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ABSTRACT

In this thesis, entitled ” Bi-Periodic r-Fibonacci Sequences and Horadam Hyper-Dual
Numbers,” related to Number Theory and Enumerative Combinatorics, we intro-
duce new sequences, new numbers and polynomials and we study their algebraic
properties. This work is based on our four papers [2, 3, 4, 79]. Many powerful
methods are used to study these sequences, numbers and polynomials, like lin-
ear recurrence relations, generating functions, explicit formulas and Binet forms.
Our manuscript is structured as follows.

First, for a positive integer r, we study bi-periodic r-Fibonacci sequence, and
we define its family of companion sequences, each companion sequence is named
bi-periodic r-Lucas sequence of type s, with 1 < s < r. These sequences general-
ize the classical Fibonacci and Lucas sequences. This construction of the r-Lucas
sequences of type s is one of our most important results. Moreover, we estab-
lish the link between the bi-periodic r-Fibonacci sequence and its companion se-
quences. Furthermore, we give their properties as linear recurrence relations,

generating functions, explicit formulas and Binet forms [2].

Afterwards, we introduce the bi-periodic Horadam hybrid numbers and de-
duce particular cases: the bi-periodic Fibonacci hybrid numbers and the bi-
periodic Lucas hybrid numbers, respectively. We establish the generating func-
tions, the Binet forms and some basic properties of these new hybrid numbers
[79].

Also, we define a bivariate r-Fibonacci hybrid polynomials and bivariate -
Lucas hybrid polynomials of type s and we obtain some properties of these poly-
nomials [3].

Finally, we develop a new class of quaternions, called hyper-dual Horadam
quaternions, which are constructed from the quaternions whose components are
hyper-dual Horadam numbers. We investigate some basic properties of these
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quaternions [4].

Keywords: Bi-periodic r-Fibonacci sequence; companion sequence; bi-
periodic r-Lucas sequence; horadam numbers; hybrid numbers; quaternion num-
bers.



RESUME

Cette these, intitulée ” Suites r-Fibonacci bi-périodiques et nombres de Horadam hyper-
duaux ”, s'inscrit dans les domaines de la Théorie des Nombres et de la Combina-
toire Enumérative. Nous introduisons de nouvelles suites, de nouveaux nombres
et polyndmes et nous donnons leurs propriétés algebriques. Ce travail est basé
sur nos quatres articles [2, 3, 4, 79]. Plusieurs méthodes sont utilisées pour étudier
ces suites, nombres et polynomes, comme les relations de récurrences linéaires,
les fonctions génératrices, les formules explicites et les formes de Binet.

En premier lieu, pour un entier positif non nul r, nous étudions la suite r-
Fibonacci bi-périodique. L'un de nos principaux résultats est la définition de la
famille de suites compagnons associées ; chacune de ces suites est appelée suite
bi-périodique r-Lucas de type s, avec s un entier tel que 1 < s < r. Nous établis-
sons, également, le lien entre la suite r-Fibonacci bi-périodique avec chacune de
ses suites compagnons. En outre, on donne leurs propriétés comme : les relations
de récurrences linéaires, les fonctions génératrices, les formules explicites et les
formes de Binet [2].

Ensuite, nous introduisons les nombres bi-périodiques hybrides de Horadam,
desquels on déduit les nombres bi-périodiques hybrides de Fibonacci et les nom-
bres bi-périodiques hybrides de Lucas. Nous donnons la fonction génératrice, la
forme de Binet et quelques propriétés de base de ces nouveaux nombres hybrides
[79].

Nous définissons les polynomes r-Fibonacci hybrid bivariés et r-Lucas hybrid
bivariés de type s et nous obtenons quelques propriétés de ces polynomes [3].

Finalement, nous développons aussi une nouvelle classe des quaternions, ap-
pelée les quaternions de Horadam hyper-duaux, dont les composantes sont les
nombres de Horadam hyper-duaux et on donne quelques propriétés de base de

iv



ces nombres quaternions [4].

Mots clés : Suite r-Fibonacci bi-periodique ; suite compagnon ; suite -Lucas
bi-periodique ; nombres de Horadam ; nombres hybrid ; nombres quaternions.
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Introduction

This thesis, entitled ” Bi-Periodic r-Fibonacci Sequences and Horadam Hyper-Dual
Numbers " is related to Number Theory and Enumerative Combinatorics, we in-
troduce new sequences, new numbers, and polynomials, we investigate their al-
gebraic properties. [2, 3, 4, 79].

This thesis is structured into five chapters as follows:

In the first chapter, we give some definitions and results required to the com-
prehention of this thesis, such as the linear recurrence sequences of order m, the
k-periodic recurrence sequences, companion sequences, generating functions, ex-
plicit formulas, Binet forms. We define some well-known numbers as hybrid
numbers, quaternion numbers, dual and hyper-dual numbers and so on.

In the second chapter, for a positive integer r, we study bi-periodic r-Fibonacci
sequence and its family of companion sequences, bi-periodic r-Lucas sequence of
type s with 1 < s < r, which extend the classical Fibonacci and Lucas sequences.
Afterwards, we establish a link between the bi-periodic r-Fibonacci sequence and
its companion sequences. Furthermore, we give their properties as linear recur-

rence relations, generating functions, explicit formulas and Binet forms.

In the third chapter, we introduce the bi-periodic Horadam hybrid numbers
and deduce particular cases; the bi-periodic Fibonacci hybrid numbers and the bi-
periodic Lucas hybrid numbers. We establish a relation between the bi-periodic
Fibonacci hybrid numbers and the bi-periodic Lucas hybrid numbers then we
give the generating function, the Binet form and some basic properties of these
new hybrid numbers.

In the fourth chapter, we define a new generalization of Fibonacci and Lucas
hybrid polynomials, it is called bivariate r-Fibonacci hybrid polynomials and bi-
variate r-Lucas hybrid polynomials of type s. We investigate some properties of
these polynomials.

In the fifth, we develop a new class of quaternions, called hyper-dual Ho-

1



Introduction 2

radam quaternions, they are constructed from the quaternions whose compo-
nents are hyper-dual Horadam numbers. The hyper-dual numbers extend the
dual numbers as the quaternions extend the complexe numbers. We investigate
some basic properties of these quaternions.



CHAPTER

PRELIMINARIES

In this chapter, we give some notions and definitions that will be useful for un-
derstanding the present thesis. We mention the definitions of linear recurrence
sequences, multi-periodic sequences as k-periodic sequences, and the particular
case the bi-periodic sequences. Also, we give some algebraic properties such as,
characteristic polynomial, companion matrix, generating function, explicit for-
mula. We give the definitions of hybrid numbers, quaternion numbers, dual
and hyper-dual numbers. Moreover, we mention some well-known sequences.
Throughout this thesis, K denotes the field R or C and K|x] the ring of polyno-
mials in one variable x with coefficients in K.

1.1 Recurrence relation

A recurrence relation is an equation that recursively defines a sequence or multi-
dimentional array of values, once one or more initial terms of the same function
are given, each further term of the sequence or array is defined as a function of the
preceding terms of the same function. More precisely, in the case where only the
immediately preceding element is involved, a recurrence relation has the form

Uy = gb(n/unfl)/ n=>1, (1.1)
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where
P NxX—X, (1.2)

is a function, where X is a set to which the elements of the sequences must belong.
For any up € X, this defines a unique sequence with 1y as its first element called
the initial condition. It is easy to modify the definition for getting sequences
starting from the term of index 1 or higher. This defines the recurrence relation of
tirst order.

The recurrence relation of order m has the form
Uy = (P(n, Uy, Upy—2,... /ul’lfm)/ n 2 m, (13)

where
$:INx X" =X,

is a function that involves m consecutive elements of the sequence. In this case,
m initial conditions are needed for defining such sequence.

1.2 Linear recurrence sequences

In the particular case when ¢ is a linear function, we deduce the following defi-
nition.

Definition 1. A linear recurrence sequence (uy, ), with constant coefficients ay, . .., ay €
K and ay, # 0 is a sequence which satisfies the following relation

Uy = a1 + AUy o+ - - - + Amly—m, n>m. (1.4)

This sequence is defined with m initial conditions uy, ..., u,_1 and the integer m
is called the order of the recurrence sequence.

Example 1. The recurrence of order two satisfied by the Fibonacci numbers is the canoni-
cal example of a linear recurrence relation with constant coefficients. The Fibonacci num-
bers (F,)n was first described in connection with computing the number of descendants
of pair of rabbits in the book Liber Abaci in 1202 [68]. This sequence is probably one
of the well-known recurrent sequences and it is defined by the second order recurrence,
firstly used by Albert Girard in 1634 [25]. The Fibonacci sequence is defined using the
recurrence

F,=F,_1+F,_», n>2, (1.5)
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with initial conditions Fy = 0,F; = 1. We obtain the sequence of Fibonacci numbers
which begins 0,1;1,2,3,5,8,13,21,34,55,89, .. ..

1.3 Characteristic polynomial

The characteristic polynomial associated to the sequence (1.4) is the polynomial
defined by

P(x) = x™ —ax™ ! —apx™ % — ... —a,, € K[x]. (1.6)

1.4 Characteristic equation

The characteristic equation of the sequence (1.4) is the equation obtained by
equating its characteristic polynomial (1.6) to zero.

2

P(x) = 2™ —apx™ ! —apx™ % — ... —a,, = 0. (1.7)

When P(x) is a split polynomial over K[x| then we can write

b
P(x) =] J(x —a;)" € K[x], (1.8)

i=1
where a; fori = 1, ..., H with multiplicity r; are the distinct complex roots of the

b
polynomial P(x) and ) r; = m.
i=1

Example 2. The characteristic equation of the Fibonacci sequence (1.5) is
x> —x—1=0, (1.9)

1++/5

2
"golden ratio”.

where & =

and B = 1-

5 are its roots. The positive root w is known as
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1.5 Companion matrix

The companion matrix of the polynomial (1.6) associated to the sequence (1.4) is

defined as
0 1 0 0
0 0 1 0
M:=] : : SV (1.10)
0 0 o --- 1
Am Am-1 OGm-2 -+ M

in which the first superdiagonal consists entirely of ones and all other elements
above the last row are zeros. The characteristic equation of M is det(M — xI) =0,
where [ is the identity matrix.

In classical linear algebra, the eigenvalues of a matrix are sometimes defined as
the roots of the corresponding characteristic polynomial. An algorithm to com-
pute the roots of a polynomial by computing the eigenvalues of the correspond-
ing companion matrix turns the tables on the usual definition. When the com-
putation of the n'" power of the companion matrix (1.10) is not difficult, we can
determine the n'" term u,, of the sequence (uy )y, as the following method.

In [69], Silvester shows that a number of the properties of the Fibonacci sequence
can be derived from a matrix representation. For more details, we refer to [41].
Just as Silvester derived many interesting properties of Fibonacci numbers from
a matrix representation.

Every linear recurrence sequence has a matrix formulation, so the linear relation
(1.4) induces

Up—m+2 0 0 1 - 0 Upy—m+1
: =1 : : e : , (1.11)
W1 o 0 0 -1 Uy 2

Uy Om Am—1 Am-—2 -+ a1 Uy—1
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for n > m, which is equivalent to:
Uy 0 1 0 0 Uy,
Uy i2 0 0 1 0 Ui
: = : : : , (1.12)
Uptm—1 0 0 0 1 Upt+m—2
Upn+m Om Am—1 Am—2 a Up+m—1
for n > 0. By an inductive argument, we get
Uy 0 1 0 Up
Uy 0 0 1 0 U
= : : (1.13)
Upim—2 0 0 0 1 Uy D
Uptm—1 Am Am—1 Am-2 a Upy—1

for n > 0. Thus, the n'" term u,, of the sequence (uy), is given by

Uy

Up41

Uptm—2
Upt+m—1
0 1
0 0

0 0

Am Am—1 Am-2

for n > 0, with initial conditions ug, 1y, ..., U,_1.

1.6 Generating function

A generating function is a way of encoding an infinite sequence of numbers (u;),
by treating them as coefficients of formal power series. This serie is called the gen-
erating function of the sequence. The generating function provide a powerful tool

for solving linear recurrence relation with constant coefficients. Generating func-
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tions were introduced for the first time by Abraham de Moivre in 1730 in order
to solve the general linear recurrence problem [45]. Generating functions are one
of the most suprising and useful inventions in Discrete mathematics. Roughly
speaking, generating functions transform problems about sequences into prob-
lems about functions. This is great because we have piles of mathematical ma-
chinery for manipulating functions. The generationg function of the infinite se-
quence (uy,), is the power series

Y unx™.

n>0

Example 3. The generating function of the Fibonacci sequence (1.5) is

x
L (1.14)
ngo ! 1—x—x2

The technics calculation is given in [49].

1.7 Binet form

We remind the reader of the famous Binet form, also known as the "de Moivre
formula", that can be used to calculate Fibonacci numbers. Binet form is used to
obtain the n'* term of a sequence, using the roots of the characteristic equation.
This form can be employed to derive a myriad of identities. Fibonacci numbers
have a closed form expression for the computation of the n*" Fibonacci number
without appealing to its recurrence. It is called Binet form in honor of Jacques
Binet, who discovered this form in 1843 [12, 25].

A fundamental result in the theory of recurrence sequences asserts that:

Theorem 2. Let (un )y be a linear recurrence sequence whose characteristic polynomial
P(x) splits as

b
P(x) = (x —ap)" ... (x —ap)" = J(x — o))",
i=1
where w;, for i = 1,..., 4 with multiplicity r;, are the distinct complex roots of the poly-

b
nomial P(x) and Y r; = m. Then, there exist uniquely determined non-zero polynomials
i=1
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Py,..., Py € Q(aj)[x] forj=1,...,b, with degP; < r; — 1, such that
un = Pr(n)aj + Py(n)ay + + Py(n)ay, n > 0. (1.15)

The proof of this result can be found in [67], Theorem C.1.
Example 4. Binet form of the Fibonacci sequence (1.5) is

lxn—‘B”

a—pB "’

where o and P are the roots of the characteristic equation (1.9).

F, = (1.16)

1.8 Companion sequence

The companion sequence of the Fibonacci sequence (1.5) is the well-known Lucas
sequence. The latter was studied by Edouard Lucas (1842-1891), which satisfies
the same recurrence relation as the Fibonacci sequence

Ly=L, 1+Ly o, n>2, (1.17)

with initial conditions Ly = 2, L; = 1. We obtain the sequence of Lucas numbers
which begins 2,1;3,4,7,11,18,29,47,76,123, . ...
The Lucas sequence (1.17) has a variety of relationships with the Fibonacci se-
quence (1.5), we cite one of them

L, =F,_1+ F.11, n>1 (1.18)
Binet form of the Lucas sequence is

n=ua"+B", (1.19)

where «, B are defined in (1.9).
The generating function of the Lucas sequence (1.17) is

2—x

n>0

Fibonacci and Lucas sequences are well-known sequences among integer se-
quences. These sequences and their generalizations have many intresting prop-
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erties and applications to almost every field of science and art.

1.9 Binomial coefficient

Binomial coefficient can be interpreted as the number of distinct ways to choose
k elements from a set of 1 elements. They are also involved in the expansion of
the expression

n
(1+x)"=Y (") x*, n>0, (1.21)
k=0 k
where |
n n
= < k<
(k) Ki(n— k) Osksn,

with the convention

(”):o, if k<0 or k>n

1.10 Multinomial coefficients

Multinomial coefficients have a direct combinatorial interpretation, as the num-
ber of ways of depositing n distinct objects into m distinct bins, with k; objects
in the first bin, k; objects in the second bin, and so on. Multinomial coefficients
(kl,k;---,k ) occur in the expansion of the polynomial (x7 + xp + -+ -+ x,,)" as fol-

m

lows:
n ki k k
(1404 txm) = Y ( )xllxzz...xm,
P S S ki,ko, ... km p
where
n n!
= ki+ky+ - +ky =n,
(kl,kz,...,km> Klkgl . ! L K =
with

" =0 if ki+k+---+ky#n or k<0, i=1,...,m.
kl/kZ/ /km
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Also, multinomial coefficients can be expressed as binomial coefficients

n _(n\ (n—k n—ky—ky—--—kyu_1
kl/kZI e /km B kl kz km

and they satisfy the following recurrence relation

n - n—1 n n—1
ki,ky, ... ki N ki —1,ky, ... ki ki,ko —1,..., ki

ki ko ook —1)

We can also use the notation for the multinomial coefficients, given in [8], for all
ki,ky,...,kyyand k € Z

K |
L) mmr w Rtk tke=k
K

ki,ko,... )
172 0 otherwise .

1.11 Explicit formula

In the following theorem, Belbachir and Bencherif [9] gave a formula expressing
general term of a linear recurrence sequence.

Theorem 3. Let (uy)n>—m be the sequence of elements over an unitary ring A, defined

by
u_j = 0 1<;j<m-1,
u =1,
Uy =g+ a2+ -+ aply—m n>1.

