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ABSTRACT

In this thesis, entitled " Bi-Periodic r-Fibonacci Sequences and Horadam Hyper-Dual
Numbers," related to Number Theory and Enumerative Combinatorics, we intro-
duce new sequences, new numbers and polynomials and we study their algebraic
properties. This work is based on our four papers [2, 3, 4, 79]. Many powerful
methods are used to study these sequences, numbers and polynomials, like lin-
ear recurrence relations, generating functions, explicit formulas and Binet forms.
Our manuscript is structured as follows.

First, for a positive integer r, we study bi-periodic r-Fibonacci sequence, and
we define its family of companion sequences, each companion sequence is named
bi-periodic r-Lucas sequence of type s, with 1 ≤ s ≤ r. These sequences general-
ize the classical Fibonacci and Lucas sequences. This construction of the r-Lucas
sequences of type s is one of our most important results. Moreover, we estab-
lish the link between the bi-periodic r-Fibonacci sequence and its companion se-
quences. Furthermore, we give their properties as linear recurrence relations,
generating functions, explicit formulas and Binet forms [2].

Afterwards, we introduce the bi-periodic Horadam hybrid numbers and de-
duce particular cases: the bi-periodic Fibonacci hybrid numbers and the bi-
periodic Lucas hybrid numbers, respectively. We establish the generating func-
tions, the Binet forms and some basic properties of these new hybrid numbers
[79].

Also, we define a bivariate r-Fibonacci hybrid polynomials and bivariate r-
Lucas hybrid polynomials of type s and we obtain some properties of these poly-
nomials [3].

Finally, we develop a new class of quaternions, called hyper-dual Horadam
quaternions, which are constructed from the quaternions whose components are
hyper-dual Horadam numbers. We investigate some basic properties of these

ii



quaternions [4].

Keywords: Bi-periodic r-Fibonacci sequence; companion sequence; bi-
periodic r-Lucas sequence; horadam numbers; hybrid numbers; quaternion num-
bers.



RÉSUMÉ

Cette thèse, intitulée " Suites r-Fibonacci bi-périodiques et nombres de Horadam hyper-
duaux ", s’inscrit dans les domaines de la Théorie des Nombres et de la Combina-
toire Enumérative. Nous introduisons de nouvelles suites, de nouveaux nombres
et polynômes et nous donnons leurs propriétés algèbriques. Ce travail est basé
sur nos quatres articles [2, 3, 4, 79]. Plusieurs méthodes sont utilisées pour étudier
ces suites, nombres et polynômes, comme les relations de récurrences linéaires,
les fonctions génératrices, les formules explicites et les formes de Binet.

En premier lieu, pour un entier positif non nul r, nous étudions la suite r-
Fibonacci bi-périodique. L’un de nos principaux résultats est la définition de la
famille de suites compagnons associées ; chacune de ces suites est appelée suite
bi-périodique r-Lucas de type s, avec s un entier tel que 1 ≤ s ≤ r. Nous établis-
sons, également, le lien entre la suite r-Fibonacci bi-périodique avec chacune de
ses suites compagnons. En outre, on donne leurs propriétés comme : les relations
de récurrences linéaires, les fonctions génératrices, les formules explicites et les
formes de Binet [2].

Ensuite, nous introduisons les nombres bi-périodiques hybrides de Horadam,
desquels on déduit les nombres bi-périodiques hybrides de Fibonacci et les nom-
bres bi-périodiques hybrides de Lucas. Nous donnons la fonction génératrice, la
forme de Binet et quelques propriétés de base de ces nouveaux nombres hybrides
[79].

Nous définissons les polynômes r-Fibonacci hybrid bivariés et r-Lucas hybrid
bivariés de type s et nous obtenons quelques propriétés de ces polynômes [3].

Finalement, nous développons aussi une nouvelle classe des quaternions, ap-
pelée les quaternions de Horadam hyper-duaux, dont les composantes sont les
nombres de Horadam hyper-duaux et on donne quelques propriétés de base de

iv



ces nombres quaternions [4].

Mots clés : Suite r-Fibonacci bi-periodique ; suite compagnon ; suite r-Lucas
bi-periodique ; nombres de Horadam ; nombres hybrid ; nombres quaternions.
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NOTATIONS

C field of complex numbers

R field of real numbers

Q field of rational numbers

Z ring of integers

Zk k copy of Z

Z∗ set of nonzero integers

N set of the nonnegative integers

N∗ set of the positive integers

H quaternion set numbers

D dual set numbers

HD hyper-dual set numbers

K hybrid set numbers

b.c floor function

ξ (.) parity function

:= equality by definition (affectation)
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k) binomial coefficient

( n
k1,k2,...,km

) multinomial coefficient

det determinant
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KZ(r,s),n r-Lucas hybrid polynomials
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qn bi-periodic Lucas numbers
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vn generalized bi-periodic Lucas numbers

wn bi-periodic Horadam numbers
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Introduction

This thesis, entitled " Bi-Periodic r-Fibonacci Sequences and Horadam Hyper-Dual
Numbers " is related to Number Theory and Enumerative Combinatorics, we in-
troduce new sequences, new numbers, and polynomials, we investigate their al-
gebraic properties. [2, 3, 4, 79].

This thesis is structured into five chapters as follows:

In the first chapter, we give some definitions and results required to the com-
prehention of this thesis, such as the linear recurrence sequences of order m, the
k-periodic recurrence sequences, companion sequences, generating functions, ex-
plicit formulas, Binet forms. We define some well-known numbers as hybrid
numbers, quaternion numbers, dual and hyper-dual numbers and so on.

In the second chapter, for a positive integer r, we study bi-periodic r-Fibonacci
sequence and its family of companion sequences, bi-periodic r-Lucas sequence of
type s with 1 ≤ s ≤ r, which extend the classical Fibonacci and Lucas sequences.
Afterwards, we establish a link between the bi-periodic r-Fibonacci sequence and
its companion sequences. Furthermore, we give their properties as linear recur-
rence relations, generating functions, explicit formulas and Binet forms.

In the third chapter, we introduce the bi-periodic Horadam hybrid numbers
and deduce particular cases; the bi-periodic Fibonacci hybrid numbers and the bi-
periodic Lucas hybrid numbers. We establish a relation between the bi-periodic
Fibonacci hybrid numbers and the bi-periodic Lucas hybrid numbers then we
give the generating function, the Binet form and some basic properties of these
new hybrid numbers.

In the fourth chapter, we define a new generalization of Fibonacci and Lucas
hybrid polynomials, it is called bivariate r-Fibonacci hybrid polynomials and bi-
variate r-Lucas hybrid polynomials of type s. We investigate some properties of
these polynomials.

In the fifth, we develop a new class of quaternions, called hyper-dual Ho-

1



Introduction 2

radam quaternions, they are constructed from the quaternions whose compo-
nents are hyper-dual Horadam numbers. The hyper-dual numbers extend the
dual numbers as the quaternions extend the complexe numbers. We investigate
some basic properties of these quaternions.



CHAPTER

1

PRELIMINARIES

In this chapter, we give some notions and definitions that will be useful for un-
derstanding the present thesis. We mention the definitions of linear recurrence
sequences, multi-periodic sequences as k-periodic sequences, and the particular
case the bi-periodic sequences. Also, we give some algebraic properties such as,
characteristic polynomial, companion matrix, generating function, explicit for-
mula. We give the definitions of hybrid numbers, quaternion numbers, dual
and hyper-dual numbers. Moreover, we mention some well-known sequences.
Throughout this thesis, K denotes the field R or C and K[x] the ring of polyno-
mials in one variable x with coefficients in K.

1.1 Recurrence relation

A recurrence relation is an equation that recursively defines a sequence or multi-
dimentional array of values, once one or more initial terms of the same function
are given, each further term of the sequence or array is defined as a function of the
preceding terms of the same function. More precisely, in the case where only the
immediately preceding element is involved, a recurrence relation has the form

un = φ(n, un−1), n ≥ 1, (1.1)

3



1.2. Linear recurrence sequences 4

where
φ : N× X → X, (1.2)

is a function, where X is a set to which the elements of the sequences must belong.
For any u0 ∈ X, this defines a unique sequence with u0 as its first element called
the initial condition. It is easy to modify the definition for getting sequences
starting from the term of index 1 or higher. This defines the recurrence relation of
first order.

The recurrence relation of order m has the form

un = φ(n, un−1, un−2, . . . , un−m), n ≥ m, (1.3)

where
φ : N× Xm → X,

is a function that involves m consecutive elements of the sequence. In this case,
m initial conditions are needed for defining such sequence.

1.2 Linear recurrence sequences

In the particular case when φ is a linear function, we deduce the following defi-
nition.

Definition 1. A linear recurrence sequence (un)n with constant coefficients a1, . . . , am ∈
K and am 6= 0 is a sequence which satisfies the following relation

un = a1un−1 + a2un−2 + · · ·+ amun−m, n ≥ m. (1.4)

This sequence is defined with m initial conditions u0, . . . , um−1 and the integer m
is called the order of the recurrence sequence.

Example 1. The recurrence of order two satisfied by the Fibonacci numbers is the canoni-
cal example of a linear recurrence relation with constant coefficients. The Fibonacci num-
bers (Fn)n was first described in connection with computing the number of descendants
of pair of rabbits in the book Liber Abaci in 1202 [68]. This sequence is probably one
of the well-known recurrent sequences and it is defined by the second order recurrence,
firstly used by Albert Girard in 1634 [25]. The Fibonacci sequence is defined using the
recurrence

Fn = Fn−1 + Fn−2, n ≥ 2, (1.5)



1.3. Characteristic polynomial 5

with initial conditions F0 = 0, F1 = 1. We obtain the sequence of Fibonacci numbers
which begins 0, 1; 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

1.3 Characteristic polynomial

The characteristic polynomial associated to the sequence (1.4) is the polynomial
defined by

P(x) = xm − a1xm−1 − a2xm−2 − · · · − am ∈ K[x]. (1.6)

1.4 Characteristic equation

The characteristic equation of the sequence (1.4) is the equation obtained by
equating its characteristic polynomial (1.6) to zero.

P(x) = xm − a1xm−1 − a2xm−2 − · · · − am = 0. (1.7)

When P(x) is a split polynomial over K[x] then we can write

P(x) =
h

∏
i=1

(x− αi)
ri ∈ K[x], (1.8)

where αi for i = 1, . . . , h with multiplicity ri are the distinct complex roots of the

polynomial P(x) and
h

∑
i=1

ri = m.

Example 2. The characteristic equation of the Fibonacci sequence (1.5) is

x2 − x− 1 = 0, (1.9)

where α =
1 +
√

5
2

and β =
1−
√

5
2

are its roots. The positive root α is known as
"golden ratio".



1.5. Companion matrix 6

1.5 Companion matrix

The companion matrix of the polynomial (1.6) associated to the sequence (1.4) is
defined as

M :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
am am−1 am−2 · · · a1

 , (1.10)

in which the first superdiagonal consists entirely of ones and all other elements
above the last row are zeros. The characteristic equation of M is det(M− xI) = 0,
where I is the identity matrix.

In classical linear algebra, the eigenvalues of a matrix are sometimes defined as
the roots of the corresponding characteristic polynomial. An algorithm to com-
pute the roots of a polynomial by computing the eigenvalues of the correspond-
ing companion matrix turns the tables on the usual definition. When the com-
putation of the nth power of the companion matrix (1.10) is not difficult, we can
determine the nth term un of the sequence (un)n, as the following method.

In [69], Silvester shows that a number of the properties of the Fibonacci sequence
can be derived from a matrix representation. For more details, we refer to [41].
Just as Silvester derived many interesting properties of Fibonacci numbers from
a matrix representation.

Every linear recurrence sequence has a matrix formulation, so the linear relation
(1.4) induces

un−m+1

un−m+2
...

un−1

un

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
am am−1 am−2 · · · a1




un−m

un−m+1
...

un−2

un−1

 , (1.11)



1.6. Generating function 7

for n ≥ m, which is equivalent to:
un+1

un+2
...

un+m−1

un+m

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
am am−1 am−2 · · · a1




un

un+1
...

un+m−2

un+m−1

 , (1.12)

for n ≥ 0. By an inductive argument, we get
un

un+1
...

un+m−2

un+m−1

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
am am−1 am−2 · · · a1



n
u0

u1
...

um−2

um−1

 . (1.13)

for n ≥ 0. Thus, the nth term un of the sequence (un)n is given by

un = (1, 0, · · · , 0, 0)


un

un+1
...

un+m−2

un+m−1



= (1, 0, · · · , 0, 0)


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
am am−1 am−2 · · · a1



n
u0

u1
...

um−2

um−1

 ,

for n ≥ 0, with initial conditions u0, u1, . . . , um−1.

1.6 Generating function

A generating function is a way of encoding an infinite sequence of numbers (un)n

by treating them as coefficients of formal power series. This serie is called the gen-
erating function of the sequence. The generating function provide a powerful tool
for solving linear recurrence relation with constant coefficients. Generating func-



1.7. Binet form 8

tions were introduced for the first time by Abraham de Moivre in 1730 in order
to solve the general linear recurrence problem [45]. Generating functions are one
of the most suprising and useful inventions in Discrete mathematics. Roughly
speaking, generating functions transform problems about sequences into prob-
lems about functions. This is great because we have piles of mathematical ma-
chinery for manipulating functions. The generationg function of the infinite se-
quence (un)n is the power series

∑
n≥0

unxn.

Example 3. The generating function of the Fibonacci sequence (1.5) is

∑
n≥0

Fnxn =
x

1− x− x2 . (1.14)

The technics calculation is given in [49].

1.7 Binet form

We remind the reader of the famous Binet form, also known as the "de Moivre
formula", that can be used to calculate Fibonacci numbers. Binet form is used to
obtain the nth term of a sequence, using the roots of the characteristic equation.
This form can be employed to derive a myriad of identities. Fibonacci numbers
have a closed form expression for the computation of the nth Fibonacci number
without appealing to its recurrence. It is called Binet form in honor of Jacques
Binet, who discovered this form in 1843 [12, 25].

A fundamental result in the theory of recurrence sequences asserts that:

Theorem 2. Let (un)n be a linear recurrence sequence whose characteristic polynomial
P(x) splits as

P(x) = (x− α1)
r1 . . . (x− αh)

rh =
h

∏
i=1

(x− αi)
ri ,

where αi, for i = 1, . . . , h with multiplicity ri, are the distinct complex roots of the poly-

nomial P(x) and
h

∑
i=1

ri = m. Then, there exist uniquely determined non-zero polynomials
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P1, . . . , Ph ∈ Q(αj)[x] for j = 1, . . . , h, with degPj ≤ rj − 1, such that

un = P1(n)αn
1 + P2(n)αn

2 + + Ph(n)αn
h , n ≥ 0. (1.15)

The proof of this result can be found in [67], Theorem C.1.

Example 4. Binet form of the Fibonacci sequence (1.5) is

Fn =
αn − βn

α− β
, (1.16)

where α and β are the roots of the characteristic equation (1.9).

1.8 Companion sequence

The companion sequence of the Fibonacci sequence (1.5) is the well-known Lucas
sequence. The latter was studied by Edouard Lucas (1842-1891), which satisfies
the same recurrence relation as the Fibonacci sequence

Ln = Ln−1 + Ln−2, n ≥ 2, (1.17)

with initial conditions L0 = 2, L1 = 1. We obtain the sequence of Lucas numbers
which begins 2, 1; 3, 4, 7, 11, 18, 29, 47, 76, 123, . . . .

The Lucas sequence (1.17) has a variety of relationships with the Fibonacci se-
quence (1.5), we cite one of them

Ln = Fn−1 + Fn+1, n ≥ 1. (1.18)

Binet form of the Lucas sequence is

Ln = αn + βn, (1.19)

where α, β are defined in (1.9).
The generating function of the Lucas sequence (1.17) is

∑
n≥0

Lnxn =
2− x

1− x− x2 . (1.20)

Fibonacci and Lucas sequences are well-known sequences among integer se-
quences. These sequences and their generalizations have many intresting prop-
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erties and applications to almost every field of science and art.

1.9 Binomial coefficient

Binomial coefficient can be interpreted as the number of distinct ways to choose
k elements from a set of n elements. They are also involved in the expansion of
the expression

(1 + x)n =
n

∑
k=0

(
n
k

)
xk, n ≥ 0, (1.21)

where (
n
k

)
=

n!
k!(n− k)!

, 0 ≤ k ≤ n,

with the convention(
n
k

)
= 0, if k < 0 or k > n.

1.10 Multinomial coefficients

Multinomial coefficients have a direct combinatorial interpretation, as the num-
ber of ways of depositing n distinct objects into m distinct bins, with k1 objects
in the first bin, k2 objects in the second bin, and so on. Multinomial coefficients
( n

k1,k2,...,km
) occur in the expansion of the polynomial (x1 + x2 + · · ·+ xm)

n as fol-
lows:

(x1 + x2 + · · ·+ xm)
n = ∑

k1+k2+···+km=n

(
n

k1, k2, . . . , km

)
xk1

1 xk2
2 . . . xkm

m ,

where (
n

k1, k2, . . . , km

)
=

n!
k1!k2! . . . km!

, k1 + k2 + · · ·+ km = n,

with(
n

k1, k2, . . . , km

)
= 0 if k1 + k2 + · · ·+ km 6= n or ki < 0, i = 1, . . . , m.
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Also, multinomial coefficients can be expressed as binomial coefficients(
n

k1, k2, . . . , km

)
=

(
n
k1

)(
n− k1

k2

)
· · ·
(

n− k1 − k2 − · · · − km−1

km

)
and they satisfy the following recurrence relation(

n
k1, k2, . . . , km

)
=

(
n− 1

k1 − 1, k2, . . . , km

)
+

(
n− 1

k1, k2 − 1, . . . , km

)
+ · · ·+

(
n− 1

k1, k2, . . . , km − 1

)
.

We can also use the notation for the multinomial coefficients, given in [8], for all
k1, k2, . . . , km and k ∈ Z

(
k

k1, k2, . . . , km

)
=


k!

k1!k2! . . . km!
i f k1 + k2 + · · ·+ km = k,

0 otherwise .

.

1.11 Explicit formula

In the following theorem, Belbachir and Bencherif [9] gave a formula expressing
general term of a linear recurrence sequence.

Theorem 3. Let (un)n>−m be the sequence of elements over an unitary ring A, defined
by 

u−j = 0 1 ≤ j ≤ m− 1,
u0 = 1,
un = a1un−1 + a2un−2 + · · ·+ amun−m n ≥ 1.

Then for all integers n > −m,

un = ∑
k1+2k2+···+mkm=n

(
k1 + k2 + · · ·+ km

k1, k2, . . . , km

)
ak1

1 ak2
2 . . . akm

m . (1.22)

1.12 Bivariate polynomials

This section is devoted to recall different well-known sequences of bivariate poly-
nomials. Let (Un(x, y))n and (Vn(x, y))n be the sequences of polynomials with
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two variables x and y with real coefficients defined by the following second or-
der recurrence relations:

Un(x, y) = h(x)Un−1(x, y) + k(y)Un−2(x, y), n ≥ 2, (1.23)

U0(x, y) = 0, U1(x, y) = 1

and
Vn(x, y) = h(x)Vn−1(x, y) + k(y)Vn−2(x, y), n ≥ 2, (1.24)

V0(x, y) = 2, V1(x, y) = h(x),

where h(x), k(y) are polynomials with indeterminates x, y and real coefficients.
The polynomials Un(x, y) and Vn(x, y) are called generalized Fibonacci and Lu-
cas bivariate polynomials, respectively. Many classical sequences, known in the
literature, are derived from the sequences (Un(x, y))n and (Vn(x, y))n.

• For h(x) = k(y) = 1, we obtain the Fibonacci and Lucas sequences [49, 62]:
Un(x, y):=Fn and Vn(x, y):=Ln defined by

Fn = Fn−1 + Fn−2, n ≥ 2,

F0 = 0, F1 = 1

and
Ln = Ln−1 + Ln−2, n ≥ 2,

L0 = 2, L1 = 1.

• For h(x) = 2 and k(y) = 1, we obtain the Pell and Pell-Lucas numbers [48]:
Un(x, y):=Pn and Vn(x, y):=Qn defined by

Pn = 2Pn−1 + Pn−2, n ≥ 2,

P0 = 0, P1 = 1

and
Qn = 2Qn−1 + Qn−2, n ≥ 2,

Q0 = 2, Q1 = 2.

• For h(x) = 2 and k(y) = q, we obtain the q-Pell numbers [14]: Un(x, y):=Pq,n



1.12. Bivariate polynomials 13

defined by
Pq,n = 2Pq,n−1 + qPq,n−2, n ≥ 2,

Pq,0 = 0, Pq,1 = 1.

• For h(x) = p and k(y) = q, we obtain the generalized Fibonacci and Lucas
sequences also, called the Lucas sequences [53]: Un(x, y):=Un(p, q) = Un

and Vn(x, y):=Vn(p, q) = Vn defined by

Un = pUn−1 + qUn−2, n ≥ 2,

U0 = 0, U1 = 1

and
Vn = pVn−1 + qVn−2, n ≥ 2,

V0 = 2, V1 = p.

• For h(x) = x and k(y) = 1, we obtain the Fibonacci polynomials also,
called Catalan polynomials and Lucas polynomials [48]: Un(x, y):=Fn(x)
and Vn(x, y):=Ln(x) defined by

Fn(x) = xFn−1(x) + Fn−2(x), n ≥ 2,

F0(x) = 0, F1(x) = 1

and
Ln(x) = xLn−1(x) + Ln−2(x), n ≥ 2,

L0(x) = 2, L1(x) = x.

• For h(x) = 1 and k(y) = y, we obtain the Jacobsthal polynomials [49]:
Un(x, y):=Jn(y) defined by

Jn(y) = Jn−1(y) + yJn−2(y), n ≥ 2,

J0(y) = 0, J1(y) = 1,

also, we have the Jacobsthal polynomials defined by Horadam in [38] de-
fined by

Jn(y) = Jn−1(y) + 2yJn−2(y), n ≥ 2,

J0(y) = 0, J1(y) = 1
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and
Jn(y) = Jn−1(y) + 2yJn−2(y), n ≥ 2,

J0(y) = 2, J1(y) = 1,

the Jacobsthal-Lucas polynomials [16].

• For h(x) = 2x and k(y) = 1, we obtain the polynomials studied by Byrd
[13]: Un(x, y):=φn(x) defined by

φn(x) = 2xφn−1(x) + φn−2(x), n ≥ 2,

φ0(x) = 0, φ1(x) = 1.

