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NOTATIONS

Z Ring of integers
Fq Finite field of q elements
F∗q Cyclic group of nonzero elements of Fq
Fn

q Vector space over Fq of dimension n
Fq[x] Polynomial ring over Fq
Fq(α) Smallest extension of Fq containing both Fq and α
Fq[U] Smallest extension of Fq containing both Fq and the matrix U
ord(α) Multiplicative order of α in F∗q
orde(q) Multiplicative order of q modulo e
Trqm|q Trace function from Fqm onto Fq
Trq Absolute Trace function from Fq onto Fp
ϕ Frobenius automorphism
Matr×r(Fq) Ring of matrices of size r× r with coefficients in Fq
Min(α, Fq)(x) Minimal polynomial of α over Fq
[Fqn : Fq] Degree of the extension Fqn /Fq
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INTRODUCTION

The theory of finite fields is a branch of modern algebra that has applications in various
areas of theoretical and applied mathematics. Its origins can be traced back into the 17th
and 18th century, with the work of Pierre de Fermat (1601-1665), Leonhard Euler (1707-1783),
Joseph-Louis Lagrange (1736-1813), and Adrien-Marie Legendre (1752-1833) contributing to
the structure of a special finite fields, the so-called finite prime fields. The general theory of
finite fields may be said to begin with the work of Carl Friedrich Gauss (1777-1855) and
Evariste Galois (1811-1832), but it only became of interest for applied mathematicians in
recent decades with the emergence of discrete mathematics as a serious discipline.

The theory of polynomials over finite fields is important for investigating the algebraic
structure of finite fields as well as for many applications. For example, every mapping of
a finite field can be expressed as a polynomial, which is an immediate consequence of the
Lagrange interpolation formula.

A central problem about polynomials over finite fields is to construct irreducible polynom-
ials over a given finite field.

Irreducible polynomials, considered as the prime elements of the polynomial ring over
a finite field, are fundamental objects in the theory of finite fields, since they are needed to
construct extensions of finite fields and to compute with their elements.

A polynomial of positive degree is irreducible if it allows only trivial factorizations, other
wise it is reducible. The reducibility or irreducibility of a given polynomial depends heavily
on the field under consideration. For instance, the binomial x2 + 1 is irreducible over the field
of real numbers R, but x2 + 1 = (x− i)(x + i) is reducible over the field of complex numbers
C.

Their interest in theoretical aspects often appears in number theory, combinatorics and
algebraic geometry (see, e.g., [20],[24],[28],[38]). For example, every polynomial over a finite
field can be written as a product of irreducible polynomials, over the same finite field, in an
essentially unique manner. In practical applications, they are widely used in coding theory,
cryptography, complexity theory and computer science (see, e.g., [22],[26],[37]). For instance,
they are used to construct minimal and maximal cyclic codes. A good introduction to this
topic is Reference [24], where a detailed survey can be found at the end of Chapter 3.

One class of irreducibles of great importance is that of primitive polynomials, that is
polynomials which have as roots primitive elements of a finite field, or in other words,
polynomials with maximum order. These polynomials are also widely used in cryptography
and coding theory (see, e.g., [10],[17],[18],[19]). For example, they are related to linear recurring
sequences with maximum period, and it is well known that this is important for cryptographic
applications. They are also used to construct maximum distance separable (MDS) codes [12].

According to [28], known constructions of irreducible polynomials depend on the compos-
ition of an initial irreducible polynomial with a further polynomial or rational function.
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Often this process can be iterated or continued recursively to produce an infinite sequence
of irreducible polynomials of increasing degrees.

Irreducible composition of certain types were studied by many authors. Agou [3] has
established a criterion for f (g(x)) to be irreducible over a finite field Fps , where p is prime.
This criterion was used in Agou([3],[4], [5],[6]) to characterize irreducible polynomials of
special types such as f (xpr − ax), f (xp2r − axpr − bx) and others. Such irreducible compositions
of polynomials are also studied in Cohen ([15],[16]), Long [25], and Ore [30].

Irreducibility criteria for compositions of polynomials of the form f (xs) have been establis-
hed by Agou ([2],[3]), Butler [11], Cohen [16], Pellet [31], Petterson [32], and Serret ([34],[35]).

Cohen [15] established a result to construct new irreducible poynomials using the compos
ition method. More recently, various constructions and recurrent sequences of irreducible
polynomials were established using this technique (see, e.g., [1],[7],[23],[27]).

It should be noted that these constructions involve only irreducible polynomials over
the same finite field Fq, while in the present work we are interested in the construction of
irreducible polynomials over Fq from a given irreducible polynomial over an extension of
Fq.

As we pointed out before, finite fields have very important applications in error-correcting
codes theory. This theory is considered to have originated in 1948 with Claude Shannon
and his landmark paper: A mathematical theory of communication [36], that signified the
beginning of both information theory and coding theory. Among all types of codes, cyclic
codes, which are linear codes, are the most studied codes since they are easy to understand
and to encode. They are the building blocks for many other codes, such as the Kerdock,
Preparata and Justesen codes. We refer the reader to references [22] and [26] for basic concepts
about these codes. Cyclic codes are first studied by Prange [33] in 1957. Since then, the study
of these codes is experiencing enormous progress. They contain the most efficient codes,
such as Hamming and Reed-Solomon codes. Another important cyclic codes are the BCH
codes. These codes, were introduced by R. Bose and D.K. Ray-Chaudhuri [9] in 1960, and
independently by A. Hocquenghem [21] in 1959 in the binary case, form an important class
of cyclic error-correcting codes. They are very powerful codes since for any positive integer
d, we can construct a BCH code of minimum distance greater or equal to d. BCH codes are
of great practical importance for error correction in communication systems, storage devices
and consumer electronics, particularly if the expected number of errors is small compared
with the length of the code (see, e.g., [22], [26]). Since we are dealing with irreducible and
primitive polynomials, we are led to investigate some applications to BCH codes.

The present work is devoted to two constructions of irreducible (resp. primitive) polynom-
ials over Fq of degree rm from irreducible (resp. primitive) polynomials over Fqm of degree
r. As an application, a characterization of the generator polynomial of a BCH code is given.
Then, we show how two BCH codes over Fq and Fqm ,respectively, and their generator polyn-
omials are related.

This thesis is structured as follows.

Chapter 1

This chapter contains the preliminaries and definitions that we will use throughout this work.

Chapter 2



CONTENTS 9

In this chapter, we present the first construction of irreducible polynomials through the Froben-
ius automorphism of Fqm over Fq. In fact, this coincides with the spin of a polynomial introduced
by Mullin et al. in [29]. We would like to notice here that our representation turns out to
be useful through the properties of the Frobenius automorphism extended to the ring of
polynomials.

Chapter 3

In this chapter, we present the second construction which is based on the notion of companion
matrix. This construction is basically the same as the one proposed in [13] for primitive
polynomials. We show that this construction works also for irreducible polynomials, and in
fact, it is the same as the first one. The advantage of this construction is that one can generate
multiple irreducible polynomials over Fq of degree rm from an irreducible polynomial over
Fqm of degree r. Furthermore, all such polynomials can be obtained if a primitive polynomial
over Fqm of degree r is provided.

Chapter 4

As an application of our results, in this last chapter we obtain a characterization of the
generator polynomial of a BCH code, and a relation between two BCH codes over Fq and
Fqm , respectively. Then, we show how the generator polynomials of the previous two codes
are related.

All computations in this work are done using the software SageMath Version 8.8.
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CHAPTER 1

PRELIMINARIES

In this chapter, some concepts and definitions are introduced which can be found in [24].
Throughout this work, we consider only monic polynomials, i.e., the polynomials with leading
coefficient is equal to 1.

1.1 Finite Fields

The theory of finite fields is a branch of modern algebra that has come to the fore in the
last fifty years because of its diverse applications in combinatorics, coding theory and the
mathematical study of switching circuits among others.

Definition 1.1. A finite field is a field with a finite number of elements.

Example 1.1. For every prime p, the residue class ring

Z/pZ = {0̄, 1̄, . . . , p− 1}

equipped with the usual addition and multiplication modulo p, forms a finite field with p
elements which we denote by Fp.

Theorem 1.1. (Fermat’s Little Theorem) Let p be a prime which does not divide an integer a.
Then,

ap−1 = 1 mod p.

Proof. We list the first p− 1 positive multiples of a :

a, 2a, · · · , (p− 1)a mod p.

Suppose that ra and sa are the same modulo p. Then, r = s mod p and the p− 1 multiples
of a above are distinct and nonzero, that is, they must be congruent to 1, 2, · · · , p− 1 in some
order. Multiply all these congruences together and we find :

a(2a) · · · ((p− 1)a) = 1.2 · · · (p− 1) mod p,
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which is
ap−1(p− 1)! = (p− 1)! mod p.

Divide both side by (p− 1)! to complete the proof.

Remark 1.1. Sometimes Fermat’s Little Theorem is presented in the form

ap = a mod p,

for any integer a and a prime p.

Recall that for any two integers 0 ≤ n and 0 ≤ k ≤ n, the binomial coefficient Cn
k is defined

by :

Cn
k =

n!
k!(n− k)!

.

Proposition 1.1. The prime p divides Cp
k for any 1 ≤ k ≤ p− 1.

Proof. We have
p! = k!(p− k)!Cp

k .

Then, p divides k!(p− k)!Cp
k . Since p is prime and

gcd(p, k!) = gcd(p, (p− k)!) = 1,

then p divides Cp
k .

Remark 1.2. Fermat’s Little Theorem along with Proposition 1.1 imply that, for any a, b ∈ Fp,
we have ap = a and

(a + b)p =
p

∑
k=0

Cp
k akbp−k = ap +

p−1

∑
k=1

Cp
k akbp−k + bp

= ap + bp = a + b.

Definition 1.2. Let L be a field. A subset K of L that is itself a field under the operations of
L is called a subfield of L. In this context, L is called an extension of K.

Remark 1.3. If K is a subfield of the finite field Fp, where p is prime, then K must contain
the elements 0 and 1, and so all other elements of Fp by the closure of K under addition. It
follows that Fp contains no proper subfields, and it is called prime field.

The prime field Fp, also called the Galois field of order p, plays an important role in general
field theory, since every field of characteristic p can be thought of as an extension of Fp.

Definition 1.3. Let K be a subfield of L and α ∈ L. If α satisfies a nontrivial polynomial
equation with coefficients in K, that is, if anαn + · · ·+ a1α + a0 = 0 with ai ∈ K not all being
0, then α is said to be algebraic over K. The extension L of K is called algebraic over K if every
element of L is algebraic over K.
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Theorem 1.2. [24, Theorem 1.78] The prime subfield of a field L is isomorphic to either Fp or
Q. Therefore, the characteristic of L is a prime p or 0.

Theorem 1.3. [24, Theorem 2.2] Let L be a finite field. Then, L has pn elements, where the
prime p is the characteristic of L and n is the degree of L over its prime subfield Fp.

Remark 1.4. The degree of L over its prime subfield Fp is the dimension of L considered as
a vector space over Fp.

Example 1.2. Consider the matrix

M =

(
0 1
1 1

)
∈ Mat2×2(F2).

With the identification

F2 = {0, 1} :=
{

O =

(
0 0
0 0

)
, I =

(
1 0
0 1

)}
⊂ Mat2×2(F2),

the matrix M verifies the equation M2 + M + I = 0 over F2. Therefore, the matrix M is
algebraic over F2, and the field

F2[M] = {O, I, M, I + M}

is an algebraic extension of F2 with 22 = 4 elements. The degree of F2[M] over F2 is 2,
considered as a vector space over F2 with a basis {I, M}.

We use the notation Fq for finite fields with q = pn elements. In order to construct Fq, we
need the notion of the minimal polynomial of an element α ∈ Fq over Fp of degree n, which we
introduce later.

Definition 1.4. For a multiplicative group G, the order of an element a ∈ G, if it exists, is the
smallest positive integer n for which an = 1, and we write n = ord(a).

Theorem 1.4. [24, Theorem 2.8] For every finite field Fq, the multiplicative group F∗q of
nonzero elements of Fq is cyclic.

Proof. We may assume q ≥ 3. Let h = pr1
1 · · · p

rm
m be the prime factor decomposition of the

order h = q− 1 of the group F∗q . For every 1 ≤ i ≤ m, the polynomial xh/pi − 1 has at most
h/pi roots in Fq. Since h/pi < h, it follows that there are nonzero elements in Fq that are not
roots of this polynomial. Let ai be such an element and set

bi = a
h/p

ri
i

i .

