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Abstract

In this thesis, we recalled some basic consents and key results on cyclic
codes over finite fields and rings, we gave the characterization of the hull of
cyclic codes in terms of their generator polynomials with respect to the Eu-
clidean inner product over finite fields and rings. We discussed respectively
about the type of the hulls of cyclic codes over IF, and Z,. and we gave a for-
mula of the average g-dimensions of the hull of cyclic codes over a finite chain
ring of parameters (p,r,a,e,r) where g = p”. We generalized the notion of
the hull of cyclic code over over IF, and Z,. to a finite chain ring R. More-
over, we explored some properties of hulls of cyclic serial codes over a finite
chain ring. As special cases, we gave some results about LCD and self orthog-
onal codes. We provided an algorithm for computing all the possible parame-
ters of the Euclidean hulls of those codes and we gave an expression of the set
X(n,s,q) of g-dimensions of the Euclidean hulls of cyclic serial codes of length
n over R. We determined the number p(n, 7; R) of cyclic serial codes of length
R over finite chain rings having hulls of a given g-dimension. Finally, we estab-
lished an alternative simpler expression of E(n), the average g-dimensions
of the Euclidean hulls of cyclic serial codes over finite chain rings with its upper
and lower bounds. We showed that E (n), grows at the same rate with ns as
s and n is coprime with p.

Keywords: Finite chain rings; Cyclotomic cosets; Cyclic codes; Hull of a

code; Parameters of the hull of a code; The average g-dimension.
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Résumé

Dans cette these, nous avons rappelé quelques notions de base et résultats clés sur
les codes cycliques sur les corps finis et les anneaux, nous avons donné la carac-
térisation du hull des codes cycliques en fonction de leur polyn6me générateur
par rapport au produit scalaire euclidien. Nous avons discuté respectivement sur
le type du hull des codes cycliques sur IF, et Z,,. et nous avons donné une formule
de la dimensions moyennes du hull des codes cycliques sur les anneaux de chaine
finie de parametres ( p,r,a,e,r) ou g = p’. Nous avons généralisé la notion du
hull des codes cycliques sur F, et Z,. aux anneaux de chaine finie R. De plus,
nous avons exploré certaines propriétés du hull des codes cycliques sériels sur les
anneaux de chaine finie. Comme cas particuliers, nous avons donné quelques
résultats sur les codes LCD et auto orthogonaux. Nous avons fourni un algorithme
pour calculer tous les parametres possibles du hull euclidien de ces codes et nous
avons donné une expression de 'ensemble des g-dimensions du hull euclidien
des codes cycliques sériels de longueur n sur R. . Nous avons déterminé le nombre
p(n,7;R) des codes cycliques sériels de longueur n sur des anneaux de chaine
finis ayant des dimensions du hull donnée. Enfin, nous avons établi une expression
alternative plus simple de Ex(n), the g-dimensions moyennes du hull euclidien
des codes cycliques sériels les anneaux de chaine finis avec ses bornes supérieure
et inférieure. Nous avons montré que Ex(n) croit au méme rythme avec ns,
n et ssontpremiers avecp .

Mots clés: Anneaux finis de chaine, Classes cyclotomiques, Codes cycliques, Hull
d'un code, Parameétres du hull d'un code, La dimension moyenne.
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Introduction

Error correction is an important aspect of classical information processing that pro-

tects the classical bits against errors, similarly.

1.1 | Toward codes over finite rings

The theory of error-correcting codes has historically been most useful in the context
of linear codes. Such codes may be viewed as vector spaces over finite fields carry-
ing with them many familiar and well-studied properties. A generalization of finite
fields is the concept of finite rings. Itis therefore natural to consider codes over finite
rings to study which properties such codes maintain in the move to a more general
setting. Codes over rings started being of interest to many researchers since the ap-
pearance of [15; 25], where it was shown that the binary non-linear codes known
as Kerdock and Preparata codes are actually dual codes when viewed as codes over
Z,4, via the Gray map. So the most natural class of ring that is suitable for coding
theory is given by finite chain rings as it allow to formulate the dual code similar to

finite fields. So it is worth to delve into codes over finite chain rings.

1.2 | Review of litterature

The class of cyclic codes is one of the most studied class of linear codes. The alge-

braic structure of cyclic codes makes easier their implementation, for this reason



Chapter 1. Introduction 1.3. Motivation and problem

many practically important codes are cyclic. The theory of cyclic codes over rings
have been studied in a series of papers ( see [10; 11; 13; 24; 27]). In particular, Dinh
and Permouth [10] gave the algebraic structure of simple root cyclic codes over fi-
nite chain rings R. Martinez and Ruaa [24] generalized these results to multivariable
cyclic codes. Free cyclic serial codes have been determined by using cyclotomic
cosets and trace map over finite chain rings by Fotue and Mouaha in [11].

The Euclidean hull is defined to be the intersection of a code and its Euclidean
dual. It was originally introduced by Assume and Key [1] to classify finite projective
planes. Knowing the hull of a linear code is a key point to determine the complexity
of some algorithms for investigating permutations of two linear codes and com-
puting the automorphism group of the code, see [21; 28; 31]. In general, those algo-
rithms have been proved to be very effective if the size of the Euclidean hull is small.
In the case of codes over finite fields, Sendrier [32] established the number of linear
codes of length n with a fix dimension Euclidean hull, also Skersys [34] discussed
the average dimension of the Euclidean hull of cyclic codes. Later, Sangwisut et al.
[33] determined the dimension of the Euclidean hull of cyclic and negacyclic codes
of length n over a finite field. Furthermore, Jitman and Sangwisut [16] gave the av-
erage Euclidean hull dimension of negacyclic codes over a finite field. Recently, the
concept of the Euclidean hulls has been generalized to cyclic codes of odd length
over Z, by Jitman et al. [17] where the authors provided an algorithm to determine
the type of the Euclidean hull of cyclic codes over Z,.

1.3 | Motivation and problem

Based on the above survey, one must be agreed that these works motivate us to study
the Galois hulls of cyclic codes over finite chain rings.

The main goal of this thesis is to study the Galois hulls of cyclic codes of length
n over a finite chain ring R, such that n and p are coprime. This is the serial case
stated in [24], i.e. The cyclic codes over R whose length 7 is coprime with p are serial
modules over R. We will generalize the techniques used in [17] to obtain the param-
eters and the average q-dimensions of the Euclidean hull of cyclic serial codes over

finite chain rings.



Chapter 1. Introduction 1.4. Outline of thesis

m Problem 1: Generalize the notion of the hull of cyclic code over IF; and Z,

to a finite chain ring R.

m Problem 2: Find a formula of the average g-dimensions of the Euclidean hulls
of cyclic serial codes over finite chain rings R with its upper and lower bounds.

1.4 | Outline of thesis

A brief outline of the structure of this thesis is given below.

Chapter 1 is introduction.

In Chapter 2, we include basic concepts and definitions of classical coding the-
ory over finite field and over a more general algebraic structure, finite rings.

In Chapter 3, We includes some basic definitions of cyclic codes and the dual of
cyclic codes over finite field. We review some known results on the hulls of cyclic
codes over finite fields.

In Chapter 4, We discuss about the characterization of the hull of cyclic codes
over the finite ring Z 2, the ring of integers modulo p? where pis a prime. We derive
The average p-dimension of the hull of cyclic codes of length n over Z,..

Chapter 5, is the core of this thesis, we characterize Galois hulls of cyclic serial
code over finite chain rings. We show the parameters and the g-dimensions of the
Euclidean hull of cyclic serial codes. Finally, the average dimension of the Euclidean
hull of cyclic serial codes is derived with its upper and lower bound.

Finally, Chapter 6 concludes the thesis and proposes a few doable open direc-

tions for future investigation.



Preliminaries

2.1 | Error correcting codes

The theory of error-correcting codes and more broadly, information theory, origi-
nated in Claude Shannon monumental work " A mathematical theory of communi-
cation ", published in 1948 [36], he showed that the goal of finding error correcting
codes that allowed for a high probability of successful transmission was attainable.
Shannon defined of each channel a constant associated with it, called the channel
capacity and he showed that reliable transmission at a rate bellow capacity is pos-
sible. More precisely, his channel coding theorem asserts that there exist error cor-
recting codes that achieve successful transmission with probability arbitrarily close
to 1, with the rate of the code arbitrarily close and below the channel capacity. Since
then, with the development of new technologies for data communications and data
storage, coding theory has become an active subject of research in different areas
of knowledge such as mathematics, computer science, electrical engineering and
others. Coding theory is used in order to improve the trustworthiness of the trans-
mission of information over noisy channels. A representation of the transmission
of information using coding theory is described in Figure 2.1. Suppose a source
wants to send a message to a receiver. The message, which we usually assume to be
a sequence of elements of a field or a ring, is encoded by adding redundancy. We
call the encoded message a codeword and the set of codewords form the code. The
codeword is transmitted over a channel that is subject to noise. This means, that it

is possible that the symbols of the codeword are changed, and we call the changed

4



Chapter 2. Preliminaries 2.1. Error correcting codes

symbols errors. The decoder receives the possibly altered codeword and uses the
redundancy to detect and correct errors. If possible, the decoder then determines
which codeword has most likely been sent. If the decoder detects an error but is un-
able to correct it, then the decoder lets the source know that the message had been
altered. An encoder can be described using an injective map, so if there is a code-
word that is closest to the received word, the message can be retrieved and given to

the receiver.

MNerise

!

[ Source ]—c Encoder |— =l Channel — Decoder 4{ Receiver ]

Figure 2.1: Block diagram of a communication system.

We give a small example of a well-known encoding map: Assume the symbols of
our message are in IF,, the finite field of two elements 0 and 1; the source wants to
send the message 101. Assume further that in this encoding scheme the redundancy
is given by adding a 0 or a 1 to our message, depending on whether we have an odd
or an even number of 1’s in the word. This way our code consists of words with
an even number of 1’s. So 101 will be encoded as 1010. Suppose the codeword is
transmitted over a noisy channel and is changed to 1000. Then the decoder knows
that an error has occurred, because a word with an odd number of 1’s was received.
The decoder detects the error and lets the transmitter know that received message
was altered.

Given an alphabet .</ with g symbols, a block code C oflength n over the alpha-
bet ./ is simply a subset of ./". The g-ary ro-tuples from C are called the code-
words of the code C. It is known that good codes are those who have the power
to eliminate maximum errors. Towards this, an important notion is a minimum
distance of the code which can correctly point out the maximum error-correcting
capability. The minimum distance of a code C or equivalently the least Hamming
distance between any two distinct codewords (number of places where they dif-
fer). A code having minimum distance d can detect up to d —1 places and correct



Chapter 2. Preliminaries 2.2. Linear codes

up to [ J places of errors. Thus the minimum distance determines the error-

correcting capability, therefore, to find out good codes we need to search codes of

larger minimum distance.

2.2 | Linear codes

In coding theory, a linear code is an error-correcting code for which any linear com-
bination of codewords is also a codeword. In this section, we give some basics on

linear block codes (see [14] and [25] for more information on linear block codes).

2.2.1 | Linear codes over finite fields

Let [F, be the finite field with g elements.

Definition 2.2.1. A g-ary linear block code C is an F ;-linear subspace of IFZ. If the
dimension of C as a vector space overIF ; is k, we say C is of length n and of dimension
k and we denote C an [n, k|, -linear code. The elements of C are called codewords.

Definition 2.2.2. Let x = (x1,---,x,) and y = (y, -, ¥,) be vectors in ]FZ. The

Hamming distance between x and y is defined as

dH(x)y) :l{iE]-)"')n L X #ylH

Definition 2.2.3. Theminimum distanceofan [n, k|, -linear code, denoted by d (C),
is the minimum among all the Hamming distances between any two distinct code-
words, i.e.

d(C)=min{dy(x,y) : (x,y) € C* x#y}.

If C has minimum distance d, then we refer to the code as an [n, k, d] linear
code over IF.

Definition 2.2.4. The weight of a vector x = (x,-+,%,) € [F is defined to be the

number of non-zero positions of x, i.e.

wt(x)=|{iel,--,n|x; # 0}
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A natural upper bound on the minimum distance is given by the following:

Lemma 2.2.1. Let C bean [n, k|, -linear code of minimum distance d(C ). Then the

distance is the minimum possible weight of the non-zero codewords, i.e.
d(C)=min{wt(x) : xe C,x# 0}.

Theorem 1. IfC isan [n, k,d]-code then d < n—k + 1, moreover, codes which meet

the Singleton bound are called maximum distance separable (MDS).

For an [n, k]q-linear code C, we define a generator matrix G of the code C to
be a k x n matrix of rank k over IF, whose rows form a basis of C. Another way to
describe this linear subspace is through a kernel representation. Indeed, an (n—
k) x n matrix H over [F, such that ¢ € C if and only if H.x" =0, is called a parity-
check matrix of C. In general, G and H are not unique due to the fact that one can
write many different bases for a subspace.

We can describe an [n, k],-linear code C with generator matrix G and parity-check

matrix H in the following two ways.
C= {CEIFZ : Hx' =0} = {xG : xeng}
Since the code is defined as the kernel of H and also as the image of G we have
HG'=0and GH' =0.

Proposition 2.2.1. Let C bean [n, k], -linear code with parity-check matrix H. Then
C has minimum distance d (C) = d if and only if every set of d —1 columns of H are

linearly independent and there exist d columns of H which are linearly dependent.

Theorem 2. If G = [Ii|A] is a generator matrix for the [n, k], code C in standard
form, then H = [—A"|1,,_t] is a parity check matrix for C.

Definition 2.2.5. Let C be a linear code of length n over [F ;. The dual code of C,
denoted C2, is the code

Clz{xEIFZ:xw‘:O forall ceC}

where, the usual inner product is denoted by x-y = x;y1 + -+ X, ¥, for(xy) €
2
(3]
q



Chapter 2. Preliminaries 2.2. Linear codes

Lemma 2.2.2. If C is an [n, k| linear code, then its dual C* is an [n,n—k] linear
code and (C1)! = C. Moreover, a parity check matrix of C is a generator matrix for
the dual code C*.

If CN C*! then C is called self orthogonal and, if C = C*, then C is called self
dual.

Definition 2.2.6. The hull of a linear code C is defined to be the intersection of the
code with its dual. We will denote by ¢ (C) = C N C* the hull of a code C.

2.2.2 | Finite chain rings

For an account on the results on finite rings in this section check [23]. Through-
out this thesis, p is a prime number, a, e, r, s are positive integers and Zpa is the
residue ring of integers modulo p?. R will denote a finite commutative chain ring
of characteristic p?, of nilpotency index s, and of residue field IF, (where g = p").
We will denote its maximal ideal by J(R) and R* will denote its multiplicative
group. Note that since R is a chain ring it is a principal ideal ring, thus we will
denote as 6 a generator of J(R) and the ideals of R form a chain under inclusion
{0}=J(R)*CJ(R)*'¢---CJ(R)SRand J(R)=0'Rfor0<r<s.

The ring epimorphism 7 : R — R/J(R) ~F, naturally extends a ring epimor-
phism from R X] to F,- [ X] and on the other hand it naturally induces an R-module
epimorphism from R" to (IF,-)". As an abuse of notation we will denote both map-
pings by 7.

A monic polynomial f is basic-irreducible over R if 7t( f) is irreducible over IF .
We will denote by GR(p?, ) the Galois ring of characteristic p® and cardinality p"*.
It is well known that, for a given finite chain ring R there is a 5-tuple ( p,a,r,e, s)
of positive integers, the so-called parameters of R, such that R = GR(p%,r)[0], and
(0) = J(R), 0° € p(Z,a[0])* and 57 # 0° = 0g. From now on, we will denote
as Sy the subring of R such that S; := GR(p%,d)[0] and d is a divisor of r. The
Teichmller set of R will be denoted as T(R) and it is defined asT(R) = {0}uf{a € R :
aP' =2 4 aP'~! = 1}. It is the only cyclic subgroup of R* isomorphic to the multi-
plicative group of IF,,. For each element a in R, there is a unique (ag, a;, -+, as_1)
inT(R)® such thata = ag+ a,0 + -+ a;_, 0571
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Let R and S be two finite commutative chain rings, we say that R is an exten-
sion of S and we denote it by S|R if S € R and 13 = 15. We say that the exten-
sion is separable if J(S)R = J(R). The Galois group of the extension S|R, de-
noted Autg(R), is the group of all the automorphisms y of R whose restriction
7)s of ¥y to S, is the identity map of R. A separable extension is called Galois if
{r e R : (Vy € Autg(R))(y(r) = r)} = S. This condition is equivalent to the
condition R is ring-isomorphic to S[X]/(f), where f is a monic basic irreducible
polynomial in S[X], see [40, Section 4][23, Theorem XIV.8].

Let d be positive divisor of r, and let us consider S = Z,,.[0], R = GR(p“, 1)[0],
S4=GR(p?,d)[0], and

GSub(S|R) :={Sy : disadivisorof r and Z,.[0] C S4}.
It is well known that Autg(R) is a cyclic group generated by the Frobenius auto-

s—1 s—1

morphism o : R — R given by : 0| >, atet) = > a’0’, and therefore, the set
=0 (=0

Sub(Autg(R)) of subgroups of Aut g(R) is given by

Sub(Autg(R)) ={(c?) : d is a divisor of r}.

