists of m test cases, T ¼
ftigmi¼1. Also, a binary coverage matrix C ¼ ½cði; jÞ�m�n 2
f0; 1gm�n denotes entities that each test case covers. For
example, cði; jÞ is equal to one if test case ti covers entity oj,

and zero otherwise. Also, we can write C ¼ ½cvcvt1; cvcvt2; . . .
; cvcvtm�

t where cvcvk ¼ ½cðiÞ�1�n 2 f0; 1g
1�n is the coverage vec-

tor of the kth test case, k 2 f1; 2; . . . ;mg.

2.2 A Motivating Example

Before explaining the details of the proposed technique, we
first review the steps that AT takes to prioritize a set of test
cases. In the first step, AT chooses the test case with the
maximum coverage. To continue, in the second step, AT
finds the test case with the maximum coverage of not-yet-
covered entities (not covered by the first test case). In the
third step, AT searches for the test case which yields the
maximum coverage of entities that the first and the second
test case have not covered. In other words, in each step, AT
selects the test case that provides the maximum coverage
for the not-yet-covered entities. This procedure continues
until the ordering is complete. However, there is a chance
that a tie occurs at each step.

A tie occurs when more than one test case covers the
maximum number of not-yet-covered entities. In such cases,
AT resorts to random selection.

Example A.1. Consider a test suite with four test cases,
t1; t2; t3; t4, with the following coverage vectors:

C ¼
t1
t2
t3
t4

o1 o2 o3 o4 o5 o6 o7 o8
0 0 0 0 1 1 1 1
0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 1

0
BBBB@

1
CCCCA:

If AT is applied to C, the first selected test case is t1, as it
covers more entities than t2; t3; and t4. In the next step,

EGHBALI AND TAHVILDARI: TESTCASE PRIORITIZATION USING LEXICOGRAPHICALORDERING 1179



AT selects t2 since it covers two of the not-yet-covered
entities, namely o3 and o4. At the end of the second step,
entities o1 and o2 are not covered so far. In the third step,
AT faces a tie as both t3 and t4 cover one of the not-yet-
covered entities. Our idea to break the tie is to also con-
sider the covered entities. In this example, t3 covers o5
which is covered twice until the current step. However,
t4 covers o8 which is covered only once , thus our algo-
rithm selects t4 as the next test case.

To see how often ties occur, we have implemented AT
and ran it on 45 versions of 6 different Java programs from
SIR [32]. The details of these programs are discussed in Sec-
tion 4. Table 1 shows the average percentage of steps with
ties, as well as the average number of candidate test cases
involved in a tie at different coverage granularity levels. For
each version of programs, the number of steps with tie and
also the average number of candidates involved in each tie
is counted. Then, these values are averaged over different
versions of each program. Surprisingly, ties occur in a large
number of steps of the AT algorithm. Also, the number of
the candidates involved at any given tie is typically high on
the average. With the exception of Galileo, Table 1 shows
that the number and the size of ties decrease for finer levels
of granularity.

Resorting to random selection for breaking ties can sig-
nificantly degrade the performance of prioritization algo-
rithms because of two basic observations: i) there are many
cases of ties, and ii) there are typically many potential candi-
dates to select from in the case of a tie. Consequently, ran-
dom selection results in blind selection of one candidate
from a large pool. Therefore, it would be advantageous if
test cases are selected in a systematic way when ties occur.

To break a tie, we consider not only the not-yet-covered
entities, but also covered ones. The key idea of our tech-
nique for resolving ties is as follows: Less covered entities
should have higher priority for coverage. To implement this
idea, among the candidates that form any given tie, the one
with the maximum coverage of one-time-covered entities is
selected. Likewise, if a tie occurs again (or if there is no one-
time-covered entity), entities that are covered twice are con-
sidered, and so on. It turns out that the proposed procedure
can be described in the language of lexicographical
ordering.

2.3 Lexicographical Order

Definition. Consider vectors x ¼ ½xð1Þ; . . . ; xðkÞ� 2 Rk and

y ¼ ½yð1Þ; . . . ; yðkÞ� 2 Rk where R is the set of real numbers. x
is said to have a higher lexicographical rank as compared to y,

shown as x � y or y � x, if considering the vectors’ compo-
nents from left to right, the first component which is not equal
in x and y has a larger value in x. In mathematical notations,
this means:

9m > 0 s.t. 8n < m; xðnÞ ¼ yðnÞ and xðmÞ > yðmÞ:

Example B. Consider the following four vectors:

x ¼ ½1; 2; 5�
y ¼ ½1; 2; 6�
z ¼ ½1; 4; 7�
u ¼ ½8; 2; 1�:

These vectors would be ordered lexicographically as fol-
lows:

u � z � y � x:

Example C. Consider the following coverage vectors:

cv1 ¼ ½1; 0; 0�
cv2 ¼ ½1; 1; 0�
cv3 ¼ ½0; 1; 0�
cv4 ¼ ½0; 1; 1�:

These coverage vectors would be ordered lexicographi-
cally as follows:

cv2 � cv1 � cv4 � cv3:

Lexicographical ordering is not restricted to vectors with
elements in R. The definition can be easily extended to any
vectors composed of elements in partially ordered sets [36].

2.4 Basic Algorithm

Similar to AT, the basic algorithm prioritizes a test suite
comprising of n test cases in n steps. In each step, it selects
and includes one of the test cases in the ordering. To per-
form such a selection, it considers all the entities even if
they have been covered in the previous steps. However, the
entities that are covered less will be given a higher priority.
This procedure can be implemented efficiently using the
notion of lexicographical ordering.

Let set As denote the set of test cases in the ordering until
step s, where s 2 f1; . . . ; ng. It is clear that jAsj ¼ s. Also,
the total coverage of selected test cases until step s forms a
vector, called Cumulative Coverage vector, denoted by ccs

where ccs 2 Nn, N is the set of non-negative integers. For-
mally, we have:

TABLE 1
Average Percentage (Averaging Is Over Different Versions of Programs) and Number of Candidates for AT

Method level Basic block level

Program Ave. % steps with tie Ave. # candidates Ave. % steps with tie Ave. # candidates Ave. # test cases

Ant 93% 213.2 83% 48.5 399.5
Galileo 93% 242.2 94% 210.2 865.9
Jmeter 83% 18.7 49% 4.1 72.4
Jtopas 95% 54.1 86% 26.7 154.3
Nano 99% 111.2 95% 45.7 213.6
XML 87% 52.3 71% 7.6 81.6

1180 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016



ccs ¼
X
i2As

cði; 1Þ;
X
i2As

cði; 2Þ; . . . ;
X
i2As

cði; nÞ
" #

: (1)

Thus, for all j 2 f1; 2; . . . ; ng, ccsðjÞ shows that number of

times that the jth entity is covered by the test cases in As.

Example A.2. In Example A.1, if the algorithm selects test
cases t1 and t2 by the end of step 2, then we have

cc2 ¼ ½0; 0; 1; 2; 1; 1; 1; 1�.

The proposed algorithm favours test cases that maximize
the smallest element(s) of the vector ccs. Note that several
elements of ccs may have the same smallest value. The
smallest element(s) represent the entities that have been
covered less than others. If there exist some entities that are
not covered so far, then the smallest element(s) of ccs will be
equal to zero. AT chooses the test case that can cover the
highest number of such not-yet-covered entities. Neverthe-
less, if there are more than one test case satisfying this crite-
rion (tie occurs), AT selects randomly, whereas our
proposed technique exploits this freedom to maximize the
second smallest element of ccs, and so on. To implement
this procedure, it sorts the entities base on their so far cumu-
lative coverage value and favours increasing the cumulative
coverage of entities with smaller values.

By sorting the elements of ccs in ascending order, we
form the vector Ordered Cumulative Coverage, denoted by
occs where the smallest element of ccs is the leftmost ele-
ment of occs. Without loss of generality, we assume that the
ordering of the elements in occs preserves the order of ele-
ments ccs which have the same value. The basic algorithm
relies on the lexicographical ranks of occ vectors. At step s,
it searches for the test case that maximizes the lexicographi-

cal rank of occsþ1. For this purpose, starting with cc0 equal
to a vector of all zeros, at each step, say step s, the algorithm
adds the coverage vector of each of the remaining test cases

to ccs (to form the set of potential ccsþ1 vectors). Then, it
sorts the resulting vectors and finds the one with the highest
lexicographical rank. This vector is a result of adding up ccs

with a coverage vector such as cvi. This means that selecting

the ith test case, ti, in the current step results in occsþ1 with
the highest lexicographical rank. Therefore, ti is selected as
the next test case to maximize the lexicographical rank of

occsþ1. Finally, the value of ccs is updated to ccsþ1 by adding
the coverage vector of the selected test case to ccs. The algo-
rithm continues in the same manner for the remaining test
cases. Note that this procedure may still result in ties of its
own.