Then for all integers n > —m,

_ k1+k2+"-+km) ki ks
U, =

( - ‘ aq'ay ...aﬁ;". (1.22)
ky+2ky+ -k =n 1827w B

1.12 Bivariate polynomials

This section is devoted to recall different well-known sequences of bivariate poly-
nomials. Let (Un(x,y))n and (Vu(x,y))n be the sequences of polynomials with
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two variables x and y with real coefficients defined by the following second or-
der recurrence relations:

Un(x,y) = h(x)Upa(x,y) +k(y)Un—2(x,y), 1 =2, (1.23)

Uo(x,y) =0,Ur(x,y) =1

and
Va(x,y) = h(x)Vioa(x,y) + k(y) Va2(x,y),  n=2, (1.24)

Vo(x,y) =2, Vi(x,y) = h(x),

where h(x),k(y) are polynomials with indeterminates x,y and real coefficients.
The polynomials U, (x,y) and V;,(x,y) are called generalized Fibonacci and Lu-
cas bivariate polynomials, respectively. Many classical sequences, known in the
literature, are derived from the sequences (U, (x,y))n and (Vi,(x,y)) .

e For h(x) = k(y) = 1, we obtain the Fibonacci and Lucas sequences [49, 62]:
U, (x,y):=F, and V,,(x,y):=L, defined by

Fn=F, 1+ F, 2, n=2,
FF=0F=1
and
Ly =Ly 1+ Ly, n=>2,
Lo=2,L1 =1.

e For h(x) =2 and k(y) = 1, we obtain the Pell and Pell-Lucas numbers [48]:
Un(x,y):=P, and V;(x, y):=Q, defined by

Py =2P, 1+ Py, n=>2,
Ph=0P =1
and
Qn = ZQn—l + Qn—Zr n>2,
Qo =201 =2

e Forh(x) =2and k(y) = q, we obtain the g-Pell numbers [14]: U, (x, y):=P;»
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defined by
Pq,n = 2Pq,n71 + qpq,n—Zr n>2,

Pyo=0,P = 1.
e For h(x) = p and k(y) = g, we obtain the generalized Fibonacci and Lucas

sequences also, called the Lucas sequences [53]: U, (x,y):=Ux(p,q) = Uy
and V,(x,y):=Vu(p,q) = Vy defined by

U, = pU,—1+qU, >, n=2,
Up=0U; =1
and
Vi = PVn—l + an—Z/ n>2,
Vo = 2, V1 =Pp.
e For h(x) = x and k(y) = 1, we obtain the Fibonacci polynomials also,

called Catalan polynomials and Lucas polynomials [48]: U,(x,y):=F,(x)
and V,(x,y):=Ly(x) defined by

Fn(x) = an_l(X) + Fn_z(x), n>2,

Fo(x) = O,Fl(x) =1

and
Ly(x) = xL,—1(x) + Ly—2(x), n>2,

Lo(x) =2,L1(x) = x.

e For h(x) = 1 and k(y) = y, we obtain the Jacobsthal polynomials [49]:
Uy, (x,y):=Jx(y) defined by

Jn(¥) = Jn-1(y) +yJu—2(y), n>2,

Jo(y) =0,1(y) =1,

also, we have the Jacobsthal polynomials defined by Horadam in [38] de-
tined by

Jn(y) = Ju-1(y) +2yJu—2(y), n>2,
Jo(y) =0, i(y) =1
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and

Jn(y) = Jn-1(y) +2yJu—2(y), n>2,

Jo(y) =2,1(y) =1,
the Jacobsthal-Lucas polynomials [16].

e For h(x) = 2x and k(y) = 1, we obtain the polynomials studied by Byrd
[13]: Un(x, y):=¢u(x) defined by

¢n(x) = 2x¢n—1(x> + ¢n—2(x)/ n>2,

Po(x) = 0,¢1(x) = 1.

e The case k(y) = 1 and arbitrary & has been studied by A. Nalli and P.
Haukkanen [54].

e For h(x) = px and k(y) = g, we obtain the Horadam polynomials sequence
[39]: U, (x,y):=Wy(x) defined by

Wi (x) = pxW,_1(x) + qW,—2(x), n>2,

Wo(x) = W(), Wl(x) = Wlx,

with the arbitrary values Wy, Wj.

1.13 k-periodic sequences

Generalizations of the Fibonacci numbers have been extensively studied. To gen-
eralize the Fibonacci sequence, some authors [34, 40, 44, 60, 91] have altered
the starting values, while others [7, 27, 50, 51, 59, 64] have preserved the first
two terms of the sequence but changed the recurrence relation. We note that
k-periodic sequences, as multi-periodic sequences, satisfy a linear recurrence re-
lation when considered modulo k, even though these sequences themselves do
not. Then we employ this recurrence relation to determine the generating func-
tions and Binet forms.

This generalization has its own Binet form and satisfies identities that are analo-
gous to the identities satisfied by the classical Fibonacci sequence. Now, we intro-
duce a further generalization of the Fibonacci sequence; we call it the k-periodic
Fibonacci sequence [26]. This new generalization is defined using a non-linear
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recurrence relation that depends on k real parameter and is an extension of the
generalized Fibonacci sequence.

The non-linear recurrence relation is given by linear recurrence relation with non-
constant coefficients.

Definition 4. For any k-tuple (ay,az,...,ax) € 7K, we define recursively the k-
periodic Fibonacci sequence, denoted <t,(1”1’“2""’“k)> = (tn)n by
n

( a1ty 1 +tyuo,  if n=2(mod k),
apty 1 +ty—o, if n=23(modk),

ax_1tn—1+th—2, if n=0 (mod k),
\ dktp—1+th—2, if n=1(mod k),

for n > 2 with initial conditions ty = 0,t; = 1.

This new generalization is in fact a family of sequences where each new combi-
nation of a1, ay, . .., ay produces a new sequence.

* Whena; = ap = --- = ax = 1, we have the classical Fibonacci sequence
[49].

e Whena; =a; = --- = ax = 2, we get the Pell numbers [48].

* Whena; = a, = --- = ax = p, for some positive integer p, we get the

p-Fibonacci numbers [29], also known as generalized Fibonacci numbers.

* When a; = a,a; = b, if k = 2 we obtain the bi-periodic Fibonacci sequence
[27], that will be seen in Section 1.14.

Example 5. The sequence descriptions that follow give reference numbers found in
Sloane’s On-Line Encyclopedia of Integer Sequences [70].
When k = 3, for:

* (ay,ap,a3) = (1,0,1), we obtain the sequence A092550.
* (ay,ap,a3) = (2,1,1), we obtain the sequence A179238.

* (ay,ap,a3) = (1,—1,2), we obtain the sequence A011655.

When k = 4, for:


http://www.oeis.org/Anum=A092550
http://www.oeis.org/Anum=A179238
http://www.oeis.org/Anum=A011655
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e (ay,ap,a3,a4) = (2,1,2,1), we get the sequence A048788.

* (ay,ap,a3,a4) = (1,2,1,2), we get the sequence A002530.

In order to describe the terms of the sequence (t,), explicitly using the general-
ization of Binet form, we have first show that for some constant 1, the sequence
(tn)n satisfies the following recurrence relation

bt = Y-tk + (D ooy 0<j<k—1, (1.25)

for m > 2k. For the interested readers and more details we refer to [26].

For clarity, we record some remarks. Since there are currently several types of
generalizations of the Fibonacci and Lucas sequences, it is very difficult for any-
one to know exactly what type of sequence an author really means. We think
that this notation is quite unclear as there are already many types of generalized
k-Fibonacci sequences. Many generalizations of the Fibonacci sequence have ap-
peared in the literature. Probably the most well-known generalization is the k-
generalized Fibonacci sequence (F(k),)n, n > —(k —2) (also known as the multi-
bonacci, the k-bonacci, the k-fold Fibonacci or k" order Fibonacci), satisfying

Fk)n =F(K)n-1+F(K)n2+- +F(K)u—1

with initial conditions %(k)_]- =0forj=0,1,2,...,k—2and §(k); = 1. Thus,
we draw the reader’s attention to these important different notations.

1.14 Bi-periodic Fibonacci and Lucas sequences

Edson and Yayenie [27] introduced the bi-periodic Fibonacci sequence using a
non-linear recurrence relation depending on two real parameters which is a par-
ticular case of (t,), for k = 2 as it is defined below.

Definition 5. For any two nonzero real numbers a and b, the bi-periodic Fibonacci se-
quence (pn)y is defined by

) apu_1+pu—2, if n=0(mod 2),
P bpy—1+ pn—2, if n=1(mod 2),

for n > 2, with initial conditions pg = 0, p1 = 1.


http://www.oeis.org/Anum=A048788
http://www.oeis.org/Anum=A002530
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For particular values of 4, b we deduce some well-known sequences in Table 1.1.

a=b=11011,23,58,... Fibonacci sequence \
a=b=210,1;2,512,29,70,... Pell sequence |
a=b=310,1,3,10,33,109,... 3-Fibonacci sequence \

a=b=p|0,Lpp*+1,p>+2pp*+3p*>+1,
p°+4p> +3p,... p-Fibonacci sequence [29] |

Table 1.1: Classical sequences.

Bilgici [11] defined the generalization of Lucas sequence similar to the bi-periodic
Fibonacci sequence using a non-linear recurrence relation depending on two
nonzero real numbers as follows:

Definition 6. For any two nonzero real numbers a and b, the bi-periodic Lucas sequence

(qn)n is defined by

_ ) banatgno, if n=0 (mod 2),
e aqn-1+qn—, if n=1(mod 2),

for n > 2, with initial conditions qo = 2,41 = a.
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For particular values of 4, b we deduce some well-known companion sequences
in Table 1.2.

a=b=1|21,3,4,7,11,18,29, ... Lucas sequence \
a=b=2|2,2,6,14,34,82,198,478, ... Pell-Lucas sequence \
a=b=3|2,311,36,119,393,1298,4287, ... 3-Lucas sequence \

a=b=p | 2,pp*+2,p°+3p,p* +4p* +2,
p> +5p° +5p, p° + 6p* + 9p* +2,... | p-Lucas sequence [28] ‘

Table 1.2: Classical companion sequences.

Binet forms of the sequences (p,)» and (g,), are given by

qb(n+1) <(xn _ an)
= . (1.26)
pi’l (ab) ij N — IB
and
a6 (n+1)
In = 7 @B, (1.27)
(gb) LTJ
ab + v/ a?b? + 4ab ab — \/a?b? + 4ab ,
here x = 5 and g = 5 are roots of the polynomial

x? — abx — ab, with |.] denotes the floor function and & (n) = n —2 | %] is the
parity function, i.e., ¢ (1) = 0, when n is even and ¢ (1) = 1 when 7 is odd.

The generating functions of the bi-periodic sequences (py), and (g, ), are

Y pust = x +ax? — x°
nZOpn 1—(ab+2)x2 +x*
and
y xn_2+ax—(ab+2)x2—|—ax3
n>0% 1 —(ab+2)x2 + x*

The Fibonacci conditional sequence is a further generalization introduced by
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Sahin [63], it is defined as follows:

Definition 7. For any nonzero numbers a, b, c and d, the bi-periodic Fibonacci sequence

(hn)n is defined by

B — ahy,_1+chy—p, if n=0 (mod 2),
"\ bhy1+dhy, o, if n=1 (mod 2),

for n > 2, with initial conditions hg = 0,h; = 1.
e Ifwetakea = b = p, c = d = q we get the generalized Fibonacci sequence
(Un)n = (Un(p,q))n [53]-
e Ifwetakea = b =1, c = d = 2 we get the Jacobsthal sequence (J,,), [37, 47].

e Ifwetakea = b = p,c = d = 2 we get the p-Jacobsthal sequence (],,),, [90].

Taking initial conditions hp = 2 and h; = a, authors gave some properties of the
Lucas conditional sequence in [82] which is defined as follows:

Definition 8. For any nonzero numbers a,b,c and d, the bi-periodic Lucas sequence
(Tn)n is defined by

o bt,_ 1 +dt,—o, if n=0 (mod?2),
" ateq + cTus, if n=1(mod 2),

for n > 2, with initial conditions Ty = 2,171 = a.

It should be noted that more results related to these sequences can be found in [11,
26, 58, 63, 80, 81, 82, 92]. In literature, these sequences are called the generalized

Fibonacci sequences. Thus, we ask the reader to be careful and pay attention to
generalizations.

e If wetakea = b = p, c = d = q we get the generalized Lucas sequence
(Vi)n = (Vau(p,9))n [53]-

e Ifwetakea = b =1, c = d = 2 we get the Jacobsthal-Lucas sequence (j )
[37, 47].

e If wetakea = b = p, c = d = 2 we get the p-Jacobsthal-Lucas sequence
(jn)n [90].
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1.15 Horadam sequences

The main advantage of introducing the Horadam sequence is that many
celebrated sequences such as Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal,
Jacobsthal-Lucas sequences can be deduced as particular cases of the Horadam
sequence, either for the bi-periodic cases. The Horadam sequence (W), is de-
tined by Horadam [36] as

Wi = pWy1+qWy—2, n=>2, (1.28)

with initial conditions Wy, W; where Wy, Wy, p,q are arbitrary integers. It has
considered a generalization of the classical Fibonacci and Lucas sequences.

In particular,

o If we take Wy = 0, W; = 1, we obtain the generalized Fibonacci sequence

(Un)n:=(Un(p,q))n [53].

o If we take Wy = 2,W; = p, we obtain the generalized Lucas sequence
(Va)ui=(Va(p, q))n [53]-

o If we take g = 1,Wy = 0,W; = 1, we obtain the generalized Fibonacci
sequence (U ), = (Un(p,1))n [29].

o If wetake g =1, Wy = 2, W; = p, we obtain the generalized Lucas sequence
(Vn)n = (Vu(p, 1)) [28].

e [fwetake p = 1,9 = 2and Wy = 0,W; = 1, we obtain the Jacobsthal
sequence (J,)n [37, 47].

e Ifwetakep =1, =2and Wy = 2, W; = 1, we obtain the Jacobsthal-Lucas
sequence (ju)n [37, 47].

e Ifwetake p, g =2and Wy = 0, W; = 1, we obtain the p-Jacobsthal sequence
(Ju)n [90].

o If we take p, g = 2 and Wy = 2, W; = 1, we obtain the p-Jacobsthal-Lucas
sequence (j, )y [90].

The Binet form of the Horadam sequence is

_ Aa" — Bp"

W
n Oé—ﬁ 7
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where
A= W1 — W()‘B, and B := W1 — W()Dé.
Here ¢ = PV Vzpzﬂq) and f = w are the roots of the characteristic poly-

nomial x? — px — g.
The generating function of the Horadam sequence (W), is

1.16 Bi-periodic Horadam sequences

Similar to the Fibonacci and Lucas sequences that were generalized as the Ho-
radam sequence, the bi-periodic Fibonacci and Lucas sequences were general-
ized as the bi-periodic Horadam sequence (J,), which is defined first in [27] as
follows:

Definition 9. For two nonzero real numbers a and b, the bi-periodic Horadam sequence
(On)n is defined by
_ 2, 1 = 2
5, = ady_1 + 0y_2, zf n =0 (mod 2), (1.29)
béy—1+ 042, if n=1(mod 2),

for n > 2 with arbitrary initial conditions &y, 61 where &y, 1 are nonzero values.

Motivating by Horadam'’s results in [36], Tan [78] gave some basic properties of
the bi-periodic Horadam sequence and some identities for the bi-periodic Lucas
sequences. Some sequences in the literature can be stated in terms of the sequence

(6n)n as:

e If we take 6y = 0, 5 = 1, in the sequence (1.29), we get the bi-periodic
Fibonacci sequence (pn)n [27].

e If we take 9 = 2, 61 = b, in the sequence (1.29), we get the bi-periodic
Lucas sequence () [82] with the case of c = d = 1.

e Ifwetakea = b = p and §p = 0,47 = 1, in the sequence (1.29), we get the
generalized Fibonacci sequence (4,), = (Ux(p,1))x [29].

e Ifwetakea = b = p and 6y = 2,41 = p, in the sequence (1.29), we get the
generalized Lucas sequence (V,,), = (Vu(p,1))x [28].
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The Binet form of the bi-periodic Horadam sequence is

qb(n+1)
on = — (Aa" — BB"), (1.30)
(ab) 2]
where g
01— 56 01— 26
A="1"30  and  Bi=t a0 (1.31)
«—p a—p
ab + v/ a?b* + 4abc ab — v/ a?b? + 4abc
Here o« = and g = > are the roots of the
polynomial x> — abx — abc.
The generating function of the bi-periodic Horadam sequence (9, ) is
. (1= (ab+1)x*>+bx%) 6o+ x (1 +ax —x?) &
Z Opx" = 2 4 )
=0 1—(ab+2)x*>+x
Another generalization of bi-periodic Horadam sequence defined by
0, i— AWy 1 + cwy_2, zf n =0 (mod 2), (132)
bw, 1+ cw,_p, if n=1(mod 2),

for n > 2 with arbitrary initial conditions wg, w; where wy, wy, a, b, c are nonzero
real numbers is given in [84]. This sequence will be generalized in Chapter 3.

o Ifwetakea =b = p,c = gand wyp = 0, w; = 1 in the sequence (1.29), we
get the generalized Fibonacci sequence (Uy,), = (Ux(p,q))n [53].

o Ifwetakea =b = p,c = gand wp = 2, w; = 1in the sequence (1.29), we
get the generalized Lucas sequence (Vy,)n = (Vi(p,9))n [53].

o Ifwetakea =b =1,c =2and wyp = 0,w; = 1 in the sequence (1.29), we
get the Jacobsthal sequence (J,)x [37, 47].

o Ifwetakea =b=1,c =2and wyp = 2,w; = 1in the sequence (1.29), we
get the Jacobsthal-Lucas sequence (j, ), [37, 47].

o Ifwetakea =b = p,c = 2and wyp = 0,w; = 1in the sequence (1.29), we
get the p-Jacobsthal sequence (Jy,), [90].

e Ifwetakea =b = p,c =2 and wy = 2, w; = 1 in the sequence (1.29), we
get the p-Jacobsthal-Lucas sequence (j, ), [90].
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These sequences are studied by the French mathematician Edouard Lucas (1842-
1891) in [53].

1.17 Quaternion numbers

Quaternions were defined by Hamilton (1866) as a generalization of complex
numbers. Hamilton introduced a quaternion in the form q = a + bi 4 ¢j + dk
where 4, b, ¢, d are real numbers or coefficients. The real quaternion algebra is the
first noncommutative division algebra to be discovered and defined by

H={a+bi+cj+dk|abcdecR},
where the complex numbers i, j and k satisfy the following algebraic rules
?=pP =K =ik=—-1ij=—ji=k
which imply
ij=—ji=k, jk=—kj =1, ki=—ik=j
and satisfy, for all real number x
ix = xi, jx = xj, kx = xk.

The conjugate of the quaternion g is defined by § = a — bi — ¢j — dk. Quater-
nions form a 4-dimensional vector space over real numbers with basis {1,1,j,k},
which is an associative but noncommutative algebra over IR. Noncommutative
algebra have broad applications in many areas, especially in physics and mathe-
matics. Hamilton’s book [33] serves as an excellent reference to the properties of
quaternions.