In[11], GSub(R), the authors established the Galois correspondence (St ab;Fix)
between GSub(S|R) and Sub(Autg(R)) as follows Stab : GSub(S|R) —
Sub(Autg(R)) and Fix : Sub(Autg(R)) — GSub(S|R) where Stab(S;) =
(%) and Fix({c?)) =S, where d is a divisor of r (recall that g = p").

Given a divisor d of r, from [23, Theorem XV.2], o is the only automorphism

in Autg(R) such that 7% o = moo?, where G is a generator of Autg, (Fpr). The
trace map T, : S — S, of the ring extension R|S; is defined by T, := lg:loid, and
the the trace map T,; : IF,» — IF,a of the field extension [F,;[IF ,q is deﬁrlle:((i by T, :=
glﬁid. It is well known that T; : R — S is an epimorphism of S;-modules and
IT:dO: F,a —IF,: is an epimorphism of vector spaces over IF,«. Hence, for any divisor

d of r, the following diagram commutes.

d T
R X R 4 g,
s s lm
a4 Ty,

]Fpr — ]Fpr e Ide

9



Chapter 2. Preliminaries 2.2. Linear codes

2.2.3 | Codes over finite chain ring

A linear code C of length n over a ring R, is a submodule of the R-module R". We
will denote by {0}, the zero-submodule where 0 = (0,0,...,0) € R". A linear code
C over R is free if, C = R¥ as R-modules for some positive integer k. The residue
code of alinear code C over R is the linear code 7(C ) over ]Fq, where

n(C)={(n(c),m(c1), +,7m(cn1) : (coc1,++,Chy) €CY.

In [11], the authors introduced the Galois closure of a linear code C over R of length
n as follows, C1,;(C) =Ext(T4(C)), where Ext (T4(C)) is the linear code over R
of all R-combinations of codewords in the linear code T;(C) over S;. Alinear code
C over R is (O'd)—invariant, if o4 (C) = C, where d is a divisor of r. Recall that for
any linear code C over R oflength n, its subring subcode is givenbyRe s 4 (C) = Cn
(S4)™. In[11], itis shown that any linear code C over R is (o?)-invariant, if and only
if, T;(C) =Resy(C)ifand onlyif, C = Ext(Resy(C)). Forl €{0,1,...,r—1} we
equip R with the ¢-Galois inner-product defined as follows:

n—1

(u,v)) = Z ujof(vj), for allu,ve R".

j=0
When ¢ = 0 it is just the usual Euclidean inner-product and if r is even and r = 2¢
it is the Hermitian inner-product. The ¢-Galois dual of a linear code C over R of

length 7, denoted C*, is defined to be the linear code
ctt = {ueR” : (u,¢)y=0g forallce C}.

If C € CL, then C is (-Galois self-orthogonal. Moreover, C is {-Galois self-dual if,
C = C't. The two statements in Proposition 2.2.3 below follow immediately from
the identity

(u,v)y = (u, " (v))_p =" (((J'K_h (v),u),_p), forall0O<h <¢,u,ve R"

where the action is taken componentwise o (v) = (6 (1), ,0'(v,_1)). The fol-

lowing proposition is a generalized Delsarte’s Theorem.

Proposition 2.2.2. [11, Theorem 3.3] Let C be a linear code over R of length n. Then
foranyl€{0,1,...,r—1}, T;(CH) = (Resy(C))™.

10



Chapter 2. Preliminaries 2.2. Linear codes

Also [20, Proposition 2.2] has a natural generalization to finite chain rings.
Proposition 2.2.3. Let C be a linear code over R of length n. Then

1. (Uh(C))LZ =coh(Cclt), and Ctt = oh(CLen), forany0 < h <(;

2. (Cr)tn =g?r=t=1(C), forall0<{,h < r—1.

From Proposition 2.2.3 and [13, Theorem 3.1], we obtain the following result.
Corollary 1. Let C and C’ be linear codes over R of length n. Then

1. (C+C)=chnc;

2. (cnck=cleycHe.

Definition 2.2.7. Let C be a linear code over R. The{-Galois hull of C will be denoted
as 7, (C), is the intersection of C and its { -Galois dual, that is,

#(C)=CcnCch,

A linear code C over R is {-Galois Linear Complementary Dual (Shortly, Galois
LCD) if #7(C) = {0}, and C is £-Galois self-orthogonal if #,(C) = C. If we de-
note that for all 0 < ¢;h < r—1, we have o/ (4 (C)) = 4 (c"(C)), and 4 (C) =
H,_(C1t). From the generalized Delsarte’s Theorem in Proposition 2.2.2, it fol-
lows that T4 (#(C)) = (Res4(#,_,(C)))™. Note thatif C is (0! )-invariant, then
#(C) = (C).

From [27, Proposition 3.2 and Theorem 3.5], for any linear code C over R of
length n, there is a unique s-tuple (kg, k1, , ks_) of positive integers, such that
C has a generator matrix in standard form

I, Goi Goz -+ Gos—2  Gos1 Go,s
(@] Qlkl HGI,Z BGI,S—Z HGI,S—I BGI,S U

O 0 O - 0 67U, 605Gy,

1

where U is a suitable permutation matrix and O the all zeros matrix of suitable size.

The elements in the s-tuple (ko, ki, ,ks_l) are called parameters of C and the

11



Chapter 2. Preliminaries 2.2. Linear codes

rank of C is ko + k; + -+ ks_;. From [27, Theorem 3.10], the parameters of C-¢
are (n—k,ks_1,-+-, ko, k1), where k = ranky(C). Note that C is free if and only
if rankg(C) = kg and k; = --- = ks;_; = 0. The g-dimension of a linear code C
over R, denoted dim,(C), is defined to be 10g, (|C|). Thus the g-dimension of a

s—1

linear code C over R of parameters (ko, ky,---, ks—1) is >, (s—t)k,. Since R is also
(=0

a Frobenius ring, it follows that dim,(C) +dim,(C1t) = sn.

Proposition 2.2.4. Let C and C’ be two codes over R of the same length. Then
dimg(C+C’")=dim,(C)+dimg(C")—dim,(CNC’).
Moreover dimg (7 (C)) = dim,(7_(C)).

Proof. Themap n: C x C' — C + C’ defined as follows: n(x;x’) = x + x’, is an R-
module epimorphism. From the first isomorphism theorem, it follows that the R-
modules C x C’/Ker(n) and C + C’ are isomorphic. Since Ker(n) = {(x;—x) :
x € CNC'}, it is easy to see that Ker(n) and C N C’ are isomorphic R-modules.
Thus |C + C’| = % x |C’|. Therefore log, (|C + C’|) = log,(|C|)—1log,(IC N
C’l) +10g, (IC’]). From the definition of -dimension of a linear code we have that
dimg,(C+C’) =dim,(C)+dim,(C’)—dim,(CNC’). Moreover,
dim,(#(C)) = dim,((C+C=)H), from Corollary 1 ;
= sn—dim,(C+ C), since dim, (C + Ct~) +dim, ((C +
ctr-0)t) = sn;
= sn—(dim,(C)+dim,(CT)—dim,(#_¢(C)));
= dimy(#_4(C)), since dim,(C) + dimq(le—f) =sn.
]

Proposition 2.2.5. Let C be a free code over R of length n and { be a positive integer.
Then

1. dimy(0(C)) =sx rank(c'(C))=sxdim,(n(c*(C)));
2. n(C)=n(Cl);
3. n(#4(C)) = 4 (n(C)).

12
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Proof. Since C is free, a generator matrix for o/ (C) is ( I ‘ at(A) )U, where Ais a

k x (n—k)-matrix over R and U is a permutation matrix. Thus ( Iy ‘ n(ot(A)) )U
is a generator matrix for 7(C). It follows that |o(C)| = ¢ and rank(c?(C)) =
dim,(n(c?(C))) = k. This proves Item 1. Now to prove Item 2. The codes 7(C)*¢
and 7(C*¢) have the same parity matrix, which is ( Ix ‘ n(ot(A)) )U. Hence
n(C)* = m(C*). Item 3. is a consequence of the fact that the diagram 2.2.2 com-

mutes, 71(7(C)) € #(n(C)) and dim, (n(#4(C))) = dim, (#4(n(C))). O

13



Hull of cyclic codes over finite fields

In this chapter, we introduce some preliminary concepts on both finite fields and
cyclic codes. All results of this chapter can be found in [14; 33].

3.1 | Basics on finite fields

Finite fields form an essential part of the study of error-correcting codes. The pur-
pose of this section is to assume some results without proof, upon which we base
the rest of our study .

Let us introduce finite fields. A field F is a commutative ring with identity in
which each nonzero element has an inverse. This means the ring must also satisfy

the following condition:
(Ya#0eF)(3a'eF)(a-a'=1).

In other words, a ring with identity 1 # 0 is a field if IF\{0} is an abelian group under

multiplication. Of course a finite field is a field with a finite number of elements.

m The order of a finite field is the number of elements in the field. It is always of
the form p'”, where p is a prime number called the characteristic of the field
and the arithmetic in a finite field is performed modulo p.

m For every prime p, the integers modulo p form a field, which denoted FF,, =
7/Z,.

14



Chapter 3. Hull of cyclic codes over finite fields 3.2. Irreducible factorization of X" —1

m For every prime p, there is a unique finite field of size p that is isomorphic to

IF,, which is the set {0,1,---, p—1} with addition and multiplication modulo
p.

m Every finite field is isomorphic to such a field, and therefore must have p”

elements for some prime p and positive integer r.

m Additively, a finite field with p” elements has the structure of a vector space

of dimension r over F p

= Anelement @ in afinite field IF; is called a primitive element (or generator) of
F,ifF, ={0,a,0% - ,a97'}.

m Let IF*L‘] =IF,\{0} the multiplicative group of IF,. Then the following are true:

1) The group IF“; is cyclic with order g —1.

2) If a is a generator of of this cyclic group, then F, = {0,1 =

0 2

a®,al,a?,---,a97?}, and @’ =1 ifand only if (g—1)|i.

3.2 | Irreducible factorization of X" —1

3.2.1 | Minimal Polynomials and Cyclotomic Cosets

We now introduce the idea of minimal polynomials which leads us to cyclotomic
polynomials. These polynomials will play a central not only in factoring X" —1 but

also in generators of cyclic codes.

Definition 3.2.1. An irreducible polynomial is a nonconstant polynomial f(X) €
F,[X], such that whenever f(X) = p(X)q(X), then either p(X) or q(X) must
be a constant in F,. A reducible polynomial is a polynomial that can be factored

into two polynomials of a lesser degree. Mathematically, f(X) € F,[X]| such that
f(X)=a(X)b(X) where deg(a(X))<deg(f(X)), deg(b(X))<deg(f(X)).

Theorem 3. Let f(X) be an irreducible polynomial,
FX)Ip(X)q(X)= f(X)Ip(X) or f(X)lg(X).

15



Chapter 3. Hull of cyclic codes over finite fields 3.2. Irreducible factorization of X" —1

Definition 3.2.2. An element £ € IF), is an n-th root of unity if £" = 1. If & #
1 for0<s<n, then & is called a primitive n-th root of unity.

Definition 3.2.3. A minimal polynomial of an element a € IF ym with respecttolF; is
a nonzero monic polynomial f (X) of the least degree in F ;[ X] such that f (a) = 0.

Next we note some basic facts about minimal polynomials.

Theorem 4. Let IF;m be an extension field of IF,; and let a be an element of F jm
with minimal polynomial M, (X) in IF,[X]. The following are true:

m M, (X) is irreducible over IF ;.
m Ifg(X) is any polynomial inF ;[ X] satisfying g (a) = 0, then M, (X)|g(X).
m M, (X) is unique.

Theorem 5. Let h(X) be a monic irreducible polynomial over F; of degree r. Then
the following hold:

m Alltheroots of h(X) arein - and in any field containing F, along with a
root of h(X),

m h(X)=TII]_,(X—a;), where a;€F, for 1<i<r,and
s 2(X)|(XT —X).

In particular this theorem holds for minimal polynomials M,(X) over IF, as

such polynomials are monic irreducible.

Theorem 6. Let Fym be a field extension over ¥, and a an element in[F;m with
minimal polynomial My (X) in IF,[X]. Then the following are true :

m M, (X)|(X9" —X).
m My (X) has distinct roots all lying inTF ;m.
m The degree of M,(X) divides t.

m (X9"—X) =T,My(X), wherea runs through some subset of F,m which

enumerates the minimal polynomials once.

16



Chapter 3. Hull of cyclic codes over finite fields 3.2. Irreducible factorization of X" —1

m (X9"—1) =M,h(X), where h runs through all monic irreducible polyno-

mials whose degree divides m.

Remark 3.2.1. Two elements of F,m having the same minimal polynomial in

IF,[x] aresaid to be conjugate over TF,.

We can find all the conjugates of a in IFq, that is, all the roots of Ma(X ) We
know by Theorem 6 that the roots of M, (X) are distinct and lie in [F,m. We can

find these roots with the following theorem :

Theorem 7. Let h(X) be a polynomialin IF,[X] andlet a bearootof h(X) ina
field extensionIF ;. Then the following assertions are hold

1. h(X9)=h(X)4, and
2. a9 isalsoarootof h(X) in FF,.

Every factorization of the polynomial X9 —X partitions the elements in a finite
field of order g. If we let X7 —X = g(X)f(X) then every element in the field is
either a root of g(X) or f(X).We know that X9 —X = X(X97!—1) so that we
can separate the zero elements from the nonzero elements. We now have left to
separate the nonzero elements according to their orders by factoring X7~1 —1. This

is a special case of X" —1.

If we are given the minimal polynomial of a primitive element @ € Fm, we
would like to find the minimal polynomial of @/, for any i. In order to do so, we

have to start with cyclotomic cosets.

Definition 3.2.4. Forall j € Z,, we define the q-cyclotomic coset of j modulo n
over IF, by the set

Ci=1j,jq,+,jq" "} modn),

where d is the smallest positive integer such that jq%= j( mod n).

Example 3.2.1. We wish to compute the 2-cyclotomic cosets modulo21. We get:

17



Chapter 3. Hull of cyclic codes over finite fields 3.2. Irreducible factorization of X" —1

m Forj=1:{1,2,4,8,16,32 = 11,64 = 1} which gives us C; = {1,2,4,8,11,16}.

Since 2 is in Cy, we need not compute a coset for j = 2.
m For j =3:{3,6,12,24 = 3}, which gives us C3 = {3,6,12}.

m For j =5:1{5,10,20,40 = 19,80 = 17,160 = 13,320 = 5}, which gives us C5 =
{5,10,13,17,19,20}.

m Forj=7:C;={7,14}.
m For j =9:{9,18,36 =15,72 =9}, which gives us Cy = {9,15,18}.
The 2-cyclotomic coset for 0 is always {0}.

We are now ready to determine the minimal polynomials for all the elements in
a finite field.

Theorem 8. Let n be a positive integer relatively prime to q. Let a be a primitive

n—th root of unity in IF gm. Then the minimal polynomial of a! with respect to F, is

My(x) =[] (x~a))

iECj
Example 3.2.2. Let n =7 et q =2. The 2-cyclotomic cosets modulo 7 are:
C() - {0}, Cl - {1,2,4}, Cg = {3,5,6}

since X'—1 = Myo(X).Mg (X).Mys(X), where M,;(X) are its minimal polyno-

mial, we have:
m My (X)=X—1 corresponds to the cyclotomic coset Cy.
m My (X)=X3+X+1 corresponds to the cyclotomic coset C;.
m My (X)=X3+X?+1 corresponds to the cyclotomic coset Cs.

Then the factorization of X'—1 is X'—1=(X—-1)(X3+X+1)(X3+X2+1),
where a is a primitive 7—th root of unity in Fs.
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Chapter 3. Hull of cyclic codes over finite fields 3.2. Irreducible factorization of X" —1

3.2.2 | Cyclotomic Polynomials

Let IF, be a finite field of characteristic p, n a positive integer not divisible by p,
and ¢ aprimitive j—th root of unity over IF, then the polynomial

J

vi= ] (x—e,

s=1
ged(s, j)=1

is called the j—th cyclotomic polynomial over IF,.

Theorem 9. Let F;, and n defined as above. Then

x"—1=] Jpa(x). (3.1)
dln
Proof. Each n-th root of unity over IF, is a primitive d-th root of unity over [F,
for exactly one divisor d of n. In detail, if ¢ is a primitive n-th root of unity over
n
qu and &° is an arbitrary n-th root of unity over ]Fq, thend = ————. Thatis d
ged(s,n)

is the order of ¢. Since ;

x"—1=] |(x-¢),

s=1
the formula in 3.1 is obtained by collecting those factors (X —&*) for which &°is a

primitive d-th root of unity over IF,. O

Let j and i be positive integers such that gcd(i, j) =1 and let Z]X. be the unit
group of Z;. The order of i in Z]X. is the smallest integer e such that j|(i¢—1),
denoted by ord;(i)

Let i and j be positive integers. We say the pair (i, j) is good if i divides j¥+1
for some non-negative integer k and bad otherwise.