We have b
p

ri
i

i = 1, hence the order of bi is a divisor of pri
i and is therefore of the form psi

i with
0 ≤ si ≤ ri. On the other hand, we have

b
p

ri−1
i

i = ah/pi
i 6= 1,
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and so the order of bi is pri
i . We claim that the element b = b1 · · · bm has order h. Suppose, on

the contrary, that the order of b is a proper divisor of h and is therefore a divisor of at least
one of the m integers h/pj, 1 ≤ j ≤ m, say of h/p1. Then, we have

1 = bh/p1 = bh/p1
1 · · · bh/p1

m .

Now, if 2 ≤ i ≤ m , then pri
i divides h/p1, and hence bh/p1

i = 1. Therefore bh/p1
1 = 1. This

implies that the order of b1 must divide h/p1, which is impossible since the order of b1 is pr1
1 .

Thus, F∗q is a cyclic group with generator b.

Definition 1.5. A generator of the cyclic group F∗q is called a primitive element of Fq.

Example 1.3. The multiplicative group of the prime field F7 is

F∗7 = {1̄, 2̄, 3̄, 4̄, 5̄, 6̄} = 〈3̄〉 = {3̄i : 0 ≤ i ≤ 5},

and 3̄ is a primitive element of F7.

Remark 1.5. The order of a primitive element of Fq is maximal and is equal to q− 1.

Proposition 1.2. The field Fq contains φ(q− 1) primitive elements, where

φ(n) = card{1 ≤ i ≤ n : gcd(i, n) = 1}

is Euler’s function.

Proof. Let a be a primitive element of Fq. Then, any other primitive element of Fq is of the
form ai for some 1 ≤ i ≤ q− 1. Thus, we must have ord(ai) = q− 1, which is equivalent to
gcd(i, q− 1) = 1.

Example 1.4. The field F7 has φ(6) = 2 primitive elements, which are 3̄ and 5̄.

Proposition 1.3. Let Fq be a finite field with q elements. Then, every a ∈ Fq satisfies aq = a.

Proof. If a = 0, then aq = a. On the other hand, the multiplicative group F∗q has order q− 1.
Then, aq−1 = 1 for all a ∈ F∗q , and the multiplication by a yields the desired result.

Finite fields have the property that they are functionally complete. This means that every
mapping of a finite field can be expressed as a polynomial, which is an immediate consequence
of the Lagrange interpolation formula. To show that, let f (x) be a map over Fq, and consider
the finite set

S =
{
(a, f (a)) : a ∈ Fq

}
.

Recall that for a set of k + 1 points {(xi, yi) : 0 ≤ i ≤ k}, where no two xi are the same, the
interpolation polynomial of the previous set in Lagrange form is the linear combination

L(x) =
k

∑
i=0

yili(x),
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of Lagrange basis polynomials

li(x) = ∏
0≤m≤k

i 6=m

x− xm

xi − xm
.

The polynomial L(x) verifies the equation L(xi) = yi, for all 0 ≤ i ≤ k. Therefore, if we
consider the interpolation polynomial L(x) of the set S, then L(x) ∈ Fq[x] and f (a) = L(a),
for all a ∈ Fq. Hence, the two functions f (x) and L(x) are identical over Fq.

1.2 Frobenius Automorphism And Trace Function

A well known map over Fps is the so-called Frobenius automorphism defined by :

ϕ : Fps → Fps

a 7→ ap.

We can extend ϕ to the following map :

ϕ : Fqm → Fqm (1.1)
a 7→ aq,

where q is a power of the prime p.

Proposition 1.4. The map ϕ is an automorphism of Fqm called, for convenience, the Frobenius
automorphism.

Proof. Suppose that q = ps, for some integer 1 ≤ s. For all a, b ∈ Fqm , we have

ϕ(a + b) = (a + b)q = ((a + b)p)ps−1

= (ap + bp)ps−1

...

= aq + bq

= ϕ(a) + ϕ(b),

and
ϕ(ab) = (ab)q = aqbq = ϕ(a)ϕ(b).

Therefore, ϕ is a homomorphism of Fqm . On the other hand, we have

ker(ϕ) = {c ∈ Fqm : cq = 0} = {0},

and then ϕ is injective. Finally, let c ∈ Fqm , then(
cqm−1

)q
= cqm

= c
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by Proposition 1.3. Hence, ϕ is surjective and thus an automorphism of Fqm .

Remark 1.6. Note that, the surjection of ϕ in the proof above could also be deduced from the
fact that Fqm is finite and ϕ is injective.

Theorem 1.5. [28, Theorem 2.1.76] The distinct automorphisms of Fqm over Fq are given by
the maps ϕ0, · · · , ϕm−1 where

ϕi : Fqm → Fqm

a 7→ aqi
.

Remark 1.7. The set of automorphisms of Fqm over Fq forms a group under composition.
This group is called the Galois group of Fqm over Fq. It is a cyclic group with generator ϕ, that
is, ϕi = ϕi for all 0 ≤ i ≤ m− 1.

Definition 1.6. We define the trace function from Fqm onto Fq as follows :

Trqm|q : Fqm → Fq

a 7→ a + aq + · · ·+ aqm−1
.

Proposition 1.5. The trace function Trqm|q verifies the following properties :

(i) Trqm|q is linear (Fqm is considered as a vector space over Fq).

(ii) For all a ∈ Fqm , Trqm|q(aq) = Trqm|q(a).

(iii) The trace function is transitive, i.e. For all a ∈ Fqm and a divisor d of m, we have

Trqm|q(a) = Trqd|q

(
Trqm|qd(a)

)
.

Proof. Let a ∈ Fqm . Note first that, since

Trqm|q(a)q = (a + aq + · · ·+ aqm−1
)q

= aq + aq2
+ · · ·+ aqm

= a + aq + · · ·+ aqm−1

= Trqm|q(a),

then Trqm|q(a) ∈ Fq.

(i) Let b ∈ Fqm and λ ∈ Fq. Then

Trqm|q(λa + b) = (λa + b) + (λa + b)q + · · ·+ (λa + b)qm−1

= λ(a + aq + · · ·+ aqm−1
) + (b + bq + · · ·+ bqm−1

)

= λTrqm|q(a) + Trqm|q(b).
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(ii) For all a ∈ Fqm , we have :

Trqm|q(aq) = aq + aq2
+ · · ·+ aqm

= a + aq + · · ·+ aqm−1

= Trqm|q(a).

(iii) Let d be a divisor of m and m = dn. Then

Trqdn|q(a) = a + · · ·+ aqdn−1

=
(

a + aqd
+ · · ·+ aqd(n−1)

)
+ · · ·+

(
a + aqd

+ · · ·+ aqd(n−1)
)qd−1

=
(

Trqdn|qd(a)
)
+ · · ·+

(
Trqdn|qd(a)

)qd−1

= Trqd|q

(
Trqdn|qd(a)

)
.

When q = pm, the absolute trace

Trq|p : Fq → Fp

a 7→ a + ap + · · ·+ apm−1
,

is denoted by Trq.

Definition 1.7. The elements a, aq, · · · , aqm−1 ∈ Fqm are called the conjugates of a with respect
to Fq.

Remark 1.8. The conjugates of a are the elements to which a is sent by iterated applications
of the Frobenius automorphism.

1.3 Companion Matrix And Characteristic Polynomial

There exist several ways of representing the elements of Fq. One way to do that is to use
matrices, for example the companion matrix of a polynomial.

Definition 1.8. The companion matrix of a monic polynomial f (x) = ∑n
i=0 aixi ∈ Fq[x] is

given by the n× n matrix

C f =


0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2
...

... . . . ...
...

0 0 . . . 1 −an−1

 ∈ Matn×n(Fq).
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Remark 1.9. It is well known in linear algebra that C f satisfies the equation f (C f ) = 0, that
is

f (C f ) =
n

∑
i=0

aiCi
f = a0In + a1C f + · · ·+ an−1Cn−1

f + Cn
f = 0,

where In is the n× n identity matrix.

Example 1.5. The companion matrix of the polynomial f (x) = 2 + x + x3 ∈ F3[x] is

C f =

0 0 1
1 0 2
0 1 0

 ∈ Mat3×3(F3),

and we have

2I3 + C f + C3
f =

2 0 0
0 2 0
0 0 2

+

0 0 1
1 0 2
0 1 0

+

1 0 2
2 1 1
0 2 1

 =

0 0 0
0 0 0
0 0 0


Definition 1.9. Let M ∈ Matn×n(Fq). Then, the characteristic polynomial of M is

PM(x) = det(xIn −M).

Remark 1.10. The polynomial PM(x) is monic over Fq of degree n, and verfies the equation
PM(M) = 0.

Example 1.6. The characteristic polynomial of the matrix C f obtained in Example 1.5 is

det(xI3 −C f ) =

∣∣∣∣∣∣
x 0 2
2 x 1
0 2 x

∣∣∣∣∣∣ = 2 + x + x3 = f (x).

Remark 1.11. For a monic polynomial f (x) ∈ Fq[x], the characteristic polynomial of its
companion matrix C f is equal to f (x), that is, f (x) = det(xI − C f ), hence the property
f (C f ) = 0.

1.4 Irreducible Polynomials

A central question about polynomials over Fq is to find the prime elements of the ring Fq[x],
which are usually called irreducible polynomials.

Definition 1.10. Let f (x) ∈ Fq[x] of degree n ≥ 1. We say that f (x) is irreducible over
Fq if f (x) = g(x)h(x) with g(x), h(x) ∈ Fq[x] implies that either g(x) or h(x) is a constant
polynomial.

Example 1.7. The polynomial f (x) = x2 + x + 1 is irreducible over F2, since it has no roots
in F2, that is, f (x) has no linear factor over F2. However, the polynomial x2 + 1 = (x + 1)2 is
reducible over F2.
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Briefly stated, a polynomial of positive degree is irreducible over Fq if it allows only trivial
factorizations over Fq.

Theorem 1.6. [24, Corollary 2.11] For every finite field Fq and every positive integer n, there
exists an irreducible polynomial in Fq[x] of degree n.

Theorem 1.7. [24, Theorem 1.47] Let R be a commutative ring with identity. If R is a principal
ideal domain, then R/(c) is a field if and only if c is a prime element of R.

Since Fq is a field and the commutative ring Fq[x] is a principal ideal domain, we have the
following result.

Theorem 1.8. [24, Theorem 1.61] Let f (x) ∈ Fq[x]. The residue class ring Fq[x]/( f (x)) is a
field if and only if f (x) is irreducible over Fq.

Proof. Note that the ring Fq[x] is a Euclidean domain. Therefore, the Euclidean division and the
Bézout’s identity for polynomials hold in Fq[x], i.e., for any nonzero polynomials g(x), h(x) ∈
Fq[x], there exist nonzero polynomials u(x), v(x) ∈ Fq[x] such that

u(x)g(x) + v(x)h(x) = gcd(g(x), h(x)).

If Fq[x]/( f (x)) is a field and f (x) = g(x)h(x) is reducible, with 1 ≤ deg(g(x)), deg(h(x)) ≤
deg( f (x))− 1, then both g(x) + ( f (x)) and h(x) + ( f (x)) are nonzero and not invertible in
Fq[x]/( f (x)), a contradiction. The other implication is a consequence of the Bézout’s identity.

Remark 1.12. As we have mentioned before, in order to construct Fqn , we need an irreducible
polynomial over Fq of degree n. Then, let f (x) be an irreducible polynomial over Fq of degree
n, Theorem 1.8 implies that

Fq[x]/( f (x)) =
{

h(x) mod f (x) : h(x) ∈ Fq[x], deg(h) < n
}

is a field with qn elements which we denote by Fqn .

Example 1.8. Consider the irreducible polynomial f (x) = x2 + x + 1 over F2. Then, the field
F4 = F22 can be represented by the field

F2[x]/( f (x)) = {a + bx mod f (x) : a, b ∈ F2},

where the addition and multiplication tables for F4 are given by :

+ 0 1 x x + 1
0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1

x + 1 x + 1 x 1 0

× 0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1

x + 1 0 x + 1 1 x
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Definition 1.11. If f (x) is irreducible over Fq of degree n, then the field Fqn = Fq[x]/( f (x))
is called the splitting field of f (x).

