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Abstract

In this thesis, we recalled some basic consents and key results on cyclic

codes over finite fields and rings, we gave the characterization of the hull of

cyclic codes in terms of their generator polynomials with respect to the Eu-

clidean inner product over finite fields and rings. We discussed respectively

about the type of the hulls of cyclic codes over Fq and Zp 2 and we gave a for-

mula of the average q -dimensions of the hull of cyclic codes over a finite chain

ring of parameters (p , r , a , e , r ) where q = p r . We generalized the notion of

the hull of cyclic code over over Fq and Zp 2 to a finite chain ring R . More-

over, we explored some properties of hulls of cyclic serial codes over a finite

chain ring. As special cases, we gave some results about LCD and self orthog-

onal codes. We provided an algorithm for computing all the possible parame-

ters of the Euclidean hulls of those codes and we gave an expression of the set

ℵ(n , s , q ) of q -dimensions of the Euclidean hulls of cyclic serial codes of length

n over R . We determined the number℘(n ,τ; R ) of cyclic serial codes of length

R over finite chain rings having hulls of a given q -dimension. Finally, we estab-

lished an alternative simpler expression of ER (n), the average q -dimensions

of the Euclidean hulls of cyclic serial codes over finite chain rings with its upper

and lower bounds. We showed that ER (n), grows at the same rate with n s as

s and n is coprime with p .

Keywords: Finite chain rings; Cyclotomic cosets; Cyclic codes; Hull of a

code; Parameters of the hull of a code; The average q -dimension.
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Résumé

Dans cette thèse, nous avons rappelé quelques notions de base et résultats clés sur

les codes cycliques sur les corps finis et les anneaux, nous avons donné la carac-

térisation du hull des codes cycliques en fonction de leur polynôme générateur

par rapport au produit scalaire euclidien. Nous avons discuté respectivement sur

le type du hull des codes cycliques sur Fq et Zp 2 et nous avons donné une formule

de la dimensions moyennes du hull des codes cycliques sur les anneaux de chaîne

finie de paramètres (p , r , a , e , r ) ou q = p r . Nous avons généralisé la notion du

hull des codes cycliques sur Fq et Zp 2 aux anneaux de chaîne finie R . De plus,

nous avons exploré certaines propriétés du hull des codes cycliques sériels sur les

anneaux de chaîne finie. Comme cas particuliers, nous avons donné quelques

résultats sur les codes LCD et auto orthogonaux. Nous avons fourni un algorithme

pour calculer tous les paramètres possibles du hull euclidien de ces codes et nous

avons donné une expression de l’ensemble des q -dimensions du hull euclidien

des codes cycliques sériels de longueur n sur R . . Nous avons déterminé le nombre

℘(n ,τ; R ) des codes cycliques sériels de longueur n sur des anneaux de chaîne

finis ayant des dimensions du hull donnée. Enfin, nous avons établi une expression

alternative plus simple de ER (n), the q -dimensions moyennes du hull euclidien

des codes cycliques sériels les anneaux de chaîne finis avec ses bornes supérieure

et inférieure. Nous avons montré que ER (n) croît au même rythme avec n s ,

n et s sont premiers avec p .

Mots clés: Anneaux finis de chaîne, Classes cyclotomiques, Codes cycliques, Hull

d’un code, Paramètres du hull d’un code, La dimension moyenne.
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1

Introduction

Error correction is an important aspect of classical information processing that pro-

tects the classical bits against errors, similarly.

1.1 | Toward codes over finite rings

The theory of error-correcting codes has historically been most useful in the context

of linear codes. Such codes may be viewed as vector spaces over finite fields carry-

ing with them many familiar and well-studied properties. A generalization of finite

fields is the concept of finite rings. It is therefore natural to consider codes over finite

rings to study which properties such codes maintain in the move to a more general

setting. Codes over rings started being of interest to many researchers since the ap-

pearance of [15; 25], where it was shown that the binary non-linear codes known

as Kerdock and Preparata codes are actually dual codes when viewed as codes over

Z4, via the Gray map. So the most natural class of ring that is suitable for coding

theory is given by finite chain rings as it allow to formulate the dual code similar to

finite fields. So it is worth to delve into codes over finite chain rings.

1.2 | Review of litterature

The class of cyclic codes is one of the most studied class of linear codes. The alge-

braic structure of cyclic codes makes easier their implementation, for this reason

1



Chapter 1. Introduction 1.3. Motivation and problem

many practically important codes are cyclic. The theory of cyclic codes over rings

have been studied in a series of papers ( see [10; 11; 13; 24; 27]). In particular, Dinh

and Permouth [10] gave the algebraic structure of simple root cyclic codes over fi-

nite chain rings R . Martínez and Rúa [24] generalized these results to multivariable

cyclic codes. Free cyclic serial codes have been determined by using cyclotomic

cosets and trace map over finite chain rings by Fotue and Mouaha in [11].

The Euclidean hull is defined to be the intersection of a code and its Euclidean

dual. It was originally introduced by Assume and Key [1] to classify finite projective

planes. Knowing the hull of a linear code is a key point to determine the complexity

of some algorithms for investigating permutations of two linear codes and com-

puting the automorphism group of the code, see [21; 28; 31]. In general, those algo-

rithms have been proved to be very effective if the size of the Euclidean hull is small.

In the case of codes over finite fields, Sendrier [32] established the number of linear

codes of length n with a fix dimension Euclidean hull, also Skersys [34] discussed

the average dimension of the Euclidean hull of cyclic codes. Later, Sangwisut et al.

[33] determined the dimension of the Euclidean hull of cyclic and negacyclic codes

of length n over a finite field. Furthermore, Jitman and Sangwisut [16] gave the av-

erage Euclidean hull dimension of negacyclic codes over a finite field. Recently, the

concept of the Euclidean hulls has been generalized to cyclic codes of odd length

over Z4 by Jitman et al. [17]where the authors provided an algorithm to determine

the type of the Euclidean hull of cyclic codes over Z4.

1.3 | Motivation and problem

Based on the above survey, one must be agreed that these works motivate us to study

the Galois hulls of cyclic codes over finite chain rings.

The main goal of this thesis is to study the Galois hulls of cyclic codes of length

n over a finite chain ring R , such that n and p are coprime. This is the serial case

stated in [24], i.e. The cyclic codes over R whose length n is coprime with p are serial

modules over R . We will generalize the techniques used in [17] to obtain the param-

eters and the average q -dimensions of the Euclidean hull of cyclic serial codes over

finite chain rings.

2



Chapter 1. Introduction 1.4. Outline of thesis

� Problem 1 : Generalize the notion of the hull of cyclic code over Fq and Z4

to a finite chain ring R .

� Problem 2 : Find a formula of the average q -dimensions of the Euclidean hulls

of cyclic serial codes over finite chain rings R with its upper and lower bounds.

1.4 | Outline of thesis

A brief outline of the structure of this thesis is given below.

Chapter 1 is introduction.

In Chapter 2, we include basic concepts and definitions of classical coding the-

ory over finite field and over a more general algebraic structure, finite rings.

In Chapter 3, We includes some basic definitions of cyclic codes and the dual of

cyclic codes over finite field. We review some known results on the hulls of cyclic

codes over finite fields.

In Chapter 4, We discuss about the characterization of the hull of cyclic codes

over the finite ring Zp 2 , the ring of integers modulo p 2 where p is a prime. We derive

The average p -dimension of the hull of cyclic codes of length n over Zp 2 .

Chapter 5, is the core of this thesis, we characterize Galois hulls of cyclic serial

code over finite chain rings. We show the parameters and the q -dimensions of the

Euclidean hull of cyclic serial codes. Finally, the average dimension of the Euclidean

hull of cyclic serial codes is derived with its upper and lower bound.

Finally, Chapter 6 concludes the thesis and proposes a few doable open direc-

tions for future investigation.

3



2

Preliminaries

2.1 | Error correcting codes

The theory of error-correcting codes and more broadly, information theory, origi-

nated in Claude Shannon monumental work " A mathematical theory of communi-

cation ", published in 1948 [36], he showed that the goal of finding error correcting

codes that allowed for a high probability of successful transmission was attainable.

Shannon defined of each channel a constant associated with it, called the channel

capacity and he showed that reliable transmission at a rate bellow capacity is pos-

sible. More precisely, his channel coding theorem asserts that there exist error cor-

recting codes that achieve successful transmission with probability arbitrarily close

to 1, with the rate of the code arbitrarily close and below the channel capacity. Since

then, with the development of new technologies for data communications and data

storage, coding theory has become an active subject of research in different areas

of knowledge such as mathematics, computer science, electrical engineering and

others. Coding theory is used in order to improve the trustworthiness of the trans-

mission of information over noisy channels. A representation of the transmission

of information using coding theory is described in Figure 2.1. Suppose a source

wants to send a message to a receiver. The message, which we usually assume to be

a sequence of elements of a field or a ring, is encoded by adding redundancy. We

call the encoded message a codeword and the set of codewords form the code. The

codeword is transmitted over a channel that is subject to noise. This means, that it

is possible that the symbols of the codeword are changed, and we call the changed

4



Chapter 2. Preliminaries 2.1. Error correcting codes

symbols errors. The decoder receives the possibly altered codeword and uses the

redundancy to detect and correct errors. If possible, the decoder then determines

which codeword has most likely been sent. If the decoder detects an error but is un-

able to correct it, then the decoder lets the source know that the message had been

altered. An encoder can be described using an injective map, so if there is a code-

word that is closest to the received word, the message can be retrieved and given to

the receiver.

Figure 2.1: Block diagram of a communication system.

We give a small example of a well-known encoding map: Assume the symbols of

our message are in F2, the finite field of two elements 0 and 1; the source wants to

send the message 101. Assume further that in this encoding scheme the redundancy

is given by adding a 0 or a 1 to our message, depending on whether we have an odd

or an even number of 1’s in the word. This way our code consists of words with

an even number of 1’s. So 101 will be encoded as 1010. Suppose the codeword is

transmitted over a noisy channel and is changed to 1000. Then the decoder knows

that an error has occurred, because a word with an odd number of 1’s was received.

The decoder detects the error and lets the transmitter know that received message

was altered.

Given an alphabetA with q symbols, a block code C of length n over the alpha-

betA is simply a subset ofA n . The q -ary ro-tuples from C are called the code-

words of the code C . It is known that good codes are those who have the power

to eliminate maximum errors. Towards this, an important notion is a minimum

distance of the code which can correctly point out the maximum error-correcting

capability. The minimum distance of a code C or equivalently the least Hamming

distance between any two distinct codewords (number of places where they dif-

fer). A code having minimum distance d can detect up to d −1 places and correct

5



Chapter 2. Preliminaries 2.2. Linear codes

up to
�

d −1

2

�

places of errors. Thus the minimum distance determines the error-

correcting capability, therefore, to find out good codes we need to search codes of

larger minimum distance.

2.2 | Linear codes

In coding theory, a linear code is an error-correcting code for which any linear com-

bination of codewords is also a codeword. In this section, we give some basics on

linear block codes (see [14] and [25] for more information on linear block codes).

2.2.1 | Linear codes over finite fields

Let Fq be the finite field with q elements.

Definition 2.2.1. A q -ary linear block code C is an Fq -linear subspace of Fn
q . If the

dimension of C as a vector space over Fq is k , we say C is of length n and of dimension

k and we denote C an [n , k ]q -linear code. The elements of C are called codewords.

Definition 2.2.2. Let x = (x1, · · · , xn ) and y = (y1, · · · , yn ) be vectors in Fn
q . The

Hamming distance between x and y is defined as

dH (x, y) = |{i ∈ 1, · · · , n : xi 6= yi }|.

Definition 2.2.3. The minimum distance of an [n , k ]q -linear code, denoted by d (C ),

is the minimum among all the Hamming distances between any two distinct code-

words, i.e.

d (C ) = min{dH (x, y) : (x, y) ∈C 2, x 6= y}.

If C has minimum distance d , then we refer to the code as an [n , k , d ] linear

code over Fq .

Definition 2.2.4. The weight of a vector x = (x1, · · · , xn ) ∈ Fn
q is defined to be the

number of non-zero positions of x , i.e.

w t (x ) = |{i ∈ 1, · · · , n |xi 6= 0}|.

6



Chapter 2. Preliminaries 2.2. Linear codes

A natural upper bound on the minimum distance is given by the following:

Lemma 2.2.1. Let C be an [n , k ]q -linear code of minimum distance d (C ). Then the

distance is the minimum possible weight of the non-zero codewords, i.e.

d (C ) = min{w t (x) : x ∈C , x 6= 0}.

Theorem 1. If C is an [n , k , d ]-code then d ≤ n −k +1, moreover, codes which meet

the Singleton bound are called maximum distance separable (MDS).

For an [n , k ]q -linear code C , we define a generator matrix G of the code C to

be a k ×n matrix of rank k over Fq whose rows form a basis of C . Another way to

describe this linear subspace is through a kernel representation. Indeed, an (n −
k )×n matrix H over Fq , such that c ∈ C if and only if H .x> = 0, is called a parity-

check matrix of C . In general, G and H are not unique due to the fact that one can

write many different bases for a subspace.

We can describe an [n , k ]q -linear code C with generator matrix G and parity-check

matrix H in the following two ways.

C = {c ∈Fn
q : H x>= 0}= {xG : x ∈Fk

q }

Since the code is defined as the kernel of H and also as the image of G we have

H G >= 0 and G H >= 0.

Proposition 2.2.1. Let C be an [n , k ]q -linear code with parity-check matrix H . Then

C has minimum distance d (C ) = d if and only if every set of d −1 columns of H are

linearly independent and there exist d columns of H which are linearly dependent.

Theorem 2. If G = [Ik |A] is a generator matrix for the [n , k ]q code C in standard

form, then H = [−A>|In−k ] is a parity check matrix for C .

Definition 2.2.5. Let C be a linear code of length n over Fq . The dual code of C ,

denoted C ⊥, is the code

C ⊥= {x ∈Fn
q : x ·c = 0 for all c ∈C }

where, the usual inner product is denoted by x · y = x1 y1 + · · ·+ xn yn for (x, y) ∈
�

Fn
q

�2
.

7



Chapter 2. Preliminaries 2.2. Linear codes

Lemma 2.2.2. If C is an [n , k ] linear code, then its dual C ⊥ is an [n , n −k ] linear

code and (C ⊥)⊥= C . Moreover, a parity check matrix of C is a generator matrix for

the dual code C ⊥.

If C ∩C ⊥ then C is called self orthogonal and, if C = C ⊥, then C is called self

dual.

Definition 2.2.6. The hull of a linear code C is defined to be the intersection of the

code with its dual. We will denote byH (C ) = C ∩C ⊥ the hull of a code C .

2.2.2 | Finite chain rings

For an account on the results on finite rings in this section check [23]. Through-

out this thesis, p is a prime number, a , e , r , s are positive integers and Zp a is the

residue ring of integers modulo p a . R will denote a finite commutative chain ring

of characteristic p a , of nilpotency index s , and of residue field Fq (where q = p r ).

We will denote its maximal ideal by J(R ) and R× will denote its multiplicative

group. Note that since R is a chain ring it is a principal ideal ring, thus we will

denote as θ a generator of J(R ) and the ideals of R form a chain under inclusion

{0}=J(R )s (J(R )s−1 ( · · ·(J(R )(R and J(R ) = θ t R for 0≤ t < s .

The ring epimorphism π : R → R /J(R ) ' Fq naturally extends a ring epimor-

phism from R [X ] to Fp r [X ] and on the other hand it naturally induces an R -module

epimorphism from R n to (Fp r )n . As an abuse of notation we will denote both map-

pings by π.

A monic polynomial f is basic-irreducible over R ifπ( f ) is irreducible over Fp r .

We will denote byGR(p a , r ) the Galois ring of characteristic p a and cardinality p r a .

It is well known that, for a given finite chain ring R there is a 5-tuple (p , a , r , e , s )

of positive integers, the so-called parameters of R , such that R =GR(p a , r )[θ ], and

〈θ 〉 = J(R ), θ e ∈ p (Zp a [θ ])× and θ s−1 6= θ s = 0R . From now on, we will denote

as Sd the subring of R such that Sd := GR(p a , d )[θ ] and d is a divisor of r . The

Teichmller set of R will be denoted as Γ (R ) and it is defined as Γ (R ) = {0}∪{a ∈R :
a p r−2 6= a p r−1 = 1}. It is the only cyclic subgroup of R× isomorphic to the multi-

plicative group of Fp r . For each element a in R , there is a unique (a0, a1, · · · , as−1)

in Γ (R )s such that a = a0 +a1θ + · · ·+as−1θ
s−1.

8



Chapter 2. Preliminaries 2.2. Linear codes

Let R and S be two finite commutative chain rings, we say that R is an exten-

sion of S and we denote it by S |R if S ⊂ R and 1R = 1S . We say that the exten-

sion is separable if J(S)R = J(R ). The Galois group of the extension S |R , de-

noted AutS (R ), is the group of all the automorphisms γ of R whose restriction

γ|S of γ to S , is the identity map of R . A separable extension is called Galois if

{r ∈ R : (∀γ ∈ AutS (R ))(γ(r ) = r )} = S . This condition is equivalent to the

condition R is ring-isomorphic to S [X ]/〈 f 〉, where f is a monic basic irreducible

polynomial in S [X ], see [40, Section 4][23, Theorem XIV.8].

Let d be positive divisor of r , and let us consider S =Zp a [θ ], R =GR(p a , r )[θ ],

Sd =GR(p a , d )[θ ], and

GSub(S |R ) := {Sd : d is a divisor of r and Zp a [θ ]⊆ Sd }.

It is well known that AutS (R ) is a cyclic group generated by the Frobenius auto-

morphism σ : R → R given by : σ

�

s−1
∑

t =0
at θ

t

�

=
s−1
∑

t =0
a

p
t θ

t , and therefore, the set

Sub(AutS (R )) of subgroups of AutS (R ) is given by

Sub(AutS (R )) = {〈σd 〉 : d is a divisor of r }.

In [11],GSub(R ), the authors established the Galois correspondence (Stab;Fix)

between GSub(S |R ) and Sub(AutS (R )) as follows Stab : GSub(S |R ) →
Sub(AutS (R )) and Fix : Sub(AutS (R )) → GSub(S |R ) where Stab(Sd ) =

〈σd 〉 and Fix(〈σd 〉) = Sd , where d is a divisor of r (recall that q = p r ).

Given a divisor d of r , from [23, Theorem XV.2], σd is the only automorphism

in AutS (R ) such that σd ◦π= π◦σd , where σ is a generator of AutFp
(Fp r ). The

trace map Td : S → Sd of the ring extension R |Sd is defined by Td :=
r
d −1
∑

i=0
σi d , and

the the trace mapTd : Fp r →Fp d of the field extension Fp r |Fp d is defined byTd :=
r
d −1
∑

i=0
σi d . It is well known that Td : R → Sq is an epimorphism of Sd -modules and

Td : Fp d →Fp r is an epimorphism of vector spaces over Fp d . Hence, for any divisor

d of r , the following diagram commutes.

R
σd

−→ R
Td−→ Sd

π ↓ π ↓ ↓π

Fp r
σd

−→ Fp r
Td−→ Fp d

9
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2.2.3 | Codes over finite chain ring

A linear code C of length n over a ring R , is a submodule of the R -module R n . We

will denote by {0}, the zero-submodule where 0 = (0, 0, . . . , 0) ∈ R n . A linear code

C over R is free if, C ∼= R k as R -modules for some positive integer k . The residue

code of a linear code C over R is the linear code π(C ) over Fq , where

π(C ) =
�

(π(c0),π(c1), · · · ,π(cn−1) : (c0, c1, · · · , cn−1) ∈C
	

.