Lemma3.2.1. Let j bea positive integer and let IF, bea finite field with gcd(j,q) =

¢()

reducible polynomials over F; of the same degree e, where ¢ is Euler’s totient

1. The j-th cyclotomic polynomial ¢;(x) factors into distinct monic ir-

function and e = ord;(q). Moreover, if (j,q) is good, then all irreducible polyno-
mials in the factorization of ¢ ;(X) are self-reciprocal. Otherwise, all of them form
reciprocal polynomial pairs.
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Remark 3.2.2. Let N, = {k > 1,k divides q' 1}, then the pair (j,q) is good if
JE€N, anditisbad if j € N,.

By lemma 3.2.1 and theorem 9, the factorization of X" —1 € [F;[X] can be

viewed as
x"—1 = [Je;x)=] Je;0] [9;(x)
jln jln jln
jeNg JEANG
r(j:q) B(jq)
= ﬂ( hij(X))ﬂ( kiJ-(X)k;‘,-(X))
jln i=1 jln i=1
jeNg jENG
Where o()) o())
s 2U) Loy 9U)
Y(]’q)_ Ordj(q)’ and ﬂ(]’q)_zord](q)

= 1;;(X) isamonicirreducible self-reciprocal polynomial of degree ordjq),

m k;;(X) and k};(X) form a monic irreducible reciprocal polynomial pair of
degree ord;(q).

3.3 | Cyclic codes over finite fields

Cyclic codes are the most studied of all codes. They are a subclass of linear codes
and they include important families of codes for error correction, such as binary
Hamming codes, Reed-Solomon or BCH codes. We shall begin the study of codes
over finite fields, examining the strong relation between a cyclic code and an ideal
of the ring of polynomials modulo X" —1.

Definition 3.3.1. A linear code C of length n over a finite field It is called a cyclic
code if for every codeword c¢ € C the codeword obtained by a cyclic shift is also a

codeword in C. That is,
/
c=1(cp,>" cpn1)€C=>c =(cy_1,¢0o"*,Cn2)€C.

Example 3.3.1. The linear code C; := {102,210,021,201,120,012,222,111,000} over
Z3 is cyclic, but this linear code C, := {000,221,212,200,121,112,100,021,012} over
Z is not cyclic, since ¢; := (112) € C but ¢’ := (211) is not in C,.

20



Chapter 3. Hull of cyclic codes over finite fields 3.3. Cyclic codes over finite fields

Remark 3.3.1. Let C; and C, be two linear codes of length n overF ;. If C, and C, are
cyclic, then C, + C, and C, N C, are cyclic, where Cy + Cy, = {c1+ ¢, : c; € Cp, ¢ € Gy}

We remember that since IF,[x] is principle ideal domain also the ring R, =
F,[x]/{(X"—1) is a principle ideal hence the cyclic codes are principle ideals of
R,, when writing a code word of a cyclic code as ¢ (X ) we mean the coset ¢(X) +
(X"—1)in R,,.

Corollary 2. The number of cyclic codes in R, equal 2™, where m is the number of
q -cyclotomic cosets modulo n. Moreover, the dimensions of cyclic codes in R,, are all

possible sums of the sizes of the q -cyclotomic cosets modulo n.

3.3.1 | Generating polynomial of a cyclic code

Theorem 10. A linear code C in It is cyclic if and only if C is an ideal in R, =
F,[X]/{(X"—1).

Proof. If C is an ideal in IF,[X]/(X"—1) and ¢(X) = cg+ 1 X + -+ ¢, X"}
is any codeword, then X ¢ (X) is also a codeword, i.e. (¢,_1,¢, ¢1, +,Cn2) € C.
Conversely, if C is cyclic, then ¢(X) € C we have X c¢(X) € C. Therefore X'c(X) €
C, and since C is linear, then a(X)c(X) € C for each polynomial a(X ). Hence C
is an ideal of IF,[X] /(X" —1). O

The dimension of C, denoted by dim(C), is the dimension of C considered as

linear space over IF,.
Theorem 11. Let C be an ideal in R,,. Then

1) There is a unique monic polynomial g (X ) of minimum degree in C = (g (X)),

and it is called the generating polynomial for C.
2) The generating polynomial g (X) divides X" —1.

3) If deg(g(X)) = k, then C has dimension n—k and C = (g(X)) =
(5(X)g(X) : deg(s(X)) < n—k}.
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) Ifg(X)=go+g X+ + g1 Xk, then gy # 0 and a generator matrix is:

Proof.

1)

2)

3)

Suppose that C contains two distinct monic polynomial g;and g, of mini-
mum degree k. Then their difference g; — g, would be a nonzero polynomial
in C of degree less than k, which is not possible. Hence, there is a unique
monic polynomial g(X) of degree k in C. Since g(X)e€ C and C isan
ideal, we have (g(X))c C. On the other hand, Suppose that p(X) € C, and
let

p(X

)=

Then r(X)
only if r(X
Thu C =

q(X)g(X)+r(X), where r(X) # 0and deg(r (X)) < k.

)
p(X)—q(X)g(X) € C has degree less than k, which possible

)=0. Hence p(X)=¢q(X)g(X)e(g(X)),andso C c (g(X)).
(g(X)).

Dividing x" —1 by g(X) gves X" -1 = ¢q(X)g(X) +
r(X), where deg(r(X)) < k. Since in R,,, we see that r(X) € C, and so
r(X) =0, which shows that g (X)|(X"—1).

The ideal generated by g(X) is
(§(X))={f(X)g(X): f(X)€Ry}

with the usual reduction mod (X" —1). Now h(X) divides X" —1, and so
X"—1=h(X)g(X) forsome h(X) ofdegree n—k. Divide f(X)by h(X),
weget f(X)=q(X)h(X)+s(X), where deg(s(X))<n—k, then

f(X)g(X)=q(X)g(X)h(X) +s(X)g(X) = q(X)(X"=1) +s(X)g(X).
So f(X)g(X)=s(X)g(X)eC. Nowlet ¢c(X) bein C, then

c(X) = s(X)g(X)=(ap+a X +ayX?+-+ a1 X" F1)g(X)
= (apg(X)+aXg(X)+-+ a1 X" 'g(X).
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4)

So c(X) e ({g(X),Xg(X), -, X" 1g(X)}), which  shows
that the set {g(X) Xg(X), -, X" *1g(x)} spans C.
Also  {g(X),Xg(X),--,X"*1g(X)} is linearly independent, since
if

aog (X)+ a1 Xg(X)+-+ap 1 X" g(X) =0,

then (ag+ a1 X + a, X%+ -+ a1 X" *1)g(X)) =0 which implies that
2 n—k—1
do+d1X+6lzX +"'—|—an_k_1X

and since 1, X, X2,---, X"~%~1 arelinearly independent, then ay=a, =---=
a,_r—1 =0 and hence {g(X),Xg(X),---,X"*1g(X)} forms abasis for C.
Hence dim(C)=n—k.

If gop =0 and g(X) = Xg(X), where deg(g;(X)) < k and g;(X) =
1.g1(X) = X" 1g(X), so g (X) € C which contradict the fact that no
nonzero polynomial in C has degree less than k. Thus gy 7# 0. Finally,
G is a generator matrix of C since {g(X),Xg(X),---, X" *1g(X)} isa
basis for C.

3.3.2 | Check Polynomial

Let C be a cyclic code, its generator polynomial g(X) must divide X" —1 and

thus

X"—1=g(X)h(X) where h(X) isa monic polynomial of degree n—k.

h(X) is called the check polynomial of C.

Theorem 12. Let C beacodein F,[X|/(X"—1) and h(X) = hy+mX +---+
h,—_ X% be its check polynomial.

D C={c(X)eFy[X]/(X"=1)|c(X)h(X) =0}

2) Ct s the cyclic code of dimension k generated by the polynomial h* =

ho_l(hn—k +h,_ X+ + hOXn_k),

2) A parity check matrix for C is the following:
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e heoy ey ... hy O 0 ... 0
0 he Ty hep ... By O ... 0
H=1]0 0 hk hk—l hk_g ho ... 0
0O 0 0 0 0 h My .. h

Example 3.3.2. Let C be a cyclic code of length n = 9. Since the factorisation of
X9%—1 over F, is

X—1=(X3-1)(X+ X3+ 1) =(X-1)(X*+ X +1)(X+Xx3+1).

Hence, there are 23 = 8 cyclic codes in Ry =F,/{X°—1). Take C = (X®+ X3 +1)
with generating polynomial g(X) = X%+ X3+ 1. Then C has dimension 9—6 =3
and generating matrix

Also C has check polynomial h(X) = X (X-1)(X?+X+1) = (X3-1).
Then C has the parity check matrix

1 0)

S O © o ~ O
o O O = O O
o O = O O =
S = © O = O
_ o o = O O
o O = O O O
o = O O O O

0 0
0 Y
3.4 | Hulls of cyclic codes over finite fields

In this section, the dimensions of the hulls of cyclic codes of length n over IF, are
determined. Furthermore, we determine the number of cyclic codes of length n
over [F, whose hulls have a given dimension. The average hull dimension of cyclic
codes is given.
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The generator of the hull of a cyclic code is determined as follows.

Theorem 13. [33]Let C be a cyclic code of length n over IF, generated by (g(X)),

where g(X) is monic divisor of X" —1 overF,. Then #(C)) is generated by
(Icm(g(X),h*(X))),

X"—1

g(x)

Proof. Let F(X) be the generator polynomial of 2#(C),since F(X)e CNC*,we

have

where h(X) =

F(X)eC and F(X)eC'.
Then
g(X)| F(X) and h*(X)| F(X) dans F,[X],
which imply that
lem(g(X), h*(X)) | F(X).
On the other side
g(X)| Llem(g(X),h*(X)) and h*(X)| Lem(g(X), h*(X)).

Hence, 1cm(g(X),h*(X)) isin C and C*, consequently 1cm(g(X),h*(X)) is
in CNC*. Then
F(X) | Tem(g(X), h*(X)).
Therefore, F(x)=lcm(g(X),h*(X)) isdesired.
O

Example 3.4.1. In F[X], X'—1=(X+1)(X*+X?+1)(X>+ X +1) is the fac-
torization of X’ —1 into a product of irreducible polynomials. Let C be the cyclic
code of length 7 over IF, generated by

(g(X)), where g(X)=(X>+X+1).
Then C* isof the form
(h*(X)), where h*(X)= (X +1)*(X>+X*+1)*= (X +1)g(X).
#(C) is generated by

(Iem(g(X), h*(X))) = (Icm((X*+X+1), (X +1)(X°+X+1)) = (X +1)(X*+X+1)).
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3.4.1 | Characterization of cycic codes with the same hulls

In this subsection, we determine all cyclic codes of length n over [F, whose hulls
equal C, where C is a fixed cyclic code of length n over IF,.

Theorem 14. Let C be a cyclic code of length n over F, with generator polynomial

r(jsq) B(j:q)
X)Ai B Cii
L(X):l_[ l_[ gl] ]n ﬁ] j zj(X) i
jla i=1 jln i=1
jE;/Vq ] Vq
a
if[p?] <A;j<p® and0<B;j, C;;<p® aresuchthat p* < B;;j+ C;; <2p“, then
the generator polynomials of cyclic codes whose hulls equal C are of the forms
r(jsq) B(J;q)
g(X):l_[ l_[ gij(X)uijn ﬁj(X)Uijf;_*}(X)wij,
jln i=1 jln i=1
jGJVq ]¢'/V(]
where u;; €{A;j, p*—A;;} and
{(Bz]’c ) (P —Cz],p B,‘j)}, if pa<Bij+Cij32pa,

Otherwise, there are no cyclic codes of length n over F; whose hulls equal C.

Proof. Let D be a cyclic code of length n over IF, with generator polynomial

r(j:q) B(ja)
g(X):l_[ l_[gl] u,]n ﬁ] U”f )wij»
jla i=1 n i=1
jeNg Jx/

Assume that (D), is with generator polynomial k(X). Then we have

Bjq)
{wij, p*—uij} max{vl pU—wi;} max{w;j, p*—v;;}
ﬂﬂgu x)mestiar fl_[ﬂf S TG A
jla i= |7 i=1 N
jeNg v

Comparing the coefficients, we have max{u;;, p*—u;;} = A;j. Therefore, u;;
isequalto A;;j or p*—A;;. Similarly, max{v;;, p*—w;;} = B;j and max{w;;, p*—
v;j} = Cij, andso (B;;,C;j) = (max{v;;, p*—w;;}, max{w;;, p*—v;;}) is equal
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to either (v;j, w;;) or (p*—w;;, p®—vij).

If B;j+C;j = p% then (B;;,C;;) = (vij,w;j) = (p*—w;j,p*—v;;). If p* <
Bij+ Cij < 2p% then (B;;,Cj;) = (vij,wij) or (p*—w;j,p®—v;;). Hence,
(vij,w;j) = (B;j,Cij) or (p*—C;j,p*—B;;). I 0< Ay <[7a] 1, then thereisno
u;j suchthat 0 < u;; <p® and max{ui],p —u;j}=A;;. f0<B;; +C;; <p*—1,
then there are no v;; and w;; where 0 < v;;, w;; < p% max{v;;, p*—w;;} =

B;; and max{w;;, p“—v; ]} = C;j. Thus, there are no cyclic codes of length n

over [F, when0<A,]<[—]—1 or 0<B;j+C;j<p“—1. O

Corollary 3. Let C bea cyclic codes of length n over IF, with generator polynomial
3d)

l_l I]_[ )max{u,] p —ul]}l_[ l_[ f (X rnax{v,] p —wl]}fl]( )max{wij,

jla i=1 jln i=1
jeNg JENG

a
where[p—]<Al] <p%and 0<B;;,B;j<p®aresuchthatp®<B;;+ C;; <2p“.
Then the number of cyclic codes of length n over F, whose hulls have k(X) as

generator polynomials is

[ I_[ A, p° Al]}|l_[ l—[ ]

jla i= |7
]qu /L7

3.4.2 | The dimensions of the hulls of cyclic codes

The dimension of #(C), denoted by dim(s#(C)) is the dimension of 5(C)
(so-called hull dimension) seen as linear space over IF,.

An expression for the dimensions of the hulls of cyclic codes of length 7 over a
finite field F, is derived in Theorem 15 . The following lemma is required in its

proof.

Lemma 3.4.1. Let @ be a nonnegative integer. Let0 < x,y,z < p® be integers. Then

the following statements hold.

pa
1. 0< p%—max{x,p*—x}< [71.

27

pa_Vij}’



Chapter 3. Hull of cyclic codes over finite fields 3.4. Hulls of cyclic codes over finite fields

2. 0<2p?—(max{y, p®—z}+max{z,p*—y}) <

Theorem 15. [33]Let n be a positive integer and write n = p®7i, where gcd(p, 1) =
1 and a >0 isan integer. The dimensions of the hull of cyclic codes of length n over

F, isof the form
Z ordj(q)-uj+ Z ord;(q)-vj,
jln jli
JENq JENg

a
where OSuer(j;q)lp?J and 0<v;<pB(j;q)p®

Proof. Let C be a cyclic code of length n over IF, generated by (g(X)), then Cct
is generated by (h*(X)), where g(X), h*(X) are monic divisors of X" —1.
We have :

B(j;q)
= 1] H gy ] T £i0)% £ (x) s,
jla i= jla i=1
jeNg J¢Ng
B(isq) . .
nx) =[] H g (X)P ] T £GP fr(x)P =,
jla i= jla i=1
]EMq JjENG
B(jsq) . .
(x) =[] ]_[ gij(x)P ] | fij (X)P i fL(XO)P i,
jla i= jla i=1
JENg ]¢u4/q
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for some 0< u;;,v;, w;; < p®. Since #(C)=(lcm(g(X),h*(X))), we have

dim(s£(C)) = n—deglcm(g(X),h*(X));

r(m B(j:q)
= > ord;j(q) >, p“+ > ord;(q) > 2p°
jln i=1 jin =1
jerg igNg
r(sq)
—Zordj(q) max{u;j, p” —u;;}
jln i=1
Jj€Ng
Bisq)
—Zordj(q) (max{v;, p*—w;;} —max{w; ;, p* —v;;})
i i=1
j¢Ng
r(Jsq)
= Zord](q) (pa—max{ul],p uz]})
i i=1
jeNg
B(isq)
+Zord]~(q) (2p” —(max{v;;, p* — w;;} + max{w; ;, p
F —
o l
= Z ord;(q)-u;+ Z ord;(q)-vj, bylemma3.4.1,
jla jln
jeN J#Aq
NN Vo B i a\p?
where 0<u;<7(j;q) 5 and 0<v;<B(j;q)p* 0

Example 3.4.2. Let n =33 andp =3. Then i =11 and v = 1. Thedivisors of 11

are 1 and 11.
1. Wehave 1€ A3, so ord;(3)=1 and y(1;3) =1.
2. We have 11 & A3, so ordy(3) =5 and B(11;3) =1, by Theorem 15, the
dimensions of the hulls of cyclic codes of length n over ¥ is of the form
u;+5vy;, where 0<u; <3 and 0< vy, <6.