Theorem 1.9. [24, Lemma 1.58] If an irreducible polynomial f (x) ∈ Fq divides a product
f1(x) · · · fk(x) of polynomials in Fq[x], then at least one of the factors fi(x) is divisible by
f (x).

Proof. Since f (x) divides f1(x) · · · fk(x), then

( f1(x) + ( f (x)) · · · ( fk(x) + ( f (x)) = 0 + ( f (x))

in the residue class ring Fq[x]/( f (x)). Now Fq[x]/( f (x)) is a field, then

fi(x) + ( f (x)) = 0 + ( f (x))

for some 1 ≤ i ≤ k, i.e., f (x) divides fi(x).

Irreducible polynomials over Fq are of fundamental importance for the structure of the
ring Fq[x], since the polynomials in Fq[x] can be written as product of irreducible polynomials
in an essentially unique manner.

Theorem 1.10. [24, Theorem 1.59] Any polynomial h(x) ∈ Fq[x] of positive degree can be
written in the form

h(x) = a f1(x)e1 · · · fk(x)ek (1.2)

where a ∈ Fq, f1(x), . . . , fk(x) are distinct monic irreducible polynomials in Fq[x], and e1, . . . , ek
are positive integers.

Proof. The fact that any non constant polynomial f (x) ∈ Fq[x] can be represented in the form
(1.2) is shown by induction on the degree of f (x).
The case deg( f (x)) = 1 is trivial, since any polynomial in Fq[x] of degree 1 is irreducible over
Fq. Now, suppose the desired factorization is established for all non constant polynomials in
Fq[x] of degree less than n. If deg( f (x)) = n and f (x) is irreducible over Fq, then we are done
since we can write f (x) = a(a−1 f (x)), where a is the leading coefficient of f (x) and a−1 f (x)
is a monic irreducible polynomial over Fq. Otherwise, f (x) allows a factorization f (x) =

g(x)h(x) with 1 ≤ deg(g(x)), deg(h(x)) < n, and g(x), h(x) ∈ Fq[x]. By the induction
hypothesis, g(x) and h(x) can be factored in the form (1.2), and then f (x) can be factored in
this form.

To determine all monic irreducible polynomials over Fp of degree n, one may first compute
all monic reducible polynomials over Fp of degree n, and then eliminate them from the set of
monic polynomials in Fp[x] of degree n.

Example 1.9. Find all irreducible polynomials over F2 of degree 4. Note that a nonzero
polynomial over F2 is automatically monic. There are 24 = 16 polynomials in F2[x] of degree
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4. Such a polynomial is reducible over F2 if and only if it has a divisor of degree 1 or 2.
Therefore, we compute all products

(a0 + a1x + a2x2 + x3)(b0 + x) and (a0 + a1x + x2)(b0 + b1x + x2),

and obtain all reducible polynomials over F2 of degree 4. Comparison with the 16 polynomials
of degree 4 leaves us with the irreducible polynomials

x4 + x + 1, x4 + x3 + 1, x4 + x3 + x2 + x + 1 ∈ F2[x].

Remark 1.13. If p or n is large, the above method is not feasible, and there are more powerful
methods in the literature (see [24]).

For a1, a2, . . . , ar ∈ Fqn , we denote by Fq(a1, a2, . . . , ar) the smallest subfield of Fqn containing
both Fq and a1, a2, . . . , ar, that is, the extension of Fq obtained by adjoining a1, a2, . . . , ar to Fq.
In particular, if α is a root of an irreducible polynomial f (x), then we have

Fq(α) =

{
n−1

∑
i=0

aiα
i : ai ∈ Fq

}
.

Theorem 1.11. [24, Theorem 2.14] If f (x) is irreducible over Fq, then f (x) has a root α ∈
Fqn . Furthermore, all the roots of f (x) are simple and are given by the n distinct elements
α, αq, . . . , αqn−1

of Fqn .

Proof. The theorem is trivial if n = 1, so assume n > 1. Note that α = x + ( f (x)) is a root of
f (x) in the field Fq[x]/( f (x)), that is,

f (α) = f (x + ( f (x))) = f (x) + ( f (x)) = 0 + ( f (x)).

Then, we have the following ring isomorphism

Fq[x]/( f (x))→ Fq(α)

h(x) + ( f (x)) 7→ h(α).

Therefore, we have
Fq(α) ∼= Fq[x]/( f (x)) ∼= Fqn .

Now, suppose that f (x) = ∑n
i=0 aixi. Then, for all 0 ≤ j ≤ n− 1, we have

f (αqj
) =

n

∑
i=0

ai(α
qj
)i =

(
n

∑
i=0

aiα
i

)qj

= ( f (α))qj
= 0.

If αqi
= αqj

with 0 ≤ j < i ≤ n− 1, then α(q
i−j−1)qj

= 1. Since gcd(ord(α), qj) = 1, so ord(α)
divides qi−j − 1. Hence, α ∈ Fqi−j $ Fqn , a contradiction.
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We use the notation [Fq(α) : Fq] to mean the degree of α over Fq, which is the degree of
f (x).

Remark 1.14. Theorem 1.11 implies that an irreducible polynomial f (x) over a finite field of
degree n must have n distinct roots α, αq, . . . , αqn−1

, and we have

f (x) =
n−1

∏
i=0

(x− αqi
).

With this information, we can deduce that polynomials of certain forms are never irreducible.
For example, consider the polynomial xp + a ∈ Fq and let α be its root. Then

(x− α)p = xp − αp = xp + a,

and α is the only root of xp + a. Therefore, the polynomial xp + a is reducible over Fq, since if
it would be irreducible, it would have p distinct roots.

Definition 1.12. The irreducible polynomial f (x) is called the minimal polynomial of α over
Fq, and we write f (x) = Min(α, Fq)(x).

Remark 1.15. The conjugates of α ∈ Fqn with respect to Fq are distinct if and only if the
polynomial Min(α, Fq)(x) has degree n. Otherwise, the degree d of Min(α, Fq)(x) is a proper
divisor of n, and then the conjugates of α with respect to Fq are the distinct elements α, αq, · · · ,
αqd−1

, each repeated n/d times.

Theorem 1.12. [24, Lemma 2.12] For a polynomial h(x) ∈ Fq[x], we have h(α) = 0 if and only
if Min(α, Fq)(x) divides h(x).

Remark 1.16. Theorem 1.12 implies that two monic irreducible polynomials h(x), g(x) ∈
Fq[x] having a common root are equal.

Theorem 1.13. [24, Theorem 1.89] Let α and β be two roots of f (x) that is irreducible over Fq.
Then, Fq(α) and Fq(β) are isomorphic under the isomorphism

Fq(α)→ Fq(β)

α 7→ β,

keeping the elements of Fq fixed.

Remark 1.17. If f (x) is irreducible over Fq, then C f can play the role of a root of f (x). The
polynomials in C f over Fq of degree less than n yield a representation of the elements of Fqn ,
i.e.,

Fq[C f ] =

{
n−1

∑
i=0

aiCi
f : ai ∈ Fq

}
∼= Fqn .

Lemma 1.1. [24, Lemma 3.1] Let f (x) ∈ Fq[x] of degree n ≥ 1 with f (0) 6= 0. Then, there
exists a positive integer e ≤ qn − 1 such that f (x) divides xe − 1.
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Proof. The residue class ring Fq[x]/( f (x)) contains qn − 1 nonzero elements. Since the qn

residue classes xi + ( f (x)), where 0 ≤ i ≤ qn − 1, are all nonzero, then there exist integers
0 ≤ r < s ≤ qn − 1 such that xs = xr mod f (x). Therefore, since x and f (x) are relatively
prime, we have xs−r = 1 mod f (x), or equivalently, f (x) divides xs−r − 1 and 0 < s− r ≤
qn − 1.

An important integer attached to a nonzero polynomial over a finite field is its order.

Definition 1.13. Let h(x) ∈ Fq[x] be a nonzero polynomial. If h(0) 6= 0, the least positive
integer e for which h(x) divides xe − 1 is called the order of h(x), and denoted by ord(h(x)).
If h(0) = 0, then h(x) = xtg(x), where t ∈ N and g(x) ∈ Fq[x] with g(0) 6= 0 are uniquely
determined; ord(h(x)) is then defined to be ord(g(x)).

Remark 1.18. Any other integer s for which h(x) divides xs − 1 is then a multiple of e.

Proposition 1.6. [24, Theorem 2.18] The conjugates of α ∈ F∗qn with respect to any subfield of
Fqn have the same order in the group F∗qn .

Proof. The result follows from the fact that F∗qn is a cyclic group, and that every power of the
characteristic of Fqn is relatively prime to the order qn − 1 of F∗qn .

Proposition 1.7. Let f (x) be an irreducible polynomial over Fq of degree n having α ∈ Fqn as
a root. Suppose that f (0) 6= 0. Then ord( f (x)) = ord(α).

Proof. First, we have

f (x) =
n−1

∏
i=0

(x− αqi
).

Let e = ord(α). Proposition 1.6 implies that e = ord(αqi
) for all 1 ≤ i ≤ n − 1. Then,

f (x) divides xe − 1, since f (0) 6= 0. Suppose that there exists some integer 0 < s < e, such
that f (x) divides xs − 1. Then, αs − 1 = 0 and ord(α) ≤ s < e, a contradiction. Therefore,
ord( f (x)) = ord(α).

Let f (x) ∈ Fq[x] of order e and let e′ be the order of f (x) viewed as a polynomial over
some extension Fqm of Fq. This means that there exists a polynomial g(x) ∈ Fqm such that
f (x)g(x) = xe′ − 1. But, since the polynomials f (x) and xe′ − 1 have their coefficients in Fq,
the polynomial g(x) must have all its coefficients in Fq, and then e = e′. It follows that the
definition of the order of a polynomial does not depend on the choice of the field on which
that polynomial is defined. This justifies the following remark.

Remark 1.19. Propositions 1.7 implies that, if f (x) is irreducible over Fq and V(x) is an
irreducible factor of f (x) over an extension of Fq, then ord( f (x)) = ord(V(x)) = ord(α)
for any root α of f (x).
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1.5 Primitive Polynomials

Definition 1.14. A polynomial f (x) ∈ Fq[x] of degree n is called primitive over Fq if it is the
minimal polynomial over Fq of a primitive element of Fqn

Thus, a primitive polynomial over Fq of degree n may be described as a monic polynomial
that is irreducible over Fq, and has a root α ∈ Fqn that generates the multiplicative group F∗qn .
Primitive polynomials can also be characterized as follows.

Theorem 1.14. [24, Theorem 3.16] A polynomial f (x) ∈ Fq[x] of degree n is a primitive
polynomial over Fq if and only if f (x) is monic, f (0) 6= 0 and ord( f ) = qn − 1.

Remark 1.20. The condition f (0) 6= 0 in the theorem above is to rule out the non primitive
polynomial f (x) = x in the case q = 2 and n = 1.

Example 1.10. Consider the polynomial f (x) = x4 + x + 1 ∈ F2[x]. Note that

(x2 + x + 1)2 = x4 + x2 + 1 6= f (x),

where x2 + x + 1 is the only irreducible polynomial of degree 2 over F2. Moreover, f (x) has
no roots in F2. Therefore, f (x) is irreducible over F2. Let α ∈ F16 be a root of f (x). First, we
have that F∗16 has order 15, then ord(α) ∈ {1, 3, 5, 15}. On the other hand, since α 6= 1 we have
ord(α) 6= 1, and also ord(α) 6= 3, for otherwise we would have α3 + 1 = 0, a contradiction,
since f (x) = Min(α, F2)(x) which is of degree 4. Finally

α5 = α.α4 = α(α + 1) = α2 + α 6= 1,

since α2 + α + 1 6= 0 for the same reason as previously. Thus, ord(α) = 15 and α is a primitive
element of F16. It follows that f (x) is a primitive polynomial over F2.

Remark 1.21. Since the multiplicative group F∗qn of the field Fqn is cyclic, then there exits
always a primitive polynomial over Fq of degree n, which is the minimal polynomial of a
primitive element of Fqn over Fq.

Proposition 1.8. [24, Corollary 2.19] If α is a primitive element of Fqn , then so are all its
conjugates with respect to any subfield of Fqn .

Proof. This follows from the fact that gcd(qi, qn − 1) = 1, for all 0 ≤ i.