Example A.3. In Example A.1, at the end of step 2, test cases

t1 and t2 are selected and we have cc2 ¼ ½0; 0; 1; 1; 2; 1; 1;
1�, thus occ2 ¼ ½0; 0; 1; 1; 1; 1; 1; 2�. Selecting t3 as the next

test case results in occ3 ¼ ½0; 1; 1; 1; 1; 1; 1; 3�, while select-

ing t4 results in occ3 ¼ ½0; 1; 1; 1; 1; 1; 2; 2�. As the latter
has a higher lexicographical rank, t4 is selected as the
next test case.

Algorithm I shows the pseudo-code of the basic algo-
rithm. Lines 1 and 2 perform initialization. Lines 3 to 16 con-
struct the main loop of the algorithm. In each iteration of

this loop, a test case is selected and added to the list A
which is the output of the algorithm. Lines 5 to 13 add the
coverage vector of each of the remaining test cases to cc and
find the one yielding the highest lexicographical order. Line
14 inserts the selected test case into the order. Finally, line
15 updates cc. Note that the output of Algorithm I and AT is
the same if no ties occur.

Algorithm 1. Basic Algorithm

Input: Coverage matrix C ¼ ½cði; jÞ�m�n,
test suite T ¼ ft1; . . . ; tmg

Output: Order of test cases A
1: cc 01�n
2: A  empty list
3: while A.size() < m do
4: h �11�n
5: for i ¼ 1 tom do
6: if ti =2 A then
7: tmp sortðcvi þ ccÞ
8: if h � tmp then
9: h tmp
10: tbest ti, cbest ¼ cvi
11: end if
12: end if
13: end for
14: A.add(tbest)
15: cc ccþ cbest
16: end while
17: return A

The main loop iterates for m times where in each itera-
tion the test case with the highest lexicographical rank is
selected. In particular, each coverage vector is added to the
current cc in OðmÞ time, sorted in Oðn lognÞ time and com-
pared with other vectors in OðnÞ time. Therefore, the total

complexity of Algorithm I is Oðm2n2 lognÞ.

2.5 Generalized AT Using Lexicographical Ordering

In this section, we present a greedy algorithm called Gener-
alized AT using Lexicographical Ordering which is equivalent
to the basic procedure but has lower computational cost.

To explain this algorithm, we need some extra notations.
Recall that ccs and occs comprise of identical elements but
in different orderings. In other words, they are just a permu-
tation of each other. To keep the correspondence between
these two vectors, we use the following notation

PsðccsÞ ¼ occs: (2)

where Ps is a permutation function which specifies the
ordering relationship between ccs and occs. As mentioned
before, the permutation function preserves the order of
equal elements (those that have the same value) in ccs. Since
occs and cvi vectors have the same size, we can apply the
same permutation to each coverage vector, cvi
i ¼ f1; 2; . . . ;mg, to form the Ordered Coverage Vector, ocsi :

PsðcviÞ ¼ ocsi : (3)

where ocsi is the permutation of cvsi according to Ps.
Using occs, two other vectors are formed as explained in

steps (1) and (2) below:

EGHBALI AND TAHVILDARI: TESTCASE PRIORITIZATION USING LEXICOGRAPHICALORDERING 1181



Step 1: Since occs is sorted, the elements with the same
value are adjacent to each other. We group the elements of
occs according to their values into rs partitions, indexed
from left to right by 1; . . . ; rs, such that all the elements
within a partition have the same value. Based on these parti-
tions, we form the vector qs ¼ ½qsð1Þ; . . . ; qsðrsÞ� where qsðiÞ
indicates the number of elements in the ith partition.

Example A.4. In Example A.3, we have

occ2 ¼ ½0; 0; 1; 1; 1; 1; 1; 2�, thus q2 ¼ ½2; 5; 1�.

Step 2: Based on the values qsð1Þ to qsðrsÞ, we partition the
elements of all the remaining ocsi vectors into rs partitions
from left to right corresponding to the partitions of occs.
Using these values, we form the vector ws ¼ ½wsð1Þ; . . . ;
wsðrsÞ�, called theWeight Vector. The elementwsðiÞ of the vec-
tor ws is the weight of the ith partition, where weight is the
sum of the binary valueswithin that partition:

8i 2 f1; 2; . . . ; rsg; wsðiÞ ¼
XbiþqsðiÞ�1

j¼bi
ocsðjÞ; (4)

where bi is the starting index of the ith partition, i.e.,:

bi ¼
1 if i ¼ 1

bi�1 þ qsði� 1Þ otherwise.

(
(5)

Example A.5. In Example A.3, we have occ2 ¼ ½0; 0; 1;
1; 1; 1; 1; 2�, thus oc23 ¼ ½0; 1; 0; 0; 0; 0; 0; 1�, and oc24 ¼ ½1; 0;
0; 0; 1; 0; 0; 0�. Consequently, the weight vectors corre-

sponding to t3 and t4 are w2
3 ¼ ½1; 0; 1� and w2

4 ¼ ½1; 1; 0�,
respectively.

As a result, corresponding to each ocst , we have a vector
composed of rs non-negative integer elements. Finally, let
cs

i denotes the set of indices in the ith partition.

Algorithm 2. GeTLO

Input: Coverage matrix C ¼ ½cði; jÞ�m�n,
test suite T ¼ ft1; . . . ; tmg

Output: Order of test cases A
1: cc 01�n
2: A  empty list
3: while A.size()< m do
4: occ ¼ sortðccÞ
5: Find permutation P such that PðccÞ ¼ occ
6: q ¼computeq(occ)
7: h �11�r
8: for i ¼ 1 tom do
9: if ti =2 A then
10: oci  PðciÞ
11: wi  computew(oci;q)
12: if h � wi then
13: tbest ti, cbest ¼ ci
14: end if
15: end if
16: end for
17: A.add(tbest)
18: cc ccþ cbest
19: end while
20: return A

To prioritize test cases using Algorithm 1, first each of the
cvi vectors is added to ccs. Then, the resulting vectors are
sorted and the one with the highest lexicographical rank is
chosen. However, it will be shown that the sorting step is
not necessary and can be replaced with a permutation and
addition to compute the weight vectors. As will be proved
later, this modification does not change the functionality,
but results in a lower computational cost. GeTLO prioritizes
the test suite based on the lexicographical ranks of weight
vectors; at each step, it chooses the test case such that the
correspondingws

i has the highest lexicographical rank.
Algorithm 2 shows the pseudo code of the procedure

with lower computational cost. Lines 1 and 2 are used for
initializations. Lines 3 to 19 form the main loop. In each iter-
ation of the main loop, first, permutation P and vector q are
computed by the function computeq(.). This function simply
takes the occ vector as the input and returns the vector q.
Afterwards, to select a test case, the wi vector of each test
case is computed based on the corresponding value of oc by

the function computew(.). The inputs of this function are oci

and q vectors. It adds the values in each partition to form
wi. Then, lines 8 to 16 find the test case that corresponds to
wi with the highest lexicographical rank. Lines 17 and 18
insert the selected test case into the ordering and update cc.
Note that, if the highest lexicographical rank is shared
among several test cases, instead of resorting to random
selection, the algorithm selects the candidate with the small-
est index. The reason for such a selection is to avoid ran-
domness in the final outcome.

Example A.6. Consider the coverage matrix of Example A.1.
Until step 3 no ties occurs, therefore, the first two selected
test cases by GeTLO are identical to those selected by AT.
These are t1 and t2 resulting in cc2 ¼ ½0; 0; 1; 1; 2; 1; 1; 1�
and occ2 ¼ ½0; 0; 1; 1; 1; 1; 1; 2�. To select the third test case,
the weight vectors are formed as follows:

cc2 ¼ [0,0,1,1,2,1,1,1])

occ2 ¼ 0, 0,|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1stpartition

1,1,1,1,1,|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
2ndpartition

2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
3rdpartition

2
64

3
75

)

rs ¼ 3
qs ¼ [2, 5, 1]
b1 ¼ 1; b2 ¼ 3; b3 ¼ 8
cs

1 ¼ f1; 2g;cs
2 ¼ f3; 4; 5; 6; 7g;cs

3 ¼ f8g

8>><
>>:

cv3 ¼ [0,1,0,0,1,0,0,0])
oc23 ¼ P2ðcv3Þ ¼ [0,1,0,0,0,0,0,1]) w2

3 ¼ [1, 0, 1]

cv4 ¼ [1,0,0,0,0,0,0,1])
oc24 ¼ P2ðcv4Þ ¼ [1,0,0,0,0,0,1,0]) w2

4 ¼ [1, 1, 0]:

Recall that to form vectors ws
i , the entities with the same

cumulative coverage values are grouped together as they
are of the same preference in terms of being covered in
the next iteration. If Algorithm 1 is applied to the cover-
age vectors of Example A.1, in the third step, s ¼ 3, it

would choose t4 which would result in the occ3 with a
higher lexicographical order. The same conclusion could

be derived by using Algorithm 2 as we havew2
3 � w2

4.

