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Abstract

In this thesis, we are interested in the study of LCD and formally self dual codes over finite
chain rings. Recently, it has been proven that a non free LCD code over finite local Frobenius
rings does not exist, which motivated and encouraged us to look for free LCD codes on these
rings. We have established necessary and sufficient conditions for which all free cyclic codes
defined over finite chain rings are LCD codes and this by using only algebraic properties
of positive integers which represent the length of these codes. Further, we have provided
necessary and sufficient conditions on the existence of non trivial self dual cyclic codes of
arbitrary lengths on finite chain rings. Moreover, several constructions of isodual cyclic
codes of length 2am over finite chain rings are given according to the factorization of the
polynomial xm − 1 . Although our work has mainly a theoretical motivation, we hope that
this study will serve as a basis on which results in information theory can be established.

Key-words : LCD codes, Self dual codes, Isodual codes, Chain rings, Principal ideal
rings.
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Notations

Symbol Meaning

N The set of natural numbers.

|A| The cardinality of the set A.

R A finite chain ring.

〈γ〉 The maximal ideal of R.

e The nilpotency index of γ.

Fq A finite field of q elements and the residue field of R.

Zm The residue ring of the integer ring Z modulo m.

a | b a divides b.

a - b a does not divide b.

2a ‖ n a is the highest power of 2 dividing n.

a ≡ b mod n a is congruent to b modulo n, ( (a− b) | n) .

ordn(q) The smallest integer l such that ql ≡ 1 mod n.

f ∗(x) The reciprocal polynomial of a polynomial f .

ξ A primitive 2a-th root of unity.

AT The transpose of a matrix A.

P A permutation matrix.
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Introduction

Rings form an important topic in Algebra, both pure and applied, from Number Theory to
Algebraic Geometry. Coding theory, on the other hand, is present in our daily life, from
mobile phones to flash memories. It is the art of protecting messages from a natural noise.
Constructing codes that are easy to encode and decode, can detect and correct many errors
and have a sufficiently large number of codewords is the principal aim of coding theory.
Rings can interact with codes in two fundamental ways. Firstly, the alphabet of the codes
can have a ring structure, a finite field, for instance. Secondly, the code itself can be an
ideal of, or a module over, some rings. Until the 1990s the usual alphabet chosen by coding
theorist was a finite field. Thereafter, it began the study of codes over rings. This study has
grown enormously since the seminal work of Hammons et al [33], which gives an arithmetic
explanation of the formal duality of Kerdock and Preparata’codes. They showed that some
of the best nonlinear codes over F2 can be viewed as linear codes over Z4. These findings
further motivated the study of codes over different classes of rings.

Linear complementary dual or LCD codes are linear codes that intersect with their dual
trivially. LCD codes have been widely applied in data storage, communications systems,
consumer electronics, and cryptography [12, 18, 28]. Carlet et al. [16, 17] and Bringer et
al. [15] used LCD codes in counter measures to side channel attacks and fault non invasive
attacks. Since then, a lot of works has been devoted to constructing LCD codes. In [43],
Li et al. constructed several families of Euclidean LCD cyclic codes over finite fields and
analyzed their parameters. In [44] Li et al. studied two special families of LCD BCH codes.
Mesnager et al. [55] presented a construction of algebraic geometry Euclidean LCD codes.
In [18], Carlet et al. completely determined all q-ary (q > 3) and q2-ary (q > 2) Euclidean
LCD codes. In their most recent paper, Carlet et al. [19] introduced the concept of linear
codes with σ complementary dual (σ−LCD), which includes known Euclidien LCD codes,
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Hermitian LCD codes, and Galois LCD codes. Their results extend those on the classical
LCD codes and show that σ− LCD codes allow the construction of linear complementary
pairs of codes more easily and with more flexibility. An LCD code defined over a finite field
Fq was first introduced by Massey [53], he showed the existence of asymptotically good LCD
codes. In [62], Yang and Massey provided a necessary and sufficient condition under which
a cyclic code has a complementary dual. Later, Liu and Liu in [47] studied LCD codes over
finite chain rings and provided a necessary and sufficient condition for a free linear code to
be LCD. Recently, in [13], Bhowmnick et al. proved that there are no non-free LCD codes
over finite commutative local Frobenius rings. They were also shown that a free simple root
cyclic code C over any finite chain ring is LCD code if and only if C is reversible.

Formally self dual codes are also an important class of codes that have generated a lot
of interest since they have weight enumerators that are invariant under the MacWilliams
transform and sometimes have better parameters than self dual codes. This gives them a
potential for applications in areas such as invariant theory, lattices and designs [26]. Self dual
and isodual codes form a sub family of formally self dual codes. They have been studied over
a wide variety of rings, including finite fields, Galois rings, chain rings, and principal ideal
rings [22, 32, 56]. These last years, in [5–7, 9] the authors gave some specific constructions
of self dual and isodual codes over finite fields and finite chain rings. In [24, 27, 48], the
authors used the Chinese Remainder Theorem to generalize the structure of LCD and self
dual codes defined on chain rings to codes defined over principal ideal rings.

In this thesis we provide some new constructions of LCD, self dual and isodual cyclic
codes over finite chain rings. We summarize our realized works as follows: In Chapter 1,
we give a brief introduction with elementary definitions and properties of linear and cyclic
codes over finite fields and rings. Based on algebraic number theory properties, conditions
under which all free cyclic codes over finite chain rings are LCD codes are given in Chapter
2. In Chapter 3, we provide conditions on the existence of non trivial self dual cyclic codes
over finite chain rings of arbitrary lengths. In Chapter 4, some new constructions of free
isodual cyclic codes over finite chain rings are given. We finish this thesis with a conclusion,
some comments and possible directions for future research.



Chapter 1
Preliminaries

In this chapter, we have summarized some fundamental notions on error correcting codes
defined over finite fields and commutative rings. For more details we refer the reader to
consult the references [2, 14,23,34,37,46,49,51,59,61,63].

1 Basic Concepts of Codes over Finite Fields

In this section, we shall briefly recall some fundamental definitions in Coding Theory and
give some examples of codes over Fq, the finite field of order q. (see the Appendix). Since
some very interesting results can be obtained by simply taking any set as an alphabet. This
is how we will start by taking the most general definition of a code

Definition 1.1 Let A be any finite set. A code C over A of length n is a subset of An.

Coding theory is concerned with the following problem. Consider an information in the form
of sequences a1, a2, ..., am over a q-element set A. We wish to find a function f encoding
a1, a2, ..., am as another sequence b1, b2, ..., bn such that, if an error of specified type occurs
in the sequence (bi), the sequence (ai) can still be recovered. There should also be a readily
computable function g giving a1, a2, ..., am from b1, b2, ..., bn with possible errors.

In terms of classical coding theory, the elements of the code are called codewords and
the underlying set A is called an alphabet.

1.1 Weights and Distances

An important invariant of a code is the minimum distance between codewords. The principal
distance used in coding theory is known as the Hamming distance

1



1. BASIC CONCEPTS OF CODES OVER FINITE FIELDS 2

Definition 1.2 Let v = (v1, v2, ..., vn), w = (w1, w2, ..., wn) in An where A is any set. Then

the Hamming distance dH(v, w) is defined to be the number of coordinates in which v and w

differ.

dH(v, w) = |{i, |vi 6= wi}|

The minimum Hamming distance of a code C defined over A is the smallest distance between

distinct codewords of C

dH(C) = min{dH(v, w)|v, w ∈ C, v 6= w}

Definition 1.3 The Hamming weight wtH(v) of a vector v of An is the number of nonzero

coordinates in v.

wtH(v) = |{i|vi 6= 0}|

The minimum Hamming weight of a code C is

min{wtH(v)|v ∈ C, v 6= 0}

Example 1.1 Consider the code C = {c0, c1, c2, c3} where c0 = (00000), c1 = (10110), c2 =

(01011), c3 = (11101). Then

d(c0, c1) = 3, d(c0, c2) = 3, d(c0, c3) = 4, d(c1, c2) = 4, d(c1, c3) = 3, d(c2, c3) = 3

Hence, the minimum distance of C is d = 3.