• The case k(y) = 1 and arbitrary h has been studied by A. Nalli and P.
Haukkanen [54].

• For h(x) = px and k(y) = q, we obtain the Horadam polynomials sequence
[39]: Un(x, y):=Wn(x) defined by

Wn(x) = pxWn−1(x) + qWn−2(x), n ≥ 2,

W0(x) = W0, W1(x) = W1x,

with the arbitrary values W0, W1.

1.13 k-periodic sequences

Generalizations of the Fibonacci numbers have been extensively studied. To gen-
eralize the Fibonacci sequence, some authors [34, 40, 44, 60, 91] have altered
the starting values, while others [7, 27, 50, 51, 59, 64] have preserved the first
two terms of the sequence but changed the recurrence relation. We note that
k-periodic sequences, as multi-periodic sequences, satisfy a linear recurrence re-
lation when considered modulo k, even though these sequences themselves do
not. Then we employ this recurrence relation to determine the generating func-
tions and Binet forms.

This generalization has its own Binet form and satisfies identities that are analo-
gous to the identities satisfied by the classical Fibonacci sequence. Now, we intro-
duce a further generalization of the Fibonacci sequence; we call it the k-periodic
Fibonacci sequence [26]. This new generalization is defined using a non-linear
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recurrence relation that depends on k real parameter and is an extension of the
generalized Fibonacci sequence.

The non-linear recurrence relation is given by linear recurrence relation with non-
constant coefficients.

Definition 4. For any k-tuple (a1, a2, . . . , ak) ∈ Zk, we define recursively the k-
periodic Fibonacci sequence, denoted

(
t(a1,a2,...,ak)
n

)
n
= (tn)n by

tn =



a1tn−1 + tn−2, i f n ≡ 2 (mod k),
a2tn−1 + tn−2, i f n ≡ 3 (mod k),
...
ak−1tn−1 + tn−2, i f n ≡ 0 (mod k),
aktn−1 + tn−2, i f n ≡ 1 (mod k),

for n ≥ 2 with initial conditions t0 = 0, t1 = 1.

This new generalization is in fact a family of sequences where each new combi-
nation of a1, a2, . . . , ak produces a new sequence.

• When a1 = a2 = · · · = ak = 1, we have the classical Fibonacci sequence
[49].

• When a1 = a2 = · · · = ak = 2, we get the Pell numbers [48].

• When a1 = a2 = · · · = ak = p, for some positive integer p, we get the
p-Fibonacci numbers [29], also known as generalized Fibonacci numbers.

• When a1 = a, a2 = b, if k = 2 we obtain the bi-periodic Fibonacci sequence
[27], that will be seen in Section 1.14.

Example 5. The sequence descriptions that follow give reference numbers found in
Sloane’s On-Line Encyclopedia of Integer Sequences [70].
When k = 3, for:

• (a1, a2, a3) = (1, 0, 1), we obtain the sequence A092550.

• (a1, a2, a3) = (2, 1, 1), we obtain the sequence A179238.

• (a1, a2, a3) = (1,−1, 2), we obtain the sequence A011655.

When k = 4, for:

http://www.oeis.org/Anum=A092550
http://www.oeis.org/Anum=A179238
http://www.oeis.org/Anum=A011655
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• (a1, a2, a3, a4) = (2, 1, 2, 1), we get the sequence A048788.

• (a1, a2, a3, a4) = (1, 2, 1, 2), we get the sequence A002530.

In order to describe the terms of the sequence (tn)n explicitly using the general-
ization of Binet form, we have first show that for some constant ψ, the sequence
(tn)n satisfies the following recurrence relation

tmk+j = ψt(m−1)k+j + (−1)k−1t(m−2)k+j, 0 ≤ j ≤ k− 1, (1.25)

for m ≥ 2k. For the interested readers and more details we refer to [26].

For clarity, we record some remarks. Since there are currently several types of
generalizations of the Fibonacci and Lucas sequences, it is very difficult for any-
one to know exactly what type of sequence an author really means. We think
that this notation is quite unclear as there are already many types of generalized
k-Fibonacci sequences. Many generalizations of the Fibonacci sequence have ap-
peared in the literature. Probably the most well-known generalization is the k-
generalized Fibonacci sequence (F(k)n)n, n ≥ −(k− 2) (also known as the multi-
bonacci, the k-bonacci, the k-fold Fibonacci or kth order Fibonacci), satisfying

F(k)n = F(k)n−1 + F(k)n−2 + · · ·+ F(k)n−k,

with initial conditions F(k)−j = 0 for j = 0, 1, 2, . . . , k− 2 and F(k)1 = 1. Thus,
we draw the reader’s attention to these important different notations.

1.14 Bi-periodic Fibonacci and Lucas sequences

Edson and Yayenie [27] introduced the bi-periodic Fibonacci sequence using a
non-linear recurrence relation depending on two real parameters which is a par-
ticular case of (tn)n for k = 2 as it is defined below.

Definition 5. For any two nonzero real numbers a and b, the bi-periodic Fibonacci se-
quence (pn)n is defined by

pn =

{
apn−1 + pn−2, i f n ≡ 0 (mod 2),
bpn−1 + pn−2, i f n ≡ 1 (mod 2),

for n ≥ 2, with initial conditions p0 = 0, p1 = 1.

http://www.oeis.org/Anum=A048788
http://www.oeis.org/Anum=A002530
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For particular values of a, b we deduce some well-known sequences in Table 1.1.

a = b = 1 0, 1; 1, 2, 3, 5, 8, . . . Fibonacci sequence

a = b = 2 0, 1; 2, 5, 12, 29, 70, . . . Pell sequence

a = b = 3 0, 1; 3, 10, 33, 109, . . . 3-Fibonacci sequence

a = b = p 0, 1; p, p2 + 1, p3 + 2p, p4 + 3p2 + 1,
p5 + 4p3 + 3p, . . . p-Fibonacci sequence [29]

Table 1.1: Classical sequences.

Bilgici [11] defined the generalization of Lucas sequence similar to the bi-periodic
Fibonacci sequence using a non-linear recurrence relation depending on two
nonzero real numbers as follows:

Definition 6. For any two nonzero real numbers a and b, the bi-periodic Lucas sequence
(qn)n is defined by

qn =

{
bqn−1 + qn−2, i f n ≡ 0 (mod 2),
aqn−1 + qn−2, i f n ≡ 1 (mod 2),

for n ≥ 2, with initial conditions q0 = 2, q1 = a.
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For particular values of a, b we deduce some well-known companion sequences
in Table 1.2.

a = b = 1 2, 1; 3, 4, 7, 11, 18, 29, . . . Lucas sequence

a = b = 2 2, 2; 6, 14, 34, 82, 198, 478, . . . Pell-Lucas sequence

a = b = 3 2, 3; 11, 36, 119, 393, 1298, 4287, . . . 3-Lucas sequence

a = b = p 2, p; p2 + 2, p3 + 3p, p4 + 4p2 + 2,
p5 + 5p3 + 5p, p6 + 6p4 + 9p2 + 2, . . . p-Lucas sequence [28]

Table 1.2: Classical companion sequences.

Binet forms of the sequences (pn)n and (qn)n are given by

pn =
aξ(n+1)

(ab)b
n
2c

(
αn − βn

α− β

)
(1.26)

and

qn =
aξ(n+1)

(ab)b
n
2c

(αn + βn) , (1.27)

here α =
ab +

√
a2b2 + 4ab
2

and β =
ab−

√
a2b2 + 4ab
2

are roots of the polynomial

x2 − abx − ab, with b.c denotes the floor function and ξ (n) = n − 2
⌊n

2

⌋
is the

parity function, i.e., ξ (n) = 0, when n is even and ξ (n) = 1 when n is odd.

The generating functions of the bi-periodic sequences (pn)n and (qn)n are

∑
n≥0

pnxn =
x + ax2 − x3

1− (ab + 2) x2 + x4

and

∑
n≥0

qnxn =
2 + ax− (ab + 2)x2 + ax3

1− (ab + 2) x2 + x4 .

The Fibonacci conditional sequence is a further generalization introduced by
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Sahin [63], it is defined as follows:

Definition 7. For any nonzero numbers a, b, c and d, the bi-periodic Fibonacci sequence
(hn)n is defined by

hn =

{
ahn−1 + chn−2, i f n ≡ 0 (mod 2),
bhn−1 + dhn−2, i f n ≡ 1 (mod 2),

for n ≥ 2, with initial conditions h0 = 0, h1 = 1.

• If we take a = b = p, c = d = q we get the generalized Fibonacci sequence
(Un)n = (Un(p, q))n [53].

• If we take a = b = 1, c = d = 2 we get the Jacobsthal sequence (Jn)n [37, 47].

• If we take a = b = p, c = d = 2 we get the p-Jacobsthal sequence ( Ĵn)n [90].

Taking initial conditions h0 = 2 and h1 = a, authors gave some properties of the
Lucas conditional sequence in [82] which is defined as follows:

Definition 8. For any nonzero numbers a, b, c and d, the bi-periodic Lucas sequence
(τn)n is defined by

τn =

{
bτn−1 + dτn−2, i f n ≡ 0 (mod 2),
aτn−1 + cτn−2, i f n ≡ 1 (mod 2),

for n ≥ 2, with initial conditions τ0 = 2, τ1 = a.

It should be noted that more results related to these sequences can be found in [11,
26, 58, 63, 80, 81, 82, 92]. In literature, these sequences are called the generalized
Fibonacci sequences. Thus, we ask the reader to be careful and pay attention to
generalizations.

• If we take a = b = p, c = d = q we get the generalized Lucas sequence
(Vn)n = (Vn(p, q))n [53].

• If we take a = b = 1, c = d = 2 we get the Jacobsthal-Lucas sequence (jn)n

[37, 47].

• If we take a = b = p, c = d = 2 we get the p-Jacobsthal-Lucas sequence
( ĵn)n [90].
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1.15 Horadam sequences

The main advantage of introducing the Horadam sequence is that many
celebrated sequences such as Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal,
Jacobsthal-Lucas sequences can be deduced as particular cases of the Horadam
sequence, either for the bi-periodic cases. The Horadam sequence (Wn)n is de-
fined by Horadam [36] as

Wn = pWn−1 + qWn−2, n ≥ 2, (1.28)

with initial conditions W0, W1 where W0, W1, p, q are arbitrary integers. It has
considered a generalization of the classical Fibonacci and Lucas sequences.

In particular,

• If we take W0 = 0, W1 = 1, we obtain the generalized Fibonacci sequence
(Un)n:=(Un(p, q))n [53].

• If we take W0 = 2, W1 = p, we obtain the generalized Lucas sequence
(Vn)n:=(Vn(p, q))n [53].

• If we take q = 1, W0 = 0, W1 = 1, we obtain the generalized Fibonacci
sequence (Un)n = (Un(p, 1))n [29].

• If we take q = 1, W0 = 2, W1 = p, we obtain the generalized Lucas sequence
(Vn)n = (Vn(p, 1))n [28].

• If we take p = 1, q = 2 and W0 = 0, W1 = 1, we obtain the Jacobsthal
sequence (Jn)n [37, 47].

• If we take p = 1, q = 2 and W0 = 2, W1 = 1, we obtain the Jacobsthal-Lucas
sequence (jn)n [37, 47].

• If we take p, q = 2 and W0 = 0, W1 = 1, we obtain the p-Jacobsthal sequence
( Ĵn)n [90].

• If we take p, q = 2 and W0 = 2, W1 = 1, we obtain the p-Jacobsthal-Lucas
sequence ( ĵn)n [90].

The Binet form of the Horadam sequence is

Wn =
Aαn − Bβn

α− β
,
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where
A := W1 −W0β, and B := W1 −W0α.

Here α =
(p+
√

p2+4q)
2 and β =

(p−
√

p2+4q)
2 are the roots of the characteristic poly-

nomial x2 − px− q.
The generating function of the Horadam sequence (Wn)n is

∑
n≥0

Wnxn =
(1− px)W0 + xW1

1− px− qx2 .

1.16 Bi-periodic Horadam sequences

Similar to the Fibonacci and Lucas sequences that were generalized as the Ho-
radam sequence, the bi-periodic Fibonacci and Lucas sequences were general-
ized as the bi-periodic Horadam sequence (δn)n which is defined first in [27] as
follows:

Definition 9. For two nonzero real numbers a and b, the bi-periodic Horadam sequence
(δn)n is defined by

δn =

{
aδn−1 + δn−2, i f n ≡ 0 (mod 2),
bδn−1 + δn−2, i f n ≡ 1 (mod 2),

(1.29)

for n ≥ 2 with arbitrary initial conditions δ0, δ1 where δ0, δ1 are nonzero values.

Motivating by Horadam’s results in [36], Tan [78] gave some basic properties of
the bi-periodic Horadam sequence and some identities for the bi-periodic Lucas
sequences. Some sequences in the literature can be stated in terms of the sequence
(δn)n as:

• If we take δ0 = 0, δ1 = 1, in the sequence (1.29), we get the bi-periodic
Fibonacci sequence (pn)n [27].

• If we take δ0 = 2 , δ1 = b, in the sequence (1.29), we get the bi-periodic
Lucas sequence (qn)n [82] with the case of c = d = 1.

• If we take a = b = p and δ0 = 0, δ1 = 1, in the sequence (1.29), we get the
generalized Fibonacci sequence (Un)n = (Un(p, 1))n [29].

• If we take a = b = p and δ0 = 2, δ1 = p, in the sequence (1.29), we get the
generalized Lucas sequence (Vn)n = (Vn(p, 1))n [28].
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The Binet form of the bi-periodic Horadam sequence is

δn =
aξ(n+1)

(ab)b
n
2c

(Aαn − Bβn) , (1.30)

where

A :=
δ1 − β

a δ0

α− β
and B :=

δ1 − α
a δ0

α− β
. (1.31)

Here α =
ab +

√
a2b2 + 4abc

2
and β =

ab−
√

a2b2 + 4abc
2

are the roots of the

polynomial x2 − abx− abc.
The generating function of the bi-periodic Horadam sequence (δn)n is

∑
n≥0

δnxn =

(
1− (ab + 1) x2 + bx3) δ0 + x

(
1 + ax− x2) δ1

1− (ab + 2) x2 + x4 .

Another generalization of bi-periodic Horadam sequence defined by

wn :=

{
awn−1 + cwn−2, i f n ≡ 0 (mod 2),
bwn−1 + cwn−2, i f n ≡ 1 (mod 2),

(1.32)

for n ≥ 2 with arbitrary initial conditions w0, w1 where w0, w1, a, b, c are nonzero
real numbers is given in [84]. This sequence will be generalized in Chapter 3.

• If we take a = b = p, c = q and w0 = 0, w1 = 1 in the sequence (1.29), we
get the generalized Fibonacci sequence (Un)n = (Un(p, q))n [53].

• If we take a = b = p, c = q and w0 = 2, w1 = 1 in the sequence (1.29), we
get the generalized Lucas sequence (Vn)n = (Vn(p, q))n [53].

• If we take a = b = 1, c = 2 and w0 = 0, w1 = 1 in the sequence (1.29), we
get the Jacobsthal sequence (Jn)n [37, 47].

• If we take a = b = 1, c = 2 and w0 = 2, w1 = 1 in the sequence (1.29), we
get the Jacobsthal-Lucas sequence (jn)n [37, 47].

• If we take a = b = p, c = 2 and w0 = 0, w1 = 1 in the sequence (1.29), we
get the p-Jacobsthal sequence ( Ĵn)n [90].

• If we take a = b = p, c = 2 and w0 = 2, w1 = 1 in the sequence (1.29), we
get the p-Jacobsthal-Lucas sequence ( ĵn)n [90].
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These sequences are studied by the French mathematician Edouard Lucas (1842-
1891) in [53].

1.17 Quaternion numbers

Quaternions were defined by Hamilton (1866) as a generalization of complex
numbers. Hamilton introduced a quaternion in the form q = a + bi + cj + dk
where a, b, c, d are real numbers or coefficients. The real quaternion algebra is the
first noncommutative division algebra to be discovered and defined by

H = {a + bi + cj + dk | a, b, c, d ∈ R},

where the complex numbers i, j and k satisfy the following algebraic rules

i2 = j2 = k2 = ijk = −1, ij = −ji = k

which imply

ij = −ji = k, jk = −kj = i, ki = −ik = j

and satisfy, for all real number x

ix = xi, jx = xj, kx = xk.

The conjugate of the quaternion q is defined by q = a − bi − cj − dk. Quater-
nions form a 4-dimensional vector space over real numbers with basis {1, i, j, k} ,
which is an associative but noncommutative algebra over R. Noncommutative
algebra have broad applications in many areas, especially in physics and mathe-
matics. Hamilton’s book [33] serves as an excellent reference to the properties of
quaternions.

1.18 Dual numbers

Dual numbers were invented by Clifford [20] as an extension of the real numbers.
The set of dual numbers is defined as

D = {d = a + a∗ε | a, a∗ ∈ R} , (1.33)
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where ε is the dual number with ε 6= 0, ε2 = 0. Dual numbers have many in-
teresting applications on mechanics, robotics, computer graphics, geometry and
physics. The addition and multiplication of two dual numbers

d1 = a + a∗ε and d2 = b + b∗ε

are defined as

d1 + d2 = (a + b) + (a∗ + b∗)ε and d1d2 = ab + (ab∗ + a∗b)ε,

respectively.

1.19 Dual quaternion numbers

Similar to the quaternions, dual quaternions are defined by taking dual numbers
instead of real numbers as a coefficient. A dual quaternion q̃ is defined as

q̃ = d0 + d1i + d2 j + d3k,

where d0, d1, d2, d3 ∈ D, and the elements i, j, k satisfy the quaternion multiplica-
tion rule

i2 = j2 = k2 = ijk = −1. (1.34)

Since any dual quaternion can be written as a dual number with a real quaternion
coefficient, it is constructed from 8 real parameters. For the detailed information
related to these numbers and their applications, we refer to [20, 33, 71].

1.20 Hyper-dual numbers

Hyper-dual numbers can be seen as an extension of dual numbers in the same
way that quaternions are an extension of complex numbers. To get an advantage
on exact calculations of second (or higher) derivatives, Fike and Alanso [30, 31]
introduced the hyper-dual numbers. The set of hyper-dual numbers is defined
by

HD = {D=a0 + a1ε1 + a2ε2 + a3ε1ε2 | a0, a1, a2, a3 ∈ R} , (1.35)
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where the dual numbers ε1 and ε2 satisfy the following rules

ε2
1 = ε2

2 = 0, ε1 6= ε2, ε1 6= 0, ε2 6= 0, ε1ε2 = ε2ε1 6= 0. (1.36)

Hyper-dual numbers form a 4-dimensional vector space over real numbers with
basis {1, ε1, ε2, ε1ε2} .
Also, a hyper-dual number D can be written as

D = d + d∗ε∗,

where
d = a0 + a1ε, d∗ = a2 + a3ε ∈ D

and
ε1 = ε, ε2 = ε∗.

Let D1 = d1 + d∗1ε∗ and D2 = d2 + d∗2ε∗ be any two hyper-dual numbers.
The addition and the multiplication of hyper-dual numbers are defined as

D1 + D2 = (d1 + d2) + (d∗1 + d∗2)ε
∗

and
D1D2 = d1d2 + (d1d∗2 + d∗1d2)ε

∗,

respectively. For applications of hyper-dual numbers, see [21, 22, 23].

1.21 Hybrid numbers

The hybrid numbers is a new noncommutative numbers introduced by Ozdemir
[57] as a generalization of complex, dual and hyperbolic numbers. The geometry
of this new numbers can be seen as a generalization of the geometries of the
Euclidean, Lorentzian and Galilean, respectively. The set of hybrid numbers is
defined as

K = {a + bi + cε + dh | a, b, c, d ∈ R} (1.37)

where the complex i, the dual ε and the hyperbolic h units satisfy the following
rules

i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε + i.
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The addition, substraction and multiplication of two hybrid numbers

k1 = a1 + b1i + c1ε + d1h and k2 = a2 + b2i + c2ε + d2h,

are defined as

k1 ± k2 = (a1 ± a2) + (b1 ± b2) i + (c1 ± c2) ε + (d1 ± d2) h

and

k1k2 = a1a2 − b1b2 + d1d2 + b1c2 + c1b2

+ (a1b2 + b1a2 + b1d2 − d1b2) i

+ (a1c2 + c1a2 + b1d2 − d1b2 + d1c2 − c1d2) ε

+ (a1d2 + d1a2 + c1b2 − b1c2) h.

The multiplication of a hybrid number k = a + bi + cε + dh by a real scalar s is
defined as

sk = sa + sbi + scε + sdh

and the norm of a hybrid number k is defined by

‖k‖ :=
√
|C (k)|,

where C (k) := kk is the character of the hybrid number k and k := a− bi− cε− dh
is the conjugate of k. Ozdemir’s paper [57] serves as an excellent reference to the
algebraic and geometric properties of hybrid numbers.



CHAPTER

2

BI-PERIODIC r-FIBONACCI SE-
QUENCE AND r-LUCAS SE-
QUENCE OF TYPE s [2]

In the present chapter, for a positive integer r, we study bi-periodic r-Fibonacci
sequence and its family of companion sequences, bi-periodic r-Lucas sequence of
type s with 1 ≤ s ≤ r which extend the classical Fibonacci and Lucas sequences.
Afterwards, we establish the link between the bi-periodic r-Fibonacci sequence
and its companion sequences. Furthermore, we give their properties as linear
recurrence relations, generating functions, explicit formulas and Binet forms.

2.1 Introduction

For a positive integer r and positive real numbers a, b, Yazlik et al. [93] introduced
the sequences ( fn)n and (ln)n as follows:

fn =

{
a fn−1 + fn−r−1, i f n ≡ 0 (mod 2),
b fn−1 + fn−r−1, i f n ≡ 1 (mod 2)

and

ln =

{
bln−1 + ln−r−1, i f n ≡ 0 (mod 2),
aln−1 + ln−r−1, i f n ≡ 1 (mod 2),

27
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for n ≥ r + 1 with initial conditions

f0 = 0, f1 = 1, f2 = a, . . . , fr = abr/2cbb(r−1)/2c

and
l0 = r + 1, l1 = a, l2 = ab, . . . , lr = ab(r+1)/2cbbr/2c,

respectively.
It is clear to see that when a = b = 1 and r = 1, the sequences ( fn)n and (ln)n

reduce to the Fibonacci and Lucas sequences, respectively.