1182 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016



Next, we analyze the time complexity of GeTLO algo-
rithm. To choose a test case at each iteration, first vector
cc is sorted and then permutation P is defined in
Oðn lognÞ time. Computing the vector q takes OðnÞ time.
Then, for each of the remaining test cases, the values of
wi is compared lexicographically with each other to find
the one with the highest rank. These operations take
OðmbÞ time where b is the number of partitions. This
selection and readjustment must be performed for each
test case selection. Therefore, the total complexity of
GeTLO is Oðmðn lognþmzÞÞ which can be written as

Oðmn lognþm2zÞ, z is the maximum size of q which in
the worst case is equal to n. As typically the number of
test cases is more than the number of entities, m > n, the

complexity of Algorithm 2 can be written as Oðm2nÞ
which is the same as AT. However, in practice, size of q
is usually smaller than n and Algorithm 2 takes less than

Oðm2nÞ time. Therefore, Algorithm 2 has lower computa-
tional cost in comparison to Algorithm 1 which was

shown to take Oðm2n2lognÞ time.

2.6 Equivalence of Algorithm 1 and Algorithm 2

Theorem 1 proves that Algorithms 1 and 2 are equivalent
and produce identical orderings.

Theorem 1. Algorithms 1 and 2 result in the same ordering of
test cases.

Proof. To carry on with the proof, for the sake of notation
simplicity, superscript s is removed. tu

The basic algorithm prioritizes test cases based on the
lexicographical ranks of vectors sortðoccþ ociÞ, see lines 6
to 12 of Algorithm 1, while GeTLO proceeds relying on the
lexicographical ranks of the weight vectors, see lines 9 to 15
of Algorithm 2. Therefore, one way to prove that the two
algorithms are equivalent, is to show that both result in the
same lexicographical ordering. In other words, we aim to
prove that:

8occ; oca; ocb sortðoccþ ocaÞ � sortðoccþ ocbÞ; (6)

is equivalent to:

wa � wb: (7)

Expressions (6) and (7) mean that test case tb has higher pri-
ority by Algorithms 1 and 2, respectively.

In expression (6) computing sortðoccþ ocaÞ and
sortðoccþ ocbÞ is dependent on the actual value of vector
occ, however computing wa andwb in expression (7) is only
dependent on the number of elements in each partition of
occ, and not on its actual value. Consequently, to proceed
with the proof, we aim to relax the role of occ in expres-
sion (6) in order to establish the relation between expres-
sions (6) and (7). To this end, we show that the explicit
dependency of expression (6) on the value of occ can be
relaxed to a milder, but equivalent condition on the number
of elements in each partition of occ.

To remove the explicit appearance of occ in equa-
tion (6), we define an operator, called Sort Partition,
denoted as spqðxÞ (sort x based on the partitions speci-

fied in q) where each element of vector q, such as qðiÞ,
denotes the size of the i-th partition of the vector occ.

This operator reorders the elements of x such that the
resulting vector is sorted partition-wise. In other words,
spqðxÞ sorts the elements within each partition indepen-

dent of others.

Example D.1. Let occ ¼ ½1, 1, 1, 2, 2, 4� and oc1 ¼ ½0; 1; 0;
1; 0; 1� and oc2 ¼ ½1; 0; 0; 1; 1; 0� then we have:

occ ¼ 1, 1, 1,|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1stpartition

2, 2,|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2ndpartition

4|fflfflfflffl{zfflfflfflffl}
3rdpartition

2
64

3
75:

The corresponding partitioning applied to oc results in:

occ ¼ 0, 1, 0,|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1stpartition

1, 0,|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2ndpartition

1|fflfflfflffl{zfflfflfflffl}
3rdpartition

2
64

3
75:

Therefore, occ has three partitions and we have
q ¼ ½3; 2; 1� where qðiÞ shows the number of elements in
the i-th partition of occ. Thus, we have:

spðocÞq

¼ ½sortð1stpartitionÞ; sortð2ndpartitionÞ; sortð3rdpartitionÞ�
¼ ½sortð[0,1, 0]Þ; sortð[1, 0]Þ; sortð[1]Þ�
¼ ½ 0; 0; 1; 0; 1; 1�:

Following similar steps for t2 results in
spqðoc2Þ ¼ ½0; 0; 1; 1; 1; 0�.

Using this operator, we show that sortðoccþ ocaÞ is
equal to occþ spqðocaÞ. Since occ is a sorted vector with

non-negative integer elements, the difference between
two elements in adjacent partitions in occ is always
greater than or equal to one. In other words:

8j and 8i 2 cj; 8p 2 cjþ1; occðiÞ þ 1 	 occðpÞ: (8)

Recall that: (1) Each element of occ, such as occðiÞ, shows
the number of times that the i-th entity of the software is
covered until the current step, and (2) ci is the set of indi-
ces in occ that belong to its ith partition.

Considering the fact that each element of oca is either
zero or one (ocaðtÞ 2 f0; 1g for t 2 f1; 2; . . . ; ng), we can
rewrite (8):

8j and ; 8i 2 cj; 8p 2 cjþ1;

occðiÞ þ ocaðiÞ 	 occðpÞ þ ocaðpÞ:
(9)

In simple words, equation (9) entails the following: The
elements within a single partition of occþ oca may not
be sorted, however, any two elements that are chosen
from different partitions of occþ oca are sorted. There-
fore, to sort occþ oca; one can instead sort each partition
of it separately. That is, sorting a vector of size n is bro-
ken into r simpler sorting operations, each with the size
of its corresponding partition, where r is the number of
partitions.

EGHBALI AND TAHVILDARI: TESTCASE PRIORITIZATION USING LEXICOGRAPHICALORDERING 1183



Example D.2. In the case of Example D.1, we have:

occþ oc1 ¼ 1, 2, 1,|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1stpartition

3, 2,|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2ndpartition

5|fflfflfflffl{zfflfflfflffl}
3rdpartition

2
64

3
75

occþ oc2 ¼ 2, 1, 1,|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1stpartition

3, 3,|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2ndpartition

4|fflfflfflffl{zfflfflfflffl}
3rdpartition

2
64

3
75:

We can observe that sorting vectors occþ oc1 and
occþ oc2 can be reduced to sorting their partitions, that is:

sortðoccþ oc1Þ ¼ ½sortð½1; 2; 1�Þ; sortð½3; 2�Þ; sortð½5�Þ�
¼ ½1; 1; 2; 2; 3; 5�

sortðoccþ oc2Þ ¼ ½sortð½2; 1; 1�Þ; sortð½3; 3�Þ; sortð½4�Þ�
¼ ½1; 1; 2; 3; 3; 4�:

(10)

Recall that the partitioning of occ is based on grouping
elements with the same value under the same partition. By
considering the fact that entries of occ within a partition are
all equal, and consequently, do not affect the outcome of the
sorting operation, we can write:

sortðoccþ ocaÞ ¼ spqðoccþ ocaÞ ¼ occþ spqðocaÞ: (11)

Example D.3. In the case of Example D.1, we can see that:

occþ spqðoc1Þ ¼ ½1; 1; 1; 2; 2; 4� þ ½0; 0; 1; 0; 1; 1�
¼ ½1; 1; 2; 2; 3; 5�

occþ spqðoc2Þ ¼ ½1; 1; 1; 2; 2; 4� þ ½0; 0; 1; 1; 1; 0�
¼ ½1; 1; 2; 3; 3; 4�

which are equal to the values calculated in equation (10).

Now we can rewrite the expression sortðoccþ ocaÞ �
sortðoccþ ocbÞ using expression (11) as:

occþ spqðocaÞ � occþ spqðocbÞ: (12)

Adding or subtracting the same value from the two sides
does not affect the lexicographical ordering. Thus, we can
reduce 12 to:

spqðocaÞ � spqðocbÞ: (13)

In other words, the condition in expression (6) is equivalent
to the condition in expression (13). As a result, it suffices to
prove that:

spqðocaÞ � spqðocbÞ,wa � wb: (14)

First, we prove that spqðocaÞ � spqðocbÞ ) wa � wb. To
this aim, let sa denote the vector returned by applying the
sp operator to oca, i.e., sa ¼ spqðocaÞ. Using lexicographical

ordering definition, we can infer that if spqðocaÞ � spqðocbÞ,
then:

9i s.t. 8j < i; saðjÞ ¼ sbðjÞ and saðiÞ < sbðiÞ: (15)

Considering the fact that oca and ocb in expression (15) are
binary vectors, the only possible values are saðiÞ ¼ 0 and
sbðiÞ ¼ 1. Without loss of generality, assume that index i in
expression (15) is in the kth partition, namely i 2 ck. Since
both sa and sb are sorted partition-wise, we have:

8z 2 ck and z � i; sbðzÞ ¼ 1
8z 2 ck and z 	 i; saðzÞ ¼ 0:

(16)

This means for the kth partition, we have:

kth partition of oca ¼ ½0; 0; . . . ; 0; 0; ‘; . . . ;‘�
kth partition of ocb ¼ ½0; 0; . . . ; 0; 1;|{z}

ith element

1; . . . ; 1�

where ‘ is either 0 or 1.