In [11], the authors introduced the Galois closure of a linear code C over R of length

n as follows,Cld (C ) =Ext(Td (C )), whereExt(Td (C )) is the linear code over R

of all R -combinations of codewords in the linear codeTd (C ) over Sd . A linear code

C over R is 〈σd 〉-invariant, if σd (C ) = C , where d is a divisor of r . Recall that for

any linear code C over R of length n , its subring subcode is given byResd (C ) = C ∩
(Sd )

n . In [11], it is shown that any linear code C over R is 〈σd 〉-invariant, if and only

if, Td (C ) =Resd (C ) if and only if, C =Ext(Resd (C )). For ` ∈ {0, 1, . . . , r −1}we

equip R n with the `-Galois inner-product defined as follows:

〈u, v〉`=
n−1
∑

j=0

u jσ
`(v j ), for all u, v ∈R n .

When `= 0 it is just the usual Euclidean inner-product and if r is even and r = 2`

it is the Hermitian inner-product. The `-Galois dual of a linear code C over R of

length n , denoted C ⊥` , is defined to be the linear code

C ⊥` =
�

u ∈R n : 〈u, c〉`= 0R for all c ∈C
	

.

If C ⊆ C ⊥` , then C is `-Galois self-orthogonal. Moreover, C is `-Galois self-dual if,

C = C ⊥` . The two statements in Proposition 2.2.3 below follow immediately from

the identity

〈u, v〉`= 〈u,σh (v)〉`−h =σh
�

〈σ`−h (v), u〉r−h

�

, for all 0≤ h ≤ `, u, v ∈R n

where the action is taken componentwiseσ`(v) = (σ`(v0), · · · ,σ`(vn−1)). The fol-

lowing proposition is a generalized Delsarte’s Theorem.

Proposition 2.2.2. [11, Theorem 3.3] Let C be a linear code over R of length n. Then

for any ` ∈ {0, 1, . . . , r −1}, Td (C ⊥`) = (Resd (C ))⊥` .

10
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Also [20, Proposition 2.2] has a natural generalization to finite chain rings.

Proposition 2.2.3. Let C be a linear code over R of length n. Then

1.
�

σh (C )
�⊥` =σh (C ⊥`), and C ⊥` =σh (C ⊥`−h ), for any 0≤ h ≤ `;

2. (C ⊥`)⊥h =σ2r−`−h (C ), for all 0≤ `, h ≤ r −1.

From Proposition 2.2.3 and [13, Theorem 3.1], we obtain the following result.

Corollary 1. Let C and C ′ be linear codes over R of length n. Then

1. (C +C ′)⊥` = C ⊥` ∩C ′⊥` ;

2. (C ∩C ′)⊥` = C ⊥`+C ′⊥` .

Definition 2.2.7. Let C be a linear code over R . The `-Galois hull of C will be denoted

asH`(C ), is the intersection of C and its `-Galois dual, that is,

H`(C ) = C ∩C ⊥` .

A linear code C over R is `-Galois Linear Complementary Dual (Shortly, Galois

LCD) if H`(C ) = {0}, and C is `-Galois self-orthogonal if H`(C ) = C . If we de-

note that for all 0 ≤ `; h ≤ r −1, we have σh (H`(C )) =H`(σh (C )), andH`(C ) =

Hr−`(C ⊥`). From the generalized Delsarte’s Theorem in Proposition 2.2.2, it fol-

lows thatTd (H`(C )) = (Resd (Hr−`(C )))⊥` . Note that if C is 〈σ` 〉-invariant, then

H`(C ) =H0(C ).

From [27, Proposition 3.2 and Theorem 3.5], for any linear code C over R of

length n , there is a unique s -tuple (k0, k1, · · · , ks−1) of positive integers, such that

C has a generator matrix in standard form











Ik0
G0,1 G0,2 · · · G0,s−2 G0,s−1 G0,s

O θ Ik1
θG1,2 · · · θG1,s−2 θG1,s−1 θG1,s

· · · · · · · · · · · · · · · · · · · · ·
O O O · · · O θ s−1Iks−1

θ s−1Gs−1,s











U,

where U is a suitable permutation matrix and O the all zeros matrix of suitable size.

The elements in the s -tuple (k0, k1, · · · , ks−1) are called parameters of C and the

11
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rank of C is k0 + k1 + · · ·+ ks−1. From [27, Theorem 3.10], the parameters of C ⊥`

are (n −k , ks−1, · · · , k2, k1), where k = rankR (C ). Note that C is free if and only

if rankR (C ) = k0 and k1 = · · · = ks−1 = 0. The q -dimension of a linear code C

over R , denoted dimq (C ), is defined to be logq (|C |). Thus the q -dimension of a

linear code C over R of parameters (k0, k1, · · · , ks−1) is
s−1
∑

t =0
(s − t )kt . Since R is also

a Frobenius ring, it follows that dimq (C )+dimq (C ⊥`) = s n .

Proposition 2.2.4. Let C and C ′ be two codes over R of the same length. Then

dimq (C +C ′) =dimq (C )+dimq (C ′)−dimq (C ∩C ′).

Moreover dimq (H`(C )) =dimq (Hr−`(C )).

Proof. The map η : C ×C ′→ C +C ′ defined as follows: η(x ; x ′) = x + x ′, is an R -

module epimorphism. From the first isomorphism theorem, it follows that the R -

modules C ×C ′/Ker(η) and C +C ′ are isomorphic. Since Ker(η) = {(x ;−x ) :
x ∈ C ∩C ′}, it is easy to see that Ker(η) and C ∩C ′ are isomorphic R -modules.

Thus |C +C ′| = |C |
|C∩C ′| × |C

′|. Therefore logq (|C +C ′|) = logq (|C |)− logq (|C ∩
C ′|)+ logq (|C ′|). From the definition of q -dimension of a linear code we have that

dimq (C +C ′) =dimq (C )+dimq (C ′)−dimq (C ∩C ′). Moreover,

dimq (H`(C )) = dimq ((C +C ⊥r−`)⊥`), from Corollary 1 ;

= s n −dimq (C +C ⊥r−`), since dimq (C +C ⊥r−`)+dimq ((C +

C ⊥r−`)⊥`) = s n ;

= s n −
�

dimq (C )+dimq (C ⊥r−`)−dimq (Hr−`(C ))
�

;

= dimq (Hr−`(C )), since dimq (C )+dimq (C ⊥r−`) = s n .

Proposition 2.2.5. Let C be a free code over R of length n and ` be a positive integer.

Then

1. dimq (σ
`(C )) = s ×rank(σ`(C )) = s ×dimq (π(σ

`(C )));

2. π(C )⊥` =π(C ⊥`);

3. π(H`(C )) =H`(π(C )).

12
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Proof. Since C is free, a generator matrix forσ`(C ) is
�

Ik σ`(A)
�

U, where A is a

k × (n −k )-matrix over R and U is a permutation matrix. Thus
�

Ik π(σ`(A))
�

U

is a generator matrix for π(C ). It follows that |σ`(C )|= q s k and rank(σ`(C )) =

dimq (π(σ
`(C ))) = k . This proves Item 1. Now to prove Item 2. The codes π(C )⊥`

and π(C ⊥`) have the same parity matrix, which is
�

Ik π(σ`(A))
�

U. Hence

π(C )⊥` =π(C ⊥`). Item 3. is a consequence of the fact that the diagram 2.2.2 com-

mutes, π(H`(C ))⊆H`(π(C )) and dimq (π(H`(C ))) =dimq (H`(π(C ))).
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3

Hull of cyclic codes over finite fields

In this chapter, we introduce some preliminary concepts on both finite fields and

cyclic codes. All results of this chapter can be found in [14; 33].

3.1 | Basics on finite fields

Finite fields form an essential part of the study of error-correcting codes. The pur-

pose of this section is to assume some results without proof, upon which we base

the rest of our study .

Let us introduce finite fields. A field F is a commutative ring with identity in

which each nonzero element has an inverse. This means the ring must also satisfy

the following condition:

(∀a 6= 0 ∈F)(∃a−1 ∈F)(a ·a−1 = 1).

In other words, a ring with identity 1 6= 0 is a field if F\{0} is an abelian group under

multiplication. Of course a finite field is a field with a finite number of elements.

� The order of a finite field is the number of elements in the field. It is always of

the form p m , where p is a prime number called the characteristic of the field

and the arithmetic in a finite field is performed modulo p .

� For every prime p , the integers modulo p form a field, which denoted Fp =

Z/Zp .

14



Chapter 3. Hull of cyclic codes over finite fields 3.2. Irreducible factorization of X n −1

� For every prime p , there is a unique finite field of size p that is isomorphic to

Fp which is the set {0, 1, · · · , p −1} with addition and multiplication modulo

p .

� Every finite field is isomorphic to such a field, and therefore must have p r

elements for some prime p and positive integer r .

� Additively, a finite field with p r elements has the structure of a vector space

of dimension r over Fp .

� An element α in a finite field Fq is called a primitive element (or generator) of

Fq if Fq = {0,α,α2, · · · ,αq−1}.

� Let F∗q =Fq \{0} the multiplicative group of Fq . Then the following are true:

1) The group F∗q is cyclic with order q −1.

2) If α is a generator of of this cyclic group, then Fq = {0, 1 =

α0,α1,α2, · · · ,αq−2}, and αi = 1 if and only if (q −1)|i .

3.2 | Irreducible factorization of X n −1

3.2.1 | Minimal Polynomials and Cyclotomic Cosets

We now introduce the idea of minimal polynomials which leads us to cyclotomic

polynomials. These polynomials will play a central not only in factoring X n −1 but

also in generators of cyclic codes.

Definition 3.2.1. An irreducible polynomial is a nonconstant polynomial f (X ) ∈
Fq [X ], such that whenever f (X ) = p (X )q (X ), then either p (X ) or q (X ) must

be a constant in Fq . A reducible polynomial is a polynomial that can be factored

into two polynomials of a lesser degree. Mathematically, f (X ) ∈ Fq [X ] such that

f (X ) = a (X )b (X ) where deg(a (X ))< deg( f (X )), deg(b (X ))< d e g ( f (X )).

Theorem 3. Let f (X ) be an irreducible polynomial,

f (X )|p (X )q (X )⇒ f (X )|p (X ) or f (X )|q (X ).

15
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Definition 3.2.2. An element ξ ∈ Fp is an n-th root of unity if ξn = 1 . If ξ 6=
1 for 0< s < n , then ξ is called a primitive n-th root of unity.

Definition 3.2.3. A minimal polynomial of an element α ∈Fq m with respect to Fq is

a nonzero monic polynomial f (X ) of the least degree in Fq [X ] such that f (α) = 0.

Next we note some basic facts about minimal polynomials.

Theorem 4. Let Fq m be an extension field of Fq and let α be an element of Fq m

with minimal polynomial Mα(X ) in Fq [X ] . The following are true:

� Mα(X ) is irreducible over Fq .

� If g (X ) is any polynomial in Fq [X ] satisfying g (α) = 0, then Mα(X )|g (X ).

� Mα(X ) is unique.

Theorem 5. Let h(X ) be a monic irreducible polynomial over Fq of degree r . Then

the following hold:

� All the roots of h(X ) are in Fq r and in any field containing Fq along with a

root of h(X ),

� h(X ) =Πr
i=1(X −αi ), where αi ∈Fq r for 1≤ i ≤ r , and

� h(X )|(X q r −X ).

In particular this theorem holds for minimal polynomials Mα(X ) over Fq as

such polynomials are monic irreducible.

Theorem 6. Let Fq m be a field extension over Fq and α an element in Fq m with

minimal polynomial Mα(X ) in Fq [X ]. Then the following are true :

� Mα(X )|(X q m −X ).

� Mα(X ) has distinct roots all lying in Fq m .

� The degree of Mα(X ) divides t .

� (X q m −X ) = ΠαMα(X ), where α runs through some subset of Fq m which

enumerates the minimal polynomials once.
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� (X q m −1) = Πh h(X ), where h runs through all monic irreducible polyno-

mials whose degree divides m.

Remark 3.2.1. Two elements of Fq m having the same minimal polynomial in

Fq [x ] are said to be conjugate over Fq .

We can find all the conjugates of α in Fq , that is, all the roots of Mα(X ). We

know by Theorem 6 that the roots of Mα(X ) are distinct and lie in Fq m . We can

find these roots with the following theorem :

Theorem 7. Let h(X ) be a polynomial in Fq [X ] and let α be a root of h(X ) in a

field extension Fq m . Then the following assertions are hold

1. h(X q ) = h(X )q , and

2. αq is also a root of h(X ) in Fq .

Every factorization of the polynomial X q −X partitions the elements in a finite

field of order q . If we let X q −X = g (X ) f (X ) then every element in the field is

either a root of g (X ) or f (X ). We know that X q −X = X (X q−1− 1) so that we

can separate the zero elements from the nonzero elements. We now have left to

separate the nonzero elements according to their orders by factoring X q−1−1. This

is a special case of X n −1.

If we are given the minimal polynomial of a primitive element α ∈ Fq m , we

would like to find the minimal polynomial of αi , for any i . In order to do so, we

have to start with cyclotomic cosets.

Definition 3.2.4. For all j ∈Zn , we define the q -cyclotomic coset of j modulo n

over Fq by the set

C j = { j , j q , · · · , j q d−1}( mod n),

where d is the smallest positive integer such that j q d ≡ j ( mod n).

Example 3.2.1. We wish to compute the 2-cyclotomic cosets mo d ul o 21. We get:
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� For j = 1 : {1, 2, 4, 8, 16, 32 ≡ 11, 64 ≡ 1} which gives us C1 = {1, 2, 4, 8, 11, 16}.
Since 2 is in C1, we need not compute a coset for j = 2.

� For j = 3 : {3, 6, 12, 24≡ 3}, which gives us C3 = {3, 6, 12}.

� For j = 5 : {5, 10, 20, 40 ≡ 19, 80 ≡ 17, 160 ≡ 13, 320 ≡ 5}, which gives us C5 =

{5, 10, 13, 17, 19, 20}.

� For j = 7 : C7 = {7, 14}.

� For j = 9 : {9, 18, 36≡ 15, 72≡ 9}, which gives us C9 = {9, 15, 18}.

The 2-cyclotomic coset for 0 is always {0}.

We are now ready to determine the minimal polynomials for all the elements in

a finite field.

Theorem 8. Let n be a positive integer relatively prime to q . Let α be a primitive

n−th root of unity in Fq m . Then the minimal polynomial of α j with respect to Fq is

Mα j (x ) =
∏

i∈C j

(X −αi )

Example 3.2.2. Let n = 7 et q = 2. The 2-cyclotomic cosets modulo 7 are:

C0 = {0}, C1 = {1, 2, 4}, C3 = {3, 5, 6}

since X 7− 1 = Mα0(X ).Mα1(X ).Mα3(X ), where Mα j (X ) are its minimal polyno-

mial, we have:

� Mα0(X ) = X −1 corresponds to the cyclotomic coset C0.

� Mα1(X ) = X 3 +X +1 corresponds to the cyclotomic coset C1.

� Mα3(X ) = X 3 +X 2 +1 corresponds to the cyclotomic coset C3.

Then the factorization of X 7− 1 is X 7− 1 = (X − 1)(X 3 + X + 1)(X 3 + X 2 + 1),

where α is a primitive 7−th root of unity in F23 .
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3.2.2 | Cyclotomic Polynomials

Let Fq be a finite field of characteristic p , n a positive integer not divisible by p ,

and ε a primitive j−th root of unity over Fq , then the polynomial

ϕ j =
j
∏

s=1
gcd(s , j )=1

(X −εs ),

is called the j−th cyclotomic polynomial over Fq .

Theorem 9. Let Fq and n defined as above. Then

X n −1 =
∏

d |n
ϕd (X ). (3.1)

Proof. Each n-th root of unity over Fq is a primitive d -th root of unity over Fq

for exactly one divisor d of n . In detail, if ε is a primitive n-th root of unity over

Fq and εs is an arbitrary n-th root of unity over Fq , then d =
n

gcd(s , n)
. That is d

is the order of ε. Since

X n −1 =
n
∏

s=1

(X −εs ),

the formula in 3.1 is obtained by collecting those factors (X −εs ) for which εs is a

primitive d -th root of unity over Fq .

Let j and i be positive integers such that gcd(i , j ) = 1 and let Z×j be the unit

group of Z j . The order of i in Z×j is the smallest integer e such that j |(i e −1),

denoted by ord j (i )

Let i and j be positive integers. We say the pair (i , j ) is good if i divides j k +1

for some non-negative integer k and bad otherwise.

Lemma 3.2.1. Let j be a positive integer and let Fq be a finite field with gcd( j , q ) =

1. The j -th cyclotomic polynomial ϕ j (x ) factors into
φ( j )

e
distinct monic ir-

reducible polynomials over Fq of the same degree e , where φ is Euler’ s totient

function and e =ord j (q ). Moreover, if ( j , q ) is good, then all irreducible polyno-

mials in the factorization of ϕ j (X ) are self-reciprocal. Otherwise, all of them form

reciprocal polynomial pairs.
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Remark 3.2.2. Let Nq = {k ≥ 1, k divides q i + 1}, then the pair ( j , q ) is good if

j ∈Nq and it is bad if j 6∈Nq .

By lemma 3.2.1 and theorem 9, the factorization of X n − 1 ∈ Fq [X ] can be

viewed as

X n −1 =
∏

j |n
ϕ j (X ) =

∏

j |n
j∈Nq

ϕ j (X )
∏

j |n
j 6∈Nq

ϕ j (X )

=
∏

j |n
j∈Nq

 

γ( j ;q )
∏

i=1

hi j (X )

!

∏

j |n
j 6∈Nq

 

β( j ;q )
∏

i=1

ki j (X )k ∗i j (X )

!

Where

γ( j ; q ) =
φ( j )

ord j (q )
, and β( j ; q ) =

φ( j )

2ord j (q )
.

� hi j (X ) is a monic irreducible self-reciprocal polynomial of degreeordj(q ),

� ki j (X ) and k ∗i j (X ) form a monic irreducible reciprocal polynomial pair of

degree ord j (q ).

3.3 | Cyclic codes over finite fields

Cyclic codes are the most studied of all codes. They are a subclass of linear codes

and they include important families of codes for error correction, such as binary

Hamming codes, Reed-Solomon or BCH codes. We shall begin the study of codes

over finite fields, examining the strong relation between a cyclic code and an ideal

of the ring of polynomials modulo X n −1.

Definition 3.3.1. A linear code C of length n over a finite field Fq is called a cyclic

code if for every codeword c ∈ C the codeword obtained by a cyclic shift is also a

codeword in C . That is,

c = (c0, · · · , cn−1) ∈C ⇒ c
′
= (cn−1, c0, · · · , cn−2) ∈C .

Example 3.3.1. The linear code C1 := {102, 210, 021, 201, 120, 012, 222, 111, 000} over

Z3 is cyclic, but this linear code C2 := {000, 221, 212, 200, 121, 112, 100, 021, 012} over

Z3 is not cyclic, since c1 := (112) ∈C but c
′ := (211) is not in C2.
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Remark 3.3.1. Let C1 and C2 be two linear codes of length n over Fq . If C1 and C2 are

cyclic, then C1+C2 and C1∩C2 are cyclic, where C1+C2 = {c1+ c2 : c1 ∈C1, c2 ∈C2}.

We remember that since Fq [x ] is principle ideal domain also the ring Rn =

Fq [x ]/〈X n − 1〉 is a principle ideal hence the cyclic codes are principle ideals of

Rn when writing a code word of a cyclic code as c (X ) we mean the coset c (X )+

〈X n −1〉 in Rn .

Corollary 2. The number of cyclic codes in Rn equal 2m , where m is the number of

q -cyclotomic cosets modulo n. Moreover, the dimensions of cyclic codes in Rn are all

possible sums of the sizes of the q -cyclotomic cosets modulo n.