Raab [61] introduced the generalized r-Fibonacci sequence, for a positive integer
r and real numbers x and y, by

T(r)
n = xT(r)

n−1 + yT(r)
n−r−1, n ≥ r + 1

and initial conditions

T(r)
0 = 0, T(r)

k = xk−1, 1 ≤ k ≤ r.

When x = y = 1, the numbers T(r)
n reduce to the r-Fibonacci numbers.

Abbad et al. [1] defined the family of companion sequences; the r-Lucas se-
quences of type s, for a positive integers r, s with 1 ≤ s ≤ r and real numbers
x and y, by

Z(r,s)
n = xZ(r,s)

n−1 + yZ(r,s)
n−r−1, n ≥ r + 1

and initial conditions

Z(r)
0 = s + 1, Z(r)

k = xk, 1 ≤ k ≤ r.

Our study consists of two aspects. The first one, is to introduce the parameters c
and d in the expression of the recurrence sequences given by Yazlik et al. in [93].
The second one, is to define a family of companion sequences as introduced in [1]
for the bi-periodic case.

2.2 Bi-periodic r-Fibonacci and r-Lucas sequences

In this section, we define bi-periodic r-Fibonacci sequence (U(r)
n )n and we intro-

duce the family of its companion sequences, bi-periodic r-Lucas sequence of type
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s, (V(r,s)
n )n, then we express V(r,s)

n in terms of U(r)
n and we give their linear recur-

rence relations.

Definition 10. For nonzero real numbers a, b, c, d and positive integer r, bi-periodic r-
Fibonacci sequence (U(r)

n )n is defined by

U(r)
n =

{
aU(r)

n−1 + cU(r)
n−r−1, i f n ≡ 0 (mod 2),

bU(r)
n−1 + dU(r)

n−r−1, i f n ≡ 1 (mod 2),
(2.1)

for n ≥ r + 1 with initial conditions

U(r)
0 = 0, U(r)

1 = 1, U(r)
2 = a, . . . , U(r)

r = abr/2cbb(r−1)/2c.

We give the first values of the bi-periodic r-Fibonacci sequence.

1. For r = 1,

U(1)
0 = 0, U(1)

1 = 1, U(1)
2 = a, U(1)

3 = ab + d, U(1)
4 = a2b + a(d + c),

U(1)
5 = a2b2 + ab(2d + c) + d2, U(1)

6 = a3b2 + a2b(2d + 2c) + a(d2 + dc + c2).

2. For r = 2,

U(2)
0 = 0, U(2)

1 = 1, U(2)
2 = a, U(2)

3 = ab, U(2)
4 = a2b + c,

U(2)
5 = a2b2 + (bc + ad), U(2)

6 = a3b2 + a(2bc + ad).

The bi-periodic r-Fibonacci sequence can be expressed by the following linear
recurrence relation.

Theorem 11. Let a, b, c, d be nonzero real numbers and r be a positive integer. The bi-
periodic r-Fibonacci sequence satisfies the following linear recurrence relation:
For n ≥ 2r + 2,

U(r)
n = abU(r)

n−2 + (aξ(r+1)d + bξ(r+1)c)U(r)
n−r−1−ξ(r+1) − (−1)r+1cdU(r)

n−2r−2, (2.2)

with initial conditions

U(r)
0 = 0, U(r)

1 = 1, U(r)
2 = a, . . . , U(r)

r = abr/2cbb(r−1)/2c,
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for r + 1 ≤ m ≤ 2r + 1,

U(r)
m =


ab

m
2 cbb

m−1
2 c +

(⌊m−r
2
⌋
d +

⌊
m−r−1

2

⌋
c
)

ab
m−r−1

2 cbb
m−r−2

2 c, if r is odd,

ab
m
2 cbb

m−1
2 c +

⌊m−r
2
⌋

ab
m−r−2

2 cbb
m−r−1

2 cc +
⌊

m−r−1
2

⌋
ab

m−r
2 cbb

m−r−3
2 cd, if r is even,

(2.3)

where ξ(k) = 2(k/2− bk/2c) is the parity function and bc is the floor function.

Proof. Note that ξ(n + m) = ξ(n) + ξ(m)− 2ξ(n)ξ(m).
Formula (2.1) can be rewritten as

U(r)
n = a1−ξ(n)bξ(n)U(r)

n−1 + c1−ξ(n)dξ(n)U(r)
n−r−1

= a1−ξ(n)bξ(n)
(

aξ(n)b1−ξ(n)U(r)
n−2 + cξ(n)d1−ξ(n)U(r)

n−r−2

)
+ c1−ξ(n)dξ(n)

(
aξ(n+r)b1−ξ(n+r)U(r)

n−r−2 + cξ(n+r)d1−ξ(n+r)U(r)
n−2r−2

)
= abU(r)

n−2 +
(

a1−ξ(n)bξ(n)cξ(n)d1−ξ(n) + c1−ξ(n)dξ(n)aξ(n+r)b1−ξ(n+r)
)

U(r)
n−r−2

+ c1−ξ(n)dξ(n)cξ(n+r)d1−ξ(n+r)U(r)
n−2r−2.

When r is odd, we get

U(r)
n = abU(r)

n−2 +
(

a1−ξ(n)bξ(n)cξ(n)d1−ξ(n) + c1−ξ(n)dξ(n)a1−ξ(n)bξ(n)
)

U(r)
n−r−2

+ c1−ξ(n)dξ(n)c1−ξ(n)dξ(n)U(r)
n−2r−2

= abU(r)
n−2 + a1−ξ(n)bξ(n)(c + d)U(r)

n−r−2 + c2(1−ξ(n))d2ξ(n)U(r)
n−2r−2

= abU(r)
n−2 + (c + d)

(
U(r)

n−r−1 − c1−ξ(n)dξ(n)U(r)
n−2r−2

)
+ c2(1−ξ(n))d2ξ(n)U(r)

n−2r−2

= abU(r)
n−2 + (c + d)U(r)

n−r−1 +
(

c2(1−ξ(n))d2ξ(n) − (c + d)c1−ξ(n)dξ(n)
)

U(r)
n−2r−2

= abU(r)
n−2 + (c + d)U(r)

n−r−1

+
(

c2(1−ξ(n))d2ξ(n) − c2−ξ(n)dξ(n) − c1−ξ(n)d1+ξ(n)
)

U(r)
n−2r−2

= abU(r)
n−2 + (c + d)U(r)

n−r−1 − cdU(r)
n−2r−2,

when r is even, we get

U(r)
n = abU(r)

n−2 +
(

a1−ξ(n)bξ(n)cξ(n)d1−ξ(n) + c1−ξ(n)dξ(n)aξ(n)b1−ξ(n)
)

U(r)
n−r−2

+ c1−ξ(n)dξ(n)cξ(n)d1−ξ(n)U(r)
n−2r−2

= abU(r)
n−2 + (ad + bc)U(r)

n−r−2 + cdU(r)
n−2r−2.
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2

Now, we introduce a family of companion sequences related to the bi-periodic
r-Fibonacci sequence, called bi-periodic r-Lucas sequence of type s, (V(r,s)

n )n.

Definition 12. For nonzero real numbers a, b, c, d and integers r, s such that
1 ≤ s ≤ r, bi-periodic r-Lucas sequence of type s is defined by

V(r,s)
n =

{
bV(r,s)

n−1 + dV(r,s)
n−r−1, i f n ≡ 0 (mod 2),

aV(r,s)
n−1 + cV(r,s)

n−r−1, i f n ≡ 1 (mod 2),

for n ≥ r + 1 with initial conditions

V(r,s)
0 = s + 1, V(r,s)

1 = a, V(r,s)
2 = ab, . . . , V(r,s)

r = ab(r+1)/2cbbr/2c.

We give the first values of the bi-periodic r-Lucas sequence of type s.

1. For r = s = 1,

V(1,1)
0 = 2, V(1,1)

1 = a, V(1,1)
2 = ab + 2d, V(1,1)

3 = a2b + 2ad + ac,

V(1,1)
4 = a2b2 + 3abd + abc + 2d2,

V(1,1)
5 = a3b2 + 3a2bd + 2a2bc + 2ad2 + 2adc + ac2.

2. For r = 2 and s ∈ {1, 2},

V(2,s)
0 = s + 1, V(2,s)

1 = a, V(2,s)
2 = ab, V(2,s)

3 = a2b + (s + 1)c,

V(2,s)
4 = a2b2 + (s + 1)bc + ad, V(2,s)

5 = a3b2 + (s + 2)abc + a2d.

The bi-periodic r-Fibonacci sequence (U(r)
n )n and the bi-periodic r-Lucas se-

quence of type s, (V(r,s)
n )n can be seen as a generalization of the Fibonacci and

Lucas sequences, we list some particular cases.

• For a = b = c = d = 1 and r = s = 1, we get the classical Fibonacci and
Lucas sequences.

• For a = b = 2, c = d = 1 and r = s = 1, we get the classical Pell and
Pell-Lucas sequences.

• For a, b nonzero real numbers, c = d = 1 and r = s = 1, we get the bi-
periodic Fibonacci and bi-periodic Lucas sequences.
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• For a, b nonzero real numbers, c = d = 2 and r = s = 1, we get the Jacob-
sthal and the Jacobsthal-Lucas sequences.

• For a = b, c = d nonzero real numbers, we get the r-Fibonacci sequence and
the r-Lucas sequence of type s.

For more details on these sequences, we refer the reader to [1, 11, 27, 61, 93].

Each sequence in the family of companion sequences, the bi-periodic r-Lucas se-
quence of type s, satisfies the following linear recurrence relation:

Theorem 13. Let a, b, c, d be nonzero real numbers and r, s be integers such that
1 ≤ s ≤ r. The bi-periodic r-Lucas sequence of type s satisfies the following linear
recurrence relation:
For n ≥ 2r + 2,

V(r,s)
n = abV(r,s)

n−2 + (aξ(r+1)d + bξ(r+1)c)V(r,s)
n−r−1−ξ(r+1) − (−1)r+1cdV(r,s)

n−2r−2, (2.4)

with initial conditions

V(r,s)
0 = s + 1, V(r,s)

1 = a, V(r,s)
2 = ab, . . . , V(r,s)

r = ab(r+1)/2cbbr/2c,

for r + 1 ≤ m ≤ 2r + 1,

V(r,s)
m =


ab

m+1
2 cbb

m
2 c +

((
s +

⌊
m−r+1

2

⌋)
d +

⌊m−r
2
⌋
c
)

ab
m−r

2 cbb
m−r−1

2 c, if r is odd,

ab
m+1

2 cbb
m
2 c +

(
s +

⌊
m−r+1

2

⌋)
ab

m−r−1
2 cbb

m−r
2 cc +

⌊m−r
2
⌋

ab
m−r+1

2 cbb
m−r−2

2 cd, if r is even.
(2.5)

Proof. The proof is done using Definition 12. 2

Theorem 14. Let r and s be positive integers, such that 1 ≤ s ≤ r, the bi-periodic
r-Fibonacci sequence and the bi-periodic r-Lucas sequence of type s satisfy the following
relationship:

V(r,s)
n =


U(r)

n+1 + sdU(r)
n−r, n ≥ r, if r is odd,

U(r)
n+1 + scbU(r)

n−r−1 + scdU(r)
n−2r−1, n ≥ 2r + 1, if r is even.

(2.6)

Proof. We prove the theorem by induction on n, using Definition 12 and relations
(2.3), (2.5) in Theorem 11 and Theorem 13, respectively.

2
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2.3 Generating functions

In this section, we give the generating functions of the bi-periodic r-Fibonacci
sequence and the bi-periodic r-Lucas sequence of type s.

Theorem 15. Let r be a positive integer, the generating function of (U(r)
n )n is

G(x) =
x + ax2 + (−1)ξ(r)cxr+2

1− abx2 − (aξ(r+1)d + bξ(r+1)c)xr+1+ξ(r+1) − (−1)rcdx2r+2
. (2.7)

Proof. The formal power series representation of the generating function for
(Un

(r))n gives

G(x) =

2r+1
∑

k=0
U(r)

k xk − abx2
2r−1
∑

k=0
U(r)

k xk − (aξ(r+1)d + bξ(r+1)c)xr+1+ξ(r+1)
r−ξ(r+1)

∑
k=0

U(r)
k xk

1− abx2 − (aξ(r+1)d + bξ(r+1)c)xr+1+ξ(r+1) − (−1)rcdx2r+2
.

Indeed, we suppose that r is odd, we write

G(x) = ∑
k>0

U(r)
k xk.

Then

−abx2G(x) = −ab ∑
k>0

U(r)
k xk+2.

(−(d + c))xr+1G(x) = −(d + c) ∑
k>0

U(r)
k xk+r+1.

(cd)x2r+2G(x) = cd ∑
k>0

U(r)
k xk+2r+2.

The relation (2.2) in Theorem 11 gives

(1− abx2 − (d + c)xr+1 + cdx2r+2)G(x) = U(r)
0 + U(r)

1 x1 + · · ·+ U(r)
2r+1x2r+1

− abU(r)
0 x2 − abU(r)

1 x3 − · · · − abU(r)
2r−1x2r+1

− (d + c)U(r)
0 xr+1 − (d + c)U(r)

1 xr+2 − · · ·

− (d + c)U(r)
r x2r+1

=
2r+1

∑
k=0

U(r)
k xk − abx2

2r−1

∑
k=0

U(r)
k xk

− (d + c)xr+1
r

∑
k=0

U(r)
k xk.
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Using relation (2.3) given in Theorem 11, we obtain

G(x) =
x + ax2 − cxr+2

1− abx2 − (d + c)xr+1 + cdx2r+2 .

Similary, if r is even, we get

G(x) =
x + ax2 + cxr+2

1− abx2 − (ad + bc)xr+2 − cdx2r+2 .

2

Remark 16. If we take r = 1, we obtain the generating function of the bi-periodic
Fibonacci sequence given by Sahin [63].

The following theorem express the generating function of (V(r,s)
n )n.

Theorem 17. Let r and s be positive integers, such that 1 ≤ s ≤ r, the generating
function of (V(r,s)

n )n is

H(x) =
(s + 1) + ax− absx2 + (−1)ξ(r)(s + 1)cxr+1 + (−1)ξ(r+1)adsxr+2

1− abx2 − (aξ(r+1)d + bξ(r+1)c)xr+1+ξ(r+1) − (−1)rcdx2r+2
. (2.8)

Proof. For odd r, relation (2.6) gives

H(x) = ∑
n>0

V(r,s)
n xn

= ∑
n>0

U(r)
n+1xn + sd ∑

n>r
U(r)

n−rxn

=
1
x ∑

n>0
U(r)

n+1xn+1 + sdxr ∑
n>r

U(r)
n−rxn−r

=
1
x ∑

n>0
U(r)

n xn + sdxr ∑
n>0

U(r)
n xn

=
1 + ax− cxr+1

1− abx2 − (d + c)xr+1 + cdx2r+2 +
sd(xr+1 + axr+2 − cx2r+2)

1− abx2 − (d + c)xr+1 + cdx2r+2

=
1 + ax− cxr+1 + sdxr+1 + sadxr+2 − scdx2r+2

1− abx2 − (d + c)xr+1 + cdx2r+2

=
(s + 1) + ax− absx2 − (s + 1)cxr+1 + adsxr+2

1− abx2 − (d + c)xr+1 + cdx2r+2 .
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For even r, relation (2.6) gives

H(x) = ∑
n>0

V(r,s)
n xn

= ∑
n>0

U(r)
n+1xn + scb ∑

n>r+1
U(r)

n−r−1xn + scd ∑
n>2r+1

U(r)
n−2r−1xn

=
1
x ∑

n>0
U(r)

n+1xn+1 + scbxr+1 ∑
n>r+1

U(r)
n−r−1xn−r−1

+scdx2r+1 ∑
n>2r+1

U(r)
n−2r−1xn−2r−1

=
1
x ∑

n>0
U(r)

n xn + scbxr+1 ∑
n>0

U(r)
n xn + scdx2r+1 ∑

n>0
U(r)

n xn

= (
1
x
+ scbxr+1 + scdx2r+1) ∑

n>0
U(r)

n xn

=
( 1

x + scbxr+1 + scdx2r+1)(x + ax2 + cxr+2)

1− abx2 − (ad + bc)xr+2 − cdx2r+2

=
1 + ax + cxr+1 + s− sabx2 − sadxr+2 + scxr+1(abx2 + cbxr+2 + adxr+2 + cdx2r+2)

1− abx2 − (ad + bc)xr+2 − cdx2r+2

=
(s + 1) + ax− absx2 + (s + 1)cxr+1 − adsxr+2

1− abx2 − (ad + bc)xr+2 − cdx2r+2 .

2

Remark 18. If we take r = 1 and c = d = 1, we obtain the generation function of
the bi-periodic Lucas sequence given by Bilgici [11].

2.4 Explicit formulas

In this section, we will state explicit formulas for (U(r)
n )n and (V(r,s)

n )n, to gener-
alize the explicit formulas of bi-periodic Fibonacci and Lucas sequences.
Using Theorem 3, we give an explicit formula of the bi-periodic r-Fibonacci se-
quence.

Theorem 19. For any integer r ≥ 1, we have

U(r)
n+1 =


∑

2i+(r+1)t+(r+1)k=n

(
i + t

t

)(
t
k

)
(ab)i(c + d)t−k(−cd)k, if r is odd,

∑
2i+(r+2)t+rk=n

(
i + t

t

)(
t
k

)
(ab)i(ad + bc)t−k(cd)k, if r is even.
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Proof. Considering the sequence

W (r)
n = U(r)

n+1,

thenW (r)
0 = 1,W (r)

−j = 0 for 1 ≤ j ≤ 2r + 1, relation (2.2) gives

W (r)
n = abW (r)

n−2 + (aξ(r+1)d + bξ(r+1)c)W (r)
n−r−1−ξ(r+1) − (−1)r+1cdW (r)

n−2r−2.
(2.9)

If r is odd, formula (2.9) reduces to

W (r)
n = abW (r)

n−2 + (c + d)W (r)
n−r−1 − cdW (r)

n−2r−2. (2.10)

Using Theorem 3, we get

W (r)
n+1 = ∑

2i+(r+1)j+2(r+1)k=n

(
i + j + k

i, j, k

)
(ab)i(c + d)j(−cd)k

= ∑
2i+(r+1)(j+k)+(r+1)k=n

(
i + j + k

j + k

)(
j + k

k

)
(ab)i(c + d)j(−cd)k

= ∑
2i+(r+1)t+(r+1)k=n

(
i + t

t

)(
t
k

)
(ab)i(c + d)t−k(−cd)k.

If r is even, formula (2.9) reduces to

W (r)
n = abW (r)

n−2 + (ad + bc)W (r)
n−r−2 + cdW (r)

n−2r−2. (2.11)

Using Theorem 3, we get

W (r)
n+1 = ∑

2i+(r+2)j+2(r+1)k=n

(
i + j + k

i, j, k

)
(ab)i(ad + bc)j(cd)k

= ∑
2i+(r+2)(j+k)+rk=n

(
i + j + k

j + k

)(
j + k

k

)
(ab)i(ad + bc)j(cd)k

= ∑
2i+(r+2)t+rk=n

(
i + t

t

)(
t
k

)
(ab)i(ad + bc)t−k(cd)k.

2

Now, we give an analogous result for the bi-periodic r-Lucas sequence of type s.
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Theorem 20. For any positive integers r and s, such that 1 ≤ s ≤ r, we have

V(r,s)
n = ∑

2i+(r+1)t+(r+1)k=n

(
i + t

t

)(
t
k

)
(ab)i(c + d)t−k(−cd)k

+ sd ∑
2i+(r+1)t+(r+1)k=n−r−1

(
i + t

t

)(
t
k

)
(ab)i(c + d)t−k(−cd)k,

if r is odd.

V(r,s)
n = ∑

2i+(r+2)t+rk=n

(
i + t

t

)(
t
k

)
(ab)i(ad + bc)t−k(cd)k

+ sbc ∑
2i+(r+2)t+rk=n−r−2

(
i + t

t

)(
t
k

)
(ab)i(ad + bc)t−k(cd)k

+ scd ∑
2i+(r+2)t+rk=n−2r−2

(
i + t

t

)(
t
k

)
(ab)i(ad + bc)t−k(cd)k,

if r is even.

Proof. We get the proof by using Theorem 14. 2

Remark 21. Theorems 19 and 20 generalize the explicit formulas given in [81, 92].

2.5 Binet forms

In order to obtain the Binet forms of the bi-periodic r-Fibonacci sequence and the
bi-periodic r-Lucas sequence of type s, we first express the characteristic polyno-
mial. Considering relations (2.2) and (2.4), we get the characteristic polynomial
of (U(r)

n )n and (V(r,s)
n )n

y2r+2 − aby2r − (aξ(r+1)d + bξ(r+1)c)yr+ξ(r) − (−1)ξ(r)cd, (2.12)

putting x = y2, we obtain

xr+1 − abxr − (aξ(r+1)d + bξ(r+1)c)xb
r+1

2 c − (−1)ξ(r)cd. (2.13)

Before stating the main theorems of this section, the following lemma will be
useful:

Lemma 22. Let K be a field and P(x) = a0 + a1x + a2x2 + · · ·+ anxn =
n
∑

i=0
aixi ∈
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K[x], a split polynomial on K with n roots, α1, α2, . . . , αn ∈ K. The polynomial P(x)
can be written as P(x) = an(x− α1)(x− α2) · · · (x− αn) and

σp = ∑
1≤i1<i2<···<ip≤n

αi1αi2 · · · αip = (−1)p an−p

an
. (2.14)

For any i, j, we put σj = αiσ̃
i
j−1 + σ̃i

j , where

σ̃i
j = ∑

1≤k1<k2<···<kr+1−j≤r+1
k1,k2,...,kr+1−j 6=i

αk1αk2 . . . αkr+1−j .