Example D.4. For the case of Example D.1, we have:

s1 ¼ ½ 0, 0, 1,|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1stpartition

0, 1,|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2ndpartition

1|fflfflfflffl{zfflfflfflffl}
3rdpartition

�:

s2 ¼ ½ 0, 0, 1,|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1stpartition

1, 1,|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2ndpartition

0|fflfflfflffl{zfflfflfflffl}
3rdpartition

�:

We can see that s1 and s2 differ in the second partition;
thus, expression (16) is satisfied for this example with
k ¼ 2 and i ¼ 4.

This means, for the index i satisfying expression (15), all
the elements of sb with indices higher than i that are in the
kth partition are equal to 1. At the same time, sbðiÞ ¼ 1 and
saðiÞ ¼ 0. Consequently, regardless of the values (0 or 1)
taken by the elemets of sa for z > i, we can conclude that
the sum of values in the kth partition of oca (k is the parti-
tion of oca that includes index i), is less than the correspond-
ing value in ocb. Thus, we have waðkÞ < wbðkÞ. Finally,
noting that we have: 8i < k; waðiÞ ¼ wbðiÞ, by the definition
of lexicographical ordering, we can concludewa � wb.

Next, we prove that wa � wb ) sa � sb. The assumption
is thatwa � wb, therefore, according to the definition of lexi-
cographical ordering, we have:

9i s.t. 8j < i; waðjÞ ¼ wbðjÞ and waðiÞ < wbðiÞ: (17)

The inequality waðiÞ < wbðiÞ in (17) means that the number
of ’1’s in the ith partition of ocb is larger than that of oca.
Consider the ith partition of sa and sb. Since both partitions
are sorted, we can write:

9z s.t. 8t < z; saðtÞ ¼ sbðtÞ ¼ 0 and

saðzÞ ¼ 0 and sbðzÞ ¼ 1:
(18)

Therefore, we conclude thatwa � wb ) sa � sb.

3 ENHANCED GETLO USING RECURSIVE TIE
BREAKING

Since the ties that occur in the proposed technique are dif-
ferent from those that occur in AT, we refer to the former by
G-ties. Using Algorithm 2, a G-tie occurs when more than

1184 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016



one wi vector achieves the highest lexicographical rank.
This problem can arise even if all coverage vectors are dif-
ferent. G-ties tend to happen more frequently in the first
few steps where there are more not-yet-covered entities.
Random selection is one choice, but there might be a selec-
tion which can further improve the rate of fault detection.
The next example shows that different selections in the case
of a tie can result in different occ vectors.

Example E. Consider the case where there are four test cases
with the following coverage matrix:

C ¼

0 0 0 1 1 1 0 0 0 0 1 1
0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0
1 1 1 0 0 0 1 0 0 0 0 0

0
BB@

1
CCA:

At the first step, there are two candidate test cases to
select, namely 1 and 2. If test case 1 is selected, test cases
4 and 3 will be selected in the next two steps resulting in

occ3 equal to ½1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2�. Nevertheless, if
test case 2 is chosen at the first step, test cases 3 and 4
will be added to the ordering in subsequent steps which

results in the occ3 equal to ½0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2�.
The lexicographical rank of the former occ3 vector is
higher than the latter one, because it covers all the enti-
ties at least once. Ideally, we are interested in occ vectors
with higher ranks.

To remove G-ties, instead of choosing one of the candi-
dates randomly, one could let the algorithm to proceed fur-
ther for each choice up to a desired depth, d. Assuming a tie
is faced at step s, the algorithm proceeds further by consider-
ing each candidate test case involved in the tie as if it were
the selected test case at this step. At this point, the algorithm
continues d steps ahead to step sþ d for all candidates. Then,
the search algorithm retrieves a test case (among thosewhich
have resulted in G-tie at step s) such that the corresponding

occsþd has the highest lexicographical rank.
This process can be represented as a tree, capturing the

correspondence between ties and branches at each node.
This concept is explained in the following example.

Example F. Fig. 1 shows the evolution of the aforemen-
tioned tree for a system composed of four entities. In this
example, an early G-tie occurs at the first step where
there are three test cases with equal number of covered
entities resulting in the same lexicographical rank.
Assume d ¼ 3. This means that the algorithm proceeds
until the third level of the tree for all candidates and then
chooses the one with the highest lexicographical rank. In
this example, the occ vector with the highest lexicograph-
ical rank is occ ¼ ½2; 2; 2; 3�, which corresponds to the test
case with coverage vector cv1 ¼ ½1; 1; 1; 0�. The algorithm,
then, discards all other choices and proceeds in the same
manner for the next steps .

It is evident that increasing d results in choosing more
promising candidates but at the price of a higher complexity.

Note that Algorithm 2 corresponds to the enhanced algo-
rithm described above for d ¼ 0.

4 EMPIRICAL STUDIES

4.1 Research Questions

Following research questions are addressed:

� RQ1: What are the benefits of using the proposed
algorithm in increasing the rate of fault detection?

� RQ2: What are the effects of the depth parameter, d,
in the performance of the proposed algorithm?

� RQ3: What anomalies can affect the performance of
the coverage based techniques?

� RQ4: What is the impact of the granularity level on
the performance of the proposed technique?

� RQ5: How fast can the proposed technique find the
hard-to-detect faults?

4.2 Subject Programs & Experiment Setup

Experiments are performed using 45 versions of six different
open source Java programs: Ant, Galileo, Jmeter, Jtopas,
NanoXML (Nano), XML-Security (XML). The source code of all
subject programs and their test cases are downloaded from
the Software-artifact Infrastructure Repository [32] which has
been extensively used in earlier studies on test case prioritiza-
tion and selection techniques. This facilitates the comparison
of the results with other techniques from the literature. Each
program in the SIR contains the folder “version.alt” with sub-
directories V0, V1,. . .,Vk, where subdirectory Vj contains the
jth version of the program. This folder also includes the file
“VersionMap” that contains the mapping between SIR ver-
sions and the original versions of the program.

The details of subject programs are listed in Table 2. It
includes the number of versions, the number of source code
lines of the programs (including the source code of test
cases and the non-executable lines), the number of test cases
(all test cases are at the test-method level), the number of
faults (all values for the most recent version), as well as the
type of test cases which are either JUnit or Test Specification
Language (TSL). The size of subject programs range from
5.4 to 80.4 KLoC.

The original versions of these programs do not include
any faults. For each program on the SIR, a limited number
of faults (hand seeded) is provided. However, to perform
an adequate statistical comparison between different

Fig. 1. The process of choosing a test case.

EGHBALI AND TAHVILDARI: TESTCASE PRIORITIZATION USING LEXICOGRAPHICALORDERING 1185



techniques, the number of faults must be sufficiently large.
To increase the number of faults, we have used mutation
faults [37]. There have been studies about whether mutation
faults can be a representative of real faults. These studies
indicate that it is usually appropriate to use mutation faults
for studying regression testing techniques [38], [39]. In the
context of test case prioritization, Do and Rothermel [40]
have empirically investigated the effectiveness of using
mutation faults. For five programs (all except Jtopas), we
have used the same mutation faults as used in [10]. For Jto-
pas (which was not used in [10]), we have used MuJava [41]
to generate the mutation faults. In particular, to generate
the faults for a version of a given program, first the set of all
methods that differ from the previous version are extracted.
Second, a relatively large number of mutant faults are
injected into the modified methods. Finally, all injected
mutant faults that cannot be detected at least by one test
case are disregarded and different techniques are executed
using the remaining ones. A similar procedure has been
used for comparison in other relevant studies [10], [40].

The coverage information for the five of the subject pro-
grams (all except for Jtopas) are obtained from [10] where
they use the Sofya instrumentation tool [42] to obtain cover-
age information. For Jtopas, we have used the Fault Tracer
tool [43] to obtain the coverage information. The granularity
of coverage information is at the method level and the basic
block level. Following the procedure presented in [44], if at
least one entity of a method/basic block is covered by a test
case, we consider that method/basic block covered, and
substitute ’1’ in its corresponding entry in the coverage
matrix, otherwise, the corresponding entry will be ’0’.

4.3 Techniques Used for Comparison

For comparison purposes, we have selected a set of cover-
age-based test case prioritization techniques, described as
follows:

� As the proposed algorithm is built on top of TT and
AT, we have implemented both of these techniques
for the sake of comparison.

� To measure the effect of the depth parameter, d, we
have used d ¼ 0 and d ¼ 6. The maximum depth is
chosen based on trial and error. It was observed that
in almost all occurrences of a G-tie, using d ¼ 6
removes all the ties.

� There are many other techniques which not only use
the coverage data, but also rely on other relevant
data such as the change information. To perform a

comparison between the proposed technique and
some of such multi-criteria approaches, we include
two Bayesian Network (BN) based techniques: BN and
BNA [45]. The relevant implementation and parame-
ters that have been used in this work are identical to
those reported in [45].

We implemented TT, AT and GeTLO in MATLAB and
used the implementation of BN and BNA in Java provided by
the authors in [46]. An implementation of GeTLO techni-
que is available at https://github.com/sepehr3pehr/
GeTLO.