1.18 Dual numbers

Dual numbers were invented by Clifford [20] as an extension of the real numbers.
The set of dual numbers is defined as

D={d=a+a"|a,a" € R}, (1.33)
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where ¢ is the dual number with ¢ # 0,¢2 = 0. Dual numbers have many in-
teresting applications on mechanics, robotics, computer graphics, geometry and
physics. The addition and multiplication of two dual numbers

di =a+ae and dy =b+b*e
are defined as
di+dy=(a+b)+ (a" +b")e and dydy = ab+ (ab* +a*b)e,

respectively.

1.19 Dual quaternion numbers

Similar to the quaternions, dual quaternions are defined by taking dual numbers
instead of real numbers as a coefficient. A dual quaternion g is defined as

ﬁ: do —|—d1i+d2j+d3k,

where dy, dq,d»,d3 € D, and the elements i, j, k satisfy the quaternion multiplica-

tion rule
2= =K =ik= -1 (1.34)

Since any dual quaternion can be written as a dual number with a real quaternion
coefficient, it is constructed from 8 real parameters. For the detailed information
related to these numbers and their applications, we refer to [20, 33, 71].

1.20 Hyper-dual numbers

Hyper-dual numbers can be seen as an extension of dual numbers in the same
way that quaternions are an extension of complex numbers. To get an advantage
on exact calculations of second (or higher) derivatives, Fike and Alanso [30, 31]
introduced the hyper-dual numbers. The set of hyper-dual numbers is defined
by

HD = {D:ﬂo + a1€81 + axer + aszeq1&r | ag,ai1,4az,a3 € ]R} , (1.35)
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where the dual numbers ¢ and ¢, satisfy the following rules

e=6=0, e #e, &#0, ©#0, ee=ece#O. (1.36)

Hyper-dual numbers form a 4-dimensional vector space over real numbers with
basis {1,¢€1,¢€2,€1€2} .
Also, a hyper-dual number D can be written as

D =d+d*e,

where
d=ay+ ae, d* =ay,+aze €D

and

g1 = ¢, gy = &,

Let D1 = d; +dje* and D, = d, + d3e* be any two hyper-dual numbers.
The addition and the multiplication of hyper-dual numbers are defined as

Dy + Dy = (d1 +dy) + (d] +d5)e”*

and
D1D; = dqdy + (dld; + dfd2)€*,

respectively. For applications of hyper-dual numbers, see [21, 22, 23].

1.21 Hybrid numbers

The hybrid numbers is a new noncommutative numbers introduced by Ozdemir
[57] as a generalization of complex, dual and hyperbolic numbers. The geometry
of this new numbers can be seen as a generalization of the geometries of the
Euclidean, Lorentzian and Galilean, respectively. The set of hybrid numbers is
defined as

K={a+bi+ce+dh|ab,cdecR} (1.37)

where the complex i, the dual € and the hyperbolic  units satisfy the following
rules
?=—1, =01 =1,ih=—hi=¢e+i.



1.21. Hybrid numbers 26

The addition, substraction and multiplication of two hybrid numbers
ki =a1+bji+cie+dh and ky = a + byi + cre + doh,
are defined as
kitky = (a1 xap)+ (byxb)i+ (c1tc)e+ (dy+dy)h
and

kik, = ajap —biby +didy + bicy + c1br
+ (a1by + byay + bipdy — d1by) i
+ (a1cp + c1ap + bidy — diby + dicy — c1dy) €
+ (a1dy + draz + c1bp — byco) h.

The multiplication of a hybrid number k = a 4+ bi + ce + dh by a real scalar s is
defined as
sk = sa + sbi + sce + sdh

and the norm of a hybrid number k is defined by
k]l == /1€ (K],

where C (k) := kk is the character of the hybrid number k and k := a — bi — ce — dh
is the conjugate of k. Ozdemir’s paper [57] serves as an excellent reference to the
algebraic and geometric properties of hybrid numbers.



CHAPTER

BI-PERIODIC 7-FIBONACCI SE-
QUENCE AND r-LUCAS SE-
QUENCE OF TYPE s [2]

In the present chapter, for a positive integer r, we study bi-periodic r-Fibonacci
sequence and its family of companion sequences, bi-periodic r-Lucas sequence of
type s with 1 < s < r which extend the classical Fibonacci and Lucas sequences.
Afterwards, we establish the link between the bi-periodic r-Fibonacci sequence
and its companion sequences. Furthermore, we give their properties as linear
recurrence relations, generating functions, explicit formulas and Binet forms.

2.1 Introduction

For a positive integer r and positive real numbers a, b, Yazlik et al. [93] introduced
the sequences (f,), and (I,,), as follows:

f — Llfn,1 +fn7r71/ lf n=0 (mod 2),
! bfu1+ far-1, if n=1(mod?2)

and
;o bly_1+1,—y—1, if n=0(mod 2),
") alyqg L, if n=1(mod?2),

27
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for n > r + 1 with initial conditions
fO — 0,f1 = 1,f2 =a,.. -rfr = a\_V/ZJbL(T—l)/ZJ

and
lO =r-+ 1/ ll =4, 12 - ab/- . -/lr - aL(r—i_l)/szLr/ZJ/

respectively.
It is clear to see that whena = b = 1 and r = 1, the sequences (f), and (In)n
reduce to the Fibonacci and Lucas sequences, respectively.

Raab [61] introduced the generalized r-Fibonacci sequence, for a positive integer
r and real numbers x and y, by

Tr(lr) = xTér_)1 -|—yT7(Zr_)r_1, n>r—+1
and initial conditions
T =0, T\ = &1, 1<k<r

When x = y = 1, the numbers T,(lr) reduce to the r-Fibonacci numbers.

Abbad et al. [1] defined the family of companion sequences; the r-Lucas se-
quences of type s, for a positive integers r,s with 1 < s < r and real numbers

x and y, by
z{* = xz\") 4 yz") n>r41
and initial conditions
7\ =s+1,7" =, 1<k<r.

Our study consists of two aspects. The first one, is to introduce the parameters c
and d in the expression of the recurrence sequences given by Yazlik et al. in [93].
The second one, is to define a family of companion sequences as introduced in [1]
for the bi-periodic case.

2.2 Bi-periodic r-Fibonacci and r-Lucas sequences

In this section, we define bi-periodic r-Fibonacci sequence (u,i’))n and we intro-

duce the family of its companion sequences, bi-periodic r-Lucas sequence of type
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7,5) (r)

S, (VyE"S))n, then we express Vn( in terms of U,,’ and we give their linear recur-

rence relations.

Definition 10. For nonzero real numbers a, b, c,d and positive integer r, bi-periodic r-
Fibonacci sequence (U,sr))n is defined by

U { all,it)l + cufﬁrfl, if n=0(mod 2), 2.1)
pu”. +du'’ . if n=1(mod?2),
forn > r 4+ 1 with initial conditions
U =o,ul” =1,uf”) =a,...,ul" = alr/2ple-172,
We give the first values of the bi-periodic r-Fibonacci sequence.
1. Forr =1,
V) = oul =1,ul) =, ulY = ab+d, Ul = b+ a(d + ),
UV = @20 +ab(2d + ) +d*, UL = @02 + a?b(2d + 2¢) + a(d® + dc + ¢2).
2. Forr =2,

u? = ou® =1,u? =a,u® =ab,u® =+,
ul = a®?+ (b +ad), U = a® +a(2bc + ad).

The bi-periodic r-Fibonacci sequence can be expressed by the following linear
recurrence relation.

Theorem 11. Let a, b, c,d be nonzero real numbers and r be a positive integer. The bi-
periodic r-Fibonacci sequence satisfies the following linear recurrence relation:
Forn > 2r + 2,

Uy = aba”) + (a8 Vg 4 pEeH )

r+1 (r)
nr—t—gry — (FD T edl, %, (22)

with initial conditions

ul) =o,ul”) =1,ul) =a,...,ul") = alr/2ple-172])
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forr+1<m<2r+1,

al3lpl"t] ([%JM {mf;flJc) al " pl "5 if r is odd,
uy = (2:3)
JaLm_Tr_szLm_z'_lJc-k {mq*lJuLmz_erLm_zist, if r is even,

where §(k) = 2(k/2 — |k/2]) is the parity function and | | is the floor function.

Proof. Note that &(n + m) = &(n) + ¢(m) — 2&(n)&(m).
Formula (2.1) can be rewritten as

1—C(n)bé(n) ") +C1—€( >dc<> (r)

nrl

(aé BEU, ¢ Syl )

nr2

i

. ) (gE(nr) pl=g(n+v) u( ) )+ Lntr) gl— C(n+r)uy(l_)2r_2)

abU,S )2 + (ﬂl §(m)pe(m) (S(m) g1=8(n) 4 1- (n)dg(n)”g(nﬂ)blig(nﬂ)) uigrf)rfz

4+ 1=6(n) g8 (n) (G (ntr) gl=G(n+r) u;(qrf)mz-

When r is odd, we get

uy”

i, + ( 1 E(n) () (& () g1-E(n) +leﬁ(n)dé(n)alfé(n)bé(n)> u

(
+ 1=6m) g&(n) (1=8(n) 4G (n )u’i)y 5
abu(r) 1 gl¢n )bé(”)(c+d) (r) +C2(1—C(H))d2é(")u;sr_)2r_2

n—2 nr2

abu"” o+ (c+4d) (u}ﬁ )r—l _ 1=8(n) gé(n )u( ) ) e (pg(n))dzg(n)u(r_)zr_z

n— n

_ abu(QZ +(c+au”, .+ (C (1-5(n)) 26(n) _ (C + d)ct-em) dg<n)> un,

I
[
I~
=
N\./
+
—
a
_|_
QU
~—
c
=
<
I
—_

4 (C (1 §<n))dzc<n) CZ*C(H)dﬁ(H)_leé(n)dlﬂi(n)) u”

abU", + (c +d)u"
when r is even, we get

uln = abur(li)ﬁ(al—é(n)bé(ﬂ)cé(ﬂ)dl—é(n)+Cl—C(n)dC(n)aC(n)bl—C(H)) u”

12 o) Z) =2 g )

(
abu( )2+ (ad +bec)U, ul ) 2+cdu( )
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O

Now, we introduce a family of companion sequences related to the bi-periodic
r-Fibonacci sequence, called bi-periodic r-Lucas sequence of type s, (V,Y'” )n-

Definition 12. For nonzero real numbers a, b, ¢, d and integers r, s such that
1 <'s <'r, bi-periodic r-Lucas sequence of type s is defined by

—r—1s

aV") 4 V™) if =1 (mod 2),

n

) _ { bV 4 av™ if n=0 (mod 2),

n—r—17/

for n > r 4 1 with initial conditions

Vo(r,s) —s41, Vl(r,s) — VZ(r,s) —ab,..., Vr(r,s) _ aL(TJrl)/Zj er/ZJ.

We give the first values of the bi-periodic r-Lucas sequence of type s.

1. Forr=s=1,

Vo(l,l) 2 Vl(l,l) —a, Vz(l’l) —ab+2d, V3(1’1) = a?b + 2ad + ac,
V4(1,1) = a%b? + 3abd + abc + 242,
VA = 23 + 3a%bd + 20%bc + 2ad? + 2adc + ac?.

2. Forr=2ands € {1,2},

Ve = s+, =0, v = ab, VP = @b+ (s +1)c,

ViR = a8+ (s + )b +ad, Vi) = B2 + (s + 2)abe + a%d.

The bi-periodic r-Fibonacci sequence (U,(f))n and the bi-periodic r-Lucas se-
quence of type s, (Vn(r’s))n can be seen as a generalization of the Fibonacci and
Lucas sequences, we list some particular cases.

e Fora=b=c=d=1andr = s = 1, we get the classical Fibonacci and
Lucas sequences.

e Fora=b=2c=d=1andr = s = 1, we get the classical Pell and
Pell-Lucas sequences.

e For a,b nonzero real numbers, c = d = 1 and r = s = 1, we get the bi-
periodic Fibonacci and bi-periodic Lucas sequences.
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¢ For a,b nonzero real numbers,c =d = 2and r = s = 1, we get the Jacob-
sthal and the Jacobsthal-Lucas sequences.

¢ Fora = b, c = d nonzero real numbers, we get the r-Fibonacci sequence and
the r-Lucas sequence of type s.

For more details on these sequences, we refer the reader to [1, 11, 27, 61, 93].

Each sequence in the family of companion sequences, the bi-periodic r-Lucas se-
quence of type s, satisfies the following linear recurrence relation:

Theorem 13. Let a, b, ¢, d be nonzero real numbers and r, s be integers such that

1 <'s < r. The bi-periodic r-Lucas sequence of type s satisfies the following linear
recurrence relation:

Forn > 2r+2,

Vi = abv") 4 (@80 + ey (<) edv, L, 24)

with initial conditions
Vo(r/S) — 541, Vl(r,S) —a, Vz(r/S) _ ab,...,Vr(r’s) _ aL(rJrl)/ZJer/ZJ,

forr+1<m<2r+1,

o al" Il 4 ((s+ |22 ] )+ [ 252 c) el L5, i is odd, -
oL 1pl8) 1 (s | mog | ) ol gL Do [ ol L4200, i s even,

2
Proof. The proof is done using Definition 12. O

Theorem 14. Let r and s be positive integers, such that 1 < s < r, the bi-periodic
r-Fibonacci sequence and the bi-periodic r-Lucas sequence of type s satisfy the following

relationship:
r5) Ur(lrll + sdu,@r, n>r, if r is odd,
vV, = 2.6
’ U sy G S o0 (20
w1 T SC u,’, ;+scdl, , ., n=>2r+1, if r is even.

Proof. We prove the theorem by induction on 7, using Definition 12 and relations
(2.3), (2.5) in Theorem 11 and Theorem 13, respectively.



2.3. Generating functions 33

2.3 Generating functions

In this section, we give the generating functions of the bi-periodic r-Fibonacci
sequence and the bi-periodic r-Lucas sequence of type s.

Theorem 15. Let r be a positive integer, the generating function of (Ur(lr) )PRE

X+ ax? + (—1)80) cxr+2

G(x) = 1 —abx? — (aStr+1)d 4 pe(r+1) o) xr+14¢(r+1) — (—1)redx2r+2

(2.7)

Proof. The formal power series representation of the generating function for
(Uu,"), gives

r r— r—&(r+1
22“ U xk — abx? 221 U xk — (@81 4 p0r+1) ) xr+1+8(r+1) g(f ) Ul xk
k=0 k=0

_ k=0
G(x) - 1 — abx2 — (aé’(r+1)d 4 bé‘(r+1)c)xr+1+§(r+l) _ (_1)rcdx2r+2

Indeed, we suppose that r is odd, we write

G(x) = Y ulxk.

k=0
Then
—abx*G(x) = —ab)_ U,Er)xk”.
k>0
(—(d+0)x1G(x) = —(d+c) Y ulxktret,
k>0
(Cd)er-l-ZG(x) — od Z ulg’”)xk—ﬁ-Zr—i-Z_
k=0

The relation (2.2) in Theorem 11 gives

(1—abx® — (d+c)xX ™ +cdx?)G(x) = Llér) + LIY)x1 +-+ Ué:)ﬂxzr“

— abu(()r)x2 — abuy)x3 — = abUZ(:)_le’H
— (d+ c)l,[(()r)x’+1 — (d+ c)ll]Er)x”r2 —

_ (d_,_c)ur(r)er—H
2r+1 2r—1

= ) U,Er)xk — abx? Y. Ulgr)xk
k=0 k=0

— (d+c)x ! Z U,Er)xk.
k=0
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Using relation (2.3) given in Theorem 11, we obtain

x + ax? — cx"2

G(x) = 1— abx2 _ (d + C)errl + Cdx2r+2'

Similary, if r is even, we get

x + ax? 4+ cx"t+2

G(x) = 1 — abx? — (ad + bc)x™+2 — cdx?r+2°

O

Remark 16. If we take r = 1, we obtain the generating function of the bi-periodic
Fibonacci sequence given by Sahin [63].

The following theorem express the generating function of (V,E”S) )n-

Theorem 17. Let r and s be positive integers, such that 1 < s < r, the generating
function of (V")) is

(s +1) + ax — absx? 4+ (—=1)50) (s + 1)ex™ 4 (=1)80 D) gdsx"+2

H(x) = 1 —abx? — (abr+1)d 4 pe(r+1) ) xr+14+8(r+1) — (—1)redx2r+2

. (2.8)

Proof. For odd r, relation (2.6) gives

H(JC) = Z Vrgrls)xn
n=0
_ (r) n (r) .n
= Z U, 1 x" +sd Z u,.,x
n=0 n>r
1
= Y. U,(qulx”*l +sdx" ) Ur(,r_),x”*r
n=0 n=r
1
= -y U,(f)x” +sdx" ) Ll,(f)x"
X >0 n>0
1+ax —cx't1 sd(x" 1 4 ax™+2 — cx?12)
1—abx?2 — (d+c)x™1 +cdx2+2 * 1 —abx? — (d + ¢)x" 1 + cdx?r+2
1+ax — x4 sdx™™ 1 + sadx™? — scdx?+2
1—abx? — (d +c)x" 1 + cdx?+2
(s + 1)+ ax — absx® — (s + 1)cx’ ™! + adsx™ 2
1 —abx? — (d + c)x"*1 + cdx?r+2




2.4. Explicit formulas 35

For even r, relation (2.6) gives

H(x) = ZVér’s)x”

n=0
= ) Ur(ltzlx” +scb Y Uflr_)r_lx” +scd ) Ur(lr_)ZF_lx”
n=0 n>r+1 n>2r+1
1
= - ) Uﬂlx”’+1 +scbx™ Y Lllgr_)r_lac”*r*1
n=0 nzr+1
—|—SCdx2r+1 Z u1(1r—)2r—1xn_2r_1
n>2r+1
1
= -y Ul 4 scba ) U 4 sedx?+1 ) ul xn
X n=0 n=0 n=0
1
- (; +scbx™ + sedx? 1) Y U

n=0
(L + scbx™1 + sedx® 1) (x + ax? + cx'+2)
1 —abx? — (ad + bc)x™+2 — cdx?r+2

1+ ax +cx" 1 + 5 — sabx? — sadx"2 + scx’ 1 (abx? + cbx’2 + adx™? + cdx?+2?)

1 —abx? — (ad + bc)x"+2 — cdx?r+2
(s +1) 4 ax — absx® + (s + 1)cx’ ™! — adsx™*?
1 —abx? — (ad + be)x"+2 — cdx?r+2

O

Remark 18. If we take r = 1 and ¢ = d = 1, we obtain the generation function of
the bi-periodic Lucas sequence given by Bilgici [11].