During coding the channel, some sensitive letters of the received word can be badly transmit-
ted. The number of errors is the number of those letters and decoding the channel consists
of associating the received word to a word of C in order to find the initial submitted word.

Theorem 1.1 [51] Let C be a code over A of length n and minimum distance d, then

i. C has detection capability l = d− 1;

ii. C has correction capability t = d−1
2

Proposition 1.1 [23] (Singleton Bound) Let C be a code of length n over an alphabet of

size q with minimum Hamming distance d. Then

logq(|C|) ≤ n− d+ 1
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Definition 1.4 A maximum distance separable code (MDS code) is a code C for which

|C| = |A|n−d+1.

Thus, an MDS code C has the property that for any k-tuple (k = n− d+ 1) of elements of
A on any k coordinates, there is a unique codeword of C which agrees with the k-tuple on
these k coordinates.

1.2 Linear Codes over Finite Fields

A general code might have no structure and not admit any representation other than listing
the entire codebook. We now focus on an important subclass of codes with additional
structure called linear codes. Many of the important and widely used codes are linear.
Throughout, we will denote by Fq the finite field with q elements, where q is a prime power.

Definition 1.5 A linear code of length n and dimension k is a linear subspace C with

dimension k of the vector space Fnq . Such a code is called a q-ary code. If q = 2 or q = 3,

the code is described as a binary code, or a ternary code respectively. The size of a code is

the number of codewords and equals qk.

In general, finding the minimum distance of a code requires comparing every pair of distinct
elements. For a linear code however this is not necessary.

Theorem 1.2 [34] For v, w ∈ Fnq , we have dH(v, w) = wtH(v−w). Hence, if C is a linear

code over Fq, the minimum distance d is the same as the minimum weight of the nonzero

codewords of C.

As a result of this theorem, for linear codes, the minimum distance is also called the minimum
weight of the code. If the minimum weight d of a code C is known, then we refer to the
code as an [n, k, d] code.

Example 1.2 Consider

C1 = {(0000), (1000), (0100), (1100)}

and

C2 = {(0000), (1100), (0011), (1111)}

C1 and C2 are both 2-dimensional subspaces of F4
2. The Hamming distance and weight of C1

are both 1, whereas for C2 they are both 2.
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There is an important bound on the linear codes parameters, the Gilbert-Varshamov bound
which give condition on the existence of a linear code.

Proposition 1.2 [59] There exist an [n, k, d] linear code over Fq if the following inequality

holds:

qn−k − 1 >
d−1∑
i=1

n− 1

i

 (q − 1)i

Definition 1.6 Two linear codes are said to be equivalent if one can be obtained from the

other by a series of operations of the following two types:

i. An arbitrary permutation of the coordinate positions, and

ii. In any coordinate position, multiplication by any non-zero scalar.

In such case we say that the codes are monomially equivalent and so, they have the same
parameters.

1.3 Generator and Parity Check Matrices

Definition 1.7 A generator matrix for an [n, k, d] linear code C is any k × n matrix G

whose rows form a basis for C. The matrix G completely defines the code C :

C = {xG;x ∈ Fkq}

Since the basis of a k-dimensional vector space is not unique, neither is the generator matrix
G of a linear code C. For any set of k independent columns of a generator matrix G, the
corresponding set of coordinates forms an information set for C. The remaining r = n− k
coordinates are termed a redundancy set and r is called the redundancy of C. If the first
k coordinates form an information set, the code has a unique generator matrix of the form
[Ik | A] where Ik is the k×k identity matrix and A is a k× (n−k) matrix. Such a generator
matrix is in standard form. If a generator matrix in standard form exists for a linear code
C, it is unique, and any other generator matrix can be brought to the standard from by the
following operations:

• Permutation of the rows;

• Multiplication of a row by a non-zero element in Fq;

• Addition of a scalar multiple of one row to another.
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Example 1.3 Let the code C defined over F2 by its matrix

G =



0 1 1 1 0 1

1 0 0 1 1 0

1 1 0 1 0 1

1 0 1 1 1 1


apply row operations to find the generator matrix of C in standard form .

0 1 1 1 0 1

1 0 0 1 1 0

1 1 0 1 0 1

1 0 1 1 1 1


r2↔r1−−−→



1 0 0 1 1 0

0 1 1 1 0 1

1 1 0 1 0 1

1 0 1 1 1 1



r3 → r3 + r1

r4 → r4 + r1
−−−−−−−−−→



1 0 0 1 1 0

0 1 1 1 0 1

0 1 0 0 1 1

0 0 1 0 0 1


r3→r3+r2−−−−−−→



1 0 0 1 1 0

0 1 1 1 0 1

0 0 1 1 1 0

0 0 1 0 0 1



r4→r4+r3−−−−−−→



1 0 0 1 1 0

0 1 1 1 0 1

0 0 1 1 1 0

0 0 0 1 1 1



r1 → r1 + r4

r2 → r2 + r3

r3 → r3 + r4
−−−−−−−−−→



1 0 0 0 0 1

0 1 0 0 1 1

0 0 1 0 0 1

0 0 0 1 1 1


;

Definition 1.8 A monomial matrix P is a square matrix with exactly one nonzero entry in

each row and column. If all of its no zero elements are equal to 1, then P is said to be a

permutation matrix.

Thus two codes C1 and C2 are monomially equivalent provided that there exists a monomial
matrix P such that if G1 is a generator matrix of C1 then G1P is a generator matrix of C2.
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Theorem 1.3 [34] Let C be a linear code. Then C is permutation equivalent to a code

which has generator matrix in standard form.

Example 1.4 Let C and C ′ be the binary codes with generator matrices respectively

G =


0 0 1 1

0 1 1 0

1 0 1 1

 and G′ =


1 0 0 1

0 1 0 1

0 0 1 0


We will show that C and C ′ are equivalent codes as follows. By row operations on G (add

row 1 to rows 2 and 3), another generating matrix for C is

Ĝ =


0 0 1 1

0 1 0 1

1 0 0 0


Now, if we select the permutation matrix

P =



0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1


then G′ = ĜP . P interchanges columns 1 and 3 of Ĝ, and hence interchanges coordinates 1

and 3 in each codeword of C. Thus the two codes are equivalent. Note, however, that these

codes are not identical.

Since a linear code is a subspace of Fnq , it is the kernel of some linear application. In
particular, there is an (n− k)× n matrix H, called a parity check matrix for the [n, k, d]

code C, defined by
C = kerH = {x ∈ Fnq | HxT = 0}

In general, there are also several possible parity check matrices for C. The next theorem
gives one of them when C has a generator matrix in standard form.
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Theorem 1.4 [34] If G = [Ik | A] is a generator matrix for the [n, k, d] code C in standard

form, then H = [−AT | In-k] is a parity check matrix for C.

Example 1.5 The matrix

G = [I4 | A] =



1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1


is a generator matrix in standard form for a [7, 4, 3] binary code C. By Theorem 1.4, a

parity check matrix for C is

H = [AT | I3] =


0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1


There is an elementary relationship between the weight of a codeword and a parity check
matrix for a linear code. This is presented by the following theorem .

Theorem 1.5 [34] Let C be a linear code with parity check matrix H. If c is in C, the

columns of H corresponding to the nonzero coordinates of c are linearly dependent. Con-

versely, if a linear dependence relation with nonzero coefficients exists among m columns of

H, then there is a codeword in C of weight m whose nonzero coordinates correspond to these

columns.

One way to find the minimum weight d of a linear code is to examine all the nonzero
codewords. The following corollary shows how to use the parity check matrix to find d.

Corollary 1.1 [34] A linear code has minimum weight d if and only if its parity check

matrix H has a set of d linearly dependent columns but no set of d − 1 linearly dependent

columns.

