
 N d’ordre : 142/2021-C/MT

MINISTERE DE L’ENSEIGNEMENT SUPERIEUR
ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE
HOUARI BOUMEDIENE

FACULTE DE MATHEMATIQUES

Thèse de Doctorat
Présentée pour l’obtention du grade de Docteur

En : Mathématiques
Spécialité : Recherche Opérationnelle et Mathématiques Discrètes

(ROMaD)

par

Samira ATTOU

Titre
Expressions rationnelles d’arbres et leurs représentations

par des automates compacts.

Soutenue publiquement, le 11/07/2021 à 9h:00, devant le jury composé de :

M. Mourad BOUDHAR, Professeur à l'USTHB, Président
M. Hacène BELBACHIR Professeur à l'USTHB, Directeur de thèse
M. Ludovic MIGNOT, Maître de Conférence (HDR) à Université Co-Directeur de thése
 de Rouen, Normandie, France
Mme. Nacera BENSAOU, Maître de Conférence à l’USTHB, Examinatrice
Mme. Hadda CHERROUN, Professeur à l’Université Amar Télidji
 Laghouat, Examinatrice
 M. Djelloul ZIADI Professeur à Université de Rouen, Invité
 Normandie, France

Regular tree expressions and their representations by compact automata∗

Présenté par :

Samira ATTOU (∗∗)

Faculté de Mathématiques

Département de Recherche Opérationnelle

Abstract: A fundamental result in the theory of formal languages asserts the equivalence between

regular expressions and finite automata, each of them denote precisely the same regular languages.

For practical reasons, it is important to convert a regular expression into a finite automaton. That is

why a lot of algorithms have been proposed to realize this conversion.

This result is extended to tree languages. The conversion of a given regular tree expression into a tree

automaton has been widely studied. However, classical interpretations are based upon a Top-Down

interpretation of tree automata.

In this thesis, we propose new constructions based on Glushkov’s one, on the one by Ilie and Yu and on

the one by Brzozowski using a Bottom-Up interpretation. Furthermore, for the two first constructions,

we exhibit a method to factorize transitions of tree automata and show that this technique is particu-

larly interesting for these constructions. Moreover, for the third construction method, we define a new

family of extended regular tree expressions and we show how to compute a Brzozowski-like inductive

tree automaton; the fixed point of this construction, when it exists, is the derivative tree automaton.

Such a deterministic tree automaton can be used to solve the membership test efficiently: the whole

structure is not necessarily computed.

One of the main goals of the Bottom-Up interpretation is to consider the links with deterministic

recognizers, something which cannot be done with classical Top-Down approaches.

Finally, in order to estimate the average complexity of algorithms related to trees (determinism,

minimization, etc.) it is recommended to use random generation of trees. For this purpose, it is useful

to know the exact number of these structures. Therefore, we propose formulae to enumerate and count

the number of ranked trees by size and by height.

Mots clés: trees; tree automata; tree languages; regular tree expressions; derivatives; Bottom-Up;

Top-Down; enumeration; generalized Catalan numbers.

∗Thèse de Doctorat LMD.

∗∗Directeur de Thèse: Hacène BELBACHIR (Professeur, USTHB),

∗∗∗Co-Directeur de Thèse: Ludovic MIGNOT (Mâıtre de Conférences HDR, Université de Rouen Nor-

mandie).

Expressions rationnelles d’arbres et leurs représentations par des automates compacts.∗

Présenté par :

Samira ATTOU (∗∗)

Faculté de Mathématiques

Département de Recherche Opérationnelle

Résumé : Un résultat fondamental de la théorie des langages formels affirme l’équivalence entre

expressions régulières et automates finis, chacun d’eux reconnaissant précisément les mêmes langages

réguliers. Dans la pratique, il est important de convertir une expression régulière en un automate fini.

C’est pourquoi de nombreux algorithmes ont été proposés pour réaliser cette conversion.

Ce résultat est étendu aux langages d’arbres. La conversion d’une expression d’arbre régulière donnée

en un automate d’arbre a été largement étudiée. Cependant, les interprétations classiques sont basées

sur une interprétation Top-Down des automates d’arbres.

Dans cette thèse, nous proposons de nouvelles constructions d’automates d’arbres basées sur celle de

Glushkov, sur celle d’Ilie et Yu et sur celle de Brzozowski en utilisant une interprétation Bottom-Up.

De plus, pour les deux premières constructions, nous présentons une méthode de factorisation des

transitions d’automates d’arbres et montrons que cette technique est particulièrement intéressante

pour ces constructions. De plus, pour la troisième méthode, nous définissons une nouvelle famille

d’expressions d’arbres régulières étendues et nous montrons comment calculer un automate d’arbre

inductif de type Brzozowski ; le point fixe de cette construction, lorsqu’elle existe, est l’automate

d’arbre des dérivées. Un tel automate d’arbre déterministe peut être utilisé pour résoudre efficacement

le test d’appartenance. L’un des principaux objectifs de l’interprétation ascendante est de considérer

les liens avec les reconnaisseurs déterministes, chose qui ne peut pas être réaliser avec les approches

descendantes classiques. Enfin, afin d’estimer la complexité moyenne des algorithmes liés aux arbres

(déterminisme, minimisation, etc.), il est recommandé d’utiliser la génération aléatoire d’arbres. Pour

cela, il est utile de connâıtre le nombre exact de ces structures. Par conséquent, nous proposons des

formules pour énumérer et compter le nombre d’arbres rangés par taille et par hauteur.

Mots clés : arbres ; automates d’arbres ; langages d’arbres ; expression rationnelle d’arbre ; derivation ;

Bottom-Up ; Top-Down ; enumeration ; nombres de Catalan généralisés.

∗Thèse de Doctorat LMD.

∗∗Directeur de Thèse : Hacène BELBACHIR (Professeur, USTHB),

∗∗∗Co-Directeur de Thèse : Ludovic MIGNOT (Mâıtre de Conférences HDR, Université de Rouen Norman-

die).

iv

Contents

Contents iv

List of Figures vi

List of Tables viii

Acknowledgements x

1 Introduction 1

I Constructions of Tree Automata 4

2 Preliminaries 5
2.1 Trees . 5

2.1.1 Ranked Trees . 5
2.1.2 Operations over Trees . 7

The Concatenation . 7
The Composition . 7
The Partial Composition . 8
The Quotient . 8

2.2 Tree Languages . 9
2.2.1 Bottom-Up Quotient of Tree Languages 12

2.3 Tree Automata . 14
2.3.1 Bottom-Up Tree Automata . 14
2.3.2 Top-Down Tree Automata . 16

2.4 Regular Tree Expression . 17
2.5 Conclusion . 19

3 The Constructions of Top-Down Tree Automata 20
3.1 The Position Tree Automaton . 20

3.1.1 Position Functions . 20
3.1.2 Top-Down Position Tree Automaton . 24

3.2 The Follow Tree Automaton . 25
3.3 The Equation Tree Automaton . 28
3.4 The C-Continuation Tree Automaton . 31
3.5 Relation between the Top-Down Constructed Tree Automata 35
3.6 Conclusion . 37

4 The Constructions of Bottom-Up Tree Automata 38
4.1 The Position Automaton . 38

4.1.1 Position Functions . 39
4.1.2 The Bottom-Up Position Tree Automaton 45

4.2 The Compressed Position Tree Automaton . 47

v

4.3 The Father Automaton . 51
4.4 The Compressed Father Tree Automaton . 54
4.5 Comparison with the Top-Down Automata . 55
4.6 Conclusion . 57

5 Bottom-Up Derivatives 59
5.1 Boolean Operations . 59
5.2 Extended Tree Expressions . 60
5.3 Tree Automaton Construction . 64
5.4 Conclusion . 67

II Enumeration of Trees 68

6 Enumeration of Some Ranked Trees 69
6.1 Catalan Numbers and Generalizations . 69
6.2 Enumeration of Trees over Σ = { f k, α1, . . . , αs} by Size 70
6.3 Enumeration of Trees over Σ by Size and by Height 75
6.4 Enumeration of Trees over Σ = { f k1

1 , f k2
2 , α1, . . . , αs} by Size 81

6.5 Conclusion . 87

7 Conclusion and Perspectives 88

Bibliography 93

vi

List of Figures

2.1 Illustration of the tree t = f (t1, . . . , tk). 6
2.2 A tree t = f (g(a, b), c, g(b, a)). 7
2.3 Deterministic Tree Automaton A. 15
2.4 Non Deterministic Tree Automaton A′. 15
2.5 Recognition of t = g(f (a, b)) by the the tree automaton A′. 16
2.6 The syntactic tree of the expression E. 18
2.7 Recapitulation of Chapter 2. 19

3.1 Illustration of Follow(t, f , k). 21
3.2 The Top-Down Position Tree Automaton of E. 25
3.3 The Automaton AP/ ∼F. 27
3.4 The Follow Tree Automaton of E. 28
3.5 The Equation Tree Automaton of E. 31
3.6 The C-Continuation Tree Automaton of E. 35
3.7 The Tree Automaton of AC/ ∼e. 36
3.8 The Tree Automaton AC / ≡. 37
3.9 Relation Between Tree Automata. 37

4.1 Illustration of fathers(t, f). 39
4.2 The Bottom-Up Position Automaton of the Expression (f1(a, a) + g2(b))∗a ·b

f3(g4(a), b). 46
4.3 Before Factorization. 48
4.4 After Factorization. 48
4.5 The Compressed Automaton A. 49
4.6 The Compressed Automaton of the Expression (f1(a, a)+ g2(b))∗a ·b f3(g4(a), b). 51
4.7 The Bottom-Up Father Automaton of the Expression (f1(a, a) + g2(b))∗a ·b

f3(g4(a), b). 54
4.8 The Compressed Father Automaton of the Expression (f1(a, a) + g2(b))∗a ·b

f3(g4(a), b). 55
4.9 The Top-Down Position Automaton of E2. 56
4.10 The Bottom Up Position Automaton of E2. 56
4.11 The Compressed Bottom Up Position Automaton of E2. 57
4.12 The Father Automaton of E2. 57

5.1 The Tree Automaton A0. 65
5.2 The Tree Automaton A1. 66
5.3 The Tree Automaton A2. 66
5.4 The Bottom-Up Derivative Tree Automaton of E. 67

6.1 Tree with k + 1 nodes. 70
6.2 Trees with 2k + 1 nodes. 71
6.3 Trees with 3k + 1 nodes. 71
6.4 An illustration of the structure of the tree when m = 1. 72

vii

6.5 Structure of trees when m > 1. 73
6.6 Another structure of trees when m > 1. 73
6.7 Another structure of trees when m > 1. 73
6.8 Number of ways of placing the internal nodes f in a tree of size 10. 75
6.9 The structure of trees when h = m. 76
6.10 The structure of trees for h = m− 1. 77
6.11 Number of ways of placing the internal nodes f in a tree of size 10 and height 2. 80
6.12 Number of ways of placing the internal nodes f in a tree of size 10 and height 3. 80
6.13 Illustration of the structure of trees for m = 1. 82
6.14 Structure of trees for m > 1. 82
6.15 Another structure of trees for m > 1. 82
6.16 Another structure of trees for m > 1. 82
6.17 Number of ways of placing the internal nodes f2 in a tree of size 12. 84

7.1 Recapitulation of the Bottom-Up constructions of tree automata. 89

viii

List of Tables

3.1 The computation of the function First. 21
3.2 The computation of the function Follow. 22

4.1 Comparison between Top-Down and Bottom-Up Tree Automata. 56

6.1 Some values of the number of ways to place m times the symbol f of rank k
in the internal nodes of a tree. 74

6.2 Number of ways to place f of rank 2 in a tree by size n and height h. 79
6.3 The number of ways to place f of rank three in a tree by size n and height h. 79
6.4 The number of ways to place f of rank four in a tree by size n and height h. . 79
6.5 Some values of the number of ways to place f k1

1 and f k2
2 in the internal nodes

of a tree. 86

ix

I dedicate this thesis to my parents.
To my dad who gave me the passion

and the support to do research.
To my mother for her endless love

and tenderness.

x

Acknowledgements

This thesis is the result of the support of several people to whom I am extremely thankful.

First, I am extremely and deeply grateful to my supervisors, Prof Hacène BELBACHIR
and Mr Ludovic MIGNOT for their patience, their treasured support, their valuable advice
and their encouragement during my PhD study and research. Thank you for giving me the
opportunity to discover such a magnificent research field.

Besides my supervisors, I would like to acknowledge the rest of my thesis jury mem-
bers: Prof Mourad BOUDHAR, Madame Nacera BENSAOU and Prof Hadda CHERROUN
for accepting to evaluate my thesis.

I would like to offer my special thanks to Prof Djelloul ZIADI for his collaboration and
his support. Thank you for giving me the motivation to do research.

My thanks to all my professors of the department of Operation Research of the USTHB.
I had such an honor to be your student. Thank you for all what you have taught me.

I would like to express my sincere gratitude to all the members of RECITS laboratory
(especially CATI team) of the department of Operation Research of the USTHB and to all
the members of GR²IF laboratory of the department of Computer Science of the University
of Rouen Normandy who welcomed me, who helped me and advanced my research work
and to express my satisfaction and my gratitude for having been able to work in good con-
ditions in a very pleasant environment.

I would also like to say a heartfelt thank you to Mummy and Daddy for always believing
in me and encouraging me. Thank you for making me that ambitious girl.

A very special thank to my best friend Asma ABIDI for always being there for me no
matter the distance separating us. I am grateful too to my friends Azhar HAMANA and
Nadia BOUSSAHA, i would never forget your help.

Finally I express my gratitude to the people whose names that would not appear on this
page that have helped me in one way or another. Thank you to everyone for everything.

1

1 Introduction

It was in 1936 that Alan Turing invented the first abstract machine (an automaton) called
Turing Machine [63]. He claimed that this machine is universal i.e. any algorithm can be
computed by a Turing Machine. Due to Turing’s ideas, John von Neumann could construct
in 1945 the architecture of a real machine: the computer [65].

Since 1950, researchers and computer scientists started realizing programming languages
and the computer softwares that implement them. To do so, they needed tools to read, ana-
lyze, execute instructions and also to verify whether the input program is compatible with
the syntax of a given programming language. Such tools are called interpreters and compil-
ers. For this reason, an abstract machine less complicated and less universal than Turing
machine called a finite automaton (or finite state machine) has been invented.

Finite automata are recognizers used in various domains of applications: in electron-
ics [8, 34], in linguistics [21], in algebra [54] and especially in computer science, e.g. to rep-
resent (finite or infinite) languages, or to solve the membership test, i.e. to verify whether a
given element belongs to a language or not.

In 1956, Chomsky introduced the model of Chomsky hierarchy [21]. He proposed a classifi-
cation of four types of formal languages, he associated to each type of languages an automa-
ton that recognizes it. As an example, Turing machines are the most complicated machines.
They are the ones defining recursively enumerable languages. Finite automata are the simplest
abstract machines that recognize regular languages.

Five years ago before, another mathematical object called regular expression has been cre-
ated by Kleene [38]. This object represents a string that denotes a set of strings. Kleene
showed how the human nervous system works using regular expression contrary to Mc-
Culloch and Pitts when they presented the same model in 1943 using finite automata [44].

Regular expressions are used to describe formal languages, to manipulate programming
languages especially in the compilation phase. They also can be found in text editors like Ed
created by Thompson in 1968 [62].

A fundamental theorem in automata theory has been proposed by Kleene [37] in 1956.
He asserts the existence of an equivalence between the language accepted by an automa-
ton and the language denoted by regular expressions and that these latter are a compact
representation for finite automata.

The powerful of this theorem resides on the possibility of presenting an infinite object
(infinite language) by two equivalent finite objects.

The proof of this theorem is given by proposing conversions algorithms either from au-
tomata to regular expressions [3, 14, 46] or from regular expression to finite automata [62,
28, 2, 35].

In our study, we will focus on the conversion of a regular expression to a finite state
machine in order to recognize languages. For example:

Glushkov [28] showed how to construct a nondeterministic finite automaton with n + 1
states where n represents the number of occurrences of symbols of a given regular expres-
sion. The main idea of the construction is to define some particular sets named First (con-
taining the symbols starting a word in the denoted languages), Follow (containing the sym-
bols following a given symbol in the words in the denoted languages) and Last (containing
the symbols ending a word in the denoted languages) that are computed with respect to

Chapter 1. Introduction 2

the occurrences of the symbols that appear in the expression. These so-called Glushkov
automata (or Position automata) are finite state machines that have been deeply studied.
They have been structurally characterized by Caron and Ziadi [15], who could invert the
Glushkov computation by constructing an expression with n symbols from a Glushkov au-
tomaton with n + 1 states. They have been considered too in the theoretical notion of one-
unambiguity by Bruggemann-Klein and Wood [12], characterizing regular languages recog-
nized by a deterministic Glushkov automaton, or for practical applications, like expression
updating [10]. Finally, it is also related to combinatorial research topics. As an example,
Nicaud [51] proved that the average number of transitions of Glushkov automata is linear.
Moreover, the Glushkov automata can be easily reduced into the Follow automata [35] in
the case of word by applying an easy-to-compute congruence from the position functions.

Another method has been proposed to provide the conversion of a given regular ex-
pression to a finite word automaton (appeared in 1964) was Brzozowski’s construction [13];
its basic idea is to use the notion of derivation to compute a deterministic automaton: the
derivative of a regular expression E w.r.t. a word w is a regular expression that denotes the
set of words w′ such that ww′ is denoted by E. This construction is not necessarily finite:
the derivatives of a given regular expression may form an infinite set. However, consider-
ing three equivalence rules (associativity, commutativity and idempotence of the sum), he
proved that the set of (so called) similar derivatives is finite.

And last, Antimirov [2], in 1996 introduced the partial derivation which is a similar
operation to the one defined by Brzozowski; a partial derivative of a regular expression is
no longer a regular expression but a set of regular expressions, that leads to the construction
of a non-deterministic automaton, with at most (n+ 1) states where n is the number of letters
of the regular expression. However, this operation is not defined for extended expressions
(i.e. regular expressions with negation or intersection operators).

Notice that these constructions are used to define words. However, there exists another
class more generalized than words called trees which have two ways to read them: from root
to leaves (Top-Down) or from leaves to the root (Bottom-Up).

Donald Knuth described them as the most important nonlinear structures that appear
in computer science [40]. This structure attracted a lot of researchers, mathematicians and
computer scientists considering the fact that it allows presenting, storing and organizing
information (data) [60, 39] in a hierarchical way as used in XML documents. In mathematics,
especially in graph theory, counting trees was one of the most frequently treated problem.
Cayley [16] was the first who gave the enumeration of labeled trees.

Thatcher was one of the researchers interesting on the notion of trees. He extend the
theory of word automata to tree automata theory [61].

So, one can wonder: can we extend all the studies related to word automata to the case
of tree automata? More precisely, is there an equivalence between tree automata and regular
tree expressions recognizing the same language? Can we transform a regular tree expression
to a tree automaton recognizing the same language? If yes, how can we prove it such that
we have two ways to interpret trees?

The answer of these questions is YES. Kleene theorem still hold in the case of trees. Many
algorithms have been proposed:

• The Glushkov construction was extended to tree automata [43, 49] by using a Top-
Down interpretation of regular tree expressions.

• Antimirov construction has been extended to tree automata. Kuske and Meinecke [42],
in 2011, introduced an algorithm to convert a regular tree expression into a non-
deterministic tree automaton in a Top-Down interpretation.

The Top-Down interpretation can be problematic while considering determinism. In-
deed, it is well-known that there exist regular tree languages that cannot be recognized by

Chapter 1. Introduction 3

Top-Down deterministic tree automata [23]. For instance, a deterministic tree automata does
not recognize the language { f (a, b), f (b, a)}.

To solve this limit, we propose throughout this thesis algorithms based on the Bottom-
Up interpretation.

Moreover, in order to estimate and analyze the average complexity of tree algorithms
(e.g. conversion methods [30], minimizing [29], determinism, etc.), it is recommended to use
random generation of ranked trees as used in [20, 50] in the study of deterministic and non
deterministic finite automata (case of unary trees i.e. words), and to do so, it is useful and
important to know the exact number of these structures.

This thesis contains five chapters in total and they are divided into two parts: the first
part containing four chapters, we propose three new constructions of tree automata: the first
based on the construction of Glushkov, the second is based on the one of Ilie and Yu and the
third is based on the notion of derivation of Brzozowski of an extended tree expression. Our
constructions are given in a Bottom-Up way to solve “somehow" the limit of the Top-Down
interpretation.

The second part of this thesis contains one chapter, we propose on it an enumeration of
some ranked trees over a finite set of symbols w.r.t. some conditions.

4

Part I

Constructions of Tree Automata

5

2 Preliminaries

In this chapter, we will introduce the tools that we will deal with in this thesis. We will
give notations, definitions and notions related to tree automata.
In Section 2.1, we introduce the structure of trees and the associated operations. The set

of tree languages and its associated operations will be shown in Section 2.2. Section 2.3 is
reserved to introduce the notion of tree automata. Last, we present in Section 2.4 the regular
tree expression.

The content of this chapter is extracted from [19, 22, 23].

2.1 Trees

The structure of trees is the structure the most used and the most important in computer
science. Donald Knuth described trees as the most important nonlinear structures that ap-
pear in computer science contrary to arrays and lists [40]. This structure attracted a lot
of researchers, mathematicians and computer scientists considering the fact that it allows
presenting and storing information (data) in a hierarchical way. In tree automata theory, we
distinguish two kinds of trees, ranked and unranked trees [23]. Throughout this thesis, we
only deal with ranked trees.

2.1.1 Ranked Trees

Definition 2.1.1. A ranked alphabet (Σ, arity) is a couple constituted of:

• An alphabet Σ which contains a finite set of distinct symbols,

• An arity (or rank) is a mapping defined by arity : Σ→N allowing to associate to each symbol
of Σ a rank.

We denote by (Σn)n≥0 the set of symbols of rank n. A symbol f ∈ Σk (or f k ∈ Σ) is said
to be of arity k. The set Σ0 contains symbols of arity zero named constants. We denote by
Σ≥1 the set of symbols of rank greater or equal to one.

Definition 2.1.2. A ranked tree t over Σ is constituted of root symbol, internal nodes and leaves.
The rank of the symbols labelling a node of a tree t represents the number of children (sons) of these
symbols and the symbols of rank zero are labelled in the leaves. The empty tree ε is of rank one.
Formally, a ranked tree t is inductively defined by

t =
{

a if a ∈ Σ0,
f (t1, . . . , tk) if f ∈ Σk,

where ti are subtrees of t for 1 ≤ i ≤ k. We denote this relation by ti � t. The set TΣ is the
set containing all the ranked trees over Σ.

Let us see some properties related to ranked trees:

• root(t) is the root symbol of the tree t, i.e.

root(f (t1, . . . , tk)) = f . (2.1)

Chapter 2. Preliminaries 6

• k− child(t) is the root of the kth subtree if it exists, i.e.

k− child(f (t1, . . . , tk)) = root(tk). (2.2)

• Leaves(t) is the set containing the leaves of a tree t, i.e.

Leaves(t) = {a ∈ Σ0 | a � t}. (2.3)

• k−ary trees are the trees containing k missing leaves or the trees having k apparitions
of ε’s.

We can present the tree t graphically as follows

f

. . .

g

. . .

t1 t2 tk

FIGURE 2.1: Illustration of the tree t = f (t1, . . . , tk).

Example 2.1.1. Let us consider a ranked alphabet defined by Σ = { f 3, g2, a, b, c}. The set of trees
over Σ is given by

TΣ = { f (g(a, b), c, a), g(a, b), f (a, b, g(c, c)), g(f (a, a, b), c), f (g(a, b), c, g(b, a)), . . .}.

Let us consider a tree t = f (g(a, b), c, g(b, a)) ∈ TΣ.

• The root and the leaves of t are

root(t) = f , Leaves(t) = {a, b, c}.

• The subtrees of t are

f (g(a, b), c, g(b, a)) � t, g(a, b) ≺ t,
c ≺ t, g(b, a) ≺ t.

• The k− child of t are

1− child(t) = root(g(a, b)), 2− child(t) = root(c),
= g, = c,

3− child(t) = root(g(b, a)),
= g.

The tree t is presented in Figure 2.2

Chapter 2. Preliminaries 7

f

g

a b

c
g

ab

FIGURE 2.2: A tree t = f (g(a, b), c, g(b, a)).

2.1.2 Operations over Trees

Due to the recursive structure of trees, we can apply and associate operations to trees in
order to produce another trees. For instance, we may concatenate a tree in another tree or
eliminate a subtree from a tree and so on. Let us see some of these actions:

The Concatenation

Definition 2.1.3. Let t, s ∈ TΣ and a ∈ Σ0. We denote by t ·a s the tree obtained by substituting the
tree s in the occurrences of the symbol a in the tree t and it is defined by

t ·a s =
{

s if t = a,
f (t1 ·a s, . . . , tk ·a s) if t = f (t1, . . . , tk),

As an example, let us consider the trees t = f (a, g(b, a)) and s = h(b) in TΣ, where
f , g ∈ Σ2 and a, b, c ∈ Σ0. Then

f (a, g(b, a)) ·a h(c) = f (h(c), g(b, h(c)))

f

g ·a h

c

a

b a

f (a, g(b, a)) ·a h(c)

f

gh

c b
h

c
f (h(c), g(b, h(c)))

The Composition

Definition 2.1.4. Let t = f (t1, . . . , tk) and let m trees t′1, . . . , t′m in TΣ. The composition of trees
is the operation of placing (substituting) the trees t′i (for 1 ≤ i ≤ m) in the i−th missing leaf of t
(i.e. in each εxi that appears in t). We denote this operation by t ◦ (t′1, . . . , t′m) and it is inductively
defined by

t ◦ (t′1, . . . , t′m) =
{

t′1 if t = ε1,
f ((tj ◦ (t′i)xi∈Indε(tj))1≤j≤k) if t = f (t1, . . . , tk),

where Indε(t) = {x1, . . . , xm} (xj ∈ N \ {0}). This set is an ordered set containing the
ε-indices that appear in the k-ary tree t. The set of ε-indices is used to guarantee grafting

Chapter 2. Preliminaries 8

each tree to the right place in the tree t, in other words, the indices define the order of
composition.