2.4 Explicit formulas

In this section, we will state explicit formulas for (U,(f))n and (Vn(r’s))n, to gener-
alize the explicit formulas of bi-periodic Fibonacci and Lucas sequences.

Using Theorem 3, we give an explicit formula of the bi-periodic r-Fibonacci se-
quence.

Theorem 19. For any integer v > 1, we have

' )3 (l+t> (ztc)<ab>f(c+d>*"<—cd>k, ifr is odd,
it (1)t (4 Dk=n N

U;Sﬂl -

v () () @ rortent, priseen

\ 2i+(r+2)t+rk=n
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Proof. Considering the sequence

Wi =l

then WO(V) =1, WYJ) =0for1l <j < 2r+1,relation (2.2) gives

W;Sr) _ abW;Sr—)z + (aé‘(r+1)d 4 bg(r+1)c)wr(zrf)r717§(r+1) _ (—1)r+1CdW,§r_)2r_2-
(2.9)
If r is odd, formula (2.9) reduces to
W = a4+ (c+ )W\ — caw”) (2.10)
no n—2 n—r—1 n—2r—2° :
Using Theorem 3, we get
W, = () by e ey
2it (r+1)j12(r+1k=n \ 1T

- Y ()4 e ayi-ay

2it (1) (4R 4 (4 ke N T TK

o (1) Qs o

2i4(r+1)t+(

If r is even, formula (2.9) reduces to

Wr(f) = cllol/\/flr_)2 + (ad + bc)l/\/r(lr_)r_2 + CdW;gr—)zr—z- (2.11)
Using Theorem 3, we get
Wl = Lo (T e+ vy

2i4+(r+2)j4+2(r+1)k=n

= i+j+k\[(j+k ; o
) 2i+(r+2)%k)+rk—n( j+k )( ¢ )(ab) (ad +bc) (cd)

-y (i M t) (I’i) (ab)i(ad + be)!~* (cd)F.

2i+(r42)t+rk=n
g

Now, we give an analogous result for the bi-periodic r-Lucas sequence of type s.
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Theorem 20. For any positive integers r and s, such that 1 < s < r, we have

v = Y (i * t) (zi) (ab)(c + )~ (—cd)*

2i4+(r+1)t4+(r+1)k=n

+ sd ) (i —: t) (;) (ab)i(c+d)!F(—cd)k,

2i+(r4+1)t+(r+1)k=n—r—1

if r is odd.

A (ijt) (D(ab)i(ad+bc)f—k(cd)k

2i4+(r+2)t+rk=n

+ sbc Y. (i + t) (;) (ab)i(ad + be)F(cd)*

2i+(r+2)t+rk=n—r—2 £

+ scd Y. (i + t) (Ii) (ab)!(ad 4 be) = (cd)¥,

2i+(r42)t+rk=n—2r—2 t
if r is even.

Proof. We get the proof by using Theorem 14. O

Remark 21. Theorems 19 and 20 generalize the explicit formulas given in [81, 92].

2.5 Binet forms

In order to obtain the Binet forms of the bi-periodic r-Fibonacci sequence and the
bi-periodic r-Lucas sequence of type s, we first express the characteristic polyno-
mial. Considering relations (2.2) and (2.4), we get the characteristic polynomial
of (U ) and (V)

y2r+2 _ aber _ (aC(H-l)d + bé(r—&—l)c)yr—i-é(r) _ (_1)§(r)cdl (2.12)
putting x = y2, we obtain
= abx — (@S0G 4 D T ] (21)E0) g, (2.13)

Before stating the main theorems of this section, the following lemma will be
useful:

n .
Lemma 22. Let K be a field and P(x) = ag + ajx +ax* + - +a,x* = ¥ a;x' €
i=0
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K|[x], a split polynomial on K with n roots, a1, az,...,a, € K. The polynomial P(x)
can be written as P(x) = ay(x —aq)(x —ap) -+ (x — ayy) and

oy = ) a; ey -0, = (=1)° o (2.14)
1<i<ip<-+-<ip<n n
For any i, j, we put 0; = a;0;_; + 07, where
~7
0’]- = Z K Ky -+ - “kr+1—j'

1<k <kp<---<kpy1-j<r+1
k1Ko, b1 j#i

Theorem 23. Let aq,ay,...,&,41 be the distinct roots of the characteristic polynomial
(2.13) associated with (U,(lr))n and (Vn(r’s))n, we have

—1Vg 17 (r)
s, < ':1( 2 7 u2r—2j+é(n) +u2r+§(n)
uisr) — Z ) aLn/ZJ
i=1 [T (& — ) l
1<k<r+1
ki
and
V,Sy's)
S (—1)i ) ")
r+1 ( El( 1) (TJ u2r—2j+c;‘(n+1)+u2r+§(n+1)) (141 /2] Ln—r)/2] o
’gl T (& —ay) (“i + sda, )1 if ris odd,
_ 1§1]§7§é§+1
( i(_l)jﬁ; U i) T Uiy, 1>)
ril j=1 1—17 ]Z(Hlx)) r+¢(n+ (alL(n+1)/2J+Scbai[(n471)/zj +Scd[xit(n72r71)/2j), if 1 is cven,
i=1 i~ &
1§1]i7§é¥+1

with initial conditions

ul) =o,u\) = 1,u) =a,...,ul") = al/Aple-172])
v =541, Vl(r's) =a, V" =ab,..., V") = glt+D/21plr/2]

Proof. As mentioned in [19], the general term of (U,(f) )n is given by
r+1 n

U,SF) =Y bi,nociLZJ , Where b; ,,’s are rational numbers. The system can be solved
i=1

by Cramer’s rule with Vandermonde determinant, for more details, we refer to
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[41]. Using the initial terms of the sequence (U,(f) Jn, forn =0,2,4,...,2r, we get

R

1 1 1 - 1 U‘E | by
r

a1 Ky a3 o Ky U, bon
2 42 a2 L g2 n | _

a7 a3 &3 X1 u,” [ =1 bsn
r r r r r

&1 Q& &z - By Uér) bry1n

and forn =1,3,5,...,2r + 1, we get

-1 (r)

V1 NE? Vs oo 04 U,
Va® \/0423 \/0633 RN Ug(r)
Va® Vi Va3 JaT Uér)
\/“—121’-‘!‘1 \/06_221’—1—1 \/lx—321’+1 L. ar+121”+1 uézll

it results that

bZ,n
b3,n

br—l—l,n

2r+¢(n)

’
' (r)
2(—1)] 2 K. Koo oo X ) _.U iy
j=1 1<ky <kp<...<kyi1_;<r+1 U 1 T 2r=2j+8 (n)
; ki koo kg1 i
in —
[T (wi—ax)
1<k<r+1
k£i

using Lemma 22, we obtain

AN )
],;1(_1)] O, e T Uariem
bj, = — ,
v [T (& —ax)
1<k<r+1
kZi

which gives

r
—1igt 17 (r)
El( V0 Uy, ey + Yoy
[T (a—ag)
1<k<r+1
ki

r+1
uy! =y
i=1

ocL"/ZJ.

1
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Using relation (2.6) in Theorem 14 for odd r, we get

+ sdu(r

n—r

W = ul,

r

— 1V 17 (r)
H_Zl jgl( ) (7] u2r—2j+§(n+1) + UZH-C(”'H) |(n+1)/2]
pr— a.
= IT (& —ag) l
1<k<r+1
k#i
" _1Via 1) (r)
dﬂrzl ]E( 1 Ui u2f_21'+§(”—f) T u2r+g(”_r) | (n—r)/2]
+ s &
= IT (& —a) l
1<k<r+1
k#£i
PR U, U
_ ri =] r=2j+&(n+1) r+¢(n+1) <aL(n+1)/2J _}_Sda‘{(nfr)/ZJ)
= IT (& — o) l l
1<k<r+1
k2i

and using relation (2.6) in Theorem 14 for even r, we get

Vrgr,s) _ u(") + SCbuy(zijr—l + SCduy(lr—)%—l

n+1
i ( 1)j~i (r) (r)
-1) u . u
= i Yorajrenin) T Yareenin) L(n+1)/2]
— &j
=~ [T (w—ag)
1<k<r+1
k#i
4 jaioqq(r) (r)
r+1 El(_l) i Yo ajren—r—1) T tarie(nr-1) 1)/2
+scb Y’ d "
= [T (& —ag) 1
1<k<r+1
k#i
4 jai o4 1(r) (r)
r+1 g(_l) i uzr—2j+g(n—2r—1) - u2r+€(n—2r—1)
- sed Z j IXL(anrfl)/Zj
= [T (& —ag) l
1<k<r+1
k#i
! jai g 1(r) (r)
r+1 jg(—l) 7j uzr—2j+f;(n+1) + u2r+§("+1)
= IT (& —a)
1<k<r+1

k2i
% (alL(nJrl)/Zj + ScbaiL(nfrfl)/Zj + Scd(xit(anrfl)/ZJ) .
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O

Remark 24. 1f we take ¢ = d = 1, we obtain the Binet form for the sequence (f)n
given by Yazlik et al. [93].

Equivalently, we can express the Binet forms of (U,(lr) )n and (V,Y'S) )n as follows.

Theorem 25. For any integer r > 1, we have

r+1
ul) =y Algln2
i=1
and
rEl (1) [ [(n+1)/2] |(n—7)/2) o
Y A, <zxi + sdu; >, ifris odd,
i=1
V("/S) —

" r+l (n+1) [ [(n+1)/2] |(n—r—1)/2] | (n—2r—1)/2] o
XA <ucl. +scbzxi +scd0¢i ), if r is even,
i=1

where
AN
- o b — au™ . ol LO22) E ) g gt (r) (r)
R AT (@ R0 Uy g U

7

j
aiL%J ((r_'_l)a.LHzZJ —mble%J _ {%J (ag(r+1)d+b§(r+1)c)>

with initial conditions

u) =oul” =1,ul”) =a,...,ul") = al/2pl-072))
Vi = s 41, V") = 0, V™) = ab,..., v = gl0/20plr/2),

Proof. Considering

P(x) = ¥ —abx" — (a*0+Dg 4 bg(”l)c)xL%J — (=1)0eq

= (x—a)(x—ag) - (x —arp1),

thenfor1l <i <r+1, we get

1

ﬂ
P'(le-) _ (I’—l— 1)“: . rab“;’fl . \‘%J (aé(r+l)d_|_ bg(ﬂrl)c)th 2 J
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o7 <(r el T ol {EJ (a£0+ g 4 b€<f+1>c))

i i

2

T (& — ).

1<k<r+1
k#i

On the other hand, using Lemma 22 and formula (2.13) for odd r, we get

01

02

T(r-1)/2

U(r—l—l)/Z

Or

Or+1

thus

Y., w&; = —a,=ab,

1<i; <r+1
Y e, = —a,1 =0,
1§i1<i2§7’+1
_ -1)/2 —

Yy iy Ry« oo Oy = (—1)(7 )/ a,1=0,

1§i1<i2<~'~<i(771)/2§7’+1
o ) _ (_1\(r+1)/2
)3 Qg jy o e az(rﬂ)/z - ( 1)( ) A(r41)/2

1§11 <12<<Z(,+1)/2§r+1

(_1)(r+1)/2+1(c + d),

— T, —
Z Kj Kijy oo X, = (—1) a1 =0,
1<ip<ip < <ip <r+1
Qg gy o v O
1<i)<ip <+ <y 1 <r+1

(—1) gy = (=1)80+D+r+leg — ¢4,

Z Xiy s
1<i;<r+1
i1#i
X X Kiy,
1<ii<ipr<r+1
i1,ia #i
Z K Ky v (xi(rfl)/z’

1§1'1<1.2<"-<1.(7_1)/2§1’+1
l’l,llz,...,ll(ril)/z#l'
) 0 K e O
o ! 171 Yr41)/27
1gll<12<"'<l(i’+1)/2§r+1 (7' )
1'1,1'2,...,1'(,,4,1)/2#1'

o H . K Kijy o« K,
1< <ip <<, <r+1
11112/---117#1
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FT{ = ab—u,
o = (—a;)0 = (—a;)(ab—a;),
g = (e ab ),

_lxi)(rfl)/zil(ab - 0(1')/
—1)FN2H (e d) - (—a) D27 (ab - ),

~ _“i)(_l)(r+1)/2+1(c + d) + (—oci)(—ﬂci)(rﬂ)/z_l(ab _ “i)’

~ 1)j2e0 —0(,-)2(—1)(“'1)/2“(0 + d) + (_al_)z(_lxl_)(rﬂ)/z—l(ab o ‘Xi)/
Olri1)/243  — —a;)3 (=12 (¢ - d) + (—a;)3(—a;) V271 (ab — wy),
7 = a7 (“1) (e d) + () (@b — ).

Using Lemma 22 and formula (2.13) for even r, we get

o] = Y. w&; = —a,=ab,
1<ii<r+1
0-2 - Z 0‘1'10(1.2 - _ai’fl - 0/
1<ij<ip<r+1
— _ r/2 —
07 /2 = ) i,y -, = (=1)72a, 541 =0,
1§i1<i2<"-<ir/2§1’+1
— -y . — (—1)(+2)/2
Or+2)/2 = )y Kiy i - "“l(r+1)/2 - ( 1) Ar/2

1<i; <i2<~'-<i(r+2)/2§1’+1

_ (_1)(r+2)/2+1 (ad 4 bc),

— — r —
oy = Y a0 = (—=1)"a; =0,
1<y <ip < <ip<r+1

_ o 1
Ori1 = I Wiy Wy o R, = (—1)(r+1)g
1< <ip <+ <l 1 <141

= (=1)Sr)H+r+led = ¢4,

0 = ab—u;
5’5 = (—a;)07 = (—a;)(ab — a;),



2.5. Binet forms 44

v — (e (ab - a),
~;./2 (—a;)">71(ab — w;),
~(7—1—2)/2 = ( 1)(7’+2)/2+1 (ad _'_ bC) ( lxi)r/z(ab - 0(1'),
~( oy = (—a;)(=1)0+2/ 24 (ad 4 be) + (—a;)/?H 1 (ab — a;),
( 42)/242 T (—a;))>(—=1) 42724 (ad + be) + (—a;)"/?+2(ab — a;),
N(r+2)/2+3 _ (_ai)3<_1)(r+2)/2+1 (ad + bc) + (_ai)r/2+3(ab — ),
Z = ()0 (ad )+ () b — ).

O

Considering that r > 2 and «ay, &y, ..., a,+1 are nonzero roots, the Binet forms of
the sequences (Ur(lr) ) and (Vn(r’s) )n have two equivalent expressions given in the
following corollaries.

Corollary 26. For any integer r > 2, we have

r n/2
Ur(z) _ Z Blﬁ ) ZL J
i=1
and
ril B. (n+1) < Ln+1)72) sd(x}(”#)/zg , if ris odd,
Vér’s) _ =1
ril B(”+1) ( ZL("H)/zJ + scboclL(”_r_l)/2J + scdleL(n_zr_l)/zJ> , ifriseven,
i=1
where
B"

j (r) i cd (r) (r)
) —tx (ab )LI —2j+¢(n) + _ D (_1)],,61.(_11,)#]‘ u2r—2j—|—€( )+u2r+§( )

7

=
—
-
I\J‘\
—
| E—
7 N
—~
=
—_
N—
—
-~
+
N
| E—
<
AN
S
=
—
-

iiJ _ L%J (280D g 4 pE(r+1)¢ ))



2.5. Binet forms

45

with initial conditions

ul) =o,ul” =1,ul"”) =a,...

VO 1,V 0 v b

Proof. Assume that r is odd, then

Vr( 7,8)

U = glr2iple-nre)

_ glo+D72]plr/2),

71 = Y. wj =ab—u
1<ii<r+1
iy £
%) _ oy — (—pe -
5 = D) i g, = (—a;)(ab — a;),
1<ii<ip<r+1
i1, 7i
~i _ _ i—1
]‘ - E “ilalé e [Xl'j - (_ﬂéi)] (Elb - “l’)l
1<iy<ip<-+<ij<r+1
11,00 1 1
Olryn = ) iy R - By = (—a;) /2 (ab — ),
1§i1<1’2<"'<i(r,1)/2§7+1
i11i2/"'/i(r71)/2§éi
5ér+1)/2 = y iy iy o i)y = (_1)(r+1)/2+1(c +d)
1§i1<i2<"'<i(y+1)/2§1’+1
11,02,/ (p41) 2 71
1)/2-1 _cd 1
+ (—a) T2 ab — ) = L1,
(—a;) 2
~i . _cd 1
;Zf_t - Z 0(1‘10(1‘2 e ai(r—t) - i‘_z (—DC')“
1§i1<i2<--'<1’(r7t)§”+1 !
i1 iy
i — - . —cd_1
r—2 = L Biy @iy -+ - Riy o) = 0 a2’
1§11<12<"-<1(7_2)§7’+1 !
11,120/l (r—2) 71
~i _ - . —cd_1
r—1 - L Z alllxIZ Tt lxl(rfl) o (70(1‘)’
1§Zl<12<"~<l(r71)§7’+1
11,020/ (1) 1
~i — e .o
o = 11 Q) Wy« o - R, =

1<iy <ip<--<ir<r+1
i1 i erin

Assume that r is even, then
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5% = Z 061'1 - ﬂb — K,
1<i1<r+1
i £
0 = Y ag = (—a;)(ab—a;),
1<ii<ir<r+1
i1 ip #i
~ 7 _ . ,_1
} = D Kiy iy -« - Ry = (—a;)) " (ab — w;),
1§i1<i2<-~-<i]-§r—|—1
i1 i e
ol — _ r/2-1 .
%2 = L iy 0y - 7, = (=) (ab — wy),
1§i1<i2<~~-<ir/2§7‘+1
1,120y jp
u = ey . — (_1\(r+2)/2+1
(T(r+2)/2 - L Z Qj &y - e “z(r+2)/2 - ( 1) (lld + bc)
1<y <ip<-+<i(p49) <141
11,12,.,1(r+2)/2§él
N (r+2)/2-1 o cd 1
+ (—al)( ) (ab—w;) = & () D72
G = e o 1
- B . Yinliy - iy = a =)t
1§11<12<"'<1(r—t)§r+1
i1 ()
o' = s . _cd_ 1
r=2 o . Z 0‘11“12 te “1(7—2) o (—a;)?’
1311<12<'“<1(r,2)§7’+1
i1, ()
ol — - o _d 1
r-1 N i Z Biy @iy -+ - i) = 0 (—ay)”
1§ll<12<"'<1(r—1)§7+1
i (1)
~ . o o d
0y = IT Wy iy - - 0, =

1<ip<ip <<, <r+1
01,00, ir £

O
Corollary 27. For any integer r > 2, we have
r+1
) = el
i=1
and
+1
rZ Ci(nJrl) <[Xi[(n+1)/2J 4 SdaiL(n—r)/2J> ) ifr is Odd,
V(;,,S) _ i=1
A =

ril Ci(n+1) (,XL(”HWJ + scha

: i
i=1

i

| (n—r—1)/2] +ScdalL(n—2f—1)/2J), if r is even,
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where
c
s w0 /2] (@ a0 () ()
j;(_l)]a,«(fa) 2r-2jE(m) T Z (1)l ule( ;) 721 uzi—2j+§( )+u2r+§

(n)

w'.%J ((1’+1)txitr+22J —rabtle-%J _ L%J (aé(r+l)d+b§(r+1) ))

with initial conditions

ul) =oul” =1,ul") =a,...,ul" = al/2pl-072))
Vo(r,s) —s+1, Vl(r,s) —q, Vz(r,s) —ab, ..., Vr(r,s) — glr+1)/2] plr/2]

2.6 Examples

In this section, we present some numerical results, for specific values of r and s.