1.4 Dual Codes

The generator matrix G of an [n, k, d] linear code C is simply a matrix whose rows are
independent and span the code. The rows of the parity check matrix H are independent;
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hence H is the generator matrix of some code, called the dual or orthogonal of C and
denoted C⊥. An alternate way to define the dual code is by using the inner product. For
x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) in An, (A any alphabet ), the euclidien inner product
is defined by

x · y =
n∑
i=1

xiyi

We say that x is orthogonal to y if and only if x · y = 0. The Euclidean dual code C⊥ of C
is defined as

C⊥ = {x ∈ An : ∀y ∈ C;x · y = 0}

Theorem 1.6 [63] If C is an [n, k] code, then C⊥ is an [n, n− k] code .

It is easy to show that if G and H are generator and parity check matrices, respectively, for
C, then H and G are generator and parity check matrices, respectively, for C⊥.
A code C is said to be self dual if C = C⊥ and it is isodual if C is equivalent to C⊥ . It is
called LCD or linear complementary dual if C ∩ C⊥ = {0}.
For an [n, k, d] linear code C with generator matrix G and a vector v in Fnq , we can easily
show that v belongs to C⊥ if and only if v is orthogonal to every row of G;

v ∈ C⊥ ⇔ GvT = 0

Example 1.6 Let C be the ternary linear code C with generator matrix G, in standard

form, given by

G =

1 0 1 1

0 1 1 −1


Since C = 〈v1 = (1, 0, 1, 1), v2 = (0, 1, 1,−1)〉 and

Gv1 =

1 0 1 1

0 1 1 −1




1

0

1

1


= Gv2 =

1 0 1 1

0 1 1 −1




0

1

1

−1


=



0

0

0

0
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This code is self-dual.

1.5 Weight Distribution and Weight Enumerators

Let C be an [n, k, d] over Fq and let Ai = Ai(C) be the number of codewords of weight i in C.
The list Ai for 0 ≤ i ≤ n is called the weight distribution or weight spectrum of C. Certain
elementary facts about the weight distribution are gathered in the following theorem.

Theorem 1.7 [34] Let C be an [n, k, d] code over Fq. Then:

i. A0(C) + A1(C) + ...+ An(C) = qk

ii. A0(C) = 1 and A1(C) = A2(C) = ... = Ad−1(C) = 0

iii. If C is a binary code containing the codeword 1 = (111...1), then Ai(C) = An−i(C) for

0 ≤ i ≤ n.

The most fundamental result about weight distributions is a set of linear relations between
the weight distributions of C and C⊥ which imply, that if we know the weight distribution of
C we can determine the weight distribution of C⊥ without knowing specifically the codewords
of C⊥ or anything else about its structure.

Lemma 1.1 [51] Let C be an [n, k, d] linear code over Fq with weight distribution Ai =

Ai(C) for 0 ≤ i ≤ n, and let the weight distribution of C⊥ be A⊥i = Ai(C
⊥). We have

i.
∑n

i=0Ai = qkA⊥0 .

ii.
∑n−1

i=0 (n− i)Ai = qk−1(nA⊥0 + A⊥1 ).

iii.
∑n−j

i=0

n− i
j

Ai = qk−j
∑j

i=0

n− i
n− j

A⊥i ; for 0 ≤ j ≤ n.

Definition 1.9 For a code C of length n, we call Hamming weight enumerator the polyno-

mial

WC(x) =
n∑
i=1

Ai(C)xi

By replacing x by x/y and then multiplying by yn, WC(x) can be converted to the two
variables weight enumerator

WC(x, y) =
n∑
i=0

Ai(C)xn−iyi
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Proposition 1.3 [20] Two equivalent linear codes have the same weight enumerator. but

the converse does not always hold.

Example 1.7 Consider the two binary codes C1 and C2 with generator matrices G1 and G2

respectively, where

G1 =


1 1 0 0 0 0

0 1 1 0 0 0

1 1 1 1 1 1

 and G2 =


1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1


Both of the codes have weight distribution A0 = 1, A2 = 3, A4 = 3, and A6 = 1. Hence their

weight enumerator is

WC1(x, y) = WC2(x, y) = y6 + 3x2y4 + 3x4y2 + x6 = (y2 + x2)3

But C1 and C2 are not monomially equivalent since C2 is self dual code while C1 is not.

One of the most important results in this area is the MacWilliams identity which, relates
the weight enumerator of a linear code C to the weight enumerator of C⊥.

Theorem 1.8 [51] If C is an [n, k, d] code over Fq, and C⊥ is the dual of C, then

WC⊥(x, y) =
1

|C|
WC(x+ (q − 1)y, x− y)

Definition 1.10 A code C is said to be formally self dual code if it has the same weight

enumerators as its dual.

Remark 1.1 Self dual codes are both isodual and formally self dual codes, but the converse

is not true. Formally self dual codes can have better minimum distances than self dual codes

of the same lengths.

1.6 Cyclic codes over finite fields

Linear codes are nice to study and implement, because they have algebraic structures that
ensure easy encoding and decoding. However, we can do more to simplify the implementation
of codes if we require a cyclic shift of a codeword in C to still be a codeword. This requirement
smells like a combinatorial structure, but we shall combine the works of the previous section
to show that this has an algebraic structure.
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Definition 1.11 A linear code C of length n over Fq is called cyclic if (cn−1, c0, ..., cn−2) is

in C whenever (c0, c1, . . . , cn−1) is in C.

Since a cyclic code is invariant under a cyclic shift we conclude that a cyclic code contains
all cyclic shifts of any codeword. We can describe these codes in algebraic terms since any
element (c0, c1, ..., cn−1) of the vector space Fnq can be identified by the residue class of the
polynomial c0 + c1x+ ...+ cn−1x

n−1( mod (xn − 1)) over Fq, by the bijection

Fnq → Fq[x]/ 〈xn − 1〉

(c0, c1, ..., cn−1) → c0 + c1x+ ...+ cn−1x
n−1 mod (xn − 1)

Therefore, any codeword is identified as a vector or as a polynomial. It is clear that if C is
a cyclic code and c(x) = c0 + c1x+ ...+ cn−1x

n−1 in C then

xc(x) = c0x+ c1x
2 + ...+ cn−1x

n = cn−1 + c0x+ c1x
2 + ...+ cn−2x

n−1 ∈ C

Hence, multiplying the polynomial c(x) by x corresponds to a right shift of the vector c. It
follows that cyclic codes over Fq are precisely the ideals of the ring Rn = Fq[x]/ 〈xn − 1〉,
and vice versa. Therefore, the study of cyclic codes over Fq is equivalent to the study of
ideals in Rn. It is known that Rn is a princiapl ideal ring and hence cyclic codes are the
principal ideals of Rn. More precisely, C is generated by the monic polynomial of least
degree g(x) in C, called the generator polynomial. Then, g(x) is a divisor of xn − 1 in Fq.
Any codeword c(x) in C can be uniquely written as c(x) = λ(x)g(x), where λ(x) has degree
less than n deg(g(x)) and the dimension of C is k = n− deg g(x). This discussion gives the
following theorem.

Theorem 1.9 [34] Let C be a nonzero cyclic code in Rn. There exists a polynomial

g(x) in C with the following properties:

i. g(x) is the unique monic polynomial of minimum degree in C,

ii. C = 〈g(x)〉 and g(x)|xn − 1.

iii. The dimension of C is k = n− degg(x) and g(x), xg(x), ..., xk−1g(x) is a basis for C,

iv. Every element of C is uniquely expressible as a product g(x)f(x), where f(x) = 0 or

deg f(x) < k,
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v. Assume that g(x) =
∑n−k

i=0 gix
i, where gn−k = 1. Then:

G =



g0 g1 g2 ... gn−k 0

0 g0 g1 ... gn−k−1 gn−k

... ... ... ...