3.3.1 | Generating polynomial of a cyclic code

Theorem 10. A linear code C in Fq is cyclic if and only if C is an ideal in Rn =

Fq [X ]/〈X n −1〉.

Proof. If C is an ideal in Fq [X ]/〈X n − 1 〉 and c (X ) = c0 + c1X + · · ·+ cn−1X n−1

is any codeword, then X c (X ) is also a codeword, i.e. (cn−1, c0, c1, · · · , cn−2) ∈ C .

Conversely, if C is cyclic, then c (X ) ∈ C we have X c (X ) ∈ C . Therefore X i c (X ) ∈
C , and since C is linear, then a (X )c (X ) ∈ C for each polynomial a (X ). Hence C

is an ideal of Fq [X ]/〈X n −1 〉.
The dimension of C , denoted by dim(C ), is the dimension of C considered as

linear space over Fq .

Theorem 11. Let C be an ideal in Rn . Then

1) There is a unique monic polynomial g (X ) of minimum degree in C = 〈g (X ) 〉,
and it is called the generating polynomial for C .

2) The generating polynomial g (X ) divides X n −1.

3) If deg(g (X )) = k , then C has dimension n − k and C = 〈g (X ) 〉 =

{s (X )g (X ) : deg(s (X ))< n −k}.
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4) If g (X ) = g0 +g1X + · · ·+gk X k , then g0 6= 0 and a generator matrix is:










g0 g1 · · · gk 0 · · · · · · · · · 0

0 g0 g1 · · · gk 0 · · · · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · 0 g0 g1 · · · gk











.

Proof.

1) Suppose that C contains two distinct monic polynomial g1and g2 of mini-

mum degree k . Then their difference g1−g2 would be a nonzero polynomial

in C of degree less than k , which is not possible. Hence, there is a unique

monic polynomial g (X ) of degree k in C . Since g (X ) ∈ C and C is an

ideal, we have 〈g (X ) 〉 ⊂C . On the other hand, Suppose that p (X ) ∈C , and

let

p (X ) = q (X )g (X )+ r (X ), where r (X ) 6= 0 and deg(r (X ))< k .

Then r (X ) = p (X )−q (X )g (X ) ∈ C has degree less than k , which possible

only if r (X ) = 0. Hence p (X ) = q (X )g (X ) ∈ 〈g (X ) 〉, and so C ⊂ 〈g (X ) 〉.
Thu C = 〈g (X ) 〉.

2) Dividing x n − 1 by g (X ) gives X n − 1 = q (X )g (X ) +

r (X ), where deg(r (X )) < k . Since in Rn , we see that r (X ) ∈ C , and so

r (X ) = 0, which shows that g (X )|(X n −1).

3) The ideal generated by g (X ) is

〈g (X ) 〉= { f (X )g (X ) : f (X ) ∈Rn}

with the usual reduction mo d (X n −1). Now h(X ) divides X n −1, and so

X n −1 = h(X )g (X ) for some h(X ) of degree n −k . Divide f (X ) by h(X ),

we get f (X ) = q (X )h(X )+ s (X ), where deg(s (X ))< n −k , then

f (X )g (X ) = q (X )g (X )h(X )+ s (X )g (X ) = q (X )(X n −1)+ s (X )g (X ).

So f (X )g (X ) = s (X )g (X ) ∈C . Now let c (X ) be in C , then

c (X ) = s (X )g (X ) = (a0 +a1X +a2X 2 + · · ·+an−k−1X n−k−1)g (X )

= (a0g (X )+a1X g (X )+ · · ·+an−k−1X n−k−1g (X ).
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So c (X ) ∈ 〈{g (X ), X g (X ), · · · , X n−k−1g (X )}〉, which shows

that the set {g (X ), X g (X ), · · · , X n−k−1g (x )} spans C .

Also {g (X ), X g (X ), · · · , X n−k−1g (X )} is linearly independent, since

if

a0g (X )+a1X g (X )+ · · ·+an−k−1X n−k−1g (X ) = 0,

then (a0 +a1X +a2X 2 + · · ·+an−k−1X n−k−1)g (X )) = 0 which implies that

a0 +a1X +a2X 2 + · · ·+an−k−1X n−k−1

and since 1, X , X 2, · · · , X n−k−1 are linearly independent, then a0 = a1 = · · ·=
an−k−1 = 0 and hence {g (X ), X g (X ), · · · , X n−k−1g (X )} forms a basis for C .

Hence dim(C ) = n −k .

4) If g0 = 0 and g (X ) = X g1(X ), where deg(g1(X )) < k and g1(X ) =

1.g1(X ) = X n−1g (X ), so g1(X ) ∈ C which contradict the fact that no

nonzero polynomial in C has degree less than k . Thus g0 6= 0. Finally,

G is a generator matrix of C since {g (X ), X g (X ), · · · , X n−k−1g (X )} is a

basis for C .

3.3.2 | Check Polynomial

Let C be a cyclic code, its generator polynomial g (X ) must divide X n −1 and

thus X n −1 = g (X )h(X ) where h(X ) is a monic polynomial of degree n −k .

h(X ) is called the check polynomial of C .

Theorem 12. Let C be a code in Fq [X ]/(X n −1) and h(X ) = h0 +h1X + · · ·+
hn−k X n−k be its check polynomial.

1) C = {c (X ) ∈Fq [X ]/(X n −1)|c (X )h(X ) = 0}.

2) C ⊥ is the cyclic code of dimension k generated by the polynomial h∗ =

h−1
0 (hn−k +hn−k−1X + · · ·+h0X n−k ).

2) A parity check matrix for C is the following:
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H =

















hk hk−1 hk−2 . . . h0 0 0 . . . 0

0 hk hk−1 hk−2 . . . h0 0 . . . 0

0 0 hk hk−1 hk−2 . . . h0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 hk hk−1 . . . h0

















Example 3.3.2. Let C be a cyclic code of length n = 9. Since the factorisation of

X 9−1 over F2 is

X 9−1 = (X 3−1)(X 6 +X 3 +1) = (X −1)(X 2 +X +1)(X 6 +X 3 +1).

Hence, there are 23 = 8 cyclic codes in R9 = F2/〈X 9−1 〉. Take C = 〈X 6 +X 3 +1 〉
with generating polynomial g (X ) = X 6 +X 3 +1. Then C has dimension 9−6 = 3

and generating matrix

G =







1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1







Also C has check polynomial h(X ) =
X 9−1

g (X )
= (X −1)(X 2 +X + 1) = (X 3−1).

Then C has the parity check matrix

H =





















1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1





















3.4 | Hulls of cyclic codes over finite fields

In this section, the dimensions of the hulls of cyclic codes of length n over Fq are

determined. Furthermore, we determine the number of cyclic codes of length n

over Fq whose hulls have a given dimension. The average hull dimension of cyclic

codes is given.
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The generator of the hull of a cyclic code is determined as follows.

Theorem 13. [33] Let C be a cyclic code of length n over Fq generated by 〈g (X ) 〉,
where g (X ) is monic divisor of X n −1 over Fq . Then H (C )) is generated by

〈lcm(g (X ), h∗(X )) 〉,

where h(X ) =
X n −1

g (X )
.

Proof. Let F (X ) be the generator polynomial of H (C ) , since F (X ) ∈C ∩C ⊥ , we

have

F (X ) ∈C and F (X ) ∈C ⊥.

Then

g (X ) | F (X ) and h∗(X ) | F (X ) dans Fq [X ],

which imply that

lcm(g (X ), h∗(X )) | F (X ).

On the other side

g (X ) | lcm(g (X ), h∗(X )) and h∗(X ) | lcm(g (X ), h∗(X )).

Hence, lcm(g (X ), h∗(X )) is in C and C ⊥, consequently lcm(g (X ), h∗(X )) is

in C ∩C ⊥. Then

F (X ) | lcm(g (X ), h∗(X )).

Therefore, F (x ) =lcm(g (X ), h∗(X )) i s desired.

Example 3.4.1. In Fq [X ], X 7−1 = (X +1)(X 3 +X 2 +1)(X 3 +X +1) is the fac-

torization of X 7−1 into a product of irreducible polynomials. Let C be the cyclic

code of length 7 over Fq generated by

〈g (X )〉, where g (X ) = (X 3 +X +1).

Then C ⊥ is of the form

〈h∗(X )〉, where h∗(X ) = (X +1)∗(X 3 +X 2 +1)∗= (X +1)g (X ).

H (C ) is generated by

〈lcm(g (X ), h∗(X ))〉= 〈lcm((X 3+X +1), (X +1)(X 3+X +1)〉= 〈(X +1)(X 3+X +1)〉.
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3.4.1 | Characterization of cycic codes with the same hulls

In this subsection, we determine all cyclic codes of length n over Fq whose hulls

equal C , where C is a fixed cyclic code of length n over Fq .

Theorem 14. Let C be a cyclic code of length n over Fq with generator polynomial

L(X ) =
∏

j | n̄
j∈Nq

γ( j ;q )
∏

i=1

g i j (X )Ai j
∏

j | n̄
j 6∈Nq

β( j ;q )
∏

i=1

fi j (X )Bi j f ∗i j (X )Ci j ,

if d
pα

2
e ≤ Ai j ≤ pα and 0≤ Bi j , Ci j ≤ pα are such that pα ≤ Bi j +Ci j ≤ 2pα, then

the generator polynomials of cyclic codes whose hulls equal C are of the forms

g (X ) =
∏

j | n̄
j∈Nq

γ( j ;q )
∏

i=1

g i j (X )ui j
∏

j | n̄
j 6∈Nq

β( j ;q )
∏

i=1

fi j (X )vi j f ∗i j (X )wi j ,

where ui j ∈ {Ai j , pα−Ai j } and

¨

{(Bi j , Ci j )}, if Bi j +Ci j = pα,

{(Bi j , Ci j ),(pα−Ci j , pα−Bi j )}, if pα < Bi j +Ci j ≤ 2pα,

Otherwise, there are no cyclic codes of length n over Fq whose hulls equal C .

Proof. Let D be a cyclic code of length n over Fq with generator polynomial

g (X ) =
∏

j | n̄
j∈Nq

γ( j ;q )
∏

i=1

g i j (X )ui j
∏

j | n̄
j 6∈Nq

β( j ;q )
∏

i=1

fi j (X )vi j f ∗i j (X )wi j ,

Assume that H (D ), is with generator polynomial k (X ). Then we have

k (X ) =
∏

j | n̄
j∈Nq

γ( j ;q )
∏

i=1

g i j (X )max{ui j , pα−ui j }
∏

j | n̄
j 6∈Nq

β( j ;q )
∏

i=1

fi j (X )max{vi j , pα−wi j } f ∗i j (X )max{wi j , pα−vi j }.

Comparing the coefficients, we have max{ui j , pα−ui j }= Ai j . Therefore, ui j

is equal to Ai j or pα−Ai j . Similarly, max{vi j , pα−wi j }= Bi j and max{wi j , pα−
vi j }= Ci j , and so (Bi j , Ci j ) = (max{vi j , pα−wi j }, max{wi j , pα− vi j }) is equal
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to either (vi j , wi j ) or (pα−wi j , pα− vi j ).

If Bi j +Ci j = pα, then (Bi j , Ci j ) = (vi j , wi j ) = (pα −wi j , pα − vi j ). If pα <

Bi j + Ci j ≤ 2pα, then (Bi j , Ci j ) = (vi j , wi j ) or (pα −wi j , pα − vi j ). Hence,

(vi j , wi j ) = (Bi j , Ci j ) or (pα−Ci j , pα−Bi j ). If 0≤ Ai j ≤ d
pα

2
e−1, then there is no

ui j such that 0≤ ui j ≤ pα and max{ui j , pα−ui j }= Ai j . If 0≤ Bi j +Ci j ≤ pα−1,

then there are no vi j and wi j where 0 ≤ vi j , wi j ≤ pα, max{vi j , pα−wi j } =
Bi j and max{wi j , pα− vi j } = Ci j . Thus, there are no cyclic codes of length n

over Fq when 0≤ Ai j ≤ d
pα

2
e−1 or 0≤ Bi j +Ci j ≤ pα−1.

Corollary 3. Let C be a cyclic codes of length n over Fq with generator polynomial

k (X ) =
∏

j | n̄
j∈Nq

γ( j ;q )
∏

i=1

g i j (X )max{ui j , pα−ui j }
∏

j | n̄
j 6∈Nq

β( j ;q )
∏

i=1

fi j (X )max{vi j , pα−wi j } f ∗i j (X )max{wi j , pα−vi j },

where d
pα

2
e ≤ Ai j ≤ pαa nd 0≤ Bi j , Bi j ≤ pαa r e s u c h t ha t pα ≤ Bi j +Ci j ≤ 2pα.

Then the number of cyclic codes of length n over Fq whose hulls have k (X ) as

generator polynomials is

∏

j | n̄
j∈Nq

γ( j ;q )
∏

i=1

|{Ai j , pα−Ai j }|
∏

j | n̄
j 6∈Nq

β( j ;q )
∏

i=1

2
1−b pα

Bi j +Ci j
c
.

3.4.2 | The dimensions of the hulls of cyclic codes

The dimension of H (C ), denoted by dim(H (C )) is the dimension of H (C )

(so-called hull dimension) seen as linear space over Fq .

An expression for the dimensions of the hulls of cyclic codes of length n over a

finite field Fq is derived in Theorem 15 . The following lemma is required in its

proof.

Lemma 3.4.1. Let α be a nonnegative integer. Let 0 ≤ x , y , z ≤ pα be integers. Then

the following statements hold.

1. 0≤ pα−max{x , pα− x } ≤ b
pα

2
c.
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2. 0≤ 2pα− (max{y , pα− z }+max{z , pα− y })≤ pα.

Theorem 15. [33] Let n be a positive integer and write n = pαn̄ , where gcd(p , n̄) =

1 and α≥ 0 is an integer. The dimensions of the hull of cyclic codes of length n over

Fq is of the form
∑

j | n̄
j∈Nq

ord j (q ) ·u j +
∑

j | n̄
j 6∈Nq

ord j (q ) · v j ,

where 0≤ u j ≤ γ( j ; q )
�

pα

2

�

and 0≤ v j ≤β( j ; q )pα.

Proof. Let C be a cyclic code of length n over Fq generated by 〈g (X )〉, then C ⊥

is generated by 〈h∗(X )〉, where g (X ), h∗(X ) are monic divisors of X n −1.

We have :

g (X ) =
∏

j | n̄
j∈Nq

γ( j ;q )
∏

i=1

g i j (X )ui j
∏

j | n̄
j 6∈Nq

β( j ;q )
∏

i=1

fi j (X )vi j f ∗i j (X )wi j ,

h(X ) =
∏

j | n̄
j∈Nq

γ( j ;q )
∏

i=1

g i j (X )pα−ui j
∏

j | n̄
j 6∈Nq

β( j ;q )
∏

i=1

fi j (X )pα−vi j f ∗i j (X )pα−wi j ,

h∗(X ) =
∏

j | n̄
j∈Nq

γ( j ;q )
∏

i=1

g i j (X )pα−ui j
∏

j | n̄
j 6∈Nq

β( j ;q )
∏

i=1

fi j (X )pα−wi j f ∗i j (X )pα−vi j ,
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for some 0≤ ui j , vi j , wi j ≤ pα. Since H (C ) = 〈lcm(g (X ), h∗(X ))〉, we have

dim(H (C )) = n −deglcm(g (X ), h∗(X ));

=
∑

j | n̄
j∈Nq

ord j (q )
γ( j ;q )
∑

i=1

pα+
∑

j | n̄
j 6∈Nq

ord j (q )
β( j ;q )
∑

i=1

2pα

−
∑

j | n̄
j∈Nq

ord j (q )
γ( j ;q )
∑

i=1

max{ui j , pα−ui j }

−
∑

j | n̄
j 6∈Nq

ord j (q )
β( j ;q )
∑

i=1

(max{vi j , pα−wi j }−max{wi j , pα− vi j })

=
∑

j | n̄
j∈Nq

ord j (q )
γ( j ;q )
∑

i=1

(pα−max{ui j , pα−ui j })

+
∑

j | n̄
j 6∈Nq

ord j (q )
β( j ;q )
∑

i=1

(2pα− (max{vi j , pα−wi j }+max{wi j , pα− vi j }))

=
∑

j | n̄
j∈Nq

ord j (q ) ·u j +
∑

j | n̄
j 6∈Nq

ord j (q ) · v j , by lemma 3.4.1,

where 0≤ u j ≤ γ( j ; q )
�

pα

2

�

and 0≤ v j ≤β( j ; q )pα.

Example 3.4.2. Let n = 33 and p = 3. Then n̄ = 11 and v = 1. The divisors of 11

are 1 and 11.

1. We have 1 ∈N3, so ord1(3) = 1 and γ(1; 3) = 1.

2. We have 11 6∈ N3, so ord11(3) = 5 and β(11; 3) = 1, by Theorem 15, the

dimensions of the hulls of cyclic codes of length n over Fq is of the form

u1 +5v11, where 0≤ u1 ≤ 3 and 0≤ v11 ≤ 6.

Hence, all possible dimensions of the hull of cylic codes of length 33 over F3 :

{0, 1, 3, 5, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 25, 26, 28, 30, 31, 33}.
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3.5 | The average dimension of the hull of cyclic

Codes

Let C (n ,Fq ) be the set of of all cyclic codes over length n over Fq , and the average

dimension of the hull of cyclic codes of length n over Fq is :

EFq
(n) =

∑

C ∈C (n ,Fq )

dim(H (C ))

|C (n ,Fq )|
.

In this section we give a formula of EFq
(n) with its upper and lower bounds.

Lemma 3.5.1. Let α be a nonnegative integer and let 0 ≤ u , v , w ≤ pα be integers.

Then

1. E(max{u , pα−u}) =
3pα+1

4
−

δpα

4(pα+1)
;

2. E(max{v , pα−w }) =
pα(4pα+5)

6(pα+1)
, where δpα = 1 if α > 0 and δpα =

0 if α= 0.

The formula for the average dimension of the hull of cyclic codes of length n

over Fq is given as follows.

Theorem 16. [33] Let n be a positive integer and write n = pαn̄ , where gcd(p , n̄) =

1 and α≥ 0 is an integer. The average dimensions of the hull of cyclic codes of length

n over Fq is

EFq
(n) = n

�

1

3
−

1

6(pα+1)

�

−Bn̄

�

pα+1

12
+

2−3δpα

12(pα+1)

�

.

Proof. Let C be a cyclic code of length n over Fq , then H (C ) is generated by:

〈lcm(g (X ), h∗(X ))〉,

and

dim(H (C )) = (n −deglcm(g (X ), h∗(X ))).
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Note that we can define EFq
(n) in terms of the probability theory. Let X

be the random variable that takes as value dim(H (C )) where C is chosen ran-

domly from C (n ,Fq ) with uniform probability
1

|C (n ,Fq )|
. The average dimen-

sion EFq
(n) can be determined in terms of the expectation E(X ) as follows :

EFq
(n) =E(X ) = E(n −deglcm(g (X ), h∗(X )))

= n −E









∑

j | n̄
j∈Nq

ord j (q )
γ( j ;q )
∑

i=1

max{ui j , pα−ui j }









+E









∑

j | n̄
j 6∈Nq

ord j (q )
β( j ;q )
∑

i=1

(max{vi j , pα−wi j }+max{wi j , pα− vi j })









= n −
∑

j | n̄
j∈Nq

ord j (q ).γ( j ; q )E(max{ui j , pα−ui j })−

∑

j | n̄
j 6∈Nq

ord j (q ).β( j ; q )E(max{vi j , pα−wi j }+max{wi j , pα− vi j })

= n −
∑

j | n̄
j∈Nq

φ( j ).E(max{ui j , pα−ui j })

−
∑

j | n̄
j 6∈Nq

φ( j )

2
E(max{vi j , pα−wi j })+max{wi j , pα− vi j })

= (n −Bn̄ .E(max{ui j , pα−ui j }))− (n̄ −Bn̄ ).E(max{vi j , pα−wi j })

= (n −Bn̄ .E(max{ui j , pα−ui j }))− (n̄ −Bn̄ ).E(max{vi j , pα−wi j })

= (n −Bn̄ )

�

3pα+1

4
−

δpα

4(pα+1)

�

− (n̄ −Bn̄ )

�

pα(4pα+5)

6(pα+1)

�

= n

�

1

3
−

1

6(pα+1)

�

−Bn̄

�

pα+1

12
+

2−3δpα

12(pα+1)

�

.
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Example 3.5.1. Let n = 33 and p = 3. Then n̄ = 11 and α= 1. The divisors of 11

are 1 and 11.