Formally a k-ary tree t with R = Indε(t) is defined inductively by

• t = ε j (j ∈N \ {0}) in this case k = 1 ∧ R = {j},

• t = f (t1, . . . , tk) (f ∈ Σk and for 1 ≤ j ≤ k the tj is a nj-ary tree with Rj ε-indices, such
that 1 ≤ j ≤ j′ ≤ k, Rj ∩ R′j = ∅, in this case k = ∑1≤j≤k nj and R =

⋃
1≤j≤k Rj.

We denote by T(Σ)k the set of k-ary trees over Σ.
As an example, imagine that the ε of a given k-ary tree are not indexed, let us consider

the composition of a given ternary tree by (a, b, c) then,

f (ε, g(ε, ε)) ◦ (a, b, c) = f (a, g(b, c))

or
g(ε, f (ε, ε)) ◦ (b, c, a) = g(b, f (c, a)).

Notice that there is no order to respect. Furthermore, what if we make a composition of a
set of k-ary trees by a list of trees. For instance, { f (ε, g(ε, ε)), g(ε, f (ε, ε))} ◦ (a, b, c) in this
case, we will not obtain a list containing { f (a, g(b, c)), g(b, f (c, a))}. For this reason, we
introduced the ε-indices set.

Let us consider f (ε3, g(ε4, ε2)) ◦ (a, b, c), where f ∈ Σ2, and a, b, c ∈ Σ0.
We have

Indε(f (ε3, g(ε4, ε2))) = {x1 = 2, x2 = 3, x3 = 4}

f

g ◦ (a, b, c) =
ε3

ε4 ε2

f (ε3, g(ε4, ε2)) ◦ (a, b, c)

f

g
b

c a

f (b, g(c, a))

The Partial Composition

Definition 2.1.5. The partial composition ◦1 is defined for any k-ary tree t of ε-indices {j1, . . . , jk}
with k ≥ 1 and for any tree t′ by

t ◦1 t′ = t ◦ (t′, (ε l)j2≤l≤kk)

For example, let us consider f (ε1, g(ε2, a)) ◦1 h(a), where f , g ∈ Σ2, h ∈ Σ1 and a ∈ Σ0.
Then

f (ε1, g(ε2, a)) ◦1 h(a) = f (ε1, g(ε2, a)) ◦ (h(a), ε2) = f (ε1, g(h(a), a)).

The Quotient

Definition 2.1.6. Let t be a k-ary tree and t′ be a k′-tree. The quotient of a tree t w.r.t. t′ is the
operation of deleting nodes in trees, denoted by t′−1(t). This operation allows obtaining a set of trees
t′′ where each tree contains an occurrence of ε.

In the case where an εx appears in t, we should make a reindexing of ε−indices and then increment
them. Given an integer z, we denote by Incε(z, t) the substitution of εx by εx+z.

Chapter 2. Preliminaries 9

Formally, the trees t′′ should satisfy these conditions:

t′′ ◦ (t′, (εxz)1≤z≤k−k′), Indε(t′′) = {1, (xz + 1)1≤z≤k−k′} (2.4)

Consequently,

ε−1
j (ε l) =

{
ε1 if j = l,
∅, otherwise

t−1(t′) = {ε1} ⇔ t = t′

According to [23], the obtained tree is called context. As an example, let us consider the
unary tree t = f (ε1, g(h(a), h(a))) with Indε(t) = {x1 = 1} and the nullary tree t′ = h(a) in
TΣ. Then,

t′′ = t′−1(t) = { f (ε2, g(ε1, h(a))), f (ε2, g(h(a), ε1))}.

t′−1(t) =

f

g
ε1

Inc ↑
h

a

h

a

f

g
ε1

Inc ↑
h

a

h

a

t′−1(t) =

f

g
ε2

ε1
h

a

f

g
ε2

h

a

ε1

Notice that

t′′ ◦ (h(a), ε1) = f (ε2, g(h(a), h(a))), Indε(t′′) = {1, x1 + 1} = {1, 2}.

Consequently, t” ◦ (t′, ε1) = t. Thus, the operation of composition is the dual operation of
the quotient.

2.2 Tree Languages

In this section, we define the tree languages and the operations that we deal with.

Definition 2.2.1. A tree language L is a subset of TΣ, contains a finite or an infinite set of trees. The
set of tree languages is denoted by L(Σ).

Example 2.2.1. Let us consider the ranked alphabet and the set of ranked trees defined in Exam-
ple 2.1.1. Let us consider only the trees (the language L1 ⊆ TΣ) in which f is the root of.

L1 = { f (a, b, c), f (c, b, a), f (g(a, b), c, a), f (a, b, g(c, c), f (g(a, b), c, g(b, a)), f (a, f (b, b, b), c) . . .}.

Chapter 2. Preliminaries 10

Let us consider the set of binary trees L2 ⊆ TΣ.

L2 = {g(a, b), g(a, a), g(b, b) g(b, a), g(g(a, a), c), g(g(c, b), g(a, c)), g(g(g(a, g(a, c)), b), a), . . .}.

As in the case of words, this set of tree language deals with operations. Let us define
each operation apart. For any integer k ≥ 0, for any k languages L1, . . . , Lk ⊆ TΣ, for any
f ∈ Σk

f (L1, . . . , Lk) = { f (t1, . . . , tk) | ti ∈ Li, 1 ≤ i ≤ k}.

• The tree substitution t ·a L is the language obtained by substituting the occurrences of a
by the language L in a tree t and it is inductively defined by:

t ·a L =

L if t = a,
c if c ∈ Σ0 \ {a},
f (t1 ·a L, . . . , tk ·a L) otherwise.

• The a−product ·a (or a←) is the language obtained by substituting the symbol a of the
trees t1 by a set of trees t2 i.e.

L1 ·a L2 = {t1 ·a L2 | t1 ∈ L1}.

• The iterated a−product a,n is a sequence of successive iterations of the a−product and it
is inductively defined by

La,n =

{
{a}, if n = 0,
L ·a La,n−1 ∪ La,n−1 otherwise.

As an example, let us consider the language defined by L = {g(a, b)}.

La,0 = {a} La,1 = {a} ∪ {g(a, b)} ·a {a}
= {a, g(a, b)}

La,2 = La,1 ∪ {g(a, b)} ·a La,1

= La,1 ∪ {g(a, b), g(g(a, b), b)}
= {a, g(a, b), g(g(a, b), b)}.

• The a-closure ∗a is the generalization of Kleene star and it is defined by

L∗a =
⋃
k≥0

La,k.

As an example, let us consider the language L = {g(a, b)}.

L∗a = La,0 ∪ La,1 ∪ La,2 ∪ . . . ∪ La,k

= {a, g(a, b), g(g(a, b), b), g(g(g(a, b), b), b), . . .}.

Definition 2.2.2. A tree language L is homogeneous if all the trees it contains has the same arity
with same ε-indices. It is k-homogeneous if it is homogeneous and it contains only the k−ary
trees. The set of ε−indices is denoted by Indε(L). We denote by L(Σ)k the set of k-homogeneous tree
languages.

Chapter 2. Preliminaries 11

Example 2.2.2. Let us consider the ranked alphabets Σ = { f 3, g2, a, b, c}. Let us see some examples
of k-homogeneous languages.

L1 = {a, b, c, g(a, b), f (c, a, b), f (g(a, b), a, c), g(f (a, a, a), c), f (b, a, g(c, c)), . . .}.
L2 = {ε1, , f (ε1, a, b), g(a, ε1), g(g(b, ε1), c), f (b, c, ε1), f (g(ε1, c), a, b), . . .}

L1 is 0-homogeneous language and L2 is 1-homogeneous language.

As in the case of words and the case of tree languages, this kind of sets deal with opera-
tions such as:

• The union of two k-homogeneous languages of ε-indices R produces a k-homogeneous
tree language with ε-indices R.

• The composition ◦ is extended from trees to set of trees, defined by

L ◦ (L1, . . . , Lk) = {t ◦ (t1, . . . , tk) | t ∈ L, ti ∈ Li, i ≤ k},

where L ∈ L(Σ)k and L1, . . . , Lk ∈ L(Σ) such that Indε(Li) ∩ Indε(Lj) = ∅ (for 1 ≤ i <
j ≤ k). If the tree language Li is ni-homogeneous then the obtained tree language by
the composition L ◦ (L1, . . . , Lk) is ∑1≤i≤k ni-homogeneous.

• The partial composition ◦1 is extended too from trees to tree languages, defined for any k-
homogeneous language L of ε-indices {j1, . . . , jk}with k ≥ 1 and for any tree language
L′ ∈ L(Σ) by

L ◦1 L′ = L ◦ (L′, (ε l)j2≤l≤kk).

• The iterated composition n◦ (for n ∈N) is defined recursively by

Ln◦ =

{
{ε j}, if n = 0,
Ln−1◦ ∪ Ln−1◦ ◦ L otherwise.

where L is 1−homogeneous tree language of ε−index= {j}.

• The closure composition ~ is the extended operation of Kleene star, applied to k−homogeneous
languages, it can be seen as the action of substituting, in each apparition of ε1, the
1−homogeneous language L. It is defined by

L~ =
⋃

n∈N

Ln◦ .

Example 2.2.3. Let us consider the three 1−homogeneous tree languages L = {g(a, ε1)}, L1 =
{ f (a, ε1, b)} and L2 = {ε1}.

L ◦ (L1, L2) = {g(a, ε1)} ◦ ({ f (a, ε1, b), ε1}) = {g(a, f (a, ε1, b)), g(a, ε1)}.

L0◦ = {ε1}, L1◦ = {ε1} ∪ {ε1} ◦ g(a, ε1)

= {ε1, g(a, ε1)}.
L2◦ = {ε1, g(a, ε1)} ∪ {ε1, g(a, ε1)} ◦ {g(a, ε1)}

= {ε1, g(a, ε1), g(a, g(a, ε1))}

Chapter 2. Preliminaries 12

L~ = L0◦ ∪ L1◦ ∪ L2◦ ∪ L3◦ . . .
= {ε1, g(a, ε1), g(a, g(a, ε1)), g(a, g(a, g(a, ε1))) . . .}.

2.2.1 Bottom-Up Quotient of Tree Languages

In this part, we recall the Bottom-Up quotient formulas for languages shown in [19]. The
contents of this part will help to understand the results of Chapter 5.

As we have seen before, the quotient is the operation that allows deleting nodes. Quoti-
enting in a Bottom-Up way is deleting nodes from leaves to root. An internal node (includ-
ing a root) is deleted if and only if its sons are deleted.

Definition 2.2.3. ([19]) The Bottom-Up quotient t−1(L) of a tree language L w.r.t. a tree t is the
tree language

⋃
t′∈L t−1(t′).

The computation of the Bottom-Up quotient is given inductively as follows: let k be an
integer, let α ∈ Σk:

α−1(εx) = ∅, α−1(α(ε1, . . . , εn)) = {ε1},
α−1(f (t1, . . . , tn)) =

⋃
1≤j≤n

f (t′1, . . . , t′j−1, α−1(tj), t′j+1, . . . , t′n),

where x is an integer in N, f is a symbol in Σn, t1, . . . , tn are n trees in TΣ distinct from
(ε1, . . . , εn) and for all integer 1 ≤ z ≤ n, t′z is the tree Incε(1, tz).

Let L be a k-homogeneous language with Indε(L) = {j1, . . . , jk} and j be an integer:

ε−1
j (L) =

{
L ◦ (ε j1+1, . . . , ε jz−1+1, ε1, ε jz+1+1, . . . , ε jk+1) if j = jz ∈ Indε(L),
∅ otherwise.

(2.5)

As an example: let us consider a 2-ary tree t = f (ε2, f (ε1, a)) ∈ L with Indε = {j1 =
2, j2 = 1}, f ∈ Σ2 and a ∈ Σ0. Let us calculate ε−1

2 (t). Then

ε−1
2 (f (ε2, f (ε1, a))) = { f (ε2, f (ε1, a)) ◦ (ε1, ε j2+1)}

= { f (ε1, f (ε2, a))}.

Let u be a n-ary tree with Indε(u) = {x1, . . . , xn}. Let t = f (t1, . . . , tk) be a l-ary tree. Let
{y1, . . . , yn−l} = Indε(u) \ Indε(t) and for all 1 ≤ j ≤ k, t′j = Incε(k− j, tj). The Bottom-Up
quotient of the tree u w.r.t. t is given by

t−1(u) = (f−1(t′1
−1
(· · · (t′k

−1
(u)) · · ·)) ◦ (ε1, (εyz+1)1≤z≤n−l), (2.6)

Example 2.2.4. Let us consider a tree u = f (ε2, f (a, a)) with Indε(u) = {x1 = 2} and t = f (a, a)
with f ∈ Σ2 and a ∈ Σ0. Let us calculate t−1(u). Then

a−1(u) = { f (ε3, f (ε1, a)), f (ε3, f (a, ε1))}
a−1(a−1(u)) = { f (ε4, f (ε2, ε1)), f (ε4, f (ε1, ε2)) ◦ (ε1, ε2)}
f (a, a)−1(u) = f−1(a−1(a−1(u))) = { f (ε5, ε1) ◦ (ε1, ε2)}

= { f (ε2, ε1)}.

Let us see how to compute the Bottom-Up quotient for the operations over languages:

Chapter 2. Preliminaries 13

• The Bottom-Up quotient for the union of languages can be computed as follows: Let t be a
tree in T(Σ), L1 and L2 be two languages over Σ. Then:

t−1(L1 ∪ L2) = t−1(L1) ∪ t−1(L2). (2.7)

Let t = f (t1, . . . , tk) be an l-ary tree such that f is in Σk and (t1, . . . , tk) is a k-tuple of
trees in T(Σ) different from (ε1, . . . , εk). Let L be a n-homogeneous tree language over
Σ with Indε(L) = {x1, . . . , xn}. Let {y1, . . . , yn−l} = Indε(L) \ Indε(t) and ∀1 ≤ j ≤ k,
t′j = Incε(k− j, tj). Then:

t−1(L) = (f−1(t′1
−1
(· · · (t′k

−1
(L)) · · ·)) ◦ (ε1, (εyz+1)1≤z≤n−l). (2.8)

• The Bottom-Up quotient for the b-product of languages can be computed as follows: Let Σ
be an alphabet. Let t be k-ary tree, L be a 0-homogeneous language, α ∈ Σ and b ∈ Σ0.
Then:

α−1(t ·b L) =

(b−1(t) ·b L) ◦1 b−1(L) if α = b,
α−1(t) ·b L ∪ (b−1(t) ·b L) ◦1 α−1(L) if α ∈ Σ0 \ {b},
α−1(t) ·b L otherwise,

Since L1 ·b L2 =
⋃

t1∈L1
t1 ·b L2, then:

α−1(L1 ·b L2) =

(b−1(L1) ·b L2) ◦1 b−1(L2) if α = b,
α−1(L1) ·b L2 ∪ (b−1(L1) ·b L2) ◦1 α−1(L2) if α ∈ Σ0 \ {b},
α−1(L1) ·b L2 otherwise,

where L1 is a k-homogeneous language, L2 is a 0-homogeneous language, and ◦1 is the
partial composition defined by L ◦1 L′ = L ◦ (L′, (ε l)j2≤l≤jk) with Indε(L) = {j1, . . . , jk}.
For example, let L = {b} be a 0-homogeneous language, let t be a unary tree t =
f (a, f (ε1, a), b), with f ∈ Σ3, {a, b} ∈ Σ0. Let us calculate b−1(t ·a L):

b−1(t ·a L) = b−1(t) ·a L ∪ (a−1(t) ·a L) ◦1 b−1(L)

= b−1(f (a, f (ε1, a), b)) ·a {b} ∪ (a−1(f (a, f (ε1, a), b)) ·a L) ◦1 b−1{b}
= { f (a, f (ε2, a), ε1)} ·a {b} ∪ ({ f (ε1, f (ε2, a), b), f (a, f (ε2, ε1), b)}) ◦1 ε1

= { f (b, f (ε2, b), ε1)} ∪ { f (ε1, f (ε2, a), b), f (a, f (ε2, ε1), b)}
= { f (b, f (ε2, b), ε1), f (ε1, f (ε2, a), b), f (a, f (ε2, ε1), b)}

• The Bottom-Up quotient for the composition of trees can be computed as follows: Let Σ
be an alphabet. Let t be a k-homogeneous language with Indε(t) = {j1, . . . , jk}, let
t1, . . . , tk be k trees and α ∈ Σn. Then:

α−1(t ◦ (t1, . . . , tk)) =
⋃

1≤j≤k

t ◦ ((Incε(1, tl))1≤l≤j, α−1(tj), (Incε(1, tl))j+1≤l≤k)

∪

α((ε jpl

)
1≤l≤n

)−1(t) ◦ (ε1, (Incε(1, tl))1≤l≤k|∀z,l 6=pz
))

if ∀1 ≤ l ≤ n, ∃1 ≤ pl ≤ k, ε l ∈ Lpl

∅ otherwise.
(2.9)

Chapter 2. Preliminaries 14

Since L ◦ (L1, . . . , Lk) =
⋃

t∈L,(t1,...,tk)∈L1,...,Lk
t ◦ (t1, . . . , tk). Then The Bottom-Up quo-

tient for the composition of tree languages is given as follows:

α−1(L ◦ (L1, . . . , Lk)) =
⋃

1≤j≤k

L ◦ ((Incε(1, Ll))1≤l≤j, α−1(Lj), (Incε(1, Ll))j+1≤l≤k)

∪

α((ε jpl

)
1≤l≤n

)−1(L) ◦ (ε1, (Incε(1, Ll))1≤l≤k|∀z,l 6=pz
))

if ∀1 ≤ l ≤ n, ∃1 ≤ pl ≤ k, ε l ∈ Lpl

∅ otherwise.
(2.10)

where L is a k-homogeneous language with Indε(L) = {j1, . . . , jk}, L1, . . . , Lk are k tree
languages.

2.3 Tree Automata

As we have seen in the previous section, the set of tree languages might be infinite, that is
why researchers found a way to present this infinite set by a finite object called: a finite state
machine named a tree automaton. This machine is introduced by Thatcher [61] as a general-
ization of word automata.

The aim of these machines is to read (recognize) set of words/trees. Notice that a word
over a finite set of symbols is a unary tree (a tree where each symbol is of rank 1 or 0). This
structure has two same directions to read it by the automaton (from right to left or from left
to right). However, the structure of trees allows the existence of two kind of tree automata
depending on the direction of reading the tree (either from the root to the leaves (Top-Down)
or from leaves to the root (Bottom-Up)).

As in the case of words, the tree automata can be presented graphically: its states are
presented by nodes, initial state are distinguished by an incoming arrow and final states
by a double circle, there exist an edge between two nodes if and only if a transition exists
between states.

2.3.1 Bottom-Up Tree Automata

In this part, we introduce one kind of tree automata (the Bottom-Up tree automaton). The
trees of this automaton are interpreted from leaves to root.

Definition 2.3.1. The Bottom-Up tree automaton is the automaton defined by

A = (Σ, Q, QF, δ)

where

• Σ a finite set of ranked alphabets, • Q a finite set of states,
• QF ⊆ Q the set of initial states, • δ ⊂ ⋃k≥0(Qk × Σk ×Q) the set of transition rules.

The set of transitions can be seen as the function from Qk × Σk to 2Q defined by

(q1, . . . , qk, f , q) ∈ δ⇔ q ∈ δ(q1, . . . , qk, f).

It can be extended as the function from (2Q)k × Σk to 2Q defined by

δ(Q1, . . . , Qk, f) =
⋃

(q1,...,qn)∈Q1×···×Qk

δ(q1, . . . , qk, f). (2.11)

Chapter 2. Preliminaries 15

Finally, we consider the function ∆ from TΣ to 2Q defined by

∆(t) =
{

δ(a) if t = a,
δ(∆(t1), . . . , ∆(tn), f) if t = f (t1, . . . , tn).

(2.12)

Using these definitions, the language L(A) (which represents the set of all accepted trees
by the automaton) recognized by the automaton A is the language

L(A) = {t ∈ TΣ | ∆(t) ∩QF 6= ∅}.

As in the case of words, a tree automaton might be deterministic (for each state, there exists
only one following state specifying by a transition) or non deterministic (for a given state,
there can be zero, one or more transitions).

Definition 2.3.2. A Bottom-Up tree automaton A = (Σ, Q, QF, δ) is deterministic if for any
symbol f in Σk, for any k states q1, . . . , qk, |δ(q1, . . . , qk, f)| ≤ 1. Otherwise, the tree automaton is
non deterministic.

Example 2.3.1. Let us consider the Bottom-Up tree automata A = (Σ, Q, QF, δ) and A′ = (Σ, Q, QF, δ′)
where

Σ = {a, b, g1, f 2}, Q = {q1, q2, q}, QF = {q},
δ = {(a, q1), (b, q2), (q, g, q), ((q1, q2), f , q)},

δ′ = {(a, q1), (b, q2), (q, g, q), ((q1, q2), f , q), (q, g, q2)}.

q1

q2

q
f

g

FIGURE 2.3: Determinis-
tic Tree Automaton A.

q1

q2

q
f

g

g

FIGURE 2.4: Non De-
terministic Tree Automa-

ton A′.

The automaton A′ is non deterministic because of the existence of the two transitions colored on
red in Figure 2.4.

Let us see the behavior of a tree automaton: as we have mentioned before, one of the usefulness of
tree automaton is to read\accept\recognize or to solve the membership test of tree languages. Let
us verify whether t = g(f (a, b)) belongs to the language of the automaton A′ or not. By Definition
of ∆ in Equation (2.12),

∆(a) = δ′(a) = {q1}, ∆(b) = δ′(b) = {q2}.

q1

q2

q
f

a

b

g

g

Chapter 2. Preliminaries 16

The only transition in δ′ labeled by f containing qa in its first origin and q2 in its second origin is
((q1, q2), f , q).

∆(f (a, b)) = δ′(∆(a), ∆(b), f) = {q}.

q1

q2

q
f

a

b

g

g

Last, there are two transitions labeled by g containing q in its origin state and they are: (q, g, q) or
(q, g, q2).

∆(g(f (a, b)) = δ′(∆(f (a, b), g)) = {q, q2}.

q1

q2

q
f

a

b

g

g

Since q is a final state, then g(f (a, b)) ∈ L(A′).

q1

q2

q
f

a

b

g

g

FIGURE 2.5: Recognition of t = g(f (a, b)) by the the tree automaton A′.

There exists an algorithm to convert a Bottom-Up non deterministic tree automaton to a
Bottom-Up deterministic tree automaton preserving the same language.

Theorem 2.3.1 ([23]). Let A′ = (Σ, Q′, Q′F, ∆′) be a non deterministic tree automaton, then there
exists a deterministic tree automaton A = (Σ, Q, QF, ∆) recognizing the same language.

2.3.2 Top-Down Tree Automata

In this part, we introduce another kind of tree automata called Top-Down tree automaton,
the trees of this automaton, as their name mentions, are interpreted from root to leaves.

The Top-Down tree automaton is the automaton defined by

A = (Σ, Q, QI , δ)

where
•Σ a finite set of ranked alphabets, •Q a finite set of states,
•QI ⊆ Q the set of initial states, •δ ⊆ Q× Σn × 2Qn

the set of transition rules,

Chapter 2. Preliminaries 17

This function can be seen as the function from 2Q × Σn → Qn

((q1, . . . , qn), f , q) ∈ δ⇔ (q1, . . . , qn) ∈ δ(q, f).

We consider the function δ∗ from 2Q × Σn → 2Qn
defined by

δ∗(Q, f) =
⋃

q∈Q

δ(q, f).

Finally, we can consider the function ∆ from 2Q × Σn → 2Qn
as follows

∆(Q, f (t1, . . . , tk)) =
⋃

(q1,...,qn)∈δ∗(Q, f)

∆(q1, t1)× . . .× ∆(qn, tn).

The set of trees accepted by the Top-Down tree automaton represents the language L(A)
defined by

L(A) = {t | δ(QI , t) 6= ∅}.

The Top-Down tree automaton is deterministic if and only if the set QI contains only one
initial state and if there exist two transitions ((q1, . . . , qk), f , q), ((q′1, . . . , q′k), f , q) ∈ δ (for
f ∈ Σk, for any state q, q1, . . . , qk ∈ Q) then (q1, . . . , qk) = (q′1, . . . , q′k).

Unlike to the Bottom-Up tree automaton, determinizing a non deterministic Top-Down
tree automaton does not hold for all instances. As an example, let us consider the non
deterministic tree automaton A.

The language denoted by A is { f (a, b), f (b, a)}, let us suppose that the same language
is denoted by a deterministic tree automaton A′; in this case, we have one initial state which
is q f . Let us suppose that there exists two states qa and qb such that, by Equation (??),
δ(q f , f (a, b)) = f (δ(qa, a), δ(qb, b)) and δ(q f , f (b, a)) = f (δ(qa, b), δ(qb, a)), which means
that we should have δ(qa, b) and δ(qa, a). Contradiction, A′ is deterministic.

As a conclusion, there exists tree languages that cannot be recognized by a Top-Down
deterministic tree automata.

2.4 Regular Tree Expression

In this section, we present another finite object called a regular tree expression in order to
present an infinite set: the tree languages.

A regular tree expression over Σ can be presented as a tree over Σ ∪ {+, ·a, ∗a} where
the symbols +, ·a are of arity 2, the ∗a is of arity 1 and a is in Σ0. As in the case of words, the
regular tree expressions are computed inductively.

Definition 2.4.1. A regular tree expression E over the alphabet Σ is inductively defined by:

E = f (E1, . . . , Ek), E = E1 + E2,
E = E1 ·c E2, E = E∗c

1 ,

where k ∈N, c ∈ Σ0, f ∈ Σk and E1, . . . , Ek are any k regular expressions over Σ.

A regular tree expression E is linear, if each symbol in Σk≥1 occurs at most once in E.
Note that the symbols of rank 0 may appear more than once. We denote by E the linearized
form of E, which is the expression E where any occurrence of a symbol is indexed by its
position in the expression. The set of indexed symbols, called positions, is denoted by Pos(E).
We consider the delinearization mapping h sending a linearized expression over its original

Chapter 2. Preliminaries 18

unindexed version. As an example, one can consider the delinearization morphism h that
sends an indexed alphabet to its unindexed version. Given a language L, we denote by φ(L)
the set {φ(t) | t ∈ L}. The image by φ of an automaton A = (Σ, Q, QF, δ) is the automaton
φ(A) = (Σ′, Q, F, δ′) where

δ′ = {(q1, . . . , qn, φ(f), q) | (q1, . . . , qn, f , q) ∈ δ}.