0 g0 g1 ... gn−k


↔



g(x)

xg(x)

...

xk−1g(x)


is a generator matrix for C,

vi. If α is a primitive n-th root of unity in some extension field of Fq, then g(x) =∏
smαs(x), where the product is over a subset of representatives of the q-cyclotomic

cosets modulo n.

So there is a one-to-one correspondence between the nonzero cyclic codes and the divisors
of xn − 1, not equal to xn − 1. In order to have a bijective correspondence between all the
cyclic codes in Rn and all the monic divisors of xn − 1, we define the generator polynomial
of the zero cyclic code {0} to be xn − 1.

Theorem 1.10 [34] The dual code of a cyclic code is cyclic.

Recall that the annihilator of an ideal C, denoted Ann(C), is the ideal whose elements
cancel out all the elements in the ideal C. In our case, let C be an [n, k, d] cyclic code with

generator polynomial g(x), and let h(x) =
xn − 1

g(x)
= h0 + h1x + ... + hkx

k . Then h(x) is

called the parity check polynomial of C and Ann(C) = 〈h(x)〉.

Definition 1.12 Let f(x) = a0 + a1x + ... + arx
r be a polynomial of R[x] of degree r such

that f(0) = a0 is a unit in R ( where R is a finite commutative ring). The monic reciprocal

polynomial of f(x) is defined by

f ∗(x) = f(0)−1xrf(x−1)

If f ∗(x) = f(x), the polynomial f(x) is called self reciprocal.

The following Lemma is easily deduced.

Lemma 1.2 Let f(x) and g(x) be two polynomials in R[x] with degf(x) ≥ degg(x) and

with constants terms are units. Then the following holds.

i. [f(x)g(x)]∗ = f(x)∗g(x)∗.



1. BASIC CONCEPTS OF CODES OVER FINITE FIELDS 13

ii. [f(x) + g(x)]∗ = f(x)∗ + xdegf−deggg(x)∗.

iii. If f(x) is monic, then f(x)∗ = f(x)
∗
.

Theorem 1.11 [34] Let C be an [n, k, d] cyclic code with generator polynomial g(x). Let

h(x) = h0 + h1x + ... + hkx
k be the parity check polynomial of C. Then the generator

polynomial of C⊥ is h∗(x). Furthermore, a generator matrix for C⊥, and hence a parity

check matrix for C, is

H =



hk hk−1 hk−2 ... h0 0

0 hk hk−1 ... h1 h0

... ... ... ...

0 hk hk−1 ... h0


Example 1.8 Let C be the binary cyclic code generated by the linear combination of all

cyclic shifts of the vector (1, 1, 0, 1, 0, 0, 0) . Clearly, C = 〈g(x)〉 where g(x) = 1 + x + x3,

and then h(x) = 1 + x+ x2 + x4. A generator matrix for C is

G =



1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1


The generator polynomial of C⊥ is h∗(x) = 1 + x2 + x3 + x4. Hence a generator matrix for

C⊥ which is a parity matrix check of C is given by

H =


1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1


Besides the generator polynomial, there are many polynomials that can be used to generate
a cyclic code. There is a very specific polynomial, called an idempotent generator, which
can be used to generate a cyclic code. (Recall that an idempotent element of a ring is an
element e such that e2 = e)
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Theorem 1.12 [34] Let C be a cyclic code in Rn. Then:

i. There exists a unique idempotent e(x) in C such that C = 〈e(x)〉,

ii. If e(x) is a nonzero idempotent in C, then C = 〈e(x)〉 if and only if e(x) is a unity of

C,

iii. If C = 〈e(x)〉. Then the generator polynomial of C is g(x) = gcd(e(x), xn−1) computed

in Fq[x].

Theorem 1.13 [34] Let C1 and C2 be cyclic codes of length n over Fq with generator

polynomial g1(x), g2(x) and generating idempotent e1(x), e2(x) . Then C1∩C2 has generator

polynomial Icm(g1(x), g2(x)) and generating idempotent e1(x)e2(x).

Example 1.9 Consider the ternary cyclic codes C1 and C2 of length n = 11 generated by

the polynomials g1(x) = 1 − x − x2 − x3 + x4 + x6 and g2(x) = −1 − x + x2 − x3 + x5,

respectively. A simple calcul shows that

e1(x) = (x3 − x+ 1)g1(x) = 1 + x+ x3 + x4 + x5 + x9 and e21(x) = e1(x)

e2(x) = (−x5 + x4 + x2)g2(x) = −x2 − x6 − x7 − x8 − x10 and e22(x) = e2(x)

Hence e1(x) and e2(x) are idempotent generator for the codes C1 and C2 respectively. Further

since we have

x11 − 1 = g1(x)g2(x) and gcd(g1(x), g2(x)) = 1

then C1 ∩ C2 = {0}. On the other words, C1 and C2 are LCD codes.

2 Basic Concepts of Codes over Finite Rings

This section is dedicated to introduce the necessary notions and terminology from classical
coding theory over rings that will be needed later. Throughout this thesis, all considered
rings are assumed to be commutative and with identity.

2.1 Linear Code over Finite Rings

Definition 2.1 A linear code over a ring R of length n is a submodule C of Rn. If C is

isomorphic to a free R-module, then we say that C is a free code and we define the dimension

of C to be dimC = rankR(C ).
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Since a module over a ring R is a generalization of the notion of vector space over a field.
So, much of the theory of codes over rings consists of extending as many as possible the
desirable properties of codes over fields. However, codes over rings can be quite a bit more
complicated than codes over fields; for instance, since not all modules have bases, then the
definition of a generator matrix for example is not trivial.

Definition 2.2 Let C in Rn be a linear code over any finite ring R. Define a generator

matrix of C as a matrix G with rows being a generating set of C with the smallest size.

This means that the rows of G span C and none of them can be written as a linear com-
bination of the other rows of G. In particular, when C is a free code, then the rows of any
generator matrix G are a group of basis elements of C, and so the number of rows of any
generator matrix of a free code C is uniquely determined.

Definition 2.3 Two codes C and C ′ in Rn, are said to be equivalent if C ′ can be obtained

from C by a combination of a permutation of the coordinates and multiplication of a coordi-

nate by a unit in the underlying ring.

As for codes defined over finite fields we have :

Theorem 2.1 [23] If C is a linear code over a ring R, then the minimum Hamming distance

and the minimum Hamming weight are equal.

The following was first proven by F. MacWilliams in [51]. There, it was proven for codes
over finite fields. Later it was proven that we can extend the proof to codes over finite
commutative Frobenius rings.

Theorem 2.2 [23] Let R be a finite commutative Frobenius ring with |R| = r. Let C be a

linear code over R. Then

WC⊥(x, y) =
1

|C|
WC(x+ (r − 1)y, x− y)

One of the most important consequences of the MacWilliams relations is the following:

Corollary 2.1 If C is a linear code over a finite commutative Frobenius ring R, then

|C|.|C⊥| = |Rn|.

2. 1.1 Linear codes over finite chain rings

A finite chain ring is a local Frobenius ring, so the identity above holds for codes over finite
chain rings. Further we have many nice results on codes over this class of rings. (For more
detail of finite chain rings and Frobenius rings, we refer the reader to see the appendix ).
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Definition 2.4 Let R be a finite chain ring with maximal ideal 〈γ〉 of nilpotency index e

and C be a code over R with generator matrix G. We say that G is a generator matrix in

standard form if after a suitable permutation of the coordinates, we have

G =



Ik0 A0,1 A0,2 A0,3 · · · A0,e−1 A0,e

0 γIk1 γA1,2 γA1,3 · · · γA1,e−1 γA1,e

0 0 γ2Ik2 γ2A2,3 · · · γ2A2,e−1 γ2A2,e

...
...

...
...

...
...