1. We have 1 ∈N3 and 11 6∈ N3, so B11 =φ(1) = 1;

2. And

ERq
(33) = 33

�

1

3
−

1

6(3+1)

�

−B11

�

3+1

12
+

2−3δ3

12(3+1)

�

=
149

16
.

We have the following upper and lower bounds.

Corollary 4. [34] Let q be a power of a prime p , let n ≥ 1. Then:

1. EFq
(n) = 0 if and only if n ∈Nq .

2.
n

12
≤ EFq

(n) ≤
n

3
, for all n 6∈Nq .

From Theorem 16, we can conclude that the average q -dimension of the hull

of cyclic codes of length n over Fq is zero or grows the same rate as n .
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4

Hull of cyclic codes over Zp 2

Cyclic codes over rings form an important class of linear codes due to their rich

algebraic structure.

In this chapter, we consider the ring Zp 2 , where p is a prime. Zp 2 is a local ring with

unique maximal ideal p Zp 2 . Here we extend results over Fq to Zp 2 , we examine

carefully the consequences of working over a ring, rather than a finite field.

4.1 | Cyclic codes over Zp 2

A Zp 2−linear code C of length n is a Zp 2-submodule of Zn
p 2 . As with cyclic codes

over a field, cyclic codes over Zp 2 form an important family of Zp 2-linear codes.

C is called cyclic if for every codeword c ∈C the codeword obtained by a cyclic shift

is also a codeword in C , we view codewords c = c0c1 · · · cn−1 in a cyclic Zp 2-linear

code of length n as polynomials c (X ) = c0+ c1X + · · ·+ cn1X n−1 ∈ Zp 2 [X ]. If we

consider our polynomials as elements of the quotient ring Rn = Zp 2 [X ]/〈X n −1〉,
then X c (X ) modulo X n −1 represents the cyclic shift of c .(See [18]).

A polynomial f (X ) ∈ Zp 2 [X ] is nilpotent if there exists a positive integer n

such that f n (X ) = 0. Also, f is regular if it is not a zero divisor.Defineµ : Zp 2 [X ]→
Zp [X ], the ring homomorphism that maps c +(p 2) to c +(p ) and the variable

X to X . Observe that f (X ) ∈ Zp 2 [X ] is a unit if and only if µ( f ) is a unit, f is

regular if and only if µ( f (X )) 6= 0 if and only if f (X ) is not nilpotent, if and only

if ci is not nilpotent for some i .
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4.1.1 | Factorization of X n −1 over Zp 2

� A polynomial f (X ) ∈ Zp 2 [X ] is irreducible in Zp 2 if whenever f (X ) =

g (X )h(X ) for two polynomials g (X ) and h(X ) in Zp 2 [X ], one of

g (X ) or h(X ) is a unit.

� A polynomial f ∈ Zp 2 [X ] is basic irreducible if its µ( f ) is irreducible in

Zp [X ]

� An ideal I of a ring Zp 2 is called a primary ideal provided a b ∈ J implies

that either a ∈ J or b s ∈ J for some positive integer s .

� A polynomial f ∈ Zp 2 [X ] is primary if the principal ideal 〈 f (X ) 〉 =
{ f (X )g (X )|g (X ) ∈Zp 2 [X ]} is a primary ideal.

Lemma 4.1.1. [18] If f ∈Zp 2 [X ] is a basic irreducible polynomial, then f (X ) is a

primary polynomial.

Proof. Suppose that g (X )h(X ) ∈ ( f (X )). As µ( f (X )) is irreducible,

d = gcd(µ(g (X )),µ( f (X ))) is either 1 or µ( f (X ))

. If d = 1, then by the Euclidean Algorithm there exist polynomials

a (X ) and b (X ) ∈Zp 2 [X ] such that such that

µ(a (X ))µ(g (X ))+µ(b (X ))µ( f (X )) = 1

. Hence a (X )g (X )+ b (X ) f (X ) = 1+2s (X ) for some s (X ) ∈Zp 2 [X ].

Therefore a (X )g (X )h(X )(1+2s (X ))+b (X ) f (X )h(X )(1+2s (X )) = h(X )(1+

2s (X ))2 = h(X ), implying that h(X ) ∈ ( f (X )).

Suppose now that d = µ( f (X )). Then there exists a (X ) ∈ Zp 2 [X ] such that

µ(g (X )) = µ( f (X ))µ(a (X )), implying that

g (X ) = f (X )a (X )+2s (X ) for some s (X ) ∈Zp 2 [X ]

. Hence g (X )2 = ( f (X )a (X ))2 ∈ ( f (X )). Thus f (X ) is a primary polynomial.

Two polynomials f (X ) and g (X ) in Zp 2 [X ] are coprime or relatively prime

provided Zp 2 [X ] = 〈 f (X )〉+ 〈g (X )〉.
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Lemma 4.1.2. [18] Let f (X ) and g (X ) be polynomials in Zp 2 [X ]. Then f (X ) and

g (X ) are coprime if and only if µ( f (X )) and µ(g (X )) are coprime polynomials

in Zp [X ].

Proof. If f (X ) and g (X ) are coprime, then

a (X ) f (X )+ b (X )g (X ) = 1 for some a (X ) and b (X ) in Zp 2 [x ]

. Then µ(a (X ))µ( f (X ))+µ(b (X ))µ(g (X )) = µ(1) = 1, implying that µ( f (X ))

and µ(g (X )) are coprime.

Conversely, suppose that µ( f (X )) and µ(g (X )) are coprime. Then there exist

a (X ) and b (X )i nZp 2 [X ] such that µ(a (X ))( f (X ))+µ(b (X ))µ(g (X )) = 1.

Thus a (X ) f (X )+ b (X )g (X ) = 1+2s (X ) for some s (X ) ∈Zp 2 [X ]. But then

a (X )(1+2s (X )) f (X )+ b (X )(1+2s (X ))g (X ) = (1+2s (X ))2 = 1

showing that f (X ) and g (X ) are coprime.

The following result, which is a special case of Hensel’s Lemma, shows how to

get from a factorization of µ( f (X )) to a factorization of f (X ).

Theorem 17. (Hensel’s Lemma) [14] Let f (X ) ∈ Zp 2 [X ]. Suppose µ( f (X )) =

h1(X )h2(X ) · · ·hk (X ),

where h1(X ), h2(X ), · · · , hk (X ) are pairwise coprime polynomials in Zp [X ]. Then

there exist g1(X ), g2(X ), · · · , gk (X ) in Zp 2 [X ] such that :

1. µ(g i (X )) = hi (X ) for 1≤ i ≤ k .

2. g1(X ), g2(X ), · · · , gk (X ) are pairwise coprime.

3. f (X ) = g1(X )g2(X ) · · ·gk (X ).

Theorem 18. [14] Let (n , p ) = 1 be coprime. Then X n − 1 =

g1(X )g2(X ) · · ·gk (X ) where g i (X ) ∈ Zp 2 [X ] are unique monic irreducible

(and basic irreducible) pairwise coprime polynomials in Zp 2 [X ]. Furthermore,

X n − 1 = µ(g1(X ))µ(g2(X )) · · ·µ(gk (X )) is a factorization into irreducible

polynomials in Fq [X ].
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In order to factor X n −1 in Zp 2 [X ], we first factor X n −1 in Fq [X ]. The factor-

ization of X n −1 in Fq [X ] is given by Eq.5.13 and by Theorem18 the factorization

of X n −1 over Zp 2 is:

X n −1 =
∏

j |n
j∈Np

 

γ( j ;q )
∏

i=1

g i j (X )

!

∏

j |n
j 6∈Np

 

β( j ;q )
∏

i=1

fi j (X ) f ∗i j (X )

!

(4.1)

Where

γ( j ; p ) =
φ( j )

ord j (p )
, and β( j ; p ) =

φ( j )

2ord j (p )
,

and fi j (X ) and f ∗i j (X ) form a monic basic irreducible reciprocal polynomial pair

and g i j (X ) is a monic basic irreducible.

Example 4.1.1. The factorization of X 13−1 over Z9[X ] into a product of basic irre-

ducible polynomials is given by

X 13−1 = (X −1)(X 3+6X 2+2X +8)(X 3+7X 2+3X +8)(X 3+4X 2+7X +8)(X 3+2X 2+5X +8).

4.1.2 | Generating of cyclic codes over Zp 2

To study cyclic codes over Fq we need to find the ideals of Fq /〈X n −1〉. Similarly,

we need to find the ideals of Rn in order to study cyclic codes over Zp 2 . We first

need to know the ideal structure of Zp 2 /〈 f (X )〉, where f (X ) is a basic irreducible

polynomial.

Lemma 4.1.3. [14] If f (X ) is in Zp 2 and is basic irreducible, then the only ideals

of Zp 2 /〈 f (X )〉 are 〈0〉,(1+ 〈 f (X )〉) and (p + 〈 f (X )〉).

Theorem 19. [14]Let X n −1 = f1(X ) f2(X ) · · · fr (X ), be a product of basic irreducible

and pairwise-coprime polynomials, where (p , n) = 1 and let bfi (X ) denote the prod-

uct of all f j (X ) except fi (X ). Then any ideal in the ring Rn is a sum of ideal 〈 bfi (X )〉
and 〈p bf j (X )〉.

Proof. By Hensel’s Lemma 17, such a factorization of X n −1 exists and is unique.

Since the fi (X ) are basic irreducible and pairwise coprime we have

X n −1 = 〈 f1(X )〉∩ 〈 f2(X )〉∩ 〈 f3(X )〉∩ · · ·∩ 〈 fr (X )〉,
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and for 1≤ i , j ≤ r , i 6= j

Zp 2 [X ] = 〈 fi (X )〉+ 〈 f j (X )〉.

Thus by Chinese Remainder

Rn = Zp 2 [x ]/〈 f1(X )〉∩Zp 2 [X ]/〈 f2(X )〉∩Zp 2 [X ]/〈 f3(X )〉∩ · · ·∩Zp 2 [X ]/〈 fr (X )〉

∼=
⊕

r
∑

i=1

Zp 2 [X ]/〈 fi (X )〉

Consequently, if I is an ideal of Rn , then

I = I1⊕ I2⊕· · ·⊕ Ir ,

where Ii is an ideal of the ring Zp 2 [X ]/〈 fi 〉, for i = 1, 2, · · · , r . By lemma4.1.3

Ii = 0, Zp 2 [X ]/〈 fi (X )〉 or (p + 〈 fi (X )〉).

If Ii = Zp 2 [X ]/〈 fi (X )〉, then it corresponds to the ideal 〈 bfi (X )〉 in the ring Rn , if

Ii = (p + 〈 fi (X )〉), then it corresponds to the ideal 〈p bf j (X )〉. In any case, the ideal

I is a sum of 〈 bfi (X )〉 and 〈p bf j (X )〉.

Theorem 20. [14] Suppose C is a cyclic code of length n over Zp 2 . Let

gcd(n , p ) = 1, then there exist unique monic polynomials f , g and h such that

X n −1 = f (X )g (X )h(X ) and

C = 〈 f (X )g (X )〉 ⊕ 〈p f (X )h(X )〉. Furthermore, C has type

p 2 deg(g (X ))p deg(g (X )h(X ))

When g (X ) = 1, C = 〈 f (X )〉 and |C |= p n−deg f (X ).

When h(X ) = 1, C = 〈p f (X )〉 and |C |= p n−deg f (X ).

Proof. We know that X n − 1 has a unique factorization such that X n − 1 =

f1(X ) f2(X ) · · · fr (X ), where the fi (X ) are basic irreducible and pairwise coprime,

We also know, by theorem 19, that C is a sum of 〈 bfi (X )〉 and 〈p bf j (X )〉. By permut-

ing the subscripts of fi (X ), we can suppose that C is a sum of

〈 bfk+1(X )〉, 〈 bfk+2(X )〉, · · · , 〈 bfk+l (X )〉, 〈p bfk+l+1(X )〉, 〈p bfk+l+2(X )〉, · · · , 〈p bfr (X )〉
Then

C = 〈 f1(X ) f2(X ) · · · fk (X ) fk+l+1(X ) fk+l+2(X ) · · · fr (X ), p f1(X ) f2(X ) · · · fk (X ) fk+l (X ) · · · fk+l (X )〉= 〈 f (X )g (X ), p f (X )h(X )〉,
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where

f1(X ) f2(X ) · · · fk (X ), g = fk+1(X ) fk+2(X ) · · · fk+l (X ) or 1 if l = 0

and

g (X ) = fk+l+1(X ) fk+l+2(X ) · · · fr (X ) or 1 if k + l = r

When g (X ) 6= 1, f (X )g (X ) and h(X ) are coprime, 〈 f (X )g (X ) 〉∩〈p f (X )h(X )〉=
0. Therefore

|C |= | f (X )g (X )||p f (X )h(X )|= (p 2)n−deg( f (X ))−deg(g (X ))p n−deg( f (X ))−deg(h(X )).

When g (X ) = 1, the above identity is still true because in this case C =

〈 f (X )〉 and |C | = (p 2)n−deg( f (X )). When g (X ) = 1, the above identity is still true

because in this case C = 〈p f (X )〉 and |C |= p n−deg( f (X )).

Corollary 5. Let gcd(n , p ) = 1. Assume X n −1 is a product of k irreducible polyno-

mial in Zp 2 [X ]. Then there are 3k cyclic codes over Zp 2 of length n .

The next theorem discusses the dual of C .

Theorem 21. [14] Let C is a cyclic code of length n over Zp 2 . Let gcd(n , p ) = 1,

then there exist are unique monic polynomials f (X ), g (X ) and h such that X n −
1 = f (X )h(X )g (X ) and C = 〈 f (X )g (X ), p f (X )h(X )〉. Furthermore, C has type

p 2 deg(h(X ))p deg(g (X )h(X ) Then

C ⊥= 〈g ∗(X )h∗(X ), p h∗(X ) f ∗(X )〉 and |C ⊥|= p 2 deg( f (X ))p deg(g (X )).

� If g (X ) = 1, then C = 〈 f (X )〉 and C ⊥= 〈h∗(X )〉.

� If h(X ) = 1, then C = 〈p f (X )〉 and C ⊥ = 〈g ∗(X ), p f ∗(X )〉,
where h∗(X ), f ∗(X ), g ∗(X ) are respectively reciprocal polynomials of

f (X ), h(X ) and g (X ).

Proof. We know that

〈g ∗(X )h∗(X )〉 ⊆ 〈g ∗(X )〉 ⊆ 〈 f (X )g (X ), p f (X )h(X )〉⊥

and similarly

〈p h∗(X ) f ∗(X )〉 ⊆ 〈h∗(X )〉 ⊆ 〈 f (X )g (X ), p f (X )h(X )〉⊥.
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Therefore,

〈g ∗(X )h∗(X ), p h∗(X ) f ∗(X )〉 ⊆ 〈h∗(X ) 〉 ⊆ 〈 f (X )g (X ), p f (X )h(X )〉⊥

Since

|〈g ∗(X )h∗(X ), p h∗(X ) f ∗(X )〉| = p 2(n−deg(h(x ))−deg(g (X )))p n−deg(h(X ))−deg( f (X ))

= |〈 f (X )g (X ), p f (X )h(X )〉⊥|,

we have 〈g ∗(X )h∗(X ), p h∗(X ) f ∗(X )〉= 〈 f (X )g (X ), p f (X )h(X )〉⊥.

4.1.3 | Characterization of the Hulls of cyclic codes

Here, we focus on algebraic structures of the hulls of cyclic codes of length n over

Zp 2 . The following lemma is useful in the study of their generators.

Lemma 4.1.4. [17] Let a = (u0, u1, · · · , un−1) and b = (b0, b1, · · · , bn−1) be vectors

in Zn
p 2 with corresponding polynomial a (X ) and b (X ), respectively. Then a is

orthogonal to b and all its shifts if and only if a (X )b ∗(X ) = 0 in Zp 2 [X ]/〈X n −1〉.

Theorem 22. [17] Let C be a cyclic code of length n over Zp 2 gener-

ated by 〈 f (X )g (X ), p f (X )h(X )〉 = 〈 f (X )g (X ), p f (X )〉, where X n − 1 =

f (X )h(X )g (X ) and f (x ), g (X ) and h(X ) are monic pairwise coprime polyno-

mials. ThenH (C ) is generated by

〈lcm( f (X )g (X ), h∗(X )g ∗(X )), plcm( f ∗(X ), h∗(X ))〉.

Furthermore,H (C ) is of type (p 2)deg H (X )p degG (X ), where

H (X ) = gcd(h(X ), f ∗(X )) and G (X ) =
X n −1

gcd(h(X ), f ∗(X ))lcm( f ∗(X ), h∗(X ))
.

Proof. Note that C ⊥ is generated by 〈h∗(X )g ∗(X ), p h∗(X ) f ∗(X )〉 =

〈h∗(X )g ∗(X ), p h∗(X )〉 Let C
′

be a cyclic code of length n over Zp 2 whose genera-

tors are of the form 〈F (X )G (X ), p F (X )〉, where F (X ) =lcm( f ∗(X ), h∗(X ))

G (X ) =
X n −1

gcd(h(X ), f ∗(X ))lcm( f ∗(X ), h∗(X ))
and H (X ) = gcd(h(X ), f ∗(X )).
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It is not difficult to see that X n − 1 = F (X )G (X )H (X ) and the polynomials

F (X ),G (X ) and H (X ) are monic pairwise coprime. Since 〈F (X )G (X ), p F (X )〉 ⊆
〈 f (X )g (X ), p f (X )〉 and 〈F (X )G (X ), p F (X )〉 ⊆ 〈h∗(X )g ∗(X ), p h∗(X )〉, we have

C ⊆H (C ).

Next, we show thatH (C ) ⊆ C
′
. SinceH (C ) is a cyclic code of length n over Zp 2 ,

assume that H (C ) has generators of the form 〈A(X )B (X ), p A(X )〉where X n −
1 = A(X )B (X )C (X ) and the polynomials A(X ), B (X ) and C (X ) are pairwise co-

prime. SinceH (C )⊆C ⊥ is orthogonal to C , by Lemma 4.1.4, we have

A(X )B (X ).p f ∗(X ) = 0 and p A(X ). f ∗(X ).g ∗(X ) = 0,

which imply that h∗(X ).g ∗|A(X )B (X ) and h∗|A(X ). Similarly, H (C ) ⊆ C is or-

thogonal to C ⊥ which implies that

A(X )B (X ).p h(X ) = 0 and p A(X ).h(X )g (X ) = 0,

by Lemma 4.1.4. It follows that f (X )g (X )|A(X )B (X ) and f (X )|A(X ). Conse-

quently, lcm( f (X )g (X ), h∗(X )g ∗(X ))|A(X )B (X ) and lcm(h∗(X ), f (X ))|A(X )

which imply that F (X )G (x )|A(X )B (X ) and F (X )|A(X ). Hence, H (C ) ⊆ C .

Therefore,H (C ) = C .

Example 4.1.2. The factorization of X 13−1 over Z9[X ] into a product of basic irre-

ducible polynomials is given by

X 13−1 = (X −1)(X 3+6X 2+2X +8)(X 3+7X 2+3X +8)(X 3+4X 2+7X +8)(X 3+2X 2+5X +8).