By a trivial induction over the structure of the trees, it can be shown that

φ(L(A)) = L(φ(A)). (2.13)

The aim of regular tree expressions is to recognize a set of tree languages, such language is
denoted by L(E) and called the language denoted by the expression E.

Definition 2.4.2. The language denoted by E is the language L(E) inductively defined by

L(∅) = ∅,
L(f (E1, . . . , Ek)) = { f (t1, . . . , tk) | tj ∈ L(Ej), j ≤ k},

L(E1 + E2) = L(E1) ∪ L(E2),
L(E1 ·c E2) = L(E1) ·c L(E2),

L(E∗c
1) = L(E1)

∗c ,

with k ∈N, c ∈ Σ0, f ∈ Σk and E1, . . . , Ek any k regular expressions over Σ.

Example 2.4.1. Let us consider the ranked alphabet defined by Σ = Σ2 ∪ Σ1 ∪ Σ0 where Σ2 = { f },
Σ1 = {g} and Σ0 = {a, b}. Let E be the tree expression defined by

E = f (a, b) ·a g(b)∗b .

Hence,

E = f1(a, b) ·a g2(b)∗b , Pos(E) = { f1, g2, a, b}
L(E) = L(f (a, b) ·a g(b)∗b)

= L(f (a, b)) ·a L(g(b)∗b)

= L(f (a, b)) ·a L(g(b))∗b

= { f (a, b)} ·a {g(b)}∗b

= { f (a, b)} ·a {b, g(b), g(g(b)), g(g(g(b))), . . .}
= { f (b, b), f (g(b), b), f (g(g(b)), b), f (g(g(g(b))), b), . . .}.

·a

f

a b

∗b

g

b

FIGURE 2.6: The syntactic tree of the expression E.

Chapter 2. Preliminaries 19

2.5 Conclusion

We have seen throughout this chapter the basic definitions and notations related to tree
automata theory. The Figure bellow recapitulates the notions discussed above.

Tree Au-
tomata Theory

tree lan-
guages

homogeneous
tree

languages

k-
homogeneous

tree
languages

Bottom-
Up

quotient
of tree

languages

tree au-
tomata

Top-Down

deterministic
non deter-

ministic

Bottom-
Up

deterministic
non deter-

ministic

regular tree
expressions

linear ex-
pressions

trees

k-ary trees

unary
trees

Bottom-
Up

quotient
of trees

FIGURE 2.7: Recapitulation of Chapter 2.

After defining the structure of trees, the set of tree languages, tree automata and their
two interpretations and last regular tree expressions. Let us discover the link between all
these mathematical objects in the next chapters.

20

3 The Constructions of Top-Down
Tree Automata

In this chapter, we present conversion methods from a regular tree expression to a Top-
Down tree automaton denoting the same language.
In Section 3.1, we show how to convert a regular tree expression into a position tree

automaton. We define in Section 3.2 a generalization of the follow automaton. Section 3.3 is
devoted to present the equation tree automaton. We show in Section 3.4 the construction of
the c-continuation tree automaton. Finlay, we summarize in Section 3.5 the link between the
introduced automata in the previous sections.

3.1 The Position Tree Automaton

Glushkov [28] and independently Mc-Naughton and Yamada [45] were among the first
who could construct a deterministic finite automaton with only n + 1 states from a regu-
lar expression E with n symbols. The basic idea of this construction was to deal with the
linearized form of a regular expression E and to define sets named:

• Pos(E) which contains all the indexed symbols of E.

• First(E) which contains the first symbols of the words in the language L(E).

• Follow(E, x) which is the set containing the successor symbol of the symbol x ∈ E of
a word in the language L(E).

• Last(E) is the set which contains the symbols that ends the word in the language L(E).

These sets are used in the computation of the Glushkov automaton or position automaton.
This construction runs in time O(n3) [28]. Several improvements of this complexity were
proposed [11, 52] in order to obtain a quadratic complexity.

The study of Glushkov’s method were extended to the computation of tree automata. In
this section, we present the results shown in [48, 49] by Mignot et al. These latter proposed a
constructive algorithm called k-position tree automata (or position tree automata), an exten-
sion of Glushkov’s one, using a Top-Down interpretation [23]. Such interpretation allows
the automaton to start its computation at the root in an initial state and then works down of
the tree to the leaves.

3.1.1 Position Functions

Let E be a regular expression over Σ, E its linear form and let f be a symbol in Σk. Let us
define the functions considered in the computation of the tree automaton of this section.

• The set First(E), subset of Σ, contains the roots of the trees in the language of the linear
expression and is formally defined by

First(E) = {root(t) | t ∈ L(E)} (3.1)

Chapter 3. The Constructions of Top-Down Tree Automata 21

• The set Follow(E, f , k), subset of Σ, contains all the successors of f (i.e. the symbols
that appear directly below it, considering that the tree grows downwards) in the tree t
whose f is the root of the k-th subtree of t, i.e.

Follow(E, f , k) = {g ∈ Σ | ∃t ∈ L(E), ∃s � t, root(s) = f , k− child(s) = g} (3.2)

We can illustrate it in the Figure 3.1 shown bellow.

f

1 2

g

k

FIGURE 3.1: Illustration of Follow(t, f , k).

• The set Last(E), subset of Σ0, contains the leaves of the trees in the language of the
linear expression and it is defined by

Last(E) = {a ∈ Σ0 | a � t, t ∈ L(E)}. (3.3)

As we have seen in Section 2.4, the regular expressions are defined inductively; Therefore,
these functions can be computed in the same way over the structure of the linear expression
E:

First(0) = ∅, First(a) = {a}, First(f (E1, ..., Ek)) = { f },
First(E1 + E2) = First(E1) ∪ First(E2),

First(E1 ·c E2) =

{
First(E1) \ {c} ∪ First(E2) if c ∈ L(E1),
First(E1) otherwise,

First(E∗c
1) = First(E1) ∪ {c},

TABLE 3.1: The computation of the function First.

Chapter 3. The Constructions of Top-Down Tree Automata 22

Follow(0, f , k) = ∅, Follow(a, f , k) = ∅,

Follow(g(E1, . . . , En), f , k) =

First(Ek) if f = g,
Follow(El , f , k) if ∃l | f ∈ ΣEl

,
∅ otherwise.

Follow(E1 + E2, f , k) =

Follow(E1, f , k) if f ∈ ΣE1

,
Follow(E2, f , k) if f ∈ ΣE2

,
∅ otherwise.

Follow(E1 ·c E2, f , k) =

(Follow(E1, f , k) \ {c}) ∪ First(E2) if c ∈ Follow(E1, f , k),
Follow(E1, f , k) if f ∈ ΣE1

∧ c /∈ Follow(E1, f , k),
Follow(E2, f , k) if f ∈ ΣE2

∧ c ∈ Last(E1),
∅ otherwise ,

Follow(E∗c
1 , f , k) =

{
Follow(E1, f , k) ∪ First(E1) if c ∈ Follow(E1, f , k),
Follow(E1, f , k) otherwise ,

TABLE 3.2: The computation of the function Follow.

where E1, . . . , Ek are k linear expressions over Σ, f is a symbol in Σk, g is a symbol in Σn
and a, c are symbols in Σ0.

Example 3.1.1. Let Σ0 = {a, b, c}, Σ1 = {g} and Σ2 = { f }. Let us consider the expression over
Σ = Σ0 ∪ Σ1 ∪ Σ2 defined by:

E = (a + g(a) + g(a)) ·a (f (a, b)∗b ·b g(c)∗c)

Its linear form is:
E = (a + g1(a) + g2(a)) ·a (f3(a, b)∗b ·b g4(c)∗c)

The language denoting the expression E is

L(E) = {c, g1(c), g1(g4(c)), g1(g4(g4(c))), g1(f3(a, c)), g1(g4(c)), g1(g4(g4(c))),
g2(c), g2(g4(g4(c))), g2(f3(a, c)), f3(a, c), f3(a, f3(a, c)),
g4(c), g4(g4(c)), . . .}

By applying the alphabetical morphism h we obtain

h(L(E)) = {c, g(c), g(g(c)), g(g(g(c))), g(f (a, c)), f (a, c), f (a, f (a, c)), . . .}

Chapter 3. The Constructions of Top-Down Tree Automata 23

The position functions of the expression E are defined by

Pos(E) = {g1, g2, f3, g4, a, b, c}, Last(E) = {a, c},

First(E) = First((a + g1(a) + g2(a)) ·a (f3(a, b)∗b ·b g4(c)∗c))

= First(a + g1(a) + g2(a)) \ {a} ∪ First(f3(a, b)∗b ·b g4(c)∗c)

= First(a) ∪ First(g1(a)) ∪ First(g2(a)) \ {a} ∪ First(f3(a, b)∗b)

\ {b} ∪ First(g4(c)∗c)

= First(a) ∪ First(g1(a)) ∪ First(g2(a)) \ {a} ∪ First(f3(a, b))
∪ {b} \ {b} ∪ First(g4(c)) ∪ {c}

= {a, g1, g2, } \ {a} ∪ { f3} ∪ {b} \ {b} ∪ {g4} ∪ {c}
= {g1, g2, f3, g4, c},

Follow(E, g1, 1) = Follow((a + g1(a) + g2(a)) ·a (f3(a, b)∗b ·b g4(c)∗c), g1, 1)
= (Follow(a + g1(a) + g2(a), g1, 1) \ {a}) ∪ First(f3(a, b)∗b ·b g4(c)∗c)

= (Follow(g1(a) + g2(a), g1, 1) \ {a}) ∪ First(f3(a, b)∗b) \ {b} ∪ First(g4(c)∗c)

= (Follow(g1(a), g1, 1) \ {a}) ∪ First(f3(a, b)) ∪ {b} \ {b} ∪ First(g4(c)) ∪ {c}
= ({a} \ {a}) ∪ { f3} ∪ {b} \ {b} ∪ {g4} ∪ {c}
= { f3, g4, c},

Follow(E, g2, 1) = Follow((a + g1(a) + g2(a)) ·a (f3(a, b)∗b ·b g4(c)∗c), g2, 1)
= (Follow(a + g1(a) + g2(a), g2, 1) \ {a}) ∪ First(f3(a, b)∗b ·b g4(c)∗c)

= (Follow(g1(a) + g2(a), g2, 1) \ {a}) ∪ First(f3(a, b)∗b) \ {b} ∪ First(g4(c)∗c)

= (Follow(g2(a), g2, 1) \ {a}) ∪ First(f3(a, b)) ∪ {b} \ {b} ∪ First(g4(c)) ∪ {c}
= ({a} \ {a}) ∪ { f3} ∪ {b} \ {b} ∪ {g4} ∪ {c}
= { f3, g4, c},

Follow(E, f3, 1) = Follow((a + g1(a) + g2(a)) ·a (f3(a, b)∗b ·b g4(c)∗c), f3, 1)
= Follow(f3(a, b)∗b ·b g4(c)∗c , f3, 1)
= Follow(f3(a, b)∗b , f3, 1)
= Follow(f3(a, b), f3, 1)
= {a},

Follow(E, f3, 2) = Follow((a + g1(a) + g2(a)) ·a (f3(a, b)∗b ·b g4(c)∗c), f3, 2)
= Follow(f3(a, b)∗b ·b g4(c)∗c , f3, 2)
= Follow(f3(a, b)∗b , f3, 2) \ {b} ∪ First(g4(c)∗c)

= Follow(f3(a, b), f3, 2) ∪ First(f3(a, b)) \ {b} ∪ First(g4(c)) ∪ {c}
= {b} ∪ { f3} \ {b} ∪ {g4} ∪ {c}
= { f3, g4, c},

Follow(E, g4, 1) = Follow((a + g1(a) + g2(a)) ·a (f3(a, b)∗b ·b g4(c)∗c), g4, 1)
= Follow(f3(a, b)∗b ·b g4(c)∗c , g4, 1)
= Follow(g4(c)∗c , g4, 1)
= Follow(g4(c), g4, 1) ∪ First(g4(c))
= {c, g4}.

Chapter 3. The Constructions of Top-Down Tree Automata 24

3.1.2 Top-Down Position Tree Automaton

The position functions defined above are used for the computation of the position tree au-
tomaton in a Top-Down way which means that the computation of the transitions is done
from root to leaves using a function Follow, recognizing the language denoting by the ex-
pression E.

The Top-Down position tree automaton AP associated to the linear expression E is the
automaton

(Q, Σ, {ε1}, ∆)

where

Q = { f k | f ∈ Σm, 1 ≤ k ≤ m} ∪ {ε1} with ε1 a new symbol not in Σ,

∆ = {(f k, g, (g1, . . . , gn)) | g ∈ Follow(E, f , k)}
∪ {(ε1, g, (g1, . . . , gn)) | g ∈ Σn ∧ g ∈ First(E)}
∪ {(ε1, c) | c ∈ Σ0 ∧ c ∈ First(E)}

For the purpose of proving that the language of the Top-Down position tree automaton
recognizes the language of the regular tree expression E, the authors of [48, 19] gave a
characterization of the membership of a tree t = f (t1, . . . , tk) in the language denoted by E
as follows:

First of all, they showed that a given tree t is belonging to a language of a regular expres-
sion if and only if the set First(E) contains the root of t and for all g(k1, . . . , kl), subtree of t,
the function Follow(E, g, k) contains the roots of the subtrees ti for i ∈ {1, . . . , l}.

Furthermore, they showed the connection between this characterization and the transi-
tion rules ∆ of the Top-Down position tree automaton AP .

As a result, the Top-Down position tree automaton AP recognizes exactly the same lan-
guage denoting the linear expression E. Replacing each transition (f k

j , gi, (g1
i , . . . , gn

i)) ofAP
by (f k

j , h(gi), (g1
i , . . . , gn

i)) by using the alphabetical morphism h, we get h(L(AP)) = L(E).

Example 3.1.2. Let us consider the regular expression defined in Example (3.1.1) by

E = (a + g(a) + g(a)) ·a (f (a, b)∗b ·b g(c)∗c)

The expression E is given by

E = (a + g1(a) + g2(a)) ·a (f3(a, b)∗b ·b g4(c)∗c)

The set of states is
Q = {ε1, g1

1, g1
2, f 1

3 , f 2
3 , g1

4}

The set of transition rules is

∆ = {
(ε1, c), (ε1, g1, g1

1), (ε1, g2, g1
2), (ε1, f3, (f 1

3 , f 2
3)), (ε1, g4, g1

4),

(g1
1, c), (g1

1, g4, g1
4), (g1

1, f3, (f 1
3 , f 2

3)), (g1
2, c), (g1

2, g4, , g1
4),

(g1
2, f3, (f 1

3 , f 2
3)), (f 1

3 , c), (f 2
3 , c), (f 2

3 , f3, (f 1
3 , f 2

3)), (f 2
3 , g4, g1

4),

(g1
4, c), (g1

4, g4, g1
4)

}

Chapter 3. The Constructions of Top-Down Tree Automata 25

The Top-Down position tree automaton associated to E is shown in Figure 3.2.

ε1

g1
1 g1

2

f 1
3f 2

3

g1
4

c

a

c

c

c

c

g4

g4

g4

g1

g4

g4

g2 f3f3

f3

f3

FIGURE 3.2: The Top-Down Position Tree Automaton of E.

3.2 The Follow Tree Automaton

Ilie and Yu constructed a non deterministic finite automaton from a regular expression de-
noted the same language, named follow automata [35]. This method is an improvement of the
Glushkov’s algorithm and it is computed in a quadratic time [35]. Its basic idea is to identify
the states of the position automaton having the same Follow set and then merge them.

In this section, we give a computation of an extension of [35] in the case of words to tree
automata called follow tree automaton. This computation is given in [48, 49]. The states of this
automaton are sets of positions instead of positions in the case of position tree automaton
already defined in Section 3.1 and the function Follow already seen in Section 3.1.1 is ex-
tended by Follow(E, ε1, 1) = First(E). Moreover, we show that the follow tree automaton is
the quotient of position tree automaton in the similar way as word automata proven by Ilie
and Yu [35]. The results of this section are extracted from [48, 49].

Chapter 3. The Constructions of Top-Down Tree Automata 26

The follow tree automaton AF associated with the linear expression E is the automaton

(Q, Σ, QT, ∆)

where

Q = {First(E)} ∪ {
⋃

f∈Σm

{Follow(E, f , k) | 1 ≤ k ≤ m}

QT = {First(E)}
∆ = {(Follow(E, g, l), f , Follow(E, f , 1), . . . , Follow(E, f , m)) | f ∈ Σm

∧ f ∈ Follow(E, g, l) ∧ g ∈ Σn ∪ {ε1} ∧ l ≤ n}
∪ {(I, c) | I ∈ Q, c ∈ I ∧ c ∈ Σ0}

In order to show that the follow automaton recognizes the same language as the regular
expression, let us first see that the follow tree automaton is the quotient of the Top-Down
position tree automaton considering the fact that this quotient conserves the language.

Given E, a regular tree expression over Σ, and considering AP = (Q, Σ, {ε}, ∆) the Top-
Down position tree automaton of E. QuotientingAP toAF is given by the follow relation ∼F
in Q which is defined by

f k ∼F gl ⇔ Follow(E, f , k) = Follow(E, g, l).

where f k, gl are two states of Q.
This relation allows us to compute the follow tree automaton from the Top-Down posi-

tion tree automaton by identifying the similar states ofAP and then to merge them into one
state.

We have seen in Section 6.1 that the language recognized by a linear expression is the
same denoted by AP . Furthermore, since AF is the quotient of AP w.r.t the follow relation,
L(AP) = L(AF). Therefore, the language denoted by E is recognized by the follow tree
automaton too.

Finally, we apply the alphabetical morphism h by replacing each transition (Follow(E, g, l),
f j, Follow(E, f , 1), . . . , Follow(E, f , m)) of AF by (Follow(E, g, l), h(f j), Follow(E, f , 1),
. . . , Follow(E, f , m)), we obtain h(L(AF)) = L(E).

Let us see an example of how to construct the follow tree automaton from the position
tree automaton.

Example 3.2.1. Let us consider the constructed position tree automaton of Example 3.1.2.
Using the equivalence relation ∼F over the set of states of the position tree automaton AP .

Follow(E, g1, 1) = Follow(E, g2, 1) = Follow(E, f3, 2)

⇓

g1
1 ∼F g1

2 ∼F f 2
3 .

Chapter 3. The Constructions of Top-Down Tree Automata 27

Follow(E, ε1, 1)

Follow(E, f3, 1)

Follow(E, g1, 1)

Follow(E, g4, 1)

a

c

c

c

g

g

g

gf

f

FIGURE 3.3: The Automaton AP/ ∼F.

Let us compute the follow tree automaton AF associated to E.

Example 3.2.2. Let us consider the tree expression E = (a + g(a) + g(a)) ·a (f (a, b)∗b ·b g(c)∗c)
defined in Example 3.1.1 and E be its linear form.
The set of states is

Q = First(E) ∪ Follow(E, g1, 1) ∪ Follow(E, g2, 1) ∪ Follow(E, f3, 1) ∪ Follow(E, f3, 2)

∪ Follow(E, g4, 1)
= {{c, g1, g2, f3, g4}, {c, f3, g4}, {c, f3, g4}, {a}, {c, f3, g4}, {c, g4}}
= {{c, g1, g2, f3, g4}, {c, f3, g4}, {a}, {c, f3, g4}, {c, g4}}.

The set of transition rules is

∆ = {
({c, g1, g2, f3, g4}, g1, {c, f3, g4}), ({c, g1, g2, f3, g4}, g2, {c, f3, g4}),
({c, g1, g2, f3, g4}, f3, {a}, {c, f3, g4}), ({c, f3, g4}, f3, {a}, {c, f3, g4}),
({c, g1, g2, f3, g4}, g4, {c, g4}), ({c, f3, g4}, g4, {c, g4}),
({c, g4}, g4, {c, g4}), ({c, g1, g2, f3, g4}, c),
({a}, a), ({c, f3, g4}, c), ({c, g4}, c)
}

The follow tree automaton is presented in Figure 3.4

Chapter 3. The Constructions of Top-Down Tree Automata 28

{c, g1, g2, f3, g4}

{a}

{c, f3, g4}

{c, g4}

a

c

c

c

g4

g1, g2

g4

g4
f3

f3

FIGURE 3.4: The Follow Tree Automaton of E.

3.3 The Equation Tree Automaton

Brzozowski [13] gave an algorithm to convert a regular expression into a deterministic finite
automaton recognizing the same language. The idea of this conversion is based on the
notion of language quotient over a regular expression by a word w i.e. w−1(L(E)) and on
an operation denoted by dw(E) (the derivative of the expression E w.r.t a word w). This
latter represents a regular expression denoting the set containing the words w′ such that
ww′ ∈ L(E) and they constitute the states of the derivative automaton. Brzozowski [13]
showed that computing the language quotient denoted by a regular expression w.r.t a word
w labeled in the path of a given state to a final state, is the same as computing the language
denoting the derived regular expression w.r.t w.

The obtained automaton has a finite number of states only by considering three rules:
Associativity, Commutativity and Idempotent of the sum. However, even if the number of
states is finite, it is exponential. That is why in 1996 Antimirov [2] tried to fix the "limit"
of this automaton by suggesting another construction based on partial derivative denoted by
∂a(E) (the partial derivative of E w.r.t a). Its main idea is to replace an expression by a set
of expression. The constructed automaton is non deterministic and has at most n + 1 states
where n is the number of symbols of E.

The study of this construction is extended to the notion of trees. This section is devoted
to recall another construction of tree automaton from a regular tree expression called equa-
tion tree automaton due to Kuske and Meinecke [42]. The principal idea of this construction
is to extend the notion of partial derivatives due to Antimirov [2] to tree partial derivative
where the result of such derivative is sets of tuples of expressions instead of sets of regular
expression. The content of this section contains the results of [42] using the notations of [49].

Chapter 3. The Constructions of Top-Down Tree Automata 29

Let E be a regular tree expression, let f be a symbol in Σk and c be a symbol in Σ0. Let
f−1(E) be the set of tuples of regular expression and it is inductively defined by

f−1(0) = ∅,

f−1(E1 + E2) = f−1(E1) ∪ f−1(E2),

f−1(g(E1, . . . , Ek)) =

{
{(E1, . . . , Ek)} if f = g,
∅ otherwise,

f−1(E1 ·c E2) =

{
f−1(E1) ·c E2 if c /∈ L(E1),
f−1(E1) ·c E2 ∪ f−1(E2) otherwise,

f−1(E∗c
1) = f−1(E1) ·c E∗c

1 ,

where (E1, . . . , Ek) are k tree expressions and where the derivative formulas of the c-product
and the c-closure is the c-product of a tuple of expressions and a regular expression defined
by

E ·c E = (E1 ·c E, . . . , Ek ·c E)

where E = (E1, . . . , Ek).
Moreover, the derivative formulas f−1 is also extended to any set of tuples of regular

expression. Thus, by considering S a set of tuples of regular expression,

f−1(S) =
⋃

E∈S
f−1(E)

Finally, we denote by ∂w(E) the partial derivative of a regular expression E w.r.t a word
w ∈ Σ∗≥1 and it is the set of regular expression defined by

∂w(E) =

{E} if w = ε,
SET(f−1(∂u(E))) if w = u f ∧ u ∈ Σ∗≥1 ∧ f−1(∂u(E)) 6= ∅,
{0} if w = u f ∧ u ∈ Σ∗≥1 ∧ f−1(∂u(E)) = ∅.

where SET(E1, . . . , En) = {E1, . . . , En}.
The result of a partial derivative of a regular expression w.r.t w ∈ Σ∗≥1 is a set of expres-

sion called derived term of E.

Example 3.3.1. Let us consider the alphabet defined by Σ2 = { f }, Σ1 = {g}, Σ0 = {a, b, c} and
Σ = Σ0 ∪ Σ1 ∪ Σ2. Let E be the tree expression defined by E = E1 ·a E2 ·b E3.

where E1 = (a + g(a) + g(a)), E2 = f (a, b)∗b and E3 = g(c)∗c .
Let us show how to calculate the derivative of E w.r.t w ∈ Σ∗≥1.

Chapter 3. The Constructions of Top-Down Tree Automata 30

∂ f (E) = ∂ f (E1 ·a E2 ·b E3) ∂g(E) = ∂g(E1 ·a E2 ·b E3)

= ∂ f (E1 ·a E2) ·b E3 ∪ ∂ f (E3) = (∂g(E1) ·a E2) ·b E3 ∪ ∂g(E3)

= (∂ f (E1) ·a E2 ∪ ∂ f (E2)) ·b E3 ∪ ∂ f (E3) = (∂g(E1) ·a E2 ∪ ∂g(E2)) ·b E3 ∪ ∂g(E3)

= ∂ f (E2) ·b E3 = {a ·a E2 ·b E3} ∪ {c ·c g(c)∗c}
= {a ·b f (a, b)∗b ·b E3, b ·b f (a, b)∗b ·b E3} = {a ·a E2 ·b E3, c ·c E3}
= {a ·b E2 ·b E3, b ·b E2 ·b E3}

∂ f f (E) = ∂ f f (E1 ·a E2 ·b E3) ∂g f (E) = ∂g f (E1 ·a E2 ·b E3)

= ∂ f (∂ f (E1 ·a E2 ·b E3) = ∂g(∂ f (E1 ·a E2 ·b E3))

= ∂ f (a ·b E2 ·b E3) ∪ ∂ f (b ·b E2 ·b E3) = ∂g(a ·b E2 ·b E3) ∪ ∂g(b ·b E2 ·b E3)

= ∂ f (E2 ·b E3) = ∂g(b ·b E3 ·b E4)

= ∂ f (E2) ·b E3 ∪ ∂ f (E3) = ∂g(E2 ·b E3)

= {a ·b f (a, b)∗b ·b E3, b ·b f (a, b)∗b , ·bE3} = ∂g(E2) ·b E3 ∪ ∂g(E3)

= {a ·b E2 ·b E3, b ·b E2 ·b E3} = ∂g(g(c)∗c)

= ∂ f (E) = {c ·c g(c)∗c}
= {c ·c E3}

∂ f g(E) = ∂ f g(E1 ·a E2 ·b E3) ∂gg(E) = ∂gg(E1 ·a E2 ·b E3)

= ∂ f (∂g(E1 ·a E2 ·b E3)) = ∂g(∂g(E1 ·a E2 ·b E3))

= ∂ f (a ·a E2 ·b E3) ∪ ∂ f (c ·c E3) = ∂g(a ·a E2 ·b E3) ∪ ∂g(c ·c E3)

= ∂ f (E2 ·b E3) = ∂g(E2 ·b E3) ∪ ∂g(E3)

= ∂ f (E2) ·b E3 ∪ ∂ f (E3) = (∂g(E2) ·b E3 ∪ ∂g(E3)) ∪ ∂g(E3)

= ∂ f (E2) ·b E3 = ∂g(E3)

= {a ·b E2 ·b E3, b ·b E2 ·b E3} = ∂g(c ·c g(c)∗c)

= ∂ f (E) = {c ·c E3}.
= ∂g f (E)

∂g f g(E) = ∂ggg(E) = {c ·c E3}

Notice that the set of partial derivatives of E, denoted byDE, w.r.t w ∈ Σ∗≥1 is finite an it is given
by

DE = {E, a ·b E2 ·b E3, b ·b E2 ·b E3, c ·c E3, a ·a E2 ·b E3}.