0 0 0 0 · · · γe−1Ike−1 γe−1Ae−1,e


Where the columns are grouped into blocks of sizes k0, k1, ..., ke−1, n−

∑e−1
i=0 ki. A code with

generator matrix of this form is said to be have type {k0, k1, ..., ke−1}.

Theorem 2.3 [57] Any linear code C defined over a finite chain ring has a generator

matrix in standard form. Further, all generator matrices in standard form for the code C

have the same parameters k0, k1, ..., ke−1 and |C| = q
∑e−1

j=0(e−j)kj .

Theorem 2.4 [57] Let C be a code with generator matrix G in standard form. For 0 ≤
i < j ≤ e, let Bi,j = −

∑j−1
k=i+1Bi,kA

T
e−j,e−k − ATe−j,e−i. Then

H =



B0,e B0,e−1 · · · B0,1 In−k(C)

γB1,e γB1,e−1 · γIke−1(C) 0

...
...

...
...

γe−1Be−1,e γe−1Ik1(C) · · · 0 0


is a generator matrix for C⊥ and a parity check matrix for C.

Let C be a linear code. We denote by k(C) the number of rows of a generating matrix G in
standard form for C, and for i = 0, 1, ..., e− 1 we denote by ki(C) the number of rows of G
that are divisible by 〈γi〉 but not by 〈γi+1〉. Clearly, k(C) =

∑e−1
i=0 ki(C).

Proposition 2.1 [57] Let C be a linear code. The following assertions are equivalent:

i. C is a free code.
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ii. Any generator matrix in standard form for C is of the form [Ik(C)|M ] for some matrix

M .

iii. k(C) = k0(C).

iv. C⊥ is free.

Example 2.1 Let R = Z4 and C the code of length 4 defined over R by the vectors

0000 1113 2222 3331 0202 1311 2020 3133

0022 1131 2200 3313 0220 1333 2002 3111

Then C is a linear code over Z4. A generator matrix of C in the standard form is given by

G =


1 1 1 3

0 2 0 2

0 0 2 2


Hence we have k0(C) = 1, k1(C) = 2 and k(C) = 3, so C is not a free code. A parity check

matrix of C is given by

H =


1 3 3 1

2 2 0 0

2 0 2 0


Clearly H.GT = 0. Since G.GT = 0, we deduce that C is a self dual code.

2.2 Cyclic Codes over Finite Chain Rings

As we have already seen, much of the theory of codes over rings consists of generalizing
concepts and properties of codes over finite fields. Cyclic codes over rings has not been
studied in depth for a general ring. In this thesis, we will mainly focus on codes over finite
chain rings and finite principal ideal rings. As usual, cyclic codes of length n over a ring R
are linear codes with the property that the cyclic shift of any codeword is again a codeword.

Proposition 2.2 [57] A linear code C of length n is a cyclic over R if and only if C is an

ideal of R[x]/ 〈xn − 1〉 .
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Proposition 2.3 [57] The dual of a cyclic code over R is cyclic.

Let R be a finite chain ring with maximal ideal 〈γ〉 of nilpotency index e, and residue field
Fq . In this section, we assume n to be a positive integer coprime to q, so that xn − 1 is
square free in Fq[x]. Therefore, xn − 1 has a unique decomposition as a product of basic
irreducible pairwise coprime polynomials in R[x]. A natural way of constructing a cyclic
code over R is by lifting the generator polynomial of a cyclic code over Fq.

Definition 2.5 (Hensel lift of a cyclic code) Let f in Fq[x] be monic such that f |(xn − 1).

The cyclic code 〈g〉 where g is the Hensel lift of f is called the Hensel lift of the cyclic code

〈f〉.

If C is the Hensel lift of a code E then C̄ = E, but C is not the only cyclic code whose
projection is E.

Proposition 2.4 [57] Let C be a code over R. The following properties are equivalent:

i. C is the Hensel lift of a cyclic code;

ii. C is cyclic and free;

iii. There is a g in R[x] such that C = 〈g〉 and g|(xn − 1);

iv. C⊥ is the Hensel lift of a cyclic code.

In general for non-free cyclic codes over a chain ring R, Din et al [22] gave a specific structure
of these codes. We have the following Theorems

Theorem 2.5 [22] Let C be a cyclic code over R of length n. Then there exists a unique

family of pairwise coprime polynomials Fi(x), 0 ≤ i ≤ e in R[x] satisfying F0(x)F1(x)...Fe(x) =

xn − 1 such that

C =
〈
F̂1(x), γF̂2(x), ..., γe−1F̂e(x)

〉
=
〈
F̂1 + γF̂2 + ...γe−1F̂e

〉
where F̂i(x) =

xn − 1

Fi(x)
for 0 ≤ i ≤ e. Moreover

|C| = pr
∑e−1

i=0 (e−i) degFi+1

Corollary 2.2 [22]
R[x]

〈xn − 1〉
is a principal ideal ring.(with gcd(n, q) = 1).



2. BASIC CONCEPTS OF CODES OVER FINITE RINGS 19

Theorem 2.6 [22] Let C be a cyclic code of length n over R. Then there exist polynomials

g0, g1, ..., ge−1 in R[x] such that C = 〈g0, γg1, ..., γe−1ge−1〉 and ge−1|ge−2|...|g0|xn − 1.

Theorem 2.7 [22] Let C be a cyclic code of length n, with notation as in Theorem 2.5, we

have

C⊥ =
〈
F̂ ∗0 (x), γF̂ ∗e (x), ..., γe−1F̂ ∗2 (x)

〉
and

|C⊥| = pr
∑e

i=1 idegFi+1

Where F ∗i is the reciprocal polynomial of Fi, 0 ≤ i ≤ e.



Chapter 2
Construction of LCD Cyclic Codes over Finite

Rings

The aim of this chapter is to present some new constructions of LCD cyclic codes, provide
necessary and sufficient conditions for which all free cyclic codes over finite chain rings are
LCD. We start with some known basic results on LCD codes over finite fields.

1 Generalities on LCD Codes over Finite Fields

Recall that a linear code C over a field Fq is called an LCD code (linear code with comple-
mentary dual) if C ∩ C⊥ = {0}, which is equivalent to C ⊕ C⊥ = Fnq .

Proposition 1.1 [53] Let C be a linear code with a generator matrix G and a parity-check

matrix H. Then the three following properties are equivalent:

i. C is an LCD code;

ii. The matrix GGT is invertible;

iii. The matrix HHT is invertible.

Corollary 1.1 Let C be a linear code with generator matrix in standard form G = [Ik|A].

Then C is an LCD code if and only if −1 is not an eigen value of AAT .

Proof. By a simple calculation we have

GGT = [Ik|A]

[
Ik
AT

]
= AAT + Ik

20
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The matrix GGT is invertible if and only if −1 is not an eigen value of AAT . 2

Example 1.1 Let C be the binary code with generator matrix

G =



1 0 0 0 1 1 0

0 1 0 0 1 1 1

0 0 1 0 1 1 1

0 0 0 1 1 1 0


The parity-check matrix H of this code is

H =


1 1 1 1 1 0 0

1 1 1 1 0 1 0

0 1 1 0 0 0 1


Since

detGGT = det



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


6= 0

Then this code is an LCD code. we can see also that we have

detHHT = det


1 0 0

0 1 0

0 0 1

 6= 0

Definition 1.1 A code C is called reversible if for each code word (c0, c1, ..., cn−1) in C, the

reverse code word (cn−1, cn−2, ..., c0) is also in C. This means that reversing the order of the

components of any codeword gives always again a codeword.

Proposition 1.2 [62] A cyclic code is reversible if and only if its generator polynomial is

self reciprocal.
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Theorem 1.1 [62] Let C be a cyclic code of length n over Fq with generator polynomial

g(x) such that gcd(n, q) = 1. Then the following statements are equivalent.

i. C is an LCD code.

ii. g is self-reciprocal.

iii. β−1 is a root of g(x) for every root β of g(x) over the splitting field of g.