Theorem 23. Let α1, α2, . . . , αr+1 be the distinct roots of the characteristic polynomial
(2.13) associated with (U(r)

n )n and (V(r,s)
n )n, we have

U(r)
n =

r+1

∑
i=1

( r
∑

j=1
(−1)jσ̃i

j U(r)
2r−2j+ξ(n) + U(r)

2r+ξ(n)

)
∏

1≤k≤r+1
k 6=i

(αi − αk)
α
bn/2c
i

and

V(r,s)
n

=



r+1
∑

i=1

( r
∑

j=1
(−1)jσ̃i

j U(r)
2r−2j+ξ(n+1) + U(r)

2r+ξ(n+1)

)
∏

1≤k≤r+1
k 6=i

(αi − αk)

(
α
b(n+1)/2c
i + sdα

b(n−r)/2c
i

)
, if r is odd,

r+1
∑

i=1

( r
∑

j=1
(−1)jσ̃i

j U(r)
2r−2j+ξ(n+1) + U(r)

2r+ξ(n+1)

)
∏

1≤k≤r+1
k 6=i

(αi − αk)

(
α
b(n+1)/2c
i + scbα

b(n−r−1)/2c
i + scdα

b(n−2r−1)/2c
i

)
, if r is even,

with initial conditions

U(r)
0 = 0, U(r)

1 = 1, U(r)
2 = a, . . . , U(r)

r = abr/2cbb(r−1)/2c,

V(r,s)
0 = s + 1, V(r,s)

1 = a, V(r,s)
2 = ab, . . . , V(r,s)

r = ab(r+1)/2cbbr/2c.

Proof. As mentioned in [19], the general term of (U(r)
n )n is given by

U(r)
n =

r+1
∑

i=1
bi,nα
b n

2c
i , where bi,n’s are rational numbers. The system can be solved

by Cramer’s rule with Vandermonde determinant, for more details, we refer to
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[41]. Using the initial terms of the sequence (U(r)
n )n, for n = 0, 2, 4, . . . , 2r, we get


1 1 1 · · · 1
α1 α2 α3 · · · αr+1

α2
1 α2

2 α2
3 · · · α2

r+1
...

...
... . . . ...

αr
1 αr

2 αr
3 · · · αr

r+1



−1

U(r)
0

U(r)
2

U(r)
4
...

U(r)
2r


=


b1,n

b2,n

b3,n
...

br+1,n


and for n = 1, 3, 5, . . . , 2r + 1, we get



√
α1

√
α2

√
α3 · · · √

αr+1√
α1

3 √
α2

3 √
α3

3 · · · √
αr+1

3

√
α1

5 √
α2

5 √
α3

5 · · · √
αr+1

5

...
...

... . . . ...
√

α1
2r+1 √α2

2r+1 √α3
2r+1 · · · √αr+1

2r+1



−1

U(r)
1

U(r)
3

U(r)
5
...

U(r)
2r+1


=


b1,n

b2,n

b3,n
...

br+1,n

 ,

it results that

bi,n =

r
∑

j=1
(−1)j ∑

1≤k1<k2<...<kr+1−j≤r+1
k1,k2,...,kr+1−j 6=i

αk1αk2 ...αkr+1−jU
(r)
2r−2j+ξ(n) + U(r)

2r+ξ(n)

∏
1≤k≤r+1

k 6=i

(αi − αk)
,

using Lemma 22, we obtain

bi,n =

r
∑

j=1
(−1)jσ̃i

jU
(r)
2r−2j+ξ(n) + U(r)

2r+ξ(n)

∏
1≤k≤r+1

k 6=i

(αi − αk)
,

which gives

U(r)
n =

r+1

∑
i=1

r
∑

j=1
(−1)jσ̃i

j U(r)
2r−2j+ξ(n) + U(r)

2r+ξ(n)

∏
1≤k≤r+1

k 6=i

(αi − αk)
α
bn/2c
i .
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Using relation (2.6) in Theorem 14 for odd r, we get

V(r,s)
n = U(r)

n+1 + sdU(r)
n−r

=
r+1

∑
i=1

r
∑

j=1
(−1)jσ̃i

j U(r)
2r−2j+ξ(n+1) + U(r)

2r+ξ(n+1)

∏
1≤k≤r+1

k 6=i

(αi − αk)
α
b(n+1)/2c
i

+ sd
r+1

∑
i=1

r
∑

j=1
(−1)jσ̃i

j U(r)
2r−2j+ξ(n−r) + U(r)

2r+ξ(n−r)

∏
1≤k≤r+1

k 6=i

(αi − αk)
α
b(n−r)/2c
i

=
r+1

∑
i=1

r
∑

j=1
(−1)jσ̃i

j U(r)
2r−2j+ξ(n+1) + U(r)

2r+ξ(n+1)

∏
1≤k≤r+1

k 6=i

(αi − αk)

(
α
b(n+1)/2c
i + sdα

b(n−r)/2c
i

)

and using relation (2.6) in Theorem 14 for even r, we get

V(r,s)
n = U(r)

n+1 + scbU(r)
n−r−1 + scdU(r)

n−2r−1

=
r+1

∑
i=1

r
∑

j=1
(−1)jσ̃i

j U(r)
2r−2j+ξ(n+1) + U(r)

2r+ξ(n+1)

∏
1≤k≤r+1

k 6=i

(αi − αk)
α
b(n+1)/2c
i

+ scb
r+1

∑
i=1

r
∑

j=1
(−1)jσ̃i

j U(r)
2r−2j+ξ(n−r−1) + U(r)

2r+ξ(n−r−1)

∏
1≤k≤r+1

k 6=i

(αi − αk)
α
b(n−r−1)/2c
i

+ scd
r+1

∑
i=1

r
∑

j=1
(−1)jσ̃i

j U(r)
2r−2j+ξ(n−2r−1) + U(r)

2r+ξ(n−2r−1)

∏
1≤k≤r+1

k 6=i

(αi − αk)
α
b(n−2r−1)/2c
i

=
r+1

∑
i=1

r
∑

j=1
(−1)jσ̃i

j U(r)
2r−2j+ξ(n+1) + U(r)

2r+ξ(n+1)

∏
1≤k≤r+1

k 6=i

(αi − αk)

×
(

α
b(n+1)/2c
i + scbα

b(n−r−1)/2c
i + scdα

b(n−2r−1)/2c
i

)
.
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2

Remark 24. If we take c = d = 1, we obtain the Binet form for the sequence ( fn)n

given by Yazlik et al. [93].

Equivalently, we can express the Binet forms of (U(r)
n )n and (V(r,s)

n )n as follows.

Theorem 25. For any integer r ≥ 1, we have

U(r)
n =

r+1

∑
i=1

A(n)
i α

bn/2c
i

and

V(r,s)
n =


r+1
∑

i=1
A(n+1)

i

(
α
b(n+1)/2c
i + sdα

b(n−r)/2c
i

)
, if r is odd,

r+1
∑

i=1
A(n+1)

i

(
α
b(n+1)/2c
i + scbα

b(n−r−1)/2c
i + scdα

b(n−2r−1)/2c
i

)
, if r is even,

where

A(n)
i

=

r
∑

j=1
−α

j−1
i (ab− αi)U

(r)
2r−2j+ξ(n) +

r
∑

j=b(r+2)/2c
−α

j−b(r+2)/2c
i (aξ(r+1)d + bξ(r+1)c) U(r)

2r−2j+ξ(n) + U(r)
2r+ξ(n)

α
b r−1

2 c
i

(
(r + 1)αb

r+2
2 c

i − rabα
b r

2c
i −

⌊
r+1

2

⌋
(aξ(r+1)d + bξ(r+1)c)

) ,

with initial conditions

U(r)
0 = 0, U(r)

1 = 1, U(r)
2 = a, . . . , U(r)

r = abr/2cbb(r−1)/2c,

V(r,s)
0 = s + 1, V(r,s)

1 = a, V(r,s)
2 = ab, . . . , V(r,s)

r = ab(r+1)/2cbbr/2c.

Proof. Considering

P(x) = xr+1 − abxr − (aξ(r+1)d + bξ(r+1)c)xb
r+1

2 c − (−1)ξ(r)cd

= (x− α1)(x− α2) · · · (x− αr+1),

then for 1 ≤ i ≤ r + 1, we get

P′(αi) = (r + 1)αr
i − rabαr−1

i −
⌊

r + 1
2

⌋
(aξ(r+1)d + bξ(r+1)c)αb

r−1
2 c

i
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= α
b r−1

2 c
i

(
(r + 1)αb

r+2
2 c

i − rabα
b r

2c
i −

⌊
r + 1

2

⌋
(aξ(r+1)d + bξ(r+1)c)

)
= ∏

1≤k≤r+1
k 6=i

(αi − αk).

On the other hand, using Lemma 22 and formula (2.13) for odd r, we get

σ1 = ∑
1≤i1≤r+1

αi1 = −ar = ab,

σ2 = ∑
1≤i1<i2≤r+1

αi1αi2 = −ar−1 = 0,

...
σ(r−1)/2 = ∑

1≤i1<i2<···<i(r−1)/2≤r+1
αi1αi2 . . . αi(r−1)/2

= (−1)(r−1)/2ar−1 = 0,

σ(r+1)/2 = ∑
1≤i1<i2<···<i(r+1)/2≤r+1

αi1αi2 . . . αi(r+1)/2
= (−1)(r+1)/2a(r+1)/2

= (−1)(r+1)/2+1(c + d),
...

σr = ∑
1≤i1<i2<···<ir≤r+1

αi1αi2 . . . αir = (−1)ra1 = 0,

σr+1 = ∏
1≤i1<i2<···<ir+1≤r+1

αi1αi2 . . . αir+1

= (−1)(r+1)a0 = (−1)ξ(r+1)+r+1cd = cd.

Then

σ̃i
1 = ∑

1≤i1≤r+1
i1 6=i

αi1 ,

σ̃i
2 = ∑

1≤i1<i2≤r+1
i1,i2 6=i

αi1αi2 ,

...
σ̃i
(r−1)/2 = ∑

1≤i1<i2<···<i(r−1)/2≤r+1
i1,i2,...,i(r−1)/2 6=i

αi1αi2 . . . αi(r−1)/2
,

σ̃i
(r+1)/2 = ∑

1≤i1<i2<···<i(r+1)/2≤r+1
i1,i2,...,i(r+1)/2 6=i

αi1αi2 . . . αi(r+1)/2
,

...
σ̃i

r = ∏
1≤i1<i2<···<ir≤r+1

i1,i2,...,ir 6=i

αi1αi2 . . . αir ,

thus
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σ̃i
1 = ab− αi,

σ̃i
2 = (−αi)σ̃

i
1 = (−αi)(ab− αi),

...
σ̃i

j = (−αi)
j−1(ab− αi),

...
σ̃i
(r−1)/2 = (−αi)

(r−1)/2−1(ab− αi),

σ̃i
(r+1)/2 = (−1)(r+1)/2+1(c + d) + (−αi)

(r+1)/2−1(ab− αi),

σ̃i
(r+1)/2+1 = (−αi)(−1)(r+1)/2+1(c + d) + (−αi)(−αi)

(r+1)/2−1(ab− αi),

σ̃i
(r+1)/2+2 = (−αi)

2(−1)(r+1)/2+1(c + d) + (−αi)
2(−αi)

(r+1)/2−1(ab− αi),

σ̃i
(r+1)/2+3 = (−αi)

3(−1)(r+1)/2+1(c + d) + (−αi)
3(−αi)

(r+1)/2−1(ab− αi),
...

σ̃i
r = αi

r−1
2 (−1)r+1(c + d) + (−αi)

r−1(ab− αi).

Using Lemma 22 and formula (2.13) for even r, we get

σ1 = ∑
1≤i1≤r+1

αi1 = −ar = ab,

σ2 = ∑
1≤i1<i2≤r+1

αi1αi2 = −ar−1 = 0,

...
σr/2 = ∑

1≤i1<i2<···<ir/2≤r+1
αi1αi2 . . . αir/2 = (−1)r/2ar/2+1 = 0,

σ(r+2)/2 = ∑
1≤i1<i2<···<i(r+2)/2≤r+1

αi1αi2 . . . αi(r+1)/2
= (−1)(r+2)/2ar/2

= (−1)(r+2)/2+1(ad + bc),
...

σr = ∑
1≤i1<i2<···<ir≤r+1

αi1αi2 . . . αir = (−1)ra1 = 0,

σr+1 = ∏
1≤i1<i2<···<ir+1≤r+1

αi1αi2 . . . αir+1 = (−1)(r+1)a0

= (−1)ξ(r+1)+r+1cd = cd,

then

σ̃i
1 = ab− αi,

σ̃i
2 = (−αi)σ̃

i
1 = (−αi)(ab− αi),
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...
σ̃i

j = (−αi)
j−1(ab− αi),

...
σ̃i

r/2 = (−αi)
r/2−1(ab− αi),

σ̃i
(r+2)/2 = (−1)(r+2)/2+1(ad + bc) + (−αi)

r/2(ab− αi),

σ̃i
(r+2)/2+1 = (−αi)(−1)(r+2)/2+1(ad + bc) + (−αi)

r/2+1(ab− αi),

σ̃i
(r+2)/2+2 = (−αi)

2(−1)(r+2)/2+1(ad + bc) + (−αi)
r/2+2(ab− αi),

σ̃i
(r+2)/2+3 = (−αi)

3(−1)(r+2)/2+1(ad + bc) + (−αi)
r/2+3(ab− αi),

...
σ̃i

r = (−αi)
(r−2)/2(−1)(r+2)/2+1(ad + bc) + (−αi)

r−1(ab− αi).
2

Considering that r ≥ 2 and α1, α2, . . . , αr+1 are nonzero roots, the Binet forms of
the sequences (U(r)

n )n and (V(r,s)
n )n have two equivalent expressions given in the

following corollaries.

Corollary 26. For any integer r ≥ 2, we have

U(r)
n =

r+1

∑
i=1

B(n)
i α

bn/2c
i

and

V(r,s)
n =


r+1
∑

i=1
B(n+1)

i

(
α
b(n+1)/2c
i + sdα

b(n−r)/2c
i

)
, if r is odd,

r+1
∑

i=1
B(n+1)

i

(
α
b(n+1)/2c
i + scbα

b(n−r−1)/2c
i + scdα

b(n−2r−1)/2c
i

)
, if r is even,

where

B(n)
i

=

br/2c
∑

j=1
−α

j−1
i (ab− αi)U

(r)
2r−2j+ξ(n) +

r
∑

j=b(r+2)/2c
(−1)j cd

αi(−αi)
r−j U(r)

2r−2j+ξ(n) + U(r)
2r+ξ(n)

α
b r−1

2 c
i

(
(r + 1)αb

r+2
2 c

i − rabα
b r

2c
i −

⌊
r+1

2

⌋
(aξ(r+1)d + bξ(r+1)c)

) ,
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with initial conditions

U(r)
0 = 0, U(r)

1 = 1, U(r)
2 = a, . . . , U(r)

r = abr/2cbb(r−1)/2c,

V(r,s)
0 = s + 1, V(r,s)

1 = a, V(r,s)
2 = ab, . . . , V(r,s)

r = ab(r+1)/2cbbr/2c.

Proof. Assume that r is odd, then

σ̃i
1 = ∑

1≤i1≤r+1
i1 6=i

αi1 = ab− αi,

σ̃i
2 = ∑

1≤i1<i2≤r+1
i1,i2 6=i

αi1αi2 = (−αi)(ab− αi),

...
σ̃i

j = ∑
1≤i1<i2<···<ij≤r+1

i1,i2,...,ij 6=i

αi1αi2 . . . αij = (−αi)
j−1(ab− αi),

...
σ̃i
(r−1)/2 = ∑

1≤i1<i2<···<i(r−1)/2≤r+1
i1,i2,...,i(r−1)/2 6=i

αi1αi2 . . . αi(r−1)/2
= (−αi)

(r−1)/2−1(ab− αi),

σ̃i
(r+1)/2 = ∑

1≤i1<i2<···<i(r+1)/2≤r+1
i1,i2,...,i(r+1)/2 6=i

αi1αi2 . . . αi(r+1)/2
= (−1)(r+1)/2+1(c + d)

+ (−αi)
(r+1)/2−1(ab− αi) =

cd
αi

1

(−αi)
r−1

2
,

...
σ̃i

r−t = ∑
1≤i1<i2<···<i(r−t)≤r+1

i1,i2,...,i(r−t) 6=i

αi1αi2 . . . αi(r−t)
= cd

αi
1

(−αi)t ,

...
σ̃i

r−2 = ∑
1≤i1<i2<···<i(r−2)≤r+1

i1,i2,...,i(r−2) 6=i

αi1αi2 . . . αi(r−2)
= cd

αi
1

(−αi)2 ,

σ̃i
r−1 = ∑

1≤i1<i2<···<i(r−1)≤r+1
i1,i2,...,i(r−1) 6=i

αi1αi2 . . . αi(r−1)
= cd

αi
1

(−αi)
,

σ̃i
r = ∏

1≤i1<i2<···<ir≤r+1
i1,i2,...,ir 6=i

αi1αi2 . . . αir =
cd
αi

.

Assume that r is even, then
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σ̃i
1 = ∑

1≤i1≤r+1
i1 6=i

αi1 = ab− αi,

σ̃i
2 = ∑

1≤i1<i2≤r+1
i1,i2 6=i

αi1αi2 = (−αi)(ab− αi),

...
σ̃i

j = ∑
1≤i1<i2<···<ij≤r+1

i1,i2,...,ij 6=i

αi1αi2 . . . αij = (−αi)
j−1(ab− αi),

...
σ̃i

r/2 = ∑
1≤i1<i2<···<ir/2≤r+1

i1,i2,...,ir/2 6=i

αi1αi2 . . . αir/2 = (−αi)
r/2−1(ab− αi),

σ̃i
(r+2)/2 = ∑

1≤i1<i2<···<i(r+2)/2≤r+1
i1,i2,...,i(r+2)/2 6=i

αi1αi2 . . . αi(r+2)/2
= (−1)(r+2)/2+1(ad + bc)

+ (−αi)
(r+2)/2−1(ab− αi) =

cd
αi

1
(−αi)(r+2)/2 ,

...
σ̃i

r−t = ∑
1≤i1<i2<···<i(r−t)≤r+1

i1,i2,...,i(r−t) 6=i

αi1αi2 . . . αi(r−t)
= cd

αi
1

(−αi)t ,

...
σ̃i

r−2 = ∑
1≤i1<i2<···<i(r−2)≤r+1

i1,i2,...,i(r−2) 6=i

αi1αi2 . . . αi(r−2)
= cd

αi
1

(−αi)2 ,

σ̃i
r−1 = ∑

1≤i1<i2<···<i(r−1)≤r+1
i1,i2,...,i(r−1) 6=i

αi1αi2 . . . αi(r−1)
= cd

αi
1

(−αi)
,

σ̃i
r = ∏

1≤i1<i2<···<ir≤r+1
i1,i2,...,ir 6=i

αi1αi2 . . . αir =
cd
αi

.

2

Corollary 27. For any integer r ≥ 2, we have

U(r)
n =

r+1

∑
i=1

C(n)
i α

bn/2c
i

and

V(r,s)
n =


r+1
∑

i=1
C(n+1)

i

(
α
b(n+1)/2c
i + sdα

b(n−r)/2c
i

)
, if r is odd,

r+1
∑

i=1
C(n+1)

i

(
α
b(n+1)/2c
i + scbα

b(n−r−1)/2c
i + scdα

b(n−2r−1)/2c
i

)
, if r is even,
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where

C(n)
i

=

r
∑

j=1
(−1)j cd

αi(−αi)
r−j U

(r)
2r−2j+ξ(n) +

br/2c
∑

j=1
(−1)j+br/2c (aξ(r+1)d+bξ(r+1)c)

αi(−αi)
br/2c−j U(r)

2r−2j+ξ(n) + U(r)
2r+ξ(n)

α
b r−1

2 c
i

(
(r + 1)αb

r+2
2 c

i − rabα
b r

2c
i −

⌊
r+1

2

⌋
(aξ(r+1)d + bξ(r+1)c)

) ,

with initial conditions

U(r)
0 = 0, U(r)

1 = 1, U(r)
2 = a, . . . , U(r)

r = abr/2cbb(r−1)/2c,

V(r,s)
0 = s + 1, V(r,s)

1 = a, V(r,s)
2 = ab, . . . , V(r,s)

r = ab(r+1)/2cbbr/2c.

2.6 Examples

In this section, we present some numerical results, for specific values of r and s.

1. For s = r = 1, we derive the bi-periodic 1-Fibonacci sequence (U(1)
n )n and

its companion sequence the bi-periodic 1-Lucas sequence of type 1, (V(1,1)
n )n

U(1)
n =

{
aU(1)

n−1 + cU(1)
n−2, i f n ≡ 0 (mod 2),

bU(1)
n−1 + dU(1)

n−2, i f n ≡ 1 (mod 2),

for n ≥ 2 with
U(1)

0 = 0, U(1)
1 = 1

and nonzero real numbers a, b, c and d.
Its linear recurrence relation is given by

U(1)
n = (ab + c + d)U(1)

n−2 − cdU(1)
n−4, n ≥ 4,

with
U(1)

0 = 0, U(1)
1 = 1, U(1)

2 = a, U(1)
3 = ab + d.

Its generating function is

G(x) =
x + ax2 − cx3

1− (ab + c + d)x2 + cdx4 .
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Its Binet form is

U(1)
n =

U(1)
2+ξ(n) + (α− ab− d− c)U(1)

ξ(n)

2α− ab− d− c

 αbn/2c

+

U(1)
2+ξ(n) + (β− ab− d− c)U(1)

ξ(n)

2β− ab− d− c

 βbn/2c,

with  U(1)
ξ(n) = 0, U(1)

2+ξ(n) = a, i f n ≡ 0 (mod 2),

U(1)
ξ(n) = 1, U(1)

2+ξ(n) = ab + d, i f n ≡ 1 (mod 2),

where α and β are the roots of the quadratic equation

x2 − (ab + c + d)x + cd = 0.

The bi-periodic 1-Lucas sequence of type 1, (V(1,1)
n )n

V(1,1)
n =

{
bV(1,1)

n−1 + dV(1,1)
n−2 , i f n ≡ 0 (mod 2),

aV(1,1)
n−1 + cV(1,1)

n−2 , i f n ≡ 1 (mod 2),

for n ≥ 2 with
V(1,1)

0 = 2, V(1,1)
1 = a.

Its linear recurrence relation is given by

V(1,1)
n = (ab + c + d)V(1,1)

n−2 − cdV(1,1)
n−4 , n ≥ 4,

with

V(1,1)
0 = 2, V(1,1)

1 = a, V(1,1)
2 = ab + 2d, V(1,1)

3 = a2b + 2ad + ac.

The link between U(1)
n and V(1,1)

n is

V(1,1)
n = U(1)

n+1 + dU(1)
n−1, n ≥ 1.