After defining the partial derivative of the expression E, we can define the equation tree
automaton

AE = (Q, Σ, {E}, ∆)

where

Q = DE

∆ = {(F, f , G, . . . , Gk) | F ∈ Q, f ∈ Σk, k ≥, (G1, . . . , Gk) ∈ f−1(F)}
∪ {(F, c) | F ∈ Q ∧ c ∈ (L(F) ∩ Σ0)}

Chapter 3. The Constructions of Top-Down Tree Automata 31

This tree automaton and the regular tree expression associated with it denote the same lan-
guage.

Example 3.3.2. Let us consider the tree expression E = E1 ·a E2 ·b E3.
where E1 = (a + g(a) + g(a)), E2 = f (a, b)∗b and E3 = g(c)∗c defined in Example 3.1.1. Let

us compute the equation tree automaton AE associated to E.

Q = DE

= {E, a ·b E2 ·b E3, b ·b E2 ·b E3, c ·c E3, a ·a E2 ·b E3}

∆ = {
(E, f , a ·b E2 ·b E3, b ·b E2 ·b E3), (a ·a E2 ·b E3, f , a ·b E2 ·b E3, b ·b E2 ·b E3),
(b ·b E2 ·b E3, f , a ·b E2 ·b E3, b ·b E2 ·b E3), (b ·b E2 ·b E3, g, c ·c E3),
(E, g, a ·a E2 ·b E3), (a ·a E2 ·b E3, g, c ·c E3), (E, g, c ·c E3),
(E, c), (a ·a E2 ·b E3, c), (a ·b E2 ·b E3, a), (c ·c E3, c)
(b ·b E2 ·b E3, c)
}

The equation tree automaton associated to the expression E is shown in the Figure 3.5.

{E}

{a ·b E2 ·b E3}

{b ·b E2 ·b E3}

{c ·c E3}

{a ·a E2 ·b E3}

c

c

a

c

c

g

g

g

g

g

f

f

f

FIGURE 3.5: The Equation Tree Automaton of E.

3.4 The C-Continuation Tree Automaton

This section is dedicated to recall the last Top-Down construction of tree automata of this
chapter, called the c-continuation tree automaton presented in [47]. In the case of words, this
construction were first introduced by Berry and Sethi [9] and extended by Champarnaud

Chapter 3. The Constructions of Top-Down Tree Automata 32

and Ziadi [18, 17]. The idea of this method is to apply the notion of derivation due to
Brzozowski [13], to a linear form of a regular expression instead to a regular expression.

Moreover, Champarnaud and Ziadi proved in [17] that the position automata is isomor-
phic to the c-continuation automaton in the case of words. In the similar way, it is shown
that this relation still valid in the case of trees too [48, 49].

The content of this section is extracted from [47, 48, 49] and we only consider regular
expressions without 0 or reduced to 0 (i.e. without occurrences of 0).

We denote by C f k(E) the c-continuation of f in E and it is the expression defined by

C f k(g(E1, . . . , Em)) =

{
Ek if f = g
C f k(Ej) if f ∈ ΣEj

C f k(E1 + E2) =

{
C f k(E1) if f ∈ ΣE1

C f k(E2) if f ∈ ΣE2

C f k(E1 ·c E2) =

C f k(E1) ·c E2 if f ∈ ΣE1

C f k(E1) if f ∈ ΣE2
∧ c ∈ Last(E1)

0 otherwise

C f k(E∗c
1) = C f k(E1) ·c E∗c

1

where E 6= 0 is a linear form of a regular expression E, k and m are two integers where
1 ≤ k ≤ m and f is a symbol in ΣE ∩ Σm.

We set by convention Cε(E) = E.

Example 3.4.1. Let us consider the tree expression E = (a + g(a) + g(a)) ·a (f (a, b)∗b ·b g(c)∗c)
defined in Example 3.1.1 and E = E1 ·a E2 ·b E3 be its linear form. Where E1 = (a+ g1(a) + g2(a)),
E2 = f3(a, b)∗b and E3 = g4(c)∗c .

Chapter 3. The Constructions of Top-Down Tree Automata 33

Let us compute the c-continuation of E.

Cg1
1
(E) = Cg1(E1 ·a E2 ·b E3) Cg1

2
(E) = Cg1

2
(E1 ·a E2 ·b E3)

= Cg1
1
(E1) ·a (E2 ·b E3) = Cg1

2
(E1) ·a (E2 ·b E3)

= Cg1
1
(a + g1(a) + g2(a)) ·a (E2 ·b E3) = a ·a (E2 ·b E3)

= a ·a (E2 ·b E3)

C f 1
3
(E) = C f 1

3
(E1 ·a E2 ·b E3) C f 2

3
(E) = C f 2

3
(E1 ·a E2 ·b E3)

= C f 1
3
(E2 ·b E3) = C f 2

3
(E2 ·b E3)

= C f 1
3
(E2) ·b E3 = C f 2

3
(E2) ·b E3

= C f 1
3
(f3(a, b)∗b) ·b E3 = C f 2

3
(f3(a, b)∗b) ·b E3

= C f 1
3
(f3(a, b)) ·b f3(a, b)∗b ·b E3 = C f 2

3
(f3(a, b)) ·b f3(a, b)∗b ·b E3

= a ·b E2 ·b E3 = b ·b E2 ·b E3

Cg1
4
(E) = Cg1

4
(E1 ·a E2 ·b E3)

= Cg1
4
(E2 ·b E3)

= Cg1
4
(E3)

= Cg1
4
(g4(c)∗c)

= Cg1
4
(g4(c)) ·c g4(c)∗c

= c ·c E3

After defining the C f k(E), now we are able to compute from the regular expression E the
c-continuation tree automaton

AC = (QC , ΣE, {Cε1(E)}, ∆C)

where

QC = {(f k, C f k(E)) | f ∈ Σm, 1 ≤ k ≤ m} ∪ {(ε1, Cε1(E)}
∆C = {(x, Cx(E)), g, ((g1, Cg1(E)), . . . , (gm, Cgm(E))))

| g ∈ ΣE, m ≥ 1, (Cg1(E), . . . , Cgm(E)) ∈ g−1(Cx(E))}
∪ {((x, Cx(E)), c) | c ∈ L(Cx(E)) ∩ Σ0}

Using the mapping h by unmarking the transitions of AC we obtain the c-continuation tree
automaton associated to E. This constructed automaton recognizes the language denoting
the regular expression [47, 48].

Example 3.4.2. Let us construct the c-continuation tree automaton from a regular tree expression
defined in Example 3.1.1 using the computation of the c-continuation of Example 3.4.1.
The set of states is

Q = {(ε1, E1 ·a E2 ·b E3), (g1
1, a ·a E2 ·b E3), (g1

2, a ·a E2 ·b E3), (f 1
3 , a ·b E2 ·b E3),

(f 2
3 , b ·b E2 ·b E3), (g1

4, c ·c E3)}

Chapter 3. The Constructions of Top-Down Tree Automata 34

The set of transition rules is

∆ = {
((ε1, E1 ·a E2 ·b E3), f3, (f 1

3 , a ·b E2 ·b E3), (f 2
3 , b ·b E2 ·b E3)),

((f 2
3 , b ·b E2 ·b E3), f3, (f 1

3 , a ·b E2 ·b E3), (f 2
3 , b ·b E2 ·b E3)),

((g1
1, a ·a E2 ·b E3), f3, (f 1

3 , a ·b E2 ·b E3), (f 2
3 , b ·b E2 ·b E3)),

((ε1, E1 ·a E2 ·b E3), g1, (g1
1, a ·a E2 ·b E3)),

((ε1, E1 ·a E2 ·b E3), g2, (g1
2, a ·a E2 ·b E3)),

((ε1, E1 ·a E2 ·b E3), g4, (g1
4, c ·c E3)),

((g1
1, a ·a E2 ·b E3), g4, (g1

4, c ·c E3)),

((f 2
3 , b ·b E2 ·b E3), g4, (g1

4, c ·c E3)),

((g1
2, a ·a E2 ·b E3), g4, (g1

4, c ·c E3)),

((g1
4, c ·c E3), g4, (g1

4, c ·c E3)),

(c, (ε1, E1 ·a E2 ·b E3)), (c, (g1
4, c ·c E3)),

(c, (g1
1, a ·a E2 ·b E3)), (c, (g1

2, a ·a E2 ·b E3)),

(a, (f 1
3 , a ·b E2 ·b E3)), (c, (f 2

3 , b ·b E2 ·b E3)),
}

The c-continuation tree automaton associated to E is shown in Figure 3.6

Chapter 3. The Constructions of Top-Down Tree Automata 35

(ε1, Cε1 (E))

(g1
1, a ·a E2 ·b E3) (g1

2, a ·a E2 ·b E3)

(f 1
3 , a ·b E2 ·b E3)(f 2

3 , b ·b E2 ·b E3)

(g1
4, c ·c E3)

c

a

c

c

c

c

g4

g4

g4

g1

g4

g4

g2

f3
f3

f3

f3

FIGURE 3.6: The C-Continuation Tree Automaton of E.

3.5 Relation between the Top-Down Constructed Tree Automata

In this Section, we show the link between the constructed Top-Down tree automata shown
in the previous sections.

Given E, a regular tree expression over Σ and considering AC the c-continuation tree
automaton of E.

Quotienting AC to AE is given by the equivalence relation ∼e over the set of states of AC
and it is defined by

(f k
j , C f k

j
(E)) ∼e (gp

i , Cgp
i
(E))⇔ h(C f k

j
(E)) = h(Cgp

i
(E)).

where (f k
j , C f k

j
(E)) and (gp

i , Cgp
i
(E)) are two states of Q of the automaton AC .

This relation allows us to compute the equation tree automaton from the the c-continuation
tree automaton.

Let us see an example of how to construct the equation tree automaton from the c-
continuation tree automaton.

Example 3.5.1. Let us consider the constructed position tree automaton of Example 3.1.2.
Using the equivalence relation ∼e over the set of states of the c-continuation tree automaton.

h(Cg1
1
(E)) = h(Cg1

2
(E))

Chapter 3. The Constructions of Top-Down Tree Automata 36

h(a ·a E2 ·b E3) = h(a ·a E2 ·b E3)

⇓

(g1
1, Cg1

1
(E)) ∼e (g1

2, Cg1
2
(E))

Thus,

{h(E)}

{h(a ·b E2 ·b E3)}

{h(b ·b E2 ·b E3)}

{h(c ·c E3)}

{h(a ·a E2 ·b E3)}

c

c

a

c

c

g

g

g

g

g

f

f

f

FIGURE 3.7: The Tree Automaton of AC/ ∼e.

Furthermore, in order to compute the follow tree automaton from the c-continuation, we
define the similarity relation denoted by ≡ over a set of states of AC as the following:

(f k, C f k(E)) ≡ (gp, Cgp(E)⇔ Follow(E, f , k) = Follow(E, g, p).

where (f k, C f k(E)) and (gp, Cgp(E) are two states of AC .
Let us see an example of a such construction.

Example 3.5.2. Let us consider the constructed position tree automaton of Example 3.1.2.
Using the similarity relation ≡ over the set of states of the c-continuation tree automaton

Follow(E, g1, 1) = Follow(E, g2, 1) = Follow(E, f3, 2)

⇓

(g1
1, Cg1

1
(E)) ≡ (g1

2, Cg1
2
(E)) ≡ (f 1

2 , Cg1
2
(E))

Thus,

Chapter 3. The Constructions of Top-Down Tree Automata 37

{Cε1 (E)}

{C f 1
3
(E)}

{Cg1
1
(E), Cg1

2
(E), C f 3

2
(E)}

{Cg1
4
(E)}

a

c

c

c g4

g1, g2

g4

g4
f3

f3

FIGURE 3.8: The Tree Automaton AC / ≡.

Lastly, the authors of [49] showed that the c-continuation and the Top-Down tree au-
tomaton are isomorphic to each other. First of all, they presented the connection between
the position functions and the c-continuations. Then, they found a bijection between the set
of states and a set of transitions of the both tree automata.

We can recapitulate these links in the following figure.

AP

AF

AC

AE

∼F
≡ ∼e

FIGURE 3.9: Relation Between Tree Automata.

3.6 Conclusion

Throughout this chapter, we have shown the transformations of a regular tree expression
into tree automata, by extending the well known construction methods from words to trees
in a Top-Down interpretation which recognize the same language. We have seen the con-
struction of the position tree automata, the generalization of the follow automata, we also
have presented the equation tree automata and the c-continuation tree automata.

In the following chapter, we will introduce new constructions of tree automata from
a regular tree expression which are an extension of the position automata and the follow
automata but upon a Bottom-Up interpretation.

38

4 The Constructions of Bottom-Up
Tree Automata

We define in this chapter two new constructions of tree automata based on a Bottom-Up
interpretation. Such interpretation allows the trees to start the lecture from leaves to

the root.
In Section 4.1, we propose a method based on Glushkov’s one using a Bottom-Up in-

terpretation. Due to the structure of the regular expression we show in Section 4.2 how to
factorize transitions of the constructed Bottom-Up tree automaton. Section 4.3 is devoted to
propose a construction method of a tree automaton called father automaton based on the one
by Ilie and Yu using a Bottom-Up approach. In the similar way as shown in Section 4.2, we
show in Section 4.4 the compact version of the father automaton. Finally, in Section 4.5 we
give a comparison between the Top-Down and the Bottom-Up constructions considering a
family of regular tree expression.

The results of this chapter are published in [5, 6].

4.1 The Position Automaton

As we have seen in the previous chapter, Glushkov [28] showed how to construct a nonde-
terministic finite automaton from a given regular expression. The main idea of the construc-
tion is to define some particular sets named First (containing the symbols starting a word
in the denoted languages), Follow (containing the symbols following a given symbol in the
words in the denoted languages) and Last (containing the symbols ending a word in the
denoted languages) that are computed with respect to the occurrences of the symbols that
appear in the expression.

The Glushkov construction was extended to tree automata in a Top-Down interpreta-
tion [43, 49, 48]. The main idea of this construction is to define sets called First (containing
the roots of the trees in the denoted languages), Follow (containing the symbols following
a given symbol (successors) in the trees in the denoted languages) and Last (containing the
leaves in the trees in the denoted languages).

Throughout this section, we suggest a construction of tree automata from a given regular
tree expression based on Glushkov’s one but in Bottom-Up way.

Definition 4.1.1. The predecessors of a symbol f in a tree t = f (t1, . . . , tk) are the symbols that
appear directly above it, considering that trees grow downwards.

We denote by fathers(t, f), for a tree t and a symbol f the pairs

fathers(t, f) = {(g, i) ∈ Σl ×N | ∃g(s1, . . . , sl) ≺ t, root(si) = f }. (4.1)

The Figure 4.1 shows that the fathers of the symbol f in the tree t contain the couple
(g, i).

Chapter 4. The Constructions of Bottom-Up Tree Automata 39

g

1

s1

2

s2

i

si

f

l

sl

FIGURE 4.1: Illustration of fathers(t, f).

These couples link the predecessors of f and the indices of the subtrees in t whose root
is f .

Let us consider a tree t = g(t1, . . . , tk) and a symbol f . By definition of the structure of
a tree, a predecessor of f in t is a predecessor of f in a subtree ti of t, or g if f is a root of a
subtree ti of t. Consequently:

fathers(t, f) =
⋃
i≤n

fathers(ti, f) ∪ {(g, i) | f = root(ti)}. (4.2)

4.1.1 Position Functions

We define in this part the position functions that are considered in the construction of the
Bottom-Up automaton. We show how to compute them and how they characterize the trees
in the language denoted by a given expression.

Let E be a linear expression over a ranked alphabet Σ and f be a symbol in Σk.

• The set Root(E), subset of Σ, contains the roots of the trees in L(E), i.e.

Root(E) = {root(t) | t ∈ L(E)}. (4.3)

Notice that this set is similar to the set First defined in the previous chapter.

• The set Fathers(E, f), subset of Σ×N, contains a couple (g, i) if there exists a tree in
L(E) with a node labeled by g whose i-th child is a node labeled by f :

Fathers(E, f) =
⋃

t∈L(E)

fathers(t, f). (4.4)

The difference between this set and the Follow set defined in Chapter 3 resides on
the sense of how one could read the next symbols of a given symbol; The successors
which represent the following symbols of a given symbol (related to the set Follow)
or the predecessors which represent the symbols preceding a given symbol (related to
the set Fathers).

Chapter 4. The Constructions of Bottom-Up Tree Automata 40

The regular tree expressions are defined inductively; Therefore, these functions can be
computed in the same way over the structure of the linear expression E. Let us show how
to inductively compute these functions.

Lemma 4.1.1. Let E be a linear regular expression over a ranked alphabet Σ. The set Root(E) is
inductively computed as follows:

Root(f (E1, ..., En)) = { f },
Root(E1 + E2) = Root(E1) ∪ Root(E2),

Root(E1 ·c E2) =

{
Root(E1) \ {c} ∪ Root(E2) if c ∈ L(E1),
Root(E1) otherwise,

Root(E∗c
1) = Root(E1) ∪ {c},

where E1, . . . , En are n regular expressions over Σ, f is a symbol in Σn and c is a symbol in Σ0.

Proof. Let us consider the following cases.

1. The case when E = f (E1, . . . , En) is a direct consequence of Equation (2.1) and Equa-
tion (4.3).

2. Let us consider the case when E = E1 + E2:

Root(E1 + E2) = {root(t) | t ∈ L(E1 + E2)}
= {root(t) | t ∈ L(E1)} ∪ {root(t) | t ∈ L(E2)}
= Root(E1) ∪ Root(E2).

3. Let us consider that E = E1 ·c E2:

Root(E1 ·c E2) = {root(t) | t ∈ L(E1) ·c L(E2)}
= {root(t) | t ∈ t1 ·c L(E2), t1 ∈ L(E1)}

(a) If c ∈ L(E1):

Root(E1 ·c E2) = {root(t) | t ∈ t1 ·c L(E2), t1 ∈ L(E1)}
∪ {root(t) | t ∈ t1 ·c L(E2), t1 6= c, t1 ∈ L(E1)}

= Root(E2) ∪ Root(E1) \ {c}.

(b) If c /∈ L(E1):

Root(E1 ·c E2) = {root(t) | t ∈ t1 ·c L(E2), t1 ∈ L(E1)}
= Root(E1).

4. Let us suppose that E = E∗c
1 :

Root(E∗c
1) ={root(t) | t ∈ L(E∗c

1)}
={root(t) | t = c ∈ L(E1)} ∪ {root(t) | t ∈ t1 ·c L(E∗c

1), t1 6= c, t1 ∈ L(E1)}
={c} ∪ Root(E1).

Chapter 4. The Constructions of Bottom-Up Tree Automata 41

Lemma 4.1.2. Let E be a linear regular expression and f be a symbol in Σk. The set Fathers(E, f)
is inductively computed as follows:

Fathers(g(E1, ..., En), f) =
⋃
i≤n

Fathers(Ei, f) ∪ {(g, i) | f ∈ Root(Ei)},

Fathers(E1 + E2, f) = Fathers(E1, f) ∪ Fathers(E2, f),

Fathers(E1 ·c E2, f) = (Fathers(E1, f) | f 6= c) ∪ Fathers(E2, f)

∪ (Fathers(E1, c) | f ∈ Root(E2))

Fathers(E∗c
1 , f) = Fathers(E1, f) ∪ (Fathers(E1, c) | f ∈ Root(E1)),

where E1, . . . , En are n regular expressions over Σ, g is a symbol in Σn and c is a symbol in Σ0.

Proof. Let us consider the following cases.

1. The case when E = g(E1, . . . , En) is a direct consequence of Equation (4.2) and Equa-
tion (4.3).

2. Let us suppose E = E1 + E2:

Fathers(E1 + E2, f)

= {(g, i) ∈ Σl ×N | ∃t ∈ L(E1 + E2), ∃g(s1, . . . , sl) ≺ t, root(si) = f }
= {(g, i) ∈ Σl ×N | ∃t ∈ L(E1), ∃g(s1, . . . , sl) ≺ t, root(si) = f }
∪ {(g, i) ∈ Σl ×N | ∃t ∈ L(E2), ∃g(s1, . . . , sl) ≺ t, root(si) = f }

= Fathers(E1, f) ∪ Fathers(E2, f).

3. Let us consider E = E1 ·c E2:

Fathers(E1 ·c E2, f)

= {(g, i) ∈ Σl ×N | ∃t ∈ L(E1) ·c L(E2), ∃g(s1, . . . , sl) ≺ t, root(si) = f }
= {(g, i) ∈ Σl ×N | ∃t ∈ t1 ·c L(E2), ∃g(s1, . . . , sl) ≺ t, t1 ∈ L(E1),

root(si) = f }
= {(g, i) ∈ Σl ×N | ∃t1 ∈ L(E1), c ≺ t1, ∃t2 ∈ L(E2), g(s1, . . . , sl) ≺ t2,

root(si) = f }
∪ {(g, i) ∈ Σl ×N | ∃t1 ∈ L(E1), ∃g(s1, . . . , sl) ≺ t1, si 6= c, root(si) = f }
∪ {(g, i) ∈ Σl ×N | ∃t1 ∈ L(E1), ∃g(s1, . . . , si−1, c, . . . , sl) ≺ t1, ∃si ∈ L(E2),

root(si) = f }
= Fathers(E2, f) ∪ (Fathers(E1, f) | f 6= c) ∪ (Fathers(E1, c) | f ∈ Root(E1)).

4. Let us consider the case when E = E∗c
1 :

Fathers(E∗c
1 , f)

= {(g, i) ∈ Σl ×N | ∃t ∈ L(E∗c
1), ∃g(s1, . . . , sl) ≺ t, root(si) = f }

= {(g, i) ∈ Σl ×N | ∃t ∈
⋃
k≥0

L(E1)
c,k, ∃g(s1, . . . , sl) ≺ t, root(si) = f }.

Chapter 4. The Constructions of Bottom-Up Tree Automata 42

Let us set

Sk = {(g, i) ∈ Σl ×N | ∃t ∈ L(E1)
c,k, k ≥ 0, ∃g(s1, . . . , sl) ≺ t, root(si) = f }.

Let us proceed by recursion over k. (a) If k = 0 then S0 = ∅. (b) If k = 1:

S1

= {(g, i) ∈ Σl ×N | ∃t ∈ L(E1)
c,1, ∃g(s1, . . . , sl) ≺ t, root(si) = f }

= {(g, i) ∈ Σl ×N | ∃t ∈ (L(E1) ·c L(E1)
c,0 ∪ L(E1)

c,0), ∃g(s1, . . . , sl) ≺ t,
root(si) = f }

= {(g, i) ∈ Σl ×N | ∃t ∈ t1 ·c {c} ∪ {c}, ∃g(s1, . . . , sl) ≺ t, t1 ∈ L(E1),
root(si) = f }

= {(g, i) ∈ Σl ×N | ∃t ∈ {t1} ∪ {c}, ∃g(s1, . . . , sl) ≺ t, t1 ∈ L(E1),
root(si) = f }

= {(g, i) ∈ Σl ×N | ∃t ∈ L(E1), ∃g(s1, . . . , sl) ≺ t, root(si) = f }
∪ {(g, i) ∈ Σl ×N | ∃t = c, ∃g(s1, . . . , sl) ≺ t, root(si) = f }.

= Fathers(E1, f) ∪∅

Notice that (Fathers(E1, c) | f ∈ Root(E1)) ⊂ Fathers(E1, c).

Thus,

S1 = Fathers(E1, f) ∪ (Fathers(E1, c) | f ∈ Root(E1)).

(c) If k > 1:

Sk

= {(g, i) ∈ Σl ×N | t ∈ (L(E1) ·c L(E1)
c,k−1 ∪ L(E1)

c,k−1), ∃g(s1, . . . , sl) ≺ t
root(si) = f }

= {(g, i) ∈ Σl ×N | t ∈ t1 ·c L(E1)
c,k−1, ∃g(s1, . . . , sl) ≺ t, t1 ∈ L(E1),

root(si) = f }
∪ {(g, i) ∈ Σl ×N | t ∈ L(E1)

c,k−1, ∃g(s1, . . . , sl) ≺ t, root(si) = f }

= (Fathers(Ec,k−1
1 , f) ∪ (Fathers(E1, f) | f 6= c) ∪ (Fathers(E1, c) | f ∈ Root(E1)))

∪ (Fathers(E1, f) ∪ (Fathers(E1, c) | f ∈ Root(E1)))

= Fathers(E1, f) ∪ (Fathers(E1, c) | f ∈ Root(E1)).

Example 4.1.1. Let us consider the ranked alphabet defined by Σ2 = { f }, Σ1 = {g}, and Σ0 =
{a, b}.

Let E and E be the expressions defined by

E = (f (a, a) + g(b))∗a ·b f (g(a), b), E = (f1(a, a) + g2(b))∗a ·b f3(g4(a), b).