Furthermore, if −1 is a power of q mod n, then every cyclic code over Fq of length n is

reversible.

More generally, if n is not coprime to q, In [62] again Massey et al gave conditions on cyclic
codes to be LCD.

Theorem 1.2 [62] If g(x) is the generator polynomial of a cyclic code C of length n over

Fq, then C is an LCD code if and only if g(x) is self-reciprocal and all the monic irreducible

factors of g(x) have the same multiplicity in g(x) as in xn − 1.

Corollary 1.2 [62] A cyclic code C, whose length n is relatively prime to the characteristic

of Fq, is an LCD code if and only if it is a reversible code.

2 On LCD Codes over Finite Rings

In this part, we will present some judging criterions for cyclic codes over some finite rings to
be LCD codes. For linear codes over rings, some structures of LCD codes using generating
matrices have been given in [23,47] .

Lemma 2.1 [23] Let v1, v2, ..., vk be vectors over a finite commutative Frobenius ring

such that vi.vi = 1 for each i and vi.vj = 0 for i 6= j. Then C = 〈v1, v2, ..., vk〉 is an LCD

code over R.

Theorem 2.1 [47] Let C be a code over a finite chain ring R with generator matrix G

in standard form. If the k× k matrix GGT is invertible, then C is an LCD code, where k is

the number of rows of G.

Liu et al [48] generalized this result to free codes over any finite ring.

Theorem 2.2 [48] Assume R is any finite commutative ring, and assume C is a free code,

then C is an LCD code if and only if GGT is nonsingular.
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Bhowmick et al in [13] proved that there does not exist a non-free LCD code over finite
commutative local Frobenius rings.

Theorem 2.3 [13] Over finite commutative local Frobenius rings, any LCD code is free.

Note that the converse of Theorem 2.3 does not hold in general. To show this we cite the
following example.

Example 2.1 Let C be a linear code over Z4 with generator matrix

G =



1 0 0 0 2 0 0

0 1 0 0 0 1 1

0 0 1 0 0 1 1

0 0 0 1 1 0 0


We have that C is free code, but C is not LCD, since (0, 0, 0, 2, 2, 0, 0) ∈ C ∩ C⊥.

Cyclic codes have more interesting structures than general linear codes. In [13], Bhowmick
et al, generalized the characterization of LCD cyclic codes over finite chain rings.

Lemma 2.2 [13] Let C be a cyclic code over a finite chain ring R with residue field Fq of
length n such that gcd(n, q) = 1. Let g be a generator polynomial of C. Then C is an LCD

code if and only if C is reversible if and only if the polynomial g is self reciprocal .

Liu and Wang in [48] generalized Massey’s criterion for LCD codes over finite field of any
length to finite chain rings.

Lemma 2.3 [48] A cyclic code C of length n over a finite chain ring R with the residue

field Fq is an LCD code if and only if C = 〈g(x)〉, where g(x) is a monic divisor of xn − 1

such that g(x) = g∗(x), and g(x) and (xn − 1)/g(x) are coprime.

Let q = ps and n = mpr, where gcd(m, p) = 1. Thus the polynomial xm − 1 is a monic
square free, hence it factors uniquely as a product of pairwise coprime monic irreducible
polynomials f1(x), ..., fl(x). Hence the factorization of xn − 1 over Fq is given by

xn − 1 = xmp
r − 1 = (xm − 1)p

r

= f1(x)p
r

...fl(x)p
r

(2.1)

Denote the factors fi(x) in the factorization of xm−1 which are self reciprocal by g1(x), . . . , gs(x)

and the remaining fj(x) grouped in pairs by h1(x), h∗1(x), . . . , ht(x), h∗t (x). Hence l = s+ 2t,
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and the factorization given in (2.1) becomes

xn − 1 = g1(x)p
r

g2(x)p
r

...gs(x)p
r

h1(x)p
r

h∗1(x)p
r

...ht(x)p
r

h∗t (x)p
r

Using Hensel’s Lemma and the properties of the reciprocal polynomial, we get a factorization
of xn − 1 over R, which is given by

xn − 1 = G1(x)G2(x)...Gl(x)H1(x)H∗1 (x)...Ht(x)H∗t (x),

whereGi(x), Hj(x) are monic coprime polynomials such thatGi(x) = gp
r

i (x), Hj(x) = hp
r

j (x).
By Lemma 2.3, we obtain a characterization of LCD cyclic codes over finite chain rings.
Those are codes generated by

C =
〈
G1(x)k1G2(x)k2 ...Gl(x)klH1(x)r1H∗1 (x)r1 ...Ht(x)rtH∗t (x)rt

〉
,

where ki, rj ∈ {0, 1} for all 1 ≤ i ≤ l, 1 ≤ j ≤ t.

2.1 Some Properties of Positive Integers

In this section, we give some properties of positive integers which are the tools used to
prove our results given in [10]. Recall that the multiplicative order of an integer q modulo
p denoted by r = ordp(q) is the smallest integer l such that ql ≡ 1 mod p. (Note that the
first result of the following Lemma is given in [6]).

Lemma 2.4 Let q be a prime power, p an odd prime number coprime to q, then we have

(i) If ordp(q) is even then for all k in N∗, ordpk(q) are even.

(ii) If there is k in N∗ such that ordpk(q) is even, then ordp(q) is also even.

Proof. Since p divides pk, the congruence qordpk (q) ≡ 1 mod pk implies that qordpk (q) ≡ 1

mod p. Hence ordp(q) | ordpk(q) Therefore, if ordp(q) is even then ordpk(q) is even too.
To prove (ii), assume that there is k in N∗ such that ordpk(q) is even, and by way of
contradiction we suppose that ordpk−1(q) is odd. Therefore, there exist some integer i and
there exists m in N, such that q2i+1 = 1 +mpk−1. Since p is a prime number, it divides the
binomial coefficient

(
p
j

)
for all 1 ≤ j ≤ p − 1. Hence we get (q2i+1)p =

(
1 +mpk−1

)p ≡ 1

mod pk. It follows that ordpk(q) | (2i+1)p. Since (2i+1)p is odd, this leads to a contradiction.
So that ordpk−1(q) must be even, and by descending recurrence we get that ordp(q) is even.
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2

Lemma 2.5 Let q be a prime power and p an odd prime number such that gcd(p, q) = 1.

The three following statements are equivalents.

(i) There exits l in N, such that ql ≡ −1 mod p.

(ii) For all k in N, there exists lk in N, such that qlk = −1 mod pk.

(iii) There is i in N∗ such that ordpi(q) is even.

Further, if ql ≡ −1 mod p, then l = 1
2
(1 + 2m)ordp(q) for some m in N.

Proof. Suppose that (i) is satisfied and we prove (ii) by induction. For k = 1 we have
ql ≡ −1 mod p. Assume qlk−1 ≡ −1 mod pk−1 for k ≥ 2. Since p is odd, we can write

pk−1−1∑
i=0

(−qlk−1)i =
(−qlk−1)p

k−1 − 1

(−qlk−1)− 1
=
qlk−1p

k−1
+ 1

qlk−1 + 1
.

On the other hand, we have

pk−1−1∑
i=0

(−qlk−1)i =

pk−1−1∑
i=0

(−1)i(qlk−1)i ≡
pk−1−1∑
i=0

(−1)i(−1)i mod pk−1 ≡ 0 mod pk−1

which means that pk−1 |
∑pk−1−1

i=0 (−qlk−1)i. Since p | pk−1 | qlk−1 + 1, it follows that

pk | (qlk−1 + 1)(

pk−1−1∑
i=0

(−qlk−1)i) = qlk−1p
k−1

+ 1.