Its generating function is given by

H(x) =
2 + ax− (ab + 2c)x2 + adx3

1− (ab + c + d)x2 + cdx4 .
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Its Binet form is

V(1,1)
n =

V(1,1)
2+ξ(n) + (α− ab− d− c)V(1,1)

ξ(n)

2α− ab− d− c

 αbn/2c

+

V(1,1)
2+ξ(n) + (β− ab− d− c)V(1,1)

ξ(n)

2β− ab− d− c

 βbn/2c,

with  V(1,1)
ξ(n) = 2, V(1,1)

2+ξ(n) = ab + 2d, i f n ≡ 0 (mod 2),

V(1,1)
ξ(n) = a, V(1,1)

2+ξ(n) = a2b + 2ad + ac, i f n ≡ 1 (mod 2).

We can also write

V(1,1)
n =

U(1)
2+ξ(n+1) + (α− ab− d− c)U(1)

ξ(n+1)

2α− ab− d− c

(αb(n+1)/2c + dαb(n−1)/2c
)

+

U(1)
2+ξ(n+1) + (β− ab− d− c)U(1)

ξ(n+1)

2β− ab− d− c

(βb(n+1)/2c + dβb(n−1)/2c
)

.

An explicit formula of (U(1)
n )n is given by

U(1)
n+1 = ∑

2i+2t+2k=n

(
i + t

t

)(
t
k

)
(ab)i(c + d)t−k(−cd)k

and an explicit formula of (V(1,1)
n )n is given by

V(1,1)
n = ∑

2i+2t+2k=n

(
i + t

t

)(
t
k

)
(ab)i(c + d)t−k(−cd)k

+ sd ∑
2i+2t+2k=n−2

(
i + t

t

)(
t
k

)
(ab)i(c + d)t−k(−cd)k.

2. For r = 2, we derive the bi-periodic 2-Fibonacci sequence (U(2)
n )n and

its two companion sequences, the bi-periodic 2-Lucas sequence of type s,
(V(2,s)

n )n with s ∈ {1, 2}

U(2)
n =

{
aU(2)

n−1 + cU(2)
n−3, i f n ≡ 0 (mod 2),

bU(2)
n−1 + dU(2)

n−3, i f n ≡ 1 (mod 2),
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for n ≥ 3 with
U(2)

0 = 0, U(2)
1 = 1, U(2)

2 = a

and nonzero real numbers a, b, c and d.
Its linear recurrence relation is

U(2)
n = abU(2)

n−2 + (ad + bc)U(2)
n−4 − cdU(2)

n−6, n ≥ 6,

with

U(2)
0 = 0, U(2)

1 = 1, U(2)
2 = a, U(2)

3 = ab,

U(2)
4 = a2b + c, U(2)

5 = a2b2 + bc + ad.

Its generating function is

G(x) =
x + ax2 + cx4

1− abx2 − (ad + bc)x4 − cdx6 .

Its Binet form is

U(2)
n =

U(2)
4+ξ(n) − (ab− α)U(2)

2+ξ(n) + (α2 − αab− ad− bc)U(2)
ξ(n)

3α2 − 2abα− ad− bc

 αbn/2c

+

U(2)
4+ξ(n) − (ab− β)U(2)

2+ξ(n) + (β2 − βab− ad− bc)U(2)
ξ(n)

3β2 − 2abβ− ad− bc

 βbn/2c

+

U(2)
4+ξ(n) − (ab− γ)U(2)

2+ξ(n) + (γ2 − γab− ad− bc)U(2)
ξ(n)

3γ2 − 2abγ− ad− bc

 γbn/2c,

with U(2)
ξ(n) = 0, U(2)

2+ξ(n) = a, U(2)
4+ξ(n) = a2b + c, i f n ≡ 0 (mod 2),

U(2)
ξ(n) = 1, U(2)

2+ξ(n) = ab, U(2)
4+ξ(n) = a2b2 + bc + ad, i f n ≡ 1 (mod 2),

where α, β and γ are the roots of the equation

x3 − abx2 − (ad + bc)x− cd = 0.
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If the roots are nonzero, we can write

U(2)
n =

U(2)
4+ξ(n) − (ab− α)U(2)

2+ξ(n) +
cd
α U(2)

ξ(n)

3α2 − 2abα− ad− bc

 αbn/2c

+

U(2)
4+ξ(n) − (ab− β)U(2)

2+ξ(n) +
cd
β U(2)

ξ(n)

3β2 − 2abβ− ad− bc

 βbn/2c

+

U(2)
4+ξ(n) − (ab− γ)U(2)

2+ξ(n) +
cd
γ U(2)

ξ(n)

3γ2 − 2abγ− ad− bc

 γbn/2c.

The bi-periodic 2-Lucas sequence of type s, (V(2,s)
n )n is defined by

V(2,s)
n =

{
bV(2,s)

n−1 + dV(2,s)
n−3 , i f n ≡ 0 (mod 2),

aV(2,s)
n−1 + cV(2,s)

n−3 , i f n ≡ 1 (mod 2),

for n ≥ 3 with

V(2,s)
0 = s + 1, V(2,s)

1 = a, V(2,s)
2 = ab.

Its linear recurrence relation is given by

V(2,s)
n = abV(2,s)

n−2 + (ad + bc)V(2,s)
n−4 + cdV(2,s)

n−6 , n ≥ 6,

with

V(2,s)
0 = s + 1, V(2,s)

1 = a, V(2,s)
2 = ab, V(2,s)

3 = a2b + (s + 1)c,

V(2,s)
4 = a2b2 + (s + 1)bc + ad, V(2,s)

5 = a3b2 + (s + 2)abc + a2d.

The link between U(2)
n and V(2,s)

n is

V(2,s)
n = U(2)

n+1 + scbU(2)
n−3 + scdU(2)

n−5, n ≥ 5.

Its generating function is

H(x) =
(s + 1) + ax− absx2 + (s + 1)cx3 − adsx4

1− abx2 − (ad + bc)x4 − cdx6 .
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Its Binet form is

V(2,s)
n =

V(2,s)
4+ξ(n) − (ab− α)V(2,s)

2+ξ(n) + (α2 − αab− ad− bc)V(2,s)
ξ(n)

3α2 − 2abα− ad− bc

 αbn/2c

+

V(2,s)
4+ξ(n) − (ab− β)V(2,s)

2+ξ(n) + (β2 − βab− ad− bc)V(2,s)
ξ(n)

3β2 − 2abβ− ad− bc

 βbn/2c

+

V(2,s)
4+ξ(n) − (ab− γ)V(2,s)

2+ξ(n) + (γ2 − γab− ad− bc)V(2,s)
ξ(n)

3γ2 − 2abγ− ad− bc

 γbn/2c,

with V(2,s)
ξ(n) = s + 1, V(2,s)

2+ξ(n) = ab, V(2,s)
4+ξ(n) = a2b2 + (s + 1)bc + ad, i f n ≡ 0 (mod 2),

V(2,s)
ξ(n) = a, V(2,s)

2+ξ(n) = a2b + (s + 1)c, V(2,s)
4+ξ(n) = a3b2 + (s + 2)abc + a2d, i f n ≡ 1 (mod 2).

If the roots are nonzero, we can also write

V(2,s)
n =

U(2)
4+ξ(n+1) − (ab− α)U(2)

2+ξ(n+1) + (α2 − αab− ad− bc)U(2)
ξ(n+1)

3α2 − 2abα− ad− bc


×
(

αb(n+1)/2c + scbαb(n−3)/2c + scdαb(n−5)/2c
)

+

U(2)
4+ξ(n+1) − (ab− β)U(2)

2+ξ(n+1) + (β2 − βab− ad− bc)U(2)
ξ(n+1)

3β2 − 2abβ− ad− bc


×
(

βb(n+1)/2c + scbβb(n−3)/2c + scdβb(n−5)/2c
)

+

U(2)
4+ξ(n+1) − (ab− γ)U(2)

2+ξ(n+1) + (γ2 − γab− ad− bc)U(2)
ξ(n+1)

3γ2 − 2abγ− ad− bc


×
(

γb(n+1)/2c + scbγb(n−3)/2c + scdγb(n−5)/2c
)

.

An explicit formula of (U(2)
n )n is given by

U(2)
n = ∑

2i+4t+2k=n

(
i + t

t

)(
t
k

)
(ab)i(ad + bc)t−k(cd)k
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and an explicit formula of (V(2,s)
n )n is given by

V(2,s)
n = ∑

2i+4t+2k=n

(
i + t

t

)(
t
k

)
(ab)i(ad + bc)t−k(cd)k

+ sbc ∑
2i+4t+2k=n−4

(
i + t

t

)(
t
k

)
(ab)i(ad + bc)t−k(cd)k

+ scd ∑
2i+4t+2k=n−6

(
i + t

t

)(
t
k

)
(ab)i(ad + bc)t−k(cd)k.



CHAPTER

3

BI-PERIODIC HORADAM HY-
BRID NUMBERS [79]

The hybrid numbers were introduced by Ozdemir in [57] as a new generaliza-
tion of complex, dual and hyperbolic numbers. A hybrid number is defined by
k = a + bi + cε + dh, where a, b, c, d are real numbers and i, ε, h are numbers such
that i2 = −1, ε2 = 0, h2 = 1 and ih = −hi = ε + i. This work was intended as
an attempt to introduce the bi-periodic Horadam hybrid numbers which gener-
alized the classical Horadam hybrid numbers. We give the generating function,
the Binet form and some basic properties of these new hybrid numbers. Also, we
investigate some relationships between generalized bi-periodic Fibonacci hybrid
numbers and generalized bi-periodic Lucas hybrid numbers.

3.1 Introduction

Recently, many studies have been devoted to hybrid numbers whose components
are taken from special integer sequences such as Fibonacci, Lucas, Pell, Jacobsthal
sequences, etc. In particular, Szynal-Liana [72] introduced the Horadam hybrid
numbers as

KW,n = Wn + Wn+1i + Wn+2ε + Wn+3h, n ≥ 0, (3.1)

54
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where (Wn)n is the Horadam sequence defined by Wn = pWn−1 + qWn−2 with
arbitrary initial values W0, W1. In [72, 73, 74, 75], the authors studied some basic
properties of special type of hybrid numbers. The basic properties of q-Pell hy-
brid numbers were investigated by Catarino [15]. Also, Morales [18] considered
the (p, q)-Fibonacci and (p, q)-Lucas hybrid numbers and gave many relations be-
tween them. Recently motivated by the Szynal-Liana’s paper, Senturk et al. [65]
derived summation formulas, matrix representations, general bilinear formula,
Honsberger formula, etc. regarding to the Horadam hybrid numbers.

This work has been intended as an attempt to introduce a new generalization of
Horadam hybrid numbers, called as, bi-periodic Horadam hybrid numbers. The
bi-periodic Horadam hybrid numbers generalize the well-known hybrid num-
bers in the literature, such as Horadam hybrid numbers, Fibonacci and Lucas
hybrid numbers, q-Pell hybrid numbers, Pell and Pell-Lucas hybrid numbers,
Jacobsthal and Jacobsthal-Lucas hybrid numbers, etc. The components of the bi-
periodic Horadam hybrid numbers belong to the bi-periodic Horadam sequence
(wn)n which is defined by the recurrence relation

wn = χ (n)wn−1 + cwn−2, n ≥ 2 (3.2)

where χ (n) = a if n is even, χ (n) = b if n is odd with arbitrary initial conditions
w0, w1 and nonzero real numbers a, b and c. It is clear that if we take a = b = p
and c = q, then it reduces to the classical Horadam sequence. For the details of
the bi-periodic Horadam sequences see [11, 27, 58, 63, 92].

We should note that for the case of c = 1, the generalized bi-periodic Fibonacci
quaternions and the generalized bi-periodic Fibonacci dual quaternions were in-
vestigated in [83, 87, 88, 89]. For a survey on these researches we refer to [32, 35].

The Binet Form for the bi-periodic Horadam sequence (wn)n is

wn =
aξ(n+1)

(ab)b
n
2c

(Aαn − Bβn) , (3.3)

where

A :=
w1 − β

a w0

α− β
and B :=

w1 − α
a w0

α− β
. (3.4)

Here α =
ab +

√
a2b2 + 4abc

2
and β =

ab−
√

a2b2 + 4abc
2

are the roots of the
polynomial

x2 − abx− abc,
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that is
αβ = −abc, α + β = ab

and
∆:=α− β =

√
a2b2 + 4abc,

with
a2b2 + 4abc > 0.

If we take the initial conditions w0 = 0 and w1 = 1, we get the Binet form of the
generalized bi-periodic Fibonacci sequence (un)n as

un =
aξ(n+1)

(ab)b
n
2c

(
αn − βn

α− β

)
(3.5)

and by taking the initial conditions w0 = 2 and w1 = b, we get the Binet form of
the generalized bi-periodic Lucas sequence (vn)n as

vn =
a−ξ(n)

(ab)b
n
2c

(αn + βn) . (3.6)

The bi-periodic Horadam numbers for negative subscripts is defined as

(−c)n w−n =

(
b
a

)ξ(n)
w0un+1 − w1un. (3.7)

Also we have

αm = a−1a
m+ξ(m)

2 b
m−ξ(m)

2 αum + ca
m−ξ(m)

2 b
m+ξ(m)

2 um−1 (3.8)

and
βm = a−1a

m+ξ(m)
2 b

m−ξ(m)
2 βum + ca

m−ξ(m)
2 b

m+ξ(m)
2 um−1. (3.9)

For details see [84, 85].

3.2 Bi-periodic Horadam hybrid numbers

Definition 28. For n ≥ 0, the bi-periodic Horadam hybrid number Kw,n is defined by
the recurrence relation

Kw,n = wn + wn+1i + wn+2ε + wn+3h, n ≥ 0,
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where wn is the nth bi-periodic Horadam number.

From the definition of bi-periodic Horadam hybrid numbers, we have

Kw,0 = w0 + w1i + (aw1 + cw0) ε + ((ab + c)w1 + bcw0)h,

Kw,1 = w1 + (aw1 + cw0)w1i + ((ab + c)w1 + bcw0)ε

+ (a (ab + 2c)w1 + c (ab + c)w0)h.

In the following table we state several hybrid numbers in terms of the bi-periodic
Horadam hybrid numbers Kw,n according to the initial conditions w0, w1 and the
related coefficients a, b, c.

Kw,n (w0,w1;a,b,c) bi-periodic Horadam hybrid numbers
Ku,n (0, 1; a, b, c) gen. bi-periodic Fibonacci hybrid numbers
Kv,n (2, b; a, b, c) gen. bi-periodic Lucas hybrid numbers
Kû,n (0, 1; b, a, c) modified gen. bi-periodic Fibonacci hybrid numbers
Kv̂,n (2, a; b, a, c) modified gen. bi-periodic Lucas hybrid numbers
KW,n (W0, W1; p, p, q) Horadam hybrid numbers [72, 65]
KU,n (0, 1; p, p, q) (p, q)-Fibonacci hybrid numbers [18]
KV,n (2, p; p, p, q) (p, q)-Lucas hybrid numbers [18]
KF,n (0, 1; 1, 1, 1) Fibonacci hybrid numbers [74]
KL,n (2, 1; 1, 1, 1) Lucas hybrid numbers [72]
KP,n (0, 1; 2, 2, 1) Pell hybrid numbers [73]
KQ,n (2, 2; 2, 2, 1) Pell-Lucas hybrid numbers [73]
KkP,n (0, 1; 2, 2, k) k-Pell hybrid numbers [15]
KJ,n (0, 1; 1, 1, 2) Jacobsthal hybrid numbers [75]
Kj,n (2, 1; 1, 1, 2) Jacobsthal-Lucas hybrid numbers [75]

Table 3.1: Special cases of the sequence (Kw,n)n .

The norm of the nth bi-periodic Horadam hybrid number Kw,n is ‖Kw,n‖ :=√
|C (Kw,n)|. Here the character of the nth bi-periodic Horadam hybrid number

Kw,n is

C (Kw,n) = Kw,nKw,n = w2
n + (wn+1 − wn+2)

2 − w2
n+2 − w2

n+3 (3.10)

where Kw,n := wn − wn+1i − wn+2ε − wn+3h is the conjugate of the bi-periodic
Horadam hybrid number.
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3.3 Generating function

We give the generating function for the bi-periodic Horadam hybrid numbers in
the following theorem.

Theorem 29. The generating function for the bi-periodic Horadam hybrid sequence,
G (x) is given by(

1− (ab + 2c) x2 + c2x4
)

G (x) =
(

1− (ab + c) x2 + bcx3
)

Kw,0 + x
(

1 + ax− cx2
)

Kw,1.

Proof. Let

G (x) =
∞

∑
n=0

Kw,nxn = Kw,0 + Kw,1x + Kw,2x2 + · · ·+ Kw,nxn + · · · .

Since Kw,n = (ab + 2c)Kw,n−2 − c2Kw,n−4, for n ≥ 4, we get

(1− (ab + 2c) x2 + c2x4
)

G (x)

=
∞

∑
n=0

Kw,nxn − (ab + 2c)
∞

∑
n=0

Kw,nxn+2 + c2
∞

∑
n=0

Kw,nxn+4

=
∞

∑
n=0

Kw,nxn − (ab + 2c)
∞

∑
n=2

Kw,n−2xn + c2
∞

∑
n=4

Kw,n−4xn

= Kw,0 + Kw,1x + (Kw,2 − (ab + 2c)Kw,0) x2

+ (Kw,3 − (ab + 2c)Kw,1) x3

+
∞

∑
n=4

(
Kw,n − (ab + 2c)Kw,n−2 + c2Kw,n−4

)
xn

= Kw,0 + Kw,1x + ((aKw,1 + cKw,0)− (ab + 2c)Kw,0) x2

+ (((ab + c)Kw,1 + bcKw,0)− (ab + 2c)Kw,1) x3

=
(

1− (ab + c) x2 + bcx3
)

Kw,0 + x
(

1 + ax− cx2
)

Kw,1.

2

3.4 Binet form

Next, we state the Binet form for the bi-periodic Horadam hybrid numbers and
so derive some well-known mathematical properties.
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Theorem 30. The Binet form for the bi-periodic Horadam hybrid numbers is

Kw,n =
aξ(n+1)

(ab)b
n
2c

(
Aαξ(n)α

n − Bβξ(n)β
n
)

,

where αξ(n), βξ(n)are defined as

αξ(n) := 1 +
1
a

( a
b

)ξ(n)
αi +

1
ab

α2ε +
1

a2b

( a
b

)ξ(n)
α3h,

βξ(n) := 1 +
1
a

( a
b

)ξ(n)
βi +

1
ab

β2ε +
1

a2b

( a
b

)ξ(n)
β3h.

Proof. By using the definition of the sequence (Kw,n)n and the Binet form of
(wn)n , we have

Kw,n = wn + wn+1i + wn+2ε + wn+3h

=
aξ(n+1)

(ab)b
n
2c

(Aαn − Bβn) +
aξ(n)

(ab)b
n+1

2 c

(
Aαn+1 − Bβn+1

)
i

+
aξ(n+1)

(ab)b
n+2

2 c

(
Aαn+2 − Bβn+2

)
ε +

aξ(n)

(ab)b
n+3

2 c

(
Aαn+3 − Bβn+3

)
h

= Aαn

(
aξ(n+1)

(ab)b
n
2c

+
aξ(n)

(ab)b
n
2c+ξ(n)

αi +
aξ(n+1)

(ab)b
n
2c+1

α2ε +
aξ(n)

(ab)b
n
2c+1+ξ(n)

α3h

)

− Bβn

(
aξ(n+1)

(ab)b
n
2c

+
aξ(n)

(ab)b
n
2c+ξ(n)

βi +
aξ(n+1)

(ab)b
n
2c+1

β2ε +
aξ(n)

(ab)b
n
2c+1+ξ(n)

β3h

)

=
aξ(n+1)

(ab)b
n
2c

[
Aαn

(
1 +

1
aξ(n+1)bξ(n)

αi +
1
ab

α2ε +
1

aξ(n+1)bξ(n)ab
α3h
)

−Bβn
(

1 +
1

aξ(n+1)bξ(n)
βi +

1
ab

β2ε +
1

aξ(n+1)bξ(n)ab
β3h
) ]

,

which gives the desired result. 2

Remark 31. If we take a = b = p and c = q, we obtain the Binet form of the
classical Horadam hybrid numbers in [72].

Lemma 32. We have

αξ(n)βξ(n) =

{
Kv,0 − θ + ∆

a c (Ku,0 − η) , if n is even,
Kv̂,0 − θ̂ + ∆

b c (Kû,0 − η̂) , if n is odd
(3.11)
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and

βξ(n)αξ(n) =

{
Kv,0 − θ − ∆

a c (Ku,0 − η) , if n is even,
Kv̂,0 − θ̂ − ∆

b c (Kû,0 − η̂) , if n is odd,
(3.12)

where

η := (1− b) i + (a− b− c) ε + (1 + ab + c) h,

η̂ := (1− a) i + (b− a− c) ε + (1 + ab + c) h,

θ : = 1− bc
a
+ bc +

bc3

a
,

θ̂ : = 1− ac
b
+ ac +

ac3

b
.

And the sequences (Kû,0)n and (Kv̂,0)n are the auxiliary sequences that are obtained
from (Ku,0)n and (Kv,0)n just only switching a↔ b.

That is, ûn =
(

b
a

)ξ(n+1)
un and v̂n =

( a
b
)ξ(n) vn.

Proof. By using the definition of multiplication of two hybrid numbers, we have

αξ(n)βξ(n) = 1 +
bc
a

( a
b

)2ξ(n)
− bc3

a

( a
b

)2ξ(n)
−
( a

b

)ξ(n)
bc

+

(
b
( a

b

)ξ(n)
+
( a

b

)2ξ(n) bc
a

∆
)

i

+

(
(ab + 2c) +

bc
a

( a
b

)2ξ(n)
∆ +

c2

a

( a
b

)ξ(n)
∆
)

ε

+

(( a
b

)ξ(n) (
ab2 + 3bc

)
− c

a

( a
b

)ξ(n)
∆
)

h

= 1 +
( a

b

)ξ(n)
bc
(

1
a

( a
b

)ξ(n)
− c2

a

( a
b

)ξ(n)
− 1
)

+
( a

b

)ξ(n)
((

b
a

)ξ(n)
2 + bi +

(
b
a

)ξ(n)
(ab + 2c) ε + (b (ab + 3c)) h

)
− 2

+ ∆
( a

b

)ξ(n) c
a

(( a
b

)ξ(n)
bi +

(
b
( a

b

)ξ(n)
+ c
)

ε− h
)

.