4.4 Metric Used for Comparison

To measure the effectiveness of different test case prioritiza-
tion techniques, we use the widely-accepted Average Per-
centage Fault Detection (APFD) metric [18]. Intuitively, APFD
measures how fast faults are detected by the generated
ordering. Higher values of APFD indicate faster fault detec-
tion. Formally, let T be the set of n test cases and TFi be the
index of the first test case that detects the ith fault. Also,
assume that the number of faults that can be detected by the
test suite is m, then the value of APFD metric of an ordering
is given by following equation [18]:

APFD ¼ 1� TF1 þ 
 
 
 þ TFm

nm
þ 1

2n
: (19)

which measures the area under the curve by plotting the
percentage of faults detected on the vertical axis and num-
ber of test cases on the horizontal axis. The APFD metric
ranges from 0 to 1, where the value of 1 indicates that all
faults are detected by the first test case.

The APFD metric has some limitations, for example, it
does not consider the execution cost and faults severi-
ties [47]. Although there are studies which consider cost-
benefit models for APFD, we do not incorporate them in
this paper.

In practical testing scenarios, a program do not include
faults in numbers as high as the size of mutant faults that
are available from [10]. Also, to have an adequate statistical
comparison, we need to apply different techniques to all
versions of subject programs for a sufficiently large number
of times. To satisfy these two conditions, in each run (on a
specific version), we choose a random number of mutants
from the pool. This number should not be too small (such
that the effectiveness of different techniques can be mea-
sured); it should not be too large either (for different ran-
dom selection of subsets of faults to be independent of each
other). The number of mutation faults in each run is set by
randomly picking an integer value in the range of 5 to 15.
The same procedure has been applied in [10], [40].

4.5 Results

To provide an overview of the collected data, Figs. 2 and 3
show the box-plots of the APFD metric for different techni-
ques at the method level and at the basic block level, respec-
tively. On each box, the central mark is the median, the
edges of the box are the 25th and 75th percentiles, the
whiskers (lines extending vertically from the boxes) extend
to the most extreme data points that are not considered to
be outliers. Figs. 2 and 3 show the results of 30 executions of
each technique, each with a different subset of faults. The

TABLE 2
Details of Subject Programs Used

in Empirical Studies

Details

#Vers KLoC #TMeth #Faults Type

Ant 9 80.4 877 412 JUnit
Galileo 16 15.2 912 2494 TSL
Jmeter 6 43.3 78 386 JUnit
Jtopas 4 5.4 128 1104 JUnit
Nano 6 7.6 216 204 TSL
XML 4 16.3 83 246 JUnit

1186 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016



integer value following the GeTLO shows the value of the
depth parameter, e.g., GeTLO-6 is GeTLO technique with
d ¼ 6. Each plot contains a box for each of the six techni-
ques, representing the distribution of the APFD metric.

To validate the observations, different techniques are
compared using the Kruskal-Wallis one-way analysis of
variance [48]. We did not use the ANOVA test [49] because
our datasets do not have equal variances and do not follow
a normal distribution. For multiple comparisons, the Bon-
ferroni method is used due to its generality and conserva-
tism. The null hypothesis is that the mean values of the

APFD metric of two techniques are the same. The level of
significance for acceptance or rejection of the null hypothe-
sis is set to 0.05. A similar value is used in [10], [17], [18],
[40], [50]. Tables 3 and 4 show the results of such statistical
comparisons. Different techniques are sorted based on the
mean of their APFD metric over different versions. Techni-
ques which are not significantly different share the same
rank. Similar procedure for comparison is applied in [10],
[18], [40].

It is worth mentioning that these programs were selected
based on their popularity in relevant studies without any

Fig. 2. Box-plots of different methods for all subject programs at the method level.

Fig. 3. Box-plots of different techniques for all subject programs at the basic block level.

EGHBALI AND TAHVILDARI: TESTCASE PRIORITIZATION USING LEXICOGRAPHICALORDERING 1187



attention to the corresponding number of ties (number of
ties in each of them were not known beforehand). We
would expect that the difference between GeTLO and AT
decreases as the number and the size of ties decline.

4.6 Discussions on the Results

4.6.1 RQ1: Rate of Fault Detection

Box-plots in Figs. 2 and 3 as well as relative rankings in
Tables 3 and 4 indicate that using the notion of lexicographi-
cal ordering for test case prioritization can boost the rate of
fault detection. Following patterns are observed in the results:

� In all programs, GeTLO-6 and GeTLO-0 are ranked
as the highest, although they may share this rank
with other alternatives.

� On Ant, almost all techniques exhibit similar perfor-
mance. The reason for such an anomaly will be dis-
cussed later.

� On Jtopas and Nano, all techniques are outperformed
by the GeTLO. Note that, according to Table 1, these
two projects have the highest percentage of steps

with ties indicating that GeTLO is successful at
resolving ties to achieve higher rates of fault
detection.

� On Galileo, the first rank is shared among GeTLO-0,
GeTLO-6 and BNA.

These observations clearly demonstrate the benefit of the
proposed technique over the existing alternatives.

Fig. 4 shows the average execution time of all techniques
over different projects at the method and the basic block lev-
els (the execution time of TT is extremely small and not visi-
ble in the figure). The figure indicates that the execution
time of GeTLO is higher than that of AT, but it does not
exceed 25 seconds even for large projects.

4.6.2 RQ2: Effects of the Depth Parameter

In terms of comparing GeTLO-0 and GeTLO-6, the results
show that the difference is not statistically significant in
any of the subject programs (GeTLO-0 and GeTLO-6
share the same statistical rank). To further investigate any
differences, we have computed the number of G-tie
occurrences in each subject program. GeTLO-0 and

TABLE 3
Kruskalwallis Test Results at the Method Level

Ant Galileo Jmeter

Tech Mean Rank Tech Mean Rank Tech Mean Rank

GeTLO-0 84.69 A BNA 86.87 A GeTLO-6 70.29 A E
GeTLO-6 84.69 A GeTLO-6 86.47 A GeTLO-0 69.30 B E
AT 84.23 A GeTLO-0 86.44 A AT 68.77 B
BNA 83.31 A BN 76.38 B BNA 68.07 B
BN 81.81 B AT 62.40 C BN 63.37 C
TT 79.20 C TT 60.06 C TT 60.10 D

Jtopas Nano XML

Tech Mean Rank Tech Mean Rank Tech Mean Rank

GeTLO-6 93.23 A GeTLO-6 92.45 A GeTLO-6 92.58 A
GeTLO-0 93.19 A GeTLO-0 92.40 A GeTLO-0 92.31 A
AT 91.46 B BNA 84.59 B AT 91.60 A
TT 72.96 C AT 80.68 C TT 89.61 B
BNA 63.69 D TT 80.02 C BNA 57.03 C
BN 61.31 D BN 71.11 D BN 51.72 D

TABLE 4
Kruskalwallis Test Results at the Basic Block Level

Ant Galileo Jmeter

Tech Mean Rank Tech Mean Rank Tech Mean Rank

GeTLO-0 86.80 A BNA 94.08 A GeTLO-6 69.87 A
GeTLO-6 86.80 A GeTLO-6 92.24 A GeTLO-0 69.01 A

AT 85.31 A GeTLO-0 92.03 A AT 68.80 A
BNA 83.40 A BN 76.87 B BNA 68.57 A
BN 81.92 B AT 75.54 C BN 63.58 B
TT 79.26 B TT 46.52 D TT 60.56 C

Jtopas Nano XML

Tech Mean Rank Tech Mean Rank Tech Mean Rank

GeTLO-6 93.18 A GeTLO-6 96.77 A GeTLO-6 94.08 A
GeTLO-0 93.00 A GeTLO-0 96.77 A GeTLO-0 93.78 A F

AT 91.25 B AT 94.55 B AT 92.76 B F
TT 72.42 C BNA 84.02 C TT 89.68 C
BNA 63.99 D TT 80.21 C BNA 56.58 D
BN 61.91 D BN 70.51 D BN 50.48 E

1188 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016



GeTLO-6 return the same order if no tie occurs, therefore
the only factor that can differentiate these two techniques
is the number of ties. Table 5 shows the average number
of ties for each program (averaged over its versions). In
Ant, Galileo, Jmeter and Nano, the probability of a G-tie is
relatively low. This causes GeTLO-0 and GeTLO-6 to
exhibit similar rates of fault detection.

Whenever a tie occurs, GeTLO-0 randomly chooses a test
case among those with the same lexicographical rank. There-
fore, if the number of alternatives increases, the likelihood
that GeTLO-0 and GeTLO-6 select the same test case
decreases. For each program, Table 5 also contains the aver-
aged tie size where the tie size is the number of candidate test
cases involved in a tie. It turns out that this number is rela-
tively low in all programs. In other words, choosing a random
candidate may not significantly affect the performance. This
fact indicates that although the number of tie occurrences in
programs Jtopas andXML is relatively high, in these cases ran-
dom selection can be efficient since the number of choices is
small. In spite of the fact that in all programs GeTLO-0 and
GeTLO-6 are not significantly different, in five out six pro-
grams mean of APFD metric for GeTLO-6 is higher than that
of GeTLO-0 at both themethod level and the basic block level.