Let C be the cyclic code of length 13 over Z9 generated by

C = 〈 f (X )g (X ), 3 f (X )〉

= 〈(X 3 +6X 2 +2X +8)(X 3 +7X 2 +3X +8)(X 3 +4X 2 +7X +8)(X 3 +2X 2 +5X +8),

3(X 3 +6X 2 +2X +8)(X 3 +4X 2 +7X +8)〉,

where f (X ) = (X 3 + 6X 2 + 2X + 8)(X 3 + 4X 2 + 7X + 8), g (X ) = (X 3 + 7X 2 +

3X +8)(X 3 +2X 2 +5X +8) = f ?(X ), and h(X ) = (X −1) = h?(X ).

From Theorem 21, C ⊥ is of the form

〈h?(X )g ?(X ), 3h?(X )〉= 〈(X −1)(X 3+6X 2+2X +8)(X 3+4X 2+7X +8), 3(X −1)〉.

40



Chapter 4. Hull of cyclic codes over Zp 2 4.1. Cyclic codes over Zp 2

By Theorem 22,H (C ) is generated by

H (C ) = 〈lcm( f (X )g (X ), h∗(X )g ∗(X )), plcm( f ∗(X ), h∗(X ))〉

= 〈3lcm((X 3 +7X 2 +3X +8)(X 3 +2X 2 +5X +8)〉.

4.1.4 | Parameters and p -dimensions of hulls of cyclic codes

In this subsection, the parameters of the hulls of cyclic codes of length n where

gcd(p , n) = 1 over Zp 2 are investigated and the p−dimensions of H (C ) are de-

termined. The parameters of the hulls of cyclic codes are given in Theorem 23 based

on the following lemma. The following lemma is required in its proof.

Lemma 4.1.5. [17] Let β be a positive integer. For 1 ≤ i ≤ β , let

(vi , zi ), (wi , di ) and (ui , bi ) be elements in {(0, 0),(1, 0),(0, 1)}. Let ai = min{1−
vi − zi , wi }+min{1−wi −di , vi }. Then ai ∈ {0, 1}. Moreover, the following state-

ments hold.

1. 2−min{1−vi , zi , wi }−max{vi , 1−wi −di }−min{1−wi −di , vi }−max{wi , 1−
vi − zi }= zi +di .

2. If ai = 0, then zi +di ∈ {0, 1, 2}.

3. If ai = 1, then zi +di = 0.

4. a =
∑β

i=1 ai then
∑β

i=1(zi +di ) = c for some 0≤ c ≤ 2(β −a ).

Theorem 23. [17] Let n be a positive integer such that gcd(n , p ) = 1. Then the pa-

rameters of the hull of a cyclic code of length n over Zp 2 are of the form p 2k1p k2 ,

where

k1 =
∑

j |n
j 6∈Np

ord j (p ).a j ;

k2 =
∑

i |n
i∈Np

ordi (p ) ·bi +
∑

j |n
j 6∈Np

ord j (p ) · c j ,

where 0≤ a j ≤β( j ; p ), 0≤ bi ≤ γ(i ; p ), and 0≤ c j ≤ 2(β( j ; p )−a j ).
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Proof. Let C bea cyclic code of length n over Zp 2 generated by

〈 f (X )g (X ), p f (X )h(X )〉 = 〈 f (X )g (X ), p f (X )〉, where X n − 1 =

f (x )g (X )h(X ) and f (X ), g (X ) and h(X ) are monic pairwise coprime poly-

nomials. ThenH (C ) is generated by

〈lcm( f (X )g (X ), h∗(X )g ∗(X )), plcm( f ∗(X ), h∗(X )) 〉.

Furthermore,H (C ) is of type (p 2)deg H (X )p degG (X ), where

H (X ) = gcd(h(X ), f ∗(X )) and G (X ) =
X n −1

gcd(h(X ), f ∗(X ))lcm( f ∗(X ), h∗(X )
.

We have

f (X ) =
∏

j |n
j∈Np

 

γ( j ;p )
∏

i=1

g i j (X )ui j

!

∏

j |n
j 6∈Np

 

β( j ;p )
∏

i=1

fi j (X )vi j f ∗i j (X )wi j

!

;

g (X ) =
∏

j |n
j∈Np

 

γ( j ;p )
∏

i=1

g i j (X )bi j

!

∏

j |n
j 6∈Np

 

β( j ;p )
∏

i=1

fi j (X )zi j f ∗i j (X )di j

!

;

h(X ) =
∏

j |n
j∈Np

 

γ( j ;q )
∏

i=1

g i j (X ){1−ui j−bi j }

!

∏

j |n
j 6∈Np

 

β( j ;q )
∏

i=1

fi j (X ){1−vi j−zi j } f ∗i j (X ){1−wi j−di j }

!

;

f ∗(X ) =
∏

j |n
j∈Np

 

γ( j ;q )
∏

i=1

g i j (X )ui j

!

∏

j |n
j 6∈Np

 

β( j ;q )
∏

i=1

fi j (X )wi j f ∗i j (X )vi j

!

;

g ∗(X ) =
∏

j |n
j∈Np

 

γ( j ;q )
∏

i=1

g i j (X )bi j

!

∏

j |n
j 6∈Np

 

β( j ;q )
∏

i=1

fi j (X )di j f ∗i j (X )zi j

!

;

h∗(X ) =
∏

j |n
j∈Np

 

γ( j ;q )
∏

i=1

g i j (X ){1−ui j−bi j }

!

∏

j |n
j 6∈Np

 

β( j ;q )
∏

i=1

fi j (X ){1−wi j−di j } f ∗i j (X ){1−vi j−zi j }

!

;

where (ui j , bi j ),(vi j , zi j ),(w − i j , di j ) ∈ {(0, 0),(1, 0),(0, 1)}.
First we determine deg H (X ). Observe that
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H (X ) = gcd(h(X ), f ∗(X ));

=
∏

j |n
j 6∈Np

 

β( j ;q )
∏

i=1

fi j (X )min{1−vi j−zi j ,wi j } f ∗i j (X )min{1−wi j−di j ,vi j }

!

;

=
∑

i |n
i 6∈Np

 

β( j ;q )
∑

i=1

(min{1− vi j − zi j , wi j }+min{1−wi j −di j , vi j })

!

;

=
∑

i |n
i 6∈Np

ord j (p ).a j ,

where 0≤ a j ≤β( j , p ). Next we compute degG (X ). Since

lcm( f (X ), h∗(X )) =
∏

j |n
j∈Np

 

γ( j ;q )
∏

i=1

g i j (X )max{ui j ,1−ui j−bi j }

!

×
∏

j |n
j 6∈Np

 

β( j ;q )
∏

i=1

fi j (X )max{vi j ,1−wi j−di j } f ∗i j (X )max{wi j ,1−vi j−zi j }

!

;

and

gcd(h(X ), f ∗(X )) ·lcm( f (X ), h∗(X )) =
∏

j |n
j∈Np

 

γ( j ;q )
∏

i=1

g i j (x )max{ui j ,1−ui j−bi j }

!

×
∏

j |n
j 6∈Np

 

β( j ;q )
∏

i=1

fi j (X )max{vi j ,1−wi j−di j } f ∗i j (X )min{1−wi j−di j ,vi j }+max{wi j ,1−vi j−zi j }

!

.
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It can be deduced that

G (X ) =
X n −1

gcd(h(X ), f ∗(X ))lcm( f ∗(X ), h∗(X ))

=
∏

j |n
j∈Np

 

γ( j ;q )
∏

i=1

g i j (X )1−max{ui j ,1−ui j−bi j }

!

×
∏

j |n
j 6∈Np

 

β( j ;q )
∏

i=1

fi j (X )1−min{1−vi j−zi j ,wi j }−max{vi j ,1−wi j−di j }

!

;

×
∏

j |n
j 6∈Np

 

β( j ;q )
∏

i=1

f ∗i j (X )1−min{1−wi j−di j ,vi j }−max{wi j ,1−vi j−zi j }

!

;

By Lemma 4.1.5, we can conclude that
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deg(G (X )) = deg

�

X n −1

gcd(h(X ), f ∗(x ))lcm( f ∗(X ), h∗(X ))

�

=
∏

j |n
j∈Np

 

γ( j ;q )
∏

i=1

g i j (X )1−max{ui j ,1−ui j−bi j }

!

×
∏

j |n
j 6∈Np

β( j ;q )
∏

i=1

fi j (x )1−min{1−vi j−zi j ,wi j }−max{vi j ,1−wi j−di j };

×
∏

j |n
j 6∈Np

β( j ;q )
∏

i=1

f ∗i j (X )1−min{1−wi j−di j ,vi j }−max{wi j ,1−vi j−zi j };

=
∑

i |n
i∈Np

ord j (p )
γ( j ;q )
∑

i=1

(1−max{ui j , 1−ui j −bi j })

+
∑

i |n
i 6∈Np

ord j (p )
β( j ;q )
∑

i=1

(2−min{1− vi j − zi j , wi j })

−
∑

i |n
i 6∈Np

ord j (p )
β( j ;q )
∑

i=1

max{vi j , 1−wi j −di j }

−
∑

i |n
i 6∈Np

ord j (p )
β( j ;q )
∑

i=1

min{1−wi j −di j , vi j }

−
∑

i |n
i 6∈Np

ord j (p )
β( j ;q )
∑

i=1

max{wi j , 1− vi j − zi j })

=
∑

i |n
i∈Np

ord j (p )
γ( j ;q )
∑

i=1

(1−max{ui j , 1−ui j −bi j })

+
∑

i |n
i /∈Np

ord j (p )
β( j ;q )
∑

i=1

(zi j +di j )

=
∑

i |n
i∈Np

ordi (p ) ·bi +
∑

j |n
j 6∈Np

ord j (p ) · c j ,45
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where 0≤ a j ≤β( j , p ), 0≤ bi ≤ γ(i , p ), and 0≤ c j ≤ 2(β( j , p )−a j ).

Corollary 6. Let n be an odd integer coprime with p such that n ∈ Np . Then the

parameters of the hull of a cyclic code of length n over Zp 2 are of the form (p 2)0p k2 ,

where

k2 =
∑

i |n
i∈Np

ordi (p ) ·bi , 0≤ bi ≤ γ(i , p ).

The previous discussion leads to the Algorithm 11 and justifies its correctness.

Examples 4.1.3, 4.1.4 show different outputs of the algorithm.

Algorithm 1: Parameters of the Euclidean hull of a cyclic codes over Zp 2 .

Input: Length n , and a finite ring Zp 2 such that gcd(p , n) = 1.
Output: All possible 2-tuples (k1, k2) describing the parameters of the

Euclidean hull of a cyclic codes
1 .

1. For each divisor of n , consider the following case:

(a) If i ∈Np , compute ordi (p ) and γ(i ; p ).

(b) If j 6∈ Np , compute ord j (p ) and β( j ; p ).

2. Compute k1 =
∑

j |n
j 6∈Np

ord j (p ) ·a j , where 0≤ a j ≤β( j ; p ).

3. For a fixed a j in 2, compute : k2 =
∑

i |n
i∈Np

ordi (p ) ·bi +
∑

j |n
j 6∈Np

ord j (p ) · c j , where

0≤ bi ≤ γ(i ; p ) and 0≤ c j ≤ 2 · (β( j ; p )−a j ).

Example 4.1.3. All the possible parameters (k1, k2) of the hull of a cyclic code of

length 13 over Z9 are determined as follows.

1. The divisors of 13 are 1 and 13.

a) We have 1 ∈N3, so ord1(3) = 1 and γ(1; 3) = 1.

b) We have 13 6∈ N3, so ord13(3) = 3 and β(13; 3) = 2.
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2. It follows that

k1 = 3a13, where 0≤ a13 ≤ 2

k2 = b1 +3c13 where 0≤ b1 ≤ 1 and 0≤ c13 ≤ 2(2−a13).

Hence, the all possible parameters (k1, k2) of the hulls of cyclic codes of length

13 over Z9 are given in the following table

k1 k2

0 0, 1, 3, 4, 6, 7, 9, 10, 12, 13

3 0, 1, 3, 4, 6, 7

6 0, 1

Example 4.1.4. All the possible parameters (k1, k2) of the hull of a cyclic code of

length 21 over Z4 are determined as follows.

1. The divisors of 21 are {1, 3, 7, 21}1.

a) We have 1, 3 ∈N2, so ord1(2) = 1, ord3(2) = 2 and γ(1; 2) = 1 = γ(3; 2).

b) We have 7, 21 6∈ N3, so ord7(2) = 3, ord21(2) = 6 and β(7; 2) = 1 =

β(21; 2).

2. It follows that

k1 = 3a7 +6a21, where 0≤ a7, a21 ≤ 0

For (a7, a7) = (0, 0), we have k1 = 0 and

k2 = b1+2b3+3c7+6c21, where 0≤ b1, b3 ≤ 1 a nd 0≤ c7, c21 ≤ 2. So k2 ∈ {0, 1, · · · , 21}.

For (a7, a21) = (1, 0), we have k1 = 3 and

k2 = b1 +2b3 +3c7 +6c21, where 0≤ b1, b3 ≤ 1, c7 = 0 a nd 0≤ c21 ≤ 2.

Hence, k2 ∈ {0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15}.
For (a7, a21) = (0, 1), we have k1 = 6 and

k2 = b1 +2b3 +3c7 +6c21, where 0≤ b1, b3 ≤ 1, 0≤ c7 ≤ 2 a nd c21 = 0.
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Thus k2 ∈ {0, 1, · · · , 9}.
For (a7, a21) = (1, 1), then k1 = 9 and

k2 = b1 +2b3 +3c7 +6c21, where 0≤ b1, b3 ≤ 1, c7 = 0 a nd c21 = 0.

Hence, k2 ∈ {0, 1, 2, 3}.

Hence, the all possible parameters (k1, k2) of the hulls of cyclic codes of length

21 over Z4 are given in the following table

k1 k2

0 0, 1,· · · , 21

3 0, 1,2, 3, 6, 7, 8, 9, 12, 13, 14, 15

6 0, 1,· · · , 9

9 0, 1, 2, 3

For a linear code C of length n over Zp 2 , denote by dimp (C ) = logp (|C |) the

p -dimension of C . A formula for the p -dimensions of the hulls of cyclic codes of

length n over Zp 2 is given as follows.

Theorem 24. [17] Let gcd(n , p ) = 1. Then the p -dimensions of the hull of cyclic

codes of length n over Z2
p are of the form

∑

i |n
i∈Np

ord j (p ).Í j +
∑

i |n
i 6∈Np

ord j (p ).Î j ,

where 0≤Í j≤ γ( j , q ) and 0≤Î≤ 2β( j , q ).

Proof. Let C be a cyclic code of length n over Zp 2 generated by

〈 f (X )g (X ), p f (X )h(X )〉= 〈 f (X )g (X ), p f (X )〉,
where X n −1 = f (X )g (X )h(X ) and f (X ), g (X ) and h(X ) are monic pairwise co-

prime polynomials. ThenH (C ) is generated by

〈lcm( f (X )g (X ), h∗(X )g ∗(X )), plcm( f ∗(X ), h∗(X ))〉.
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Furthermore, H (C ) is of type (p 2)deg H (X )p degG (X ), and the p -dimension of

H ul l (C ) is 2 deg H (X )+degG (X ), where

H (X ) = gcd(h(X ), f ∗(X )) and G (X ) =
X n −1

gcd(h(X ), f ∗(X ))lcm( f ∗(X ), h∗(X ))
.

It can be deduced that

dimp (H (C )) = 2 deg H (X )+degG (X );

= 2
∑

i |n
i 6∈Np

ord j (p )
β( j ;q )
∑

i=1

(min{1− vi j − zi j , wi j }+min{1−wi j −di j , vi j })

+
∑

i |n
i∈Np

ord j (p )
γ( j ;q )
∑

i=1

(1−max{ui j , 1−ui j −bi j })

+
∑

i |n
i 6∈Np

ord j (p )
β( j ;q )
∑

i=1

(2−min{1− vi j − zi j , wi j }−max{vi j , 1−wi j −di j }

−min{1−wi j −di j , vi j }−max{wi j , 1− vi j − zi j })

=
∑

i |n
i∈Np

ord j (p )
γ( j ;q )
∑

i=1

(1−max{ui j , 1−ui j −bi j })

+
∑

i |n
i 6∈Np

ord j (p )
β( j ;q )
∑

i=1

(2+min{1− vi j − zi j , wi j }−max{vi j , 1−wi j −di j }

+min{1−wi j −di j , vi j }−max{wi j , 1− vi j − zi j })

=
∑

i |n
i∈Np

ord j (p )
γ( j ;q )
∑

i=1

.Íi j +
∑

i |n
i 6∈Np

ord j (p )
β( j ;q )
∑

i=1

Îi j ,

where

Íi j = (1−max{ui j , 1−ui j −bi j }),

Îi j = (2+min{1− vi j − zi j , wi j }−max{vi j , 1−wi j −di j }

+min{1−wi j −di j , vi j }−max{wi j , 1− vi j − zi j }).
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It is not difficult to see that 0≤Íi j≤ 1 and 0≤Îi j ≤ 2. Then we have

dimp (H (C )) =
∑

i |n
i∈Np

ord j (p )
γ( j ;p )
∑

i=1

Íi j +
∑

i |n
i 6∈Np

ord j (p )
β( j ;p )
∑

i=1

Îi j .

=
∑

i |n
i∈Np

ord j (p ).Í j +
∑

i |n
i 6∈Np

ord j (p ).Î j ,

where Í j=
γ( j ;q )
∑

i=1
Íi j and Î j =

β( j ;q )
∑

i=1
Îi j

4.1.5 | The average p -dimensions Ep (n)

The average p -dimension of the hull of cyclic codes of length n over Zp 2 is defined

to be

Ep (n) =
∑

C ∈C (n ,p 2)

dimp (H (C ))

|C (n , p 2)|
,

whereC (n , p 2) denote the set of all cyclic codes over length n over Zp 2 . The aver-

age p -dimension ofH (C ) is based on the following lemma. The following lemma

is required in its proof.

Lemma 4.1.6. Let (v , z ),(w , d ),(u , b ) ∈ {(0, 0),(1, 0),(0, 1)}. Then

1. E(1−max{u , 1−u −b }) = 1
3

2. E(2+min{1−v − z , w }−max{v , 1−w −d }+min{1−w −d , v }−max{w , 1−
v − z }) = 10

9 .

Theorem 25. [17] Let p be a prime number and let n be a positive integer such that

p - n. Then the average p -dimension of the hull of cyclic codes of length n over Zp 2

is

Ep (n) =
5

9
n −

2

9
Bn .

Proof. Let C be a cyclic code of length n over Zp 2 generated by

〈 f (X )g (X ), p f (X )h(X )〉= 〈 f (X )g (X ), p f (X )〉,
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where X n −1 = f (X )g (X )h(X ) and f (X ), g (X ) and h(X ) are monic pairwise co-

prime polynomials. ThenH (C ) is generated by

〈lcm( f (X )g (X ), h∗(X )g ∗(X )), plcm( f ∗(X ), h∗(X ))〉.

Furthermore, H (C ) is of type (p 2)deg H (X )p degG (X ), and the p -dimension of

H ul l (C ) is 2 deg H (X )+degG (X ), where

H (X ) = gcd(h(X ), f ∗(X )) and G (X ) =
X n −1

gcd(h(X ), f ∗(X ))lcm( f ∗(X ), h∗(X ))
.