Hence, all possible dimensions of the hull of cylic codes of length 33 over F3 :

{0,1,3,5,6,8,10,11,13,15, 16, 18, 20, 21, 23, 25, 26, 28, 30, 31, 33}.
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Chapter 3. Hull of cyclic codes over finite figlfis The average dimension of the hull of cyclic Codes

3.5 | The average dimension of the hull of cyclic
Codes

Let 6 (n,IF,) bethesetof ofall cyclic codes overlength n overF,, and the average

dimension of the hull of cyclic codes of length n over I is:

£x (1) = dim(##(C))

] .
ce6(nFy,) 16 (n.Eq)l

In this section we give a formula of Ep,_ (n) with its upper and lower bounds.
Lemma 3.5.1. Let a be a nonnegative integer and let 0 < u,v,w < p® be integers.
Then
3p®+1 Opa

& aper1)

p“(4p® +5)
6(pe+1)

1. E(max{u,p®—u}) =

2. E(max{v,p*—w}) =
0 ifa=0.

, Wwhere 5pa =1ifa>0 and 5pa:

The formula for the average dimension of the hull of cyclic codes of length n

over IF, is given as follows.

Theorem 16. [33] Let n be a positive integer and write n = p%ii, where gcd(p, 1) =
1 and a >0 is an integer. The average dimensions of the hull of cyclic codes of length
n over IF, is

1 1 pa—|—1 2—36’9(1
E =nlz———— |- 3; .
F, (1) ”(3 6<pa+1>) ‘%( 2 " 2(pat1)

Proof. Let C be a cyclic code oflength n over [, then s (C) is generated by:

(Lem(g(X), (X)),

and

dim(#(C)) = (n—deglcm(g(X),h*(X))).
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Note that we can define EF, (n) in terms of the probability theory. Let X

be the random variable that takes as value dim(s#(C)) where C is chosen ran-

domly from ¢ (n,IF;) with uniform probability The average dimen-

|6 (n,Fg)I

sion Ef_(n) canbe determined in terms of the expectation E(X) as follows:

Ep, (1) =E(X) = E(n—deglem(g(X),h*(X)))

r(jsq)
= n—E Zord Zmax{uij,l?a—uij}
jln i=1
jeNg
B(jsq)
+E Eordj(q) (max{v;;, p“—w;;} + max{w;;, p* —vi;})
T ~
ety l
= n— Zord r(j;q)E (maX{uij,Pa—uij})—
|
i
Zord B(j;q)E(max{v;;, p*—w;;} + max{w; ;, p* —v;})
|
Fiva
= _Z¢ max{ul]’ uij})
jln
jeNg

— qu E(max{v;j, p”—w;;}) + max{w; ;, p* —v;;})

jla
JENg
= (n—%Bs.E(max{u;;,p*—u;;}))— ( )E(max{v”, —w;;})
= (n—%;.E(max{u;, p” u,]} )— ).E(max{v;;, p*—w;;})
_ (n_ggﬁ)(?)paﬂ ) ( (4p” +5)
4 pa—|—1 pa—l—l

1 1 @41 2-38,
S [ N .
3 6(pe+1) 12 12(pe+1)
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Example 3.5.1. Let n =33 and p =3. Then n =11 and a = 1. The divisors of 11
are 1 and 11.

1. Wehave 1€ A3 and 11¢ .43, so By1=¢(1)=1;

2. And

£, (33) — 33 1 g (31, 2-35
4 N 3 6(3+1) 12 T123+1)

149
16

We have the following upper and lower bounds.
Corollary 4. [34] Let q be a power of a prime p, let n>1. Then:
1. Ep,(n) =0 ifandonlyif n€N,.

" < <
2. E_ E]Fq(n) S

w3

, forall n ¢Nq.

From Theorem 16, we can conclude that the average g-dimension of the hull

of cyclic codes of length n over IF; is zero or grows the same rate as n.
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Hull of cyclic codes over Z,,.

Cyclic codes over rings form an important class of linear codes due to their rich
algebraic structure.

In this chapter, we consider thering Z 2, where p isa prime. Z,, is alocal ring with
unique maximal ideal pZ .. Here we extend results over I[F; to Z,., we examine

carefully the consequences of working over a ring, rather than a finite field.

4.1 | Cyclic codes over Z,,

A Z2—linear code C oflength n isa Z,.-submodule of ZZZ' Aswith cyclic codes
over a field, cyclic codes over Z,. form an important family of Z,.-linear codes.
C is called cyclic if for every codeword ¢ € C the codeword obtained by a cyclic shift
is also a codeword in C, we view codewords ¢ = ¢y¢; - ¢, inacyclic Z .-linear
code of length n as polynomials ¢(X) = cy+ ;X +--+ ¢ X" € Z,2[X]. Ifwe
consider our polynomials as elements of the quotient ring R,, = Z 2 [X]/(X" —1),
then Xc¢(X) modulo X" —1 represents the cyclic shift of c¢.(See[18]).

A polynomial f(X) € Z,.[X] is nilpotent if there exists a positive integer n
suchthat f"(X) =0. Also, f isregularifitisnota zero divisor.Define u: Z 2 [X] —
Z,(X], the ring homomorphism that maps ¢ + (p?) to ¢ 4 (p) and the variable
X toX. Observe that f(X) € Z,:[X] isa unitif and only if u(f) is a unit, f is
regular if and only if u(f(X)) #0 ifand only if f(X) is not nilpotent, if and only

if ¢; is not nilpotent for some i.
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Chapter 4. Hull of cyclic codes over Z,,» 4.1. Cyclic codes over Z,,

4.1.1 | Factorization of X" —1 over Z .

m A polynomial f(X) € Z,2[X] is irreducible in Z,. if whenever f(X) =
g(X)h(X) for two polynomials g(X) and h(X) in Z,:[X], one of
g(X) or h(X)isaunit.

m A polynomial f € Z,2[X] is basic irreducible if its u(f) is irreducible in
ZpX]

m Anideal I ofaring Z,. is called a primary ideal provided ab € J implies

that either a€ J or b® €] for some positive integer s.

m A polynomial f € Z,:[X] is primary if the principal ideal (f(X)) =
{f(X)g(X)|g(X)€Z,2[X]} is a primary ideal.

Lemma4.1.1. [18]If f € Z,2[X] is a basic irreducible polynomial, then f(X) isa

primary polynomial.

Proof. Suppose that g(X)h(X) e (f(X)). As u(f (X)) is irreducible,

d =ged(u(g(X)),u(f(X))) is either 1 or u(f(X))

If d = 1, then by the Euclidean Algorithm there exist polynomials
a(X) and b(X)e€Zy,:[X] such that such that

u(a(X))u(g(X)) +u(b(X))u(f (X)) =1

.Hence a(X)g(X)+b(X)f(X)=1+2s(X) forsome s(X)e€Z,[X].
Therefore a(X)g(X)h(X)(1+2s(X))+b(X)f(X)h(X)(1+2s5(X))=h(X)(1+
25(X))? = h(X), implying that h(X) € (f(X)).

Suppose now that d = u(f(X)). Then there exists a(X) € Z,:[X] such that
u(g(X)) =u(f(X))u(a(X)), implying that

g(X)=f(X)a(X)+2s(X) forsome s(X)€Zy[X]

. Hence g(X)?= (f(X)a(X))?€ (f(X)). Thus f(X) isa primary polynomial.

O

Two polynomials f(X) and g(X) in Z,.[X] are coprime or relatively prime
provided Z . [X] = (f (X)) + (g (X)).
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Lemma4.1.2. [18]Let f (X) and g(X) bepolynomialsinZ,.[X]. Then f(X) and
g(X) are coprime if and only if u(f(X)) and u(g(X)) are coprime polynomials
in Z,[X].

Proof. If f(X) and g(X) are coprime, then
a(X)f(X)+b(X)g(X)=1 forsome a(X) and b(X)inZ,:[x]

“Then 1(a(X))(f (X)) + (b (X))u(g(X)) = (1) = 1, implyingthat (X))
and u(g(X)) are coprime.
Conversely, suppose that u(f (X)) and u(g(X)) are coprime. Then there exist

a(X) and b(X)inZ,:[X] suchthat u(a(X))(f(X))+u(b(X))u(g(X))=1.

Thus a(X)f(X)+b(X)g(X)=1+2s(X) forsome s(X)€Z,.[X]. Butthen
a(X)(1+2s(X))f(X)+b(X)(1+25(X))g(X)=(1+2s(X))*=1

showing that f(X) and g(X) are coprime. O

The following result, which is a special case of Hensel’s Lemma, shows how to

get from a factorization of u(f (X)) to a factorization of f(X).

Theorem 17. (Hensel's Lemma) [14] Let f(X) € Z,2[X]. Suppose u(f(X)) =
(X a(X) -+ i (),

where hy (X ), hy(X),-++, hi(X) are pairwise coprime polynomials in Z,[X]. Then
there exist g, (X ),82(X), -+, gx(X) inZ,2[X] such that :

1. u(gi(X))=h;(X) for 1<i<k.
2. g1(X),8(X), -+, gc(X) arepairwise coprime.
3. f(X) =81 (X)g(X) - gr(X).

Theorem 18. [14] Let (n,p) = 1 be coprime. Then X" —1 =
81(X)g2(X)---gr(X) where g;(X) € Z,2[X] are unique monic irreducible
(and basic irreducible) pairwise coprime polynomials in Z,.[X]. Furthermore,
X"—1 = u(g(X))u(g2(X))---u(ge(X)) is a factorization into irreducible
polynomials inTF ;[ X].
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In order to factor X" —1in Z,.[X], we first factor X" —1 in [F;[X]. The factor-
ization of X" —1in [F, [X] is given by Eq.5.13 and by Theorem18 the factorization
of X" —1 over Z,. is:

r(J;q) B(j:q)
X1 = n(ﬂgij(X))ﬂ( ﬁj(X)ﬁ?(X)) (4.1)

jln \Ui=1 jln \Ui
j€Mp jENp
Where o()) o())
. j . j
Iip)= , and B(j;p)= :
r(jip) ord;(p) Alip) 2ord;(p)

and f;;(X) and f%(X) form amonic basic irreducible reciprocal polynomial pair

and g;;(X) is amonic basic irreducible.

Example 4.1.1. The factorization of X'3—1 over Z4[X] into a product of basic irre-

ducible polynomials is given by

XB-1=(X-1)(X*+6X*+2X+8)(X>+7X*+3X +8)(X>+4X*+7X +8)(X>+2X*+5X +8).

4.1.2 | Generating of cyclic codes over sz

To study cyclic codes over IF, we need to find the ideals of IF; /(X" —1). Similarly,
we need to find the ideals of R, in order to study cyclic codes over Z,.. We first
need to know the ideal structure of Z,. /(f (X)), where f (X) is a basic irreducible

polynomial.

Lemma 4.1.3. [14]If f(X) is in Z,2 and is basic irreducible, then the only ideals
of Zp2/{f (X)) are(0),(1+(f(X))) and (p +(f(X))).

Theorem19. [14]Let X" —1= fi(X) fo(X)--- f,(X), bea product of basic irreducible
and pairwise-coprime polynomials, where (p,n) =1 and let f;(X) denote the prod-
uct of all f;(X) except f;(X). Then any ideal in the ring R, is a sum of ideal (fi(X))
and (p f; (X)).

Proof. By Hensel’s Lemma 17, such a factorization of X" —1 exists and is unique.

Since the f;(X) are basic irreducible and pairwise coprime we have
X" =1=(AX)N{L(X)n(BX))N---n(f (X)),
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andfor1<i,j<r,i#j

Zp2 [X] = (fi(X)) +(f;(X)).

Thus by Chinese Remainder

R, = sz[x]/(fl(X))ﬂsz[X]/(fz(X))ﬂsz[X]/(f},(X))ﬂ---ﬂzpz[X]/(fr(X))

112

D2, (X]/(X)

Consequently, if [ is an ideal of R, then
I=hLelLo &I,
where I; is an ideal of the ring Z,.[X]/(f;), for i =1,2,---,r. Bylemma4.1.3

=0, Zp[X]/{fi(X))or (p+{fi(X))).

If I; = Z,2[X]/{f:(X)), then it corresponds to the ideal (f;(X)) in the ring R,,, if
I = ( p —|— (fi(X))), then it corresponds to the ideal (p f;(X)). In any case, the ideal
Iisa sum of (f;(X)) and ( pf]( )). O

Theorem 20. [14] Suppose C is a cyclic code of length n over Z,.. Let
gcd(n,p) = 1, then there exist unique monic polynomials f,g and h such that
X"-1=f(X)g(X)h(X) and

C = (f(X)g(X)) ® (pf(X)h(X)). Furthermore, C has type
p2deg(8(X)) pdeg(g(X)n (X))

Wheng(X)=1,C = (f (X)) and|C| = p"—desf(X),

When h(X) =1,C = (pf(X)) and|C| = p"~des/ (%),

Proof. We know that X" —1 has a unique factorization such that X" -1 =
fA(X)fo(X)-- f-(X), where the f;(X) are basic irreducible and pairwise coprime,
We also know, by theorem 19, that C is a sum of (f;(X)) and (p f;(X)). By permut-
ing the subscripts of f;(X), we can suppose that C is a sum of

(Fe1 (X)), G2 (X)), Gt (O (P Frs 101 (O (P Frr2(X)), -+ (p (X))
Then

C={h(X) LX) fi(X) fir11(X) frer142(X) - [ (X), p L (X) o(X) -+ fie (X) frr 1 (X) -+
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where

HX) LX) fi(X), 8 = fe1(X) fir2(X) - feq(X) or1 if1=0

and
g(X) = fiti1(X) fiqr42(X) - fr(X)orl ifk+i=r

Wheng(X) # 1, f(X)g(X) and h(X) are coprime, (f (X)g(X))n(pf(X)h(X)) =
0. Therefore

ICl=f(X)g(X)|Ipf(X)h(X)|= (p2)n—deg(f(X))—deg(g(X))pn—deg(f(X))—deg(h(X))_

When g(X) = 1, the above identity is still true because in this case C =
(f(X))and|C| = (p?)"—des(/(X)), When g(X) = 1, the above identity is still true
because in this case C = (p f (X)) and |C| = p"—des(f (X)), O

Corollary 5. Letgcd(n,p) = 1. Assume X" —1 is a product of k irreducible polyno-
mial inZ,2[X|. Then there are 3% cyclic codes over Z p2 Of length n.

The next theorem discusses the dual of C.

Theorem 21. [14] Let C is a cyclic code of length n over Z.,.. Let ged(n,p) = 1,
then there exist are unique monic polynomials f(X),g(X) and h such that X" —

1=f(X)h(X)g(X)and C =(f(X)g(X),pf(X)h(X)). Furthermore, C has type
pZdeg(h(X))pdeg(g(X)h(X) Then

Ct = (g*(X)h*(X), ph*(X) f*(X)) and|C*| = p?deslf (X)) pdeg(g(X))
m Ifg(X) =1, then C =(f(X)) and C* = (h*(X)).

wIf h(X) = 1, then C = (pf(X))andC+ = (g*(X) pf*(X)),
where h*(X),f*(X),g*(X) are respectively reciprocal polynomials of
f(X),h(X) and g(X).

Proof. We know that

(g*(X)h* (X)) S (g" (X)) S(f(X)g(X), pf(X)h(X))*

and similarly
(ph*(X) f*(X)) S (h*(X)) S (F(X)g (X), pf (X)R(X))".
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Therefore,

(g*(X)R*(X), ph*(X) f*(X)) S (R*(X) ) S (f(X)g(X), pf (X)h(X))*

Since
(g*(X)h*(X), ph*(X) f*(X))| = p?n—des(h(x))—deg(g(X))) ,n—deg(h(X))—deg(f(X))
= {f(X)g(X),pf(X)h(X))",
we have (g*(X)*(X), ph*(X) f*(X)) = (f (X)g (X), p f (X) (X)), .

4.1.3 | Characterization of the Hulls of cyclic codes

Here, we focus on algebraic structures of the hulls of cyclic codes of length n over

Z 2. The following lemma is useful in the study of their generators.

Lemma 4.1.4. [17]Let a = (ug, uy,--+,u,_1) and b = (by, by, ,b,_,) be vectors
in Z’;z with corresponding polynomial a(X) and b(X), respectively. Then a is
orthogonal to b and all its shifts ifand only if a(X)b*(X) =0inZ,2[X]/(X"—1).

Theorem 22. [17] Let C be a cyclic code of length n over Z,. gener-

ated by (f(X)g(X),pf(X)h(X)) = (f(X)g(X),pf(X)), where X" -1 =
f(X)h(X)g(X) and f(x),g(X) and h(X) are monic pairwise coprime polyno-
mials. Then 7€ (C) is generated by

(Tem(f(X)g(X), h*(X)g* (X)), p Lem(f*(X), h*(X))).