After some necessary simplifications, we get the result (3.11). Similarly we can
obtain βξ(n)αξ(n). 2

By using the Lemma 32, we have

αξ(n)βξ(n) + βξ(n)αξ(n) =

{
2 (Kv,0 − θ) , if n is even,

2
(

Kv̂,0 − θ̂
)

, if n is odd
(3.13)
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and

αξ(n)βξ(n) − βξ(n)αξ(n) =

{
2∆ c

a (Ku,0 − η) , if n is even,
2∆ c

b (Kû,0 − η̂) , if n is odd.
(3.14)

Lemma 33. We have

αξ(n)αξ(n) =

{
Kv,0 + µe +

∆
a (Ku,0 + γe) , if n is even,

Kv̂,0 + µo +
∆
b (Kû,0 + γo) , if n is odd

(3.15)

and

βξ(n)βξ(n) =

{
Kv,0 + µe − ∆

a (Ku,0 + γe) , if n is even,
Kv̂,0 + µo − ∆

b (Kû,0 + γo) , if n is odd,
(3.16)

where

µe : = −1 +
b
a

c (u5 + 2u2 − u1) + bγe,

µo : = −1 +
a
b

c
(

u5 + 2
b
a

u2 − u1

)
+ aγo

and

γe : =
1
2

(
b
a

u6 + 2u3 −
b
a

u2

)
,

γo : =
1
2
(u6 + 2u3 − u2) .

Proof. By considering the relations

αξ(n)αξ(n) = 2αξ(n) − C
(

αξ(n)

)
and

βξ(n)βξ(n) = 2βξ(n) − C
(

βξ(n)

)
,

where C
(

αξ(n)

)
is the character of the hybrid number αξ(n) and using the rela-

tions (3.8) and (3.9), we get the desired result. 2

Remark 34. If we take a = b = p and c = q, we obtain the analogous relations for
(p, q)-Fibonacci hybrid numbers given in [18].
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Theorem 35. (Vajda’s like identity) For nonnegative integers n, r and s, we have

Kw,n+2rKw,n+2s −Kw,nKw,n+2(r+s)

=

{
(−c)n AB∆2u2r ((Kv,0 − θ) u2s − c (Ku,0 − η) v2s) , if n is even,

(−c)n AB∆2u2r

((
Kv̂,0 − θ̂

)
b
a u2s − c (Kû,0 − η̂) v2s

)
, if n is odd.

Proof. From the Binet form of the bi-periodic Horadam hybrid numbers, we get

Kw,n+2rKw,n+2s −Kw,nKw,n+2(r+s)

=
aξ(n+2r+1)

(ab)b
n+2r

2 c

(
Aαξ(n)α

n+2r − Bβξ(n)β
n+2r

) aξ(n+2s+1)

(ab)b
n+2s

2 c

×
(

Aαξ(n)α
n+2s − Bβξ(n)β

n+2s
)

− aξ(n+1)

(ab)b
n
2c

(
Aαξ(n)α

n − Bβξ(n)β
n
) aξ(n+2(r+s)+1)

(ab)
⌊

n+2(r+s)
2

⌋
×
(

Aαξ(n)α
n+2(r+s) − Bβξ(n)β

n+2(r+s)
)

=
a2ξ(n+1)

(ab)2b n
2c+r+s

[
−ABαξ(n)βξ(n)α

n+2rβn+2s − ABβξ(n)αξ(n)α
n+2sβn+2r

+ABαξ(n)βξ(n)α
nβn+2(r+s) + ABβξ(n)αξ(n)α

n+2(r+s)βn
]

=
a2ξ(n+1)

(ab)2b n
2c+r+s

AB (αβ)n
[
αξ(n)βξ(n)β

2s
(

β2r − α2r
)
+ βξ(n)αξ(n)α

2s
(

α2r − β2r
)]

=
a2ξ(n+1)

(ab)2b n
2c+r+s

AB (αβ)n
(

α2r − β2r
) [

βξ(n)αξ(n)α
2s − αξ(n)βξ(n)β

2s
]

.

If n is even, by considering the relations (3.11) and (3.12), we obtain

Kw,n+2rKw,n+2s −Kw,nKw,n+2(r+s)

=
a2ξ(n+1)

(ab)2b n
2c+r+s

AB (αβ)n
(

α2r − β2r
) (

βξ(n)αξ(n)α
2s − αξ(n)βξ(n)β

2s
)

=
a2 (−c)n

(ab)r+s AB
(

α2r − β2r
) [

(Kv,0 − θ)
(

α2s − β2s
)

−∆
a

c (Ku,0 − η)
(

α2s + β2s
)]



3.4. Binet form 63

=
a2 (−c)n

(ab)r+s AB
(ab)r

a
∆u2r

[
(Kv,0 − θ)

(
(ab)s

a
u2s∆

)
−∆

a
c (Ku,0 − η)

(
(ab)s v2s

)]
= (−c)n ABu2r∆2 [(Kv,0 − θ) u2s − c (Ku,0 − η) v2s] .

If n is odd

Kw,n+2rKw,n+2s −Kw,nKw,n+2(r+s)

=
a2ξ(n+1)

(ab)2b n
2c+r+s

AB (αβ)n
(

α2r − β2r
) (

βξ(n)αξ(n)α
2s − αξ(n)βξ(n)β

2s
)

=
(−c)n ab
(ab)r+s AB

(
α2r − β2r

) (
βξ(n)αξ(n)α

2s − αξ(n)βξ(n)β
2s
)

=
(−c)n ab
(ab)r+s AB

(
α2r − β2r

) [(
Kv̂,0 − θ̂

) (
α2s − β2s

)
−∆

b
c (Kû,0 − η̂)

(
α2s + β2s

)]
=

(−c)n ab
(ab)r+s AB

(
(ab)r

a
u2r∆

) [(
Kv̂,0 − θ̂

)( (ab)s

a
u2s∆

)
−∆

b
c (Kû,0 − η̂)

(
(ab)s v2s

)]
= (−c)n ABu2r∆2

[(
Kv̂,0 − θ̂

) b
a

u2s − c (Kû,0 − η̂) v2s

]
.

Thus we get the desired result. 2

Corollary 36. If we take s = −r, we get the Catalan’s like identity:

Kw,n+2rKw,n−2r −K2
w,n

=

{
(−1)n+1 cn−2r AB∆2u2r ((Kv,0 − θ) u2r + c (Ku,0 − η) v2r) , if n is even,

(−1)n+1 cn−2r AB∆2u2r

((
Kv̂,0 − θ̂

)
b
a u2r + c (Kû,0 − η̂) v2r

)
, if n is odd.

Corollary 37. If we take s = −r and r = 1, we get the Cassini’s like identity:

Kw,n+2rKw,n−2r −K2
w,n

=

{
(−1)n+1 acn−2AB∆2 ((Kv,0 − θ) a + c (ab + 2c) (Ku,0 − η)) , if n is even,

(−1)n+1 acn−2AB∆2
((

Kv̂,0 − θ̂
)

b + c (ab + 2c) (Kû,0 − η̂)
)

, if n is odd.

Note that for even case, the Cassini’s like identity can be stated as by means of
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the following matrix identity:[
Kw,2n+2 −c2Kw,2n

Kw,2n −c2Kw,2n−2

]
=

[
Kw,4 −c2Kw,2

Kw,2 −c2Kw,0

] [
ab + 2c −c2

1 0

]n−1

. (3.17)

By taking determinant from above to down below of both sides of the matrix
equality (3.17), we get

Kw,2n+2Kw,2n−2 −K2
w,2n = c2n−2

(
Kw,4Kw,0 −K2

w,2

)
. (3.18)

By taking determinant from down below to above of both sides of the matrix
equality (3.17), we get

Kw,2n−2Kw,2n+2 −K2
w,2n = c2n−2

(
Kw,0Kw,4 −K2

w,2

)
. (3.19)

Theorem 38. For n ≥ 1, we have

n

∑
r=1

Kw,r =
c2 (Kw,n + Kw,n−1 −Kw,0 −Kw,−1)−Kw,n+2 −Kw,n+1 + Kw,2 + Kw,1

c2 − ab− 2c + 1
.

Proof. First note that by considering the formula in (3.7), the bi-periodic Horadam
hybrid numbers for negative subscripts can be defined as

Kw,−n = w−n + w−n+1i + w−n+2ε + w−n+3h,

where

(−c)n w−n =

(
b
a

)ξ(n)
w0un+1 − w1un.

If n is odd, we have

n

∑
r=1

Kw,r =

n−1
2

∑
r=1

Kw,2r +

n+1
2

∑
r=1

Kw,2r−1

=

n−1
2

∑
r=1

a
(ab)r

(
Aαξ(2r)α

2r − Bβξ(2r)β
2r
)
+

n−1
2 +1

∑
r=1

ab
(ab)r

(
Aαξ(2r−1)α

2r−1 − Bβξ(2r−1)β
2r−1

)
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= aAαξ(2r)

n−1
2

∑
r=1

(
α2

ab

)r

− aBβξ(2r)

n−1
2

∑
r=1

(
β2

ab

)r

+
ab
α

Aαξ(2r−1)

n−1
2 +1

∑
r=1

(
α2

ab

)r

− ab
β

Bβξ(2r−1)

n−1
2 +1

∑
r=1

(
β2

ab

)r

= aAαξ(2r)


(

α2

ab

) n−1
2 +1
− α2

ab

α2

ab − 1

− aBβξ(2r)


(

β2

ab

) n−1
2 +1
− β2

ab

β2

ab − 1



+
ab
α

Aαξ(2r−1)


(

α2

ab

) n−1
2 +2
− α2

ab

α2

ab − 1

− ab
β

Bβξ(2r−1)


(

β2

ab

) n−1
2 +2
− β2

ab

β2

ab − 1

 .

Since ξ (2r) = 0 and ξ (2r− 1) = 1, we have

n

∑
r=1

Kw,r =
a

(ab)
n−1

2

(
Aα0αn+1 − Aα0α2 (ab)

n−1
2

α2 − ab
+
−Bβ0βn+1 + Bβ0β2 (ab)

n−1
2

β2 − ab

)

+
ab

(ab)
n+1

2

(
Aα1αn+2 − Aα1α (ab)

n+1
2

α2 − ab
+
−Bβ1βn+2 + Bβ1β (ab)

n+1
2

β2 − ab

)
=

a

(ab)
n−1

2 (α2 − ab) (β2 − ab)
×[

(αβ)2
(

Aα0αn−1 − Bβ0βn−1
)
− ab

(
Aα0αn+1 − Bβ0βn+1

)
+ (ab)

n−1
2
(
− (αβ)2 (Aα0 − Bβ0) + ab

(
Aα0α2 − Bβ0β2

))]
+

ab

(ab)
n+1

2 (α2 − ab) (β2 − ab)
×[

(αβ)2 (Aα1αn − Bβ1βn)− ab
(

Aα1αn+2 − Bβ1βn+2
)

+ (ab)
n+1

2
(
− (αβ)2

(
Aα1α−1 − Bβ1β−1

)
+ ab (Aα1α− Bβ1β)

)]
=

c2 (Kw,n−1 −Kw,0 + Kw,n −Kw,−1)−Kw,n+1 −Kw,n+2 + Kw,2 + Kw,1

c2 − ab− 2c + 1
.

If n is even, we have

n

∑
r=1

Kw,r =

n
2

∑
r=1

Kw,2r +

n
2

∑
r=1

Kw,2r−1.

In a similar manner, we get the desired result. 2
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Theorem 39. For nonnegative even integer n and nonnegative integer r, we have

n

∑
i=0

(
n
i

)
(−c)n−i

Kw,2i+r = (ab)
n
2 Kw,n+r.

Proof. From the Binet form of the bi-periodic Horadam hybrid numbers, we get

n

∑
i=0

(
n
i

)
(−c)n−i

Kw,2i+r

=
n

∑
i=0

(
n
i

)
(−c)n−i aξ(2i+r+1)

(ab)b
2i+r

2 c

(
Aαξ(r)α

2i+r − Bβξ(r)β
2i+r

)

=
aξ(r+1)

(ab)b
r
2c

Aαξ(r)α
r

n

∑
i=0

(
n
i

)
(−c)n−i

(
α2

ab

)i

− aξ(r+1)

(ab)b
r
2c

Bβξ(r)β
r

n

∑
i=0

(
n
i

)
(−c)n−i

(
β2

ab

)i

=
aξ(r+1)

(ab)b
r
2c

Aαξ(r)α
r
(

α2

ab
− c
)n

− aξ(r+1)

(ab)b
r
2c

Bβξ(r)β
r
(

β2

ab
− c
)n

=
aξ(r+1)

(ab)b
r
2c

(
Aαξ(r)α

n+r − Bβξ(r)β
n+r
)
=

aξ(r+1)

(ab)b
r
2c

(ab)b
n+r

2 c

aξ(n+r+1)
Kw,n+r

=
a−ξ(r)+ξ(n+r)

(ab)b
r
2c−b n+r

2 c
Kw,n+r = (ab)

n
2 Kw,n+r.

2

3.5 Links between bi-periodic Fibonacci and Lucas
hybrid numbers

Now, we state some relations between generalized bi-periodic Fibonacci num-
bers and generalized bi-periodic Lucas hybrid numbers. We also give some rela-
tions between generalized bi-periodic Fibonacci numbers and modified general-
ized bi-periodic Lucas hybrid numbers. To do this, we consider the generalized
bi-periodic Fibonacci hybrid numbers Ku,n, the generalized bi-periodic Lucas hy-
brid numbers Kv,n, and the modified generalized bi-periodic Lucas hybrid num-
bers Kv̂,n which are stated in Table 3.1.
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The Binet form of Ku,n is

Ku,n =
aξ(n+1)

(ab)b
n
2c

(
αξ(n)α

n − βξ(n)β
n

α− β

)
(3.20)

and the Binet form of Kv,n is

Kv,n =
a−ξ(n)

(ab)b
n
2c

(
αξ(n)α

n + βξ(n)β
n
)

. (3.21)

Also, the Binet form of Kv̂,n is

Kv̂,n =
b−ξ(n)

(ab)b
n
2c

(
αξ(n+1)α

n + βξ(n+1)β
n
)

. (3.22)

Theorem 40. For any natural number m, n with n > m, we have

(i)Ku,n+1 + cKu,n−1 = Kv̂,n.

(ii)Kv̂,n+1 + cKv̂,n−1 = (ab + 4c)Ku,n.

(iii)Ku,nKv,m−Ku,mKv,n =

{
2 (−c)m (Kv,0 − θ) un−m, if n and m are both even,

2 (−c)m b
a

(
Kv̂,0 − θ̂

)
un−m, if n and m are both odd.

(iv)Kv,nKv,n −
∆2

a2 Ku,nKu,n =

{
4 (−c)n (Kv,0 − θ) , if n is even,

4 (−c)n b
a

(
Kv̂,0 − θ̂

)
, if n is odd.

(v)Kv,nKv,n +
∆2

a2 Ku,nKu,n =

 2
(
(Kv,0 + µe) v2n +

∆2

a2 (Ku,0 + γe) u2n

)
, if n is even

2
(

b
a (Kv̂,0 + µo) v2n +

∆2

a2 (Kû,0 + γo) u2n

)
, if n is odd.

Proof. (i) From the relations (3.20) and (3.22), we have,

Ku,n+1 + cKu,n−1

=
aξ(n)

(ab)b
n+1

2 c

(
αξ(n+1)α

n+1 − βξ(n+1)β
n+1

α− β

)
+ c

aξ(n)

(ab)b
n−1

2 c

(
αξ(n−1)α

n−1 − βξ(n−1)β
n−1

α− β

)

=
aξ(n)

(ab)b
n
2c+ξ(n)

(
αξ(n+1)α

n+1 − βξ(n+1)β
n+1 − αξ(n+1)α

nβ + βξ(n+1)β
nα

α− β

)
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=
aξ(n)

(ab)b
n
2c+ξ(n)

(
αξ(n+1)α

n (α− β) + βξ(n+1)β
n (α− β)

α− β

)

=
aξ(n)

(ab)b
n
2c+ξ(n)

(
αξ(n+1)α

n + βξ(n+1)β
n
)
= Kv̂,n.

(ii) By using the relations (3.20) and (3.22), we have

Kv̂,n+1 + cKv̂,n−1

=
b−ξ(n+1)

(ab)b
n+1

2 c

(
αξ(n)α

n+1 + βξ(n)β
n+1
)
+ c

b−ξ(n−1)

(ab)b
n−1

2 c

(
αξ(n)α

n−1 + βξ(n)β
n−1
)

=
b−ξ(n+1)

(ab)b
n+1

2 c

(
αξ(n)α

n+1 + βξ(n)β
n+1
)
− b−ξ(n−1)

(ab)b
n+1

2 c

(
αξ(n)α

nβ + βξ(n)β
nα
)

=
b−ξ(n+1)

(ab)b
n+1

2 c

(
αξ(n)α

n+1 + βξ(n)β
n+1 − αξ(n)α

nβ− βξ(n)β
nα
)

=
b−ξ(n+1)

(ab)b
n+1

2 c

(
αξ(n)α

n (α− β)− βξ(n)β
n (α− β)

)
=

b−ξ(n+1)

(ab)b
n
2c+ξ(n)

(α− β)2
(

αξ(n)α
n − βξ(n)β

n

α− β

)
=

∆2

ab
Ku,n = (ab + 4c)Ku,n.

(iii) By using the Binet forms for Ku,n and Kv,n, and considering the relation
(3.13), we get the desired result.

For even n and m, we have ξ (n) = ξ (m) = 0. Then we get

Ku,nKv,m −Ku,mKv,n

=
a

(ab)
n+m

2 (α− β)
((α0αn − β0βn) (α0αm + β0βm)− (α0αm − β0βm) (α0αn + β0βn))

=
a

(ab)
n+m

2 (α− β)

(
α0α0αn+m + α0β0αnβm − β0α0βnαm − β0β0βn+m

−α0α0αn+m − α0β0βnαm + β0α0αnβm + β0β0βn+m

)
=

a

(ab)
n+m

2 (α− β)
(α0β0 (α

nβm − βnαm)− β0α0 (βnαm − αnβm))

=
a

(ab)
n+m

2 (α− β)
(α0β0 + β0α0) (α

nβm − βnαm)

=
a

(ab)
n+m

2
2 (Kv,0 − θ)

(αβ)m (αn−m − βn−m)

α− β
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=
2a

(ab)
n+m

2
(Kv,0 − θ)

(−abc)m un−m (ab)
n−m

2

a

= 2 (−c)m (Kv,0 − θ) un−m.

For odd n and m, we have ξ (n) = ξ (m) = 1. Then we get

Ku,nKv,m −Ku,mKv,n

=
1

a (ab)
n+m

2 −1 (α− β)
((α1αn − β1βn) (α1αm + β1βm)− (α1αm − β1βm) (α1αn + β1βn))

=
1

a (ab)
n+m

2 −1 (α− β)

(
α1α1αn+m + α1β1αnβm − β1α1βnαm − β1β1βn+m

−α1α1αn+m − α1β1βnαm + β1α1αnβm + β1β1βn+m

)

=
1

a (ab)
n+m

2 −1 (α− β)
(α1β1 (α

nβm − βnαm)− β1α1 (βnαm − αnβm))

=
1

a (ab)
n+m

2 −1 (α− β)
(α1β1 + β1α1) (α

nβm − βnαm)

=
1

a (ab)
n+m

2 −1
2
(

Kv̂,0 − θ̂
) (αβ)m (αn−m − βn−m)

α− β

=
2

a (ab)
n+m

2 −1

(
Kv̂,0 − θ̂

) (−abc)m un−m (ab)
n−m

2

a

= (−c)m 2b
a

(
Kv̂,0 − θ̂

)
un−m.

(iv) By using the Binet forms for Ku,n and Kv,n, we have

Kv,nKv,n −
∆2

a2 Ku,nKu,n

=
a−2ξ(n)

(ab)2b n
2c

(
αξ(n)α

n + βξ(n)β
n
)2
− ∆2

a2
a2ξ(n+1)

(ab)2b n
2c

(
αξ(n)α

n − βξ(n)β
n

α− β

)2

=
a−2ξ(n)

(ab)2b n
2c

((
αξ(n)α

n + βξ(n)β
n
)2
−
(

αξ(n)α
n − βξ(n)β

n
)2
)

=
a−2ξ(n)

(ab)2b n
2c

[
αξ(n)αξ(n)α

2n + βξ(n)βξ(n)β
2n + (αβ)n

(
αξ(n)βξ(n) + βξ(n)αξ(n)

)
−αξ(n)αξ(n)α

2n − βξ(n)βξ(n)β
2n + (αβ)n

(
αξ(n)βξ(n) + βξ(n)αξ(n)

)]
=

a−2ξ(n)

(ab)2b n
2c

2 (αβ)n
(

αξ(n)βξ(n) + βξ(n)αξ(n)

)
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=


4 a−2ξ(n)

(ab)n (αβ)n (Kv,0 − θ) , if n is even

4 a−2ξ(n)

(ab)2b n
2c

(αβ)n
(

Kv̂,0 − θ̂
)

, if n is odd

=

{
4 (−c)n (Kv,0 − θ) , if n is even

4 (−c)n b
a

(
Kv̂,0 − θ̂

)
, if n is odd

(v)

Kv,nKv,n +
∆2

a2 Ku,nKu,n

=
a−2ξ(n)

(ab)2b n
2c

(
αξ(n)α

n + βξ(n)β
n
)2

+
∆2

a2
a2ξ(n+1)

(ab)2b n
2c

(
αξ(n)α

n − βξ(n)β
n

α− β

)2

=
a−2ξ(n)

(ab)2b n
2c

((
αξ(n)α

n + βξ(n)β
n
)2

+
(

αξ(n)α
n − βξ(n)β

n
)2
)

=
a−2ξ(n)

(ab)2b n
2c

[
αξ(n)αξ(n)α

2n + βξ(n)βξ(n)β
2n + (αβ)n

(
αξ(n)βξ(n) + βξ(n)αξ(n)

)
+αξ(n)αξ(n)α

2n + βξ(n)βξ(n)β
2n − (αβ)n

(
αξ(n)βξ(n) + βξ(n)αξ(n)

)]
=

a−2ξ(n)

(ab)2b n
2c

2
(

αξ(n)αξ(n)α
2n + βξ(n)βξ(n)β

2n
)

=



a−2ξ(n)

(ab)2b n
2c

2
((

Kv,0 + µe +
∆
a (Ku,0 + γe)

)
α2n

+
(

Kv,0 + µe − ∆
a (Ku,0 + γe)

)
β2n
)

, if n is even
a−2ξ(n)

(ab)2b n
2c

2
((

Kv̂,0 + µo +
∆
b (Kû,0 + γo)

)
α2n

+
(

Kv̂,0 + µo − ∆
b (Kû,0 + γo)

)
β2n
)

, if n is odd

=


2

(ab)n

(
(Kv,0 + µe)

(
α2n + β2n)+ ∆

a (Ku,0 + γe)
(
α2n − β2n)) , if n is even

2a−2

(ab)n−1

(
(Kv̂,0 + µo)

(
α2n + β2n)+ ∆

b (Kû,0 + γo)
(
α2n − β2n)) , if n is odd

=

 2
(
(Kv,0 + µe) v2n +

∆2

a2 (Ku,0 + γe) u2n

)
, if n is even

2
(

b
a (Kv̂,0 + µo) v2n +

∆2

a2 (Kû,0 + γo) u2n

)
, if n is odd.