1. For s = r = 1, we derive the bi-periodic 1-Fibonacci sequence (U,sl))n and
1,1))

its companion sequence the bi-periodic 1-Lucas sequence of type 1, (V,g n

Ur(zl) _ aU( )1 + CU( 2, if n=0(mod 2),
blli(i_)1 +dUn72, if n=1(mod 2),

for n > 2 with

and nonzero real numbers a, b, c and d.

Its linear recurrence relation is given by

U,(ZI) = (ab+c+ c:l)ll(l_)2 - cdu,§124, n>4,

n

with

1)

uV =0, u =1, ulV =4, Ul =ab+d

Its generating function is

X —|—Elx2 — CXS

Glx) = 1— (ab+c+d)x? + cdx*

7
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Its Binet form is

(1) o g (1)
u — [ HYzre Pl O )
" 20—ab—d—c
(1) T (1)
+ u2+§(n) +(p-ab—d—c) u@(”) IBLn/2J
26—ab—d—c ’
with ) 1
u%%) =0, UZE 1%,;(”) =g, if n=0(mod 2),
Uzy =1 Uy fey =ab+d, if n=1 (mod 2),

where « and B are the roots of the quadratic equation
X — (ab+c+d)x+cd =0.
The bi-periodic 1-Lucas sequence of type 1, (Vn(l’l))n

yn { bV,ﬁl' ) —I—an(l,’;), if n=0(mod?2),

for n > 2 with

vt =2, v =4
Its linear recurrence relation is given by
Vn(l’l) = (ab+c+ d)Vn(l_’;) — cdviq(i’i), n >4,
with
v =2, v =g, v —ap 424, VI
The link between Ur(ll) and Vn(l’l) is
vt —ul 4 aull, n>1.

Its generating function is given by

H(x) = 2 +ax — (ab +2c)x? + adx®
 1—(ab+c+d)x®+cdxt

= a®b + 2ad + ac.
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Its Binet form is

yan

with

= ab +2d, if n=0(mod 2),

1)
¢(n)
éz = a’b+2ad +ac, if n=1 (mod 2).

Vi =a, Vil

N

(L,1) (1,

{ vie) =2, vit
1,1 1,

+

We can also write

(1) 4 (1)
v _ Uz+¢(n+1) +(a—ab—d C)ué(nﬂ) (wL(n+1)/2j + daL(n—l)/Zj)
" 20 —ab—d —c

(1) (1)

u +(B—ab—d—c)U

2+¢(n+1) g(n+1) | (n+1)/2] |(n—1)/2]

* ( 26—ab—d—c )<ﬁ +dp >

An explicit formula of (U,Sl) )n is given by

i+t\ [t ; _
ul), = Y ( t )(k)(ab) (c+d)!*(—cd)k
2i4-2t4-2k=n

and an explicit formula of (Vrgl’l) )n is given by

vy - (5 () e - Haay
2i+2t+2k=n t
i+ 1\ [t ; ko
+ sdz. Z_ ( ; )(k) (ab)'(c+d)' " (—cd)".
i+2t++2k=n—2
2. For r = 2, we derive the bi-periodic 2-Fibonacci sequence (U,(lz))n and

its two companion sequences, the bi-periodic 2-Lucas sequence of type s,
(Vi) with's € {1,2}

u® _ ally(lz_)1 + CU1(12_)3, if n=0(mod 2),
! pu'? +dU;S223, if n=1(mod 2),

n—1
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for n > 3 with
u? =0, u?=1 uP=a

and nonzero real numbers a, b, c and d.

Its linear recurrence relation is

U2 = abU Dy + (ad + be) U2, — cdl?, 0>,

with

u? =0, u® =1, uf

us?

2) 2)

=q, Ué = ab,
=a?b+c, U5(2) = a?b? + bc + ad.
Its generating function is

_ x + ax? + cx*
1 —abx? — (ad + bc)x* — cdx6’

G(x)

Its Binet form is

@ _ _ (2) 2 _ _oa (2)
4O U4+é,(n) (ab (X)UZJFC(H) + (a® — aab — ad bc)ug(n) 2
" 3a2 — 2aba — ad — bc
(2) (2) 2 _od (2)
. U4+§(n) — (ab— ﬁ)u2+§(n) + (B* — Bab — ad bc)ué(n) IBUZ/2J
3B2% — 2abB — ad — bc
(2) (2) 2 (2)
N Uy e — (ab— 'y)UZJré,(n) + (v* — yab — ad — bc)ué,(n) /2
3792 —2aby — ad — bc ’
with
2) _ )  _ 2  _ - _
u@éﬂ) =0, UZZFC(H) =a, ugg(n) =a?b +c, if n=0 (mod ?2),
up =1, ul, =ab, U, =a?+bctad, if n=1(mod?2),

where «, B and 7y are the roots of the equation

x> — abx?® — (ad + bc)x — cd = 0.
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If the roots are nonzero, we can write

@ @ g
u@ _ e = @0 O i |y

3a? — 2aba — ad — be

@) 1 (2)
[ Yaren (o~ B, ety + Uz gl
3B2% — 2abB — ad — bc
@ g e @
B G 1 B Gt ¥ s 100 NS

392 — 2aby — ad — bc

The bi-periodic 2-Lucas sequence of type s, (VVEZ’S) )n is defined by

V2 { bV,fz_’ yav, 2,’53), if n=0 (mod 2),

aVn(Z_’ i —{—CV(_’ ), if n=1(mod 2),
for n > 3 with
v —s+1, VP =4, v —a.
Its linear recurrence relation is given by
+ (ad + bc)V, ( ) + chﬁ’?, n>6,
with

2,5) 2,5)

VP —s1, v =g, VI —ap, V) = b+(s+1)c,
V4(2’S) = a?b?* + (s + 1)bc + ad, V5(2’S) = ab® + (s + 2)abc + a’d.
The link between U,SZ) and Vn(z’s) is
VTSZ’S) = ur(12+)1 + scbu,gz_)3 + scduigz_)& n > b5.

Its generating function is

(s +1) +ax — absx® + (s + 1)cx® — adsx*
1 — abx? — (ad + be)x* — cdx®

H(x) =
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Its Binet form is

(2, (2:5) 2 (2:5)
y2s) _ Viem — (ab — oc)Verg(n) + (a* —aab —ad — bc)Vg(n) n/2
. 3a2 — 2aba — ad — be

(2,5) 2 _ g (2,5)
N V4+€( ) — (ab — ﬁ) 2+§ + (B* — pab — ad bc)VC(n) IBL"/ZJ
abB — ad — bc
-2 b d—b
(25) v(29) 2 _ g (25)
o [ Vareo T @ Vo + (07 Z9eb mad T 0OV )
392 — 2aby — ad — bc
with
v%s); =5+ Z \;z(ig)( | = ab, v%%n) = 2%+ (s+1)bc+ad, if n=0(mod 2),
Vg(;f’) =a, V2+'2(n) a*b+ (s +1)c, V4+’§(n) = a3b? + (s +2)abc +a%d, if n=1(mod 2).

If the roots are nonzero, we can also write

(2) (2) 2 (2)
V(29 _ Uy enany = (@0 = Uy e gy + (&8 —aab —ad —be)Uz,, )
" 302 — 2abx — ad — be
X (wL(”"'l)/ZJ _|_ Scblﬂ("—?})/zJ _|_ SCdlx L(H—5)/2J)

2 2
+ Uif@(m) (ab— )L, 2+§ (ren) T (B — pab —ad — b C)ué(z)wl)
3p% — 2abB — ad — be

% (‘BL(n—i—l)/Zj+ScbﬁL(n—3)/2J+SCd'BL(n—5)/ZJ>

(2) (2) (2)
N (u4+€(n+1) (ab — 7)u2+c(n+1) +(7* —yab — ad — bc)ucf(n—i—l))

392 — 2aby — ad — bc

X <7L(n+1)/2J _|_ Scbr)/\_(nf?’)/zj + SCd'YUn?S)/ZJ) .

An explicit formula of (ll,(lz) )n is given by

u? -y (ijt) (D(ab)f(ad+bc)f—k(cd)k

2i+-4t4-2k=n
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(25)

and an explicit formula of (V,,"), is given by

y t) (zi) (ab)'(ad +be)'™* (cd)*

Foshe Y (ijt) (D (ab) (ad + be)'~*(cd)*

2i+-4t+2k=n—4

Vn(Z,s) _

2i+4t+2k=n (

+ scd

2i+4t4+2k=n—6 ( t

i+ t) (li) (ab)'(ad + be)t ¥ (cd)E.



CHAPTER

BI-PERIODIC HORADAM HY-
BRID NUMBERS [79]

The hybrid numbers were introduced by Ozdemir in [57] as a new generaliza-
tion of complex, dual and hyperbolic numbers. A hybrid number is defined by
k = a+ bi + ce + dh, where a, b, c,d are real numbers and i, ¢, h are numbers such
that 2 = —1,¢2 = 0,h* = 1 and ih = —hi = ¢+ i. This work was intended as
an attempt to introduce the bi-periodic Horadam hybrid numbers which gener-
alized the classical Horadam hybrid numbers. We give the generating function,
the Binet form and some basic properties of these new hybrid numbers. Also, we
investigate some relationships between generalized bi-periodic Fibonacci hybrid
numbers and generalized bi-periodic Lucas hybrid numbers.

3.1 Introduction

Recently, many studies have been devoted to hybrid numbers whose components
are taken from special integer sequences such as Fibonacci, Lucas, Pell, Jacobsthal
sequences, etc. In particular, Szynal-Liana [72] introduced the Horadam hybrid
numbers as

]KW,n = Wy + Wy 10 + Wyioe + Wy 3h, n=0, (3.1)

54
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where (W,), is the Horadam sequence defined by W, = pW,_1 + qW,_, with
arbitrary initial values Wy, W;. In [72, 73, 74, 75], the authors studied some basic
properties of special type of hybrid numbers. The basic properties of g-Pell hy-
brid numbers were investigated by Catarino [15]. Also, Morales [18] considered
the (p, g)-Fibonacci and (p, q)-Lucas hybrid numbers and gave many relations be-
tween them. Recently motivated by the Szynal-Liana’s paper, Senturk et al. [65]
derived summation formulas, matrix representations, general bilinear formula,
Honsberger formula, etc. regarding to the Horadam hybrid numbers.

This work has been intended as an attempt to introduce a new generalization of
Horadam hybrid numbers, called as, bi-periodic Horadam hybrid numbers. The
bi-periodic Horadam hybrid numbers generalize the well-known hybrid num-
bers in the literature, such as Horadam hybrid numbers, Fibonacci and Lucas
hybrid numbers, g-Pell hybrid numbers, Pell and Pell-Lucas hybrid numbers,
Jacobsthal and Jacobsthal-Lucas hybrid numbers, etc. The components of the bi-
periodic Horadam hybrid numbers belong to the bi-periodic Horadam sequence
(wy),, which is defined by the recurrence relation

wy, = x (n) wy—1 + cwy_y, n>2 (3.2)

where x (n) = aif nis even, x (n) = b if n is odd with arbitrary initial conditions
wp, w1 and nonzero real numbers a,b and c. It is clear that if we takea = b = p
and ¢ = g, then it reduces to the classical Horadam sequence. For the details of
the bi-periodic Horadam sequences see [11, 27, 58, 63, 92].

We should note that for the case of ¢ = 1, the generalized bi-periodic Fibonacci
quaternions and the generalized bi-periodic Fibonacci dual quaternions were in-
vestigated in [83, 87, 88, 89]. For a survey on these researches we refer to [32, 35].

The Binet Form for the bi-periodic Horadam sequence (w,),, is

ab(n+1) ; ;
Wy, = ( b)LgJ (Aa™ — BB"), (3.3)
a
where 5
o &
A= % and B := %. (3.4)
ab + v/ a?b? + 4abc ab — \/a?b? + 4abc
Here &« = > and B = > are the roots of the
polynomial

xZ — abx — abc,
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that is

ap = —abc, a+pB=ab
and

Ai=a — B = \/a?b? + 4abc,
with

a%b? + 4abc > 0.

If we take the initial conditions wp = 0 and w; = 1, we get the Binet form of the
generalized bi-periodic Fibonacci sequence (u,),, as

B aS(n+1l)  /am ﬁn
= (ab) L] ( a—p ) (39)

and by taking the initial conditions wy = 2 and w; = b, we get the Binet form of
the generalized bi-periodic Lucas sequence (v;),, as

afg(”) n n
Uy = — (o + B"). (3.6)
(ab) L8]
The bi-periodic Horadam numbers for negative subscripts is defined as
; p\ 6
(=) w_pn = <E> Wolky 41 — Wilky. (3.7)
Also we have
m+&(m)  m—¢&(m m—¢g(m)  m—+g(m)
2" =a"1a 4 )b 5 )zxum+ca 5 5 U1 (3.8)
and &(m) &(m) &(m) g(m)
m+¢(m m—¢(m m—¢g(m m-+¢g(m
B =ala" 2 b 2 Buytca 2 b 2 U, . (3.9)

For details see [84, 85].

3.2 Bi-periodic Horadam hybrid numbers

Definition 28. For n > 0, the bi-periodic Horadam hybrid number K, ,, is defined by
the recurrence relation

Kuwn = wy + Wy 1l + Wyg2€ + wy43h, n=>0,
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where wy, is the n'" bi-periodic Horadam number.
From the definition of bi-periodic Horadam hybrid numbers, we have

Kuwo = wo+wii+ (awy + cwp) e+ ((ab+ c) wy + bewp)h,
Kyp1 = wp+ (awy + cwy) wii + ((ab+ ¢) wy + bewy)e
+ (a(ab+2c)wy + c(ab+ c)wy)h.

In the following table we state several hybrid numbers in terms of the bi-periodic
Horadam hybrid numbers Ky, , according to the initial conditions wyp, w; and the
related coefficients a, b, c.

)
)
0,1,2,2,1) Pell hybrid numbers [73]
2,2;2,2,1) Pell-Lucas hybrid numbers [73]

)

)

,2)

0,1,2,2,k
0,1,1,1,2

k-Pell hybrid numbers [15]
Jacobsthal hybrid numbers [75]
Jacobsthal-Lucas hybrid numbers [75]

| Ku,n | (wo,wi;a,b,c) | bi-periodic Horadam hybrid numbers |
Kun |(0,1;a,b,c) gen. bi-periodic Fibonacci hybrid numbers
Kon | (2,b;a,b,c) gen. bi-periodic Lucas hybrid numbers
Kz, | (0,1;b,a,c) modified gen. bi-periodic Fibonacci hybrid numbers
Ks, | (2,a;b,a,c) modified gen. bi-periodic Lucas hybrid numbers
Kwn | (Wo, Wy;p,p,9) | Horadam hybrid numbers [72, 65]
Kun | (0,1;p,p.9) (p, q)-Fibonacci hybrid numbers [18]
Kv, | 2ppp.9) (p, 9)-Lucas hybrid numbers [18]
Kr, | (0,1;1,1,1 Fibonacci hybrid numbers [74]
Kr, (211,11 Lucas hybrid numbers [72]
(
(
(
(
(2,

Table 3.1: Special cases of the sequence (K )

n-

The norm of the n'" bi-periodic Horadam hybrid number Ky, is | Ky || :=
\/|C (Kq,,)|. Here the character of the n'" bi-periodic Horadam hybrid number
Ky, is

C (Kuy,n) = Ky nKyn = w% + (w41 — wn+2)2 — wthz — w%,+3 (3.10)

where Ky, 1= w, — wy411 — Wyy26 — wy13h is the conjugate of the bi-periodic
Horadam hybrid number.
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3.3 Generating function

We give the generating function for the bi-periodic Horadam hybrid numbers in

the following theorem.

Theorem 29. The generating function for the bi-periodic Horadam hybrid sequence,
G (x) is given by

<1 — (ab+2c) x* + c2x4> G(x) = (1 — (ab +c) x> + bcx3> Kuo + x (1 +ax — cx2> K-

Proof. Let

G (x) = Z ]Kwﬂixn = Ky, + Kyp1x + le,zxz +F le,nxn + e
n=0

Since Ky,n = (ab +2¢) Ky n—2 — ? Ky, g, for n > 4, we get
(1— (ab+2c) x*+ c2x4> G (x)

= Y Koux" — (ab+2¢) Y Koux" 2 + 2 Y Ke ™

n=0 n=0 n=0
[o0] (o) [o0]
= Y Konx" — (ab+2¢) Y Ky pox" +* Y Ky p_ax"
n=0 n=2 n=4

= Ko + Ky1x + (Kyo — (ab +2¢) Ky o) X2
+ (Ky3 — (ab +2¢) Kqp ) x°

+ Z <1Kw,n — (ab+2c) Kyn—2 + CZ]Kw,n—éL) x"
n=4

= Ky + Ky 1x + ((aKy1 + cKyo) — (ab+2¢) Ky o) x2
+ (((ab +c) Ky + bcKyo) — (ab+2¢) Ky 1) x3

= <1 — (ab+¢) x? + bcx3) Kuw,o +x (1 +ax — cxz) Ky 1.