Furthermore, #(C) is of type (p?)desH (X) pdegG(X) 1ppere

) B X"—1
) = Bed (U0 S0) and 6100 = gz, O e =00, e (X))
Proof. Note that C' is generated by (h*(X)g*(X),ph*(X)f*(X)) =
(h*(X)g*(X), ph*(X)) Let C’ be a cyclic code of length n over Z,: whose genera-
tors are of the form (F(X)G(X),pF (X)), where F(X)=lcm(f*(X),h*(X))

X"—1

OO = gedn (3, 7+ (X)) Lm0, (X))

and H(X)=gcd(h(X),f*(X)).
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It is not difficult to see that X" —1 = F(X)G(X)H(X) and the polynomials
F(X),G(X) and H(X) are monic pairwise coprime. Since (F (X)G(X),pF (X)) C
(F(X)g(X),pf (X)) and (E(X)G(X),pE (X)) € (h*(X)g*(X), ph*(X)), we have
cc#(C).

Next, we show that . (C) € C’. Since . (C) is a cyclic code of length n over Z p2s
assume that 52 (C) has generators of the form (A(X)B(X),pA(X)) where X" —
1 =A(X)B(X)C(X) and the polynomials A(X ), B(X) and C(X) are pairwise co-
prime. Since #(C) C C* is orthogonal to C, by Lemma 4.1.4, we have

A(X)B(X).p f*(X) =0 and pA(X).f*(X).g"(X) =0,
which imply that h*(X).g*|A(X)B(X) and h*|A(X). Similarly, #(C) € Cis or-
thogonal to C which implies that

A(X)B(X).ph(X)=0and pA(X).h(X)g(X)=0,

by Lemma 4.1.4. Tt follows that f(X)g(X)|A(X)B(X)and f(X)|A(X). Conse-
quently, lem(f(X)g(X), h*(X)g*(X))IA(X)B(X) and Lem(h*(X), f(X))IA(X)
which imply that F(X)G(x)|A(X)B(X) and F(X)|A(X). Hence, #(C) € C.
Therefore, #(C) = C. O

Example 4.1.2. The factorization of X3 —1 over Zq[X] into a product of basic irre-
ducible polynomials is given by

XB-1=(X-1)(X*+6X*+2X+8)(X*+7X*+3X +8)(X>+4X*+7X +8)(X>+2X*+5X +8).
Let C be the cyclic code of length 13 over Zq generated by

C = (f(X)g(X),3f (X))
= ((X3+6X*+2X+8)(X>+7X*+3X +8)(X>+4X*+7X +8)(X>+2X*+5X +8),
3(X3+6X% 42X +8)(X® +4X2+7X +8)),

where f(X) = (X3+6X2+2X +8)(X3+4X2+7X+8), g(X)=(X3+7X%+
3X +8)(X34+2X%24+5X+8)=f*(X), and h(X)=(X—1) = h*(X).
From Theorem 21, C* is of the form

(h*(X)g*(X),3h* (X)) = ((X—1)(X>+6X*+2X +8)(X>+4X*+7X +8),3(X—1)).
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By Theorem 22, ¢ (C) is generated by

A(C) = (lem(f(X)g(X) h*(X)g*(X)),plem(f*(X),h*(X)))
= (3lem((X*+7X*+3X+8)(X?+2X*+5X +8)).

4.1.4 | Parameters and p-dimensions of hulls of cyclic codes

In this subsection, the parameters of the hulls of cyclic codes of length n where
ged(p,n) =1over Z,. are investigated and the p—dimensions of ' (C) are de-
termined. The parameters of the hulls of cyclic codes are given in Theorem 23 based
on the following lemma. The following lemma is required in its proof.

Lemma 4.1.5. [17] Let  be a positive integer. For 1 < i < f, let
(vi,z;), (w;,d;) and (u;, b;) beelementsin {(0,0),(1,0),(0,1)}. Let a; = min{l—
v; —z;, Wi} +min{l —w; —d;, v;}. Then a; € {0,1}. Moreover, the following state-
ments hold.

1. 2—min{l—v;, z;, w;}—max{v;,1—w; —d;}—min{l—w; —d;, v;} —max{w;, 1 —
Vi_zi} = Zj +di-

2. Ifa; =0, thenz; +d; €{0,1,2}.
3. Ifa;=1,thenz;+d; =0.
4 a :Zle a; thean}:l(zi +d;) = c forsome0<c<2(f—a).

Theorem 23. [17] Let n be a positive integer such that gcd(n,p) = 1. Then the pa-

rameters of the hull of a cyclic code of length n over Z 2 are of the form p*ipke,
where

ky = Z ordj(p).aj;

jln
JENp
ky, = Zordi(p) -b; + Z ord;(p)-cj,
iln jln
iy M

where0<a;<B(j;p), 0<b;<y(i;p),and0<c;<2(B(j;p)—a;).
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Proof. Let C bea cyclic code of length n over Z,. generated by
(f(X)gX),pf(X)h(X)) = (f(X)g(X),pf(X)), where X" -1 =
f(x)g(X)h(X)and f(X),g(X)and h(X) are monic pairwise coprime poly-
nomials. Then 5 (C) is generated by

(Lem(f(X)g(X), h*(X)g*(X)), pLlem(f*(X), h*(X))).

Furthermore, 7 (C) is of type (p?)desH(X) pdegG(X) where

. X"—1
0 = ged(hO0S100) and 600 = a3, =00 Lom(7- 00, (%)

We have
r(J;p) B(jip)
f(x) = ﬂ( gij(X)”"f)ﬂ( fif (X)) f5(X )"’”)
A= A
r(jsp) B(jp)
gm>=11( gmm%ﬁ1( fMﬂ“ﬂ@W%
A A st
r(jsq) B(J
hm:=ﬁ( %MW%%ﬂ (ﬂﬁ,“%%v<W%%ﬂ
A s
r(jsq) B(jq)
ﬁm>:fm &MWJH( fm>%f<w)
A= A
r(jsq) B(j:q)
fm::ﬂ( &mw) UTMWWZWW)
r(jsq) B(jq)
h*(X) _ l_[( l_[ g,](X){l uij bij})l_[( l_[ fl](X){l w; d”}f* (X){l vij z,]})

where (u,-j,b,-j), (vij’zij)’ (w—z],d,]) S {(0,0), (1,0), (0, 1)}
First we determine deg H (X ). Observe that
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H(X) = ged(h(X), f*(X));

B(jsa)
— n ( _fl]( )mln{l Vij—Zij, wz]}f ( )mln{l—w,]—d,],v,j});
|

fo

Z(ﬁ(
iln i
i N
= Zordj(p).aj,
iln
it Ny

—

I
—

i

5q)

~.

(min{l—v;;—z;;, w;;} + min{l —w;; — d;;, Vij}));
1

where 0<a; < (j,p). Next we compute deg G (X). Since

r(J34)
lem(f(X), h* (X)) = l_[(n gij(X)max{uij,l—uij—bij})

jln i=1
j€Mp
B(iq)
X l_[ ( f; .(X)max{l’ij’l_wij_dij}f* (X)max{wij»l—l’ij_zij}).
] i]' )
jln i=1
i

and

r(Jjq)
ged(h(X), f*(X))-lem(f(X), h* (X)) = ]_[( 1 gij(x)ma"{”"f’l‘”"f‘b"f})
jln

i=1
J€END
B(j:q)
x l_[ l_[ ﬁj(X)max{vij,l—wij—d,-j}-ﬁ;(X)min{l—wij—d,-j,Uij}—&-max{wij,l—vij—zij} .
jln i=1

j#Np
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It can be deduced that

G(X) =

jin U i=1
j€Mp
B(j3q)
1-min{l—v; ;/—z; ;,w; ; }-max{v; ;, 1—w; ;—d; ; }
x n( i
jln U i=1
€N
B(Jj:q)
% l_[( f?}(X)l_mm{l w; j—d; j,v; j}—max{w; j,1—v; j—z; j}
Jjln \U i=1
igM

By Lemma 4.1.5, we can conclude that
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deg(G (X))

X"—1

d

eg(gcd h(X)»f*(X))lcm(f*(X),h*(X)))

r(jsq)

l_[ gij(X)l_max{uij’l_uij_bij}

jln U i=1
J€ND

l_[ﬂ(j;q) int |- max( 4
% ﬁj(x)l—mm 1-v; j—z;j,w; j}—max{v; j,1—w; j—d; ;

jln i=1

€N

l_[ﬁ(j;q) it P |
T T s (x0-minti-ssdt-mastong s,

jln i=1

€N

r(jsq)

D ord;(p) > (1—max{usj,1—u;;—b;;})

iln i=1
iep

B(j;q)

za/t/p
B(j;q)
+Y ord;(p) D (zi;+dij)
iln i=1
lséde
D ordi(p)-bi45) ord;(p)-c;,
iln jln
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where 0<a;<p(j,p), 0<b;<y(i,p), and 0<c;<2(B(j,p)—a;). O

Corollary 6. Let n be an odd integer coprime with p such that n € N,. Then the
parameters of the hull of a cyclic code of length n over Z,. are of the form ( p?)°pke,
where
ky = Z ord;(p)-bi, 0<b;<y(i,p).
ii%
The previous discussion leads to the Algorithm 11 and justifies its correctness.
Examples 4.1.3, 4.1.4 show different outputs of the algorithm.

Algorithm 1: Parameters of the Euclidean hull of a cyclic codes over Z2.

Input: Length 7, and a finite ring Z . such that gcd(p, n) = 1.
Output: All possible 2-tuples ( ki, k») describing the parameters of the
Euclidean hull of a cyclic codes

1. For each divisor of n, consider the following case:

(a) Ifi € 4, compute ord;(p) and y(i;p).
(b) If j .4, compute ord;(p) and B(j;p).

2. Compute k; = > ord;(p)-a;, where0<a; <B(j;p).
i
3. Forafixed a; in 2, compute: k, = ) ord;(p)-b; + >, ord;(p)-c;j, where
< i

0<b;<y(i;p)and0<c;<2-(B(j;p)—a;j).

Example 4.1.3. All the possible parameters (ki,k,) of the hull of a cyclic code of
length 13 over Zq are determined as follows.

1. The divisors of 13 are 1 and 13.

a) Wehavel e A3, s00rd)(3) =1andy(1;3)=1.
b) We have13 & A3, so ord;3(3) =3 and (13;3) = 2.
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2. It follows that

ki, = 3a3, where0<a;3<2

ko = by+3c;3where0< by <1and0<c;3<2(2—ay3).

Hence, the all possible parameters (ky, ky) of the hulls of cyclic codes of length
13 over Zq are given in the following table

ki kK,

0 0134679101213
3 013467

6 01

Example 4.1.4. All the possible parameters (ky, k) of the hull of a cyclic code of
length 21 over Z 4 are determined as follows.

1. The divisors of 21 are{1,3,7,21}1.

a) Wehavel,3€ 43,50 ord;(2) =1, ords(2) =2 andy(1;2) =1=17(3;2).

b) We have 7,21 & A3, so ord;(2) =3, ord,1(2) =6 and B(7;2) =1 =
p(21;2).
2. It follows that

ki =3a;+6a,;, where 0< a;,a,, <0
For (a7,a;) = (0,0), we have ky =0 and

ky = by +2bs+3c;+6¢y, where0< by, b3<1land0<c;,¢c <2. Sok, €{0,1,---

For (a7,a31) = (1,0), we have k; =3 and
k) = by +2bs+3c; +6¢y1, where0< by, b3<1,c; =0and 0< ¢cp; <2.

Hence, k, €{0,1,2,3,6,7,8,9,12,13,14,15}.

For (a;,a1) = (0,1), we have k; =6 and

k) = by +2bs+3c; +6¢y1, where0< b, b3<1,0<¢c;<2and c,; =0.
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Thus k, €{0,1,---,9}.
For (a;,a51) = (1,1), then ky =9 and

ko = by +2bs+3c;+6¢o1, where0< by, b3<1,c;=0and c,; =0.
Hence, k, €{0,1,2,3}.

Hence, the all possible parameters (ky, ky) of the hulls of cyclic codes of length
21 over Z4 are given in the following table

kKo
0 01,21

3 0123678091213 14, 15
6 01,9

9 01,23

For a linear code C of length n over Z ., denote by dim,,(C) = log,,(IC|) the
p-dimension of C. A formula for the p-dimensions of the hulls of cyclic codes of

length n over Z,,. is given as follows.

Theorem 24. [17] Let gcd(n,p) = 1. Then the p-dimensions of the hull of cyclic
codes of length n over Zi are of the form

E ordj(p).Aj—l—E ordj(p).Aj,
iln iln
A igAp

where 0<A;<y(j,q) and 0<A<2B(j,q).

Proof. Let C be a cyclic code of length n over Z,. generated by

(f(X)g(X),pf(X)h(X))=(f(X)g(X),pf (X)),
where X" —1= f(X)g(X)h(X) and f(X),g(X) and h(X) are monic pairwise co-
prime polynomials. Then #(C) is generated by

(Lem(f(X)g(X), h*(X)g*(X)), pLen(f*(X), h*(X))).
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Furthermore, ./ (C) is of type (p?)de8H(X)pdegG(X) and the p-dimension of
Hull(C)is2degH (X)+degG(X), where

. Xn—1
0 = ged(h0F100) and 600 = a0, -0 Lem (-0, (X))

It can be deduced that

dim,(#(C)) = 2degH(X)+degG(X);

B(i:q)
= ZZO]’:d](p) Z (min{l— Uij_zij’ wl]}—i—mln{l—w,]—d,], Uij})
| 1
i#hp ’
r(i;q)
+> ord;(p) >, (1—max{u;;,1—u;j—b;;})
iln i=1
i€Np
B(j;q)
+Zord](p) (2—min{1— Uij_Zij’ w,-j}—max{vij,l— wl]—d,]}
. —
t;!Ar/lp l

—min{l—wij—d,-j, v,-j}—max{wij,l—vij—zij})

r(J;q)
= Zordj(p) Z (1—max{u;j,1—u;;—b;;})
iln i=1
i€Np
B(isq)
+Zordj(p) Z (Z—i—min{l—vl-j—z,-j,w,-j}—max{v,-j,l—wij—d,-j}
iln i=1
igy

+min{l—w;;—d;j, v;j} —max{w;j, 1 —v;j—z;;})

r(jsq) B(j:q)
= Zord](p) Z -Aij +Zord](p) Z Aijr
iln i=1 iln i=1
ieMp i€Np
where
Ajj = (I—max{u;j,1—u;;—b;j}),
Aij = (2+min{1—vij—z,-j,wij}—max{vl-j,l—wij—d,-j}

—|—min{1—w,~j—dij,Uij}—max{wij’l_vij_zij})‘
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It is not difficult to see that 0 <A;;<1and 0 < A;; < 2. Then we have

r(sp) B(Jp)
dim,(#(C)) = D ord;(p) >, A+ > ordj(p) . Ay
iln i=1 iln i=1
i€y i€ Np
= Zordj(p).Aj+Zordj(p).Aj,

iln iln

ieNp igNp
r(j:a) B(jia)

WhereAj: ~ Aij andA]-: Zl Aij O

1= 1=

4.1.5 | The average p-dimensions E, ()

The average p-dimension of the hull of cyclic codes of length n over Z,,. is defined
to be

5 dim, (£(C))

Ep(l’l): |(€(i’l,p2)|

Ceé6(n,p?)
where 6 (n, p?) denote the set of all cyclic codes over length n over Z. p2- The aver-
age p-dimension of #(C) is based on the following lemma. The following lemma
is required in its proof.

Lemma4.1.6. Let(v,z),(w,d),(u,b)<{(0,0),(1,0),(0,1)}. Then

1. E(1—max{u,1—u—>b}) =1+

2. E(24min{l—v—z, w}—max{v,1—w—d}+ min{l—w—d, v}—max{w, 1 —
v—2z})=%.

Theorem 25. [17] Let p be a prime number and let n be a positive integer such that
p t n. Then the average p -dimension of the hull of cyclic codes of length n over Z
is
E,(n)= §n—%%n
9 9

Proof. Let C be a cyclic code of length n over Z,. generated by

(f(X)g(X),pf(X)h(X)) = (f(X)g(X),pf(X)),
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where X" —1= f(X)g(X)h(X) and f(X),g(X) and h(X) are monic pairwise co-
prime polynomials. Then #(C) is generated by

(Lem(f(X)g(X), h*(X)g"(X)), pLem(f*(X), h*(X))).