Chapter 4. The Constructions of Bottom-Up Tree Automata 43

The language denoted by E is given by

L(E) = {a, f1(a, a), f1(f1(a, a), a), f1(a, f1(a, a)), f1(f1(a, a), f1(a, a)),
g2(f3(g4(a), a))}.

Hence,

Root(E) = Root((f1(a, a) + g2(b))∗a ·b f3(g4(a), b)
= Root((f1(a, a) + g2(b))∗a)

= Root(f1(a, a) + g2(b)) ∪ {a}
= Root(f1(a, a)) ∪ Root(g2(b)) ∪ {a}
= { f1, g2, a},

Fathers(E, f1) = Fathers((f1(a, a) + g2(b))∗a ·b f3(g4(a), b), f1)

= Fathers((f1(a, a) + g2(b))∗a , f1) ∪ Fathers(f3(g4(a), b), f1)

= Fathers(f1(a, a) + g2(b), f1) ∪ Fathers(f1(a, a) + g2(b), a)
∪ Fathers(f3(g4(a), b), f1)

= Fathers(f1(a, a), f1) ∪ Fathers(g2(b), f1) ∪ Fathers(f1(a, a), a)
∪ Fathers(g2(b), a) ∪ Fathers(f3(g4(a), b), f1)

= {(f1, 1), (f1, 2)},

Chapter 4. The Constructions of Bottom-Up Tree Automata 44

Fathers(E, a) = Fathers((f1(a, a) + g2(b))∗a ·b f3(g4(a), b), a)
= Fathers((f1(a, a) + g2(b))∗a , a) ∪ Fathers(f3(g4(a), b), a)
= Fathers(f1(a, a) + g2(b), a) ∪ Fathers(f3(g4(a), b), a)
= Fathers(f1(a, a), a) ∪ Fathers(g2(b), a) ∪ Fathers(f3(g4(a), b), a)
= {(f1, 1), (f1, 2)} ∪ {(g4, 1)}
= {(f1, 1), (f1, 2), (g4, 1)},

Fathers(E, g2) = Fathers((f1(a, a) + g2(b))∗a ·b f3(g4(a), b), g2)

= Fathers((f1(a, a) + g2(b))∗a , g2) ∪ Fathers(f3(g4(a), b), g2)

= Fathers(f1(a, a) + g2(b), g2) ∪ Fathers(f1(a, a) + g2(b), a)
∪ Fathers(f3(g4(a), b), g2)

= Fathers(f1(a, a), g2) ∪ Fathers(g2(b), g2) ∪ Fathers(f1(a, a), a)
∪ Fathers(g2(b), a) ∪ Fathers(f3(g4(a), b), g2)

= {(f1, 1), (f1, 2)},

Fathers(E, b) = Fathers((f1(a, a) + g2(b))∗a ·b f3(g4(a), b), b)
= Fathers(f3(g4(a), b), b)
= {(f3, 2)},

Fathers(E, f3) = Fathers((f1(a, a) + g2(b))∗a ·b f3(g4(a), b), g2)

= Fathers((f1(a, a) + g2(b))∗a , f3) ∪ Fathers(f3(g4(a), b), f3)

∪ Fathers((f1(a, a) + g2(b))∗a , b)
= Fathers((f1(a, a) + g2(b))∗a , b)
= Fathers((f1(a, a) + g2(b), b)
= Fathers(f1(a, a), b) ∪ Fathers(g2(b), b)
= {(g2, 1)},

Fathers(E, g4) = Fathers((f1(a, a) + g2(b))∗a ·b f3(g4(a), b), g2)

= Fathers((f1(a, a) + g2(b))∗a , g4) ∪ Fathers(f3(g4(a), b), g4)

= Fathers(f3(g4(a), b), g4)

= {(f3, 1)}.

The membership of a tree t in the language denoted by a linear expression E can be
characterized by the fact that the root of each of its subtrees t′ is the father of the roots of its
direct subtrees, formally:

Definition 4.1.2. Let E be a linear expression over a ranked alphabet Σ and t be a tree in TΣ. The
property PE(t) is the property defined by

∀s = f (t1, . . . , tn) ≺ t, ∀i ≤ n, (f , i) ∈ Fathers(E, root(ti)).

Proposition 4.1.1. Let E be a linear expression over a ranked alphabet Σ and t be a tree in TΣ. Then
the two following conditions are equivalent:

1. t is in L(E),

Chapter 4. The Constructions of Bottom-Up Tree Automata 45

2. root(t) is in Root(E) and PE(t) is satisfied.

Proof. Let us first notice that the proposition 1 ⇒ 2 is direct by definition of Root and
Fathers. Let us show the second implication by induction over the structure of E. Hence, let
us suppose that root(t) is in Root(E) and PE(t) is satisfied.

• Let us consider the case when E = g(E1, . . . , En) and let us set t = f (t1, . . . , tn). Since
root(t) is in Root(E), f = g from Lemma 4.1.1. From PE(t), it holds that for any
i ≤ n, (f , i) ∈ Fathers(E, root(ti)). Since E is linear, and following Lemma 4.1.2,
root(ti) ∈ Root(Ei). Consequently, from the induction hypothesis, ti is in L(Ei) for
any integer i ≤ n and t belongs to L(E).

• The case of the sum is a direct application of the induction hypothesis.

• Let us consider the case when E = E1 ·c E2. Let us first suppose that root(t) is in
Root(E2). Then c is in L(E1) and PE(t) is equivalent to

∀s = f (t1, . . . , tn) ≺ t, ∀i ≤ n, (f , i) ∈ Fathers(E2, root(ti)).

By induction hypothesis t is in L(E2) and therefore in L(E).

Let us suppose now that root(t) is in Root(E1). Since E is linear, let us consider the
subtrees t2 of t with only symbols of E2 and a symbol of E1 as a predecessor in t.
Since P(t) holds, according to induction hypothesis and Lemma 4.1.2, each of these
trees belongs to L(E2). Hence t belongs to t1 ·c L(E2) where t1 is equal to t where the
previously defined t2 trees are replaced by c. Once again, since PE(t) holds and since
root(t) is in Root(E1), t1 belongs to L(E1).

In these two cases, t belongs to L(E).

• Let us consider the case when E = E∗c
1 . Let us proceed by induction over the structure

of t. If t = c, the proposition holds from Lemma 4.1.1 and Lemma 4.1.2. Following
Lemma 4.1.2, each predecessor of a symbol f in t is a predecessor of f in E1 (case 1) or
a predecessor of c in E1 (case 2). If all the predecessors of the symbols satisfy the case
1, then by induction hypothesis t belongs to L(E1) and therefore to L(E). Otherwise,
we can consider (similarly to the concatenation product case) the smallest subtrees
t2 of t the root of which admits a predecessor in t which is a predecessor of c in E1.
By induction hypothesis, these trees belong to L(E1). And consequently t belongs to
t′ · · · L(E1) where t′ is equal to t where the subtrees t2 have been substituted by c.
Once again, by induction hypothesis, t′ belongs to L(E∗c

1). As a direct consequence, t
belongs to L(E).

4.1.2 The Bottom-Up Position Tree Automaton

In this part, we show how to compute a Bottom-Up automaton with a linear number of
states from the position functions previously defined.

Definition 4.1.3. The Bottom-Up position automaton PE of a linear expression E over a ranked
alphabet Σ is the automaton (Σ, Pos(E), Root(E), δ) defined by:

((f1, . . . , fn), g, h) ∈ δ⇔ h = g, (g, i) ∈ Fathers(E, fi), ∀i ≤ n.

Notice that due to the linearity of E, PE is deterministic.

Chapter 4. The Constructions of Bottom-Up Tree Automata 46

Example 4.1.2. The Bottom-Up position automaton of the expression E defined in Example 4.1.1 is
defined as follows:

The set of states is
Pos(E) = {a, b, f1, g2, f3, g4},

The set of final states is
Root(E) = {a, f1, g2},

The set of transition rules is

δ = {(a, a), (b, b), ((a, a), f1, f1), ((a, f1), f1, f1), ((a, g2), f1, f1), ((f1, a), f1, f1),
((f1, f1), f1, f1), ((f1, g2), f1, f1), ((g2, a), f1, f1), ((g2, f1), f1, f1),
((g2, g2), f1, f1), (f3, g2, g2), ((b, g4), f3, f3), (a, g4, g4)}.

The Bottom-Up position automaton is given in Figure 4.2.

f1

g2

f3

b

g4

aa

b

g2

g4

f1 f1 f1

f1

f1

f1

f1

f1

f1

f3

FIGURE 4.2: The Bottom-Up Position Automaton of the Expression (f1(a, a) +
g2(b))∗a ·b f3(g4(a), b).

Let us now show that the position automaton of E recognizes L(E).

Lemma 4.1.3. Let PE = (Σ, Q, F, δ) be the Bottom-Up position automaton of a linear regular
expression E over a ranked alphabet Σ, t be a tree in TΣ and f be a symbol in Pos(E). Then the two
following conditions are equivalent

1. f ∈ ∆(t),

2. root(t) = f∧ PE(t).

Proof. Let us proceed by induction over the structure of t = f (t1, . . . , tn). By definition,
∆(t) = δ(∆(t1), . . . , ∆(tn), f). For any state fi in Q, it holds from the induction hypothesis
that

fi ∈ ∆(ti)⇔ root(ti) = fi ∧ PE(ti). (*)

Chapter 4. The Constructions of Bottom-Up Tree Automata 47

Then, suppose that (1) holds (i.e. f ∈ ∆(t)). Equivalently, there exists by definition of PE
and of the proposition PE(t) a transition ((f1, . . . , fn), f , f) in δ such that fi is in ∆(ti) for any
integer i ≤ n. Consequently, f is the root of t. Moreover, from the equivalence stated in
Equation (*), root(ti) = fi and PE(ti) holds for any integer i ≤ n. Finally and equivalently,
PE(t) holds as a consequence of Equation (4.2). The reciprocal condition can be proved
similarly since only equivalences are considered.

As a direct consequence of Lemma 4.1.3 and Proposition 4.1.1,

Proposition 4.1.2. The Bottom-Up position automaton of a linear expression E is an automaton
with |Pos(E)| states that recognizes L(E).

The Bottom-Up position automaton of a (not necessarily linear) expression E can be ob-
tained by first computing the Bottom-Up position automaton of its linearized expression E
and then by applying the alphabetical morphism h.

4.2 The Compressed Position Tree Automaton

In this section, we show that the structure of an expression allows us to factorize the transi-
tions of a tree automaton by only considering the values of the Fathers function.

Indeed, let us notice that the transition structure of the Bottom-Up position automaton
(for E linear) satisfies the following property: for any symbol f ∈ Σk, the set of transitions

∆ f = δ ∩Q× { f } × {q}

has the form
∆ f = Q1 ×Q2 × . . .×Qk × { f } × {q}

for certain sets Qi ⊆ Q and a certain state q.
From this structure, let us show how to define a factorization method by defining a new

automaton structure.
The basic idea of the factorization is to consider the cartesian product of sets. Notice that

this technique has already been used to optimize the determinization of tree automata [27,
26].

Imagine that a tree automaton contains four binary transitions (q1, q1, f , q3), (q1, q2, f , q3),
(q2, q1, f , q3) and (q2, q2, f , q3). These four transitions can be factorized as a compressed tran-
sition ({q1, q2}, {q1, q2}, f , q3) using set of states instead of sets as it is shown in Figure 4.3
and 4.4.

The compressed transitions are graphically represented as follows: each starting set is
represented by dashed arcs from its elements to a second part that is classically represented
as an hyper-transition.

The compressed transition ({q1, q2}, {q1, q2}, f , q3) is represented by two dashed parts
(two dashed arcs for the set {q1, q2} and two for {q1, q2}) that respectively join before repre-
senting the f -labelled part.

Chapter 4. The Constructions of Bottom-Up Tree Automata 48

q1

q2 q3

f

1

2

f1

2

f

1

2

f1

2

FIGURE 4.3:
Before Factoriza-

tion.

q1

q2 q3
f

1

2

FIGURE 4.4: After Factor-
ization.

The behavior of the original automaton can be simulated by considering the cartesian
product of the origin states of the transition.

However, the notion of compression does not work for all families of automata. There is
a family of automata An = (Σ, Q, F, ∆ f) where we can write ∆ f as the union of |Q|k many
such sets, only by considering Q = {0, 1}n and (q1, . . . , qk, f , q) ∈ ∆ f if and only if

q1 ⊕ q2 ⊕ q3 . . .⊕ qk ⊕ q = 0

where qi is a n-bit vector and ⊕ is the bit-wise exclusive or.
We first show how to encode such a notion of compressed automaton and how it can be

used in order to solve the membership test.

Definition 4.2.1. A compressed tree automaton over a ranked alphabet Σ is a 4-tuple (Σ, Q, F, δ)
where Q is a set of states, F ⊂ Q is the set of final states, δ ⊂ (2Q)n × Σn × Q is the set of
compressed transitions that can be seen as a function from (2Q)k × Σk to 2Q defined by

(Q1, . . . , Qk, f , q) ∈ δ⇔ q ∈ δ(Q1, . . . , Qk, f)

Example 4.2.1. Let us consider the compressed automaton A = (Σ, Q, F, δ) shown in Figure 4.5.
Its transitions are

δ = {({1, 2, 5}, {3, 4}, f , 1), ({2, 3, 5}, {4, 6}, f , 2),
({1, 2}, {3}, f , 5), ({6}, g, 4), ({6}, g, 5), (a, 6), (a, 4), (b, 3)}.

Chapter 4. The Constructions of Bottom-Up Tree Automata 49

2

1

5

4

3

6

b

a

a

f

f

g
g

f

FIGURE 4.5: The Compressed Automaton A.

The transition function δ can be restricted to a function from Qn × Σn to 2Q (e.g. in
order to simulate the behavior of an uncompressed automaton) by considering for a tuple
(q1, . . . , qk) of states and a symbol f in Σk all the "active" transitions (Q1, . . . , Qk, f , q), that
are the transitions where qi is in Qi for i ≤ k. More formally, for any k states (q1, . . . , qk) in
Qk, for any symbol f in Σk,

δ(q1, . . . , qk, f) =
⋃

(Q1,...,Qk , f ,q)∈δ,
∀i≤k,qi∈Qi

{q}. (4.5)

The transition set δ can be extended to a function ∆ from TΣ to 2Q by inductively considering,
for a tree f (t1, . . . , tk) the "active" transitions (Q1, . . . , Qk, f , q) once a subtree is read, that is
when ∆(qi) and Qi admits a common state for i ≤ k. More formally, for any tree t =
f (t1, . . . , tk) in TΣ,

∆(t) =
⋃

(Q1,...,Qk , f ,q)∈δ,
∀i≤k,∆(ti)∩Qi 6=∅

{q}.

As a direct consequence of the two previous equations,

∆(f (t1, . . . , tn)) =
⋃

(q1,...,qn)∈∆(t1)×···×∆(tn)

δ(q1, . . . , qn, f). (4.6)

Chapter 4. The Constructions of Bottom-Up Tree Automata 50

The language recognized by a compressed automaton A = (Σ, Q, F, δ) is the subset L(A)
of TΣ defined by

L(A) = {t ∈ TΣ | ∆(t) ∩ F 6= ∅}.

Example 4.2.2. Let us consider the automaton of Figure 4.5 and let us show that the tree t =
f (f (b, a), g(a)) belongs to L(A).

In order to do so, let us compute ∆(t′) for each subtree t′ of t. First, by definition,

∆(a) = {4, 6}, ∆(b) = {3}.

Since the only transition in δ labeled by f containing 3 in its first origin set and 4 or 6 in its second
is the transition ({2, 3, 5}, {4, 6}, f , 2),

∆(f (b, a)) = {2}.

Since the two transitions labeled by g are ({6}, g, 4) and ({6}, g, 5),

∆(g(a)) = {4, 5}.

Finally, there are two transitions labeled by f containing 2 in their first origin and 4 or 5 in its
second: ({2, 3, 5}, {4, 6}, f , 2) and ({1, 2, 5}, {3, 4}, f , 1). Therefore

∆(f (f (b, a), g(a))) = {1, 2}.

Finally, since 1 is a final state, t ∈ L(A).

Let φ be an alphabetical morphism between two alphabets Σ and Σ′. The image by φ of a
compressed automaton A = (Σ, Q, F, δ) is the compressed automaton φ(A) = (Σ′, Q, F, δ′)
where

δ′ = {(Q1, . . . , Qn, φ(f), q) | (Q1, . . . , Qn, f , q) ∈ δ}.

By a trivial induction over the structure of the trees, it can be shown that

L(φ(A)) = φ(L(A)). (4.7)

Due to their inductive structure, regular expressions are naturally factorizing the structure
of transitions of a position automaton.

Let us now define the compressed position automaton of an expression.

Definition 4.2.2. The compressed Bottom-Up position automaton C(E) of a linear expression
E is the automaton (Σ, Q, Root(E), δ) defined by

δ = {(Q1, . . . , Qk, f , { f }) | Qi = {g | (f , i) ∈ Fathers(E, g)}}.

Example 4.2.3. Let us consider the expression E defined in Example 4.1.1. The compressed automa-
ton of E is represented at Figure 4.6. Its transitions are

δ = (a, {a}), (b, {b}), ({a, f1, g2}, {a, f1, g2}, f1, { f1}),
({g4}, {b}, f3, { f3}), ({ f3}, g2, {g2}), ({a}, g4, {g4}).

Chapter 4. The Constructions of Bottom-Up Tree Automata 51

f1

g2

f3

bg4

aa

b

g2

g4

f1
f3

FIGURE 4.6: The Compressed Automaton of the Expression (f1(a, a) +
g2(b))∗a ·b f3(g4(a), b).

As a direct consequence of Definition 4.2.2 and of Equation (4.5),

Lemma 4.2.1. Let E be a linear expression over a ranked alphabet Σ. Let C(E) = (Σ, Q, F, δ). Then,
for any n states (q1, . . . , qn) in Qn, for any symbol f in Σk,

δ(q1, . . . , qn, f) = { f } ⇔ ∀i ≤ n, (f , i) ∈ Fathers(E, qi).

Consequently, considering Definition 4.1.3, Lemma 4.2.1 and Equation (4.6),

Proposition 4.2.1. Let E be a linear expression over a ranked alphabet Σ. Let PE = (_, _, _, δ) and
C(E) = (_, _, _, δ′). For any tree t in TΣ,

∆(t) = ∆′(t).

Since the Bottom-Up position automaton of a linear expression E and its compressed
version have the same states and the same final states,

Corollary 4.2.1. The position automaton of an expression and its compact version recognize the
same language.

The compressed Bottom-Up position automaton of a (not necessarily linear) expression
E can be obtained by first computing the compressed Bottom-Up position automaton of
its linearized expression E and then by applying the alphabetical morphism h. Therefore,
considering Equation (4.7),

Proposition 4.2.2. The compressed Bottom-Up position automaton of a regular expression E is an
automaton with |Pos(E)| states and |(Pos(E)| transitions that recognizes L(E).

4.3 The Father Automaton

In this section, we define the father automaton associated with an expression which is an
extension of the classical follow (word) automaton [35] that has already been extended in
the case of Top-Down tree automata [49].

We embed the computation of the function Root in the function Fathers by adding a
unary symbol $ which is not in Σ located at the top of the syntactic tree of an expression.

Chapter 4. The Constructions of Bottom-Up Tree Automata 52

Indeed,
f ∈ Root(E)⇔ ($, 1) ∈ Fathers($(E), f). (4.8)

Equivalently,

Lemma 4.3.1. Let f be a state of the position automaton of a linear expression E. The two following
conditions are equivalent:

1. f is a final state,

2. ($, 1) is in Fathers($(E), f).

With this notation, the father automaton is defined as follows.

Definition 4.3.1. The father automaton of a linear expression E over an alphabet Σ is the automa-
ton FE = (Σ, Q, F, δ) defined by

Q = {Fathers($(E), f) | f ∈ Σ}, F = {q ∈ Q | ($, 1) ∈ q},
((Fathers($(E), f1), . . . , Fathers($(E), fn)), g, Fathers($(E), h)) ∈ δ

⇔ h = g, ∀i ≤ n, (g, i) ∈ Fathers(E, fi).

Notice that due to the linearity of E, FE is deterministic.
In the word case, it has been shown that the follow automaton is a quotient of the posi-

tion automaton [35].
Let us proceed in the same way in order to show that the father automaton of an ex-

pression E recognizes L(E). Consequently, let us first recall how to extend the notion of
congruence for tree automata, considering the notion of forward bisimulations [33].

Let A = (Σ, Q, F, δ) be a deterministic tree automaton and ∼ be an equivalence relation
over Q included in (F× F) ∪ (Q \ F)× (Q \ F). Given an equivalence relation ∼ over a set
S, we denote by S∼ the set of equivalence classes of S and by [p]∼ (or [p] when there is no
ambiguity) the equivalence class of an element p in P.

The relation ∼ is a forward bisimulation [33] for δ if and only if for any two equivalent
states p and p′ in Q, it holds : for any symbol f in Σm, for any integer n ≤ m, for any m− 1
states q1, . . ., qn−1, qn+1, . . ., qm in Q,

δ((q1, . . . , qn−1, p, qn+1, . . . , qm), f) ∼ δ((q1, . . . , qn−1, p′, qn+1, . . . , qm), f).

According to [1], two congruent states are said to be interchangeable.
The quotient automaton of A w.r.t. ∼ is the automaton A∼ = (Σ, Q∼, F∼, δ∼) with

δ∼(([q1], . . . , [qm]), f) = {[q] | q ∈ δ((q1, . . . , qm), f)}. (4.9)

Proposition 4.3.1 ([33]). For any tree automaton A, for any forward bisimulation∼, A∼ recognizes
L(A).

Let us now show how to obtain the father automaton by quotienting the position au-
tomaton w.r.t. the following congruence.

Definition 4.3.2. The father congruence associated with a linear expression E over an alphabet Σ
is the congruence ∼ defined for any symbols p,p′ in Σ by

p ∼ p′ ⇔ Fathers($(E), p) = Fathers($(E), p′).

Proposition 4.3.2. The father congruence of a linear expression E is a forward bisimulation for the
transition function of the position automaton of E.

Chapter 4. The Constructions of Bottom-Up Tree Automata 53

Proof. First, let us notice that following Lemma 4.3.1, two equivalent states have the same
finality. Moreover, two states are equivalent if and only if they admit the same fathers.
Consequently, from the construction of the position automaton (Definition 4.1.3), for any
two equivalent states p and p′ ∈ Q, it holds: for any symbol f in Σm, for any integer n ≤ m,
for any m− 1 states q1, . . ., qn−1, qn+1, . . ., qm in Q,

δ((q1, . . . , qn−1, p, qn+1, . . . , qm), f) = δ((q1, . . . , qn−1, p′, qn+1, . . . , qm), f).

Since ∼ is reflexive, it is a forward bisimulation.

Proposition 4.3.3. The father automaton associated with a linear expression E is isomorphic to the
quotient of the position automaton of E w.r.t. the father congruence.

Proof. Let us set

PE = (_, _, _, δ), PE∼ = (_, _, _, δ∼) FE = (_, _, _, δ′).

Let us consider the functions φ and φ′ defined as follows

φ([f]) = Fathers($(E), f), φ′(Fathers($(E), f)) = [f].

Notice that since f ∼ f ′ ⇔ Fathers($(E), f) = Fathers($(E), f ′), the functions are both
well-defined. Moreover, they are trivially the inverse of each other. Furthermore, since

f ∼ f ′ ⇒ (($, 1) ∈ Fathers($(E), f)⇔ ($, 1) ∈ Fathers($(E), f ′)),

φ preserves the finality of the states. Finally,

(([f1], . . . , [fn]), g, [g]) ∈ δ∼
(Equation (4.9))⇔ ((f1, . . . , fn), g, g) ∈ δ

(Definition 4.1.3)⇔ ∀i ≤ n, (g, i) ∈ Fathers(E, fi)

(Definition 4.3.1)⇔ ((Fathers($(E), f1), . . . , Fathers($(E), fn)), g, Fathers($(E), g)) ∈ δ′.

Hence φ and φ′ are two inverse automata morphisms between PE∼ and FE.

As a direct consequence of Proposition 4.3.1, Proposition 4.3.2 and Proposition 4.3.3,

Corollary 4.3.1. The father automaton associated with a linear expression E recognizes L(E).

Applying the delinearization morphism h from FE produces the father automaton of
any expression E. Finally, from Equation (2.13),

Corollary 4.3.2. The father automaton associated with an expression E recognizes L(E).

Example 4.3.1. The father automaton (Pos(E), Pos(E)∼, Root(E)∼, δ) of the expression E defined
in Example 4.1.1 is obtained by merging the states f1 and g2 of PE, i.e.:

Pos(E) = {[a], [b], { f1, g2}, [f3], [g4]}, Root(E) = {[a], [f1]},
δ = {(a, [a]), (b, [b]), (([a], [a]), f1, [f1]), (([a], [f1]), f1, [f1]), (([f1], a), f1, [f1]),

(([f1], [f1]), f1, [f1]), ([f3], g2, [g2]), (([b], [g4]), f3, [f3]), ([a], g4, [g4])}.

The Bottom-Up father automaton is given in Figure 4.7.

Chapter 4. The Constructions of Bottom-Up Tree Automata 54

{ f1, g2}

[f3]

[b][g4]

[a]

a

b

g2

g4

f1

f1

f1

f1

f1

FIGURE 4.7: The Bottom-Up Father Automaton of the Expression (f1(a, a) +
g2(b))∗a ·b f3(g4(a), b).

4.4 The Compressed Father Tree Automaton

We show in this section that the father automaton can be compressed too in the same way
as used with the position automaton.

Definition 4.4.1. The compressed father automaton CF (E) of a linear expression E is the au-
tomaton (Σ, Pos(E), Root(E), δ) defined by

δ = {(Q1, . . . , Qk, f , {Fathers($(E), f)})
| Qi = {Fathers($(E), g) | (f , i) ∈ Fathers($(E), g)}}.

In order to show that CF (E) recognizes L(E), we can apply the same method as for the
father automaton. First, due to Equation 4.5, the definition of a forward bisimulation for A
is exactly the same (Equation (4.3)).

The quotient of a compressed automaton A = (Σ, Q, F, δ) w.r.t. a forward bisimulation ∼
is the compressed automaton A∼ = (Σ, Q∼, F∼, δ′) where

δ′((Q1, . . . , Qm), f) = {φ(q) | q ∈ δ((q1, . . . , qm), f) ∧ ∀i ≤ m, [qi] ∈ Qi}.