Let Y be the random variable of the dimp (H (C )), where C is chosen randomly

from C (n , p 2) with uniform probability. Let E(Y ) be the expectation of Y . Thus

Ep (n) = E(Y ). Therefore, choosing a cyclic code C from C (n , p 2) with uniform

probability
1

|C (n , p 2)|
. The average dimension Ep (n) can be determined in terms

of the expectation E(Y ) as follows :

EP (n) = E(Y ) =E(2 deg H (X )+degG (X ))

= E(
∑

i |n
i∈Np

ord j (p )
γ( j ;q )
∑

i=1

(1−max{ui j , 1−ui j −bi j })

+E
∑

i |n
i 6∈Np

ord j (p )
β( j ;q )
∑

i=1

(2+min{1− vi j − zi j , wi j }−max{vi j , 1−wi j −di j }

+min{1−wi j −di j , vi j }−max{wi j , 1− vi j − zi j }))

=
∑

i |n
i∈Np

ord j (p )γ( j ; q )E(1−max{ui j , 1−ui j −bi j })+
∑

i |n
i 6∈Np

ord j (p )β( j ; q )

.E(2+min{1− vi j − zi j , wi j }−max{vi j , 1−wi j −di j }

+min{1−wi j −di j , vi j }−max{wi j , 1− vi j − zi j })

=
∑

i |n
i∈Np

φ(i ).
1

3
+
∑

i |n
i 6∈Np

φ(i )

2
.
10

9

=
Bn

3
+

5(n −Bn )

9

=
5

9
n −

2

9
Bn .
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We have 0 <Bn <
2n

3
, if n ∈ Np , and Bn = n otherwise. Hence, we have the

following rough bounds.

Corollary 7. Let p be a prime number and let n be a positive integer such that p - n.

The following statements hold.

1. n ∈Np if and only if EP (n) =
n

3
.

2. n 6∈ Np , then
11n

27
<EP (n)<

5n

9
.
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5

Galois Hulls of cyclic serial codes over
finite chain rings

In this chapter, we characterize Galois hulls of cyclic serial code over finite chain

rings. we shows the parameters and the q -dimensions of the Euclidean hull of cyclic

serial codes. Finally, the average dimension of the Euclidean hull of cyclic serial

codes is computed

5.1 | Factorization of X n −1

Let N be the set of nonnegative integers and n be a positive integer such that

gcd(n , q ) = 1. Set [|a ; b |] = {a , a + 1, · · · , b } where (a , b ) ∈N2 such that a < b .

Let A and B be two subsets in [|0; n − 1|], as usual, the opposite of A, denoted −A,

is defined as −A = {n − z : z ∈ A} and its complementary, denoted A, is defined

as: A = {z ∈ [|0; n − 1|] : z 6∈ A}. The set A is symmetric, if A = −A, and the pair

{A, B} is asymmetric, if B = −A. Recall that the pair is a set with two elements. If

u ∈N\{0}, then uA =
�

i ∈ [|0; n −1|] : (∃z ∈A)(u z ≡ i (modn)
	

. It defines the bi-

nary relation on [|0; n −1|] by x ∼q y if there is i in N such that y ≡ q i x (modn).

Obviously, the binary relation∼q is an equivalence relation on [|0; n−1|]. The cosets

of ∼q , are called q -cyclotomic cosets modulo n . Denote by [|0; n −1|]q , a complete

system of representatives of ∼q . A subset Z of [|0; n − 1|] is a q -closed set mod-

ulo n , if Z = q Z. The smallest q -closed set modulo n , containing a subset Z of

[|0; n − 1|] is
⋃

i∈N q i Z and we will denote it by ûq (Z). In particular, the set of q -

cyclotomic cosets modulo n which is
�

ûq ({z }) : z ∈ [|0; n −1|]q
	

, forms a partition
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of [|0; n −1|]. Since ûq ({z }) = {x ∈ [|0; n −1|] : x ∼q z } for any z in [|0; n −1|]. We

will take ûq (;) = ; by convention. Let j be a divisor of n , we will use the following

notation

� ω(n ; q ) the number of q -cyclotomic cosets modulo n ;

� Λ j the set of symmetric q -cyclotomic cosets modulo n of sizeord j (q ) and

γ( j ; q ) := |Λ j |;

� Λ j the set of asymmetric pairs of q -cyclotomic cosets modulo n of size

ord j (q ) and β( j ; q ) := |Λ j |.

Let δ be a generator of the cyclic multiplicative subgroup Γ (GR(p a , m))\{0}
of (GR(p a , m))×, where m = ordn (q ). The following result is straight for-

ward from Hensel’s Lemma [23], which guarantees the uniqueness of this monic

basic-irreducible factorization of X n − 1, and X n − 1 =
∏

z∈[|0;n−1|]q
mz where

mz :=
∏

a∈ûq ({z })
(X −δa ). Obviously, for any z in [|0; n −1|]q , the polynomial mz is

monic basic-irreducible over R .

The following lemma shows that the irreducible factors of x n −1 are in corre-

spondence with the cyclotomic cosets.

Lemma 5.1.1. The map

Ω :
�

ûq (Z) : Z ⊆ [|0; n −1|]q
	

→
�

f ∈GR(p a , r )[X ] : f is monic and f |X n −1
	

A 7→
∏

a∈A
(X −δa )

(5.1)

whereΩ(;) = 1, is bijective. Moreover, for any z ∈ [|0; n −1|] and for all q -closure sets

A and B modulo n , we have

1. Ω
�

ûq ({z })
�

is a monic basic-irreducible polynomial over GR(p a , r ) of degree
�

�ûq ({z })
�

�;

2. lcm(Ω(A) ,Ω(B)) =Ω(A∪B) and gcd(Ω(A) ,Ω(B)) =Ω(A∩B);

3. if A∩B = ;, then Ω(A∪B) =Ω(A)Ω(B).
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Proof. Since δ ∈ Γ (GR(p a , m))\{0} ⊂ GR(p a , m) and GR(p a , m) is a Galois exten-

sion ofGR(p a , r ), it follows that for any q -cyclotomic cosets A modulo n , the monic

polynomial
∏

a∈A
(X −δa ) is basic-irreducible over GR(p a , r ). Therefore, the corre-

spondence Ω is well-defined, and by Hensel lemma, X n −1 admits a unique monic

basic-irreducible factorization inGR(p a , r )[X ]. Thus the existence and the unique-

ness of this basic-irreducible factorization over GR(p a , r ), the map Ω is bijective.

Items 2. and 3. are straight forward to prove.

Proposition 5.1.1. [33, Subsection 2.2] Let j be a divisor of n. Then

γ( j ; q ) =

(

φ( j )
ord j (q ) , if j ∈Nq ;

0, otherwise,
and β( j ; q ) =

(

φ( j )
2ord j (q ) , if j 6∈ Nq ,

0, otherwise.

Moreover,ω(n ; q ) =
∑

i |n
i∈Nq

γ(i ; q )+2
∑

j |n
j 6∈Nq

β( j ; q ).

We will introduce the following notation

En (q , s ) =In (q , s )× (Jn (q , s ))2 , (5.2)

where In (q , s ) =
∏

i |n
i∈Nq

Eγ(i ;q )
s andJn (q , s ) =

∏

j |n
j 6∈Nq

Eβ( j ;q )
s , with

Es =

¨

(x (0), x (1), · · · , x (s−1)) ∈ {0; 1}s :
s−1
∑

a=0

x (a ) ∈ {0; 1}

«

. (5.3)

Note that Es = {(0, · · · , 0)} ∪









0, · · · , 0, 1
︸︷︷︸

j -i th position

, 0, · · · , 0



 : j ∈ {1; · · · ; s }







⊆

{0; 1}s and |Es |= s +1.

The elements in In (q , s ) are arrays of the form (((u
(a )
i l )0≤a<s )

◦) where

(u
(a )
i l )0≤a<s are in Es and the indices i and l satisfy i |n , i ∈Nq and 1 ≤ l ≤ γ(i ; q ),

i.e.,

(((u
(a )
i l )0≤a<s )

◦) =
�

�

(u
(a )
i l )0≤a<s

�

1≤l≤γ(i ;q )

�

i |n ,i∈Nq

∈In (q , s ).

Similarly, (((v
(a )
j h )0≤a<s )

•) =
�

�

(v
(a )
j h )0≤a<s

�

1≤h≤β( j ;q )

�

j |n , j 6∈Nq

∈ Jn (q , s ). Note

that if s = 1, then E1 = {0; 1}, and in this case, we write ((ui l )
◦) = (((u

(a )
i l )0≤a<1)

◦)

and ((v j h )
•) = (((v

(a )
j h )0≤a<1)

•).
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Let i and j be positive integers such that i |n , i ∈ Nq , and j |n , j 6∈ Nq . From

now on,

Λi = {Gi l : 1≤ l ≤ γ(i ; q )} and Λ j = {{Fj h ,−Fj h} : 1≤ h ≤β( j ; q )}.

Of course, all the polynomials in {Ω(Gi l ) : 1 ≤ l ≤ γ(i ; q )} are basic-irreducible

in R [X ] of degree ordi (q ), and all the elements in {{Ω(Fj h ),Ω(−Fj h )} : 1 ≤ h ≤
β( j ; q )} are pairs of monic basic-irreducible reciprocal polynomials (up to a unit)

in R [X ] of the same degree ord j (q ). The basic-irreducible factorization of X n −1

in R [X ] is given as

X n −1 =
∏

i |n
i∈Nq

 

γ(i ;q )
∏

l=1

Ω(Gi l )

!

∏

j |n
j 6∈Nq

 

β( j ;q )
∏

h=1

Ω
�

Fj h

�

Ω
�

−Fj h

�

!

. (5.4)

Thus, for any monic factor of X n − 1 ∈ R [X ], there is a unique

(((ui l )
◦),((v j h )

•),((w j h )
•))) in En (q , 1) such that

f =
∏

i |n
i∈Nq

 

γ(i ;q )
∏

l=1

Ω(Gi l )
ui l

!

∏

j |n
j 6∈Nq

 

β( j ;q )
∏

h=1

Ω
�

Fj h

�v j h Ω
�

−Fj h

�w j h

!

, (5.5)

and conversely. Denote the right-hand side of Equation (5.5) by

∂ (((ui l )
◦),((v j h )

•),((w j h )
•)). Note that ∂ (((1)◦),((1)•),((1)•)) = X n − 1 and

∂ (((0)◦),((0)•),((0)•)) = 1. If we are given f1 = ∂ (((ui l )
◦),((v j h )

•),((w j h )
•))

and f2 = ∂ (((u ′i l )
◦),((v ′j h )

•),((w ′j h )
•)), we have that

lcm( f1; f2) = ∂ (((max{ui l , u ′i l })
◦),((max{v j h , v ′j h})

•),((max{w j h , w ′j h})
•));

gcd( f1; f2) = ∂ (((min{ui l , u ′i l })
◦),((min{v j h , v ′j h})

•),((min{w j h , w ′j h})
•)),

and if all (ui l +u ′i l , v j h + v ′j h , w j h +w ′j h ) are in {0; 1}3 then

f1 f2 = ∂ (((ui l +u ′i l )
◦),((v j h + v ′j h )

•),((w j h +w ′j h )
•)).

5.2 | Cyclic serial codes

A cyclic code C of length n over R is a linear code that is invariant under the transfor-

mation τ((c0, c1, · · · , cn−1)) = (cn−1, c0, · · · , cn−2). If we denote by 〈X n −1〉 the ideal
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of R [X ] generated by X n −1, it is well-known that any cyclic code of length n over R

can be represented as an ideal of the quotient ring R [X ]/〈X n −1〉 via the R -module

isomorphism Ψ : R n →R [X ]/〈X n −1〉, where Ψ(c) = Ψ(c)+ 〈X n −1〉 and

Ψ : R n → R [X ]

u = (u0, u1, · · · , un−1) 7→ u(X ) = u0 +u1X + · · ·+un−1X n−1,
(5.6)

which is an R -module homomorphism. We will slightly abuse notation, identifying

vectors in R n as polynomials in R [X ] of degree less than n , and vice versa when the

context is clear. It is well-known that R [X ]/〈X n −1〉 is a principal ideal ring and C

is a cyclic code of length n over R if and only if Ψ(C ) is an ideal of R [X ]/〈X n −1〉,
(see [10] and references therein). Thus, the generator polynomial of a cyclic code C

of R n , is the monic polynomial f in R [X ] such that Ψ(C ) = 〈 f (x ) 〉, where 〈 f (x ) 〉
is the ideal of R [X ]/〈X n −1〉 generated by f .

A cyclic code over R of length n , is uniserial if its cyclic subcodes over R are

totally ordered by inclusion (see the definition of serial modules in [39]). A cyclic

code over R of length n , is serial if it is a direct sum of uniserial cyclic codes over R

of length n . Note that, over a finite chain ring R , any cyclic code of length n is serial,

if and only if gcd(p , n) = 1.

For a polynomial f of degree k its reciprocal polynomial X k f (X −1) will be

denoted by f ∗ and if f is a factor of X n −1 we denote bf = X n−1
f . A polynomial f is

self-reciprocal if f = f ∗, otherwise f and f ∗ are called a reciprocal polynomial pair.

In order to make the comparison we take Ω(A)∗ = Ω(−A) and ÖΩ(A) = Ω(A), for

any union A of q -cyclotomic cosets modulo n .

The (s + 1)-tuple (A0,A1, · · · ,As ) is called to be an ordered (q , s )-partition cyclo-

tomic modulo n , if A0,A1, · · · ,As are unions of q -cyclotomic cosets modulo n whose

{At : At 6= ;, for 0 ≤ t ≤ s } forms a partition of [|0; n −1|]. Denote by ℜn (q , s ) the

set of ordered (q , s )-partition cyclotomic modulo n . Note that

ℜn (q , s ) =
¦

�

ûq (λ−1({0})),ûq (λ−1({1})), . . . ,ûq (λ−1({s }))
�

: λ ∈ [|0; s |][|0;n−1|]q
©

.

It follows that |ℜn (q , s )|= (s +1)ω(n ;q ). Let A = (A0,A1, · · · ,As ) be inℜn (q , s ). For

a positive integer u we denote by uA = (uA0, uA1, · · · , uAs−1). Now, theA0,A1, · · · ,As

are unions of q -cyclotomic cosets modulo n , therefore p `At is also another union
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of q -cyclotomic cosets modulo n , for any t in {0; 1; · · · ; s − 1} and for any ` in

{0; 1; · · · ; r −1}. Hence, p `A ∈ℜn (q , s ) for any 0≤ ` < r . From [10, Theorems 3.4, 3.5

and 3.8], we have the following result.

Lemma 5.2.1. For any cyclic serial code C over R of length n, there is a unique (s +

1)-tuple (A0,A1, · · · ,As ) inℜn (q , s ) such that

Ψ(C ) =
s−1
⊕

t =0

θ t



Ω(At )
�

=

®¨

θ t
s
∏

a=t +1

Ω(Aa ) : 0≤ t ≤ s −1

«¸

. (5.7)

Moreover, Ψ(C ⊥0) =
s−1
⊕

t =0
θ t



Ω(−As−t )
�

.

Let A be a union of q -cyclotomic cosets modulo n . From now on, we will con-

sider the code

C (A) =
�

c ∈R n : Ω(A) divides Ψ(c)
	

, (5.8)

thus it is clear that Ψ(C (A)) =



Ω(A)
�

.

Remark 5.2.1. Free cyclic serial codes over a finite chain ring have been studied in

[11] using the cyclotomic cosets and the trace map. Note that C ([|0; n −1|]) = {0}
andC (;) = R n . From Lemma 5.2.1, for any free cyclic serial code C of length n over

R there exists a unique set A which is a union of q -cyclotomic cosets modulo n such

that C = C (A). Moreover, C (A)⊥0 = C
�

−A
�

, the generator polynomial of C (A) is

Ω(A), and rankR (C (A)) = |A|.

Proposition 5.2.1. If A and B are unions of q -cyclotomic cosets modulo n, then

1. A⊆B if and onlyC (A)⊆C (B);

2. C (A∩B) =C (A)∩C (B), andC (A∪B) =C (A)+C (B);

3. σ` (C (A)) =C
�

p `A
�

andC (A)⊥` =C
�

−p `A
�

, for all 0≤ `≤ r −1.

Proof. Item (1) follows from the definition ofC (A) andC (B) and the fact that A⊆B

if and only Ω(B) divides Ω(A). To prove (2), we note that since A∩B⊆A⊆A∪B, and

A∩B⊆B⊆A∪B, from item (1), we haveC (A∩B)⊆C (A)∩C (B) andC (A)+C (B)⊆
C (A∪B). Conversely, if c ∈ C (A)∩C (B) then Ω(A) and Ω(B) divide Ψ(c). Thus
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lcm(Ω(A) , Ω(B)) divides Ψ(c). Now, lcm(Ω(A) , Ω(B)) = Ω(A∪B) = Ω(A∩B), so

we have C (A)∩C (B) ⊆ C (A∩B). Since gcd(Ω(A) , Ω(B)) = Ω(A∩B) = Ω(A∪B),

hence C (A)+C (B) ⊇ C (A∪B). To finish with the proof of the item (3), we have

σ` (C (A)) =
�

c ∈R n : σ`
�

Ω(A)
�

divides Ψ(c)
	

, thus σ` (C (A)) = C
�

p `A
�

, since

σ`
�

Ω(A)
�

=Ω(p `A). Finally, for any 0≤ `≤ r −1 we have

C (A)⊥` =
�

σ` (C (A))
�⊥0 , from Proposition 2.2.3;

=
�

C
�

p `A
��⊥0 ;

= C
�

−p `A
�

, from Remark 5.2.1.

5.3 | Galois hulls of cyclic serial codes

Let A = (A0,A1, . . . ,As ) and B = (B0, B1, . . . , Bs ) be elements in ℜn (q , s ). We will

define the following set in R n

C(A) =
s−1
⊕

t =0

θ tC (At ).

Taking into account the map Ψ in Equation (5.6) and from [10, Theorem 3.4], it fol-

lows that C(A) is a direct sum of cyclic serial codes of length n over R . Therefore,

C(A) is a cyclic serial code of length n over R . The parameters of C(A) are given by

the entries in (|A0|, |A1|, · · · , |As |) and from Lemma 5.2.1 it follows that for any cyclic

serial code C over R of length n , there is a unique A inℜn (q , s ) such that C =C(A).

Thus A is called the defining multiset of C(A).

Let us denote by

A�= (As ,As−1, . . . ,A0), AtB = (E0, E1, . . . , Es )

where E0 =A0∪B0, and Et = (At ∪Bt )\
�

t−1
⋃

i=0
(Ai ∪Bi )

�

for all 0< t ≤ s . It is easy to

see that A� and AtB are inℜn (q , s ). Moreover, C ⊥` = C(−p `A�), and dimq (C ) =
s−1
∑

t =0
(s − t )|At |. Note that if AuB = (A� tB�)� = (E0, E1, · · · , Es ), then Es = As ∪Bs

and Es−t = (As−t ∪Bs−t )\
�

t−1
⋃

i=0
(As−i ∪Bs−i )

�

, for all 0< t ≤ s . .
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Proposition 5.3.1. [11, Theorem 6] Let A = (A0,A1, . . . ,As ) and B = (B0, B1, . . . , Bs )

inℜn (q , s ). Then C(A)+C(B) =C(AtB) and C(A)∩C(B) =C(AuB).

Corollary 8. Let A = (A0,A1, . . . ,As ) and B = (B0, B1, . . . , Bs ) inℜn (q , s ), and define

g t =
s
∏

a=t +1
Ω(Aa ) and ht =

s
∏

a=t +1
Ω(Ba ), for all 0≤ t < s . Then

1. Ψ (C(A)) =



{θ t g t (x ) : 0≤ t < s }
�

, and Ψ (C(B)) =



{θ t ht (x ) : 0≤ t < s }
�

;

2. Ψ (C(AuB)) =



{θ tlcm(g t , ht ) : 0≤ t < s }
�

.