Furthermore, #(C) is of type (p?)desH(X)pdegG(X) and the p-dimension of
Hull(C)is2degH (X)+degG(X), where
X"—1

0 = ged(h0F100) and 6100 = a0, -0 Lem (-0, (X))
Let Y be the random variable of the dim, (2 (C)
)

from € (n, p?) with uniform probability. Let E(Y
E,(n) = E(Y). Therefore, choosing a cyclic code C from ¢ (n, p*) with uniform

), where C is chosen randomly

be the expectation of Y. Thus

probability . The average dimension E,(7) canbe determined in terms

1
6 (n, p2)|
of the expectation E(Y) as follows:

Ep(n) = E(Y)=E(2degH(X)+degG(X))

r(Jiq)
= E Zord z 1 max{ul],l—ul]—bl]}))
l|? i=1
i)
Bj:q)
—f—EkZOId](p) (2+min{1—vij—zij,wij}—max{vij,l—wij—dij}

: —

i ’

—|—min{1—w,~j—dij, Vij}_max{wij’ _U'j_zij}))

= Zordj(p)')’(j;q)E(l_maX{uij’ —Ujj— bl]} +Zord )ﬂ(]’q)
o A

EQ2+min{l—v;;—z;;, w;j}—max{v;;,1—w;;—d;;}

+m1n{1_wij_dij» v j}—max{w;;, 1—v;;—z;;})

1 ¢ (i) 10
- uznm’)'f”zn g”—
iy igAp

B, n 5(n—3,)

3 9

= n——a,.
9 97"
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O]

2n
We have 0< &, < —, if ne Ny, and %4, = n otherwise. Hence, we have the

following rough bounds.
Corollary7. Let p bea prime number and let n be a positive integer such that p { n.
The following statements hold.

1. ne, ifandonlyif Ep(n)=
B}

IS w3

11n
2. ngnN,, then7<Ep(n)<

|
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Galois Hulls of cyclic serial codes over
finite chain rings

In this chapter, we characterize Galois hulls of cyclic serial code over finite chain
rings. we shows the parameters and the g-dimensions of the Euclidean hull of cyclic
serial codes. Finally, the average dimension of the Euclidean hull of cyclic serial

codes is computed

5.1 | Factorization of X" —1

Let IN be the set of nonnegative integers and n be a positive integer such that
gcd(n,q) = 1. Set [|a; b|] = {a,a+1,---, b} where (a,b) € N? such that a < b.
Let A and B be two subsets in [|0; n— 1|], as usual, the opposite of A, denoted —A,
is defined as —A = {n—z : z € A} and its complementary, denoted A, is defined
as: A= {z € [|0;n—1|] : z € A}. The set A is symmetric, if A = —A, and the pair
{A, B} is asymmetric, if B = —A. Recall that the pair is a set with two elements. If
u € N\{0}, then uA = {i €llo;n—1|] : (3z€A)(uz=i(mod n)} It defines the bi-
nary relation on [|0; n—1|] by x ~, y if there is i in IN such that y = g’ x(modn).
Obviously, the binary relation ~,, is an equivalence relation on [|0; n—1[]. The cosets
of ~g, are called g-cyclotomic cosets modulo 7. Denote by [IO; n— 1|] P! complete
system of representatives of ~, . A subset Z of [|0;n—1|] is a g-closed set mod-
ulo n, if Z = gqZ. The smallest g-closed set modulo n, containing a subset Z of
[10; n—1]] is | J;ep 9'Z and we will denote it by C,(Z). In particular, the set of g-

cyclotomic cosets modulo n which is {C, ({z}) : z €[|0;n—1[],}, forms a partition
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of [|0;n—1]]. Since (, ({z}) = {x € [|;n—1]|] : x ~4 z} for any z in [|0;n—1|]. We
will take G, (@) = @ by convention. Let j be a divisor of n, we will use the following

notation
m w(n;q) the number of g-cyclotomic cosets modulo r;

= A; the set of symmetric g-cyclotomic cosets modulo n of size ord;(gq) and
r(Jsa) = IAl;
] Kj the set of asymmetric pairs of g-cyclotomic cosets modulo n of size

ordj(q) and B(j;q):=IAjl.

Let 6 be a generator of the cyclic multiplicative subgroup I'(GR(p?%, m))\{0}
of (GR(p? m))*, where m = ord,(q). The following result is straight for-
ward from Hensel’s Lemma [23], which guarantees the uniqueness of this monic

basic-irreducible factorization of X" —1, and X" —1 = [ m, where
z€[|0;n—1[]4
m;:= |] (X—06%).Obviously, for any z in [|0; n—1|],, the polynomial m, is
a<ly ({z})

monic basic-irreducible over R.

The following lemma shows that the irreducible factors of x" —1 are in corre-
spondence with the cyclotomic cosets.

Lemma 5.1.1. The map

Q: {0,(2):zcloon—1]),} — {feGR(p%r)X]: [ ismonicand f|1X"—1}

A — };[A(X—&’)

(5.1

whereQ(0) = 1, is bijective. Moreover, for any z € [|0; n—1|| and for all q -closure sets
A and B modulo n, we have

1. Q(Cq({z})) is a monic basic-irreducible polynomial over GR(p?, 1) of degree

|Cq({z})

2. lem(Q(A),2(B)) =Q(AUB) and ged(2(A),2(B)) = 2 (ANB);

4

3. ifANB =10, then Q2 (AUB) =Q (A)Q(B).
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Proof. Since 6 €T(GR(p%,m))\{0} c GR(p?, m) and GR(p%, m) is a Galois exten-
sion of GR(p%, r), it follows that for any ¢-cyclotomic cosets Amodulo 7, the monic

polynomial | [ (X —&¢) is basic-irreducible over GR(p?, r). Therefore, the corre-

spondence Scll ?;‘ well-defined, and by Hensel lemma, X" —1 admits a unique monic
basic-irreducible factorization in GR(p?, r)[X]. Thus the existence and the unique-
ness of this basic-irreducible factorization over GR(p?, r), the map  is bijective.
Items 2. and 3. are straight forward to prove. O

Proposition 5.1.1. [33, Subsection 2.2] Let j be a divisor of n. Then

¢(Jj) ey
, ifjé N,
andﬁ(j;q)—_{ 20rd;(q) Y/

OU) i
r(j;q)z{ ordy(qy TN

0, otheruwise, 0, otherwise.

Moreover, w(n;q) = |z r(i;q)+2 IZ B(jq).
tleA’;lq jj¢d:’;

We will introduce the following notation

n(d,5) = 90(4,9) % (Fu(q,5))°, (5.2)
where ., (q,s) =[] gz(i;q) and ¢,(q,s) =[] gsﬁ(j;q), with
"IE!/"ZI JQZJ
s—1
& = {(x(o),x(l),--- x5y e {0;1)° Z x(@) e {0;1}}. (5.3)
a=0

Note that & = {(0,---,0)}u<|0,--,0, 1 ,0,+4,0 | = je{1;--+;8}p C
Jj-ith position

{0;1}° and |&5| = s + 1.

The elements in .#,(q,s) are arrays of the form (((uE?))OSa<S)°) where
(ul(f))osaq are in &, and the indices i and [ satisfy i|n,i € A; and 1< [ <7(i;q),
ie.,

(1 osaes)) = (2} Yosas ) € 51(4.5).

ISlSY(i:q))im,iqu

similarly, (05 Joza<s)*) = (((2fi oca<s) ) € #u(4,5). Note
= IE NP (1) ) jn, jen,

thatif s = 1, then & = {0; 1}, and in this case, we write ((u;;)°) = (((uff))osa<1)°)

and ((vj)*) = (1] )oac1)")-
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Let i and j be positive integers such that i|n,i € .4, and j|n, j ¢ A;. From

Nnow on,

Ai={G;; :1<1<y(i;9)} and  A;={{Fjp,—Fjp}:1<h<p(j;q9)}

Of course, all the polynomials in {Q(G;;) : 1 <1 < y(i;q)} are basic-irreducible
in R[X] of degree ord;(q), and all the elements in {{Q(Fj;),2(—Fj,)} : 1< h <

B (j;q)} are pairs of monic basic-irreducible reciprocal polynomials (up to a unit)

in R[X] of the same degree ord;(q). The basic-irreducible factorization of X" —1
in R[X] is given as
B(J3q)
x"-1 =[] l_[ QGu) || T1 @Fn)e(=Fn) ). (5.4)
iln jln h=1
ieNg jé Vg

Thus, for any monic factor of X" —1 € R[X]|, there is a unique
() (o)), ((1073)*))) in 6,(q.1) such that

f= H(Yﬁ” ””)ﬂ(ﬁﬁ)ﬂ(m)"m(—m)‘”’”)’ 55)

iln jln h=
ieNg JENG
and conversely. Denote the right-hand side of Equation (5.5) by

2(((ui)*), (v)*), ((wj)*)). Note that 2(((1)°), ((1)*),((1)*)) = X" ~1 and
2(((0)°), ((0)),((0)*)) = 1. If we are given fi = &(((1)*), ((v)*), (wj2)*))
and fo = 2(((u],)°), ((v/,,)*), ((w/,)*)), we have that

lem(fisfe) = O(((max{uy, uj;})°), (max{wjn, viy})*), (max{wiy, wiy,})%));

15f) = 9(((min{u;, uj;})%), ((minfvs,, v, })°®), ((minfw;n, wi,})®)),

and if all (u;; + u;, vjp + VJ’.h, wip + w;h) are in {0;1}3 then

he = @(((wir+u3)), ((vin+viy)*) ((win+ wiy)%)-

(
(

gcd

5.2 | Cyclic serial codes

A cyclic code C oflength n over R is alinear code that is invariant under the transfor-

mation 7 ((c, ¢1,-+,n_1)) = (¢n_1, €or**+» €2 ). If we denote by (X" —1) the ideal
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of R[X] generated by X" —1, it is well-known that any cyclic code of length n over R
can be represented as an ideal of the quotient ring R[X] /(X" —1) via the R-module
isomorphism ¥ : R" — R[X] /(X" —1), where ¥(c) = ¥(c) + (X" —1) and

U R" - R[X]

(5.6)
u=(ug, uy, Up1) = w(X)=up+u X+ 4w, X",

which is an R-module homomorphism. We will slightly abuse notation, identifying
vectors in R" as polynomials in R[X] of degree less than n, and vice versa when the
context is clear. It is well-known that R[X]/(X™—1) is a principal ideal ring and C
is a cyclic code of length n over R if and only if ¥(C) is an ideal of R[X] /(X" —1),
(see [10] and references therein). Thus, the generator polynomial of a cyclic code C
of R", is the monic polynomial f in R[X] such that ¥(C) = ( f(x)), where ( f(x))
is the ideal of R[X| /(X" —1) generated by f.

A cyclic code over R of length n, is uniserial if its cyclic subcodes over R are
totally ordered by inclusion (see the definition of serial modules in [39]). A cyclic
code over R oflength n, is serial if it is a direct sum of uniserial cyclic codes over R
of length n. Note that, over a finite chain ring R, any cyclic code of length 7 is serial,
ifand only if gcd(p,n) = 1.

For a polynomial f of degree k its reciprocal polynomial X* f(X~1) will be
denoted by f* and if f is a factor of X" —1 we denote f = % A polynomial f is
self-reciprocal if f = f*, otherwise f and f* are called a reciprocal polynomial pair.

In order to make the comparison we take Q(A)* = Q(—A) and Q/(z?) = Q(A), for

any union A of g-cyclotomic cosets modulo 7.
The (s +1)-tuple (Ag,Ay,---,Ay) is called to be an ordered (g, s)-partition cyclo-
tomic modulo n, ifAy,A, -+ ,A; are unions of g-cyclotomic cosets modulo n whose
{A; :A; #0, for0 <t < s} forms a partition of [|0; n—1[]. Denote by %,(qg,s) the
set of ordered (g, s)-partition cyclotomic modulo n. Note that

R, (q,5) = {(Cg (A7 ({01),Lq (A7 (111)),.... 0o (A7 ({5}))) : A [l0; )10 1a ]}

It follows that |%,,(g,s)| = (s +1)©(%9), Let A= (A¢,A;,-+-,A;) bein R, (g, s). For
apositive integer u we denote by uA = (uAg, uAy, -+, uAs_1). Now, theAgy,Aq, -+ A

are unions of g-cyclotomic cosets modulo 7, therefore p‘A, is also another union
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of g-cyclotomic cosets modulo n, for any ¢ in {0;1;---;s —1} and for any ¢ in
{0;1;---;r—1}. Hence, p‘Ae (g, s) forany 0 < < r. From [10, Theorems 3.4, 3.5

and 3.8], we have the following result.

Lemma 5.2.1. For any cyclic serial code C over R of length n, there is a unique (s +
1)-tuple (Ag,A1,-+,Ag) inR,(q,s) such that

E(c):s{_éef(ﬂ(A_t)):<{9f ﬁ Q(Aa):0§t33—1}>. (5.7)

=0 a=t+1
_ s—1
Moreover, ¥(CL0) = @ 0! (Q(-As,)).
=0

Let A be a union of g-cyclotomic cosets modulo . From now on, we will con-
sider the code

¢ (A)={ceR" : Q(A) divides ¥(c)}, (5.8)
thus it is clear that ¥(6 (A)) = (Q(A) ).

Remark 5.2.1. Free cyclic serial codes over a finite chain ring have been studied in
[11] using the cyclotomic cosets and the trace map. Note that 6 ([|0;n—1|]) = {0}
and 6 (0) = R". From Lemma 5.2.1, for any free cyclic serial code C of length n over
R there exists a unique set A which is a union of q -cyclotomic cosets modulo n such
that C = € (A). Moreover, € (A)"° = 6 (—A), the generator polynomial of 6 (A) is

Q(A), and rankg(6 (A)) = Al

Proposition 5.2.1. IfA and B are unions of q -cyclotomic cosets modulo n, then
1. ACB ifandonly € (A) € 6 (B);
2. €(ANB) =% (A)N6(B), and 6 (AUB) = 6 (A) + 6 (B);
3. ot (6 (A) =% (p'A) and 6 (A)" = 6 (—p'A), forallo<t<r—1.

Proof. Item (1) follows from the definition of ¢ (A) and ¢ (B) and the fact thatAC B
if and only Q(B) divides 2(A). To prove (2), we note that since ANB CACAUB, and
ANB EB CAUB, fromitem (1), we have ¢ (ANB) € ¢ (A)N%6 (B) and 6 (A)+ 6 (B) S

% (AUB). Conversely, if c € 6 (A)N % (B) then Q(A) and 2(B) divide ¥(c). Thus
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1cm(Q(A), Q(B)) divides ¥(c). Now, 1cm(Q(A), 2(B)) = Q(AUB) = Q(ANB), so
we have 6 (A)N %6 (B) € 6€(ANB). Since gcd((A), 2(B)) = Q(ANB) = Q(AUB),
hence ‘6( )+ ¢ (B) 2 ¥ (AUB). To finish with the proof of the item (3), we have

ol (6 (A) = {ceR” : o' ((A)) divides ¥(c)}, thus o (6 (A)) = € (p’A), since
0'5 (Q(R)) =Q(p*A). Finally, for any 0 < £ < r —1 we have

%(A)le = (UZ(%(A)))%, from Proposition 2.2.3;

— (e (pa)";

= ¢(-p'A), from Remark 5.2.1.

5.3 | Galois hulls of cyclic serial codes

Let A = (Ag,Aj,...,Ag) and B = (B, By,...,B;) be elements in %, (q,s). We will
define the following set in R"

s—1
=o'c(A,)
t=0

Taking into account the map ¥ in Equation (5.6) and from [10, Theorem 3.4], it fol-
lows that C(A) is a direct sum of cyclic serial codes of length n over R. Therefore,
C(A) is a cyclic serial code of length n over R. The parameters of C(A) are given by
the entries in (|Ag|,|A1],---,|As|) and from Lemma 5.2.1 it follows that for any cyclic
serial code C over R of length n, there is aunique Ain % ,(¢g, s ) such that C = C(A).
Thus A is called the defining multiset of C(A).

Let us denote by

Ao: (As’As—l’---)AO)r ALIB= (EOrElr""Es)

-1
where Eg =AgUBy, and E, = (A, UBt)\( U (AiUBi)) forall0< t <s. Itis easy to
i=0
see that A° and ALIB are in %, (g, s). Moreover, C1t = C(—p*A°), and dimg(C) =
s—1
> (s—t)|A;]. Note that if AMB = (A°UB°)° = (Eg,Ey,---,E;), then E; = AjUB;
i=0
—1
andE;_, = (A,_, UBS_I)\( U (As—; UBS_,-)), forallO<r<s..
i=0
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Proposition 5.3.1. [11, Theorem 6] Let A= (Ag,A1,...,Ag) and B= (B,By,...,By)

in%,(q,s). ThenC(A) +C(B) = C(AUB) and C(A)nC(B) =C(ANB).

Corollary 8. LetA= (Ag,A1,...,As) and B= (By,By,...,B;) in%,(q,s), and define
N

S
g= [l QAy)andh,= ] QB,), forall0<t<s. Then
a=t+1 a=t+1

1. W(C(A)) =({0'g,(x) : 0< t <s}), and¥ (C(B)) = ({0 h,(x) : 0< t <s});
2. W(C(ANB)) =({0'1cm(g, h;) : 0<t <s}),

Proof. We have ANB = (Eg,Ey,...,E5), where E; = A;UB; and E;_, =
-1

(As_;UBg_;) \( U (As—; UBS_i)), forall0 < ¢ < s. From Lemma 5.2.1 it follows that
i=0

U (C(A)) =({0'g,(x):0<t<s}),and ¥ (C(B)) = ({6'h,(x) : 0<t <s}). Since

U (C(ANB)) =¥ (C(A))N¥(C(B)), usingagain Lemma 5.2.1 and Proposition 5.3.1

it follows that
U (C(AMB)) =(fo(x),0fi(x),....0° " fia (%)),

N S S
where f; = [] Q(E,). Thusforall0o<t<s, f; = Q( U Ea) and () E,=
a=t+1 a=t+1 a=t+1

s s
U (As—t—l UBs—t—l)' Then f; = Q( U (As—t—l UBs—t—l)) = lcm(gtr ht)- u
a=t+1 a=t+1

Theorem 26. LetAinR,(q,s). Then
4(C(4)) =C(an—p'?). 5.9

Proof. LetAin%,(q,s) and 0 </ < r. We have
#;(C(A)) = C(A)NC(A)Y, from Definition 2.2.7 ;
= C(A)NC(-p'A°), since C(A)™ =C(-p'A°);
= C(An —png), from Proposition 5.3.1.