By considering the relations (3.13), (3.15), and (3.16), we get the desired result. 2



CHAPTER

4

BIVARIATE r-FIBONACCI AND r-
LUCAS HYBRID POLYNOMIALS

[3]

In this chapter, we introduce a new generalization of Fibonacci and Lucas hybrid
polynomials. We investigate some properties of these polynomials [3].

4.1 Introduction

Similar to the quaternion multiplication, the hybrid number multiplication is
noncommutative. The set of hybrid numbers form a noncommutative algebra.
For more details of hybrid numbers, see Ozdemir’s paper [57].

Recently, Szynal-Liana [74] introduced the Fibonacci hybrid polynomials (alias
hybrinomials) as

FHn (x) = Fn (x) + Fn+1 (x) i + Fn+2 (x) ε + Fn+3 (x) h, n ≥ 0, (4.1)

where Fn (x) is the nth Fibonacci polynomial (see [49]) defined by the recurrence
relation

Fn (x) = xFn−1 (x) + Fn−2 (x) , n ≥ 2,

with initial values F0 (x) = 0, F1 (x) = 1. In [43], Kizilates defined the Horadam

71
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hybrinomials which generalize the Fibonacci hybrinomials. Several studies re-
lated to hybrid numbers with generalized Fibonacci number coefficients can be
found in [18, 46, 65, 66, 72, 73, 75, 76, 77, 79] and for a recent study related to the
generalized Fibonacci numbers and polynomials we refer to [5]. It is also worth
noting that, in the literature there exist another type of hybrid polynomials which
are related to the families of special functions such as the Laguerre and the Her-
mite polynomials, see [24]. We should note that our approach will be different
from that polynomials.

This work has been intended as an attempt to introduce a new class of hybrid
polynomials which are so-called "r-Fibonacci hybrid polynomials and r-Lucas hy-
brid polynomials of type s". They give a natural generalization of the Fibonacci
and Lucas hybrinomials. We give the generating functions, the Binet forms, ma-
trix representations and several basic properties of these hybrid polynomials. A
relation between r-Fibonacci hybrid polynomials and r-Lucas hybrid polynomi-
als is also given.

Now we start by recalling some basic results concerning to the r-Fibonacci poly-
nomials and r-Lucas polynomials of type s. For the detailed information related
to these polynomials, we refer to [1, 61].

Let r ≥ 1 be any integer, and let s = 1, 2, . . . , r. The bivariate r-Fibonacci polyno-
mials

(
T(r)

n

)
n

:=
(

T(r)
n (x, y)

)
n

are defined by

T(r)
n = xT(r)

n−1 + yT(r)
n−r−1, n ≥ r + 1 (4.2)

with initial conditions T(r)
0 = 0, T(r)

k = xk−1 for k = 1, 2, . . . , r. Their com-

panion sequences, the bivariate r-Lucas polynomials of type s,
(

Z(r,s)
n

)
n

:=(
Z(r,s)

n (x, y)
)

n
are defined by

Z(r,s)
n = xZ(r,s)

n−1 + yZ(r,s)
n−r−1, n ≥ r + 1 (4.3)

with initial conditions Z(r,s)
0 = s + 1, Z(r,s)

k = xk for k = 1, 2, . . . , r. It is clear that if
we take r = 1, s = 1, then these polynomials respectively reduce to the classical
bivariate Fibonacci and Lucas polynomials, see [10].
If we take x = y = 1, they reduce to the r-Fibonacci and r-Lucas numbers.

The Binet forms for the bivariate r-Fibonacci polynomials and the bivariate r-
Lucas polynomials of type s are



4.2. Bivariate hybrid polynomials 73

T(r)
n =

r+1

∑
k=1

αn
k

(r + 1)αk − rx
(4.4)

and

Z(r,s)
n =

r+1

∑
k=1

αn
k
(s + 1)αk − sx
(r + 1)αk − rx

, (4.5)

respectively. Here αk are the distinct roots of the polynomial R(t) = tr+1− xtr− y.
For details see [1].

In this study, we introduce bivariate r-Fibonacci hybrid polynomials and bivari-
ate r-Lucas hybrid polynomials of type s. We give the generating functions, the
Binet forms, matrix representations and several basic properties of these hybrid
polynomials. Some relationships between the r-Fibonacci hybrid polynomials
and r-Lucas hybrid polynomials are also given.

4.2 Bivariate hybrid polynomials

In this section, we give the definition of r-Fibonacci hybrid polynomials and r-
Lucas hybrid polynomials of type s. We give the generating functions, the Binet
forms, the summation formulas of these polynomials. Also, we establish a rela-
tion between the r-Fibonacci hybrid polynomials and the r-Lucas hybrid polyno-
mials of type s.

Definition 41. For n ≥ 0, the r-Fibonacci hybrid polynomials KT(r),n is defined by the
recurrence relation

KT(r),n = T(r)
n + T(r)

n+1i + T(r)
n+2ε + T(r)

n+3h, n ≥ 0, (4.6)

where T(r)
n is the nth r-Fibonacci polynomial. The r-Lucas hybrid polynomials of type s,

KZ(r,s),n is defined by the recurrence relation

KZ(r,s),n = Z(r,s)
n + Z(r,s)

n+1 i + Z(r,s)
n+2ε + Z(r,s)

n+3h, n ≥ 0, (4.7)

where Z(r,s)
n is the nth r-Lucas polynomial of type s.

In the following table, we state some special cases of r-Fibonacci hybrid polyno-
mials and r-Lucas hybrid polynomials of type 1.
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x y r s KU(r),n KV(r,s),n
x y 1 1 bivariate Fibonacci hybrid polynomials bivariate Lucas hybrid polynomials [66]
x 1 1 1 Fibonacci hybrid polynomials [74] Lucas hybrid polynomials [74]
2x 1 1 1 Pell hybrid polynomials [77] Pell-Lucas hybrid polynomials [77]
m 1 p p gen. hybrid Fibonacci p-numbers [46] gen. hybrid Lucas p-numbers [46]
1 1 p p hybrid Fibonacci p-numbers [46] hybrid Lucas p-numbers [46]
1 1 1 1 Fibonacci hybrid numbers [73] Lucas hybrid numbers [72]
2 1 1 1 Pell hybrid numbers [75] Pell-Lucas hybrid numbers [75]
1 2 1 1 Jacobsthal hybrid numbers [76] Jacobsthal-Lucas hybrid numbers [76]

Table 4.1: Special cases of bivarite polynomials.

4.3 Generating functions

We state the following lemma, which is useful to obtain the generating functions
of r-Fibonacci hybrid polynomials and r-Lucas hybrid polynomials of type s.

Lemma 42. The r-Fibonacci hybrid polynomials and r-Lucas hybrid polynomials of type
s satisfy the following relations

KT(r),n = xKT(r),n−1 + yKT(r),n−r−1 f or n ≥ r + 1. (4.8)

and
KZ(r,s),n = xKZ(r,s),n−1 + yKZ(r,s),n−r−1 f or n ≥ r + 1. (4.9)

Proof. By using the definition of r-Fibonacci polynomials, we have

KT(r),n = T(r)
n + T(r)

n+1i + T(r)
n+2ε + T(r)

n+3h

= xT(r)
n−1 + yT(r)

n−r−1 + (xT(r)
n + yT(r)

n−r)i + (xT(r)
n+1 + yT(r)

n−r+1)ε

+ (xT(r)
n+2 + yT(r)

n−r+2)h

= x(T(r)
n−1 + T(r)

n i + T(r)
n+1ε + T(r)

n+2h) + y(T(r)
n−r−1 + T(r)

n−ri + T(r)
n−r+1ε + T(r)

n−r+2h)

= xKT(r),n−1 + yKT(r),n−r−1.

Thus, we get the desired result.
The relation for the r-Lucas hybrid polynomials of type s can be proven similarly.
So we omit it here. 2
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Theorem 43. The generating functions for the r-Fibonacci hybrid polynomials and r-
Lucas hybrid polynomials of type s, Ĝ (z) and Ĥ (z) are given by

(
1− xz− yzr+1

)
Ĝ (z) = KT(r),0 +

r

∑
n=1

(
KT(r),n − xKT(r),n−1

)
zn (4.10)

and (
1− xz− yzr+1

)
Ĥ (z) = KZ(r,s),0 +

r

∑
n=1

(
KZ(r,s),n − xKZ(r,s),n−1

)
zn. (4.11)

respectively.

Proof. Let

Ĝ (z) =
∞

∑
n=0

KT(r),nzn = KT(r),0 + KT(r),1z + KT(r),2z2 + · · ·+ KT(r),nzn + · · · .

Since KT(r),n = xKT(r),n−1 + yKT(r),n−r−1 for n ≥ r + 1, we get

(
1− xz− yzr+1

)
Ĝ (z) =

∞

∑
n=0

KT(r),nzn − x
∞

∑
n=0

KT(r),nzn+1 + y
∞

∑
n=0

KT(r),nzn+r+1

=
∞

∑
n=0

KT(r),nzn − x
∞

∑
n=1

KT(r),n−1zn − y
∞

∑
n=r+1

KT(r),n−r−1zn

=
r

∑
n=0

KT(r),nzn − x
r

∑
n=1

KT(r),n−1zn

+
∞

∑
n=r+1

(
KT(r),n − xKT(r),n−1 − yKT(r),n−r−1

)
zn

=
r

∑
n=0

KT(r),nzn − x
r

∑
n=1

KT(r),n−1zn

= KT(r),0 +
r

∑
n=1

(
KT(r),n − xKT(r),n−1

)
zn.

The generating function for r-Lucas hybrid polynomials of type s can be proven
similarly. So we omit it here. 2
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4.4 Binet forms

Next, we state the Binet forms for r-Fibonacci hybrid polynomials and r-Lucas
hybrid polynomials of type s and by using these forms, we derive some proper-
ties of them.

Theorem 44. The Binet forms for the r-Fibonacci hybrid polynomials and r-Lucas hybrid
polynomials of type s are

KT(r),n =
r+1

∑
k=1

α∗k αn
k

(r + 1)αk − rx
(4.12)

and

KZ(r,s),n =
r+1

∑
k=1

α∗k αn
k
(s + 1)αk − sx
(r + 1)αk − rx

, (4.13)

respectively, where α∗k = 1 + αki + α2
kε + α3

kh.

Proof. By using the definitions of the sequences (KT(r),n)n, (KZ(r,s),n)n and the Bi-

net forms of (T(r)
n )n and (Z(r,s)

n )n, we have

KT(r),n = T(r)
n + T(r)

n+1i + T(r)
n+2ε + T(r)

n+3h

=
r+1

∑
k=1

αn
k

(r + 1)αk − rx
+

r+1

∑
k=1

αn+1
k

(r + 1)αk − rx
i +

r+1

∑
k=1

αn+2
k

(r + 1)αk − rx
ε

+
r+1

∑
k=1

αn+3
k

(r + 1)αk − rx
h

=
r+1

∑
k=1

αn
k + αn+1

k i + αn+2
k ε + αn+3

k h
(r + 1)αk − rx

=
r+1

∑
k=1

αn
k (1 + αki + α2

kε + α3
kh)

(r + 1)αk − rx

=
r+1

∑
k=1

αn
k

(r + 1)αk − rx

[
1 + αki + α2

kε + α3
kh
]

=
r+1

∑
k=1

α∗k αn
k

(r + 1)αk − rx
.

For the r-Lucas hybrid polynomials, we have

KZ(r,s),n = Z(r,s)
n +Z(r,s)

n+1 i+Z(r,s)
n+2ε+Z(r,s)

n+3h
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=
r+1

∑
k=1

αn
k
(s + 1)αk − sx
(r + 1)αk − rx

+
r+1

∑
k=1

αn+1
k

(s + 1)αk − sx
(r + 1)αk − rx

i +
r+1

∑
k=1

αn+2
k

(s + 1)αk − sx
(r + 1)αk − rx

ε

+
r+1

∑
k=1

αn+3
k

(s + 1)αk − sx
(r + 1)αk − rx

h

=
r+1

∑
k=1

(αn
k + αn+1

k i + αn+2
k ε + αn+3

k h)((s + 1)αk − sx)
(r + 1)αk − rx

=
r+1

∑
k=1

αn
k (1 + αki + α2

kε + α3
kh)((s + 1)αk − sx)

(r + 1)αk − rx

=
r+1

∑
k=1

αn
k
(s + 1)αk − sx
(r + 1)αk − rx

[
1 + αki + α2

kε + α3
kh
]

=
r+1

∑
k=1

α∗k αn
k
(s + 1)αk − sx
(r + 1)αk − rx

.

Which gives the desired results. 2

The link between the r-Fibonacci hybrid polynomials and r-Lucas hybrid poly-
nomials of type s can be given in the following result.

Theorem 45. The r-Lucas hybrid polynomials of type s can be expressed in term of r-
Fibonacci hybrid polynomials as

KZ(r,s),n = KT(r),n+1 + syKT(r),n−r, n ≥ r + 1. (4.14)

Proof. Using the Binet forms of r-Fibonacci hybrid polynomials and r-Lucas hy-
brid polynomials of type s, we have

KT(r),n+1 + syKT(r),n−r =
r+1

∑
k=1

α∗k αn+1
k

(r + 1)αk − rx
+ sy

r+1

∑
k=1

α∗k αn−r
k

(r + 1)αk − rx

=
r+1

∑
k=1

α∗k αn+1
k + syα∗k αn−r

k
(r + 1)αk − rx

=
r+1

∑
k=1

α∗k αn
k (αk + syα−r

k )

(r + 1)αk − ra

=
r+1

∑
k=1

α∗k αn
k
(s + 1)αk − sx
(r + 1)αk − rx

= KZ(r,s),n.

Because αk = x + yα−r
k then αk + syα−r

k = (s + 1)αk − sx. 2

Next, we give some summation formulas for KT(r),n and KZ(r,s),n in the following
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theorem.

Theorem 46. For m ≥ 0, we have

m

∑
n=0

KT(r),n =
r+1

∑
k=1

α∗k(α
m+1
k − 1)

(r + 1)α2
k − (r(x + 1) + 1)αk + rx

(4.15)

and
m

∑
n=0

KZ(r,s),n =
r+1

∑
k=1

α∗k
((s + 1)αk − sx)(αm+1

k − 1)
(r + 1)α2

k − (r(x + 1) + 1)αk + rx
. (4.16)

Proof. Using the Binet form of KT(r),n, we get

m

∑
n=0

KT(r),n =
m

∑
n=0

r+1

∑
k=1

α∗k αn
k

(r + 1)αk − rx

=
r+1

∑
k=1

α∗k
(r + 1)αk − rx

αm+1
k − 1
αk − 1

=
r+1

∑
k=1

α∗k(α
m+1
k − 1)

(r + 1)α2
k − (r(x + 1) + 1)αk + rx

.

And from Binet form of KZ(r,s),n, we get

m

∑
n=0

KZ(r,s),n =
m

∑
n=0

r+1

∑
k=1

α∗k αn
k
(s + 1)αk − sx
(r + 1)αk − rx

=
r+1

∑
k=1

α∗k
(s + 1)αk − sx
(r + 1)αk − rx

m

∑
n=0

αn
k

=
r+1

∑
k=1

α∗k
((s + 1)αk − sx)(αm+1

k − 1)
(r + 1)α2

k − (r(x + 1) + 1)αk + rx
.

2

4.5 Matrix representation

In this section, we give a matrix representation of r-Fibonacci hybrid polynomials.
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Let Qr :=



x 0 · · · 0 y
1 0 · · · 0 0

0 1 . . . ...
...

... . . . . . . 0 0
0 · · · 0 1 0


be a matrix of size (r + 1)× (r + 1) .

For n ≥ r, it can be verified that

Qn
r =


T(r)

n+1 yT(r)
n−r+1 · · · yT(r)

n−1 yT(r)
n

T(r)
n yT(r)

n−r yT(r)
n−2 yT(r)

n−1
...

... . . . ...
...

T(r)
n−r+1 yT(r)

n−2r+1 · · · yT(r)
n−r−1 yT(r)

n−r


with T(r)

j = 0, for j = −1,−2, . . . .
Now, let’s define the matrix

K (n) :=


KT(r),n+1 yKT(r),n−r+1 · · · yKT(r),n−1 yKT(r),n

KT(r),n yKT(r),n−r yKT(r),n−2 yKT(r),n−1
...

... . . . ...
...

KT(r),n−r+1 yKT(r),n−2r+1 · · · yKT(r),n−r−1 yKT(r),n−r

 .

For any nonnegative integer n ≥ r, we have

K (n) = K (0) Qn
r . (4.17)

By taking the determinant of both sides of the matrix equality (4.17), we get the
generalized Cassini’s identity for the r-Fibonacci hybrid polynomials as

det K (n) = (−1)nr yn det K (0) . (4.18)

Remark 47. If r = 1 in (4.18), we get

KT(1),n+1KT(1),n−1 −K2
T(1),n = (−1)n

(
KT(1),1KT(1),−1 −K2

T(1),0

)
. (4.19)

By using the matrix identity (4.17), we get the following theorem which can be
seen as a generalization of Honsberger formula.
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Theorem 48. For n, s, t ≥ r, we have

KT(r),s+t = KT(r),sKT(r),t+1 + y
r−1

∑
j=0

KT(r),s−r+jKT(r),t−j. (4.20)

KT(r),s+t = T(r)
s KT(r),t+1 + y

r−1

∑
j=1

T(r)
s−r+jKT(r),t−j. (4.21)

Proof. Let K := K(0), considering the matrix equalities(
KQs+t

r
)

K = (KQs
r)
(
Qt

rK
)

and (
KQs+t

r
)
= (KQs

r) Qt
r,

then equating the corresponding entries, we get the desired results respectively.
2

Remark 49. If r = 1, the identities (4.20) and (4.21) reduce to the classical bivariate
hybrid Fibonacci polynomials as

KT(1),s+t = KT(1),sKT(1),t+1 + yKT(1),s−1KT(1),t. (4.22)

KT(1),s+t = T(1)
s KT(1),t+1 + yT(r)

s−1KT(1),t. (4.23)



CHAPTER

5

HYPER-DUAL HORADAM

QUATERNIONS [4]

This chapter deals with developing a new class of quaternions, called hyper-dual
Horadam quaternions which are constructed from the quaternions whose compo-
nents are hyper-dual Horadam numbers. We investigate some basic properties of
these quaternions. The main advantage of introducing the hyper-dual Horadam
quaternions is that many hyper-dual numbers with celebrated numbers such as
Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers can be
deduced as particular cases of the hyper-dual Horadam quaternions.

5.1 Introduction

Horadam [35] introduced the quaternions whose components are Fibonacci num-
bers. More generally, by using Horadam’s approach, Halıcı and Karatas [32] de-
fined the nth Horadam quaternion as

QW,n = Wn + Wn+1i + Wn+2 j + Wn+3k, n ≥ 0,

where (Wn)n is the Horadam sequence [36] and is defined by

Wn = pWn−1 + qWn−2, n ≥ 2,

81
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with the arbitrary initial values W0, W1 and nonzero integers p, q. It is clear
to see that the Horadam sequence (Wn)n := (Wn (W0, W1; p, q))n general-
izes many well-known integer sequences such as Fibonacci sequence (Fn)n =

(Wn (0, 1; 1, 1))n , Lucas sequence (Ln)n = (Wn (2, 1; 1, 1))n , generalized Fi-
bonacci sequence (Un)n = (Wn (0, 1; p, q))n , and the generalized Lucas sequence
(Vn)n = (Wn (2, p; p, q))n . The Binet form of the Horadam sequence (Wn)n is

Wn =
Aαn − Bβn

α− β
,

where
A := W1 −W0β and B := W1 −W0α.

Here α =
(p+
√

p2+4q)
2 and β =

(p−
√

p2+4q)
2 are the roots of the characteristic poly-

nomial
x2 − px− q,

that is
αβ = −q, α + β = p

and
∆ := α− β =

√
p2 + 4q,

with
p2 + 4q > 0.

The Binet form for the Horadam quaternions is

QW,n =
Aα∗αn − Bβ∗βn

α− β
, (5.1)

where α∗ = 1+ αi+ α2 j+ α3k and β∗ = 1+ βi+ β2 j+ β3k. For details, see [17, 84].

Also, Nurkan and Guven [55] introduced the dual Fibonacci quaternions by tak-
ing dual Fibonacci numbers instead of real numbers as coefficients. These num-
bers can also be seen as dual numbers with Fibonacci quaternion coefficients. A
generalization of dual Fibonacci quaternions can be found in [83]. In [42], the
author introduced the dual Horadam quaternions as

Q̃W,n = W̃n + W̃n+1i + W̃n+2 j + W̃n+3k, n ≥ 0,

where W̃n = Wn + Wn+1ε is the nth dual Horadam number. Recently, in [56],
the authors defined the hyper-dual numbers whose coefficients are from the se-
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quences (Ukn)n and (Vkn)n which reduce to the sequences (Wn (0, 1; p, 1))n and
(Wn (2, p; p, 1))n for k = 1, respectively.

In this chapter, motivating the definition of hyper-dual split quaternions in [6], we
consider the quaternions whose coefficients are taken from hyper-dual Horadam
numbers. To do this, first we define the hyper-dual Horadam numbers, then we
introduce the quaternions whose coefficients are taken from those numbers. We
give the generating function and the Binet form for hyper-dual Horadam quater-
nions. Some algebraic properties of these quaternions such as Vajda’s identity,
Catalan’s identity, Cassini’s identity and d’Ocagne’s identity are derived with
the aid of the Binet form. Moreover, we develop some matrix identities involving
the hyper-dual Horadam quaternions which allow us to obtain some properties
of these quaternions.