Similarly to Lemma 4.2.1 and Proposition 4.2.1, it can be shown that

Proposition 4.4.1. The compressed father automaton is a quotient of the compressed position au-
tomaton w.r.t. the father congruence.

As a direct corollary,

Corollary 4.4.1. The compressed father automaton and the father automaton of a linear expression
E recognize L(E).

Applying the delinearization morphism h from CF E produces the compressed father
automaton of any expression E. Finally, according to Equation (4.7),

Chapter 4. The Constructions of Bottom-Up Tree Automata 55

Proposition 4.4.2. The compressed father automaton and the father automaton of an expression E
recognize L(E).

Example 4.4.1. Let us consider the expression E defined in Example 4.1.1. The compressed father
automaton of E is represented by Figure 4.8.

{ f1, g2}

[f3]

[b][g4]

[a]a

b

g2

g4

f1
f3

FIGURE 4.8: The Compressed Father Automaton of the Expression (f1(a, a) +
g2(b))∗a ·b f3(g4(a), b).

4.5 Comparison with the Top-Down Automata

In this section, we exhibit a parameterized family of expressions in order to compare the
size of the Top-Down and Bottom-Up position automata.

Let us now consider the expressions

En = (
n

∑
1

g(a))∗a ·a (
n

∑
1

f (a, a)), En = (
n

∑
i=1

gi(a))∗a ·a (
n

∑
i=1

fn+i(a, a)).

It can be shown that

Root(En) = {g1, . . . , gn, fn+1, . . . , f2n},
Fathers(En, f_) = Fathers(En, g_)

= {(g1, 1), . . . , (gn, 1)},
Fathers(En, a) = {(fn+1, 1), (fn+1, 2), . . . , (f2n, 1), (f2n, 2)},

Follow(En, g_, 1) = {g1, . . . , gn, fn+1, . . . , f2n},
Follow(En, f_, 1) = Follow(En, f_, 2)

= {a}.

Therefore,

Chapter 4. The Constructions of Bottom-Up Tree Automata 56

Automata # states # transitions Figure
Top-Down Position Tree Automaton 3n + 1 2n2 + 4n 4.9
Bottom-Up Position Tree Automaton 2n + 1 2n2 + n + 1 4.10
Top-Down Follow Tree Automaton 2 3 4.12
Bottom-Up Father Tree Automaton 2 3 4.12

Compressed Bottom-Up Position Tree Automaton 2n + 1 2n + 1 4.11
Compressed Bottom-Up Father Tree Automaton 2 3 4.12

TABLE 4.1: Comparison between Top-Down and Bottom-Up Tree Automata.

ε

g1
1

g1
2

f 1
3 f 2

3

f 1
4

f 2
4

a a

a

a

g

g

g

g

g

g

f

f

f

f

ff

FIGURE 4.9: The Top-Down Position Automaton of E2.

g1 g2

f4

a

f3

g

g

gg g g

g g

f f

a

FIGURE 4.10: The Bottom Up Position Automaton of E2.

Chapter 4. The Constructions of Bottom-Up Tree Automata 57

g2

g1

f4

a

f3

a

g

g

f f

FIGURE 4.11: The Compressed Bottom Up Position Automaton of E2.

{g1, g2, f3, f4}

{a}a

g

f

FIGURE 4.12: The Father Automaton of E2.

This family shows that the Bottom-Up position automaton can be smaller than the Top-
Down position automaton, and that the father automaton can be smaller than the com-
pressed version of the Bottom-Up position automaton.

However, to confirm it in the general case we have to carry out a thorough study. For
example, we have to find a generator of regular tree expressions in order to make a compar-
ative study on average.

4.6 Conclusion

In this chapter, we have shown how to compute the Bottom-Up position automaton and the
father automaton associated with a regular expression respectively in Section 4.1 and Sec-
tion 4.3. These constructions are relatively similar to the classical ones defined over a word
expression [28, 35]. Moreover, we have defined a factorization method by considering the
"cartesian product" to compress the transitions of the constructed Bottom-Up automata. Fur-
thermore, we showed that the father automaton is the quotient of the Bottom-Up position
automaton and this relation still valid in their compact versions.

Chapter 4. The Constructions of Bottom-Up Tree Automata 58

Finally, a comparative study between Top-Down position automaton, Bottom-Up posi-
tion automaton, father automaton and their compact versions has been established by con-
sidering a family of regular tree expressions.

In Chapter 5, we extend Brzozowski derivatives [13] and Antimirov partial derivatives [2]
in a Bottom-Up way (in a different way from [42]), using the Bottom-Up quotient defined
in [49].

59

5 Bottom-Up Derivatives

In this chapter, we extend the notion of word derivatives due to Brzozowski to tree deriva-
tives using already known inductive formulae of quotients defined in [19]. In Section 5.1,
we define some restrictions of the well known Boolean operations. Section 5.2 is dedicated
to introduce the extended tree expressions after adding some restrictions to the classical tree
expressions. The construction of the derivative tree automaton from a given extended tree
expression is given in Section 5.3. The results of this chapter are published in [4].

5.1 Boolean Operations

In this section, we will consider particular restrictions of Boolean operations such as union,
intersection, complement, etc., based on the combination of homogeneous languages with
the same ε-indices.

For example, given a k-homogeneous language L, we denote by ¬L the set

¬L = {t ∈ TΣk | t /∈ L, Indε(t) = Indε(L)}. (5.1)

The computation of the Bottom-Up quotient of a complemented language is given as
follows.

Proposition 5.1.1. Let L be an homogeneous language over Σ and t ∈ TΣ. Then

t−1(¬L) = ¬(t−1(L)).

Proof. Let t′′ be a tree in TΣ such that

Indε(t′′) = {1, (xz + 1)1≤z≤k′−k}.

Then

t′′ ∈ t−1(¬L)⇔ t′′ ◦ (t, (εxz)1≤z≤k−k′) ∈ ¬L

⇔ t′′ ◦ (t, (εxz)1≤z≤k−k′) /∈ L

⇔ t′′ /∈ t−1(L)

⇔ t′′ ∈ ¬(t−1(L)).

As a direct consequence, following Equation (2.7), we get the following result.

Corollary 5.1.1. Let (L1, . . . , Lk) be k-homogeneous languages with the same ε-indices and let op
be a Boolean operation. Then for any tree t in TΣ

t−1(op(L1, . . . , Lk)) = op(t−1(L1), . . . , t−1(Lk)).

Chapter 5. Bottom-Up Derivatives 60

5.2 Extended Tree Expressions

In this section, we integrate the homogeneous Boolean operations to tree expressions in
order to obtain the extended homogeneous tree expressions and then we show how to compute
them.

Imagine that we want to determine whether ε j belongs to a given language or not: for
instance, how can we decide whether ε j belongs to ¬∅ or not? The complementation func-
tion needs to know the ε-index set of the language it complements. As a solution, we can
index all the occurrences of the empty set by the set of ε-indices.

Definition 5.2.1. An extended homogeneous tree expression (tree expression for short) E over
Σ is inductively defined by

E = f (E1, . . . , En), E = ε j, E = ∅I ,

E = op(E1, . . . , En), E = E′ ◦ (E1, . . . , En), E = E~
1 ,

E = E1 ·a E2, E = E∗a
1 ,

(5.2)

where f is a symbol in Σn, (E′, E1, . . . , En) are (n + 1) tree expressions over Σ, j is a positive integer,
I is a set of integers, op is a n-ary Boolean operator and a is a symbol in Σ0. We denote the expression
∅∅ by ∅.

The ε-indices set Indε(E) of a tree expression E, that we use to distinguish tree expres-
sions, is inductively defined, following Equation (5.2), by

Indε(ε j) = {j}, Indε(∅I) = I ,

Indε(E1 ·a E2) = Indε(E1) ∪ Indε(E2), Indε(E~
1) = Indε(E∗a

1) = Indε(E1),
Indε(f (E1, . . . , En)) = Indε(op(E1, . . . , En))

= Indε(E′ ◦ (E1, . . . , En))

=
⋃

1≤k≤n

Indε(Ek).

In the following, we restrict the set of tree expressions that we deal with in order to simplify
the different computations; The tree expressions defined above does not guarantee that the
language denoted by the tree expression is homogeneous. That is why we define the notion
of valid tree expression, that rejects non-homogeneous tree expressions. For example, the
expression E1 ·a E2 is valid if and only if the expressions E1 and E2 are valid and E2 is 0-
homogeneous tree expression. Moreover, the expression E~

1 is valid if and only if E1 is valid
and it is 1-homogeneous tree expression (i.e. |indε(E1)| = 1) and so on. More formally:

Definition 5.2.2. A tree expression E is valid if it satisfies the predicate V(E) inductively defined,
following Equation (5.2), by

V(ε j) = V(∅I) = True,

V(f (E1, . . . , En)) = (
∧

1≤k≤n

V(Ek)) ∧ (
∧

1≤k<k′≤n

(Indε(Ek) ∩ Indε(Ek′) = ∅)),

V(op(E1, . . . , En)) = (
∧

1≤k≤n

V(Ek)) ∧ (
∧

1≤k<n

(Indε(Ek) = Indε(Ek+1))),

Chapter 5. Bottom-Up Derivatives 61

V(E′ ◦ (E1, . . . , En)) = V(E′) ∧ (
∧

1≤k≤n

V(Ek)) ∧ (Card(Indε(E′)) = n)

∧ (
∧

1≤k<k′≤n

(Indε(Ek) ∩ Indε(Ek′) = ∅)),

V(E~
1) = V(E1) ∧ (Card(Indε(E1)) = 1),

V(E1 ·a E2) = V(E1) ∧V(E2) ∧ (Indε(E2) = ∅),
V(E∗a

1) = V(E1) ∧ (Indε(E1) = ∅).

The language L(E) denoted by a valid tree expression E with an ε-index set I is induc-
tively defined by

L(f (E1, . . . , En)) = f (L(E1), . . . , L(En)), L(ε j) = {ε j},
L(op(E1, . . . , En)) = op′(L(E1), . . . , L(En)), L(∅I) = ∅,

L(E′ ◦ (E1, . . . , En)) = L(E′) ◦ (L(E1), . . . L(En)), L(E~
1) = (L(E1))

~,
L(E1 ·a E2) = L(E1) ·a L(E2), L(E∗a

1) = (L(E1))
∗a ,

where f is a symbol in Σn, (E′, E1, . . . , En) are (n + 1) tree expressions over Σ, j is a positive
integer, op is a n-ary Boolean operator, op′ is a n-ary Boolean operation over homogeneous
languages with I as ε-index set (e.g. Equation (5.1)) and a is a symbol in Σ0. From these
definitions, we can define the derivation formulae for valid tree expressions w.r.t. symbols
and trees as a syntactical transcription of the quotient formulae.

The difference between the derivation that we will present and the one introduced by
Kuske and Meinecke [42] resides on the direction of this operation: instead of deriving from
root to leaves we delete symbols from leaves to root and an internal node is omitted if and
only if their sons are deleted.

Definition 5.2.3. Let E be a valid tree expression and j be an ε-index of E. Then dε j(E) is obtained
by incrementing all the ε-indices of E by 1 except ε j which is replaced by ε1.

Definition 5.2.4. Let α be a symbol in Σn and F be a valid tree expression over Σ containing
{1, . . . , n} as ε-indices. The derivative of F w.r.t. to α is the expression inductively defined by

dα(∅I) = ∅{1}∪{i+1|i>n,i∈I},

dα(ε1) = ∅{1},

dα(α(ε1, . . . , εn)) = ε1,

dα(f (E1, . . . , Em)) = ∑
1≤j≤n

f (E1, . . . , Ej−1, dα(tj), Ej+1, . . . , Em),

+ ε1 if α = f ∧ ∀i ≤ m, ε i ∈ L(Ei),
dα(op(E1, . . . , Ek)) = op(dα(E1), . . . , dα(Ek)),

dα(E1 ·b E2) =

(db(E1) ·b E2) ◦1 db(E2) if α = b,
dα(E1) ·b E2 + (db(E1) ·b E2) ◦1 dα(E2) if α ∈ Σ0 \ {b},
dα(E1) ·b E2 otherwise,

Chapter 5. Bottom-Up Derivatives 62

dα(E ◦ (E1, . . . , Ek)) = ∑
1≤j≤k

E ◦ ((El)1≤l≤j, dα(Ej), (El)j+1≤l≤k)

+

dα((ε jpl

)
1≤l≤n

)(E) ◦ (ε1, (El)1≤l≤k|∀z,l 6=pz
)

if ∀1 ≤ l ≤ n, ∃1 ≤ pl ≤ k, ε l ∈ L(Epl)

∅Indε(E◦(E1,...,Ek))\{1,...,n} otherwise,

dα(E~) =

{
(E~ ◦ (dα(E))) ◦ (ε1, Incε(1, E~)) if α ∈ Σ0,
(E~ ◦ (dα(E))) otherwise,

dα(E∗b) =

{
(db(E))~ ·b E∗b if α = b,
((db(E))~ ◦ (dα(E))) ·b E∗b otherwise,

where dα(ε j1 ,...,ε jn)(E) = dα(dε j1+n−1(· · · dε jn−1+1(dε jn
(E)) · · ·)), where for all integers i the expression

Ei equals Incε(1, Ei) and where ◦1 is the partial composition defined by E ◦1 E′ = E ◦ (E′, (ε l)l∈{j2,...,jk})

with Indε(E) = {j1, . . . , jk}.

Definition 5.2.5. Let t = f (t1, . . . , tn) be a tree in TΣ and E a valid tree expression over Σ such that
Indε(t) ⊆ Indε(E). The derivative of E w.r.t. t is the tree expression defined by

dt(E) = (d f (dt′1
(· · · (dt′k

(E)) · · ·)) ◦ (ε1, (εyz+1)1≤z≤n−l)),

where {y1, . . . , yn−l} = Indε(E) \ Indε(t) and ∀1 ≤ j ≤ k, t′j = Incε(k− j, tj).

Notice that the base cases include the one of the derivation of the empty set. In this
case, the only modification that occurs is the index simulating the ε-index set of the denoted
language. As an example, consider the expression E = ¬∅∅. When deriving E w.r.t. a
nullary tree a, one must obtain an expression denoting all the trees that belongs to TΣ in
which one a was removed, that is the set of all the trees with only ε1 as ε-indice. Applying
the previously defined formulae:

da(E) = ¬∅{1}.

When deriving one more time w.r.t. a, one must obtain an expression denoting all the trees
with only ε1 and ε2 as ε-indices (obtained from a tree in TΣ by removing to occurrences of a).
Applying the previously defined formulae:

da(da(E)) = ¬∅{1,2}.

Finally, when deriving by a binary symbol f , one must obtain an expression denoting all the
trees that belongs to TΣ in which one occurrence of f (a, a) was removed, that is the set of all
the trees with only ε1 as ε-indice. Applying the previously defined formulae:

d f (da(da(E))) = ¬∅{1}.

As a direct consequence of the inductive formulae of Section 2.2.1 and of Corollary 5.1.1,
we get the following theorem.

Theorem 5.2.1. The derivative of a valid tree expression E w.r.t. to a tree t denotes t−1(L(E)).

Proof. Let us proceed in three steps.

1. Following Equation (2.5) and Definition 5.2.3, it holds that

L(dε j(E)) = ε−1
j (L(E)).

Chapter 5. Bottom-Up Derivatives 63

2. Notice that the derivation formulae of Definition 5.2.4 are syntactical equivalents of
the quotient formulae of Section 2.2.1 and of Corollary 5.1.1 and therefore it can be
proved by induction over the structure of E that

L(dα(E)) = α−1(L(E)).

This reasoning is valid except for the case with indexed occurrence of the empty set
and with composition product case. As discussed before, the occurrences of the empty
set are “typed” w.r.t. the ε-indices set of the language they denote. Therefore, these in-
dices have to be modified considering Equation (2.4). In the product case, the deriva-
tion of an expression by the tree α(ε j1 , . . . , ε jn) has to be considered. However, by
considering this particular case in the induction, one can check that

L(dα(ε j1 ,...,ε jn)
(E)) = L(dα(dε j1+n−1(· · · dε jn−1+1(dε jn

(E)) · · ·)))

= α−1(dε j1+n−1(· · · dε jn−1+1(dε jn
(E)) · · ·)),

this last equality obtained by applying the induction step. From item 1, it holds that

α−1(dε j1+n−1(· · · dε jn−1+1(dε jn
(E)) · · ·)) = α−1(ε j1+n−1

−1(· · · ε jn−1+1
−1(L(E)) · · ·))

that equals α(ε j1 , . . . , ε jn)
−1(L(E)) from Equation (2.8). We can conclude following

Equation (2.10).

3. Finally, according to Equation (2.8) and item 2, Definition 5.2.5 implies that

L(dt(E)) = t−1(L(E)).

Example 5.2.1. Let us consider the graded alphabet defined by Σ2 = { f }, Σ1 = {g} and Σ0 =
{a, b, c} and let E be the extended tree expression defined by

E = E1 ·a E2,

with E1 = ¬(g(a)∗a) and E2 = f (f (a, a), a). Let us show how to calculate the derivative of E w.r.t.
t = f (f (a, a), a). First, let us compute the derivative of E2 w.r.t. t:

da(E2) = f (f (ε1, a) + f (a, ε1), a) + f (f (a, a), ε1),
da(da(E2)) = f (f (ε2, ε1) + f (ε1, ε2), a) + f (f (ε2, a) + f (a, ε2), ε1)

+ f (f (ε1, a) + f (a, ε1), ε2),
da(da(da(E2))) = f (f (ε3, ε2) + f (ε2, ε3), ε1) + f (f (ε3, ε1) + f (ε1, ε3), ε2)

+ f (f (ε2, ε1) + f (ε1, ε2), ε3),
d f (a,a)(da(E2)) = d f (ε1,ε2)(da(da(da(E2)))) ◦ (ε1, ε2)

= (∅{1,4} + ∅{1,4} + f (∅{1} + ε1, ε4)) ◦ (ε1, ε2)

= f (ε1, ε4) ◦ (ε1, ε2) = f (ε1, ε2),
dt(E2) = d f (ε1,ε2)(d f (a,a)(da(E2))) = ε1.

Then, in order to reduce the size of the computed tree expressions, let us set

E′ = ¬(g(ε1)
~) ·a E2, E′′ = ¬(∅{1,2}) ·a E2.

Chapter 5. Bottom-Up Derivatives 64

Then:

da(E) = E′ ◦ da(E2),
d f (a,a)(da(E)) = E′′ ◦ (f (ε1, a), ε4) ◦ (ε1, Incε(1, da(E2))) + E′ ◦ d f (a,a)(da(E2)),

dt(E) = E′.

5.3 Tree Automaton Construction

We have seen in Chapter 3 how to construct a non deterministic tree automaton from a regu-
lar expression using the notion of derivation but in a Top-Down interpretation. This method
is due to Kuske and Mienske [42] which is inspired from the Antimirov construction [2] in
the case of words.

In 2017, Champarnaud et al. [19] have extended the inductive formulas of quotients to
tree languages, following the Bottom-Up interpretation.

In this section, we explain how to construct a tree automaton based on the notion of
derivation from a valid tree expression E with Indε(E) = ∅ from an iterated process using
the derivation previously defined.

Definition 5.3.1. Given a tree expression E over an alphabet Σ, let us see how we compute the tree
automaton from a valid tree expression:

• First, we compute the tree automaton A0 = (Σ, D0(E), F0, δ0) where

D0(E) = {da(E) | a ∈ Σ0}, F0 = {E′ ∈ D0(E) | ε1 ∈ L(E′)},
δ0 = {(a, da(E)) | a ∈ Σ0}.

• From this step, one can choose a total function tree0 associating any tree expression E′ in
D0(E) with a tree t such that

tree0(E′) = t⇒ dt(E) = E′,

by choosing for any tree expression E′ in D0(E) a symbol a ∈ Σ0 such that (a, E′) ∈ δ0.

• From this induction basis, we define the tree automaton An = (Σ, Dn(E), Fn, δn).

– We consider the transition set δn inductively defined by

δn = {((E′1, . . . , E′m), f , dt(E)) |t = f (treen−1(E′1), . . . , treen−1(E′m)),
f ∈ Σm,
E′1, . . . , E′m ∈ Dn−1(E)}.

(5.3)

– Next, we consider the set Dn(E) = Dn−1(E) ∪ π3(δn), where π3 is the classical projec-
tion defined by π3(X) = {z | (_, _, z) ∈ X}.

– Obviously, one can once again choose a total function treen associating any tree expres-
sion E′ in Dn(E) with a tree t such that

treen(E′) = t⇒ dt(E) = E′,

by choosing a transition ((E′1, . . . , E′m), f , E′) in δn for any tree expression E′ in Dn(E) \
(Dn−1(E)) and defining t as f (treen−1(E′1), . . . , treen−1(E′k)).

Chapter 5. Bottom-Up Derivatives 65

– Last, we consider the set

Fn = {E′ ∈ Dn(E) | ε1 ∈ L(E′)}, (5.4)

• Finally, let A(E) be the fixed point, if it exists, of this process, called the Bottom-Up deriva-
tive tree automaton of E.

This construction leads to a deterministic tree automaton and the validity of this con-
struction does not depend on the choice of the treen functions.

Theorem 5.3.1. A Bottom-Up derivative tree automaton of a tree expression E is deterministic and
recognizes L(E).

Proof. Let A = (Σ, _, F, δ) be the Bottom-Up derivative tree automaton of E. By construction,
A is deterministic. Let t be a tree over Σ. Then:

t ∈ L(E)⇔ ε1 ∈ t−1(L(E))
⇔ ε1 ∈ L(E′) with ∆(t) = {E′}
⇔ E′ ∈ F with ∆(t) = {E′}
⇔ t ∈ L(A).

Notice that the three ACI rules (associativity, commutativity and idempotence of the
sum) are sufficient to obtain a finite tree automaton, isomorphic to the classical Brzozowski’s
automaton (for words).

Example 5.3.1. Let us consider the tree expressions defined in Example 5.2.1, i.e.

E = E1 ·a E2, E1 = ¬(g(a)∗a), E2 = f (f (a, a), a), E′ = ¬(g(ε1)
~) ·a E2.

Let us show how to compute a derivative tree automaton of E by applying the instructions of Defini-
tion 5.3.1.

• First of all, let us compute the tree automaton A0 = (Σ, D0(E), F0, δ0):

D0(E) = {da(E), db(E), dc(E)}.

Hence,

da(E) = E′ ◦ da(E2), db(E) = dc(E) = ¬(∅{1}) ·a E2,

D0(E) = {da(E), db(E)}, F0 = {db(E)}, δ0 = {(a, da(E)), (b, db(E)), (c, db(E))}.

The tree automaton A0 is represented in Figure 5.1.

da(E) db(E)a b, c

FIGURE 5.1: The Tree Automaton A0.

Now, we choose a function to define tree0:

tree0(da(E)) = a, tree0(db(E)) = b.

Chapter 5. Bottom-Up Derivatives 66

• After that, we show how to compute the tree automaton A1 = (Σ, D1(E), F1, δ1).

According to Equation 5.3, it is sufficient to compute the derivatives of E w.r.t. the trees in the
set { f (a, a), f (a, b), f (b, a), f (b, b), g(a), g(b)}:

d f (a,a)(E) = E′ ◦ f (ε1, a), d f (b,b)(E) = dg(b)(E) = db(E),

d f (a,b)(E) = d f (b,a)(E) = dg(a)(E) = ∅{1}.

There is a new non-final state, E′ ◦ f (ε1, a), which is associated with f (a, a) by the function
tree1, and three new transitions:

δ1 = δ0 ∪ {(da(E), da(E), f , d f (a,a)(E)), (db(E), db(E), f , db(E)), (db(E), g, db(E))}.

The tree automaton A1 is represented in Figure 5.2.

da(E) d f (a,a)(E) db(E)a b, c

g

f

2

1

f
1

2

FIGURE 5.2: The Tree Automaton A1.

• The tree automaton A2 can be computed thorough the derivatives w.r.t. the trees in the set

{ f (f (a, a), f (a, a)), f (f (a, a), a), f (f (a, a), b), f (a, f (a, a)), f (b, f (a, a)), g(f (a, a))} :

d f (f (a,a),b)(E) = d f (a, f (a,a))(E) = d f (b, f (a,a))(E) = d f (b, f (a,a))(E) = ∅{1},

d f (f (a,a),a)(E) = E′.

There is a new non-final state, E′, which is associated with t = f (f (a, a), a) by the function
tree2, and one new transition: δ2 = δ1 ∪ {(d f (a,a)(E), da(E), f , dt(E))}.
The tree automaton A2 is represented in Figure 5.3.

da(E) d f (a,a)(E) d f (f (a,a),a)(E)

db(E)

a

b, c

g

f

2

1

f
1

2

f

2

1

FIGURE 5.3: The Tree Automaton A2.

• The tree automaton A3 is obtained by computing the derivatives w.r.t. the trees in the set
{ f (t, t), f (t, a), f (t, b), . . .}. There are only four new computations:

d f (t,t)(E) = d f (t,b)(E) = d f (b,t)(E) = db(E), dg(t)(E) = dt(E).

Chapter 5. Bottom-Up Derivatives 67

There are four new transitions:

δ3 = δ2 ∪ {(dt(E), dt(E), f , db(E)), (dt(E), db(E), f , db(E)), (db(E), dt(E), f , db(E)),
(dt(E), g, dt(E))},

but these computations does not introduce new states. Therefore the computation halts and the
derivative tree automaton of E is A3, represented in Figure 6.6.

da(E)

d f (a,a)(E)

d f (f (a,a),a)(E)

db(E)

a

b, c

g

g

f

1

2

f

2

1

f

21

f

2

1

f

1

2

f12

FIGURE 5.4: The Bottom-Up Derivative Tree Automaton of E.