Example 1.11. Let α ∈ F16 be a root of the primitive polynomial f (x) = x4 + x + 1 ∈ F2[x]
treated in the previous example. Then, the conjugates of α with respect to F2 are α, α2, α4 =

α + 1 and α8 = α2 + 1, each of them being a primitive element of F16. The conjugates of α

with respect to F4 are α and α4 = α + 1.

Proposition 1.9. [28, Theorem 4.1.3] The number of primitive polynomials over Fq of degree

n is φ(qn−1)
n .
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Proof. We have that the number of primitive elements of Fqn is equal to φ(qn − 1). Since
each primitive element of Fqn and its conjugates with respect to Fq have the same minimal
polynomial over Fq of degree n, we list those primitive elements as follows :

α1, α
q
1, · · · , α

qn−1

1 ,

α2, α
q
2, · · · , α

qn−1

2 ,
...

αs, α
q
s , · · · , α

qn−1

s ,

where s is the number of primitive polynomials over Fq of degree n. Therefore, sn = φ(qn −
1), or equivalently s = φ(qn−1)

n .

Example 1.12. Since the polynomial f (x) = x2 + x + 1 is the only irreducible polynomial

over F2 of degree 2, and φ(22−1)
2 = 1, then f (x) is primitive over F2.

Remark 1.22. One way of obtaining a primitive polynomial over Fq of degree n is to construct
a primitive element of Fqn , and then determining the minimal polynomial of this element over
Fq.

1.6 Linear And Cyclic Codes

Information coming from some source is transmitted over a noisy communication channel
to a receiver. For example: storage devices, wires, air, etc. There are a lot of important
messages to be sent down those channels, and they must be sent as quickly and reliably
as possible. In 1948, Claude Shannon published a landmark paper: A mathematical theory
of communication [36], that signified the beginning of both information theory and coding
theory. Shannon said that information can be encoded before transmission so that the corrupt-
ed data can be decoded. The fundamental problem in coding theory is to determine what
message was sent on the basis of what is received. The purpose is to add redundancy to the
information in order to recover it as accurately as possible after transmitting.
Among all types of codes, linear code are the most important for practical applications and are
the simplest to understand.

Definition 1.15. A linear code C of length n and dimension k over Fq is a k-dimensional
subspace of Fn

q .

Example 1.13. Consider the set

C = {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)} ⊂ F3
2.

It is easy to check that C is a 2-dimensional subspace of F3
2 with B = {(1, 1, 0), (0, 1, 1)} as a

basis. Therefore, C is a linear code of length 3 over F2. We call the vectors in C codewords.
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Definition 1.16. The Hamming distance d(x, y) between two vectors x, y ∈ Fn
q is the number

of coordinates in which x and y differ. That is

d(x, y) = |{i : xi 6= yi, 1 ≤ i ≤ n}| ,

and the weight of x is w(x) = d(x, 0).

Proposition 1.10. [22, Theorem 1.4.1] For all x, y, z ∈ Fn
q , the Hamming distance satisfies the

following properties:

(i) (non-negativity) d(x, y) ≥ 0.

(ii) d(x, y) = 0 if and only if x = y.

(iii) (symmetry) d(x, y) = d(y, x).

(iv) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

An important parameter of a code C is the minimum distance between codewords which is
given by

d = min{d(x, y) : x, y ∈ C, x 6= y}.

For a linear code C, its minimum distance d is equal to its minimum weight, i.e.,

d = min{w(x) : x ∈ C, x 6= 0}.

This distance is very important in determining the error-correcting capability of C. As we will
see in the following proposition, the greater the minimum distance, the more errors the code
can detect and correct.

Proposition 1.11. [22] A linear code C with a minimum distance d can detect up to d − 1
errors and correct b d−1

2 c errors in a received message.

An extremely important class of linear codes are known as cyclic codes.

Definition 1.17. A linear code C of length n over Fq is called a cyclic code if

(c0, c1, . . . , cn−1) ∈ C implies that (cn−1, c0, . . . , cn−2) ∈ C.

We can identify a codeword (c0, c1, . . . , cn−1) ∈ C with the polynomial

c(x) = c0 + c1x + . . . + cn−1xn−1 ∈
Fq[x]

(xn − 1)
.

It is well-known that a linear code is cyclic if and only if the corresponding polynomial set is

an ideal of the residue class ring Fq[x]
(xn−1) .

Definition 1.18. The unique monic polynomial which generates a cyclic code C is called the
generator polynomial of C.
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Example 1.14. The linear code C described in Example 1.13 is cyclic. Indeed, we can identify

the codewords of C as polynomials of
F2[x]

(x3 − 1)
as follows:

(0, 0, 0) := 0 = (1 + x).0,

(1, 1, 0) := 1 + x = (1 + x).1,

(0, 1, 1) := x + x2 = (1 + x)x,

(1, 0, 1) := 1 + x2 = (1 + x)(1 + x).

Then, C is a cyclic code with the generator polynomial 1 + x.

Let n be a positive integer with gcd(n, q) = 1. Recall that the q−cyclotomic coset of s
modulo n is the set

Cs = {s, sq, · · · , sqr−1} mod n,

where r is the smallest positive integer such that sqr = s mod n. The representative of a
coset is the smallest element in the coset.

Let α be a primitive nth root of unity over Fq, i.e., n is the smallest integer for which αn = 1
over Fq.

Lemma 1.2. Let C be a nonzero cyclic code of length n over Fq, and let g(x) be the generator
polynomial of C. Then:

1. We have that
xn − 1 = ∏

i∈S
Min(αi, Fq)(x)

is the factorization of xn− 1 into irreducible factors over Fq, where S is a set of represent
atives of the q−cyclotomic cosets modulo n.

2. g(x) divides xn − 1 over Fq.

3. Furthermore,
g(x) = ∏

i∈T
Min(αi, Fq)(x),

where T is a subset of S.

Proof. 1. Since the αi are distinct for 0 ≤ i < n and (αi)n = 1, then

xn − 1 =
n−1

∏
i=0

(x− αi),

or equivalently
xn − 1 = ∏

i∈S
Min(αi, Fq)(x),

where S is a set of representatives of the q−cyclotomic cosets modulo n.
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2. Let xn− 1 = g(x)h(x) + r(x) in Fq[x], where deg(r(x)) < deg(g(x)). As xn− 1 corresp-

onds to the zero codeword in C and C is an ideal in Fq[x]
(xn−1) , then r(x) ∈ C, a contradiction

unless r(x) = 0. Hence, g(x) divides xn − 1 over Fq.

3. This part follows from Parts 1 and 2.

Definition 1.19. The roots of unity {αi : i ∈ ∪i∈TCi} are called the zeros of the cyclic code C,
and {αi : i 6∈ ∪i∈TCi} are the nonzeros of C. The set ∪i∈TCi is called the defining set of C.

There are several known lower bounds for the minimum distance of a cyclic code. The
oldest of these is the so-called BCH bound.

Theorem 1.15. [22, Theorem 4.5.3] Let C be a cyclic code of length n over Fq with defining
set J. Suppose that C has minimum distance d. Assume that J contains δ − 1 consecutive
elements for some integer δ. Then d ≥ δ.

Before proceeding with the proof of this theorem, we state a lemma about the determinant
of a Vandermonde matrix. For α1, α2, · · · , αs ∈ Fq, the s × s matrix V = (vij), where vij =

αi−1
j is called a Vandermonde matrix. Note that the transpose of this matrix is also called a

Vandermonde matrix.

Lemma 1.3. [22, Lemma 4.5.1] We have

det(V) = ∏
1≤i<j≤s

(αi − αj).

In particular, V is nonsingular if the elements α1, α2, · · · , αs are distinct.

Now, we can give the proof of Theorem 1.15.

Proof. By assumption, C has zeros that include αb, αb+1, · · · , αb+δ−2, for some integer b. Let
c(x) be a nonzero codeword in C of weight w. We write c(x) as follows:

c(x) =
w

∑
j=1

cij x
ij .

Assume to the contrary that w < δ. As c(αi) = 0 for b ≤ i ≤ b + δ− 2, then MuT = 0, where

M =


αi1b αi2b . . . αiwb

αi1(b+1) αi2(b+1) . . . αiw(b+1)

...
αi1(b+w−1) αi2(b+w−1) . . . αiw(b+w−1)


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and u = (ci1 , ci2 , · · · , ciw). Since u 6= 0, then M is a singular matrix and hence det(M) = 0.
On the other hand, we have

M = V.


αi1b 0 . . . 0
0 αi2b . . . 0

...
0 0 . . . αiwb

 ,

where V is the Vandermonde matrix

V =


1 1 . . . 1

αi1 αi2 . . . αiw

...
αi1(w−1) αi2(w−1) . . . αiw(w−1)

 .

Therefore, det(M) = α(i1+i2+···+iw)b det(V). Since the αij are distinct, then, by Lemma 1.3,
det(V) 6= 0, contradicting det(M) = 0.

Cyclic codes are the most studied of all codes, since they are easy to encode, and include
the important family of BCH codes, which we devoted Chapter 5 for some applications.
Furthermore, they are building blocks for many other codes, such as the Kerdock, Preparata,
and Justesen codes. We refer the reader to references [22] and [26] for basic concepts about
these codes.
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CHAPTER 2

CONSTRUCTION THROUGH AUTOMORPHISM

In this chapter, we extend the Frobenius automorphism ϕ of Fqm to a ring automorphism of
Fqm [x]. This extended automorphism will be used in order to construct irreducible polynomials
over Fq of degree rm from an irreducible polynomial over Fqm of degree r.

2.1 The Extended Frobenius Automorphism Φ

Let V(x) = ∑r
i=0 aixi ∈ Fqm [x]. We can extend ϕ given by expression (1.1) to the following

ring automorphism

Φ : Fqm [x]→ Fqm [x] (2.1)

V(x) 7→ Φ(V(x)) = Φ(V)(x) =
r

∑
i=0

ϕ(ai)xi =
r

∑
i=0

aq
i xi.

The automorphism Φ has some interesting properties as we will see in the next lemma,
which will be useful later when we present a construction of irreducible polynomials over
Fq through Φ.

Lemma 2.1. Let d be an integer such that 1 ≤ d ≤ m− 1. Then :

(i) We have

Φd(V)(x) =
r

∑
i=0

aqd

i xi,

and Φd(V)(x) = V(x) if and only if V(x) ∈ Fqd [x].

(ii) Let α ∈ Fqrm . Then, V(α) = 0 if and only if Φd(V)(αqd
) = 0.

(iii) V(x) is irreducible over Fqm if and only if Φd(V)(x) is irreducible over Fqm .

(iv) Assume that Fq(a0, a1, . . . , ar) = Fqm(i.e., Fqm is the smallest extension of Fq containing
the coefficients of V(x)). If j and k are two integers such that 0 ≤ j < k ≤ m− 1, then
Φj(V)(x) 6= Φk(V)(x).
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Proof. (i) We have

Φd(V)(x) = Φ
(

Φd−1(V)(x)
)
= Φ

(
r

∑
i=0

aqd−1

i xi

)
=

r

∑
i=0

aqd

i xi.

Therefore, Φd(V)(x) = V(x) if and only if ∑r
i=0 aqd

i xi = ∑r
i=0 aixi if and only if aqd

i = ai for all
i = 0, . . . , r, which is equivalent to V(x) ∈ Fqd [x].
(ii) Let α ∈ Fqrm . Then, V(α) = 0 if and only if ∑r

i=0 aiα
i = 0 if and only if

(
r

∑
i=0

aiα
i

)qd

=
r

∑
i=0

aqd

i (αqd
)i = Φd(V)(αqd

) = 0.

(iii) Since Φ is an automorphism of Fqm [x], then for any Q(x), S(x) ∈ Fqm [x], V(x) = Q(x)S(x)
if and only if

Φd(V)(x) = Φd(Q · S)(x) = Φd(Q)(x) ·Φd(S)(x).

Therefore, V(x) is irreducible over Fqm if and only if Φd(V)(x) is irreducible over Fqm .
(iv) Note that Φm(V)(x) = V(x). Then, for any two positive integers l and s with 0 ≤ s ≤
m− 1, we have

Φlm+s(V)(x) = Φlm (Φs(V)(x)) = Φs(V)(x).

Let j and k be two integers such that 0 ≤ j < k ≤ m− 1 and Φj(V)(x) = Φk(V)(x). Then,
Φk−j(V)(x) = V(x) and V(x) ∈ Fqk−j [x], a contradiction, since Fqm is the smallest extension
of Fq containing the coefficients of V(x).