3.4 Binet form

Next, we state the Binet form for the bi-periodic Horadam hybrid numbers and
so derive some well-known mathematical properties.
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Theorem 30. The Binet form for the bi-periodic Horadam hybrid numbers is

a5 (n+1)

]Kw,n - m (Aocg(n)oc” — B‘Ban)ﬁn> ,

where ag (), Be(n)are defined as

o 1 aNém) 1 , 1 ra\é() 4
IX':(”) = 1 + E (E) ol + %(X e+ % (E) X h,
1

a 1 sa

o = 14 ()" B ey (5)

Proof. By using the definition of the sequence (Ky,,), and the Binet form of

n
(wy), , we have

Kyn = Wp+ wyp1i+ wyy2e+ wyy3h
¢(n+1) ¢(n)
— a—(AD(n—B‘Bn)—f- a AD(n—H—Bﬁn—H i
2 il
(ab) 3] (ab) ']
ab(n+1) ) ) ab(m) 3 3
+ a2 (A(x"+ — B’Bn+ ) e+ I <A06n+ — Bﬁn+ ) h
(ab) "] (ab) ']
¢(n+1) ¢(n) G(n+1) G(n)
= Aa" ( ? — + ? - ai + a—naczs + ill oc3h)
(Elb) LTJ (ab) ij +¢(n) (Elb) ij—%l (llb) LTJ +14+¢(n)
g6 (n+1) ab(m) g6 (n+1) ab(m)
— Bg" + i+ ————pB%+ 3h
P <(ab) 3] () [%J%(ﬂ)ﬁ (ab) L%Jﬂﬁ (ab) L%HHC(ﬂ)ﬁ )
a® (1) , 1 o1, 3
= ] [A”‘ (1 TR T ™ T e e h)
" 1 o1 5 1 3
~Bp (1 T g P T Pt e h) ] ‘
which gives the desired result. O

Remark 31. If we take a = b = p and ¢ = g, we obtain the Binet form of the
classical Horadam hybrid numbers in [72].

Lemma 32. We have

Koo — 0+ 2S¢ (Kyo—1n), ifniseven,

— ~ 3.11
() P (n) { Ko — 0+ %c (Kgo—1), ifnisodd @.1)
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and
Kyo—6— iy (Kyo—1n), ifniseven,

— @ 3.12
Be(me(n) { Kso — 6 — %c (Kgo—17), ifnisodd, 312

where

n = (1=b)i+(a—b—c)e+(1+ab+c)h,
7= (1—a)i+(b—a—c)e+(1+ab+c)h,
6

_1_%4_[7 _|_bi

3

~ ac
6 _1—?+ 5

And the sequences (Kgy), and (Kgy), are the auxiliary sequences that are obtained
from (K, ), and (Ky),, just only switching a < b.

1
That is, i1, = <%>§'(n+ ) (%)C(n)

U, and 0, = Un.

Proof. By using the definition of multiplication of two hybrid numbers, we have

14 bc <_> 2¢(n) b; <%>2§(ﬂ) B (g)é(") be
( > 2¢(n) QA) ;
a
+ ( (ab +2¢) + (E)Zé(") A+ (%)M A) ¢
1+

xm)Ben) =

a &(n
b

<§> (36 2

+ 5(” (( > 2+ bi+ (Z)é(n) (ab+20)€—|—(b(ab+3c))h> -2

, A<b>w> (s (o) 00) 1)

After some necessary simplifications, we get the result (3.11). Similarly we can
obtain Bz )tz (n)- O

By using the Lemma 32, we have

&g (m)Be(n) + Be(n)Xe(n)

2(Ky,o—0), ifniseven,
- { (Koo =6) (3.13)

2(Kgp—0), ifnisodd
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and
2A% (Ky —1n), ifniseven,
o - = P 3.14
s(mPe(n) = Ben)g(n) { 208 (Ko~ ), ifnisodd. (3.14)
Lemma 33. We have
Koo+ pe + 2 (Kyo +7e), if nis even,
Qe(n)de(n) = { K. e Z( wo ), fis (3.15)
50+ to+ 5 (Kgo+ ), ifnisodd
and
Ky + #e — 2 (Kyo+ve), ifniseven,
Ben)Be(n) = { K. e Z( wo %), ifni ” (3.16)
50+ #o — 5 Kgo+70), ifnisodd,
where
b
He - =—1+EC(u5+2u2—u1)+b%,
a b
o : :_1+EC <u5+25u2—u1>—1—a%
and
- bu + 2u —bu
Ye =5\ " 3= W),
1
Yo :E(u6—|—2u3—u2).

Proof. By considering the relations

0z (n)¥g(n) = 20g(n) — C (“an))

and

Be(mPe(n) = 2Pgn) —C (%(n)) /

where C <tx§(n)> is the character of the hybrid number a¢(,,) and using the rela-
tions (3.8) and (3.9), we get the desired result. O

Remark 34. 1If we take a = b = p and ¢ = g, we obtain the analogous relations for
(p,q)-Fibonacci hybrid numbers given in [18].
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Theorem 35. (Vajda’s like identity) For nonnegative integers n,r and s, we have

]Kw,n+2rle,n—|—25 - ]Kw,anw,n—f—2(r+s)

B (—c)" ABA?us, ((Kyp — 0) uos — ¢ (Ky o — 17) v2s), if n is even,
(—c)" ABA?u,, ((Kﬁ,o — 9) Yis — ¢ (Kgo — 1) 025> , ifnisodd.

Proof. From the Binet form of the bi-periodic Horadam hybrid numbers, we get

le,n—l—Zr]Kw,n—i—% - Kzu,n]I(w,n+2(r+s)

aé(n—i—Zr—&—l) aé(n—&—Zs—f—l)
= - ADC " lxi’l+27’ _ B , 1’l+27’ as
X (Aocg( n+2s — BBz an+25>
attrth) aC(n+2(r+5)+1)
- 77\ = BBe)B”) —
(ab) 2] (Ae500 ") =z
X <A0c§( ) n+2(r+s) Bﬁ ﬁn+2 r+s)>
— ﬂ —AB n+2r n+25_AB n+2s pn-+2r
B (ab)ZL%J—H—&—s A (n ‘BC p ﬁg(n)ﬂéér(n)lx B
_’_Aleg(n)‘Bé(n)lxn‘Bn-‘rz(T-’-S) _|_ AB;BC(n)aé(n)an+2(r+s)‘Bn:|
aZQ’(nJrl) .
) WAB (B)" |z BB (B — o) + Beiagina™ (4 — 7))
az’:(”‘H) n 2r 2r
=l P P (7 = B7) | Betnen®® = g B -

If n is even, by considering the relations (3.11) and (3.12), we obtain

]Kw,n—&—Zrle,n—FZs - ]Kw,n]Kw,n—i—Z(r—l-s)
q26(n+1)

RSl e (B)" (" = ") (Betnam®™ = anBem ™)
= a(za(b%AB ((xzr — ,Bzr> [(H(v,o —0) <"<25 - /525>

—%C (Kyo — 1) (aZS + 1325>}
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a? (—c)" . (ab)' (ab)®
— (gb)H's AB P Au2r {(]Kvlo — 9) ( P M2SA>
A s
——c (Ky0 —177) ((ab) 025)}
= (—c)" ABup,A* [(Kyg — 0) tgs — ¢ (Kyo — 17) vas] .

If n is odd

H(w,n+Zr]I<zu,n+25 - lKZU,n]Kw,n—l—Z(r—l-s)

- %AE (ap)" (“Zr B 52?) <5§(n)"‘é(n)"‘zs - “é(n)ﬁg(n)ﬁzs>
= %“‘B (7 = B") (Bt @™ = wemBeonF™)
_ % AB (o — ) [ (Kso— ) (a2 - %)

Thus we get the desired result. O

Corollary 36. If we take s = —r, we get the Catalan’s like identity:

le,n—f—Zr]Kw,n—Zr - IK%;,n
(=1)" "2 ABA2uy, (Koo — 8) ttay + ¢ (Kyo — 1) v2y), if n is even,
"] (=) e ABAZu,, <<]Kz7,o - 5) uny + ¢ (Ko — 1) 02r> , ifnisodd.

Corollary 37. If we take s = —r and r = 1, we get the Cassini’s like identity:

1Kw,n+2r]Kw,n—2r - ]K%u,n
B (=1)" ! ac"2ABA? (Kqyo — 0) a +c (ab+2¢) (Kuo—17)),  if nis even,
n —1)" a2 ABA2 ((Kgg —0) b+ c(ab+2¢) (Kgg — 7)), ifnisodd.
0 01

Note that for even case, the Cassini’s like identity can be stated as by means of
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the following matrix identity:

1Kw,2n+2 _Clew,Zn ] _ [KWA _Clew,Zl
1 0

n—1
ab+2c —c?
: ) N . (317)
Kuwon —cKyon-—2 Kuwz —cKyp

By taking determinant from above to down below of both sides of the matrix

equality (3.17), we get

K2+ 2Kz 2 — K2, 5, = 2172 (le,41Kw,0 - 1K§,,2) . (3.18)
By taking determinant from down below to above of both sides of the matrix
equality (3.17), we get

Kazn 2K 12 — K25, = 2172 (11<w,011<w,4 - K%U,Z) . (3.19)

Theorem 38. For n > 1, we have

i K _ C2 (le,n + ]Kw,n—l - IKw,O - IKw,—l) - IKw,nJrZ - ]Kw,n—H + IKw,2 + ]Kw,l
— c2—ab—2c+1 '

Proof. First note that by considering the formula in (3.7), the bi-periodic Horadam
hybrid numbers for negative subscripts can be defined as

Kw,—n = W—pn +W_p1i + W_p 28 +w_py3h,

where

If n is odd, we have

n—1 n+l
n 2 2
Z ]Kw,r - Z le,Zr + Z IKw,Zr—l
r=1 r=1 r=1

- p —1 2r—1
= Z (ab) <A“g(2r Bﬁg 2r ) Z (A“g 2r— 1) - BﬁC(Zr—l)ﬁ >
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N r=1 ab r=
—1 n—1
ab T+1 062 ab T+1 [32 r
+ EAO(C(erl) P (E) - FB:B(Z(erl) r:Zl <a—>
ﬁ)”zlﬁ—l_% <'B_2>nz_1+1_‘3_127
a a a a
= aAagy 2 —aBBe(ar) B2
ab ab 1
“2 "51-&-2 062 132 anl_i_z ﬁZ
BN €7 B PO 3
a &(2r-1) ‘;—Z _ ‘B &(2r-1) 5_2 1

Since ¢ (2r) =0and ¢ (2r — 1) = 1, we have
—BBop" " + BBop? (ab)”;l>

Anoa™ Tt — Aaga? (ab)nT_1

n a
I/:leKw,r = (ab)nT_l a2 — ab ‘32 —ab
ab Axia2 — Anqa (ab)nTH —BB1p" " + BB1p (”b)nTH
+ LH 2 _ + 2 —_
(ﬂb) > x© ab ,B ab

a
N (ab)"T_1 (a2 — ab) (B2 — ab) x
[(IX,B)Z (Aocooc”fl _ BIBOIBn71> _ab (A“O(xwrl . B;BO,Bn+1)

T (= (@p)” (Ao — Bpo) +ab (Awoa® — BBof?) )|

+ (ab)
n ab "

(ab)'E (a2 — ab) (B? — ab)

|(@B)? (Aaaa — BBy ") — ab (Amia"*2 — B p"2)

+ (&lb)nTH (— (xB)? <Ao¢11x_1 — B,Blﬁ_1> +ab (Awxia — Bﬁlﬁ)ﬂ

. C2 (IKw,n—l - IKw,O + le,n - ]Kw,—l) - ]Kw,n—H - ]Kw,n+2 + ]Kw,Z + IKw,l
c2—ab—2c+1 '

If n is even, we have

n

n 2 7
Z IKw,r - Z IKw,Zr + Z ]Kw,erl-
r=1 r=1

r=1

In a similar manner, we get the desired result.
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Theorem 39. For nonnegative even integer n and nonnegative integer r, we have
1 n n—i n
Z <l) (_C) IKw,2i+r = (ab) 2 Kew,ntr
i=0

Proof. From the Binet form of the bi-periodic Horadam hybrid numbers, we get
n n i
Z (l) (_C)n l]Kw,2i+r

n n n—i a§(2i+r+1) ) )
= Z ( ) (—C) (ab)w (AD&@:(V)(XZZJFY o Bﬁé(r)ﬁmﬂ’)

) 22 mo a1 iz n
:—Azxrzxr(——c) — — BBz, ’(——c)
(ab) L2 AN (ab)L2] PenP \ ap

n+rJ

aEr+D) a0+ (ap) LT

= A (Xn+r—B nr) = K n+r
(ab) L] ( ) Pef ) (ab)L2]) aftrtr D) ot
a—6(r)+E(n+r)

= ]Kw,n r = (ab %]Kw,n 7.
(I TE] oty = (00 e

3.5 Links between bi-periodic Fibonacci and Lucas

hybrid numbers

Now, we state some relations between generalized bi-periodic Fibonacci num-
bers and generalized bi-periodic Lucas hybrid numbers. We also give some rela-
tions between generalized bi-periodic Fibonacci numbers and modified general-
ized bi-periodic Lucas hybrid numbers. To do this, we consider the generalized
bi-periodic Fibonacci hybrid numbers K, ,, the generalized bi-periodic Lucas hy-
brid numbers K, ,, and the modified generalized bi-periodic Lucas hybrid num-
bers K5, which are stated in Table 3.1.
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The Binet form of K,, ,, is

¢(n+1) n_ n
Kyp = ——— (%(”)“ PemP ) (3.20)
(ab) 2] x—p
and the Binet form of K, , is
a*(?(n)
Ky = " + Brn B ) - 3.21
Also, the Binet form of K5, is
]Kff,n = b_é(r;) (066(”4_1)06” + ﬁg(n+1)ﬁn> . (322)
(ab)L2]

Theorem 40. For any natural number m, n with n > m, we have
(Z) ]Ku,n—|—1 + C]Ku,n—l = ]Kﬁ,n'

(ll) ]I(ﬁ/nJrl + C]I<Z7,n71 = (ﬂb + 4C) ]Ku,n

(—c)" (Kyo — 0) upy—m, if nand m are both even,

11) Ky, 1 Ky i — Ky Ky 1 = PR
(#17) K0 Ko, m wanom {2( )m2<]KZ70—9> Un—_m, if nand m are both odd.

(—0)" (Kyo—0), ifniseven,

AZ
0) Ky Ky — 5Ky, 1 Ky = a
(ZTJ) oniton = g Buniun { _C)Vl g (IKZ7,O _ 9) , ifnisodd.

4
4(
2 . .
2 ((]Kw + 1he) U2y + 2—2 (K0 + 7e) M2n) , ifniseven

AZ
(U) Ko,nKon + —5Kyn Ky = 2 o

a2 2 <§ (Kgo + o) v2n + ﬁ—z (Kzo+ 7o) u2n> , ifnisodd.
Proof. (i) From the relations (3.20) and (3.22), we have,

]Ku,nJrl + C]Ku,nfl

() ( ena)®" T = Beinan) 15”“)+C ab(") (“em na" = BB 1)
(ab) "7 a—p (ab) 7] x—p

_ (“a(n+1)“"“ — Be(ni)B" — ag(aina" B+ /3c<n+1)/3"“>
(n) a—p
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ab() tz(ns1)®" (& — B) + Be(ni1) " (& — P)
(n) x—p

= T il (“C(n—&-l)“n + ﬁg(n+1)5”> = K-

(i7) By using the relations (3.20) and (3.22), we have

]Kz?,n—i—l + Cle?,n—l

_ (Zj% (wena™™ + Ba(w ™) +c(’;;(+;1 (e ™" + BeyB" ™)
- bg”:”( W 4+ B, ﬁ“)—%( "B+ B B
b én:J (™1 + B 811 — "B — e )

- b“:J ) e ()

- % (a— B)? ( (n “: - [F;g(mﬁ”) _ f_;]KW — (ab + 4¢) K.

(iii) By using the Binet forms for K, , and K,,, and considering the relation
(3.13), we get the desired result.