Note that by comparing Tables 1 and 5, we can infer that
the proposed algorithm is very effective in reducing the
number of ties.

4.6.3 RQ3: Anomalies

Tables 3 and 4 indicate that for some programs, such as Ant,
there is no significant difference between most of the

compared techniques. To inspect why such an anomaly
occurs, the fault information of Ant is studied in further
details. It turns out that in different versions of Ant, a rela-
tively large number of faults are difficult to detect. In other
words, these faults can be detected by only a very small
fraction of test cases.

To study this issue further, for each version ofAnt, we par-
tition the faults into two sets: 1) the set H that includes Hard-
to-Detect faults, and 2) the set E that includes Easy-to-Detect
faults.H is the set of faults that are detectable by a small num-
ber of test cases (less than 4 test cases). E is the set of faults that
are detectable by a large number of test cases (more than 4 test
cases). With some misuse of notation, assume that test cases
that detect the faults inH are indexed from 1 to j.

In what follows we further elaborate on the characteris-
tics of test cases and faults that are the source of observed
anomaly. For versions 4 and 8 of Ant, the relation between
faults in H and test cases are shown in Fig. 5, where test
cases and faults are represented by circles and rectangles,
respectively. The circles inside a rectangle represent the
faults that are detectable by the corresponding test case. The
individual faults in E are shown as well. As the number of
test cases that detect faults in E is relatively high, the test
cases that detect them are not shown. In Ant V4, which con-
tains 215 test cases, 13 out of 21 faults belong to H (are hard
to detect), four of which, namely h5; h6; h7; h8, are detectable
by only one test case, namely t2. Also, three faults in H,
namely h9; h10; h11, are only detectable by t6. In fact, three
test cases (out of 215), namely t1; t2; t3, detect more than 50
percent of the faults. As another example, in Ant V8 with
878 test cases, 9 out of 17 faults belong to H. In summary, if
the small fraction of test cases that are able to detect the
faults in H are not selected in earlier stages, then the detec-
tion of a large portion of faults will be significantly post-
poned. Another important fact is that, although such test
cases significantly affect the performance of any given algo-
rithm, they do not have comparatively large coverage val-
ues. Therefore, two major issues are identified in Ant:

� A small fraction of test cases detect a large fraction of
faults.

� A large fraction of faults are only detectable by a
small fraction of test cases, which on the other hand,
have relatively small coverage values.

Fig. 4. The average execution time of different techniques at the method (left) and the basic block (right) levels.

TABLE 5
Average Percentage (Averaging Is Over Different Versions
of the Programs) and Number of Candidates for GeTLO-0

Method level Basic block level

Program Ave.% steps
with G-ties

Ave. #
candidates

Ave.% steps
with G-ties

Ave. #
candidates

Ant 6% 2.17 1% 2.17
Galileo 3% 2.35 4% 2.29
Jtopas 25% 2.90 10% 2.10
Jmeter 14% 2.68 10% 2.27
Nano 7% 2.19 1% 2.00
XML 28% 3.62 22% 3.67

EGHBALI AND TAHVILDARI: TESTCASE PRIORITIZATION USING LEXICOGRAPHICALORDERING 1189



This behaviour is due to the fact that the correlation
between coverage and fault is not always high. Therefore,
there is always a chance that a test case with a lower cover-
age detects more faults. In the case of Ant, this problem is
intensified since some test cases with small coverage values
detect a large fraction of faults that other test cases cannot
detect. In such cases, the outcome of different coverage-
based techniques will have a random nature, and conse-
quently, conclusive comparisons cannot be performed.

4.6.4 RQ4: Impact of the Granularity Level

The box-plots and statistical comparison both indicate that
the impact of the granularity level on the rate of fault detec-
tion is insignificant. It turns out that the proposed technique
is more beneficial when the number of ties and size of the
candidate sets are relatively large. However, according to
Table 1, increasing the level of granularity from method to
basic block reduces the number and the size of ties only
marginally. The only exception is Jmeter where the number
of ties and size of the candidate sets are significantly
reduced at the basic block level. As a consequence, the rate
of fault detection of GeTLO is similar to AT for Jmeter at the
basic block level. This conclusion, that the effect of granular-
ity on the rate of fault detection is insignificant, is consistent
with previous empirical studies [2], [40].

4.6.5 RQ5: Hard to Detect Faults

It is known that faults do not behave the same in terms of
the effort required to detect them; some faults are easier to
detect than others. Previous studies indicate that mutant
faults are neither easier nor harder to detect than real
faults [38], [40], therefore they are appropriate representa-
tive for real faults. While easy-to-detect faults can usually
be detected by randomly generated test cases, others require
more effort to be detected. Here, we investigate the perfor-
mance of the proposed technique for hard-to-detect faults.
The results in Section 4.5 indicate that GeTLO can outper-
form AT for majority of the subject programs. Here, we are
interested to know whether GeTLO also exhibits better per-
formance for the set of hard-to-detect faults. To measure the
hardness of detecting a fault, each fault is associated with a
Hardness Index (HI); the number of test cases that can detect
the fault over the total number of test cases. Therefore, a
mutation fault with HI=0.01 is considered harder to detect
than a mutation fault with HI=0.90.

Figs. 6 and 7 show the average APFD measure for differ-
ent versions of the subject programs in terms of HI values.
To generate the plots, the interval between 0 and 1 (possible
values of HI) is uniformly discretized to 30 values. For each
version of the subject program, we first calculate the
HI value corresponding to each of the mutants. Then, for
each value of HI (the horizontal axis) say x, we select all the
faults with HI less than x, thus we form 30 sets of faults (not
necessarily different) for each version. Finally, we run all
techniques with the selected faults and the APFD, averaged
over different venison, is reported . Unlike the experiments
in Section 4.2, we do not sample the faults here. The reason
is that the total number of faults with low HI values is often
relatively small. This can make the randomly selected sets
of faults dependent on each other. Also, Fig. 8 shows the
cumulative percentage of faults in terms of the HI value.
While in some programs, such as Nano, faults are distrib-
uted uniformly, in some others, such as Jtopas, almost all
faults have small HI values.

Figs. 6 and 7 indicate that the relative performance of dif-
ferent techniques is more or less preserved for different val-
ues of HI. In all programs, except Galileo, GeTLO exhibits a
better performance. More importantly, GeTLO preserves its
relative improvement for different values of HI.

In Ant, all techniques exhibit similar rates of fault detec-
tion due to the phenomena discussed in Section 4.6.3. Nano
is the only program in which the hardness index does effect
the relative performance of some of the techniques. The
main reason is that, in Nano, the faults are almost uniformly
distributed among different HI values (see Fig. 8). This
causes the sets of faults corresponding to the different HI
values to be different from each other. Recall that the range
of HI values is quantized to 30 uniform intervals. As a result
the set of faults are grouped into 30 sets each associated
with different quantized HI value. The 30 sets of faults do
overlap with each other. For Nano, we observe that almost
all 30 sets of faults for each version are different from each
other. However, this is not the case for other subject pro-
grams. As an example, in Jtopas, all faults have HI values
smaller than 0.1, implying that faults are not uniformly
distributed.

4.7 Threats to Validity

The major sources of threats to external validity are the sub-
ject programs and their faults. We used Java programs in
our experiments. Therefore, it is difficult to generalize the

Fig. 5. Relationships between hard-to-detect faults and test cases. Total number of faults are 21 and 17 for Ant V4 and Ant V8, respectively.

1190 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016



results for programs in other languages. In the experiments,
the number of mutant faults were simply chosen with a uni-
form distribution. However, faults may follow various dis-
tributions in different programs. Moreover, the results are
based on artificially injected faults, which may not be the
accurate representative of real faults. Additional studies,
including different fault types and distributions of faults
are required to minimize these threats. Furthermore, the
number of ties in almost all programs is relatively high.
While all programs were chosen due to their frequent use in
other studies, additional studies with fewer ties can reduce
this threat.

In terms of the internal validity, choice of the depth
parameter d for tie breaking can affect the results. In this
article, the selection of this parameter has been based on is
based on try and error. Further investigations can study the
effect of the depth parameter. Also, we have used the APFD

metric to gauge the effectiveness of different techniques.
While APFD has been widely used for comparison of RTP
techniques, it is known to have limitations [40]. For exam-
ple, it does not include the cost of running each test case.
Using other comparison metrics may reduce this threat.

5 RELATED WORK

Various RTP techniques have been proposed and studied
empirically, among them coverage-based techniques are
more prevalent [51], [52]. TT and AT are the most widely
applied coverage-based prioritization techniques [21]. Roth-
ermel et al. [18] initially proposed them as part of a family
of RTP techniques. Li et al. [17] have applied a set of well-
known meta-heuristic algorithms including hill climbing,
genetic algorithm and two-optimal greedy algorithms (refer
to [17] for definition) for test case prioritization, where the
results are compared with TT and AT using different

Fig. 6. APFD in terms of HI for six subject programs at the method level.