2.2 A Construction Of Irreducible Polynomials Using Φ

It is useful to be able to decide whether an irreducible polynomial over a finite field remains
irreducible over a certain finite extension field. For that, we have the following result.

Theorem 2.1. [24, Theorem 3.46] Let f (x) be an irreducible polynomial over Fq of degree n
and let k be a positive integer. Then, f (x) factors into d irreducible polynomials in Fqk [x] of
the same degree n/d, where d = gcd(n, k).

Remark 2.1. Theorem 2.1 implies that, if f (x) is irreducible over Fq of degree n and gcd(n, k) =
1, then f (x) remains irreducible over Fqk .

The following proposition is a restatement of Lemma 1 in [23], but we will give a somewhat
different proof using the properties of the automorphism Φ. We would like to notice here
that our representation, which is different from the one used in [23], turns out to be useful
through the properties, stated previously, of the Frobenius automorphism extended to the
ring of polynomials. Notice as well that the first implication is well known as a consequence
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of Theorem 2.1, and the converse has been also proved in [29], where the authors introduced,
for a given polynomial V(x) = ∑r

i=0 aixi ∈ Fqm [x], the notion of the spin of V(x) by

m−1

∏
s=0

V(s)(x),

where

V(s)(x) =
r

∑
i=0

aqs

i xi,

which coincides with the product ∏m−1
i=0 Φi(V)(x) below.

Proposition 2.1. [14, Proposition 3.1] A monic polynomial f (x) of degree rm is irreducible
over Fq if and only if there exists a monic irreducible polynomial

V(x) =
r

∑
i=0

aixi

over Fqm of degree r, such that Fq(a0, a1, . . . , ar) = Fqm and

f (x) =
m−1

∏
i=0

Φi(V)(x).

Proof. Let V(x) = ∑r
i=0 aixi be a monic irreducible polynomial over Fqm of degree r and set

f (x) = ∏m−1
i=0 Φi(V)(x). Since

Φ( f )(x) =
m−1

∏
i=0

Φi+1(V)(x) =
m

∏
i=1

Φi(V)(x) =
m−1

∏
i=0

Φi(V)(x) = f (x),

then, by Part (i) of Lemma 2.1, f (x) is a monic polynomial over Fq of degree rm. Let α ∈ Fqrm

be a root of V(x) and let h(x) = Min(α, Fq)(x). We will show that, if Fq(a0, a1, . . . , ar) = Fqm ,
then f (x) = h(x). Parts (ii) and (iii) of Lemma 2.1 imply that, for all d ∈ {0, 1, . . . , m− 1},

Φd(V)(x) =
r−1

∏
i=0

(x− αqim+d
),

and

f (x) =
rm−1

∏
i=0

(x− αqi
) =

m−1

∏
i=0

Φi(V)(x).

If Fq(a0, a1, . . . , ar) = Fqm , by Part (iv) of Lemma 2.1, the elements αqi
are distinct for all

i ∈ {0, 1, . . . , rm− 1}. Therefore, f (x) = h(x).
Conversely, let f (x) be a monic irreducible polynomial over Fq of degree rm. Let β ∈ Fqrm be
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a root of f (x) and let V(x) = Min(β, Fqm)(x). Since

Fq(β) = Fqrm = Fqm(β),

then

deg(V(x)) = [Fqm(β) : Fqm ] = [Fqrm : Fqm ] = r,

and Fqm is the smallest extension of Fq containing the coefficients of V(x). Therefore, the first
part of this proof implies that

f (x) =
m−1

∏
i=0

Φi(V)(x).

Example 2.1. Let θ ∈ F32 be a primitive element such that θ2 + 2θ + 2 = 0. We have F3(θ) =

F32 . Consider the ring automorphism

Φ : F32 [x]→ F32 [x]
n

∑
i=0

aixi 7→
n

∑
i=0

a3
i xi.

We take the irreducible polynomial V(x) = x3 + (2θ + 2)x + θ + 2 ∈ F32 [x]. Since V(x) 6∈
F3[x], then according to Proposition 2.1, the polynomial

Φ0(V)(x) ·Φ(V)(x) = V(x) ·Φ(V)(x) = (x3 + (2θ + 2)x + θ + 2)(x3 + (θ + 1)x + 2θ)

= x6 + 2x3 + x2 + x + 2

is irreducible over F3 of degree 6.

Remark 2.2. For an irreducible polynomial f (x) ∈ Fq[x] of degree rm, if we can find an
irreducible factor V(x) ∈ Fqm [x] of f (x), then, by Proposition 2.1, the remaining factors of
f (x) are Φi(V)(x), where 1 ≤ i ≤ m− 1.

Lemma 2.2. If V(x) = ∑r
i=0 aixi is primitive over Fqm , then Fq(a0, a1, . . . , ar) = Fqm .

Proof. Suppose that V(x) is primitive over Fqm and Fq(a0, a1, . . . , ar) = Fqs $ Fqm . Then, V(x)
is irreducible over Fqs . Therefore, ord(V(x)) ≤ qrs − 1 < qrm − 1, a contradiction since V(x)
is primitive over Fqm .

Proposition 2.1 can also be used to construct primitive polynomials, as we will see in the
following corollary.

Corollary 2.1. [14, Corollary 3.1] A polynomial f (x) of degree rm is primitive over Fq if and
only if there exists a primitive polynomial V(x) over Fqm of degree r such that

f (x) =
m−1

∏
i=0

Φi(V)(x).
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Proof. Using Proposition 2.1, Lemma 2.2 and the fact that the roots of V(x) are also roots of
f (x), we obtain that f (x) is primitive if and only if V(x) is primitive.

Example 2.2. Let θ ∈ F22 be the primitive element verifying θ2 + θ + 1 = 0. We have F2(θ) =

F22 . Consider the ring automorphism

Φ : F22 [x]→ F22 [x]
n

∑
i=0

aixi 7→
n

∑
i=0

a2
i xi.

Let V(x) = x4 + x2 + (θ + 1)x + θ ∈ F22 [x] be a primitive polynomial over F22 . Then,
according to Corollary 2.1, the polynomial

Φ0(V)(x) ·Φ(V)(x) = V(x) ·Φ(V)(x) = (x4 + x2 + (θ + 1)x + θ)(x4 + x2 + θx + θ + 1)

= x8 + x5 + x3 + x + 1

is primitive over F2 of degree 8.

2.3 Some Irreducible Polynomials Over Fq

In this section, we will exploit Proposition 2.1 in order to produce irreducible polynomials
over Fq.

Theorem 2.2. [24, Theorem 3.75] Let r ≥ 2 be an integer and a ∈ F∗q . Then, the binomial
xr − a is irreducible over Fq if and only if the following two conditions are satisfied:

(i) each prime factor of r divides the order e of a in F∗q , but not
q− 1

e
.

(ii) If r ≡ 0 mod 4, then q ≡ 1 mod 4.

Using this theorem, we obtain the following corollary.

Corollary 2.2. [14, Corollary 3.2] Let a ∈ Fqm such that Fq(a) = Fqm , and let r ≥ 2 be an
integer. Then, the polynomial

f (x) =
m−1

∏
i=0

(xr − aqi
)

is irreducible over Fq of degree rm if and only if the following two conditions are satisfied:

(i) each prime factor of r divides the order e of a in F∗qm , but not
(qm − 1)

e
.

(ii) If r ≡ 0 mod 4, then qm ≡ 1 mod 4.

Proof. The condition Fq(a) = Fqm implies that Fqm is the smallest extension of Fq containing
the coefficents of the binomial xr − a. Then, according to Proposition 2.1, we have that f (x)
is irreducible over Fq of degree rm if and only if xr − a is irreducible over Fqm of degree r.
Theorem 2.2 then yields the result.
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Remark 2.3. The polynomial f (x) in Corollary 2.2 can never be primitive, since for any r ≥ 2,
we have

ord( f (x)) = ord(xr − a).

On the other hand, if α ∈ Fqrm is a root of xr − a, then αr = a and

αr(qm−1) = aqm−1 = 1.

Therefore,

ord( f (x)) = ord(xr − a) ≤ r · (qm − 1) < qrm − 1,

and the order of a primitive polynomial over Fq of degree rm is qrm − 1.

Example 2.3. Take q = m = 2 and a ∈ F4 such that a2 + a + 1 = 0. The order of a in F∗4 is
3. Then, by taking r = 3k, where k is a positive integer, we obtain the well known class of
irreducible polynomials over F2

(x3k
+ a) · (x3k

+ a2) = x2·3k
+ x3k

+ 1.

In Table 2.1 (resp. Table 2.2), a is an element of F2m (resp. F3m) with Fqm = Fq(a), g(x) =

Min(a, Fq)(x) and f (x) is a monic irreducible polynomial over Fq of the form ∏m−1
i=0 (xr− aqi

).

Lemma 2.3. [24, Corollary 3.79] The trinomial xp − x− a is irreducible in Fq[x] if and only if
Trq(a) 6= 0.

This lemma implies the following corollary.

Corollary 2.3. [14, Corollary 3.3] Let a ∈ Fqm such that Fq(a) = Fqm . Then, the polynomial

f (x) =
m−1

∏
i=0

(xp − x− aqi
)

is irreducible over Fq of degree pm if and only if Trqm(a) 6= 0. Furthermore, xp − x − a is
primitive over Fqm if and only if f (x) is primitive over Fq.

Proof. The condition Fq(a) = Fqm implies that Fqm is the smallest extension of Fq containing
the coefficents of the trinomial xp − x − a. Then, according to Proposition 2.1, we have that
f (x) is irreducible over Fq of degree pm if and only if xp − x − a is irreducible over Fqm of
degree p. Lemma 2.3 then yields the result.

When m = 2, Corollary 2.3 implies the following result.

Corollary 2.4. [14, Corollary 3.4] Let q be a power of an odd prime p and let a, b ∈ F∗q . Then,
the polynomial

f (x) = x2p − 2xp+1 − axp + x2 + ax− b

is irreducible over Fq if and only if a2 + 4b is a non-square in Fq and Trq(a) 6= 0.
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TABLE 2.1: Irreducible polynomials over F2 from the product of irreducible
binomials over F2m

m g(a) = 0 r f (x)
2 a2 + a + 1 = 0 3k x2·3k

+ x3k
+ 1

3 a3 + a + 1 = 0 7k x3·7k
+ x7k

+ 1
3 a3 + a2 + 1 = 0 7k x3·7k

+ x2·7k
+ 1

4 a4 + a + 1 = 0 3k · 5l x4·3k·5l
+ x3k·5l

+ 1
4 a4 + a3 + 1 = 0 3k · 5l x4·3k5l

+ x3k+1·5l
+ 1

4 a4 + a3 + a2 + a + 1 = 0 5k x4·5k
+ x3·5k

+ x2·5k
+ x5k

+ 1
5 a5 + a2 + 1 = 0 31k x5·31k

+ x2·31k
+ 1

5 a5 + a3 + 1 = 0 31k x5·31k
+ x3·31k

+ 1
5 a5 + a3 + a2 + a + 1 = 0 31k x5·31k

+ x3·31k
+ x2·31k

+ x31k
+ 1

5 a5 + a4 + a2 + a + 1 = 0 31k x5·31k
+ x4·31k

+ x2·31k
+ x31k

+ 1
5 a5 + a4 + a3 + a2 + 1 = 0 31k x5·31k

+ x4·31k
+ x3·31k

+ x2·31k
+ 1

5 a5 + a4 + a3 + a + 1 = 0 31k x5·31k
+ x4·31k

+ x3·31k
+ x31k

+ 1

TABLE 2.2: Irreducible polynomials over F3 from the product of irreducible
binomials over F3m

m g(a) = 0 r f (x)
2 a2 + a + 2 = 0 2k x2k+1

+ x2k
+ 2

2 a2 + 2a + 2 = 0 2k x2k+1
+ 2x2k

+ 2
3 a3 + 2a + 1 = 0 13k x3·13k

+ 2x13k
+ 1

3 a3 + 2a + 1 = 0 2 · 13k x6·13k
+ 2x2·13k

+ 1
3 a3 + 2a + 2 = 0 13k x3·13k

+ 2x13k
+ 2

3 a3 + a2 + a + 2 = 0 13k x3·13k
+ x2·13k

+ x13k
+ 2

3 a3 + a2 + 2a + 1 = 0 13k x3·13k
+ x2·13k

+ 2x13k
+ 1

3 a3 + a2 + 2a + 1 = 0 2 · 13k x6·13k
+ x4·13k

+ 2x2·13k
+ 1

3 a3 + 2a2 + a + 1 = 0 13k x3·13k
+ 2x2·13k

+ x13k
+ 1

3 a3 + 2a2 + a + 1 = 0 2 · 13k x6·13k
+ 2x4·13k

+ x2·13k
+ 1

3 a3 + 2a2 + 2a + 2 = 0 13k x3·13k
+ 2x2·13k

+ 2x13k
+ 2

Proof. Consider u(x) = x2 − ax − b ∈ Fq[x] and let α ∈ Fq2 be any root of u(x). Then, by
Corollary 2.3, we have that u(x) is irreducible over Fq and Trq2(α) 6= 0 if and only if

f (x) = (xp − x− α)(xp − x− αq)

is irreducible over Fq. Therefore, f (x) is irreducible over Fq if and only if a2 + 4b is a non-
square in Fq and

Trq2(α) = Trq

(
Trq2|q(α)

)
= Trq(a) 6= 0.