For even n and m, we have ¢ (n) = ¢ (m) = 0. Then we get

]Ku,n ]Kv,m - IKu,m IKv,n
a

= =T ((xoa™ — Bop") (aoa™ + Bop™) — (aoa™ — Bop™) (woa” + BoB"))
(ab) 2 (a —PB)

) : ( aoaoa " + woBoa B — Boro "™ — BoPoB" )
a—p)

m —04006006”+m _ “O,Boﬁn“m + ,BO“OOC”,Bm + IBOIBOIBn—i-m

(ab) 2

a ngm _ gn,my _ g . nM _ 4 Mgm
= (ﬂb)HTm _— (xoPo (a"p™ — B"a™) — Boro (B "))
- (ab) ngma(ﬂc - B) (aoBo + Bowo) (a” " — B"a™)

S Y ) i il

(ab) 2 a—p
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2a —abc)™ u,_,, (ab) 2
— —n.Hn(IKv,O_Q)( ) n m( )

(ab) 2 g
= 2(—0)" (Kyo — 0) tiy—m-

For odd n and m, we have ¢ (n) = ¢ (m) = 1. Then we get

_ 1 ( a7 ag fra B — Brag e — B1 1 p )

—aqaq "t — @y By ™ + Braga B+ Be e

ey P W )~ (P =)
e B ) W = )

_ a(ab);lz (K50 —8) 2B (w:‘_’”ﬁ— g

_ 2,”2",_1 <1Kz7,0 - 5) (—abc)™ u,;_m (ab)" 2"

= (_C)m 2a_b <]Kz7,0 - é\> Upn—m-

iv) By using the Binet forms for K, ,, and K, ,;,, we have
y g , ,

A2
]Kv,anv,n - E]Ku,nIKu,n
g —26(n) : 2 A2 g0 e at — B B
R e
(ab)ZL%J <“C( )+ PenP > a? (ab)ZL%J a—p
a_zér(n) n n 2 n n
ol ((“an)“ +ﬁ¢<n>ﬁ> —(“a " = Bem)P ))
a_2§(n) n m n
= ol [”‘C(ﬂ)“é(n)“ + BemPem B + (2B) (“f;(n)ﬁc(n) +ﬁ¢<n>“é<n>)
gz = Ben)Ben B + (4B)" (e(nBen) + B () |
q—26(n
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4“(_2(:)(") (aB)" (Kyo—0), if n is even
4 2 ()" (lKgO—§>, if 1 is odd

2¢(n)
(vl 3]
:{<>
c)"

AZ
]Kv,n ]Kv,n + ;]Ku,n ]Ku,n

a—28(n)

B . a \2 A_2u2r§(n+1) ag ()" — Bem)B"
= _(ab)zl [ ( e + Ben 5) 2 (gp2Ld] ( Py )

) (Z;)ZE(L;J ((“é<n>w"+ﬁé<n>ﬁ")2+ (#5012 = B n>2>

5
(Kyo—0), if n is even
Z (]Kgo — A) , if nis odd

0

_ W[ag %@+ Ben Be(ny B2 + ()" (ag \Be(n) + Beim e (n )
g (@™ + Be(n Ben B — (ap)” (“ (n)Be(n) +5¢<n>“¢<n>>]

= (a;% (emy@rzn ™" + Be(n Been) B
(22 (Koo e (Kup+0)) o

2 ((lKa,o + #o + 5 (Ko + %)) a

+ <]Kv,0 + Ue — % (K0 + ’)fg)) ,32”> , ifn iseven

(Koo o (Kao +70)) B), ifnisodd

ﬁ ((]Kv,o + pe) (@ + B2) + & (Kyo + 7e) (2" — /32”)) , ifniseven
B —(j;)ﬁl <(1K6,0+Plo) (a2 + B2) + 2 (Kgo + 7o) (a2 —,62”)>, if n is odd

B 2 ( (Kyo + pe) v2n + ﬁ—z (K0 + Ye) u2n> , if n is even
2 (% (K0 + po) v + §—22 (Kzo+ 70) u2n> , ifnis odd.

By considering the relations (3.13), (3.15), and (3.16), we get the desired result.

g



CHAPTER

BIVARIATE r-FIBONACCI AND r-
LUCAS HYBRID POLYNOMIALS

[3]

In this chapter, we introduce a new generalization of Fibonacci and Lucas hybrid
polynomials. We investigate some properties of these polynomials [3].

41 Introduction

Similar to the quaternion multiplication, the hybrid number multiplication is
noncommutative. The set of hybrid numbers form a noncommutative algebra.
For more details of hybrid numbers, see Ozdemir’s paper [57].

Recently, Szynal-Liana [74] introduced the Fibonacci hybrid polynomials (alias
hybrinomials) as

FH, (x) =F (x)+Fn+1 (x)i+Pn+2 (x)8+Fn+3 (x)h/ n=>0, (4~1)

where F, (x) is the n'" Fibonacci polynomial (see [49]) defined by the recurrence
relation
Fu(x) =xF,_1 (x) + E,—2 (x), n>2,

with initial values Fy (x) = 0, F; (x) = 1. In [43], Kizilates defined the Horadam

71
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hybrinomials which generalize the Fibonacci hybrinomials. Several studies re-
lated to hybrid numbers with generalized Fibonacci number coefficients can be
found in [18, 46, 65, 66, 72,73, 75,76, 77, 79] and for a recent study related to the
generalized Fibonacci numbers and polynomials we refer to [5]. It is also worth
noting that, in the literature there exist another type of hybrid polynomials which
are related to the families of special functions such as the Laguerre and the Her-
mite polynomials, see [24]. We should note that our approach will be different
from that polynomials.

This work has been intended as an attempt to introduce a new class of hybrid
polynomials which are so-called "r-Fibonacci hybrid polynomials and r-Lucas hy-
brid polynomials of type s". They give a natural generalization of the Fibonacci
and Lucas hybrinomials. We give the generating functions, the Binet forms, ma-
trix representations and several basic properties of these hybrid polynomials. A
relation between r-Fibonacci hybrid polynomials and r-Lucas hybrid polynomi-

als is also given.

Now we start by recalling some basic results concerning to the r-Fibonacci poly-
nomials and r-Lucas polynomials of type s. For the detailed information related
to these polynomials, we refer to [1, 61].

Let r > 1 be any integer, and lets = 1,2,...,r. The bivariate r-Fibonacci polyno-
mials (T,S”) = <T7(lr) (x,y)> are defined by
n n

0 —atlatl, e @2
(r)

with initial conditions Ty’ = 0, T}Sr) = x*1 for k = 1,2,...,r. Their com-

panion sequences, the bivariate r-Lucas polynomials of type s, (Z,(f’s)> =
n

<Z,€f’s) (x, y)) _ are defined by

z{*) = xz\") 4 yz") n>r41 (4.3)
with initial conditions Zér’s) =s+1, Zlir’s) = xFfork=1,2,...,r. Ttis clear that if

we take r = 1,5 = 1, then these polynomials respectively reduce to the classical
bivariate Fibonacci and Lucas polynomials, see [10].
If we take x = y = 1, they reduce to the r-Fibonacci and r-Lucas numbers.

The Binet forms for the bivariate r-Fibonacci polynomials and the bivariate r-
Lucas polynomials of type s are
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(r) r+1 D‘I]Z
T, = 4.4
" kzzl(rqtl)txk—rx (44)
and )
+
(rs) _ o (s +1Dag —sx
o= L e 9

respectively. Here ay are the distinct roots of the polynomial R(t) = t"+1 — xt" —y.
For details see [1].

In this study, we introduce bivariate r-Fibonacci hybrid polynomials and bivari-
ate r-Lucas hybrid polynomials of type s. We give the generating functions, the
Binet forms, matrix representations and several basic properties of these hybrid
polynomials. Some relationships between the r-Fibonacci hybrid polynomials
and r-Lucas hybrid polynomials are also given.

4.2 Bivariate hybrid polynomials

In this section, we give the definition of r-Fibonacci hybrid polynomials and r-
Lucas hybrid polynomials of type s. We give the generating functions, the Binet
forms, the summation formulas of these polynomials. Also, we establish a rela-
tion between the r-Fibonacci hybrid polynomials and the r-Lucas hybrid polyno-
mials of type s.

Definition 41. For n > 0, the r-Fibonacci hybrid polynomials K , is defined by the
recurrence relation

— 1)+ T i T e+ T n >0, (4.6)

]KT(’) +1 n+2 n+3""

M

where Tr(,r) is the n'" r-Fibonacci polynomial. The r-Lucas hybrid polynomials of type s,

Ky (s) ,, is defined by the recurrence relation

Ky, = 25 + 207+ 200 + 2050n, n>0, 4.7)

(r)5)

where Z,, " is the n'" r-Lucas polynomial of type s.

In the following table, we state some special cases of r-Fibonacci hybrid polyno-
mials and r-Lucas hybrid polynomials of type 1.
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x |y|r|s ]KU(’),n ]KV(M)/ "

x |y | 1|1 | bivariate Fibonacci hybrid polynomials | bivariate Lucas hybrid polynomials
x | 1]1|1 | Fibonaccihybrid polynomials [74] Lucas hybrid polynomials [74]

2x | 1|1 | 1 | Pell hybrid polynomials [77] Pell-Lucas hybrid polynomials [77]
m | 1| p|p| gen. hybrid Fibonacci p-numbers [46] | gen. hybrid Lucas p-numbers [46]

1 | 1] p| p | hybrid Fibonacci p-numbers [46] hybrid Lucas p-numbers [46]

1 |1]1]1 | Fibonaccihybrid numbers [73] Lucas hybrid numbers [72]

2 |1|1 |1 | Pell hybrid numbers [75] Pell-Lucas hybrid numbers [75]

1 | 2|11 | Jacobsthal hybrid numbers [76] Jacobsthal-Lucas hybrid numbers [7

Table 4.1: Special cases of bivarite polynomials.

4.3 Generating functions

We state the following lemma, which is useful to obtain the generating functions
of r-Fibonacci hybrid polynomials and r-Lucas hybrid polynomials of type s.

Lemma 42. The r-Fibonacci hybrid polynomials and r-Lucas hybrid polynomials of type
s satisfy the following relations

= xKr¢) ,q + YKo 1 for n>r+1. (4.8)

I/l r—

and
KZ(VfS),n = XKZ(rfS),n—l + y]KZ(’fs),n—r—l for n>r+1. (4.9)

Proof. By using the definition of r-Fibonacci polynomials, we have

o= T AT i T e+ TV
(T 4T+ T+ y T, )i+ (T 49T, e

+ (T YTy, )

x(TV )1+T,£ it T e+ T ) +y(T,  + T+ T e+ T
XH< n 1%—yﬁ<

K

Nn—r—1°

Thus, we get the desired result.
The relation for the r-Lucas hybrid polynomials of type s can be proven similarly.
So we omit it here. O

r+2h)
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Theorem 43. The generating functions for the r-Fibonacci hybrid polynomials and r-
Lucas hybrid polynomials of type s, G (z) and H (z) are given by

,
(1 — Xz — yz”l) G(z) = 2 ( — Ky, 1) " (4.10)
and
1 - r
(1 —xz—yz'" ) H (z) = Ky 9+ ) (]Kz<rs> n— Kz 1) @1
n=1
respectively.
Proof. Let
G (z) = Z ]KT(,WZ” =K ot K N1z + K 2z 4.+ IKT(r)’nz” + ..
n=0

Since K¢ , = K, 1 + YKy, , g forn >r+1, we get

(1 — Xz — yzr“) G(iz) = Y Ko 2" — x Z Ko o2 4y Y Ko 2"
n=

n=0 0
e0)
= z:]Kﬁ" Z —X Z:]K: ) n— 1Z —Y z: ]K: ) n—r— 1Z
n=0 n=r+1
r
n n
= K 2" = x Z Krt) 12
n=0 n=1
o
+ z: <H<T“%n _-XH<T“ yE( ) n—r— 1) z"
n=r+1
r r

= Z ]KT(’),nZn —X Z I[<T<’),n—lzn

n=0 n=1

r
— IKT(Y)’O + Z (H(T(r),n - xH(T(r),n_1> Zn.
n=1

The generating function for r-Lucas hybrid polynomials of type s can be proven
similarly. So we omit it here. O
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4.4 Binet forms

Next, we state the Binet forms for r-Fibonacci hybrid polynomials and r-Lucas
hybrid polynomials of type s and by using these forms, we derive some proper-
ties of them.

Theorem 44. The Binet forms for the r-Fibonacci hybrid polynomials and r-Lucas hybrid
polynomials of type s are

K., = 412
T0)n = (r+1)ay —rx (4.12)
and :
s (s +1)ay — sx
Koo, = Tt , 4.13
Z(s) k_zlwk“k (r +1)ay —rx (4.13)

respectively, where af =1+ ayi + age + ah.

Proof. By using the definitions of the sequences (K ,)n, (K¢ ,)n and the Bi-

net forms of (T,Y) )n and (Z,(f’s) )n, we have

_ () (r) (r) (r)
Kroyy = Tn' + T, i+ T, he+ T, 5h

r+1 ol r+1 an—&-l r+1 lxn+2

= ) . +y £ i+Y k
S+ Dag—rx - 2 (r+1ag —rx = (r+Dag —rx
r+1 a}?{l+3

+
k:zl (r+1)ay —rx

Ti} ol + ch“i + ocZHs + al’:%h

= (r+1)ag —rx

1wl (1 + ayi + ade + adh)

- ¥

= (r+1)ay —rx
= rf at [1 + i + e + zx3h]
=+ Dag —rx k k
_ ”21 wio
=+ Dag —rx’

For the r-Lucas hybrid polynomials, we have

Ky = 27+ 2400 2400 20



4.4. Binet forms 77

_ ”’i n (5 + Doy — sx r+1an+1(s+1)o¢k—sx z+r§¢x"+2( s+ 1)ayg —sx
= F(r4+ 1)y —rx = Foo(r 4+ Day —rx (r+1)ag —rx
o (s +1)ay — sx

+ a3
k_zl koo(r+1)ag —rx

_ rf (! +af i+ af T2e + a P3h) (s + 1)y — sx)
= (r—l—l)txk —rX

_ ”i (14 ayi + ae + adh)((s + 1)ag — sx)
= (r+1)a, —rx
r+1 1 _

= ) of (s Da = sx [1 + i + age + zx,fh]
= (r+1)ay —rx

_ Hzl wla! (s+1)ag — sx
= (r+1)ag —rx

Which gives the desired results. O

The link between the r-Fibonacci hybrid polynomials and r-Lucas hybrid poly-
nomials of type s can be given in the following result.

Theorem 45. The r-Lucas hybrid polynomials of type s can be expressed in term of r-
Fibonacci hybrid polynomials as

Ky, = Koo ) i + syK n>r+1. (4.14)

M n r’

Proof. Using the Binet forms of r-Fibonacci hybrid polynomials and r-Lucas hy-
brid polynomials of type s, we have

r+1 n+1 r+1 * =T
L Ky &g

K., K¢ =
T 1 1 SYRT0) 4y k_zl(r—i—l)zxk rx ]/Z (r+1)ay —rx

r+1 (Xk ”H—Fsy(xkocz r

- ¥

= (r+1)ay —rx

r+l wpof (o 4 sya ")

- ¥

= (r+1Dag—ra

B ”i wia! (s+1)ay — sx
= (r+1)ay —rx

- IKz(r,s)

M

Because a = x +ya, " then ay +sya, " = (s + 1)ay — sx. O

Next, we give some summation formulas for Ky , and Ky , in the following
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theorem.

Theorem 46. For m > 0, we have

i]K _7§ lxk( ZH_l 1) (4 15)
= T TOn &+ D)ad— (r(x+ 1)+ Day +rx '
and m r+1 1 _ m+1_ 1
Z K _ le* ((s 4+ D)ay — sx)(ay ) (4.16)
e i A R
Proof. Using the Binet form of Ky ,, we get
m r+1 kot
K., = KXk
I 2 B e
r+1 le ‘XZH_l 1
- kz(r+1)txk—rx ap—1
B VZ af (att — 1)
B (r+Da = (r(x+ 1) + Dag +rx’
And from Binet form of K, ,, we get
m m r+1 ( 4 ) Sx
K (r,5) = (X*(Xn
_ ”ilxz(s—kl)ock—sx i“;{,
=+ Dag —rx [
B ”i s—l—l)zxk—sx)(a,’f“ -1)
A k r+1) —(r(x+1)+Dag +rx’
O

4.5 Matrix representation

In this section, we give a matrix representation of r-Fibonacci hybrid polynomials.
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_ 0 0y .
1 0 00
LetQ,:=| 0 1 . : : | beamatrixofsize (r+1)x (r+1).
: 00
I O --- 0 10 |
For n > r, it can be verified that
(r) (r) (r) (r)
Tn(—l—)l yTnzr)—&-l T yTi’(l—)l ]/T(n)
r r r r
Qn _ Tn yTn—r yTn—z yTn,l
r . . . . .
) (n (n (n
T;gr—)rﬂ yTn—ZH-l YL YT
with T\") =0, for j = —1,-2,....
Now, let’s define the matrix
Krn s VKoo porpr 0 VKgomr YKgo,
K (n):= K1, VK10 r YR10) o YKoy g
H<T(’>,n7r+1 y]KT(r),nf2r+1 T leT(r),nfrfl y]KT(’),nfr
For any nonnegative integer n > r, we have
K (n) =K (0)Qy. (4.17)

By taking the determinant of both sides of the matrix equality (4.17), we get the
generalized Cassini’s identity for the r-Fibonacci hybrid polynomials as

detK (n) = (—1)" y" detK (0). (4.18)
Remark 47. If r = 11in (4.18), we get

2 _ n 2
Ky 1 Ky g = Ky, = (=1) (]KT(U,llKT(l),fl - 1KT<1>,0> : (4.19)

By using the matrix identity (4.17), we get the following theorem which can be
seen as a generalization of Honsberger formula.
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Theorem 48. For n,s,t > r, we have

r—1

Krosrr = KpooKro o Y 3 Ko Ko e (4.20)
j=0

r—1
— (r) (r)
Krosse = T 1KT<r>,t+1+y§Ts_r+leT<r>,f_j- (4.21)
]:

Proof. Let K := K(0), considering the matrix equalities
(KQ:™) K = (KQy) (Q:K)
and
(KQy™) = (KQ7) Qr,

then equating the corresponding entries, we get the desired results respectively.
O

Remark 49. If r = 1, the identities (4.20) and (4.21) reduce to the classical bivariate
hybrid Fibonacci polynomials as

Ko spr = Kooy Ky ppq YKy 1K) 4 (4.22)
1
Krasie = ! )H(T(l),t+1 +yTs(i)1]KT(1),t' (4.23)



CHAPTER

HYPER-DUAL HORADAM
QUATERNIONS [4]

This chapter deals with developing a new class of quaternions, called hyper-dual

Horadam quaternions which are constructed from the quaternions whose compo-
nents are hyper-dual Horadam numbers. We investigate some basic properties of
these quaternions. The main advantage of introducing the hyper-dual Horadam
quaternions is that many hyper-dual numbers with celebrated numbers such as
Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers can be
deduced as particular cases of the hyper-dual Horadam quaternions.