O

Example 5.3.1. Let R = Z,.[0] with 1 < a < 2 be the finite chain ring of param-
eters (2,a,1,e,2). Consider the 2-cyclotomic cosets modulo 7 given by C,({0}) =
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{0},05({1}) = {1;2;4}, andC,({3}) = {3;5;6}. Note that {C,({1}),C,({3})} is an asym-
metric set, and C,({0}) is a symmetric set. Consider the cyclic serial code over R of
length 7 with defining multiset A= (C,({0}),C,({3}),C,({1})).

Then —A° = (L5(13}),62({1}),62({0})), and C (4) = % (6,({0})) @ 0% (C2((3}))-
Thus C(A)" = C(-&°) = € (C2({3})) @ 0% (C,({1})). Finally, AN —A =
(Fo,Fy,Fy) whereFy = 0,F; = (,({3}), and F, = C,({0;1}). Therefore #,(C (A)) =
C(AN—A°) =C(0,0,({3}),6,({0;1})) = 0 (C,({3})).

5.3.1 | Euclidean hulls

From now on, ¢ = 0. The following result provides us a way of checking whether
a given cyclic serial code D is the Euclidean hull of a cyclic code C or not. Of
course, if 74 (C) = D, then D is a serial cyclic code if, and only if C is also a se-
rial code. In the sequel, for each X = (X, Xy,:+,X;) € R,,(q,s), we will denote

2Xa) = 2(((x)) (), ((253)7) for @ in {05150}, Thus 2(—X,) =

0 (((xi(la))°), ((z](.Z))’), ((yj(;;))')), and from Equation 5.6, we have for0< ¢t <s—1,

RSN (R (PR

since 2(((1)°), ((1)*), ((1))*) = X" =1 = go-2(((x})°), (1)), ((253)°)),

it follows that

N

Z;)xi(la) :Z;)yj(;f) :Zz](.z) =1

a=0

From Egs. (5.5) and (5.7), there exists a unique

(G osa<s)) (fiozacs) ) (255 Yo<acs)) )

in &,(q,s) such that

T () (X[

From Egs. (5.4), (5.5), and (5.7), the following lemma follows.

Lemma 5.3.1. There is a bijection between the set 6 (n;R) of cyclic serial codes of

length n over R and the set §,(q,s).
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When ¢ = 0, and with the triple-sequence of a cyclic serial code, by comparing

the two sides of Equation (5.9) in Theorem 26, the following result is obtained.

Corollary 9. Let

(M ozac2) ) (1 o)) (215 ozac2)"))

and
() 0zac2)) (52 Nozac2)) (w53 Jozac)"))

in&,(q,s) such that

{0 M E NS ) )

and

co-{fro{ (£, TN ATNCE 5] e

Then 5, (C) = D if, and only ifforall0< t <s—1,

[ & @ @, S (s-a)
2 U :max{ PINE RIS };
a=t+1 a=t+1 a=t+1
D U;Z):max{ > y].(;;); > z](.;l_a)}; (5.10)
a=t+1 a=t+1 a=t+1
> w;?:max{ DIREIEDY y};—“)}.
\ a=t+1 a=t-+1 a=t+1

In such a case, forall0<t <s—1, if2t <s—1, then

s u§7>:max{ NS xi(f_“)}zl»

a=t+1 a=t+1 a=t+1
and
o (@), N (@)
>ovhs >0 wi |ed(1;,0),(0:1), (1)}
a=t+1 a=t+1
N (@)
since Y, x;,’ =1.

a=0
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From Corollary 9, we recover the characterization of LCD cyclic codes and of

self-orthogonal cyclic codes in[17, Theorem 3.4, and Corollaries 3.5 and 3.6] and we

naturally extend it to finite chain rings of nilpotency index 2. The following remark

provides this generalization.

Remark 5.3.1. Let

(G )osa<) ) ()5 Nosa<a)): (253 o<ac)")

and

(((1)0za<2)), (253 oza<2)), (w53 Yozac2)"))

in&,(q,2) such that

T(C)=({o (G + =0 (fy) + v () + 25
and
(D) = ({2 () + w1 () + i) (wh)) +wiih)), 02 (u]
M. @), | (01} ifu) =0;
Then #,(C) = D if, and only if (x;,’; x;;’) € e ' ’(12) ’
{(010)1(1)0)}) lfull - ]-;
( y].(}ll); yj(; ); z](. ;l); zﬁl) ) belongs to
{(0;0;0;0),(1;0;1;0)}, if(ul(ll) + uglz); vj;l) + vﬁ); w;}ll) wﬁ); vﬁ); wﬁ))
{(0;1;1;0),(1;0;1;1)}, if(ul(ll) + ul(lz); vj}ll) + vﬁ); ](;l) wﬁl); vﬁ); wﬁ))
{ {(0:1;0;0), (L;0;0:1)}, if (uly) + uﬁ);uj;)wﬁ); ](}11) wﬁ);vﬁ);wﬁ))
{(1;0;0;0)}, if(ul(ll) + ul(lz); vﬂll) + v;,zl); ](;l) wﬁl); v;;z,); wﬁl))
{(0;0;1;0)}, if(ul(ll) + ul(lz); vj;l) + vﬁ); ](;l) wﬁ); vﬁ); wﬁ))
{(0;1;0;1)}, if(ul(ll) + ul(lz); y.}ll) + vﬁl); ](;l) wﬁl); vﬁ); wﬁl))
foralli,l, j, h. Moreover,
1. C is LCD if, and only if xl.(lz) = xl.(ll), j(i) = j(,ll),z](.i) = z](.z)

(xi(f);yj(i);zﬁ)) €{(0;0;0),(0;1;1),(1;0;0),(1;1;1)}, foralli,l, j, h.
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2. C is self-orthogonal if, and only zf(x(z)'xl.(ll)) €{(0;1),(1;0)} and

il ’

J J

foralli,l,j,h.

Note that Corollary 9 is insufficient to characterize the nontrivial self-dual cyclic

codes over R when s is even (see [10, Theorem 4.4]).

5.4 | The g-dimensions of Euclidean hulls of
cyclic serial codes

In this section, C is a cyclic serial code of length 7 over R with triple-sequence

in&,(q,s). Then

(s yinal20)) € 1(1:0150), (0:1510), (1,00 1), (1;0;00), (0;0; 1;0), (01,051},

co-{fro{( £, TN TNCE ) e

From Corollary 9,

coer-{fro{ [ £, TWCE )Y e

where

(a) _ & @, SE ()
2w, =1-miny 3z 51— Zo Yin [

{ a=t+1
forall 0 < ¢ < s—1. The following notations are important for the sequel of this
paper. Forall0<t<s—1,1<I<7(i;q)and 1 <h <B(j;q), denote by:

-3 ol

a=t+1

+wip)). (5.11)
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Note that sﬁl) = 2. Let us consider now

s—1 s—1
Ail:Z(s—t)uE;), and A jp, :Z(s—t)(sglt_l)—sﬁ)). (5.12)
=0 t=0
. T A0 _ I (a0, &' (@
Obviously, A;;= >’ A, where A;’= min > X 51— > X;; trand Ajj =
t=0 a=0 a=0

s—1

> A(.t), where
jh

t=0

¢ s—t—1
AEQ:min{Zyj(Z);l— zﬁ?}—kmin{
a=0

a=0 a=0 a=0
r(59) (t) B(ja) (t) B(ja)
Thus, we set Aj:= >, Ajp, &) = >, €, and A;:= D Ajy
=1 h=1 h=1
Remark 5.4.1. Let0<t<s—1.
1. Agf)e{o;l}andAﬁ)e{o;l;z}.
2. If0<t<s, then AEE_I)SAE;) cmdAg.;_l) < As.;l)

3. If2t < s, then Aglt): 0 and AEQ <lI.

o<e ™ el <pliia)—(e) =) ifr<[3];
<2l —(e) e ), ire=[3)

Proof. Let 0 < t < s—1 and Al = ﬁ(]iq)A(t) We have s(t) —2-all From
: == J = i jh jh:

Remark 5.4.1, two cases are considered. Let wgt_l) =H{heN : 1<h<

B(j;q) and 6‘;2_1) = 85-2) = 1}|. Then there is a permutation 7 in Sg ;) such that

el =l =1, forall h e (r(1),,7(w ™)} Obviously, £\ <26 (j;q). For

jh
(t—2) (t-1) (t-1)
that £; —&; < @
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(e=1) _ (1) o (t-1)
Casel: t <[§]. We have e(;) € {1;2}, and { S{?) £p €101}, ifey,

j ell) — gt ifel, =1
Thus
(t-1) (1) (e=1) _ (1)
g, '—& = Z (&n —€jn)
hetr (1)~ (@)
+ (el =€) |
hetz (@)~ 1), 7 (B(ji))}
- S =) | sinceosely -l <
he{f(wy_mﬂ)w-,T(ﬁ(j:q))}
Hence0<e!' ™ el < p(jiq)—a ™ < p(jiq)— (e} —el'V)).
(t=1) (1) . e (1) 9.
Case2:t2[§]- We have Ejn 8]'_’16{0’1’2}’ lfgjh_ sizk Thus
) () _ (r-1) if (t=1) _
Ein =€jn itej), =0
(t=1) (1) (t=1) _ (1)
e —g 0 = Z (&n  —€n)
he(r(1),- (@ 7))
+ (e =) |s
hemwif‘”ﬂ),- 7(B(j:9))}
= 0+ Z (8%—1)_5%)) ,smceOSé‘;h 1)_‘9§2)<2
hetz(@ ™ 41),- 7 (B(ji0))}

IA

Therefore 0 < sg.t_l) - 3;t) < 2(B(j;q) — w.t_l))
2(Blisa)— (e =i ™)).
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Theorem 27. The parameters of the Euclidean hull of a cyclic serial code over R of
length n are given by (ko, ky,--+, ks_1) where2ky+ ki +---+ ks_1 < n,

ieNy t¢VVq
with

(2) j
.’ =0, lanJV,'

ulmzo, ift<[%]; ! (1) : (t-1) : ! s

05l <p(isg), ifesls] ) 05V SPUOTY L ing g andi<]3)

su;sy\nLqg), 1 20

s 2 o< <2(B(jiq)— V), ifng N ande>[3]

Moreover VE._I) =0.

Proof. Let (kgy, ky,--,ks_1) be the parameters of 54 (C). When #4(C) = C, we
have 2ky+ k1 +---+ ks_1 <n. Thenforall0<t <s—1,

o= el (( S S TNE))
ooo(( MU LS ) D)

_ () (-1) (1) o &
= Zordi(q)-ui —i—Zordj(q)-(sj —£), where u; ' = u;,’ .
i|n jln 1=1
ieNg igNg
Since ] it follows that

{ () =0, 1ft<[

0<ul(t)<7f(zq) if £ >
{ () =0, if2t <s;

0< u( )<7r(z q), ifs<2t.
then any positive divisor of n is in then .4;;. By Lemma 5.4.1, we obtain

Nw Nw»

K

On the other hand, one notes that if n € %,

g;t) -0, if ne A
03v§.t)sﬁ(j;q)—v§-t_1), ifng N, andt <[3];
00 <2(B(jsa) =), ifngng and e=[5]

where vg.t) = gj.t_l) —eﬁ.t). Obviously vi._l) = 85-_2) —8§~_1) =0. [
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The previous discussion leads to the Algorithm 1 and justifies its correctness. Ex-

amples 5.4.1, 5.4.2, 5.4.3 show different outputs of the algorithm.

Example 5.4.1. All possible parameters of Euclidean hulls of cyclic codes of length 11

over Z.,; are determined as follows.
1. The divisors of 11 arel and 11.

a) Wehavel e A3, s00ord)(3) =1andy(1;3)=1.
b) We have1l & A3, so ord;;(3) =5 and f(11;3) = 1.

2. It follows that

ky = 51/5?), where(0 < Vi?) <1
ki = 5 vill), where0 < vill) <1-— Vi(i)
ky = ufz) +5vﬁ) where0 < uiz) <land0< vﬁ) SZ(l—vgll)).

Hence, the all possible parameters (ky, ky, k) of the Euclidean hulls of cyclic
codes of length 7 over Zg are given in the following table

ko ki kp

0 0 015610 11
5 01

5 0 01

Example 5.4.2. Allthe possible parameters (ky, k1, k») of the Euclidean hull of a cyclic

code of length 7 over Zg are determined as follows.
1. Thedivisors of 7 arel and 7.

a) Wehavel e A, soord,(2) =1andy(1;2) =1.
b) We have7 & N3, so ord,;(2) =3 and (7;2) = 1.

2. It follows that

ky = 3v§0), where(0 < v§°) <1
ki = 3v§1), where( < vgl) <1-— vgo)
ky = u®+39? whereo < u'® <1ando<»? <2(1—-4Y).
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Algorithm 2: Parameters of the Euclidean hull of a cyclic serial code over R.

N - R A

10
11
12
13

14

15
16

17

18
19
20
21

22

23

24
25
26
27

Input: Length 7, and a finite chain ring R of parameters (p,a,r, e, s) such

that gcd(p,n) =1.

Output: All possible s-tuples (kg, ky,---, ks_; ) describing the parameters of

the Euclidean hull of a cyclic serial code

.if n e A, then
for0<t<sdo
ifr < [ ] then
| k;=0.
else
For each i | n, compute ord;(q), and y(i;q),
therefore all the possible values of k;, such that
ke = Zordi(q) u”
iln
i€Ng
| with0< ul@ <7r(i;q).
return The possible parameters (0,--- ,0, kpsp ks_1) such that
Kisj+-+ ke <n.
Ise

For each i|n, if i € ./, then compute ord;(q),and y(i;q).
For each j|n, if j ¢ .4, then compute ord;(q), and B(j;q).
for0<t<s,do

if t =0 then
compute kg = Y. ord;(q)- (- ), where 0 < V; </5(] q)
|
i
else

while 0 < ¢ < [%] do

(e=1)

Forafixed v, in k;_;, compute k, = > ord;(q)- v( )

jln
igNg
where0<v </5(] q)— (t 1),
1f2k0+k1—|— 4k < nthen
| consider k;,
else
| reject k;
h11e t >[ ] do
For a fixed Vg b in kt 1, compute
= > ord;( ng > ordj( (. ) where
iln jln
l'Et/Vq l¢/Vq

0< ul@ <7r(i;g)and0< vgt) <2-(B(j;q9)— vg.t_l)).
if2ky+ ki +---+ k; < n then

| consider k;,

else

| reject k;
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Hence, the all possible parameters (ky, ky, k) of the Euclidean hulls of cyclic

codes of length 7 over Zg are given in the following table

ke ki ko

0 0 01,3467
3 01

3 0 01

Example 5.4.3. The parameters of the Euclidean hulls of cyclic codes of length 21 over
Zg are given by

1. The divisors of 21 are{1,3,7,21}.

(@) 1;3€ M5, wehave ord;(2) =1,0rdz(2) =2 andy(1;2) =y(3;2) =1.

(b) 7;21 ¢ A5, we have ord;(2) =3,0rds (2) =6 and B(7;2) = f(21;2) =
1.

2. It follows that

ke = 3v§0) +6V§i), with0 < V&O) <1, where j €{7;21}.
k = 3v§1) +6V§j), with0 < Vg.l) <1-— vg.o), where j € {7;21}.
k, = u§2)+2u§2)+3v§2)+6v§21), with 0 < uEZ)SIandOS vgz)SZ(l—vgl)),

wherei €{1;3}, and j €{7;21}.