38 Chapter 2. Construction Through Automorphism

Lemma 2.4. [8, Corollary 3.6] For a, b ∈ F∗q , the trinomial xp − ax− b is irreducible over Fq if

and only if a = Ap−1 for some A ∈ F∗q and Trq

(
b

Ap

)
6= 0.

In particular, if q = 2s for some positive integer s, then the trinomial x2 + ax + b is

irreducible over Fq if and only if Trq

(
b
a2

)
6= 0.

Corollary 2.5. [14, Corollary 3.5] Let q = 2s, where s is a positive integer. Let a, b ∈ F∗q . Then,

the polynomial x4 + (a + 1)x2 + ax + b is irreducible over Fq if and only if Trq

(
b
a2

)
6= 0 and

Trq(a) 6= 0.

Proof. Using a similar proof as in Corollary 2.4, Lemma 2.4 then yields the result.

2.4 Cohen’s Theorem Generalization

The following theorem, known as Cohen’s theorem, has been used by many authors in order
to construct irreducible polynomials over Fq of higher degree (see, e.g., [1],[23],[27]). The
main idea in the mentioned references is to make the polynomial g(x)− αh(x) to be a known
irreducible polynomial, say a binomial or a trinomial using existent results.

Theorem 2.3. [15, Lemma 1] Let f (x) be an irreducible polynomial over Fq of degree n. Let
g(x), h(x) ∈ Fq[x] be relatively prime polynomials with h(x) 6= 0. Then, the composition

h(x)n · f
(

g(x)
h(x)

)
is irreducible over Fq if and only if the polynomial g(x) − αh(x) is irreducible over Fqn for
any root α ∈ Fqn of f (x).

Proof. Let α ∈ Fqn be a root of f (x), and set V(x) = g(x)− αh(x) ∈ Fqn [x]. Then, we have

f (x) =
n−1

∏
i=0

(x− αqi
),

and

F(x) = h(x)n · f
(

g(x)
h(x)

)
=

n−1

∏
i=0

(
g(x)− αqi

h(x)
)

=
n−1

∏
i=0

Φi(V)(x).

Note that Fqn is the smallest extension of Fq containing the coefficients of V(x). Then, according
to Proposition 2.1, the polynomial F(x) is irreducible over Fq if and only if the polynomial
V(x) is irreducible over Fqn .
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Example 2.4. Let f (x) = ∑n
i=0 aixi be a monic irreducible polynomial over Fq of degree n,

and let α ∈ Fqn be a root f (x). We will show that the polynomial f (xp− x) is irreducible over
Fq of degree pn if and only if Trq(an−1) 6= 0. According to Cohen’s Theorem, f (xp − x) is
irreducible over Fq if and only if xp − x− α is irreducible over Fqn . Then, Lemma 2.3 implies
that xp − x− α is irreducible over Fqn if and only if Trqn(α) 6= 0, or equivalently

Trqn(α) = Trq

(
Trqn|q(α)

)
= −Trq(an−1) 6= 0,

since Trqn|q(α) = −an−1.

In the next proposition, we give a generalization of Cohen’s Theorem. For this, we need to
extend the automorphism Φ given by expression (2.1) to the field of rational functions Fqm(x)
as follows

Φ : Fqm(x)→ Fqm(x)
g(x)
h(x)

7→ Φ
(g

h

)
(x) :=

Φ(g)(x)
Φ(h)(x)

,

with h(x) 6= 0. It is not hard to check that Φ is an automorphism of Fqm(x).

Proposition 2.2. [14, Proposition 3.2] Let f (x) be an irreducible polynomial over Fq of degree
rm, and let v(x) be an irreducible factor of f (x) over Fqm of degree r. Let g(x), h(x) ∈ Fq[x]
be relatively prime polynomials with h(x) 6= 0. Then, the composition

F(x) = h(x)rm · f
(

g(x)
h(x)

)
is irreducible (resp. primitive) over Fq if and only if

V(x) = h(x)r · v
(

g(x)
h(x)

)
is irreducible (resp. primitive) over Fqm , and Fqm is the smallest extension of Fq containing
the coefficients of V(x).

Proof. Proposition 2.1 implies that

f (x) =
m−1

∏
i=0

Φi(v)(x).
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Then, we have:

m−1

∏
i=0

Φi(V)(x) =
m−1

∏
i=0

Φi
(

hr · v
(g

h

))
(x)

=
m−1

∏
i=0

Φi(hr)(x) ·Φi
(

v
(g

h

))
(x)

=
m−1

∏
i=0

h(x)r ·Φi(v)
(

g(x)
h(x)

)
= h(x)rm · f

(
g(x)
h(x)

)
= F(x).

By Proposition 2.1, we have that F(x) is irreducible (resp. primitive) over Fq if and only
if V(x) is irreducible (resp. primitive) over Fqm , and Fqm is the smallest extension of Fq

containing the coefficients of V(x).

Remark 2.4. As pointed out in [23], Proposition 2.2 gives an immediate proof for Cohen’s
theorem by taking v(x) = x− α, where α ∈ Fqrm is a root of f (x).
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CHAPTER 3

CONSTRUCTION BY COMPANION MATRIX

As we have seen so far, irreducible polynomials can be constructed using the Frobenius
automorphism, or the composition method using Cohen’s theorem. In this chapter, we will
give a generalization to irreducible polynomials for a construction of primitive polynomials
based on the companion matrix established in [13]. The advantage of this construction is that,
given an irreducible (resp. primitive) polynomial over Fqm of degree r, we obtain multiple
(resp. all) irreducible polynomials over Fq of degree rm.

Let u(x) be a primitive polynomial over Fq of degree m and let β be a root of u(x). Then,
we have

Fqm =
{

0, 1, β, β2, . . . , βqm−2
}

.

Let Cu be the companion matrix of u(x). Then, we can see the elements of Fqm as matrices
through the field isomorphism (see [13])

ψ : Fqm → Fq[Cu]

β 7→ Cu.

This isomorphism can be extended to the ring isomorphism

Ψ : Matr×r(Fqm)→ Matr×r(Fq[Cu])

(ai,j) 7→
(
ψ(ai,j)

)
.

3.1 Main Construction

The next theorem, which is the main result in [13], gives a construction of a primitive polynomial
over Fq from a given one over Fqm . The key idea is to transform the companion matrix of the
primitive polynomial over Fqm into a matrix with coefficients in Fq using the isomorphism Ψ.

Theorem 3.1. [13] Let Cv be the companion matrix of a primitive polynomial V(x) over Fqm

of degree r. Then, the polynomial

det (xIrm −Ψ(Cv))

is primitive over Fq of degree rm.
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Remark 3.1. Theorem 3.1 can also be obtained from the proof of [18, Theorem 6.1].

Now, we will see that this construction remains true for irreducible polynomials, and we
show that, in fact, the constructions made in Theorem 3.1 and Proposition 2.1 are the same.

Theorem 3.2. [14, Theorem 4.2] Let V(x) = ∑r
i=0 aixi be a monic polynomial over Fqm of

degree r, and let Cv be its companion matrix. Then, the polynomial

det (xIrm −Ψ(Cv))

is irreducible over Fq of degree rm if and only if V(x) is irreducible over Fqm and Fq(a0, a1, . . . , ar) =

Fqm , and in this case we have the decomposition

det (xIrm −Ψ(Cv)) =
m−1

∏
i=0

Φi(V)(x).

Proof. Set h(x) = det(xIrm − Ψ(Cv)). Note that since Ψ(Cv) ∈ Matrm×rm(Fq), then h(x) ∈
Fq[x] is monic of degree rm. Let us write h(x) = ∑rm

i=0 hixi ∈ Fq[x]. We have

Ψ (h(Cv)) = Ψ

(
rm

∑
i=0

hiCi
v

)
=

rm

∑
i=0

hiΨ(Cv)
i

= h (Ψ(Cv)) = Orm.

As Ψ is a ring isomorphism, then h(Cv) = Or. Therefore, h(x) is the minimal polynomial
of Cv over Fq if and only if Fq[Cv] ∼= Fqrm , if and only if V(x) is irreducible over Fqm and
Fq(a0, a1, . . . , ar) = Fqm , and in this case, by Proposition 2.1, we have

det (xIrm −Ψ(Cv)) =
m−1

∏
i=0

Φi(V)(x).

Example 3.1. Taking again V(x) = x3 + (2θ + 2)x + θ + 2 ∈ F32 [x] as described in Example
2.1, the polynomial u(x) = x2 + 2x + 2 ∈ F3[x] is primitive having θ as a root. Let

Cu =

(
0 1
1 1

)
∈ Mat2×2(F3)

be the companion matrix of u(x). Then, we can see the elements of F32 as matrices through
the field isomorphism

ψ : F32 → F3[Cu]

θ 7→ Cu,

and we have

F3[Cu] = {O, I, 2I, Cu, I + Cu, 2I + Cu, 2Cu, I + 2Cu, 2I + 2Cu}.
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The companion matrix of V(x) is

Cv =

0 0 2θ + 1
1 0 θ + 1
0 1 0

 ∈ Mat3×3(F32).

Therefore,

Ψ(Cv) =

ψ(0) ψ(0) ψ(2θ + 1)
ψ(1) ψ(0) ψ(θ + 1)
ψ(0) ψ(1) ψ(0)

 =



0 0 0 0 1 2
0 0 0 0 2 0
1 0 0 0 1 1
0 1 0 0 1 2
0 0 1 0 0 0
0 0 0 1 0 0


∈ Mat6×6(F3).

Since V(x) 6∈ F3[x], then the polynomial

det (xI6 −Ψ(Cv)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 0 2 1
0 x 0 0 1 0
2 0 x 0 2 2
0 2 0 x 2 1
0 0 2 0 x 0
0 0 0 2 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣
= x6 + 2x3 + x2 + x + 2

is irreducible over F3 of degree 6, and we have

1

∏
i=0

Φi(V)(x) = Φ0(V)(x) ·Φ(V)(x) = V(x) ·Φ(V)(x)

=
(

x3 + (2θ + 2)x + θ + 2
) (

x3 + (θ + 1)x + 2θ
)

= x6 + 2x3 + x2 + x + 2

= det(xI6 −Ψ(Cv)).

In order to reduce the complexity of the computation of the determinant considered in the
previous theorem, we give the following corollary.

Corollary 3.1. [14, Corollary 4.1] Let a0, a1, . . . , ar ∈ Fqm such that Fq(a0, a1, . . . , ar) = Fqm .
Then, the polynomial ∑r

i=0 aixi is monic irreducible over Fqm of degree r if and only if the
polynomial

det

(
r

∑
i=0

ψ(ai)xi

)
is monic irreducible over Fq of degree rm.

Proof. This follows from Theorem 3.2 and the fact that (see the proof of Corollary 3.2 in [13])

det

(
r

∑
i=0

ψ(ai)xi

)
= det (xIrm −Ψ(M)) ,
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where M is the companion matrix of the polynomial ∑r
i=0 aixi.