Thus, for lk = lk−1 · pk−1, we have that qlk ≡ −1 mod pk. Note that when ql ≡ −1 mod p,
then lk = lk−1 · pk−1 = lk−2 · pk−2 · pk−1. We obtain that lk = l · p

k(k−1)
2 . Conversely, if the

statement (ii) holds, then the statement (i) follows immediately for k = 1.
Assume that (iii) is satisfied. So Lemma 2.4 shows that the integer ordp(q) is also even. We
have, qordp(q) ≡ 1 mod p if and only if p | (q

1
2
ordp(q) − 1)(q

1
2
ordp(q) + 1). Since p is prime it

must divide one of the factor and it can not divide (q
1
2
ordp(q) − 1) because of the definition

of the order of q, thus q
1
2
ordp(q) = −1 mod p.

Conversely, if (ii) is satisfied, then there exits l in N∗ such that ql ≡ −1 mod p, which means
q2l ≡ 1 mod p, so that ordp(q) | 2l. If ordp(q) is odd, then ordp(q) | l, which contradicts
the fact that ql ≡ −1 mod p. Hence ordp(q) must be even and (iii) holds.
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It remains to prove that if there exists an integer l such that ql ≡ −1 mod p, then
l = 1

2
(1+2m)ordp(q) for some m in N. By the definition of order, the integers qordp(q) and qj

are distincts for all 1 ≤ j < ordp(q). Since p is odd, we obtain that if l′ is the smallest integer
such that ql′ ≡ −1 mod p, then on the one hand 1 ≤ l′ < ordp(q) and, on the other hand,
ordp(q) | 2l′. This gives 2l′ = λordp(q) and λ ≥ 1. Since l′ < ordp(q), then l′ = 1

2
ordp(q).

Further, if l is an integer that satisfies ql ≡ −1 mod p, then by division algorithm we can
write l = sl′ + r with r < l′. Hence, we get

ql = qsl
′+r = (ql

′
)sqr ≡ (−1)sqr mod p ≡ −1 mod p.

Which forces that s is odd and r = 0. Thus,

l = (2m+ 1)l′ =
1

2
(2m+ 1)ordp(q).

2

Corollary 2.1 Let q be a prime power and p an odd prime number coprime to q. Let a be

a positive integer such that 2a‖ordp(q). Then for all k in N∗, we have 2a‖ordpk(q), where

the notation 2a‖ordp(q) means that 2a|ordp(q) but 2a+1 - ordp(q).

Proof. Let a be a positive integer such that 2a‖ordp(q). From Lemma 2.5, there exists l
in N∗, such that ql ≡ −1 mod p and l = 1

2
(1 + 2m)ordp(q) for some m in N. On the other

hand, since ordp(q) is even, then ordpk(q) is also even for all k ∈ N∗. Hence, from Lemma
2.5 again, there exists lk in N∗, such that qlk ≡ −1 mod pk and lk = 1

2
(1 + 2mk)ordpk(q) for

some mk in N. From the proof of Lemma 2.5, we have that lk = l · p
k(k−1)

2 . Therefore

lk =
1

2
(1 + 2mk)ordpk(q) =

1

2
(1 + 2m)ordp(q) · p

k(k−1)
2 .

Since (1 + 2m)p
k(k−1)

2 and (1 + 2mk) are both odd, we conclude that 2a‖ordpk(q). 2

2.2 New Constructions of LCD Cyclic Codes over Finite Chain Rings

Let n be a positive integer and q a prime power coprime to n. For s in {0, 1, 2, ..., n− 1}, let
Cs =

{
s, sq, sq2, ..., sqls−1

}
be the q cyclotomic coset of s modulo n and let β be a primitive

n-th root of unity. It is known that (see the appendix) the minimal polynomial ms(x) of βs
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is given by
ms(x) =

∏
j∈Cs

(
x− βj

)
And hence the factorization of xn − 1 into irreducible factors over Fq is given by

xn − 1 =
∏
s∈Pn,q

ms(x).

where Pn,q is the set of the coset leaders of all cyclotomic cosets.

Definition 2.1 The cyclotomic coset Cs is said to be reversible if and only if Cn−s = Cs if

and only if n− s is in Cs.

Lemma 2.6 [29] If C1 is reversible then Cs is reversible for all s in Pn,q.

Proof. Assume that the cyclotomic coset C1 is reversible. Then there exists a k, 1 ≤
k ≤ ordn(q), such that qk ≡ −1 mod n. This means that sqk ≡ −s mod n, and hence
Cs = C−s. 2

Lemma 2.7 [30] The minimal polynomial ms(x) is self reciprocal if and only if the cyclo-

tomic coset associated Cs is reversible.

Now, using the algebraic properties of integers given in Section 2.1, and according to the de-
composition of n into products of powers of prime numbers, we give some new constructions
of LCD codes over the chain ring R given in [10].

Theorem 2.4 Let R be a finite chain ring with residue field Fq, and pk an odd prime power

coprime to q. Then, all free cyclic codes of length pk over R are LCD if and only if ordp(q)

is even.

Proof. Let pk be an odd prime power coprime to q. From Lemma 2.2 we have that a cyclic
code C is an LCD code if it is generated by a self reciprocal polynomial g(x) which devide
xp

k − 1. On the other hand, Lemma 2.5 shows that if ordp(q) is even, then there exits l in
N∗, such that ql ≡ −1 mod pk, which means that −1 is in the cyclotomic coset C1. Hence,
C1 = C−1 mod pk. In other words, C1 is reversible, and so all the other cyclotomic cosets
are also reversible by Lemma 2.6. Therefore, all divisor of xpk − 1 are self reciprocal.

Conversely, assume that all free cyclic codes of length pk are LCD, then all divisors of
xp

k − 1 are self reciprocal. Hence all cyclotomic cosets are reversible and, in particular, the



2. ON LCD CODES OVER FINITE RINGS 28

cyclotomic coset C1 is reversible. This means that there is an integer l such that ql ≡ −1

mod pk. Finally, Lemma 2.5 shows that in such case ordp(q) is even. 2

Example 2.2 Let R = Z9 with residue field F3 and n = 49. We have ord7(3) = 6 and the

factorization into irreducible polynomials is given by:

x49 − 1 = (x+ 8)(x6 + x5 + x4 + x3 + x2 + x+ 1)(x42 + x35 + x28 + x21 + x14 + x7 + 1)

= g1(x)g2(x)g3(x)

So, all codes generated by
〈∏3

i=1 g
ki
i (x)

〉
, where 0 ≤ ki ≤ 1, are LCD codes over Z9 of length

49.

Example 2.3 Let R = Z4, n = 17, we have

x17 − 1 = (x+ 3)(x8 + 2x6 + 3x5 + x4 + 3x3 + 2x2 + 1)(x8 + x7 + 3x6 + 3x4 + 3x2 + x+ 1)

= g1(x)g2(x)g3(x),

where g1(x), g2(x) and g3(x) are irreducible polynomials over Z4 . Since ord17(2) = 8, then

all cyclic codes generated by polynomials of the form
〈∏3

i=1 g
ki
i (x)

〉
, with 0 ≤ ki ≤ 1, are

LCD codes.

Lemma 2.8 Let q and n be positive integers coprime such that n is odd and the irreducible

factorization of n is given by n = pk11 p
k2
2 ...p

kt
t , with ordpi(q) even for 1 ≤ i ≤ t. Let ai be the

positive integers for which 2ai‖ordpi(q), with 1 ≤ i ≤ t. Then we have

a1 = a2 = ... = at = a if and only if there exists l in N∗, such that ql ≡ −1 mod n.

Further, 2a‖ordn(q).