5.4 Conclusion

We have shown in this chapter, how to compute the Bottom-Up derivative tree automaton
from an extended regular expression as a fixed point of an inductive construction when it
exists. Before that, we integrate the Boolean homogeneous operations in a tree expression
in order to define the extended tree expression. Then, we made sure that the language
denoted by the extended tree expression is homogeneous by introducing the notion of valid
tree expression. Finally, in order to guarantee that the set of states (the set of derivatives)
of the the constructed tree automaton is finite, we applied the well-known ACI rules of the
sum. These rules are the same as used in the case of words, the question resides on the
sufficiency of these rules to prove that the set of derivatives is finite. Seen that we deal with
symbols of rank greater or equals to one and with operations like the composition ◦, the
a-product, the iterated composition ~ which are somehow "complicated". However, all the
examples that we have made (taking into account the ACI rules) halt. So for now, this is
only an hypothesis to justify maybe in our future works.

With this chapter, we conclude the first part of our thesis. The second part will be pre-
sented in the next chapter, we will focus on the essential element of the first part: the ranked
trees. We will suggest formulae to count the number of ranked trees over a finite set of
symbols by size and by height using combinatorial approaches.

68

Part II

Enumeration of Trees

69

6 Enumeration of Some Ranked Trees

The structure of trees is widely studied and used whether in the field of computer sci-
ence [60, 39, 40] or in mathematics especially in graph theory and combinatorics [64].

Counting was the interest of a lot of mathematicians. Cayley [16] gave the enumeration
of labeled trees of n nodes i.e the trees where each internal node has assigned unique number
from 1 to n. It is shown in [64] that the number of binary trees of n vertices is the Catalan
numbers. These latter were appeared to solve numerous combinatorial problems see [56,
58] and they are given by Cn = 1

n+1 (
2n
n) (Sloane’s A000108) where (2n

n) denotes a binomial
coefficient.

In this chapter, we aim to give an enumeration of ranked trees [23] using combinato-
rial methods. In Section 6.1 we recall Catalan numbers and their generalizations. In Sec-
tions 6.2, 6.3 and 6.4, we show how to compute the number of ranked trees over a special
kind of set of symbols by size and height as used in the case of rooted trees [53] over a
particular set of symbols.

6.1 Catalan Numbers and Generalizations

For all n, k ∈ Z+ satisfying k ≤ n we denote by (n
k) the binomial coefficient defined for

0 ≤ k ≤ n by (
n
k

)
=

n!
k!(n− k)!

,

with the convention (n
k) = 0 for k > n or k < 0.

For all n1, . . . , nr ∈ Z and n ∈ Z+ we denote by (n
n1,...,nr

) the multinomial coefficient
defined for n1 + · · ·+ nr = n by (

n
n1, . . . , nr

)
=

n!
n1! · · · nr!

,

and (n
n1,...,nr

) = 0 for ni < 0 (1 ≤ i ≤ r) or n1 + · · ·+ nr 6= n.
One of the most advantage of this coefficient is the permission to omit the condition of

the sum, that means, instead of writing ∑
n1,...,nr

n1+···+nr=n

(n
n1,...,nr

) we can write directly ∑
n1,...,nr

(n
n1,...,nr

).

The Catalan numbers (Cm)m≥0 were appeared to solve numerous combinatorial prob-
lems (see [58]) and they are given by Cm = 1

m+1 (
2m
m) (Sloane’s A000108) where (2m

m) denotes
the central binomial coefficient.

The k-Catalan numbers (see [57] and references therein) are the generalization of the
Catalan numbers denoted by (Ck

m)m≥0 for k ∈N.
A lot of mathematicians gave quite many combinatorial interpretations of these num-

bers [31, 32, 36, 41] and they are defined by

Ck
m =

1
km + 1

(
km + 1

m

)
=

1
(k− 1)m + 1

(
km
m

)
.

http://oeis.org/A000108
http://oeis.org/A000108

Chapter 6. Enumeration of Some Ranked Trees 70

There exists a family of these numbers called Fuss Catalan numbers which also solve enu-
meration problems [25, 41, 7, 24, 55] and they are given for n, r, p ∈N r {0} by

Cm(k1, k2) =
k1

mk2 + k1

(
mk2 + k1

m

)
=

k1

(k2 − 1)m + k1

(
k2m + k1 − 1

m

)
.

Notice that when k = 2, we get the classical Catalan numbers, Cm.

Theorem 6.1.1 (Stanley [57]). A sequence Um(k) is a k-Catalan sequence if and only if Um(k) =
∑i1+···+ik=m−1 Ui1(k) . . . Uik(k).

6.2 Enumeration of Trees over Σ = { f k, α1, . . . , αs} by Size

In this section, we give formulas to calculate the number of trees by size over Σ = { f k, α1, . . . , αs}.
This set contains s symbols of rank zero where s ≥ 1 and m symbols of f of rank k ≥ 1. One
can wonder, given a finite set of symbols Σ. Is it possible to build trees using all these sym-
bols, at least once, with any given size?

Proposition 6.2.1. Let Σ = { f k, α1, . . . , αs}. Let n be the size of a given tree. Then n satisfies

n = mk + 1, (6.1)

where m is the number of occurrences of f in the tree and the αi’s (1 ≤ i ≤ s) are placed on the leaves
of the tree.

Proof. The proof is given by induction over the number of appearance of the symbol f .

• If f appears ’once’, in the tree, then it produces k sons. These sons contain all the
symbols of rank zero αi where i ∈ {1, . . . , s} that appear at least once which means s
should be less or equal to k (k ≥ s). Thus, we obtain at least k + 1 nodes in total.

f

α1 αi. . . αsα2

k

FIGURE 6.1: Tree with k + 1 nodes.

• If f appears ’twice’, in the tree, then they produce 2k sons and 2k − 1 leaves. These
leaves must be greater or equal to s (2k− 1 ≥ s). As a direct consequence, we obtain at
least 2k + 1 nodes in total.

Chapter 6. Enumeration of Some Ranked Trees 71

f

f

α1 α2 . . . αsαi

α2
. . .

αsα1
k− 1

k

f

f

αi α2 . . . αsα1

α1
. . .

αsα2

k

f

αs

αiα1. . .αsα2

α1
. . . f

α2

k

k− 1

FIGURE 6.2: Trees with 2k + 1 nodes.

• If f appears ’three times’, in the tree, then they produce 3k sons and 3k − 2 leaves
which must be greater or equal to s (3k− 2 ≥ s). Therefore, at least 3k + 1 nodes will
be produced in total. Two possibilities have to be considered:

1. Either both of f are in the same level in the tree, we just have to permute the
location of these two f ’s as follows:

f

f

α1 α2 . . . αs

α2 . . . αs
f

α1α2. . .αs α2

. . .

αs

kk

k− 2

2. Or, the third f will be placed in one of k’s sons of the second f , as follows:

f

f

f

α1 α2 . . . αs αi

αi. . .αs α1

αi . . . αsα1

k− 1

k− 1

k

FIGURE 6.3: Trees with 3k + 1 nodes.

• If f appears m times, in the tree, then mk sons will be produced with mk− (m− 1) ≥ s
leaves. Consequently, we obtain mk + 1 nodes in total.

Chapter 6. Enumeration of Some Ranked Trees 72

Let us suppose that the hypothesis is true for m, is it true for m + 1? The number of nodes
of m + 1 appearances of f is the number of nodes when f appears m times plus the number
of nodes produced by adding one f in the tree. That means (mk + 1) + k nodes in total. As
a conclusion, for m + 1 occurrences of f , we have n = (m + 1)k + 1.

Notice that for a fixed m and k, we obtain a unique number n as a size of the tree and vice
versa: for a fixed n there is a unique number m of occurrences of the symbol f .

Proposition 6.2.2. Let Σ = { f k, α1, . . . , αs}. Let m be the number of occurrences of f in the tree.
Then m satisfies

m =
n− 1

k
, (6.2)

where n is the size of a given tree and the αi’s (1 ≤ i ≤ s) are placed on the leaves of the tree.

The following theorem shows how to count the number of trees over the set of symbols
Σ considering a given size (according to Proposition 6.2.1).

Theorem 6.2.1. Let k, s ∈ Z+, n, m ∈ N, Σ = { f k, α1, . . . , αs} and let Tn(k, m; α1, . . . , αs) be the
number of ranked trees over Σ of size n with m is the number of occurrences of f and α1, . . . , αs are
symbols of rank zero. Then

Tn(k, m; α1, . . . , αs) = Ck
m ∑

nα1 ,...,nαs≥1

(
n−m

nα1 , . . . , nαs

)

= Ck
m ∑

nα1 ,...,nαs≥0

(
n−m

nα1 + 1, . . . , nαs + 1

)
.

Proof. The proof is given into two steps:

1. Calculate the number of ways to place the internal nodes f in the tree. Let Um(k) be
the number of ways to place m times the symbol f of arity k in the tree.

• for m = 0, U0(k) = 1.

• for m = 1, in this case, we should have only one symbol f to place it in the
tree. This symbol will be placed on the root and we only obtain one structure.
Therefore, U1(k) = 1.

f

. . .

FIGURE 6.4: An illustration of the structure of the tree when m = 1.

• for m > 1: we place "one" of f on the root of a given tree, it remains m− 1 of f in
order to place them, we distinguish these possibilities:

– Place all the m− 1 occurrences of f ’s (Um−1(k)) in the internal nodes of the
subtree colored in Figure 6.5.

Chapter 6. Enumeration of Some Ranked Trees 73

f

. . .

f

. . .

f

. . .

FIGURE 6.5: Structure of trees when m > 1.

– Place ’one time’ f on root’s sons and the m − 2 remaining symbols will be
placed on the subtree colored in Figure 6.6.

f

f
. . .

FIGURE 6.6: Another structure of trees when m > 1.

– Place ’two times’ f on the root’s sons and the m− 3 remaining symbols will
be placed on the subtree colored in Figure 6.7.

f

f

.

. . .
f

FIGURE 6.7: Another structure of trees when m > 1.

It satisfies

Um(k) = U0(k)U0(k) · · ·U0(k)Um−1(k)︸ ︷︷ ︸
k terms

+U1(k)U0(k) · · ·U0(k)Um−2(k)︸ ︷︷ ︸
k terms

+ U1(k)U1(k)U0(k) · · ·U0(k)Um−3(k)︸ ︷︷ ︸
k terms

+ · · ·+ Um−1(k)U0(k) · · ·U0(k)︸ ︷︷ ︸
k terms

,

for m ≥ 2

Um(k) = ∑
i1+···+ik=m−1

Ui1(k)Ui2(k) · · ·Uik(k).

By Theorem 6.1.1
Um(k) = Ck

m. (6.3)

2. Calculate the number of ways to place α1, . . . , αs in the leaves of a tree. Given n the
size of a tree t and m the number of occurrences of f in t. The number of leaves of t is
n−m. So how one can place all the αi’s for i = 1, . . . , s at least once in the leaves. This

Chapter 6. Enumeration of Some Ranked Trees 74

is equivalent to count the number of ways to put nα1 (which represents the number
of appearance of α1 in t) from n − m leaves then to put nα2 of α2 from n − m − nα1

leaves,. . ., then to put nαns−1
in n−m− nα1 − · · · − nαs−2 = nαs−1 + nαs leaves and last

to put nαs in the remaining leaves which is nαs . Formally,

∑
nα1 ,...,nαs≥1

(
n−m

nα1

)(
n−m− nα1

nα2

)
. . .
(

nαs−1 + nαs

nαs−1

)(
nαs

nαs

)
,

which is equal to

∑
nα1 ,...,nαs≥1

(
n−m

nα1 , nα2 , . . . , nαs

)
.

As a conclusion, the number of trees Tn(k, m; α1, . . . , αs) over Σ = { f k, α1, . . . , αs} is

Tn(k, m; α1, . . . , αs) = Ck
m ∑

nα1 ,...,nαs≥1

(
n−m

nα1 , nα2 , . . . , nαs

)
.

HH
HHHHCk

m

m
0 1 2 3 4 5 Formula Sloane

C2
m 1 1 2 5 14 42 (2m

m) 1
m+1 A000108

C3
m 1 1 3 12 55 273 (3m

m) 1
2m+1 A001764

C4
m 1 1 4 22 140 969 (4m

m) 1
3m+1 A002293

C5
m 1 1 5 35 285 2530 (5m

m) 1
4m+1 A002294

C6
m 1 1 6 51 506 5481 (6m

m) 1
5m+1 A002295

C7
m 1 1 7 70 819 10472 (7m

m) 1
6m+1 A002296

C8
m 1 1 8 92 1240 18278 (8m

m) 1
7m+1 A007556

TABLE 6.1: Some values of the number of ways to place m times the symbol f
of rank k in the internal nodes of a tree.

Example 6.2.1. Let us consider Σ = { f 3, a, b, c}. What is the number of trees that could be built
from Σ?

• First of all, the size n of the trees t should satisfy, by Proposition 6.2.1, the fact that n = 3m+ 1.
Thus, n = {4, 7, 10, 13, . . .}. Let us calculate the number of trees over Σ when the size of a tree
is 10, in this case the number of occurrences ’m’ of f is 3.

• Next, we compute the number of ways to partition the internal nodes f in the tree. Let C3
3

be the number of ways to place ’three’ times f of arity 3 in the tree of size 10. According to
Equation (6.3), we get C3

3 = 1
7 (

9
3) = 12.

http://oeis.org/A000108
http://oeis.org/A001764
http://oeis.org/A002293
http://oeis.org/A002294
https://oeis.org/A002295
https://oeis.org/A002296
https://oeis.org/A007556

Chapter 6. Enumeration of Some Ranked Trees 75

• Last, the number of ways of placing 3 times f in a tree of size 10 is 12 trees, and they are
represented in Figure 6.8 as follows:

f

f

f

f

f

f

f

f

f

f

f

f
.

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f f

f

f f

f

ff

FIGURE 6.8: Number of ways of placing the internal nodes f in a tree of size
10.

• In the next step, we calculate the number of ways of partitioning the symbols of rank zero a, b
and c in 7 leaves of a tree of size 10. To do so, we use a combinatorial approach as follows: let
na, nb and nc be the number of appearance of the symbol a, b and c respectively in the leaves
of the tree. Partitioning 7 symbols of rank zero into 3 subsets such that each subset contains
na ≥ 1, nb ≥ 1 and nc ≥ 1 symbols is equivalent to

∑
na,nb,nc≥1

(
7

na, nb, nc

)
=1806.

• Hence, we have 1806 ways to place the symbols a, b and c at least once in the leaves of a tree of
size 10.

• Finally, by Theorem 6.2.1, the total number of trees T10(3, 3; a, b, c) over Σ is

T10(3, 3; a, b, c) = 12× 1806 = 21672.

6.3 Enumeration of Trees over Σ by Size and by Height

We will give in this section a formula to calculate the number of trees over Σ by considering
the height h of trees which is the number of edges on the longest path between the root and
the leaf.

Theorem 6.3.1. Let Tn(k, m, h; α1, . . . , αs) be the number of trees over Σ of height h and size n where
n = mk + 1, m is the number of occurrences of f and α1, . . . , αs are symbols of arity zero in the tree.

Chapter 6. Enumeration of Some Ranked Trees 76

Let Um,h(k) be the number of ways to place m times f in the internal nodes of a tree of height h.

Tn(k, m, h; α1, . . . , αs) = Um,h(k) ∑
nα1 ,...,nαs≥1

(
n−m

nα1 , . . . , nαs

)
, (6.4)

where

Um,h(k) =

0 for h > m,
km−1 for h = m,
2(h− 2)km−3(k

2) + km−3(k
2) for h = m− 1.

(6.5)

Notice that for the case h ≤ m− 2, we have to treat each case apart, we would have to analyze the
structures of trees and find a formula to each rank which seems "difficult for the moment".

Proof. Given a tree t of height h and size n built from Σ. Let us calculate the number of ways
to place m occurrences of f in the internal nodes of t of height h. To do so, we consider these
cases:

• The case where h > m: in this case the size of a given tree will not be respected and we
can not construct such a tree.

• The case where h = m: let us place the first f in the root of the tree t, it remains m− 1
occurrences of f to place them in a tree of height m. The idea is to place in each level
only one occurrence of f . Each placed symbol has k possibilities to place it. Thus, we
have km−1 trees over Σ. The only structure of this case is shown in Figure 6.9.

f

f
. . .

f

. . .

. . .

f

f

h k possibilities

FIGURE 6.9: The structure of trees when h = m.

• The case where h = m− 1: in such structure there exist h levels. The idea is to place
exactly one time f in h− 2 levels, the remaining level contains exactly 2 occurrences of
f . The allowed structures are presented in the figure below.

Chapter 6. Enumeration of Some Ranked Trees 77

f

f
. . .

f

. . .

.

f

2kf

f

(a)

f

f
. . .

f

. . .

. . .

. . .
f

f

(b)

f

f

f
. . .

f

. . .

. . .

. . .
f

f

f

(c)

f

f
. . .

f

. . .

. . .

. . .
f

f f

.

(d)

FIGURE 6.10: The structure of trees for h = m− 1.

Chapter 6. Enumeration of Some Ranked Trees 78

Notice that there exist (k
2) possibilities to place the two symbols of f differently in h− 2

levels (see structures (a), (b) and (c) of Figure 6.10). Moreover, the successor level of
these levels contains only one appearance of f which will be placed in 2k possibilities.
The m− 4 remaining symbols of f would have k possibilities to place them. Therefore,
we get

2k(h− 2)
(

k
2

)
km−4 = 2(h− 2)

(
k
2

)
km−3.

Furthermore, the only case where the two appearances of the symbol f are situated in
the last level (see structure (d) of Figure 6.10) we would have (k

2) possibilities to place
them. The m− 3 remaining symbols will be placed in k different ways. That means(

k
2

)
km−3.

Therefore, the number of ways to place m occurrences of f in a tree of height h where
h = m− 1 is

2(h− 2)
(

k
2

)
km−3 +

(
k
2

)
km−3.

Last, we calculate the number of ways to place α1, . . . , αs in the leaves of a tree. Given n the
size of a tree t and m the number of occurrences of f in t. The number of leaves of t is n−m.
So how one can place all the αi’s for i = 1, . . . , s at least once in the leaves. This is equivalent
to count the number of ways to put nα1 (which represents the number of appearance of α1
in t) from n− m leaves then to put nα2 of α2 from n− m− nα1 leaves,. . ., then to put nαns−1
in n−m− nα1 − · · · − nαs−2 = nαs−1 + nαs leaves and last to put nαs in the remaining leaves
which is nαs . Formally,

∑
nα1+···+nαs=n−m

nα1 ,...,nαs≥1

(
n−m

nα1

)(
n−m− nα1

nα2

)
. . .
(

nαs−1 + nαs

nαs−1

)(
nαs

nαs

)
,

which is equal to

∑
nα1 ,...,nαs≥1

(
n−m

nα1 , . . . , nαs

)
.

As a conclusion, the number of trees Tn(k, m, h; α1, . . . , αs) over Σ = { f k, α1, . . . , αs} is

Tn(k, m, h; α1, . . . , αs) = Um,h(k) ∑
nα1 ,...,nαs≥1

(
n−m

nα1 , . . . , nαs

)
,

Bellow, we give some values of the number of ways to place f in the internal nodes of
trees of size n and height h.

Chapter 6. Enumeration of Some Ranked Trees 79

m
H

HHH
HHn
h

1 2 3 4 5 6 7

1 3 1 1
2 5 2 2
3 7 1 4 5
4 9 6 8 14
5 11 6 20 16 42
6 13 4 40 56 32 132
7 15 1 68 152 144 64 429

TABLE 6.2: Number of ways to place f of rank 2 in a tree by size n and height
h.

m
HH

HHHHn
h

1 2 3 4 5 6 7

1 4 1 1
2 7 3 3
3 10 3 9 12
4 13 1 27 27 55
5 16 57 135 81 273
6 19 96 522 567 243 1428

TABLE 6.3: The number of ways to place f of rank three in a tree by size n and
height h.

m
H
HHH

HHn
h

1 2 3 4 5 6 7

1 5 1 1
2 9 4 4
3 13 6 16 22
4 17 4 72 64 140
5 21 1 232 480 256 969
6 25 20 3352 2688 1024 7084

TABLE 6.4: The number of ways to place f of rank four in a tree by size n and
height h.

Notice that the number of ways to place f in the internal nodes of a tree t of size n (which
is the k-Catalan) is the computations of the horizontal sums of the trees of size n and height
h ≥ blogk((k− 1)n)c (See [59, p. 237]). As an example, the number of ways to place f in a
tree of size 13 is 132 which is also the sum of the trees of height 3, of height 4, of height 5
and of height 6 which are respectively 4, 40, 56 and 32 (see Table 6.2). In the other hand, the
number of trees of height 3 and size ≤ 15 is the sum of 4 trees of size 7, 6 trees of size 9, 6
trees of size 11, 4 trees of size 13 and last 1 tree of size 15.

Example 6.3.1. Let us consider the set of symbols of Example 6.2.1 defined by . Let us calculate the
number of trees of size 10, m = 3 and height h where 2 ≤ h ≤ 3.

First, we calculate the number of ways to place the symbol f of rank 3 in the internal nodes of
trees.

• The case when the height of the trees is 2. By Equation 6.5 case h = m− 1

Chapter 6. Enumeration of Some Ranked Trees 80

Um,h(k) = 2(h− 2)km−3
(

k
2

)
+ km−3

(
k
2

)
U3,2(3) =

(
3
2

)
= 3,

and they are presented in the following figure.

f

f f

f

f f

f

ff

FIGURE 6.11: Number of ways of placing the internal nodes f in a tree of size
10 and height 2.

• The case when the height of the trees is 3: By Equation 6.5 case h = m

Um,h(k) = km−1

U3,3(3) = 32 = 9,

and they are presented in the following figure.

f

f

f

f

f

f

f

f

f

f

f

f
.

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

FIGURE 6.12: Number of ways of placing the internal nodes f in a tree of size
10 and height 3.

In the next step, we calculate the number of ways of partitioning the symbols of rank zero a, b and c in
7 leaves of a tree of size 10. To do so, we use a combinatorial approach as follows: let na, nb and nc be

Chapter 6. Enumeration of Some Ranked Trees 81

the number of appearance of the symbol a, b and c respectively in the leaves of the tree. Partitioning
7 symbols of rank zero into 3 subsets such that each subset contains na ≥ 1, nb ≥ 1 and nc ≥ 1
symbols is equivalent to

∑
na,nb,nc≥1

(
7

na, nb, nc

)
=1806.

• Hence, we have 1806 ways to place the symbols a, b and c at least once in the leaves of a tree of size
10.

• Finally, by Theorem 6.3.1, the total number of trees T10(3, 3, h; a, b, c) over Σ is

T10(3, 3, h; a, b, c) = U3,h(3)× 1806.

6.4 Enumeration of Trees over Σ = { f k1
1 , f k2

2 , α1, . . . , αs} by Size

In this section, we count the number of trees over Σ = { f k1
1 , f k2

2 , α1, . . . , αs}. This set contains
s symbols of rank zero where s ≥ 1 and two symbols of a different rank k1 and k2. We
assume that the symbol f k1

1 appears ’once’ in the root of a tree.

Proposition 6.4.1. Let us consider the set of symbols Σ. Let n be the size of a tree. Then n should
satisfy this condition:

n = 1 + k1 + mk2. (6.6)

Where m is the number of occurrences of f2 in the tree.

The following Theorem counts the number of trees by size over Σ.

Theorem 6.4.1. Let Σ = { f k1
1 , f k2

2 , α1, . . . , αs} be a set of symbols. Let Tn(k1, k2, m; α1, . . . , αs) be
the number of ranked trees over Σ of size n.

Tn(k1, k2, m; α1, . . . , αs) = Cm(k1, k2) ∑
nα1+···+nαs=n−m−1

nα1 ,...,nαs≥1

(
n−m− 1

nα1 , nα2 , . . . , nαs

)
, (6.7)

where m is the number of occurrences of f2 in the tree t and n, k1, k2 are non negative integers.

Proof. To prove the theorem, two steps have to be considered:

Step 1: Place m times f2 in the internal nodes:

Let U1,m(k1, k2) be the number of ways to place one time f1 of rank k1 and m times f2
of rank k2 in a given tree t of size n.

Notice that U0,m(k1, k2) = Um(k2).

• If m = 0 then U1,0(k1, k2) = 1.

• If m = 1 then we have k1 possibilities to place f2. Thus, U1,1(k1, k2) = k1.

Chapter 6. Enumeration of Some Ranked Trees 82

f1

f2

. . .

k1

k2

FIGURE 6.13: Illustration of the structure of trees for m = 1.

• If m > 1 then these possibilities are considered:

– Place all the occurrences of f2 on the subtree colored in Figure 6.14.

f1

. . .

Um(k2)

FIGURE 6.14: Structure of trees for m > 1.

– Place one occurrence of f2 on root’s sons, the m− 1 remaining symbols of f2
will be placed on the subtree colored on Figure 6.15.

f1

f2
. . .

. . .
Um−1(k2)

FIGURE 6.15: Another structure of trees for m > 1.

– Place two of f2 root’s sons, the m− 2 remaining symbols of f2 will be placed
on the subtree colored in Figure 6.16.

f1

f2

.

. . .
f2

Um−2(k2)

FIGURE 6.16: Another structure of trees for m > 1.

Chapter 6. Enumeration of Some Ranked Trees 83

It can be defined by

U1,m(k1, k2) = U0(k2)U0(k2) · · ·Um(k2) + U1(k2)U0(k2) · · ·U(m−1)(k2)

+ U1(k2)U1(k2)U0(k2) · · ·U(m−2)(k2) + · · ·+ Um(k2)U0(k2) · · ·U0(k2).

U1,m(k1, k2) =

1 for m = 0
k1 for m = 1

∑
i1+···+ik1

=m
Ui1(k2)Ui2(k2) . . . Uik1

(k2) otherwise.
(6.8)

The values of this sequence represent the generalized Fuss-Catalan numbers.

U1,m(k1, k2) = Cm(k1, k2) =

(
k2m + k1 − 1

m

)
k1

(k2 − 1)m + k1
. (6.9)

Step 2: Place α1, . . . , αs in the leaves of t, and this is equivalent to count the number of ways to
put nα1 (which represents the number of appearance of α1 in t) from n−m− 1 leaves
then to put nα2 of α2 from n− m− 1− nα1 leaves,. . ., then to put nαns−1

in nαs−1 + nαs

leaves and last to put nαs in the remains leaves which is nαs . It can be seen as

∑
nα1+···+nαs=n−m−1

nα1 ,...,nαs≥1

(
n−m− 1

nα1

)(
n−m− 1− nα1

nα2

)
. . .
(

nαs−1 + nαs

nαs−1

)(
nαs

nαs

)
.