Example 3.2. We take again the polynomial V(x) and the isomorphism ψ given in Example
3.1. Then, we have

det
(

ψ(θ + 2) + ψ(2θ + 2)x + ψ(0)x2 + ψ(1)x3
)
= det

((
2 1
1 0

)
+

(
2 2
2 1

)
x +

(
1 0
0 1

)
x3
)

=

∣∣∣∣2 + 2x + x3 1 + 2x
1 + 2x x + x3

∣∣∣∣
= 2 + x + x2 + 2x3 + x6.

3.2 Generating Multiple Irreducible Poylnomials

As we have mentioned before, the constructions made in Proposition 2.1 and Theorem 3.2
are the same. However, This last construction has the advantage of producing multiple
irreducible poylnomials from a given irreducible polynomial as we will see.

Definition 3.1. For a positive integer e such that gcd(e, q) = 1, the least positive integer m
for which e divides qm − 1 is called the multiplicative order of q modulo e, and denoted by
m = orde(q).

Let e be a divisor of qrm − 1 such that rm = orde(q), we define

De =
{ se

e′
(mod e) : e′ divides e; rm = orde′(q); gcd(s, e′) = 1

}
.

When the class of an integer k modulo e is in De, we simply write k ∈ De. Note that De is not
empty, since for s = 1 and e = e′ we have 1 ∈ De.

Example 3.3. For (q, r, m) = (2, 2, 3), we have :

D9 = {1, 2, 4, 5, 7, 8},
D21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20},
D63 = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33,

34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62}.

In the following corollary, we show how to generate multiple irreducible polynomials
over Fq of degree rm from an irreducible polynomial over Fqm of degree r, using its companion
matrix.

Corollary 3.2. [14, Corollary 4.2] Let V(x) = ∑r
i=0 aixi ∈ Fqm [x] be a monic irreducible

polynomial of degree r with Fq(a0, a1, . . . , ar) = Fqm . Let Cv be the companion matrix of
V(x) and e = ord(Cv), the order of Cv in GLr(Fqm). Let k ∈N. Then, the polynomial

det
(

xIrm −Ψ(Ck
v)
)
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is irreducible over Fq of degree rm if and only if k ∈ De. Moreover, if k =
se
e′
∈ De, then

ord
(

det
(

xIrm −Ψ(Ck
v)
))

= e′.

Proof. As in the proof of Theorem 3.2, we have that det(xIrm −Ψ(Ck
v)) is irreducible over Fq

if and only if Fq[Ck
v]
∼= Fqrm , if and only if k =

se
e′
∈ De, where e′ = ord(Ck

v).

Example 3.4. Set (q, m, r) = (2, 3, 3) and let a ∈ F23 be a primitive element such that a3 + a +
1 = 0. Consider the irreducible polynomial V(x) = x3 + ax + 1 ∈ F23 [x] and its companion
matrix

Cv =

0 0 1
1 0 a
0 1 0

 .

Then, we obtain all the irreducible polynomials over F2 of degree 9 and order 73, which we
list in Table 3.1.

TABLE 3.1:
All irreducible polynomials over F2 of degree 9 and order 73.

k det(xI9 −Ψ(Ck
v))

1 x9 + x + 1
3 x9 + x4 + x2 + x + 1
5 x9 + x6 + x3 + x + 1
9 x9 + x6 + x5 + x2 + 1
11 x9 + x7 + x4 + x3 + 1
13 x9 + x8 + 1
17 x9 + x8 + x6 + x3 + 1
25 x9 + x8 + x7 + x5 + 1

The next corollary shows that, if a primitive polynomial over Fqm of degree r is given, then
we obtain all irreducible polynomials over Fq of degree rm.

Corollary 3.3. [14, Corollary 4.3] Let Cv be the companion matrix of a primitive polynomial
V(x) over Fqm of degree r. Then, the set of all monic irreducible polynomials over Fq of
degree rm is given by {

det(xIrm −Ψ(Ck
v)) : k ∈ Dqrm−1

}
.

Moreover, the set of all primitive polynomials over Fq of degree rm is given by{
det

(
xIrm −Ψ(Ck

v)
)

: 1 ≤ k ≤ qrm − 1; gcd(k, qrm − 1) = 1
}

.

Proof. Since ord(Cv) = qrm − 1, then for any monic irreducible polynomial P(x) over Fq

of degree rm, we can view Ck
v as its root for some 1 ≤ k ≤ qrm − 1. In this case we have
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Fq[Ck
v]
∼= Fqrm , which is equivalent to k ∈ Dqrm−1. Therefore, P(x) = det(xIrm −Ψ(Ck

v)).
Moreover, it is clear that P(x) is primitive if and only if ord(Ck

v) = qrm − 1, if and only if
gcd(k, qrm − 1) = 1.

Example 3.5. Consider the primitive polynomial V(x) = x3 + x + a ∈ F23 [x], where a3 + a +
1 = 0 as in Example 3.4. The companion matrix of V(x) is given by

Cv =

0 0 a
1 0 1
0 1 0

 .

Then, using the matrix Cv and Corollary 3.3, we obtain all irreducible polynomials over F2 of
degree 9 which we list in Table 3.2.

Remark 3.2. Corollary 3.3 implies that the number of monic irreducible polynomials over Fq

of degree rm depends only on the set Dqrm−1.
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TABLE 3.2: All irreducible polynomials over F2 of degree 9 and order e.

k det(xI9 −Ψ(Ck
v)) e k det(xI9 −Ψ(Ck

v)) e
1 x9 + x7 + x5 + x + 1 511 61 x9 + x8 + x6 + x4 + x3 + x + 1 511
3 x9 + x6 + x5 + x4 + x2 + x + 1 511 63 x9 + x8 + 1 73
5 x9 + x6 + x4 + x3 + 1 511 75 x9 + x6 + x5 + x4 + x3 + x2 + 1 511
7 x9 + x + 1 73 77 x9 + x6 + x5 + x2 + 1 73
9 x9 + x8 + x7 + x6 + x3 + x2 + 1 511 79 x9 + x8 + x7 + x6 + x3 + x + 1 511
11 x9 + x8 + x6 + x5 + x4 + x3 + x2 + x + 1 511 83 x9 + x8 + x7 + x2 + 1 511
13 x9 + x7 + x5 + x4 + x3 + x2 + 1 511 85 x9 + x8 + x7 + x6 + x4 + x2 + 1 511
15 x9 + x8 + x4 + x + 1 511 87 x9 + x8 + x4 + x3 + x2 + x + 1 511
17 x9 + x6 + x4 + x3 + x2 + x + 1 511 91 x9 + x7 + x4 + x3 + 1 73
19 x9 + x7 + x6 + x4 + 1 511 93 x9 + x8 + x7 + x6 + x2 + x + 1 511
21 x9 + x6 + x3 + x + 1 73 95 x9 + x7 + x6 + x5 + x4 + x2 + 1 511
23 x9 + x8 + x6 + x5 + x3 + x + 1 511 103 x9 + x8 + x6 + x5 + x4 + x + 1 511
25 x9 + x8 + x6 + x5 + 1 511 107 x9 + x7 + x2 + x + 1 511
27 x9 + x8 + x6 + x3 + x2 + x + 1 511 109 x9 + x7 + x6 + x5 + x4 + x3 + 1 511
29 x9 + x6 + x5 + x3 + x2 + x + 1 511 111 x9 + x4 + x3 + x + 1 511
31 x9 + x8 + x5 + x + 1 511 117 x9 + x5 + 1 511
35 x9 + x4 + x2 + x + 1 73 119 x9 + x8 + x7 + x5 + 1 73
37 x9 + x5 + x4 + x + 1 511 123 x9 + x5 + x3 + x2 + 1 511
39 x9 + x7 + x5 + x4 + x2 + x + 1 511 125 x9 + x8 + x7 + x6 + x5 + x4 + x3 + x + 1 511
41 x9 + x7 + x5 + x2 + 1 511 127 x9 + x8 + x7 + x5 + x4 + x3 + 1 511
43 x9 + x4 + 1 511 171 x9 + x7 + x5 + x3 + x2 + x + 1 511
45 x9 + x8 + x7 + x3 + x2 + x + 1 511 175 x9 + x8 + x6 + x3 + 1 73
47 x9 + x8 + x7 + x6 + x4 + x3 + 1 511 183 x9 + x7 + x4 + x2 + 1 511
51 x9 + x8 + x5 + x4 + x3 + x + 1 511 187 x9 + x8 + x5 + x4 + 1 511
53 x9 + x8 + x7 + x6 + x5 + x + 1 511 191 x9 + x6 + x5 + x3 + 1 511
55 x9 + x7 + x6 + x4 + x3 + x + 1 511 223 x9 + x7 + x6 + x3 + x2 + x + 1 511
57 x9 + x8 + x6 + x5 + x3 + x2 + 1 511 239 x9 + x8 + x7 + x6 + x5 + x3 + 1 511
59 x9 + x8 + x7 + x5 + x4 + x2 + 1 511 255 x9 + x8 + x4 + x2 + 1 511
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CHAPTER 4

APPLICATIONS TO BCH CODES

Cyclic codes are first studied by Prange [33] in 1957. Since then, the study of these codes is
experiencing enormous progress. The class of cyclic codes contains the most efficient codes,
such as Hamming codes, Reed-Solomon codes, etc. A special class among cyclic codes are
Bose-Chaudhury-Hocquenghem (BCH) codes. These codes were discovered by R. Bose and
D.K. Ray-Chaudhuri [9] in 1960, and independently by A. Hocquenghem [21] in 1959. They
are of great practical importance for error correction, particularly if the expected number of
errors is small compared with the length of the code (see, e.g., [22], [26]). This chapter, as a
consequence of our previous results, is devoted to applications to such codes. First, we give
a characterization of the generator polynomial of a BCH code. Then, we show how two BCH
codes over Fqm and Fq, respectively, and their generator polynomials are related.

Definition 4.1. Let q be a power of a prime. Let n be an integer such that gcd(n, q) = 1 and
set m = ordn(q). Let α ∈ Fqm be an element of order n, and let δ be an integer such that
2 ≤ δ ≤ n. A narrow-sense BCH code over Fq of length n and designed distance δ is a cyclic
code, with generator polynomial

g(x) = lcm
{

Min(αi, Fq)(x) : 1 ≤ i ≤ δ− 1
}

.

When n = qm − 1, this code is called primitive BCH code and is denoted by C(q,m,δ).

For practical purposes, we would like to construct a cyclic code with high minimum
distance, since the higher the minimum distance, the more errors the code can detect and
correct. For that, BCH codes have the following important property.

Theorem 4.1. [22, Theorem 5.1.1](BCH Bound) Let C be a BCH code with a designed distance
δ. Then d ≥ δ, where d is the minimum distance of C.

This theorem along with Proposition 1.11 assure that the higher the designed distance of
C, the more errors the code can detect and correct.

4.1 A Characterization Of The Generator Polynomial Of a BCH
Code

As we have seen with the definition of a BCH code C, we need the generator polynomial
g(x) in order to describe the code, since the codewords of C are just multiples of g(x) modulo
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xn − 1. Recall that for a divisor e of qrm − 1 such that rm = orde(q), we defined

De =
{ se

e′
(mod e) : e′ divides e; rm = orde′(q); gcd(s, e′) = 1

}
.

When the class of an integer k modulo e is in De, we simply write k ∈ De. Note that De is not
empty, since for s = 1 and e = e′ we have 1 ∈ De.

In the following proposition, we give a characterization of the polynomial g(x).

Proposition 4.1. [14, Proposition 5.1] Let V(x) = ∑r
i=0 aixi ∈ Fqm [x] be an irreducible polynomial

of degree r with Fq(a0, a1, . . . , ar) = Fqm . Let Cv be the companion matrix of V(x). Let
α ∈ Fqrm be a root of V(x), n = ord(α) and let δ be an integer with 2 ≤ δ ≤ n. Let C
be a narrow-sense BCH code over Fq of length n and designed distance δ, with generator
polynomial

g(x) = lcm
{

Min(αi, Fq)(x) : 1 ≤ i ≤ δ− 1
}

.

Set

B =
{

det
(

xIrm −Ψ(Ck
v)
)

: 1 ≤ k ≤ δ− 1; k ∈ Dn

}
.

Then, the polynomial
H(x) = ∏

f (x)∈B
f (x)

divides g(x) in Fq[x], and it is the product of all irreducible factors of g(x) in Fq[x] of degree
rm. Furthermore, H(x) = g(x) if and only if 1, 2, . . . , δ− 1 ∈ Dn.