EGHBALI AND TAHVILDARI: TESTCASE PRIORITIZATION USING LEXICOGRAPHICALORDERING 1191



metrics. These results indicate that AT is the most efficient
technique in majority of cases. Wong et al. [52] have pro-
posed a method by combining a greedy based approach
with test selection based on the cost per additional coverage
metric. More recently, Zhang et al. [21] have studied a spec-
trum of methods between TT and AT. In their work, based
on two complexity metrics, blocks are assigned with values
that estimate the probability of containing faults. Then, test
cases are sorted with respect to their likelihood of detecting
faults in the blocks that they cover.

Test case prioritization is an optimization problem by
definition. Naturally, various studies have been con-
ducted to use optimization techniques for solving it.
Usually, the underlying optimization problem is accom-
panied by a time or budget constraint. These prioritiza-
tion problems are referred to as cost-aware test case
prioritization. Mirarab et al. [10] have presented a multi

objective technique which aims at maximizing the mini-
mum coverage, as well as maximizing the total coverage.
Similarly, Epitropakis et al. [53] reformulate RTP as a par-
eto multi-objective optimization problem with three objec-
tives. Specifically, they consider: i) statement coverage, ii)
difference of statement coverage, and iii) historical fault
information. Zhang et al. [22] have formulated RTP as a
constraint integer linear programming. They, then, adopt
linear programming to solve it. Do et al. [46] have investi-
gated the benefit of applying prioritization techniques
subject to a set of constraints by incorporating a cost-ben-
efit model.

Researches have also aimed at boosting the performance
of coverage-based techniques by incorporating other sour-
ces of information. In this context, Elbaum et al. [2] have
incorporated a fault proneness metric, called fault index,
which uses the change data to guide their technique to focus

Fig. 7. APFD in terms of HI for six subject programs at the basic block level.

1192 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016



on entities of code which are more fault prone. Similarly,
Srivastava and Thiagarajan have built a test case prioritiza-
tion system, called Echelon, which implements a prioritiza-
tion technique based on the changes that have been made to
the program [54]. Echelon first detects the changes by com-
paring the binary files of new and previous versions of the
code, and then, the prioritization algorithm orders the test
cases with respect to the coverage of modified parts of the
code. Jerry and Gupta study the use of coverage require-
ment in the relevant slices of the output of the test cases [55].
Park et al. [56] also have used historical data to propose a
prioritization technique based on cost/fault severities. Car-
los et al. [57] propose a prioritization technique which incor-
porates a hierarchical clustering method to cluster the test
cases. They have utilized code coverage, code complexity
and fault history as the features for clustering. They empiri-
cally have shown that test cases within the same cluster
tend to have similar fault detection capability. In a related
study, Arafeen and Do [58] have used requirement informa-
tion to cluster and prioritize test cases. Thomas et al. [59]
have considered the source code of each test case as a text
document. They have applied a text analysis algorithm
(topic model) to the source code of test cases to evaluate
their capability of fault detection. More Recently, Alshah-
wan and Harman [60] empirically have shown that output
uniqueness has positive correlation with statement, branch
and path coverage. That is, two test cases that generate dif-
ferent outputs are more likely to traverse different paths
thus are likely to cover different entities.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we first argue that acting randomly in the case of
ties can degrade the performance of the AT algorithm. We
empirically show that it is very likely for AT to face ties. To
break the ties, unlike AT-type techniques which only consider
the not-yet-covered entities for coverage, entities are assigned
with priorities for further coverage. In otherwords, all entities
are considered where less covered entities receive higher pri-
ority for coverage. The main advantage of the proposed tech-
nique is that it can efficiently breaks ties. Based on this idea,

we then propose the basic algorithm using the lexicographical
ordering of cumulative coverage vectors. In the next step, we
propose GeTLO algorithm by modifying the basic algorithm
to reduce its time complexity. We also prove that both algo-
rithms generate the same ordering. Then, we show that even
GeTLO algorithm might face ties. Therefore, we present an
algorithm which takes into account all possible candidates
and further evaluates each one to find the best test case.

To gauge the performance of proposed ideas, they are
examined through empirical studies. We evaluate the
results of different techniques, including the ones proposed
in the current article, using a set of well-known subject pro-
grams. The results reveals that GeTLO outperforms all
except one technique (AT) in all cases, AT is also outper-
formed by the proposed technique in 4 out of 6 cases and
exhibits a similar performance in others.

Using the notion of lexicographical ordering when the
coverage vectors do not take binary values can be a future
line of research. Other sources of information, such as
change data, can be incorporated along with the proposed
technique. Moreover, to study the presented ideas in more
depth, new empirical studies can compare the effect of dif-
ferent levels of granularity of the coverage.

All of the coverage-based techniques are based on the
high correlation between coverage and rate of fault detec-
tion. We observe that for some programs, where this correla-
tion is not high, we cannot expect a desirable performance.
Future work can formulate this dependency and then pro-
pose bounds on the performance of coverage based techni-
ques based on the value of correlation.

ACKNOWLEDGMENTS

This research was supported by Natural Sciences and Engi-
neering Research Council of Canada (NSERC). The authors
would like to express their appreciations to the associate
editor and the anonymous reviewers for their valuable
suggestions.

REFERENCES

[1] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test
cases for regression testing,” Softw. Eng. Notes, vol. 25, no. 5,
pp. 102–112, 2000. [Online]. Available: http://doi.acm.org/
10.1145/347636.348910.

[2] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prior-
itization: A family of empirical studies,” IEEE Trans. Softw. Eng.,
vol. 28, no. 2, pp. 159–182, Feb.. 2002.

[3] A. Kumar, “Development at the speed and scale of Google,” Int.
Softw. Develop. Conf., 2010, Presentation slides are available at:
qconsf.com/sf2010/. [Online]. Available: Presentation slides are
available at: https://qconsf.com/sf2010/.

[4] L. C. Briand, Y. Labiche, and G. Soccar, “Automating impact anal-
ysis and regression test selection based on uml designs,” in Proc.
Int. Conf. Softw. Maintenance, 2002, pp. 252–261.

[5] E. G. Cartaxo, F. G. O. Neto, and P. D. L. Machado, “Automated
test case selection based on a similarity function,” Lecture Notes
Informat., vol. 7, pp. 399–404, 2007.

[6] T. Y. Chen and M. F. Lau, “Dividing strategies for the optimiza-
tion of a test suite,” Inform. Process. Lett., vol. 60, no. 3, pp. 135–
141, 1996.

[7] T. Y. Chen and M. F. Lau, “Test case selection strategies based on
boolean specifications,” Softw. Testing, Verification Rel., vol. 11,
no. 3, pp. 165–180, 2001.

[8] M. J. Harrold and M. L. Souffa, “An incremental approach to unit
testing during maintenance,” in Proc. Int. Conf. Softw. Maintenance,
1988, pp. 362–367.

Fig. 8. Cumulative percentage of faults in terms of the HI values for the
most recent versions of the programs. This plot is cumulative meaning
that each value such as ðx; yÞ on the plot indicates the percentage of
faults with HI< x is equal to y for that program.

EGHBALI AND TAHVILDARI: TESTCASE PRIORITIZATION USING LEXICOGRAPHICALORDERING 1193



[9] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based cost-
cognizant test case prioritization technique in regression testing,”
J. Syst. Softw., vol. 85, no. 3, pp. 626–637, 2012.

[10] S. Mirarab, S. Akhlaghi, and L. Tahvildari, “Size-constrained
regression test case selection using multicriteria optimization,”
IEEE Trans. Softw. Eng., vol. 38, no. 4, pp. 936–956, Jul./Aug. 2012.

[11] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, and A. Souter, “An
empirical comparison of test suite reduction techniques for user-
session-based testing of web applications,” in Proc. Int. Conf.
Softw. Maintenance, 2005, pp. 587–596.

[12] S. Yoo and M. Harman, “Pareto efficient multi-objective test case
selection,” in Proc. Int. Symp. Softw. Testing Anal., 2007, pp. 140–150.

[13] W. Dickinson, D. Leon, and A. Podgurski, “Fin failures by cluster
analysis of execution profiles,” in Proc. Int. Conf. Softw. Eng., 2001,
pp. 339–348.

[14] D. Hao, X. Zhao, and L. Zhang, “Adaptive test-case prioritization
guided by output inspection,” in Proc. 37th Annu. Comput. Softw.
Appl. Conf., 2013, pp. 169–179.

[15] J.-M. Kim and A. Porter, “A history-based test prioritization tech-
nique for regression testing in resource constrained environ-
ments,” in Proc. Int. Conf. Softw. Eng., 2002, pp. 119–129.

[16] D. Leon and A. Podgurski, “A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test
cases,” in Proc. Int. Symp. Softw. Rel. Eng., 2003, pp. 442–453.

[17] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” IEEE Trans. Softw. Eng.,
vol. 33, no. 4, pp. 225–237, Apr. 2007.

[18] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” IEEE Trans. Softw.
Eng., vol. 27, no. 10, pp. 929–948, Oct. 2001.