Which is equivalent to

∑
nα1+···+nαs=n−m−1

nα1 ,...,nαs≥1

(
n−m− 1

nα1 , nα2 , . . . , nαs

)
.

As a conclusion, the number of trees Tn(k1, k2, m; α1, . . . , αs) over Σ = { f k1
1 f k2

2 , α1, . . . , αs} is

Tn(k1, k2, m; α1, . . . , αs) = Cm(k1, k2) ∑
nα1+···+nαs=n−m−1

nα1 ,...,nαs≥1

(
n−m− 1

nα1 , nα2 , . . . , nαs

)
.

Example 6.4.1. Let us consider the set of symbols Σ = { f 3
1 , f 4

2 , a, b, c}. What is the number of trees
that could be built from Σ?

• First of all, the size n of the trees t should, according to Proposition 6.4.1, be in n = {8, 12, 16, . . .}.

• Let us calculate the number of trees over Σ when the size of a tree is 12, i.e. the number of
occurrences of f1 is once and f2 is 2.

• We compute the number of ways to partition the internal nodes f2 in the tree. To do so, let
C2(3, 4) be the number of ways to place f1 of arity 3 and f2 of arity 4 in the tree. According to
Formula 6.9:

C2(k1, k2) =

(
2k2 + k1 − 1

2

)
k1

2(k2 − 1) + k1

C2(3, 4) =
(

10
2

)
1
3
= 15.

Chapter 6. Enumeration of Some Ranked Trees 84

So, the number of ways to place the internal nodes f2 in the tree of size 12 is 15 ways. The trees
are presented in Figure 6.17.

f1

f2 f2

f1

f2 f2

f1

f2 f2

f1

f2

f2

f1

f2

f2

f1

f2

f2

f1

f2

f2

f1

f2

f2

f1

f2

f2

f1

f2

f2

f1

f2

f2

f1

f2

f2

f1

f2

f2

f1

f2

f2

f1

f2

f2

FIGURE 6.17: Number of ways of placing the internal nodes f2 in a tree of size
12.

• In the second step, we compute the number of ways to place a, b and c in the n−m− 1 = 9
leaves of the tree t.

Chapter 6. Enumeration of Some Ranked Trees 85

To do so, we use a combinatorial approach as follows: let nαa , nαb and nαc be the number of
appearance of the symbol a, b and c respectively in 9 leaves. Partitioning 9 symbols of rank
zero into 3 subsets such that each subset contains nαa ≥ 1, nαb ≥ 1 and nαc ≥ 1 symbols is
equivalent to

∑
nαa+nαb+nαc=9

nαa ,nα2 ,nαc≥1

(
9

nαa , nαb , nαc

)
=18150.

• Hence, we have 18150 ways to place the symbols a, b and c at least once in the leaves of a tree
of size 12.

• Finally, by Theorem 6.4.1, the total number of trees over Σ of size 12 is T12(3, 4, 2; a, b, c) =
15× 18150 trees.

Chapter 6. Enumeration of Some Ranked Trees 86

XXXXXXXXXXXU1,m(k1, k2)
m

0 1 2 3 4 5 Formula Sloane

U1,m(2, 1) 1 2 3 4 5 6 (m+1
m)

U1,m(2, 3) 1 2 7 30 147 728 (3m+1
m) 2

2m+2 A006013

U1,m(2, 4) 1 2 9 52 340 2394 (4m+1
m) 2

3m+2 A069271

U1,m(2, 5) 1 2 11 80 665 5980 (5m+1
m) 2

4m+2 A118969

U1,m(2, 6) 1 2 13 114 1150 12586 (6m+1
m) 2

5m+2 A212071

U1,m(2, 7) 1 2 15 154 1827 23562 (7m+1
m) 2

6m+2 A233832

U1,m(2, 8) 1 2 17 200 2728 40508 (8m+1
m) 2

7m+2 A234461
U1,m(3, 1) 1 3 6 10 15 21 (m+2

m)

U1,m(3, 2) 1 3 9 28 90 297 (2m+2
m) 3

m+3

U1,m(3, 4) 1 3 15 91 612 4389 (4m+2
m) 3

3m+3 A006632

U1,m(3, 5) 1 3 18 136 1155 10530 (5m+2
m) 3

4m+3 A118970

U1,m(3, 6) 1 3 21 190 1950 21576 (6m+2
m) 3

5m+3 A212072

U1,m(3, 7) 1 3 24 253 3045 39627 (7m+2
m) 3

6m+3 A233833

U1,m(3, 8) 1 3 27 325 4488 67158 (8m+2
m) 3

7m+3 A234462
U1,m(4, 1) 1 4 10 20 35 56 (m+3

m)

U1,m(4, 2) 1 4 14 48 165 572 (2m+3
m) 4

m+4 A002057

U1,m(4, 3) 1 4 18 88 455 2448 (3m+3
m) 4

2m+4 A006629

U1,m(4, 5) 1 4 26 204 1771 16380 (5m+3
m) 4

3m+4 A118971

U1,m(4, 6) 1 4 30 280 2925 32736 (6m+3
m) 4

5m+4 A212073

‘ U1,m(4, 7) 1 4 34 368 4495 59052 (7m+3
m) 4

6m+4

U1,m(4, 8) 1 4 38 468 6545 98728 (8m+3
m) 4

7m+4 A234463

TABLE 6.5: Some values of the number of ways to place f k1
1 and f k2

2 in the
internal nodes of a tree.

http://oeis.org/A006013
http://oeis.org/A069271
http://oeis.org/A118969
https://oeis.org/A212071
https://oeis.org/A233832
https://oeis.org/A234461
http://oeis.org/A006632
http://oeis.org/A118970
http://oeis.org/A212072
http://oeis.org/A233833
http://oeis.org/A234462
http://oeis.org/A002057
http://oeis.org/A006629
http://oeis.org/A118971
http://oeis.org/A212073
http://oeis.org/A234463

Chapter 6. Enumeration of Some Ranked Trees 87

6.5 Conclusion

We have seen in this chapter, how to count the number of trees over two sets of symbols by
size and by height by proposing formulas using combinatorial approaches.

88

7 Conclusion and Perspectives

Throughout this thesis, we have answered the sited questions in the introduction. In the
first part, we prove Kleene theorem in the case of trees. We could propose constructive

algorithms to convert a regular tree expression into a tree automaton, in a Bottom-Up way,
recognizing the same language by extending the methods already suggested in the case of
words.

A generalization from words to trees of the Glushkov’s construction, the Ilie and Yu’s
method and the Brzozowski’s algorithm of automata from regular expressions are pre-
sented. These constructions are based on a Bottom-Up interpretation of regular expressions,
while previous constructions were based on a Top-Down interpretation.

First of all, we construct the position tree automata, the father tree automata and their
compressed versions from a given regular expression in a Bottom-Up way.

The open questions left after this study are the following:

• Can we extend all the studies related to Glushkov automata in the case of words to the
case of trees?

• Is it possible to compress the Top-Down position and follow tree automata in the same
way as used in our study?

• As we have seen, the compression of transitions that we have used is based on the
cartesian product, one can wonder if we can use a heuristic to reduce the number of
transitions.

• Last, we have made a comparative study in point of view the number of transitions
between Top-Down position automaton, Bottom-Up position automaton and father
automaton by considering a family of regular tree expressions. So, finding an uni-
form generator of regular tree expressions could be useful for a comparative study on
average complexities.

After that, we introduced the extended tree expressions and we show how to compute a
Brzozowski-like tree automata on these expressions (if it exists) using the Bottom-Up quo-
tients. We managed to obtain a finite set of derivatives by applying the ACI rules of the sum.
However, one can wonder: are they sufficient to prove that the constructed automaton is fi-
nite for all instances? Do we need another rules to affirm this finiteness? Moreover, we can
wonder whether the choices of the tree∗ functions during the computation of the derivative
automaton impact the produced automaton.

Using the Bottom-Up interpretation in our constructions allows to solve the limit of the
Top-Down ones.

Below, we recapitulate all the main notions realized in this thesis.

Chapter 7. Conclusion and Perspectives 89

Bottom-Up
tree automata

position tree
automata

linear ex-
pressions

position
functions

Root
Fathers

father tree
automata

compressed
father tree
automata

derivative
tree au-
tomata

Boolean
operations

homogeneous
languages

extended
tree ex-

pressions

finiteness
by ACI of
the sum

compressed
position tree

automata

FIGURE 7.1: Recapitulation of the Bottom-Up constructions of tree automata.

There exist another class of tree automata much more generalized than the class studied
in this thesis called: hedge automata. This latter recognizes unranked tree languages. So one
can ask for the possibility to extend our study to the case of unranked tree automata. In
other words: is it possible to translate regular unranked tree expressions to hedge automata
recognizing the same unranked tree languages?

In the second part of our thesis, we proposed formulas in order to count the number of
ranked trees over a finite sets of symbols Σ = { f k, α1, . . . , αs} and Σ = { f k1

1 , f k2
2 , α1, . . . , αs}.

By respecting a given size, we found that this number represents the number of ways to
place the symbols of rank ≥ 1 in the internal nodes of trees × the number of ways to place
the αi (for 1 ≤ i ≤ s) in the leaves of trees at least once.

As a future work, we aim to generalize the formulas cited above and enumerate the
ranked trees over Σ = { f k1

1 , . . . , f kr
r , α1, . . . , αs}.

90

References

[1] J. Adámek and V. Trnková. Automata and Algebras in Categories. Mathematics and its
Applications. Springer Netherlands, 1990.

[2] Valentin M. Antimirov. “Partial Derivatives of Regular Expressions and Finite Au-
tomaton Constructions”. In: Theor. Comput. Sci. 155.2 (1996), pp. 291–319. DOI: 10.
1016/0304-3975(95)00182-4.

[3] Dean N Arden. “Delayed-logic and finite-state machines”. In: 2nd Annual Symposium
on Switching Circuit Theory and Logical Design (SWCT 1961). IEEE. 1961, pp. 133–151.

[4] Samira Attou, Ludovic Mignot, and Djelloul Ziadi. “Extended tree expressions and
their derivatives”. In: Eleventh Workshop on Non-Classical Models of Automata and Ap-
plications, NCMA 2019, Valencia, Spain, July 2-3, 2019. Ed. by Rudolf Freund, Markus
Holzer, and José M. Sempere. Österreichische Computer Gesellschaft, 2019, pp. 47–62.

[5] Samira Attou, Ludovic Mignot, and Djelloul Ziadi. “The bottom-up position tree au-
tomaton and its compact version”. In: International Conference on Implementation and
Application of Automata. Springer. 2018, pp. 59–70.

[6] Samira Attou, Ludovic Mignot, and Djelloul Ziadi. “The Bottom-Up Position Tree Au-
tomaton and the Father Automaton”. In: International Journal of Foundations of Com-
puter Science (2020), pp. 1–18.

[7] Jean-Christophe Aval. “Multivariate fuss–catalan numbers”. In: Discrete Mathematics
308.20 (2008), pp. 4660–4669.

[8] Vitold Belevitch. “Summary of the history of circuit theory”. In: Proceedings of the IRE
50.5 (1962), pp. 848–855.

[9] Gérard Berry and Ravi Sethi. “From Regular Expressions to Deterministic Automata”.
In: Theor. Comput. Sci. 48.3 (1986), pp. 117–126. DOI: 10.1016/0304-3975(86)90088-5.

[10] Béatrice Bouchou et al. “Schema Evolution for XML: A Consistency-Preserving Ap-
proach”. In: MFCS. Vol. 3153. Lecture Notes in Computer Science. Springer, 2004,
pp. 876–888.

[11] Anne Brüggemann-Klein. “Regular expressions into finite automata”. In: Theoretical
Computer Science 120.2 (1993), pp. 197–213.

[12] Anne Brüggemann-Klein and Derick Wood. “One-Unambiguous Regular Languages”.
In: Inf. Comput. 140.2 (1998), pp. 229–253.

[13] Janusz A. Brzozowski. “Derivatives of Regular Expressions”. In: J. ACM 11.4 (1964),
pp. 481–494. DOI: 10.1145/321239.321249.

[14] Janusz A Brzozowski and Edward J McCluskey. “Signal flow graph techniques for se-
quential circuit state diagrams”. In: IEEE Transactions on Electronic Computers 2 (1963),
pp. 67–76.

[15] Pascal Caron and Djelloul Ziadi. “Characterization of Glushkov automata”. In: Theor.
Comput. Sci. 233.1-2 (2000), pp. 75–90.

[16] A. Cayley. “A theorem on trees”. In: Quart. J. Math. 23 (1889) 2 (1889), pp. 376–378.

https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(86)90088-5
https://doi.org/10.1145/321239.321249

References 91

[17] Jean-Marc Champarnaud and Djelloul Ziadi. “Canonical derivatives, partial deriva-
tives and finite automaton constructions”. In: Theor. Comput. Sci. 289.1 (2002), pp. 137–
163. DOI: 10.1016/S0304-3975(01)00267-5.

[18] Jean-Marc Champarnaud and Djelloul Ziadi. “From C-Continuations to New Quadratic
Algorithms for Automaton Synthesis”. In: IJAC 11.6 (2001), pp. 707–736. DOI: 10.1142/
S0218196701000772.

[19] Jean-Marc Champarnaud et al. “Bottom-Up Quotients for Tree Languages”. In: Journal
of Automata, Languages and Combinatorics 22.4 (2017), pp. 243–269.

[20] Jean-Marc Champarnaud et al. “Random Generation Models for NFAs”. In: J. Autom.
Lang. Comb. 9.2/3 (2004), pp. 203–216. DOI: 10.25596/jalc-2004-203. URL: https:
//doi.org/10.25596/jalc-2004-203.

[21] Noam Chomsky. “Three models for the description of language”. In: IRE Trans. Inf.
Theory 2.3 (1956), pp. 113–124. DOI: 10.1109/TIT.1956.1056813. URL: https://doi.
org/10.1109/TIT.1956.1056813.

[22] Loek Gerard Willem Antoine Cleophas. “Tree algorithms: two taxonomies and a toolkit”.
In: (2008).

[23] H. Comon et al. Tree Automata Techniques and Applications. Available on: http://www.
grappa.univ-lille3.fr/tata. release October, 12th 2007. 2007.

[24] SJ Dilworth and SR Mane. “Applications of Fuss-Catalan numbers to success runs of
Bernoulli trials”. In: Journal of Probability and Statistics 2016 (2016).

[25] Nikolaus I Fuss. “Solutio quaestionis, quot modis polygonum n laterum in polygona
m laterum, per diagonales resolvi queat”. In: Nova Acta Academiae Sci. Petropolitanae 9
(1791), pp. 243–251.

[26] John P. Gallagher, Mai Ajspur, and Bishoksan Kafle. “Optimised determinisation and
completion of finite tree automata”. In: J. Log. Algebr. Meth. Program. 95 (2018), pp. 1–
16.

[27] John P. Gallagher, Kim S. Henriksen, and Gourinath Banda. “Techniques for Scaling
Up Analyses Based on Pre-interpretations”. In: ICLP. Vol. 3668. Lecture Notes in Com-
puter Science. Springer, 2005, pp. 280–296.

[28] V. M. Glushkov. “The abstract theory of automata”. In: Russian Mathematical Surveys
16 (1961), pp. 1–53.

[29] Younes Guellouma and Hadda Cherroun. “Efficient Implementation for Deterministic
Finite Tree Automata Minimization”. In: J. Comput. Inf. Technol. 24.4 (2016), pp. 311–
322. URL: http://cit.fer.hr/index.php/CIT/article/view/2867.

[30] Younes Guellouma et al. “From Tree Automata to String Automata Minimization”. In:
Theory Comput. Syst. 62.5 (2018), pp. 1203–1222. DOI: 10.1007/s00224-017-9815-4.
URL: https://doi.org/10.1007/s00224-017-9815-4.

[31] Silvia Heubach, Nelson Y. Li, and Toufik Mansour. “Staircase tilings and k-Catalan
structures”. In: Discrete Mathematics 308.24 (2008), pp. 5954–5964. DOI: 10.1016/j.
disc.2007.11.012.

[32] Peter Hilton and Jean Pedersen. “Catalan numbers, their generalization, and their
uses”. In: Math Intelligencer 13.2 (1991), pp. 64–75.

[33] Johanna Högberg, Andreas Maletti, and Jonathan May. “Backward and forward bisim-
ulation minimization of tree automata”. In: Theor. Comput. Sci. 410.37 (2009), pp. 3539–
3552. DOI: 10.1016/j.tcs.2009.03.022. URL: https://doi.org/10.1016/j.tcs.
2009.03.022.

https://doi.org/10.1016/S0304-3975(01)00267-5
https://doi.org/10.1142/S0218196701000772
https://doi.org/10.1142/S0218196701000772
https://doi.org/10.25596/jalc-2004-203
https://doi.org/10.25596/jalc-2004-203
https://doi.org/10.25596/jalc-2004-203
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://cit.fer.hr/index.php/CIT/article/view/2867
https://doi.org/10.1007/s00224-017-9815-4
https://doi.org/10.1007/s00224-017-9815-4
https://doi.org/10.1016/j.disc.2007.11.012
https://doi.org/10.1016/j.disc.2007.11.012
https://doi.org/10.1016/j.tcs.2009.03.022
https://doi.org/10.1016/j.tcs.2009.03.022
https://doi.org/10.1016/j.tcs.2009.03.022

References 92

[34] David A Huffman. “The synthesis of sequential switching circuits”. In: Journal of the
franklin Institute 257.3 (1954), pp. 161–190.

[35] Lucian Ilie and Sheng Yu. “Follow automata”. In: Inf. Comput. 186.1 (2003), pp. 140–
162.

[36] Reza Kahkeshani. “A Generalization of the Catalan Numbers”. In: Journal of Integer
Sequences 16 (2013), Article 13.6.8.

[37] S. Kleene. “Representation of events in nerve nets and finite automata”. In: Automata
Studies Ann. Math. Studies 34 (1956). Princeton U. Press, pp. 3–41.

[38] Stephen Cole Kleene. Representation of events in nerve nets and finite automata. Tech. rep.
RAND PROJECT AIR FORCE SANTA MONICA CA, 1951.

[39] Donald Ervin Knuth. The art of computer programming, , Volume III, 2nd Edition. Addison-
Wesley, 1998. ISBN: 0201896850. URL: https://www.worldcat.org/oclc/312994415.

[40] Donald Ervin Knuth. The art of computer programming, Volume I: Fundamental Algo-
rithms, 3rd Edition. Addison-Wesley, 1997. ISBN: 0201896834. URL: https : / / www .
worldcat.org/oclc/312910844.

[41] Thomas Koshy. Catalan Numbers with Applications. Oxford: Oxford University Press,
2009.

[42] Dietrich Kuske and Ingmar Meinecke. “Construction of tree automata from regular
expressions”. In: RAIRO - Theor. Inf. and Applic. 45.3 (2011), pp. 347–370. DOI: 10.1051/
ita/2011107.

[43] É. Laugerotte, N. Ouali Sebti, and D. Ziadi. “From Regular Tree Expression to Position
Tree Automaton”. In: LATA 2013. 2013, pp. 395–406. DOI: 10.1007/978-3-642-37064-
9_35. URL: http://dx.doi.org/10.1007/978-3-642-37064-9_35.

[44] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in
nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–133.

[45] R. F. McNaughton and H. Yamada. “Regular Expressions and State Graphs for Au-
tomata”. In: IEEE Transactions on Electronic Computers 9 (Mar. 1960), pp. 39–57.

[46] Robert McNaughton and Hisao Yamada. “Regular expressions and state graphs for
automata”. In: IRE transactions on Electronic Computers 1 (1960), pp. 39–47.

[47] Ludovic Mignot, Nadia Ouali Sebti, and Djelloul Ziadi. “An Efficient Algorithm for
the Equation Tree Automaton via the k-C-Continuations”. In: Language, Life, Limits
- 10th Conference on Computability in Europe, CiE 2014, Budapest, Hungary, June 23-27,
2014. Proceedings. 2014, pp. 303–313. DOI: 10.1007/978-3-319-08019-2_31.

[48] Ludovic Mignot, Nadia Ouali Sebti, and Djelloul Ziadi. “K-Position, Follow, Equation
and K-C-Continuation Tree Automata Constructions”. In: Proceedings 14th International
Conference on Automata and Formal Languages, AFL 2014, Szeged, Hungary, May 27-29,
2014. 2014, pp. 327–341. DOI: 10.4204/EPTCS.151.23.

[49] Ludovic Mignot, Nadia Ouali Sebti, and Djelloul Ziadi. “Tree Automata Constructions
from Regular Expressions: a Comparative Study”. In: Fundam. Inform. 156.1 (2017),
pp. 69–94. DOI: 10.3233/FI-2017-1598.

[50] Cyril Nicaud. “Etude du comportement en moyenne des automates finis et des lan-
gages rationnels”. PhD thesis. Paris 7, 2000.

[51] Cyril Nicaud. “On the Average Size of Glushkov’s Automata”. In: LATA. Vol. 5457.
Lecture Notes in Computer Science. Springer, 2009, pp. 626–637.

https://www.worldcat.org/oclc/312994415
https://www.worldcat.org/oclc/312910844
https://www.worldcat.org/oclc/312910844
https://doi.org/10.1051/ita/2011107
https://doi.org/10.1051/ita/2011107
https://doi.org/10.1007/978-3-642-37064-9_35
https://doi.org/10.1007/978-3-642-37064-9_35
http://dx.doi.org/10.1007/978-3-642-37064-9_35
https://doi.org/10.1007/978-3-319-08019-2_31
https://doi.org/10.4204/EPTCS.151.23
https://doi.org/10.3233/FI-2017-1598

References 93

[52] Jean-Luc Ponty, Djelloul Ziadi, and Jean-Marc Champarnaud. “A New Quadratic Al-
gorithm to Convert a Regular Expression into an Automaton”. In: Automata Implemen-
tation, First International Workshop on Implementing Automata, WIA ’96, London, Ontario,
Canada, August 29-31, 1996, Revised Papers. Ed. by Darrell R. Raymond, Derick Wood,
and Sheng Yu. Vol. 1260. Lecture Notes in Computer Science. Springer, 1996, pp. 109–
119. DOI: 10.1007/3-540-63174-7_9. URL: https://doi.org/10.1007/3-540-
63174-7_9.

[53] John Riordan. “The Enumeration of Trees by Height and Diameter”. In: IBM J. Res.
Dev. 4.5 (1960), pp. 473–478. DOI: 10.1147/rd.45.0473. URL: https://doi.org/10.
1147/rd.45.0473.

[54] Marcel Paul Schützenberger. “On finite monoids having only trivial subgroups”. In:
Inf. Control. 8.2 (1965), pp. 190–194.

[55] MANOJ KUMAR SONI, AMIT SONI, and DEEPAK BANSAL. “SOME GEOMETRIC
PROPERTIES OF ANALYTIC SERIES WHOSE COEFFICIENTS ARE RECIPROCAL
OF FUSS-CATALAN NUMBERS”. In: Electronic Journal of Mathematical Analysis and
Applications 6.2 (2018), pp. 246–254.

[56] Richard P Stanley. Catalan addendum. 2008.

[57] Richard P Stanley. Catalan numbers. Cambridge University Press, 2015.

[58] Richard P. Stanley and Sergey P. Fomin. Enumerative Combinatorics. Vol. 2. Cambridge
University Press, 1999.

[59] James A. Storer. An Introduction to Data Structures and Algorithms. Birkhäuser Basel,
2002. ISBN: 978-1-4612-0075-8.

[60] Robert Endre Tarjan. Data structures and network algorithms. SIAM, 1983.

[61] James W. Thatcher and Jesse B. Wright. “Generalized Finite Automata Theory with an
Application to a Decision Problem of Second-Order Logic”. In: Mathematical Systems
Theory 2.1 (1968), pp. 57–81.

[62] Ken Thompson. “Programming techniques: Regular expression search algorithm”. In:
Communications of the ACM 11.6 (1968), pp. 419–422.

[63] Alan Mathison Turing. “On computable numbers, with an application to the Entschei-
dungsproblem”. In: Proceedings of the London mathematical society 2.1 (1937), pp. 230–
265.

[64] Bapiraju Vinnakota and V. V. Bapeswara Rao. “Enumeration of Binary Trees”. In: Inf.
Process. Lett. 51.3 (1994), pp. 125–127.

[65] John Von Neumann. “First Draft of a Report on the EDVAC, 30 June 1945”. In: Contract
No W (1945).

https://doi.org/10.1007/3-540-63174-7_9
https://doi.org/10.1007/3-540-63174-7_9
https://doi.org/10.1007/3-540-63174-7_9
https://doi.org/10.1147/rd.45.0473
https://doi.org/10.1147/rd.45.0473
https://doi.org/10.1147/rd.45.0473

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	I Constructions of Tree Automata
	Preliminaries
	Trees
	Ranked Trees
	Operations over Trees
	The Concatenation
	The Composition
	The Partial Composition
	The Quotient

	Tree Languages
	Bottom-Up Quotient of Tree Languages

	Tree Automata
	Bottom-Up Tree Automata
	Top-Down Tree Automata

	Regular Tree Expression
	Conclusion

	The Constructions of Top-Down Tree Automata
	The Position Tree Automaton
	Position Functions
	Top-Down Position Tree Automaton

	The Follow Tree Automaton
	The Equation Tree Automaton
	The C-Continuation Tree Automaton
	Relation between the Top-Down Constructed Tree Automata
	Conclusion

	The Constructions of Bottom-Up Tree Automata
	The Position Automaton
	Position Functions
	The Bottom-Up Position Tree Automaton

	The Compressed Position Tree Automaton
	The Father Automaton
	The Compressed Father Tree Automaton
	Comparison with the Top-Down Automata
	Conclusion

	Bottom-Up Derivatives
	Boolean Operations
	Extended Tree Expressions
	Tree Automaton Construction
	Conclusion

	II Enumeration of Trees
	Enumeration of Some Ranked Trees
	Catalan Numbers and Generalizations
	Enumeration of Trees over ={fk,1,…,s} by Size
	Enumeration of Trees over by Size and by Height
	Enumeration of Trees over ={f1k1,f2k2, 1,…,s} by Size
	Conclusion

	Conclusion and Perspectives
	Bibliography