Proof. Since Dn is not empty, then so is B. Using Corollary 3.2, we have that B is the set
of all monic irreducible polynomials over Fq of degree rm of the form Min(αk, Fq)(x) with
1 ≤ k ≤ δ− 1.
Now, H(x) = g(x) if and only if Min(αi, Fq)(x) ∈ B for all 1 ≤ i ≤ δ − 1, if and only if
1, 2, . . . , δ− 1 ∈ Dn.

Example 4.1. Consider the irreducible polynomial

V(x) = x5 + (θ + 1)x3 + (θ + 1)x2 + x + 1 ∈ F22 [x],

where θ ∈ F22 is the primitive element verifying θ2 + θ + 1 = 0. The companion matrix of
V(x) is

Cv =


0 0 0 0 1
1 0 0 0 1
0 1 0 0 θ + 1
0 0 1 0 θ + 1
0 0 0 1 0

 .
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Let α be a root of V(x). We have n = ord(α) = 341. Let C be the narrow-sense BCH code
over F2 of length 341 and designed distance δ = 11, with generator polynomial

g(x) = lcm
{

Min(αi, F2)(x) : 1 ≤ i ≤ 10
}

.

Then,

H(x) = x50 + x46 + x44 + x43 + x41 + x39 + x38 + x37 + x35 + x34 + x31 + x30 + x27 + x25 +

x24 + x22 + x19 + x18 + x17 + x13 + x8 + x + 1.

Moreover, we have 1, 2, . . . , 10 ∈ D341. Hence H(x) = g(x).

4.2 A Link Between Two BCH Codes And Their Generator
Polynomials

A very useful method of constructing codes over Fq is to restrict codes which are defined over
an extension field Fqm . This means that, given a code C ⊆ Fn

qm , one considers the subfield
subcode C|Fq = C ∩ Fn

q . Many well-known codes can be defined in this way, for instance
BCH codes. In this section, we will see how two BCH codes over Fq and Fqm , respectively,
are related.

We consider a primitive polynomial V(x) ∈ Fqm [x] of degree r, and we set f (x) =

∏m−1
i=0 Φ(V). Let α, β ∈ Fqrm be a root of V(x) and f (x), respectively. Let δ be an integer

such that 2 ≤ δ ≤ qrm − 1. Denote by C = C(qm,r,δ) and C̃ = C(q,rm,δ) the primitive BCH codes
with generator polynomials

g(x) = lcm
{

Min(αi, Fqm)(x) : 1 ≤ i ≤ δ− 1
}

,

and

g̃(x) = lcm
{

Min(βi, Fq)(x) : 1 ≤ i ≤ δ− 1
}

,

respectively.
Note that since α and β are roots of f (x), there exists an integer 0 ≤ k < rm such that

β = αqk
. Therefore, we have Min(βi, Fq)(x) = Min(αi, Fq)(x) and

g̃(x) = lcm
{

Min(αi, Fq)(x) : 1 ≤ i ≤ δ− 1
}

.

Now, we will show how C and C̃ are related. For this, we need the following two results.

Theorem 4.2. [38, Theorem 9.1.2] For a linear code C over Fqm of length n, we have

Trqm|q(C⊥) = (C|Fq)⊥,

where C⊥ is the orthogonal code of C.
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Lemma 4.1. [38, Lemma 9.1.3] Let C be a linear code over Fqm of length n. Then

dim(C) ≤ dim(Trqm|q(C)) ≤ m dim(C).

Proposition 4.2. [14, Proposition 5.2] With the notation above, we have:

(i) C̃ = C|Fq,

(ii) Trqm|q(C⊥) = C̃⊥,

(iii) dim(C⊥) ≤ dim(C̃⊥) ≤ m. dim(C⊥).

Proof. (i) The polynomial Min(αi, Fqm)(x) divides Min(αi, Fq)(x) in Fqm [x]. Therefore, g(x)
divides g̃(x) in Fqm [x] and C̃ ⊂ C|Fq. Now, let c(x) ∈ C|Fq. For any root λ of g̃(x), there exist
some integers i and j such that 1 ≤ i ≤ δ− 1, 0 ≤ j < rm and λ = (αi)qj

. Then, since c(x) ∈ C
we have

c(λ) = c
(
(αi)qj

)
= c(αi)qj

= 0.

Hence, g̃(x) divides c(x) in Fq[x] and c(x) ∈ C̃.
(ii) By replacing C|Fq by C̃ in Theorem 4.2 and using Part (i), we get Trqm|q(C⊥) = C̃⊥.
(iii) Here we replace C by C⊥ in Lemma 4.1. Part (ii) then yields the result.

The next proposition is useful to find the polynomial g̃(x) if g(x) is given.

Proposition 4.3. [14, Proposition 5.3] Let m ≥ 2 and c = max{d : d is a proper divisor of
m}. Set for all s ∈ {1, 2, . . . , δ− 1}, Vs(x) = Min(αs, Fqm)(x) and fs(x) = Min(αs, Fq)(x). The
following statements are satisfied:

(i) If δ ≤ qrm−1
qrc−1 , then

fs(x) =
m−1

∏
i=0

Φi(Vs)(x).

(ii) We have that δ ≤ q if and only if

g̃(x) =
m−1

∏
i=0

Φi(g)(x).

(iii) We have also δ ≤ q if and only if dim(C̃) = m dim(C)− n(m− 1).

Proof. (i) If δ ≤ qrm−1
qrc−1 , then for any proper divisor d of m, Vs(x) 6∈ Fqd [x]. Indeed, if there

exists such d with Vs(x) ∈ Fqd [x], then qrm − 1 divides (qd deg(Vs(x)) − 1)s, which implies

qrm − 1
qd deg(Vs(x)) − 1

≤ s,

a contradiction, since



4.2. A Link Between Two BCH Codes And Their Generator Polynomials 53

s < δ ≤ qrm − 1
qrc − 1

≤ qrm − 1
qd deg(Vs(x)) − 1

.

Then, Proposition 2.1 implies the result.
(ii) If δ ≤ q, then for all integers i and j with 1 ≤ i < j ≤ δ− 1, we have Vi(x) 6= Vj(x) and
fi(x) 6= f j(x). Indeed, suppose, on the contrary, that there exist such integers i and j for which

Vi(x) = Vj(x) or fi(x) = f j(x). Then, αi = αjqmk
for some k ∈ {0, 1, . . . , r− 1} or αi = αjql

for
some l ∈ {0, 1, . . . , rm− 1}, which implies that qrm− 1 divides jqkm− i or that qrm− 1 divides
jql − i. Thus, qm ≤ j or q ≤ j, a contradiction. Therefore, we have

g(x) =
δ−1

∏
i=1

Vi(x)

and

g̃(x) =
δ−1

∏
i=1

fi(x).

Since δ ≤ q < qrm−1
qrc−1 , then, Part (i) implies that

g̃(x) =
δ−1

∏
i=1

fi(x) =
δ−1

∏
i=1

m−1

∏
j=0

Φj(Vi)(x) =
m−1

∏
j=0

Φj

(
δ−1

∏
i=1

Vi

)
(x) =

m−1

∏
j=0

Φj(g)(x).

Conversely, suppose that g̃(x) = ∏m−1
i=0 Φi(g)(x) and δ > q. Notice that Vq(x) = Φ(V1)(x).

Hence, V1(x) 6= Vq(x) and V1(x)Vq(x) divides g(x) in Fqm [x]. Then, the polynomial

f1(x) fq(x) = f1(x)2

divides g̃(x) in Fq[x], a contradiction, and Part (ii) holds.
(iii) Suppose that

g(x) = ∏
i∈J

Vi(x) and g̃(x) = ∏
i∈I

fi(x)

for some I, J ⊂ {1, 2, . . . , δ− 1}. Then, for all i = 1, 2, . . . , δ− 1, there exists j ∈ J such that
Vi(x) = Vj(x), which implies that fi(x) = f j(x). Hence, g̃(x) divides ∏k∈J fk(x) in Fq[x].
Since fk(x) divides ∏m−1

i=0 Φi(Vk)(x) in Fq[x], then g̃(x) divides ∏m−1
i=0 Φi(g)(x) in Fq[x]. Thus,

there exists a monic polynomial h(x) ∈ Fq[x] such that

h(x) · g̃(x) =
m−1

∏
i=0

Φi(g)(x).

Part (ii) implies that δ ≤ q if and only if deg(h(x)) = 0 if and only if deg(g̃(x)) = m deg(g(x)),
or equivalently dim(C̃) = m dim(C)− n(m− 1).

Example 4.2. Set (q, m, r) = (11, 2, 2) and δ = 8. Let F112 = F11(θ), where θ2 + 7θ + 2 = 0. Let
α ∈ F114 a primitive element verifying α4 + 8α2 + 10α + 2 = 0. Then, we have the following
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table, where fs(x) = Min(αs, F11)(x) and Vs(x) = Min(αs, F112)(x):

s fs(x) Vs(x)
1 x4 + 8x2 + 10x + 2 x2 + (3θ + 5)x + θ

2 x4 + 5x3 + 2x2 + 9x + 4 x2 + (2θ + 4)x + 4θ + 9
3 x4 + 8x3 + 5x2 + 3x + 8 x2 + (3θ + 9)x + 3θ + 3
4 x4 + x3 + 10x2 + x + 5 x2 + (9θ + 10)x + 4θ + 5
5 x4 + 7x3 + 5x + 10 x2 + (5θ + 10)x + 10θ + 3
6 x4 + x3 + 4x2 + 5x + 9 x2 + (4θ + 9)x + 10θ + 2
7 x4 + 6x3 + 6x2 + 7 x2 + 7θx + 9θ + 2

Since c = 1 and δ ≤ 114 − 1
112 − 1

, then for all s ∈ {1, 2, . . . , 7}, fs(x) = Vs(x) · Φ(Vs)(x). We

have also:

g(x) = x14 + 3x13 + (θ + 9)x12 + (4θ + 8)x11 + (10θ + 6)x10 + (7θ + 6)x8 + (4θ + 2)x7 +

(7θ + 10)x6 + (10θ + 3)x5 + (7θ + 7)x4 + (4θ + 2)x3 + (5θ + 5)x2 + 4θx + 5θ + 9,

Φ(g)(x) = x14 + 3x13 + (10θ + 2)x12 + (7θ + 2)x11 + (θ + 2)x10 + (4θ + 1)x8 + (7θ + 7)x7 +

(4θ + 5)x6 + (θ + 10)x5 + (4θ + 2)x4 + (7θ + 7)x3 + (6θ + 3)x2 + (7θ + 5)x + 6θ + 7,

g̃(x) = x28 + 6x27 + 9x26 + 10x25 + 3x24 + 8x23 + 4x22 + 9x21 + 6x20 + 9x19 + 2x18 + 5x16 +

7x15 + 8x14 + 7x13 + 7x12 + 4x11 + 6x10 + 8x9 + 3x8 + 6x7 + 9x6 + 7x5 + 5x4 + 9x3 + 7x2 +

4x + 3.

Since δ ≤ 11, then g̃(x) = g(x) · Φ(g)(x). Finally, the two codes C and C̃ generated by
g(x) and g̃(x), respectively, have dimensions dim C̃ = 14640 − 28 = 14612 and dim C =

14640− 14 = 14626, which satisfy 2 dim(C)− dim(C̃) = 14640.
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CONCLUSION

In this work, we have seen some interesting constructions of irreducible polynomials. We
have presented the construction through the Frobenius automorphism. We have also present
ed a construction using the companion matrix of an irreducible polynomial. We have shown
how to obtain multiple and even all irreducible polynomials over Fq of degree rm. As an
application, a characterization of the generator polynomial of a BCH code over Fq has been
given. Then, we have seen how two BCH codes over Fq and Fqm , respectively, and their
generator polynomials are related.

We plan to continue our investigation of BCH codes, that is, how to determine the paramet-
ers (dimension, minimum distance and Bose distance) of certain classes of BCH codes using
the results in Chapter 4?

As we have mentioned before, Cohen’s Theorem has been used by many authors to
construct irreducible polynomials of increasing degree from known ones. Therefore, we
would like to investigate the possibility of doing the same thing using our generalization
of Cohen’s Theorem.

Another question arises, if both constructions, given by Proposition 2.1 and Theorem 3.2,
are the same, which is more efficient in computational terms? In other words, what is the
time complexity of each construction?

We are also interested in applications to linear recurring sequences over finite fields. A
work in this direction is in progress.
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