Hence, the all possible parameters (ky, ky, k) of the Euclidean hulls of cyclic
codes of length 21 over Zg are given in the following table
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ke ki ko
0 0 01,2321
3 0,1,2367889 1213 14,15
6 0,1,23456789
9 01,23
3 0 01,315
6 0,1,23456789
6 0 01,39
3 0,1,23678891213 14 15
9 0 01,23

Corollary 10. The setX(n,s,q) of q-dimensions of the Euclidean hull of a cyclic se-

rial code of length n over R, is given by

B(j:q) s
B _ 0<r;<s—[5]
R(n,s,q) = Zord (Z Azl)+%;0fd )( hz_:l A]h)l 0<Aj<s
ieNy igNg

Proof. Let C be a cyclic serial code of length n over R with triple-sequence

(G oga<s)) (S ozacs) ) (255 Yozacs)*) )

in &,(q, s). From Theorem 27, the parameters ( ko, k1, , ks_1) of 74 (C) where for
allo<r<s-—1,

r(i:q) B(j;q)
k, = Zordi(q)'( Z ul(;))_i_Zordj(q)-( Z (8§2_1)_8§;1)))
: h=1

iln jln
ieNy i¢Ng

Thus the g-dimension of 4 (C

s 5
q Bjsq)
dlmq(C)—Zord (Z ,l)+Zord ( Z A]-h).
=1 h=1

iln jln
ey i¢Ng

(s—1t)k;. It follows that

From Remark5.4.1,

ll_ZAll = zz = [ ]

72
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andif j € ,/Vq then A j=0. Otherwise,

~1 [5]-1 —1
AN WIEN. (DI CERDIEE
12

O]

5.5 | The average g-dimension

We will denote by 6 (n; R) the set of all cyclic serial codes over length n over R. The
average g-dimension of the Euclidean hull of cyclic of length 7 over R is

y i A(C)

|6 (n;R)|

Er(n)=
Ce%(n;R)

In this section, an explicit formula for E(7) and bounds are given in terms of B,, ,

r(i;q9)
Bg :degﬂ( 1 Q(G,-n):Z«p(i),
=1

iln iln
ieNy ieNy

where

where G;; are symmetric g-cyclotomic cosets modulo n of size ord(q), as defined
in (5.4).
Consider the maps

A gs — N
(x(O),...,x(s—l)) _ sz_lmin{ i x(“);l—s_i_lx(a)}, (5.13)
t=0 a=0 a=0
and A : & x & — IN defined as
= 4 s—t—1 s—t—1
A(y,z) ZZ(min{Z ARSI E Z z(“)}-l—min{z z(@;1— Z y(a)}),
t=0 a=0 a=0 a=0 a=0

(5.14)

where (y,z) = ((y(©),--,y(57), (2(0),... z(s=D)Y),

Let T €X(n,s,q) be an element in the set defined in Corollary 10. Then 7 is the
g-dimension of the Euclidean hull of a cyclic serial code of length n over R. The
following result gives the number of cyclic serial codes of length n over R whose

Euclidean hulls have g-dimension 7.
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Proposition 5.5.1. Let n be a positive integer such that gcd(n,p) = 1 and © €
X(n,s,q) whereX(n,s,q) is described in Corollary 10. The number p(n,T;R) of

cyclic serial codes of length n over R whose Euclidean hulls have q-dimension 7 is

given by:
r(i:q) B(j:q)
p(n,T;R): Z n ws(Ail) n n ps
(((2:1)°),((Ajn)®))eX(T) ,ilg I=1 In h=1
ieNg j Vq
where

l:Ds(Ail):ergs :A(x) =7}, ps(‘jh):H(y» )eg X & A(y’ ) ]h}l

and

B(jq)
T(7) =1 (((21)°), ((Ajn)")) : D ordi(q) (Z A,l)—{—Zord )(Z Ajh)zf
h=1

iln jln
ieNg igNg
. . T-p(n,7;R) . .
The above expression of Eg(n) = Y] [Gee () Might lead to a tedious

TeX(n,s,q)
and lengthy computation. The remainder of the section will show an alternative

simpler expression for the expected value.

Lemma 5.5.1. Consider the random variable A defined in (5.13) with uniform prob-
ability. The expected value E(A) is given by:

51s=15) { e ifs evens

E(A)= )
s+1 =, if s odd.

Proof. Let t €{0;1;---;s—1}andx= (x(%),..., x(5=1) e &,. Set
t s—t—1
Aggzmin{z x(“);l— ;) x(“)}e{o;l}.

t
Then A'")=1ifand onlyif2¢ > sand, >, xl.(la) = 1. Thus for all n € N, we have

x) asst

(1) 2t—s+1, iftz[%]andnzl;
el 1N\, = =
s (x) g { 0, otherwise.
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Therefore,
s—1
(2t—s+1), ifn=s—[3)
xeés:ax)=n} = { =[3] 2
0, otherwise.
_ | [BlGs=15D, it =s—[5];
0, otherwise.
Since |6 =s+1andP({xe & : A (x) =n}) = HA%#, it follows that,
[31(s—151)

5(a)= > np(txes, A () =)=

e s+1

O

Lemma 5.5.2. Consider the random variable A : §; x & — IN defined in (5.14) with
uniform distribution. The expected value E(A) si given by

s(2s+1)
E(A)= 3011)

Proof. From Corollary 10, for any (y,z) € §; x &, 0< A(y,z) < s. Let
&s(n) ={(y.z) €6;x & : Ay,z) =n},
for0<n <s. Now,

2(n+1), ifo<n<s—1;
|£s(n)|={ (n+1) 1

s+1, ifn=s.

E(a) = ﬁ;m&(n)h

= (S+—11)2(Z_:2n(n+1)+s(s+l));
n=1

s(2s2+3s+1)
3(s+1)2
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Theorem 28. The average q-dimension of the Euclidean hull of cyclic serial codes
from € (n;R) is

Eg(n)=

{ ((6258111))5)n_(l(;(—;—i)ls))Bn,q; if s even;

(Stls)p—(S2543) B, o if's odd.

6(s+1) 12(s+1)

where B, o = > ¢ (i)

iy
Proof. Let Y be the random variable that takes as value dim,((C)) when we
choose at random a cyclic serial code from < (n; R) with uniform probability. Then
E(Y) = Er(n). By Lemmab5.3.1, there exists an one-to-one correspondence be-
tween ¢ (n;R), and &,(q,s). Therefore, choosing a cyclic serial code C from

% (n, R) their probabilities are identical. By Corollary 10, we obtain

B(j;q)
Y = Zord (Z All)—i—Zord )( Z Ajh).
iln jln h=1

ie. /V 1¢ Vq

Forall i and j dividing n such that i € .4, and j € .47, from Lemmas 5.5.1 and 5.5.2,
we note that E(A;;) =E(A) and E(A ;) =E(A). So, we get

r(59) Biq)
E(Y) = Zordiw)( E<A>)+Zord]~<q>(z E<A>):

iln =1 jln =
ievg ig Ny
_ ¢()
= Sote@n+y S w @)
iln jln
zEJVq qu

From Lemmas 5.5.1 and 5.5.2, we have

{ (Bt n—(52k )Bag,  if s even;

(Et)n— (52828, ,, ifsodd,

Er(n)=

12(s+1)
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From [34], we have B, , = nifn€ A ;and 1<B, ; < 2?” if n ¢ .4,. Thus
= Ifne%,then

S if s even;
Ep(n)= 4(s—tl
() "(54 13’ if s odd.

m Ifn¢ A, then

(55+1)sn 2n(2s+1)s—(s+2)s . )
18gs+1)_ <Eg(n)< 201 if s even;
(55°+s—3)n 2ns(2s+1)—(s24+2s+3)

18(s+1) <Egp(n)< 12(s+1) , if s odd.

Remark 5.5.1. Ep(n) grows at the same rate with ns as s and n is coprime with p
and tend to infinity. Thus, the upper limit of the sequence (ER (n)

sn )(s,n)e(IN\{O})2 s at

ged(p.n)=1
most 5 and its its lower limit is at least .
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Summing up, during this dissertation we have focused on the hull and the dimen-
sion of the hull of cyclic codes. First we recalled some basic consepts and key re-
sults on cyclic codes over finite fields and rings, we gave the characterization of the
hull of cyclic codes in terms of their generator polynomials with respect to the Eu-
clidean inner product over finite fields and rings. We discussed recepectively about
the type of the hulls of cyclic codes over [F; and Z, and we gave a formula of the
average ¢-dimensions of the hull of cyclic codes. We generalized the notion of the
hull of cyclic code over over IF; and Z, to an arbitrary finite chain ring R. Moreover,
we explored some properties of hulls of cyclic serial codes over a fnite chain ring. As
special cases, we gave some results about LCD and self orthogonal codes. We pro-
vided an algorithm for computing all the possible parameters of the Euclidean hulls
of that codes and we gave an expression of the set X(n, s, q ) of g-dimensions of the
Euclidean hulls of cyclic serial codes of length n over R. We determined the num-
ber p(n,T;R) of cyclic serial codes of length n over finite chain rings having hulls
of a given g-dimension. Finaly, We established an alternative simpler expression of
Egr(n), the average g-dimensions of the Euclidean hulls of cyclic serial codes over
finite chain rings with its upper and lower bounds. We showed that Ex(n), grows
at the same rate with ns as n and s are coprime with p. Based on our survey and

study, now we present a few open directions for future investigation.

1. It would be an interesting problem to determine dual codes of constacyclic
codes over finite chain ring R and to study the hull of constacyclic codes R.
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2. Another interesting problem would be to study the properties the hulls of
repeated-root cyclic codes over finite chain rings.

3. It would be also interesting to study the hull of nnegacyclic serial codes over
finite chain rings.

78



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

References

E.E Assmus, ]J.D. Key, Affine and projective planes, Discrete Math. 83 (1990),
161-187.

G. Bini and E Flamini, Finite commutative rings and their a pplications, Uni-
versity of Michigan, Universita degli Studi Roma Tre,U.S.A and Italy, 2002.

A. Batoul, K. Guenda, T. A. Gulliver, On self-dual codes over finite chaing rings,
Des. Codes and Cryptogr. 70 (2014) 347-358.

S. Bhowmick, A. Fotue-Tabue, E. Martinez-Moro, R. Bandi, S. Bagchi, Do non-
free LCD codes over finite commutative Frobenius rings exist, Des. Codes Cryp-
togr. 88 (2020), 825-840.

T. Blackford, Cyclic codes over Z, of oddly even length, Appl. Discr. Math., 128
27-46, 2003.

T. Blackford, Negacyclic codes over Z, of even length, IEEE. Trans. Inform. The-
ory, 49(6) 1417-1424, June 2003.

A.Bonnecaze, P. Solé, and A. R. Calderbank, Quaternary quadratic residue codes
and unimodular lattices, IEEE Trans. Inform. Theory, 41(2) 366-377, Mar. 1995.

A. Bonnecaze and P. Udaya, cyclic codes and self-Dual codes over F, + ulF,,
1998.

79



Chapter 6. Conclusions and future works References

[9] A.R. Calderbank and N.J.A. Sloane, Modular and p -adic cyclic codes, Designs,
Codes, Cryptogr., 6, 1995, 21-35.

[10] H. Q. Dinh, S. R. Lépez-Permouth, Cyclic and Negacyclic Codes Over Finite
Chain Rings, IEEE Trans. Inform. Theory, 50 (2004),1728-1744.

[11] A. Fotue-Tabue, C. Mouaha, On the Lattice of Cyclic Linear Codes Over Finite
Chain Rings, Algebra and Discrete Math. 27 (2019), 252-268.

[12] A. Fotue Tabue, E. Martinez-Moro, C. Mouaha, Galois correspondence on
linear codes over finite chain rings, Discrete Math. 343 (2020) 111653,
https://doi.org/10.1016/j.disc.2019.111653

[13] T.Honold, I. Landjev, Linear Codes over Finite Chain Rings, The electronic jour-

nal of combinatorics 7 (2000),

[14] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cam-
bridge, 2003.

[15] A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé,
The Z, linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans.
Inform. Theory, 40(2) 301-319, Mar. 1994.

[16] S. Jitman, E. Sangwisut, The Average Hull Dimension of Nega-
cyclic Codes over Finite Fields, Math. Comput. Appl. 23, no. 3: 4l1.
https://doi.org/10.3390/mca23030041

[17] S.Jitman, E. Sangwisut, P. Udomkavanich, Hulls of Cyclic Codes over Z4, Dis-
crete Math. 343, (2020) 111621, https://doi.org/10.1016/j.disc.2019.111621

[18] P. Kanwar and S. R. Lopez-Permouth, Cyclic codes over the integers modulo
p™, Finite Fields Appl., 3(4) 334-352, Oct. 1997.

[19] A.Klapper and M.Goresky,An introduction to abstract algebra.

[20] H.Liu, X. Pan, Galois hulls of linear codes over finite fields. Des. Codes Cryptogr.
88 (2020), 241-255.

80



Chapter 6. Conclusions and future works References

[21] J. S. Leon, Computing automorphism groups of error-correcting codes, IEEE
Trans. Inf. Theory 28(3) (1982) 496-511.

[22] S. Lopez-Permouth and S. Szabo, Repeated root cyclic and negacyclic codes
over Galois rings, Applied Algebra, Albebraic Algorithms and Error-Correcting
Codes, Springer Lecture Notes in Computer Science, 5527 219-222, 2009.

[23] B.R.McDonald, Finite Rings with Identity Marcel Dekker Inc., New York (1974)

[24] E.Martinez-Moro, 1. E Raa, Multivariable Codes Over Finite Chain Rings: Serial
Codes SIAM ]. Discrete Math., 20 (2006), 947-959.

[25] E J. Macwilliams and N.J.A Sloane, Thetheory of error correcting-codes, Ben-
jamin, Inc. Amsterdam,North-Holland, 1977

[26] G. H. Norton and A. Sdlagean, On the structure of linear and cyclic codes over a
finite chain ring, Appl. Algebra Engr. Comm. Comput., 10(6) 489-506, 2000. S.
Ling et C. Xing,Coding Theory, Cambridge, 2004.

[27] G. H. Norton, A. Salagean, On the Structure of Linear and Cyclic Codes over a
Finite Chain Ring, AAECC. 10 (2000), 489-506 .

[28] E. Petrank, R. M. Roth, Is code equivalence easy to decide?, IEEE Trans. Inf. The-
ory, 43(1997), 1602-1604

[29] E.Rains and N.J.A. Sloane, Self-dual codes, in Handbook of Coding Theory, V.S.
Pless and W.C. Huffman, eds., Elsevier, Amsterdam, 177-294, 1998.

[30] S. Roman, Coding and Information Theory, Graduate Texts in Mathematics,
134, Springer-Verlag, New-York, 1992.

[31] N. Sendrier, Finding the permutation between equivalent codes: the support
splitting algorithm, IEEE Trans. Inf. Theory, 46 (2000), 1193-1203.

[32] N. Sendrier, On the dimension of the hull, SIAM J. Appl. Math. 10 (1997), 282-
293.

[33] E.Sangwisut, S. Jitman, S. Ling, P Udomkavanich, Hulls of cyclic and negacyclic
codes over finite fields, Finite Fields Appl. 33 (2015) 232-257.

81



Chapter 6. Conclusions and future works References

[34] G. Skersys, The average dimension of the hull of cyclic codes, Discrete Appl.
Math. 128(2003), 275-292.

[35] A.K. Singh, N. Kumar, K.P. Shum, Cyclic self-orthogonal codes over finite chain
rings, Asian-Eur. J. Math. 11(2018), 1850078.

[36] C.E.Shannon, A mathematical theory of communication, The Bell system tech-
nical journal 27 (1948): 379-423.

[37] G. Skersys, Calcul du group d'automorphismes des codes, PhD Thesis, Laco,
Limoges, 1999.

[38] N.]J.A. Sloane and J. G. Thompson, Cyclic self-dual codes, IEEE. Trans. Inform.
Theory, 29(3) 364-366, May 1983.

[39] Jr. Warfield, B. Robert, Serial rings and finitely presented modules, J. Algebra, 37
(1975), 187-222. d0i:10.1016/0021-8693(75)90074-5

[40] E.A. Whelan, A note on finite local rings, Rocky Mountain J. Math., 22(1992),
757-759.

[41] J. L. Yucas and G. L. Mullin, Self-reciprocal irreducible polynomials over finite
fields, Designs, Codes, Crypt., 33(3) 275-281, 2004.

[42] O.Zariski and P. Samuel, Commutative Algebra. New York: Van Nostrand, 1958

82



	Introduction
	Toward codes over finite rings
	Review of litterature
	Motivation and problem
	Outline of thesis

	Preliminaries
	Error correcting codes
	Linear codes
	Linear codes over finite fields
	Finite chain rings
	Codes over finite chain ring


	Hull of cyclic codes over finite fields
	Basics on finite fields
	Irreducible factorization of Xn-1
	Minimal Polynomials and Cyclotomic Cosets
	Cyclotomic Polynomials

	Cyclic codes over finite fields
	Generating polynomial of a cyclic code
	Check Polynomial

	Hulls of cyclic codes over finite fields
	Characterization of cycic codes with the same hulls
	The dimensions of the hulls of cyclic codes

	The average dimension of the hull of cyclic Codes

	Hull of cyclic codes over Zp2
	Cyclic codes over Zp2
	Factorization of Xn-1 over Zp2 
	Generating of cyclic codes over Zp2
	Characterization of the Hulls of cyclic codes
	Parameters and p-dimensions of hulls of cyclic codes
	The average p-dimensions Ep(n)


	 Galois Hulls of cyclic serial codes over finite chain rings
	Factorization of Xn-1
	Cyclic serial codes
	Galois hulls of cyclic serial codes
	Euclidean hulls

	 The q-dimensions of Euclidean hulls of cyclic serial codes
	The average q-dimension

	Conclusions and future works
	References
	