5.2 Hyper-Dual Horadam quaternions

In this section, first we define hyper-dual Horadam numbers, then by using these
numbers we introduce hyper-dual Horadam quaternions and investigate the ba-
sic properties of these quaternions.

Definition 50. The nth hyper-dual Horadam number is defined as

Ŵn = Wn + Wn+1ε1 + Wn+2ε2 + Wn+3ε1ε2, n ≥ 0,

where Wn is the nth Horadam number and ε1, ε2 are dual numbers satisfying the multi-
plication rules in (1.36) .

Definition 51. The nth hyper-dual Horadam quaternion is defined as

Q̂W,n = Ŵn + Ŵn+1i + Ŵn+2 j + Ŵn+3k, n ≥ 0,

where Ŵn is the nth hyper-dual Horadam number and i, j, k satisfy the quaternion multi-
plication rules in (1.34) .
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In the following table, we give the types of quaternions which are mentioned in
this chapter.

Type of quaternion Definition

Horadam quaternion [32] QW,n = Wn + Wn+1i + Wn+2 j + Wn+3k,
Wn is the nth Horadam number

Dual Horadam quaternion [42] Q̃W,n = W̃n + W̃n+1i + W̃n+2 j + W̃n+3k,
W̃n is the nth dual Horadam number

Hyper-dual Horadam quaternion Q̂W,n = Ŵn + Ŵn+1i + Ŵn+2 j + Ŵn+3k,
Ŵn is the nth hyper-dual Horadam number

Table 5.1: Type of quaternions.

Note that the nth hyper-dual Horadam quaternion can be expressed as

Q̂W,n = QW,n + QW,n+1ε1 + QW,n+2ε2 + QW,n+3ε1ε2, n ≥ 0,

where QW,n is the nth Horadam quaternion, and ε1, ε2 are dual numbers. The
addition and the multiplication of two hyper-dual Horadam quaternions Q̂W,n

and Q̂W,m are defined as

Q̂W,n + Q̂W,m = (QW,n + QW,m) + (QW,n+1 + QW,m+1) ε1

+ (QW,n+2 + QW,m+2) ε2 + (QW,n+3 + QW,m+3) ε1ε2,

Q̂W,nQ̂W,m = QW,nQW,m + (QW,nQW,m+1 + QW,n+1QW,m) ε1

+ (QW,nQW,m+2 + QW,n+2QW,m) ε2

+ (QW,nQW,m+3 + QW,n+1QW,m+2 + QW,n+2QW,m+1

+QW,n+3QW,m) ε1ε2,

respectively.

The norm of a hyper-dual Horadam quaternion Q̂W,n is defined as

N(Q̂W,n) := Q̂W,nQ̂W,n = Q̂W,nQ̂W,n = Ŵ2
n + Ŵ2

n+1 + Ŵ2
n+2 + Ŵ2

n+3,

where Q̂W,n := Ŵn − Ŵn+1i− Ŵn+2 j− Ŵn+3k is the conjugate of Q̂W,n. Also the
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norm of Q̂W,n can be obtained by the determinant of the matrix(
Ŵn + Ŵn+1i −Ŵn+2 j− Ŵn+3i

Ŵn+2 j− Ŵn+3i Ŵn − Ŵn+1i

)
.

Theorem 52. The hyper-dual Horadam quaternions satisfy the following relation:

Q̂W,n = pQ̂W,n−1 + qQ̂W,n−2, n ≥ 2.

Proof. From the definition of the hyper-dual Horadam quaternions and the Ho-
radam quaternions, we have

pQ̂W,n−1 + qQ̂W,n−2 = p (QW,n−1 + QW,nε1 + QW,n+1ε2 + QW,n+2ε1ε2)

+ q (QW,n−2 + QW,n−1ε1 + QW,nε2 + QW,n+1ε1ε2)

= (pQW,n−1 + qQW,n−2) + (pQW,n + qQW,n−1) ε1

+ (pQW,n+1 + qQW,n) ε2 + (pQW,n+2 + qQW,n+1) ε1ε2

= QW,n + QW,n+1ε1 + QW,n+2ε2 + QW,n+3ε1ε2.

2

5.3 Generating function

In the following theorem, we state the generating function for the hyper-dual
Horadam quaternions.

Theorem 53. The generating function for hyper-dual Horadam quaternions, Ĝ(x) is
given by (

1− px− qx2
)

Ĝ(x) = Q̂W,0 +
(

Q̂W,1 − pQ̂W,0

)
x .

Proof. Let

Ĝ(x) :=
∞

∑
n=0

Q̂W,nxn = Q̂W,0 + Q̂W,1x +
∞

∑
n=2

Q̂W,nxn.

From Theorem 52, we have
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(
1− px− qx2

)
Ĝ(x) = Q̂W,0 + Q̂W,1x +

∞

∑
n=2

Q̂W,nxn

− pQ̂W,0x− p
∞

∑
n=2

Q̂W,n−1xn − q
∞

∑
n=2

Q̂W,n−2xn

= Q̂W,0 + Q̂W,1x− pQ̂W,0x

+
∞

∑
n=2

(
Q̂W,n − pQ̂W,n−1 − qQ̂W,n−2

)
xn

= Q̂W,0 +
(

Q̂W,1 − pQ̂W,0

)
x.

Thus, we get the desired result. 2

5.4 Binet form

The Binet form of the hyper-dual Horadam quaternions is given in the following
theorem.

Theorem 54. The Binet form of hyper-dual Horadam quaternions is

Q̂W,n =
Aα∗ααn − Bβ∗ββn

α− β
,

where

α∗ = 1 + αi + α2 j + α3k, β∗ = 1 + βi + β2 j + β3k,

α = 1 + αε1 + α2ε2 + α3ε1ε2, β = 1 + βε1 + β2ε2 + β3ε1ε2.

Proof. From the Binet form of Horadam quaternions in (5.1), we have

Q̂W,n = QW,n + QW,n+1ε1 + QW,n+2ε2 + QW,n+3ε1ε2

=

(
Aα∗αn − Bβ∗βn

α− β

)
+

(
Aα∗αn+1 − Bβ∗βn+1

α− β

)
ε1

+

(
Aα∗αn+2 − Bβ∗βn+2

α− β

)
ε2 +

(
Aα∗αn+3 − Bβ∗βn+3

α− β

)
ε1ε2
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=
Aα∗αn

α− β

(
1 + αε1 + α2ε2 + α3ε1ε2

)
− Bβ∗βn

α− β

(
1 + βε1 + β2ε2 + β3ε1ε2

)
=

Aα∗ααn − Bβ∗ββn

α− β
.

2

From Theorem 54, the Binet forms of the hyper-dual generalized Fibonacci and
Lucas quaternions can be obtained as

Q̂U,n =
α∗ααn − β∗ββn

α− β
and Q̂V,n = α∗ααn + β∗ββn,

respectively.

By using (5.4), we obtain the following relation between the hyper-dual Fibonacci
quaternions and the hyper-dual Lucas quaternions.

Theorem 55. Let n be a positive integer. For hyper-dual Fibonacci quaternions and
hyper-dual Lucas quaternions, the following equality holds:

Q̂V,n = Q̂U,n+1 + qQ̂U,n−1, n ≥ 1.

Now, we need the following lemma which allows us a remarkable simplification
for obtaining the properties of hyper-dual Horadam quaternions.

Lemma 56. Let θ := 1− q + q2 − q3 and ω := (1− q) i +
(
1 + p2 + q

)
k. Then we

have

αβ = V̂0 − (1 + pqε1ε2),

α∗β∗ = QV,0 − θ − ∆q (QU,0 −ω) ,

β∗α∗ = QV,0 − θ + ∆q (QU,0 −ω) .

Proof. The proof can be done by using the multiplication rules in (1.34) and (1.36).
We should note that the set of hyper-dual numbers form a commutative algebra.
Therefore we have αβ = βα. But since the quaternion multiplication is noncom-
mutative, α∗β∗ need not be equal to β∗α∗. The results for α∗β∗ and β∗α∗ can also
be found in [17, Lemma 1]. 2
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Theorem 57. (Vajda’s Identity) For integers n, r and s, we have

Q̂W,n+rQ̂W,n+s − Q̂W,nQ̂W,n+r+s

= AB (−q)n
(

V̂0 − (1 + pqε1ε2)
)

Ur ((QV,0 − θ)Us + q (QU,0 −ω)Vs) .

Proof. From the Binet form of hyper-dual Horadam quaternions, we have

∆2
(

Q̂W,n+rQ̂W,n+s − Q̂W,nQ̂W,n+r+s

)
=
(

Aα∗ααn+r − Bβ∗ββn+r
) (

Aα∗ααn+s − Bβ∗ββn+s
)

−
(

Aα∗ααn − Bβ∗ββn
) (

Aα∗ααn+r+s − Bβ∗ββn+r+s
)

= A2 (α∗α)2 α2n+r+s − ABα∗β∗αβαn+rβn+s − ABβ∗α∗βααn+sβn+r

+ B2
(

β∗β
)2

β2n+r+s − A2 (α∗α)2 α2n+r+s + ABα∗β∗αβαnβn+r+s

+ ABβ∗α∗βαβnαn+r+s − B2
(

β∗β
)2

β2n+r+s

= AB (αβ)n αβ
(
α∗β∗

(
−αrβs + βr+s)+ β∗α∗

(
−αsβr + αr+s)) .

By using Lemma 56, we have

Q̂W,n+rQ̂W,n+s − Q̂W,nQ̂W,n+r+s

=
AB
∆2 (−q)n αβ (−α∗β∗βs (αr − βr) + β∗α∗αs (αr − βr))

=
AB
∆

(−q)n αβUr (β∗α∗αs − α∗β∗βs)

=
AB
∆

(−q)n αβUr (QV,0 − θ + ∆q (QU,0 −ω)) αs

− AB
∆

(−q)n αβUr (QV,0 − θ − ∆q (QU,0 −ω)) βs

= AB (−q)n
(

V̂0 − (1 + pqε1ε2)
)

Ur ((QV,0 − θ)Us + q (QU,0 −ω)Vs) .

2

From Theorem 57, we have the following results:

If we set r → −s, we get the following Catalan’s identity for hyper-dual Horadam
quaternions:

Q̂W,n−sQ̂W,n+s − Q̂2
W,n

= −AB (−q)n−s
(

V̂0 − (1 + pqε1ε2)
)

Us ((QV,0 − θ)Us + q (QU,0 −ω)Vs) .
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Here note that U−n =
−Un

(−q)n .

If we set s = −r = 1, we get the following Cassini’s identity for hyper-dual
Horadam quaternions:

Q̂W,n−1Q̂W,n+1 − Q̂2
W,n

= −AB (−q)n−1
(

V̂0 − (1 + pqε1ε2)
)
(QV,0 − θ + pq (QU,0 −ω)) . (5.2)

If we set s → m− n, and fix r = 1, we get the following d’Ocagne’s identity for
hyper-dual Horadam quaternions:

Q̂W,n+1Q̂W,m − Q̂W,nQ̂W,m+1

= AB (−q)n
(

V̂0 − (1 + pqε1ε2)
)
((QV,0 − θ)Um−n + q (QU,0 −ω)Vm−n) .

Next, we give some summation formulas for hyper-dual Horadam quaternions.

Theorem 58. For n ≥ 2, we have

n−1

∑
r=1

Q̂W,r =
Q̂W,n − Q̂W,1 + q

(
Q̂W,n−1 − Q̂W,0

)
p + q− 1

.

Proof. From the Binet form for hyper-dual Horadam quaternions, we have

n−1

∑
r=1

Q̂W,r =
n−1

∑
r=1

Aα∗ααr − Bβ∗ββr

α− β
=

Aα∗α

α− β

n−1

∑
r=1

αr −
Bβ∗β

α− β

n−1

∑
r=1

βr

=
Aα∗α

α− β

(
αn − α

α− 1

)
−

Bβ∗β

α− β

(
βn − β

β− 1

)
=

1
(α− β) (1− p− q)

(
−
(

Aα∗ααn − Bβ∗ββn
)

− q
(

Aα∗ααn−1 − Bβ∗ββn−1
)
+ q

(
Aα∗α− Bβ∗β

)
+
(

Aα∗αα− Bβ∗ββ
))

=
−Q̂W,n − qQ̂W,n−1 + qQ̂W,0 + Q̂W,1

1− p− q
.

2
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Theorem 59. For nonnegative integers n and r, we have

n

∑
m=0

(
n
m

)
qn−m pmQ̂W,m+r = Q̂W,2m+r.

Proof. From the Binet form for hyper-dual Horadam quaternions, we have

n

∑
m=0

(
n
m

)
qn−m pmQ̂W,m+r =

n

∑
m=0

(
n
m

)
qn−m pm

(
Aα∗ααm+r − Bβ∗ββm+r

α− β

)

=
Aα∗ααr

α− β

n

∑
m=0

(
n
m

)
qn−m (pα)m −

Bβ∗ββr

α− β

n

∑
m=0

(
n
m

)
qn−m (pβ)m

=
Aα∗ααr

α− β
(q + pα)n −

Bβ∗ββr

α− β
(q + pβ)n

=
Aα∗αα2n+r − Bβ∗ββ2n+r

α− β
= Q̂W,2m+r.

2

Finally, we give some matrix representations for hyper-dual Horadam quater-
nions and derive some properties of hyper-dual Horadam quaternions by using
matrix approach.

Let’s define the matrices U:=

[
p q
1 0

]
, Wn:=

[
Wn+2 qWn+1

Wn+1 qWn

]
. It is well-

known that for the Horadam numbers, we have the matrix equality:

W0Un = Wn. (5.3)

For details, see [84]. Now, let’s define the matrix MW,n :=

[
Q̂W,n+2 qQ̂W,n+1

Q̂W,n+1 qQ̂W,n

]
.

Considering the relation (5.3), we have the matrix equalities

MW,0Un = MW,n (5.4)

and

MU,0

(
W0Un−1

)
= MW,n, (5.5)

which can be proven by using induction.
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Theorem 60. For integers n, m ≥ 1, we have the following equalities:

Q̂W,m+n = Q̂W,m+1Un + qQ̂W,mUn−1, (5.6)

Q̂W,m+n = WnQ̂U,m+1 + qWn−1Q̂U,m. (5.7)

Proof. From the matrix equality MW,0Um+n−2 =
(
MW,0Um−1)Un−1, we have[

Q̂W,m+n qQ̂W,m+n−1

Q̂W,m+n−1 qQ̂W,m+n−2

]
=

[
Q̂W,m+1 qQ̂W,m

Q̂W,m qQ̂W,m−1

] [
Un qUn−1

Un−1 qUn−2

]
.

By equating the corresponding entries of both sides of the matrix equation, we
get the identity (5.6).

Now, consider the matrix equality MU,0
(
W0Um+n−2) = (W0Un−1)Um−1MU,0.

Then we have[
Q̂W,m+n+1 qQ̂W,m+n

Q̂W,m+n qQ̂W,m+n−1

]
=

[
Wn+1 qWn

Wn qWn−1

] [
Q̂U,m+1 qQ̂U,m

Q̂U,m qQ̂U,m−1

]
.

Similarly, by equating the corresponding entries of both sides of the above matrix
equation, we get the desired result in (5.7). 2

From the matrix equalities (5.4) and (5.5), one can obtain several results for the
hyper-dual Horadam quaternions. For example, if we take the determinant of the
both side of this matrix identity (5.4), then we get the Cassini’s identity in terms
of hyper-dual Horadam quaternions as

Q̂W,n−1Q̂W,n+1 − Q̂2
W,n = (−q)n−1

(
Q̂W,0Q̂W,2 − Q̂2

W,1

)
. (5.8)

Note that different from the identity (5.2), here the right hand side of the equation
(5.8) is expressed in terms of only the hyper-dual Horadam quaternions.



Conclusion and Perspectives

Along this thesis, we first gave some necessary definitions and mathematical pre-
liminaries, which are required. Then, for r a positive integer, we studied genereal-
ized bi-periodic r-Fibonacci sequence and defined the family of their companion
sequences named the bi-periodic r-Lucas sequence of type s, with s an integer
such that 1 ≤ s ≤ r. After that, we gave their algebraic properties.

Afterwards, we introduced the bi-periodic Horadam hybrid numbers and gave
the generating function, the Binet form, matrix representations and several basic
properties of these hybrid numbers such as Catalan’s identity, Cassini’s identity,
etc. In addition, we developed some relationships between the generalized bi-
periodic Fibonacci hybrid numbers and the generalized bi-periodic Lucas hybrid
numbers. Furthermore, we introduced r-Fibonacci hybrid polynomials and r-
Lucas hybrid polynomials as a generalization of the bivariate r-Fibonacci polyno-
mials and bivariate r-Lucas polynomials of type s. We derived several intresting
properties. As an application of matrix method, we have derived a generalization
of Honsberger formula. Finally, we defined quaternions whose components are
hyper-dual Horadam numbers. The main advantage of introducing hyper-dual
Horadam quaternions is that many hyper-dual numbers and celebrated numbers
such as Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers
can be deduced as particular cases of hyper-dual Horadam quaternions. We gave
the generating function and the Binet form for these quaternions. With the help of
the Binet form of hyper-dual Horadam quaternions, we derived many properties
of these quaternions, such as summation formulas, binomial sum identities, Va-
jda’s identity, Catalan’s identity, Cassini identity and d’Ocagne’s identity. Also,
by means of the matrix representation of hyper-dual Horadam quaternions, we
examined several identities for these quaternions. The algebra of quaternions is
noncommutative, whereas the algebra of hyper-dual numbers is commutative.

Therefore, it was interesting to study a special type of numbers involving both
quaternionic and hyper-dual units. For the interested readers, the results could
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be applied for higher order hyper-dual numbers which were given in [23].

Some challenging questions are part of interest, we put some perspectives which
can be studied in our future research works.

1. Extending the sequences (U(r)
n )n and (V(r,s)

n )n defined and studied in the
chapter 2 to the negative subscripts.

2. Defining a tri-periodic sequence and study further multi-periodic general
cases. For any nonzero real numbers a, b, c, the tri-periodic Fibonacci se-
quence (Sn)n is defined by

Sn =


aSn−1 +Sn−3, i f n ≡ 0 (mod 3),
bSn−1 +Sn−3, i f n ≡ 1 (mod 3),
cSn−1 +Sn−3, i f n ≡ 2 (mod 3),

for n ≥ 3, with initial conditions S0,S1,S2. We are intrested to estabilish
its linear recurrence relation, generating function, Binet forms and some
properties.

3. Estabilishing other linear recurrent sequences of higher order and define
further new numbers, using the matrix representation to study more alge-
braic properties.



Bibliography

[1] S. Abbad, H. Belbachir, and B. Benzaghou. Companion sequences associated
to the r-Fibonacci sequence: algebraic and combinatorial properties. Turkish
Journal of Mathematics, 43(3):1095–1114, 2019.

[2] N. R. Ait-Amrane and H. Belbachir. Bi-periodic r-Fibonacci sequence and
bi-periodic r-Lucas sequence of type s. Hacettepe Journal of Mathematics and
Statistics, vol:1–20, 2022. https://doi.org/10.15672/hujms.825908.

[3] N. R. Ait-Amrane, H. Belbachir, and E. Tan. On generalized Fibonacci and
Lucas hybrid polynomials. Turkish Journal of Mathematics, Accepted, 2022.
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[65] T. D. Şentürk, G. Bilgici, A. Daşdemir, and Z. Ünal. A Study on Horadam
Hybrid Numbers. Turkish Journal of Mathematics, 44(4):1212–1221, 2020.

[66] E. Sevgi. The generalized lucas hybrinomials with two variables. Communi-
cations Faculty of Sciences University of Ankara Series A1 Mathematics and Statis-
tics, 70(2):622–630.



Bibliography 99

[67] T. N. Shorey and R. Tijdeman. Exponential diophantine equations. Cambridge
University Press, 1986.

[68] L. Sigler. Fibonacci’s Liber Abaci: a translation into modern English of Leonardo
Pisano’s book of calculation. Springer Science & Business Media, 2003.

[69] J. Silvester. Fibonacci properties by matrix methods. The Mathematical
Gazette, 63(425):188–191, 1979.

[70] N. J. Sloane. On-line Encyclopedia of Integer Sequences. http. oeis. org, 2002.

[71] E. Study. Geometrie der dynamen, 1903.

[72] A. Szynal-Liana. The Horadam hybrid numbers. Discussiones Mathematicae-
General Algebra and Applications, 38(1):91–98, 2018.

[73] A. Szynal-Liana and I. Włoch. On Pell and Pell-Lucas Hybrid Numbers.
Commentationes Mathematicae, 58:11–17, 2018.

[74] A. Szynal-Liana and I. Włoch. The Fibonacci hybrid numbers. Utilitas Math-
ematica, 110:3–10, 2019.

[75] A. Szynal-Liana and I. Włoch. On Jacobsthal and Jacobsthal-Lucas Hybrid
Numbers. In Annales Mathematicae Silesianae, volume 33, pages 276–283. Sci-
endo, 2019.

[76] A. Szynal-Liana and I. Włoch. On Jacobsthal and Jacobsthal-Lucas hybrid
numbers. In Annales Mathematicae Silesianae, volume 33, pages 276–283, 2019.

[77] A. Szynal-Liana and I. Włoch. Introduction to Fibonacci and Lucas hybrino-
mials. Complex Variables and Elliptic Equations, 65(10):1736–1747, 2020.

[78] E. Tan. Some properties of the bi-periodic Horadam sequences. Notes Num-
ber Theory Discrete Math, 23(4):56–65, 2017.

[79] E. Tan and N. R. Ait-Amrane. On a new generalization of Fibonacci hybrid
numbers. Indian Journal of Pure and Applied Mathematics, Accepted, 2022.
http://arxiv.org/abs/arXiv:2006.09727.

[80] E. Tan and A. B. Ekin. On convergence properties of Fibonacci-like con-
ditional sequences. Communications Faculty of Sciences University of Ankara
Series A1 Mathematics and Statistics, 63(2):119–127, 2014.

http://arxiv.org/abs/arXiv:2006.09727


Bibliography 100

[81] E. Tan and A. B. Ekin. Bi-periodic incomplete Lucas sequences. Ars Combi-
natoria, 123:371–380, 2015.

[82] E. Tan and A. B. Ekin. Some identities on conditional sequences by using
matrix method. Miskolc Mathematical Notes, 18(1):469–477, 2017.
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