[19] A. Smith and G. Kapfhammer, “An empirical study of incorporat-
ing cost into test suite reduction and prioritization,” in Proc. Symp.
Appl. Comput., 2009, pp. 461–467.

[20] H. Srikanth, L. Williams, and J. Osborne, “System test case priori-
tization of new and regression test cases,” in Proc. Int. Symp.
Empirical Softw. Eng., 2005, pp. 10.

[21] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging
the gap between the total and additional test-case prioritization
strategies,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 192–201.

[22] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware test-
case prioritization using integer linear programming,” Proc. 18th
Int. Symp. Softw. Testing Anal., 2009, pp. 213–224.

[23] S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel, “The
impact of concurrent coverage metrics on testing effectiveness,”
in Proc. Int. Conf. Softw. Testing, Verification Validation, 2013,
pp. 232–241.

[24] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and
B. Davia, “The impact of test suite granularity on the cost-effec-
tiveness of regression testing,” in Proc. Int. Conf. Softw. Eng., 2002,
pp. 130–140.

[25] Y. W. Kim, “Efficient use of code coverage in large-scale software
development,” in Proc. Centre Adv. Studies Conf., 2003, pp. 145–155.

[26] A. S. Namin and J. H. Andrews, “The influence of size and cover-
age on test suite effectiveness,” in Proc. Int. Symp. Softw. Testing
Anal., 2009, pp. 57–68.

[27] P. Piwowarski, M. Ohba, and J. Caruso, “Coverage measurement
experience during function test,” in Proc. Int. Conf. Softw. Eng.,
1993, pp. 287–301.

[28] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software
Testing. Hoboken, NJ, USA: Wiley, 2008.

[29] S. Park, B. Hossain, I. Hussain, C. Csallner, M. Grechanik,
K. Taneja, C. Fu, and Q. Xie, “Carfast: Achieving higher statement
coverage faster,” in Proc. Int. Symp. Foundations Softw. Eng., 2012,
pp. 1–11.

[30] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The effects of
time constraints on test case prioritization: A series of controlled
experiments,” IEEE Trans. Softw. Eng., vol. 36, no. 5, pp. 593–617,
Sep./Oct. 2010.

[31] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rother-
mel, “A static approach to prioritizing JUnit test cases,” IEEE
Trans. Softw. Eng., vol. 38, no. 6, pp. 1258–1275, Nov./Dec.
2012.

[32] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and
its potential impact,” Empirical Softw. Eng., vol. 10, no. 4, pp. 405–
435, 2005.

[33] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random
test case prioritization,” in Proc. Int. Conf. Automated Softw. Eng.,
2009, pp. 233–244.

[34] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock, “Integrating
customized test requirements with traditional requirements in
web application testing,” in Proc. Testing, Analysis, Verification Web
Services Appl., 2006, pp. 23–32.

[35] J.-W. Lin and C.-Y. Huang, “Analysis of test suite reduction with
enhanced tie-breaking techniques,” Inform. Softw. Technol., vol. 51,
no. 4, pp. 679–690, 2009.

[36] P. C. Fishburn, “Lexicographic orders, utilities and decision rules:
A survey,”Manag. Sci., vol. 20, no. 11, pp. 1442–1471, 1974.

[37] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE
Trans. Softw. Eng., vol. SE-3, no. 4, pp. 279–290, 1977.

[38] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in Proc. Int. Conf. Softw.
Eng., 2005, pp. 402–411.

[39] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage
criteria,” IEEE Trans. Softw. Eng., vol. 32, no. 8, pp. 608–624, Aug.
2006.

[40] H. Do and G. Rothermel, “On the use of mutation faults in empiri-
cal assessments of test case prioritization techniques,” IEEE Trans.
Softw. Eng., vol. 32, no. 9, pp. 733–752, Sep. 2006.

[41] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: An automated class
mutation system,” Software Testing, Verification Rel., vol. 15, no. 2,
pp. 97–133, 2005.

[42] A. Kinneer, M. Dwyer, and G. Rothermel, “Sofya: A flexible
framework for development of dynamic program analyses for
java software,” Depart. Comput. Sci. Eng., Univ. Nebraska, Lin-
coln, NE, Tech. Rep., 2006.

[43] L. Zhang, M. Kim, and S. Khurshid, “Faulttracer: A change impact
and regression fault analysis tool for evolving Java programs,” in
Proc. Int. Symp. Foundations Softw. Eng., 2012, pp. 40–44.

[44] H. Do, G. Rothermel, and A. Kinneer, “Prioritizing JUnit test
cases: An empirical assessment and cost-benefits analysis,” Empir-
ical Softw. Eng., vol. 11, no. 1, pp. 33–70, 2006.

[45] S. Mirarab and L. Tahvildari, “An empirical study on Bayesian
network-based approach for test case prioritization,” in Proc. Int.
Conf. Softw. Testing, Verification, Validation, 2008, pp. 278–287.

[46] S. Mirarab and L. Tahvildari, “A prioritization approach for soft-
ware test cases based on Bayesian networks,” Proc. 10th Int. Conf.
Fundamental Approaches Softw. Eng., 2007, pp. 276–290.

[47] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating
varying test costs and fault severities into test case prioritization,”
in Proc. Int. Conf. Softw. Eng., 2001, pp. 329–338.

[48] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion
variance analysis,” J. Am. Statist. Assoc., vol. 47, no. 260, pp. 583–
621, 1952.

[49] G. R. Iversen and H. Norpoth, Analysis of Variance. Thousand
Oaks, CA, USA: Sage, 1987, no. 1.

[50] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical
study of JUnit test-suite reduction,” in Proc. Int. Symp. Softw. Rel.
Eng., 2011, pp. 170–179.

[51] D. Jeffrey and R. Gupta, “Test suite reduction with selective redun-
dancy,” in Proc. Int. Conf. Softw.Maintenance, 2005, pp. 549–558.

[52] E. W.Wong, J. R. Horgan, S. London, and H. Agrawal, “A study of
effective regression testing in practice,” in Proc. Int. Symp. Softw.
Rel. Eng., 1997, pp. 264–274.

[53] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke,
“Pareto efficient multi-objective regression test suite prior-
itisation,” UCL, London, U.K., Dept. Comput. Sci., Tech. Rep.
RN/14/01, 2014.

[54] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in
development environment,” Softw. Eng. Notes, vol. 27, no. 4,
pp. 97–106, 2002.

[55] D. Jeffrey and R. Gupta, “Test case prioritization using relevant
slices,” in Proc. Int. Comput. Softw. Appl. Conf., 2006, vol. 1, pp. 411–
420.

[56] H. Park, H. Ryu, and J. Baik, “Historical value-based approach for
cost-cognizant test case prioritization to improve the effectiveness
of regression testing,” in Proc. Int. Conf. Secure Syst. Integr. Rel.
Improvement, 2008, pp. 39–46.

[57] R. Carlson, H. Do, and A. Denton, “A clustering approach to
improving test case prioritization: An industrial case study,” in
Proc. Int. Conf. Softw. Maintenance, 2011, pp. 382–391.

1194 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 12, DECEMBER 2016



[58] M. J. Arafeen and H. Do, “Test case prioritization using require-
ments-based clustering,” in Proc. IEEE Int. Conf. Softw. Testing,
Verification Validation, 2013, pp. 312–321.

[59] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static
test case prioritization using topic models,” Empirical Software
Eng., vol. 19, no. 1, pp. 182–212, 2014.

[60] N. Alshahwan and M. Harman, “Coverage and fault detection of
the output-uniqueness test selection criteria,” in Proc. Int. Symp.
Softw. Testing Anal., 2014, pp. 181–192.

Sepehr Eghbali received the BSc degree in
computer engineering from the Isfahan University
of Technology, Iran in 2008 and the MSc degree
in artificial intelligence and robotics from the Uni-
versity of Tehran in 2012. He is currently working
toward the PhD degree from the University of
Waterloo, Waterloo, ON, Canada. His current
research interests include fast retrieval on large
scale datasets.

Ladan Tahvildari is an associate professor in
the Department of Electrical and Computer Engi-
neering at the University of Waterloo and the
founder of the Software Technologies Applied
Research (STAR) Laboratory. Together with her
research team, she investigates methods, mod-
els, architectures, and techniques to develop soft-
ware systems with a higher quality in a cost
effective manner. She served as a guest co-editor
for the IEEE Transactions on Software Engineer-
ing issue July/August 2009. She has also been

on the program and organization committees of many international
IEEE/ACM conferences. She was the publications chair of the IEEE/
ACM ICSE 2009 in Vancouver and the program chair of the IEEE ICSM
2007 in Paris. She has served as Chair of the IEEE Computer Society
(CS), and IEEEWomen in Engineering Affinity Group in the local chapter
since 2004. Various awards have recognized her research accomplish-
ments. Recently, she has been honoured with the prestigious Ontario’s
Early Researcher Award (ERA) to recognize her work in self-adaptive
software. She is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

EGHBALI AND TAHVILDARI: TESTCASE PRIORITIZATION USING LEXICOGRAPHICALORDERING 1195



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