5.1 Introduction

Horadam [35] introduced the quaternions whose components are Fibonacci num-
bers. More generally, by using Horadam’s approach, Halic1 and Karatas [32] de-
fined the n*" Horadam quaternion as

QW,n =W, + WnJrli + Wn+2j + Wn+3kz n>0,
where (W), ),, is the Horadam sequence [36] and is defined by

Wi = pWy1 +qWy—2, n=>2,

81
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with the arbitrary initial values Wy, W; and nonzero integers p,q. It is clear
to see that the Horadam sequence (W), := (W, (W, Wi;p,q)), general-
izes many well-known integer sequences such as Fibonacci sequence (F,), =
(W, (0,1;1,1)),, Lucas sequence (L,), = (W,(2,1;1,1)),, generalized Fi-
bonacci sequence (U, ), = (W, (0,1;p,q)),,, and the generalized Lucas sequence
(Vi), = (Wn(2,p;p,9)), - The Binet form of the Horadam sequence (W), is

n__ n
W, — Aa" — B ’
«—p
where
A= W1 — W()‘B and B := W1 — WolX.
Here o = PV VZPZHq) and g = w are the roots of the characteristic poly-
nomial
x* — px —gq,
that is
ap=-—q, a+p=p
and
A:=a—B=1/p>+4q,
with

p? +4q > 0.
The Binet form for the Horadam quaternions is

Axta — B‘B*‘Bn
a—p !

where a* = 1+ ai + a%j + a’k and B* = 1+ Bi + B%j + B°k. For details, see [17, 84].

QW,n -

(5.1)

Also, Nurkan and Guven [55] introduced the dual Fibonacci quaternions by tak-
ing dual Fibonacci numbers instead of real numbers as coefficients. These num-
bers can also be seen as dual numbers with Fibonacci quaternion coefficients. A
generalization of dual Fibonacci quaternions can be found in [83]. In [42], the
author introduced the dual Horadam quaternions as

QW,n = Wn + Wn—|—1i + Wn+2j + Wn+3k1 n >0,

where W, = W, + Wi, 41€ is the nt" dual Horadam number. Recently, in [56],
the authors defined the hyper-dual numbers whose coefficients are from the se-
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quences (), and (Vi,), which reduce to the sequences (W, (0,1;p,1)), and
(Wn (2,p;p,1)),, for k = 1, respectively.

In this chapter, motivating the definition of hyper-dual split quaternions in [6], we
consider the quaternions whose coefficients are taken from hyper-dual Horadam
numbers. To do this, first we define the hyper-dual Horadam numbers, then we
introduce the quaternions whose coefficients are taken from those numbers. We
give the generating function and the Binet form for hyper-dual Horadam quater-
nions. Some algebraic properties of these quaternions such as Vajda’s identity,
Catalan’s identity, Cassini’s identity and d’Ocagne’s identity are derived with
the aid of the Binet form. Moreover, we develop some matrix identities involving
the hyper-dual Horadam quaternions which allow us to obtain some properties
of these quaternions.

5.2 Hyper-Dual Horadam quaternions

In this section, first we define hyper-dual Horadam numbers, then by using these
numbers we introduce hyper-dual Horadam quaternions and investigate the ba-
sic properties of these quaternions.

Definition 50. The n'" hyper-dual Horadam number is defined as
Wy = Wy + Wyi181 + Wioez + Wyyseren, n =0,

where Wy, is the n'" Horadam number and e1, e are dual numbers satisfying the multi-
plication rules in (1.36) .

Definition 51. The n'" hyper-dual Horadam quaternion is defined as
Qw,n - Wn + I//\\/n—l—li + Wn+2j + Wn+3kz n >0,

where W, is the n'" hyper-dual Horadam number and i, j, k satisfy the quaternion multi-
plication rules in (1.34).
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In the following table, we give the types of quaternions which are mentioned in

this chapter.
| Type of quaternion | Definition
Horadam quaternion [32] Ow.n = Wy + Wyp1i + Wypoj + Wyysk,

W,, is the n" Horadam number

Dual Horadam quaternion [42] @W,n =W, + Wn+1i + V~\7n+2 j+ Wn+3k,
W, is the n" dual Horadam number

Hyper-dual Horadam quaternion QW,n =W, + Wn+1i + Wn+2j + Wn+3k,
W, is the n'" hyper-dual Horadam number

Table 5.1: Type of quaternions.

Note that the n*" hyper-dual Horadam quaternion can be expressed as

Qw.n = Qwn + Qw181 + Qw262 + Qw nt3€1€2, n >0,

where Qy , is the n'" Horadam quaternion, and 1, ¢, are dual numbers. The
addition and the multiplication of two hyper-dual Horadam quaternions QWM
and QW,m are defined as

Qwin + Qwm = (Qwn + Qw,m) + (Qunt1 + Qwom+1) €1
+ (Qwnt2 + Qwm+2) €2 + (Qw, 3 + Qw,m3) €1€2,
Qw,nQw,m = QwnQw,m + (QwnQw,m+1 + Qw,nr1Qw,m) €1
+ (Qw,n Qw,m+2 + Qw,n2Qw,m) €2
+ (Qw,nQw,m+3 + Qw,n+1Qw,m+2 + Qw,n+2Qw,m+1

+Ow,n+3Qw,m) €1€2,

respectively.

The norm of a hyper-dual Horadam quaternion len is defined as
N(Qwn) = QwuQwn = QwuQwn = Wi + Wiy + Wi, + Wi s,

where 5W’n =W, — WnHi — Wn+2j — Wn+3k is the conjugate of Qw,n- Also the
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norm of QW,n can be obtained by the determinant of the matrix

~

Wn + Wn—Hi - An+2j - Wn+3i
Wn+2j - Wn+3i Wn - Wn+1i

Theorem 52. The hyper-dual Horadam quaternions satisfy the following relation:

QW,n = pQW,n—l + QQ\W,H—Z/ n>2.

Proof. From the definition of the hyper-dual Horadam quaternions and the Ho-
radam quaternions, we have

POwWn—1+4Qwn—2 = P (Quwn—1+ Qwue1 + Qw nr1€2 + Qw nr2€1€2)
+q(Qwn—2 + Qwn-181 + Qw2 + Qw,nt1€1€2)
= (PQw,u—1+9Qw,n—2) + (PQw,n +9Qw,n—1) €1
+ (PQw, 1 +9Qw,n) €2 + (PQw,n12 + 9Qw,n11) €162

= Qw,n + Qwnt+1€1 + Qw282 + Qw nr3€182.

5.3 Generating function

In the following theorem, we state the generating function for the hyper-dual

Horadam quaternions.

Theorem 53. The generating function for hyper-dual Horadam quaternions, G(x) is
given by
(1 —px - qx2> G(x) = Qwo + (QW,l - pQW,O) X.

Proof. Let
G(x) := Z lenx” = Qw,o + Qw,lx + Z Qw,nxn-
n=0 n=2

From Theorem 52, we have
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<1 —px - qxz) G(x) = Qwo+ Qwax + Y Qwax"
n=2

(o) o
—POwox —p Y, Qwu-1X"—q ) Qwu_ox"
n=2 n=2

0+ Qw,i1x — pQw,ox

= Qw

+ i (an - PQW,n—l — q@W,n_z) x"
n=2

= Qw,o + (Qw,1 — P@w,()) X.

Thus, we get the desired result. O

5.4 Binet form

The Binet form of the hyper-dual Horadam quaternions is given in the following
theorem.

Theorem 54. The Binet form of hyper-dual Horadam quaternions is

R A(X*QDCH—B[S*[;,B”
QW,T’Z: — 7
a—p
where
* . 2. 3 * . 2. 3
o =14ai +aj+a’k, B =1+4+pi+ B+ Bk,
a =1+ aeq + a?ey + a’eqen, B = 1+‘B€1+ﬁ282+ﬁ38182.

Proof. From the Binet form of Horadam quaternions in (5.1), we have

Qwin = Qi + Qwns1€1 + Qw22 + Qw uta€1€2
(Aﬂc*ﬂcn—Bﬁ*ﬁn) (AO(*OL”+1—B,B*[3H+1)
+ €1
a—p «—p
Aa*a" T2 — Bg*g"nt+2 An*a*t3 — Ba*pn+3
+( BB )€2+< B*B )3132
a—p a—p
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Aa*al BB*B"
= aa_o;; (1 + weq + a%er + zx3€152> — ‘Xﬁ_‘Bﬁ (1 + Bey + ,3282 + ﬁ35152>
Ax*an™ — BB*Bp"

a—p
O

From Theorem 54, the Binet forms of the hyper-dual generalized Fibonacci and
Lucas quaternions can be obtained as

N B “*&“n_ﬁ*éﬁn

Un — 0(—,3

and Qy, = a*an” + B*BB",

respectively.

By using (5.4), we obtain the following relation between the hyper-dual Fibonacci
quaternions and the hyper-dual Lucas quaternions.

Theorem 55. Let n be a positive integer. For hyper-dual Fibonacci quaternions and
hyper-dual Lucas quaternions, the following equality holds:

Qvn = Qun+1 +9Qun-1, n>1.

Now, we need the following lemma which allows us a remarkable simplification
for obtaining the properties of hyper-dual Horadam quaternions.

Lemma 56. Let 6 :=1—q+¢> —q>and w := (1 —q)i+ (1+ p? +q) k. Then we
have

&é = V() — (1 -+ pqelsz),
2" B* = Qvo—0—Aq(Quo—w),
B*a* = Quo—0+Aq(Quo—w).

Proof. The proof can be done by using the multiplication rules in (1.34) and (1.36).
We should note that the set of hyper-dual numbers form a commutative algebra.
Therefore we have af = Ba. But since the quaternion multiplication is noncom-
mutative, a* f* need ot be equal to B*a*. The results for a*f* and p*a* can also
be found in [17, Lemma 1]. a
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Theorem 57. (Vajda’s Identity) For integers n,r and s, we have

QW,n+rQW,n+s - QW,nQW,n+r+s
= AB(=q)" (Vo — (14 pgese2) ) Ur ((Quo = 0) Us +4 (Quo — @) Vo).

Proof. From the Binet form of hyper-dual Horadam quaternions, we have

N <QW,n+rQW,n+s - QW,nQW,n+r+s)
= (Awaa" — Bp*pp) (An'aa — BEpp)
- <Aa*@tx — BB pp" ) (A(x an™ S — BB éﬁWﬂ)
— A2 (“*@2 p2ntrts ABa*ﬁ*géa”+r,B”+s N ABﬁ*tx*é&(x”Hﬁ”H
4 B2 (ﬁ*é>2ﬁ2n+r+s _ A2 (“*&)2 Q21Hrs 4 ABIX*’B*&E“nIBnJrY+S

+ ABB*a*Bap"a" " — B <ﬁ*é>2 BT+
= AB (a’[«})”&é (IX*‘B* (_lxr‘Bs + ‘BT+S) + Bt (—Dés’Br n (X,,Jrs)) .

By using Lemma 56, we have

Qw,n+rQwnts — QW aQw,ntris
= A% ) B (-0 BB (W — )+ e (0 )
= 20 () apl, (e — )

= 28 ()" apl, (Quo — 0+ A (Quo — w)) @

N % (=)" aBU; (Qvo — 0 — Ag (Quo — w)) p°

= AB(—q)" (‘70 —(1+ Pq€1€2)> Ur ((Qv,o = 0) Us + 4 (Quo — w) Vs)

From Theorem 57, we have the following results:
If we setr — —s, we get the following Catalan’s identity for hyper-dual Horadam

quaternions:

QW,n—sQW,n+s - Q\%V,n
= —AB(—q)"’ (‘70 —(1+ Pq€1€2)) Us ((Qv,o—0) Us +q (Quo —w) Vs).
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—u,
()"

If we set s = —r = 1, we get the following Cassini’s identity for hyper-dual

Here note that U_,, =

Horadam quaternions:

Qw,n-1Qwn1 — Qly
= —AB (_q)n—l (‘70 — (1 + pq€1€2)> (QV,() — 0+ pq (QU,O —w)). (6.2)

If we sets — m —n, and fix r = 1, we get the following d’Ocagne’s identity for
hyper-dual Horadam quaternions:

QW,;H—l QW,m - QW,nQW,nH—l
ZABbﬂV(Wr%1+P%wﬂ)«Qmu—wtmﬂrﬂﬂQuo—w)wkﬂ-
Next, we give some summation formulas for hyper-dual Horadam quaternions.
Theorem 58. For n > 2, we have

n-1 __ Qw.n Qw1+q<QWn 1—Qw0>
= p+q—1

Proof. From the Binet form for hyper-dual Horadam quaternions, we have

n—1 R n—1 A‘X*&“T’_B‘B*’BIBT A x., n—1 1’ Bﬁ IB
;QW,rZZ Dé—ﬁ — :aiéz

r=1 r=1
_ Aw'x (a"—a)\ BPB B —B
0B,
= oA (A Bﬁ*éﬁ”>

—q (A" — Bp"pp" ") +q (Aa'a — BB'B)
+ (Aa*aa — BB*BB) )

~

_ —Qwu— 9Qw,n-1 + 9Qw,o + Qw,
l-p—q




5.4. Binet form 90

Theorem 59. For nonnegative integers n and r, we have

" (n B ~ -
Z (m qn mmeW,m—H - QW,2m+r-
m=0

Proof. From the Binet form for hyper-dual Horadam quaternions, we have

n A n N A[X*gﬂcm—i_r—Bﬁ*ﬁﬁm—H
Z(Z)q p Qw,mH:Z(Z)q p < P )

m=0 m=0
¥ 7 N BB* r n
= i“_ﬁg Y (Z) q"" (pa)" = f _ég X (Z) q"" (pB)"
= iﬁﬁgr (q+pa)" = f_—g (9+pB)"
A“*K“Zn—l—r _ Bﬁ*éﬁZn—l—r R
- A ‘B - QW,2m+r-

O

Finally, we give some matrix representations for hyper-dual Horadam quater-
nions and derive some properties of hyper-dual Horadam quaternions by using
matrix approach.

W W,
Let's define the matrices U:= | © 17 , W= nt2 47 Vn+1
10 Wn+1 an

known that for the Horadam numbers, we have the matrix equality:

] . It is well-

WoU" = W,,. (5.3)

For details, see [84]. Now, let’s define the matrix My ,, :=

Qw,mz qéw,nﬂ
Qwut+1  9Qw,n
Considering the relation (5.3), we have the matrix equalities
My oU" = My, (5.4)
and

Mo (WOU”_l) = My, (5.5)

which can be proven by using induction.
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Theorem 60. For integers n,m > 1, we have the following equalities:

QW,m+n = Qw,m+1un + q/Q\W,mun—lr 5.6)
QW,m+n - WnQU,m—H + qwn—lQU,m- (5-7)

Proof. From the matrix equality My (U2 = (My o(U" 1) U""!, we have

U, qU,—
Uy qunfz

| Qwmsr 9Qw,m

QW,m—i—n qgw,m—i—n—l _ 4 1>
Qwm  9Qw,m-1

QW,m+n—1 QQW,m—i—n—Z

By equating the corresponding entries of both sides of the matrix equation, we
get the identity (5.6).

Now, consider the matrix equality My (WoU™™"72) = (WoU"~1) U~ 1My .
Then we have

Q\K\/,ernJrl ‘z\Q\W,m+n _ | Warr qWa
QW,m—l—n QQW,m—&—n—l Wn anfl

QlAJ,mH qAQUm
Qum 9Qu,m—1

Similarly, by equating the corresponding entries of both sides of the above matrix
equation, we get the desired result in (5.7). a

From the matrix equalities (5.4) and (5.5), one can obtain several results for the
hyper-dual Horadam quaternions. For example, if we take the determinant of the
both side of this matrix identity (5.4), then we get the Cassini’s identity in terms
of hyper-dual Horadam quaternions as

Qwn—1Qwnr1 — Qfy » = (—q)" " (Qw,oéw,z - Q%/m) : (5.8)

Note that different from the identity (5.2), here the right hand side of the equation
(5.8) is expressed in terms of only the hyper-dual Horadam quaternions.



Conclusion and Perspectives

Along this thesis, we first gave some necessary definitions and mathematical pre-
liminaries, which are required. Then, for r a positive integer, we studied genereal-
ized bi-periodic r-Fibonacci sequence and defined the family of their companion
sequences named the bi-periodic r-Lucas sequence of type s, with s an integer
such that 1 < s < r. After that, we gave their algebraic properties.

Afterwards, we introduced the bi-periodic Horadam hybrid numbers and gave
the generating function, the Binet form, matrix representations and several basic
properties of these hybrid numbers such as Catalan’s identity, Cassini’s identity;,
etc. In addition, we developed some relationships between the generalized bi-
periodic Fibonacci hybrid numbers and the generalized bi-periodic Lucas hybrid
numbers. Furthermore, we introduced r-Fibonacci hybrid polynomials and r-
Lucas hybrid polynomials as a generalization of the bivariate r-Fibonacci polyno-
mials and bivariate r-Lucas polynomials of type s. We derived several intresting
properties. As an application of matrix method, we have derived a generalization
of Honsberger formula. Finally, we defined quaternions whose components are
hyper-dual Horadam numbers. The main advantage of introducing hyper-dual
Horadam quaternions is that many hyper-dual numbers and celebrated numbers
such as Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers
can be deduced as particular cases of hyper-dual Horadam quaternions. We gave
the generating function and the Binet form for these quaternions. With the help of
the Binet form of hyper-dual Horadam quaternions, we derived many properties
of these quaternions, such as summation formulas, binomial sum identities, Va-
jda’s identity, Catalan’s identity, Cassini identity and d’Ocagne’s identity. Also,
by means of the matrix representation of hyper-dual Horadam quaternions, we
examined several identities for these quaternions. The algebra of quaternions is
noncommutative, whereas the algebra of hyper-dual numbers is commutative.

Therefore, it was interesting to study a special type of numbers involving both
quaternionic and hyper-dual units. For the interested readers, the results could
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be applied for higher order hyper-dual numbers which were given in [23].

Some challenging questions are part of interest, we put some perspectives which
can be studied in our future research works.

1. Extending the sequences (u,S”)n and (Vn(r’s))n defined and studied in the
chapter 2 to the negative subscripts.

2. Defining a tri-periodic sequence and study further multi-periodic general
cases. For any nonzero real numbers 4,b,c, the tri-periodic Fibonacci se-
quence (&,), is defined by

a6, 1+6,-3, if n=0(mod 3),
Sp=14q b6, 1+6,_3 if n=1(mod 3),
S, 1+6,-3, if n=2(mod 3),

for n > 3, with initial conditions &, 1, S;. We are intrested to estabilish
its linear recurrence relation, generating function, Binet forms and some
properties.

3. Estabilishing other linear recurrent sequences of higher order and define
further new numbers, using the matrix representation to study more alge-
braic properties.
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