Proof. We have A u B = (E0, E1, . . . , Es ), where Es = As ∪ Bs and Es−t =

(As−t ∪Bs−t )\
�

t−1
⋃

i=0
(As−i ∪Bs−i )

�

, for all 0< t ≤ s . From Lemma 5.2.1 it follows that

Ψ (C(A)) =



{θ t g t (x ) : 0≤ t < s }
�

, and Ψ (C(B)) =



{θ t ht (x ) : 0≤ t < s }
�

. Since

Ψ (C(AuB)) = Ψ (C(A))∩Ψ (C(B)), using again Lemma 5.2.1 and Proposition 5.3.1

it follows that

Ψ (C(AuB)) =



f0(x ),θ f1(x ), . . . ,θ s−1 fs−1(x )
�

,

where ft =
s
∏

a=t +1
Ω(Ea ). Thus for all 0 ≤ t < s , ft = Ω

�

s
⋃

a=t +1
Ea

�

and
s
⋃

a=t +1
Ea =

s
⋃

a=t +1
(As−t−1∪Bs−t−1). Then ft =Ω

�

s
⋃

a=t +1
(As−t−1∪Bs−t−1)

�

=lcm(g t , ht ).

Theorem 26. Let A inℜn (q , s ). Then

H`(C(A)) =C
�

Au −p `A�
�

. (5.9)

Proof. Let A inℜn (q , s ) and 0≤ ` < r . We have

H`(C(A)) = C(A)∩C(A)⊥` , from Definition 2.2.7 ;

= C(A)∩C(−p `A�), since C(A)⊥` =C(−p `A�);

= C
�

Au −p `A�
�

, from Proposition 5.3.1.

Example 5.3.1. Let R = Z2a [θ ] with 1 ≤ a ≤ 2 be the finite chain ring of param-

eters (2, a , 1, e , 2). Consider the 2-cyclotomic cosets modulo 7 given by û2({0}) =
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{0},û2({1}) = {1; 2; 4}, and û2({3}) = {3; 5; 6}. Note that
�

û2({1}),û2({3})
	

is an asym-

metric set, and û2({0}) is a symmetric set. Consider the cyclic serial code over R of

length 7 with defining multiset A = (û2({0}),û2({3}),û2({1})).

Then −A� = (û2({3}),û2({1}),û2({0})) , and C(A) = C (û2({0})) ⊕ θC (û2({3})).

Thus C(A)⊥0 = C(−A�) = C (û2({3})) ⊕ θC (û2({1})). Finally, A u −A� =

(F0, F1, F2) where F0 = ;, F1 = û2({3}), and F2 = û2({0; 1}). ThereforeH0(C(A)) =

C(Au −A�) =C(;,û2({3}),û2({0; 1})) = θC (û2({3})).

5.3.1 | Euclidean hulls

From now on, ` = 0. The following result provides us a way of checking whether

a given cyclic serial code D is the Euclidean hull of a cyclic code C or not. Of

course, if H0(C ) = D , then D is a serial cyclic code if, and only if C is also a se-

rial code. In the sequel, for each X = (X0, X1, · · · , Xs ) ∈ ℜn (q , s ), we will denote

Ω(Xa ) = ∂
�

((x
(a )
i l )◦),((y

(a )
j h )•),((z

(a )
j h )•)

�

, for a in {0; 1; · · · ; s }. Thus Ω(−Xa ) =

∂
�

((x
(a )
i l )◦),((z

(a )
j h )•),((y

(a )
j h )•)

�

, and from Equation 5.6, we have for 0≤ t ≤ s −1,

s
∏

a=t +1

Ω(Xa ) = ∂

���

s
∑

a=t +1

x
(a )
i l

�◦�

,

��

s
∑

a=t +1

y
(a )
j h

�•�

,

��

s
∑

a=t +1

z
(a )
j h

�•��

.

Since ∂ (((1)◦),((1)•),((1))•) = X n −1 = g0 ·∂ (((x
(0)
i l )◦),((y

(0)
j h )•),((z

(0)
j h )•)),

it follows that
s
∑

a=0

x
(a )
i l =

s
∑

a=0

y
(a )
j h =

s
∑

a=0

z
(a )
j h = 1.

From Eqs. (5.5) and (5.7), there exists a unique
�

(((x
(a )
i l )0≤a<s )

◦),(((y
(a )
j h )0≤a<s )

•),(((z
(a )
j h )0≤a<s )

•)
�

in En (q , s ) such that

Ψ(C(X)) =

®¨

θ t ·∂

���

s
∑

a=t +1

x
(a )
i l

�◦�

,

��

s
∑

a=t +1

y
(a )
j h

�•�

,

��

s
∑

a=t +1

z
(a )
j h

�•��

: 0≤ t ≤ s −1

«¸

.

From Eqs. (5.4), (5.5), and (5.7), the following lemma follows.

Lemma 5.3.1. There is a bijection between the set C (n ; R ) of cyclic serial codes of

length n over R and the set En (q , s ).
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When `= 0, and with the triple-sequence of a cyclic serial code, by comparing

the two sides of Equation (5.9) in Theorem 26, the following result is obtained.

Corollary 9. Let

�

(((x
(a )
i l )0≤a<2)

◦),(((y
(a )
j h )0≤a<2)

•),(((z
(a )
j h )0≤a<2)

•)
�

and
�

(((u
(a )
i l )0≤a<2)

◦),(((v
(a )
j h )0≤a<2)

•),(((w
(a )
j h )0≤a<2)

•)
�

in En (q , s ) such that

Ψ(C ) =

®¨

θ t ·∂

���

s
∑

a=t +1

x
(a )
i l

�◦�

,

��

s
∑

a=t +1

y
(a )
j h

�•�

,

��

s
∑

a=t +1

z
(a )
j h

�•��

: 0≤ t ≤ s −1

«¸

,

and

Ψ(D ) =

®¨

θ t ·∂

���

s
∑

a=t +1

u
(a )
i l

�◦�

,

��

s
∑

a=t +1

v
(a )
j h

�◦�

,

��

s
∑

a=t +1

w
(a )
j h

�◦��

: 0≤ t ≤ s −1

«¸

.

ThenH0(C ) = D if, and only if for all 0≤ t ≤ s −1,































s
∑

a=t +1
u
(a )
i l = max

�

s
∑

a=t +1
x
(a )
i l ;

s
∑

a=t +1
x
(s−a )
i l

�

;

s
∑

a=t +1
v
(a )
j h = max

�

s
∑

a=t +1
y
(a )
j h ;

s
∑

a=t +1
z
(s−a )
j h

�

;

s
∑

a=t +1
w

(a )
j h = max

�

s
∑

a=t +1
z
(a )
j h ;

s
∑

a=t +1
y
(s−a )
j h

�

.

(5.10)

In such a case, for all 0≤ t ≤ s −1, if 2t ≤ s −1, then

s
∑

a=t +1

u
(a )
i l = max

¨

s
∑

a=t +1

x
(a )
i l ;

s
∑

a=t +1

x
(s−a )
i l

«

= 1,

and
�

s
∑

a=t +1

v
(a )
j h ;

s
∑

a=t +1

w
(a )
j h

�

∈ {(1; 0),(0; 1),(1; 1)},

since
s
∑

a=0
x
(a )
i l = 1.
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From Corollary 9, we recover the characterization of LCD cyclic codes and of

self-orthogonal cyclic codes in [17, Theorem 3.4, and Corollaries 3.5 and 3.6] and we

naturally extend it to finite chain rings of nilpotency index 2. The following remark

provides this generalization.

Remark 5.3.1. Let

�

(((x
(a )
i l )0≤a<2)

◦),(((y
(a )
j h )0≤a<2)

•),(((z
(a )
j h )0≤a<2)

•)
�

and
�

(((u
(a )
i l )0≤a<2)

◦),(((v
(a )
j h )0≤a<2)

•),(((w
(a )
j h )0≤a<2)

•)
�

in En (q , 2) such that

Ψ(C ) =
Dn

∂
�

((x
(1)
i l + x

(2)
i l )◦),((y

(1)
j h + y

(2)
j h )•),((z

(1)
j h + z

(2)
j h )•)

�

,θ ·∂
�

((x
(2)
i l )◦),((y

(2)
j h )•),((z

(2)
j h )•)

�oE

,

and

Ψ(D ) =
Dn

∂
�

((u
(1)
i l +u

(2)
i l )◦),((v

(1)
j h + v

(2)
j h )•),((w

(1)
j h )•+w

(2)
j h )•)

�

,θ ·∂
�

((u
(2)
i l )◦),((v

(2)
j h )•),((w

(2)
j h )•)

�oE

.

Then H0(C ) = D if, and only if (x
(1)
i l ; x

(2)
i l ) ∈

(

{(0; 1)}, if u
(2)
i l = 0;

{(0; 0),(1; 0)}, if u
(2)
i l = 1,

and

(y
(1)
j h ; y

(2)
j h ; z

(1)
j h ; z

(2)
j h ) belongs to











































{(0; 0; 0; 0),(1; 0; 1; 0)}, if (u
(1)
i l +u

(2)
i l ; v

(1)
j h + v

(2)
j h ; w

(1)
j h +w

(2)
j h ; v

(2)
j h ; w

(2)
j h ) = (1; 1; 1; 1; 1);

{(0; 1; 1; 0),(1; 0; 1; 1)}, if (u
(1)
i l +u

(2)
i l ; v

(1)
j h + v

(2)
j h ; w

(1)
j h +w

(2)
j h ; v

(2)
j h ; w

(2)
j h ) = (1; 1; 1; 0; 1);

{(0; 1; 0; 0),(1; 0; 0; 1)}, if (u
(1)
i l +u

(2)
i l ; v

(1)
j h + v

(2)
j h ; w

(1)
j h +w

(2)
j h ; v

(2)
j h ; w

(2)
j h ) = (1; 1; 1; 1; 0);

{(1; 0; 0; 0)}, if (u
(1)
i l +u

(2)
i l ; v

(1)
j h + v

(2)
j h ; w

(1)
j h +w

(2)
j h ; v

(2)
j h ; w

(2)
j h ) = (1; 1; 0; 1; 0);

{(0; 0; 1; 0)}, if (u
(1)
i l +u

(2)
i l ; v

(1)
j h + v

(2)
j h ; w

(1)
j h +w

(2)
j h ; v

(2)
j h ; w

(2)
j h ) = (1; 0; 1; 0; 1);

{(0; 1; 0; 1)}, if (u
(1)
i l +u

(2)
i l ; v

(1)
j h + v

(2)
j h ; w

(1)
j h +w

(2)
j h ; v

(2)
j h ; w

(2)
j h ) = (1; 1; 1; 0; 0),

for all i , l , j , h. Moreover,

1. C is LCD if, and only if x
(2)
i l = x

(1)
i l , y

(2)
j h = y

(1)
j h , z

(2)
j h = z

(1)
j h and

(x
(2)
i l ; y

(2)
j h ; z

(2)
j h ) ∈ {(0; 0; 0),(0; 1; 1),(1; 0; 0),(1; 1; 1)}, for all i , l , j , h.
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2. C is self-orthogonal if, and only if (x
(2)
i l ; x

(1)
i l ) ∈ {(0; 1),(1; 0)} and

(y
(2)
j h ; y

(1)
j h ; z

(2)
j h ; z

(1)
j h ) ∈ {(1; 0; 1; 0),(0; 1; 1; 0),(1; 0; 0; 1),(1; 0; 0; 0),(0; 0; 1; 0),(0; 1; 0; 1)},

for all i , l , j , h.

Note that Corollary 9 is insufficient to characterize the nontrivial self-dual cyclic

codes over R when s is even (see [10, Theorem 4.4]).

5.4 | The q -dimensions of Euclidean hulls of

cyclic serial codes

In this section, C is a cyclic serial code of length n over R with triple-sequence
�

(((x
(a )
i l )0≤a<s )

◦),(((y
(a )
j h )0≤a<s )

•),(((z
(a )
j h )0≤a<s )

•)
�

in En (q , s ). Then

Ψ(C ) =

®¨

θ t ·∂

���

s
∑

a=t +1

x
(a )
i l

�◦�

,

��

s
∑

a=t +1

y
(a )
j h

�•�

,

��

s
∑

a=t +1

z
(a )
j h

�•��

: 0≤ t ≤ s −1

«¸

.

From Corollary 9,

Ψ (H0(C )) =

®¨

θ t ·∂

���

s
∑

a=t +1

u
(a )
i l

�◦�

,

��

s
∑

a=t +1

v
(a )
j h

�◦�

,

��

s
∑

a=t +1

w
(a )
j h

�◦��

: 0≤ t ≤ s −1

«¸

,

where






























s
∑

a=t +1
u
(a )
i l = 1−min

�

t
∑

a=0
x
(a )
i l ; 1−

s−t−1
∑

a=0
x
(a )
i l

�

;

s
∑

a=t +1
v
(a )
j h = 1−min

�

t
∑

a=0
y
(a )
j h ; 1−

s−t−1
∑

a=0
z
(a )
j h

�

;

s
∑

a=t +1
w

(a )
j h = 1−min

�

t
∑

a=0
z
(a )
j h ; 1−

s−t−1
∑

a=0
y
(a )
j h

�

,

for all 0 ≤ t ≤ s − 1. The following notations are important for the sequel of this

paper. For all 0≤ t ≤ s −1, 1≤ l ≤ γ(i ; q ) and 1≤ h ≤β( j ; q ), denote by:

ε
(t )
j h =

s
∑

a=t +1

(v
(a )
j h +w

(a )
j h ). (5.11)
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Note that ε
(−1)
j h = 2. Let us consider now

Íi l =
s−1
∑

t =0

(s − t )u
(t )
i l , and Î j h =

s−1
∑

t =0

(s − t )(ε
(t−1)
i l −ε(t )

i l ). (5.12)

Obviously, Íi l =
s−1
∑

t =0
Í(t )

i l , where Í(t )
i l = min

�

t
∑

a=0
x
(a )
i l ; 1−

s−t−1
∑

a=0
x
(a )
i l

�

, and Î j h =

s−1
∑

t =0
Î(t )

j h , where

Î(t )
j h = min

¨

t
∑

a=0

y
(a )
j h ; 1−

s−t−1
∑

a=0

z
(a )
j h

«

+min

¨

t
∑

a=0

z
(a )
j h ; 1−

s−t−1
∑

a=0

y
(a )
j h

«

.

Thus, we set Íi :=
γ(i ;q )
∑

l=1
Íi l , ε

(t )
j :=

β( j ;q )
∑

h=1
ε
(t )
j h and Î j :=

β( j ;q )
∑

h=1
Î j h .

Remark 5.4.1. Let 0≤ t ≤ s −1.

1. Í(t )
i l ∈ {0; 1} and Î(t )

j h ∈ {0; 1; 2}.

2. If 0< t < s , then Í(t−1)
i l ≤Í(t )

i l and Î(t−1)
j h ≤Î(t )

j h .

3. If 2t < s , then Í(t )
i l = 0 and Î(t )

j h ≤ 1.

Lemma 5.4.1. Let j be a divisor of n such that j 6∈ Nq . Then

(

0≤ ε(t−1)
j −ε(t )

j ≤β( j ; q )− (ε(t−2)
j −ε(t−1)

j ), if t <
�

s
2

�

;

0≤ ε(t−1)
j −ε(t )

j ≤ 2
�

β( j ; q )− (ε(t−2)
j −ε(t−1)

j )
�

, if t ≥
�

s
2

�

.

Proof. Let 0 ≤ t ≤ s − 1 and Î(t )
j =

β( j ;q )
∑

h=1
Î(t )

j h . We have ε
(t )
j h = 2−Î(t )

j h . From

Remark 5.4.1, two cases are considered. Let $
(t−1)
j := |{h ∈ N : 1 ≤ h ≤

β( j ; q ) and ε
(t−1)
j h = ε

(t )
j h = 1}|. Then there is a permutation τ in Sβ( j ;q ) such that

ε
(t−1)
j h = ε

(t )
j h = 1, for all h ∈ {τ(1), · · · ,τ($(t−1)

j )}. Obviously, ε
(t−2)
j ≤ 2β( j ; q ). For

that ε
(t−2)
j −ε(t−1)

j ≤$(t−1)
j .
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Case 1: t <
�

s
2

�

. We have ε
(t )
j h ∈ {1; 2}, and

(

ε
(t−1)
j h −ε(t )

j h ∈ {0; 1}, if ε
(t−1)
j h = 2;

ε
(t )
j h = ε(t−1), if ε

(t−1)
j h = 1.

Thus

ε
(t−1)
j −ε(t )

j =







∑

h∈{τ(1),··· ,τ($(t−1)
j )}

(ε
(t−1)
j h −ε(t )

j h )







+







∑

h∈{τ($(t−1)
j +1),··· ,τ(β( j ;q ))}

(ε
(t−1)
j h −ε(t )

j h )






;

= 0+







∑

h∈{τ($(t−1)
j +1),··· ,τ(β( j ;q ))}

(ε
(t−1)
j h −ε(t )

j h )






, since 0≤ ε(t−1)

j h −ε(t )
j h ≤ 1.

Hence 0≤ ε(t−1)
j −ε(t )

j ≤β( j ; q )−$(t−1)
j ≤β( j ; q )− (ε(t−2)

j −ε(t−1)
j ).

Case 2: t ≥
�

s
2

�

. We have

(

ε
(t−1)
j h −ε(t )

j h ∈ {0; 1; 2}, if ε
(t−1)
j h ∈ {1; 2};

ε
(t )
j h = ε

(t−1)
j h , if ε

(t−1)
j h = 0.

Thus

ε
(t−1)
j −ε(t )

j =







∑

h∈{τ(1),··· ,τ($(t−1)
j )}

(ε
(t−1)
j h −ε(t )

j h )







+







∑

h∈{τ($(t−1)
j +1),··· ,τ(β( j ;q ))}

(ε
(t−1)
j h −ε(t )

j h )






;

= 0+







∑

h∈{τ($(t−1)
j +1),··· ,τ(β( j ;q ))}

(ε
(t−1)
j h −ε(t )

j h )






, since 0≤ ε(t−1)

j h −ε(t )
j h ≤ 2.

Therefore 0 ≤ ε
(t−1)
j − ε(t )

j ≤ 2(β( j ; q ) − $(t−1)
j ) ≤

2
�

β( j ; q )− (ε(t−2)
j −ε(t−1)

j )
�

.
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Theorem 27. The parameters of the Euclidean hull of a cyclic serial code over R of

length n are given by (k0, k1, · · · , ks−1) where 2k0 +k1 + · · ·+ks−1 ≤ n,

kt =
∑

i |n
i∈Nq

ordi (q ) ·u (t )
i +

∑

j |n
i 6∈Nq

ord j (q ) ·ν(t )
j ,

with

(

u
(t )
i = 0, if t <

�

s
2

�

;

0≤ u
(t )
i ≤ γ(i ; q ), if t ≥

�

s
2

�

,
, and















ε
(t )
j = 0, if n ∈Nq ;

0≤ ν(t )
j ≤β( j ; q )−ν(t−1)

j , if n 6∈ Nq , and t <
�

s
2

�

;

0≤ ν(t )
j ≤ 2(β( j ; q )−ν(t−1)

j ), if n 6∈ Nq , and t ≥
�

s
2

�

.

Moreover ν
(−1)
j = 0.

Proof. Let (k0, k1, · · · , ks−1) be the parameters of H0(C ). When H0(C ) = C , we

have 2k0 +k1 + · · ·+ks−1 ≤ n . Then for all 0≤ t ≤ s −1,

kt = deg

�

∂

���

s
∑

a=t

u
(a )
i l

�◦�

,

��

s
∑

a=t

v
(a )
i j

�◦�

,

��

s
∑

a=t

w
(a )
j h

�◦���

−deg

�

∂

���

s
∑

a=t +1

u
(a )
i l

�◦�

,

��

s
∑

a=t +1

v
(a )
j h

�◦�

,

��

s
∑

a=t +1

w
(a )
j h

�◦���

;

=
∑

i |n
i∈Nq

ordi (q ) ·u (t )
i +

∑

j |n
i 6∈Nq

ord j (q ) · (ε(t−1)
j −ε(t )

j ), where u
(t )
i =

γ(i ;q )
∑

l=1

u
(t )
i l .

Since

(

u
(t )
i = 0, if t <

�

s
2

�

;

0≤ u
(t )
i ≤ γ(i ; q ), if t ≥

�

s
2

�

,
, it follows that

(

u
(t )
i = 0, if 2t < s ;

0≤ u
(t )
i ≤ γ(i ; q ), if s ≤ 2t .

On the other hand, one notes that if n ∈ Nq ,

then any positive divisor of n is in thenNq . By Lemma 5.4.1, we obtain















ε
(t )
j = 0, if n ∈Nq ;

0≤ ν(t )
j ≤β( j ; q )−ν(t−1)

j , if n 6∈ Nq , and t <
�

s
2

�

;

0≤ ν(t )
j ≤ 2(β( j ; q )−ν(t−1)

j ), if n 6∈ Nq , and t ≥
�

s
2

�

.

where ν
(t )
j = ε

(t−1)
j −ε(t )

j . Obviously ν
(−1)
j = ε

(−2)
j −ε(−1)

j = 0.
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The previous discussion leads to the Algorithm 1 and justifies its correctness. Ex-

amples 5.4.1, 5.4.2, 5.4.3 show different outputs of the algorithm.

Example 5.4.1. All possible parameters of Euclidean hulls of cyclic codes of length 11

over Z27 are determined as follows.

1. The divisors of 11 are 1 and 11.

a) We have 1 ∈N3, so ord1(3) = 1 and γ(1; 3) = 1.

b) We have 11 6∈ N3, so ord11(3) = 5 and β(11; 3) = 1.

2. It follows that

k0 = 5ν
(0)
11 , where 0≤ ν(0)

11 ≤ 1

k1 = 5ν
(1)
11 , where 0≤ ν(1)

11 ≤ 1−ν(0)
11

k2 = u
(2)
1 +5ν

(2)
11 where 0≤ u

(2)
1 ≤ 1 and 0≤ ν(2)

11 ≤ 2(1−ν(1)
11 ).

Hence, the all possible parameters (k0, k1, k2) of the Euclidean hulls of cyclic

codes of length 7 over Z8 are given in the following table

k0 k1 k2

0 0 0, 1, 5, 6, 10, 11

5 0, 1

5 0 0, 1

Example 5.4.2. All the possible parameters (k0, k1, k2) of the Euclidean hull of a cyclic

code of length 7 over Z8 are determined as follows.

1. The divisors of 7 are 1 and 7.

a) We have 1 ∈N2, so ord1(2) = 1 and γ(1; 2) = 1.

b) We have 7 6∈ N2, so ord7(2) = 3 and β(7; 2) = 1.

2. It follows that

k0 = 3ν
(0)
7 , where 0≤ ν(0)

7 ≤ 1

k1 = 3ν
(1)
7 , where 0≤ ν(1)

7 ≤ 1−ν(0)
7

k2 = u
(2)
1 +3ν

(2)
7 where 0≤ u

(2)
1 ≤ 1 and 0≤ ν(2)

7 ≤ 2(1−ν(1)
7 ).
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Algorithm 2: Parameters of the Euclidean hull of a cyclic serial code over R .

Input: Length n , and a finite chain ring R of parameters (p , a , r , e , s ) such
that gcd(p , n) = 1.

Output: All possible s -tuples (k0, k1, · · · , ks−1) describing the parameters of
the Euclidean hull of a cyclic serial code

1 . if n ∈Nq then
2 for 0≤ t < s do
3 if t <

�

s
2

�

then
4 kt = 0.
5 else
6 For each i |n , compute ordi (q ), and γ(i ; q ),
7 therefore all the possible values of kt , such that

kt =
∑

i |n
i∈Nq

ordi (q ) ·u (t )
i ,

with 0≤ u
(t )
i ≤ γ(i ; q ).

8 return The possible parameters (0, · · · , 0, kd s2 e, · · · , ks−1) such that

kd s2 e+ · · ·+ks−1 ≤ n.

9 else
10 For each i |n , if i ∈Nq , then compute ordi (q ), and γ(i ; q ).
11 For each j |n , if j 6∈ Nq , then compute ord j (q ), and β( j ; q ).
12 for 0≤ t < s , do
13 if t = 0 then

14 compute k0 =
∑

j |n
i 6∈Nq

ord j (q ) ·ν(0)
j , where 0≤ ν(0)

j ≤β( j ; q )

15 else
16 while 0< t <

�

s
2

�

do

17 For a fixed ν
(t−1)
j in kt−1, compute kt =

∑

j |n
i 6∈Nq

ord j (q ) ·ν(t )
j ,

where 0≤ ν(t )
j ≤β( j ; q )−ν(t−1)

j ,

18 if 2k0 +k1 + · · ·+kt ≤ n then
19 consider kt ,
20 else
21 reject kt

22 while t ≥
�

s
2

�

do

23 For a fixed ν
(t−1)
j in kt−1, compute

kt =
∑

i |n
i∈Nq

ordi (q ) ·u (t )
i +

∑

j |n
i 6∈Nq

ord j (q ) ·ν(t )
j , where

0≤ u
(t )
i ≤ γ(i ; q ) and 0≤ ν(t )

j ≤ 2 · (β( j ; q )−ν(t−1)
j ).

24 if 2k0 +k1 + · · ·+kt ≤ n then
25 consider kt ,
26 else
27 reject kt

28 return The possible parameters (k0, k1, · · · , ks−1) describing the Euclidean
hull of a cyclic serial code.
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Hence, the all possible parameters (k0, k1, k2) of the Euclidean hulls of cyclic

codes of length 7 over Z8 are given in the following table

k0 k1 k2

0 0 0, 1, 3, 4, 6, 7

3 0, 1

3 0 0, 1

Example 5.4.3. The parameters of the Euclidean hulls of cyclic codes of length 21 over

Z8 are given by

1. The divisors of 21 are {1, 3, 7, 21}.

(a) 1; 3 ∈N2, we have ord1(2) = 1,ord3(2) = 2 and γ(1; 2) = γ(3; 2) = 1.

(b) 7; 21 6∈ N2, we have ord7(2) = 3,ord21(2) = 6 and β(7; 2) = β(21; 2) =

1.

2. It follows that

k0 = 3ν
(0)
7 +6ν

(0)
21 , with 0≤ ν(0)

j ≤ 1, where j ∈ {7; 21}.

k1 = 3ν
(1)
7 +6ν

(1)
21 , with 0≤ ν(1)

j ≤ 1−ν(0)
j , where j ∈ {7; 21}.

k2 = u
(2)
1 +2u

(2)
3 +3ν

(2)
7 +6ν

(2)
21 , with 0≤ u

(2)
i ≤ 1 and 0≤ ν(2)

j ≤ 2(1−ν(1)
j ),

where i ∈ {1; 3}, and j ∈ {7; 21}.

Hence, the all possible parameters (k0, k1, k2) of the Euclidean hulls of cyclic

codes of length 21 over Z8 are given in the following table
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k0 k1 k2

0 0 0, 1, 2, 3, · · · , 21

3 0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15

6 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

9 0, 1, 2, 3

3 0 0, 1, 3, · · · , 15

6 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

6 0 0, 1, 3, · · · , 9

3 0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15

9 0 0, 1, 2, 3

Corollary 10. The set ℵ(n , s , q ) of q -dimensions of the Euclidean hull of a cyclic se-

rial code of length n over R , is given by

ℵ(n , s , q ) =















∑

i |n
i∈Nq

ordi (q )

 

γ(i ;q )
∑

l=1

Íi l

!

+
∑

j |n
i 6∈Nq

ord j (q )

 

β( j ;q )
∑

h=1

Î j h

!

|
0≤Íi l≤ s −

�

s
2

�

0≤Î j h ≤ s















.

Proof. Let C be a cyclic serial code of length n over R with triple-sequence
�

(((x
(a )
i l )0≤a<s )

◦),(((y
(a )
j h )0≤a<s )

•),(((z
(a )
j h )0≤a<s )

•)
�

in En (q , s ). From Theorem 27, the parameters (k0, k1, · · · , ks−1) ofH0(C ) where for

all 0≤ t ≤ s −1,

kt =
∑

i |n
i∈Nq

ordi (q ) ·

 

γ(i ;q )
∑

i=1

u
(t )
i l

!

+
∑

j |n
i 6∈Nq

ord j (q ) ·

 

β( j ;q )
∑

h=1

(ε
(t−1)
j h −ε(t )

j h )

!

.

Thus the q -dimension ofH0(C ) is
s−1
∑

t =0
(s − t )kt . It follows that

dimq (C ) =
∑

i |n
i∈Nq

ordi (q ) ·

 

γ(i ;q )
∑

i=1

Íi l

!

+
∑

j |n
i 6∈Nq

ord j (q ) ·

 

β( j ;q )
∑

h=1

Î j h

!

.

From Remark 5.4.1,

Íi l =
s−1
∑

t =0

Í(t )
i l =

s−1
∑

t =d s2 e
Í(t )

i l ≤ s −
l s

2

m

,
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and if j ∈Nq then Î j = 0. Otherwise,

Î j h =
s−1
∑

t =0

Î(t )
j h =

d s2 e−1
∑

t =0

Î(t )
j h +

s−1
∑

t =d s2 e
Î(t )

j h ≤ max
0≤b≤s−d s2 e

n�l s

2

m

+ b
�

+2
�

s −
l s

2

m

−b
�o

= s .

5.5 | The average q -dimension

We will denote byC (n ; R ) the set of all cyclic serial codes over length n over R . The

average q -dimension of the Euclidean hull of cyclic of length n over R is

ER (n) =
∑

C ∈C (n ;R )

dimq (H0(C ))

|C (n ; R )|
.

In this section, an explicit formula for ER (n) and bounds are given in terms of Bn ,q

where

Bn ,q =deg
∏

i |n
i∈Nq

 

γ(i ;q )
∏

l=1

Ω(Gi l )

!

=
∑

i |n
i∈Nq

φ(i ),

where Gi l are symmetric q -cyclotomic cosets modulo n of sizeord j (q ), as defined

in (5.4).

Consider the maps

Í: Es → N

(x (0), · · · , x (s−1)) 7→
s−1
∑

t =0
min

�

t
∑

a=0
x (a ); 1−

s−t−1
∑

a=0
x (a )

�

,
(5.13)

and Î : Es ×Es →N defined as

Î(y, z) =
s−1
∑

t =0

�

min

¨

t
∑

a=0

y (a ); 1−
s−t−1
∑

a=0

z (a )

«

+min

¨

t
∑

a=0

z (a ); 1−
s−t−1
∑

a=0

y (a )

«�

,

(5.14)

where (y, z) = ((y (0), · · · , y (s−1)),(z (0), · · · , z (s−1))).

Let τ ∈ℵ(n , s , q ) be an element in the set defined in Corollary 10. Then τ is the

q -dimension of the Euclidean hull of a cyclic serial code of length n over R . The

following result gives the number of cyclic serial codes of length n over R whose

Euclidean hulls have q -dimension τ.
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Proposition 5.5.1. Let n be a positive integer such that gcd(n , p ) = 1 and τ ∈
ℵ(n , s , q ) where ℵ(n , s , q ) is described in Corollary 10. The number ℘(n ,τ; R ) of

cyclic serial codes of length n over R whose Euclidean hulls have q -dimension τ is

given by:

℘(n ,τ; R ) =
∑

(((Íi l )◦),((Î j h )•))∈Υ (τ)







∏

i |n
i∈Nq

γ(i ;q )
∏

l=1

ψs (Íi l )















∏

j |n
j 6∈Nq

β( j ;q )
∏

h=1

ρs (Î j h )









,

where

ψs (Íi l ) = |{x ∈ Es :Í (x) =Íi l }|, ρs (Î j h ) = |{(y, z) ∈ Es ×Es : Î(y, z) =Î j h}|,

and

Υ (τ) =















(((Íi l )
◦),((Î j h )

•)) :
∑

i |n
i∈Nq

ordi (q )

 

γ(i ;q )
∑

l=1

Íi l

!

+
∑

j |n
i 6∈Nq

ord j (q )

 

β( j ;q )
∑

h=1

Î j h

!

= τ















.

The above expression of ER (n) =
∑

τ∈ℵ(n ,s ,q )

τ·℘(n ,τ;R )
|C ∈C (n ;R )| , might lead to a tedious

and lengthy computation. The remainder of the section will show an alternative

simpler expression for the expected value.

Lemma 5.5.1. Consider the random variableÍ defined in (5.13) with uniform prob-

ability. The expected value E(Í) is given by:

E(Í) =

�

s
2

� �

s −
�

s
2

��

s +1
=

¨

s 2

4(s+1) , if s even;
s−1

4 , if s odd.

Proof. Let t ∈ {0; 1; · · · ; s −1} and x = (x (0), · · · , x (s−1)) ∈ Es . Set

Í(t )
(x)

= min

¨

t
∑

a=0

x (a ); 1−
s−t−1
∑

a=0

x (a )

«

∈ {0; 1}.

Then Í(t )
(x)

= 1 if and only if 2t ≥ s and ,
t
∑

a=s−t
x
(a )
i l = 1. Thus for all η ∈N, we have

|{x ∈ Es :Í(t )
(x)

= η}|=

¨

2t − s +1, if t ≥
�

s
2

�

and η= 1;

0, otherwise.
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Therefore,

|{x ∈ Es :Í (x) = η}| =











s−1
∑

t =d s2 e
(2t − s +1), if η= s −

�

s
2

�

;

0, otherwise.

=

¨
�

s
2

� �

s −
�

s
2

��

, if η= s −
�

s
2

�

;

0, otherwise.

Since |Es |= s +1 and P({x ∈ Es :Í (x) = η}) = |{Í(x)=η}|
|Es | , it follows that,

E(Í) =
∑

η∈N

ηP({x ∈ Es :Í (x) = η}) =

�

s
2

� �

s −
�

s
2

��

s +1
.

Lemma 5.5.2. Consider the random variable Î : Es ×Es →N defined in (5.14) with

uniform distribution. The expected value E(Î) si given by

E(Î) =
s (2s +1)

3(s +1)
.

Proof. From Corollary 10, for any (y, z) ∈ Es ×Es , 0≤Î(y, z)≤ s . Let

Es (η) = {(y, z) ∈ Es ×Es : Î(y, z) = η},

for 0≤η≤ s . Now,

|Es (η)|=

¨

2(η+1), if 0≤η≤ s −1;

s +1, if η= s .

Thus

E(Î) =
1

(s +1)2

s
∑

η=0

η|Es (η)|;

=
1

(s +1)2

 

s−1
∑

η=1

2η(η+1)+ s (s +1)

!

;

=
s (2s 2 +3s +1)

3(s +1)2
.
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Theorem 28. The average q -dimension of the Euclidean hull of cyclic serial codes

fromC (n ; R ) is

ER (n) =

( �

(2s+1)s
6(s+1)

�

n −
�

(s+2)s
12(s+1)

�

Bn ,q , if s even;
�

(2s+1)s
6(s+1)

�

n −
�

s 2+2s+3
12(s+1)

�

Bn ,q , if s odd.

where Bn ,q =
∑

i |n
i∈Nq

φ(i ).

Proof. Let Y be the random variable that takes as value dimq (H0(C )) when we

choose at random a cyclic serial code fromC (n ; R ) with uniform probability. Then

E(Y ) = ER (n). By Lemma 5.3.1, there exists an one-to-one correspondence be-

tween C (n ; R ), and En (q , s ). Therefore, choosing a cyclic serial code C from

C (n , R ) their probabilities are identical. By Corollary 10, we obtain

Y =
∑

i |n
i∈Nq

ordi (q )

 

γ(i ;q )
∑

l=1

Íi l

!

+
∑

j |n
i 6∈Nq

ord j (q )

 

β( j ;q )
∑

h=1

Î j h

!

.

For all i and j dividing n such that i ∈Nq and j 6∈ Nq , from Lemmas 5.5.1 and 5.5.2,

we note that E(Íi l ) =E(Í) and E(Î j h ) =E(Î). So, we get

E(Y ) =
∑

i |n
i∈Nq

ordi (q )

 

γ(i ;q )
∑

l=1

E(Í)

!

+
∑

j |n
i 6∈Nq

ord j (q )

 

β( j ;q )
∑

h=1

E(Î)

!

;

=
∑

i |n
i∈Nq

φ(i )E(Íi l )+
∑

j |n
i 6∈Nq

φ( j )

2
E(Î j h );

= Bn ,qE(Í)+
�n −Bn ,q

2

�

E(Î);

=
n

2
E(Î)−Bn ,q ·

�

1

2
E(Î)−E(Í)

�

.

From Lemmas 5.5.1 and 5.5.2, we have

ER (n) =

( �

(2s+1)s
6(s+1)

�

n −
�

(s+2)s
12(s+1)

�

Bn ,q , if s even;
�

(2s+1)s
6(s+1)

�

n −
�

s 2+2s+3
12(s+1)

�

Bn ,q , if s odd.
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From [34], we have Bn ,q = n if n ∈Nq and 1≤Bn ,q ≤ 2n
3 if n 6∈ Nq . Thus

� If n ∈Nq , then

ER (n) =

(

s 2n
4(s+1) , if s even;
n(s−1)

4 , if s odd.

� If n 6∈ Nq , then

( (5s+1)s n
18(s+1) ≤ER (n)≤ 2n(2s+1)s−(s+2)s

12(s+1) , if s even;
(5s 2+s−3)n

18(s+1) ≤ER (n)≤ 2n s (2s+1)−(s 2+2s+3)
12(s+1) , if s odd.

Remark 5.5.1. ER (n) grows at the same rate with n s as s and n is coprime with p

and tend to infinity. Thus, the upper limit of the sequence
�

ER (n)
s n

�

(s ,n)∈(N\{0})2

gcd(p ,n)=1

is at

most 1
3 and its its lower limit is at least 5

18 .
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6

Conclusions and future works

Summing up, during this dissertation we have focused on the hull and the dimen-

sion of the hull of cyclic codes. First we recalled some basic consepts and key re-

sults on cyclic codes over finite fields and rings, we gave the characterization of the

hull of cyclic codes in terms of their generator polynomials with respect to the Eu-

clidean inner product over finite fields and rings. We discussed recepectively about

the type of the hulls of cyclic codes over Fq and Z4 and we gave a formula of the

average q -dimensions of the hull of cyclic codes. We generalized the notion of the

hull of cyclic code over over Fq and Z4 to an arbitrary finite chain ring R . Moreover,

we explored some properties of hulls of cyclic serial codes over a fnite chain ring. As

special cases, we gave some results about LCD and self orthogonal codes. We pro-

vided an algorithm for computing all the possible parameters of the Euclidean hulls

of that codes and we gave an expression of the set ℵ(n , s , q ) of q -dimensions of the

Euclidean hulls of cyclic serial codes of length n over R . We determined the num-

ber ℘(n ,τ; R ) of cyclic serial codes of length n over finite chain rings having hulls

of a given q -dimension. Finaly, We established an alternative simpler expression of

ER (n), the average q -dimensions of the Euclidean hulls of cyclic serial codes over

finite chain rings with its upper and lower bounds. We showed that ER (n), grows

at the same rate with n s as n and s are coprime with p . Based on our survey and

study, now we present a few open directions for future investigation.

1. It would be an interesting problem to determine dual codes of constacyclic

codes over finite chain ring R and to study the hull of constacyclic codes R .
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2. Another interesting problem would be to study the properties the hulls of

repeated-root cyclic codes over finite chain rings.

3. It would be also interesting to study the hull of nnegacyclic serial codes over

finite chain rings.
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