Proof. Assume that a1 = a2 = ... = at = a. Recall that if 2a‖ordpi(q) then 2a‖ord
p
ki
i

(q)

for all ki in N. Thus, we can write ord
p
ki
i

(q) = 2ami, with mi an odd integer for 1 ≤ i ≤ t.
From Lemma 2.5 and Corollary 2.1, we deduce that there exits li ∈ N∗, such that qli ≡ −1

mod pkii . The smallest integer l′i satisfying this congruence is l′i = 1
2
ord

p
ki
i

(q) = 2a−1mi, for 1 ≤
i ≤ t. Let m =

∏t
i=1mi. Since m is odd, we get q2a−1m ≡ −1 mod pkii . Hence,



2. ON LCD CODES OVER FINITE RINGS 29

pkii | q2
a−1m + 1 for all 1 ≤ i ≤ t. Therefore, n =

∏t
i=1 p

ki
i | q2

a−1m + 1. In other words
q2

a−1m ≡ −1 mod n.
Conversely, assume there is an integer l such that ql ≡ −1 mod n. Without loss of

generality, we suppose a1 6= a2 such that 2a1‖ordp1(q) and 2a2‖ordp2(q). Write ordp1(q) =

2a1m1 and ordp2(q) = 2a2m2 for odd integers m1 and m2. We have

ql ≡ −1 mod n implies ql ≡ −1 mod pi which give q2l ≡ 1 mod pi, for 1 ≤ i ≤ t.

Hence, 2a1m1 | 2l and 2a2m2 | 2l. Since both of a1 and a2 are not null, we get 2a1−1m1 | l
and 2a2−1m2 | l. Since a1 6= a2, we can suppose that a1〉a2. Consequently, 2a2m2 | l. In
other words, ql ≡ 1 mod p2, which is a contradiction.
Further, we have n = pk11 p

k2
2 ...p

kt
t , so

ordn(q) = lcm(ord
p
k1
1

(q), ord
p
k2
2

(q), ..., ord
p
kt
t

(q)) = 2a(2k + 1), for some k ∈ N

Thus, 2a‖ordn(q). 2

Theorem 2.5 Let R be a finite chain ring with residue field Fq and n an odd integer coprime

to q such that the factorization of n is given by n = pk11 p
k2
2 ...p

kt
t with ki in N∗ for 1 ≤ i ≤ t.

Assume that the integers ordpi(q), 1 ≤ i ≤ t are even and let ai in N∗ such that 2ai‖ordpi(q).
Then all free cyclic codes of length n over R are LCD if and only if a1 = a2 = ... = at = a

.

Proof. Assume that there is a positive integer a such that 2a‖ordpi(q), 1 ≤ i ≤ t. From
Lemma 2.8, there exists an integer l such that ql ≡ −1 mod n. This means that the q
cyclotomic coset C1 is reversible. Hence, all the other cyclotomic cosets are reversible by
Lemma 2.6. Thus all divisor of the polynomial xn − 1 are self reciprocal. Therefore, all free
cyclic codes of length n over R are LCD.

Conversely, suppose that all free cyclic codes are LCD. So that all divisor of xn − 1

are self reciprocal. We deduce that all cyclotomic cosets are reversible. In particular C1 is
reversible. Hence −1 is a power of q mod n. The desired result follows immediately from
Lemma 2.8. 2

As a corollary we construct LCD codes of oddly even length.

Corollary 2.2 Let R be a finite chain ring with residue field Fq such that q is an odd integer.

Let n be an oddly even integer coprime to q such that the irreducible factorisation of n is
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given by n = 2pk11 p
k2
2 ...p

kt
t with ki in N∗ for 1 ≤ i ≤ t. Assume that for all 1 ≤ i ≤ t the

integers ordpi(q) are even. Let ai in N∗ such that 2ai‖ordpi(q). Then a1 = a2 = ... = at = a

if and only if all free cyclic codes of length n over R are LCD.

Proof. On the one hand and according to Lemma 2.8, we have a1 = a2 = ... = at = a if
and only if there exists l in N∗, such that

∏t
i=1 p

ki
i | ql + 1. On the other hand, since q is an

odd integer then 2 | ql +1. Hence n = 2
∏t

i=1 p
ki
i | ql +1. This means ql ≡ −1 mod n. Thus

the cyclotomic coset C1 is reversible, so according to Lemma 2.6 all the other cyclotomic
cosets are reversibles. Hence, all free cyclic codes of length n are LCD codes.

Conversely, assume that all codes of length n are LCD. Then, the cyclotomic coset C1

is reversible. Hence there is an integer l such that ql ≡ −1 mod n. It follows that ql ≡ −1

mod
∏t

i=1 p
ki
i . Therefore, from Lemma 2.8, we get the desired result. 2

Example 2.4 Let R = Z25, n = 2646 = 2 · 72 · 33. We have ord7(5) = 6 and ord3(5) = 2.

Since 2‖ord7(5) and 2‖ord3(5), so all free cyclic codes of length 2646 are LCD codes.

In the remainder of this section, we provide necessary and sufficient conditions for cyclic
codes to be LCD when the lengths are divisible by 4. The following lemmas are needed.

Lemma 2.9 [35] The integer 2k has primitive roots for k = 1 or 2 but not for k ≥ 3. If

k ≥ 3, then {(−1)a5b; a = 0, 1 and 0 ≤ b ≤ 2k−2} constitutes a reduced residue system

mod 2k. It follows that for k ≥ 3, the group (Z/2kZ)∗ is not cyclic; it is the direct product

of two cyclic groups, one of order 2, the other of order 2k−2

Lemma 2.10 Let q be an odd prime power. Assume that there is an integer l in N∗ such
that ql ≡ −1 mod 2k with k ≥ 2. Then q ≡ −1 mod 2k. Further, the integer l is odd and

ord2k(q) = 2.

Proof. Assume that there is an integer l such that ql ≡ −1 mod 2k. If k > 2, then from
Lemma 2.9, q can be writen as q = (−1)i · 5j, with (i, j) in N2. Hence ql = (−1)il · 5jl ≡ −1

mod 2k, which requires that the integer il must be odd and that the order ord2k(5) of the
integer 5 which equal to 2k−2 must divide jl. Thus l is odd and then 2k−2 divides j. Write
j = 2k−2 · j′, we get

q = (−1)i · 5j = (−1)i · 52k−2j′ ≡ (−1)i mod 2k ≡ −1 mod 2k
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For k = 2 and since q is odd we have clearly that ql ≡ −1 mod 4 leads to q ≡ −1 mod 4.
Hence l must be odd. Further, q ≡ −1 mod 2k implies ord2k(q) = 2. 2

Theorem 2.6 Let R be a finite chain ring with residue field Fq, and let n be a doubly even

integer coprime to q such that the factorization of n is given by n = 2k0pk11 p
k2
2 ...p

kt
t with

ki ∈ N for all 1 ≤ i ≤ t and k0 ≥ 2. Then the following statements are equivalent:

i. 2‖ordpi(q) for 1 ≤ i ≤ t and 2k0 | q + 1.

ii. All free cyclic codes over R of length n are LCD codes.

Proof. Suppose that (i) is satisfied. Proving (ii) is equivalent to proving the existence
of an integer l such that ql ≡ −1 mod n. The assumption 2‖ordpi(q) and Corollary 2.1
give that ord

p
ki
i

(q) = 2mi, with mi odd . Using Lemma 2.5, we get qmi ≡ −1 mod pkii .

Therefore, q
∏t

i=1mi ≡ −1 mod pkii . Hence, there exists l =
∏t

i=1mi an odd integer such that
ql ≡ −1 mod

∏t
i=1 p

ki
i . On the other hand, q ≡ −1 mod 2k0 implies ql ≡ −1 mod 2k0 .

Consequently n = 2k0
∏t

i=1 p
ki
i devide ql + 1. Thus ql ≡ −1 mod n.

Conversely, assume that all free cyclic codes over R are LCD. This means that all cyclo-
tomic cosets are reversible and, in particular, the cyclotomic coset C1. Hence there exists l
in N∗ such that ql ≡ −1 mod n. Therefore

ql ≡ −1 mod pkii , for 1 ≤ i ≤ t (2.2)

and
ql ≡ −1 mod 2k0 (2.3)

Equation (2.2) and Lemma 2.5 give that l =
1

2
(1 + 2mi)ordpi(q), for some integers mi.

Equation (2.3) and Lemma 2.10 give q ≡ −1 mod 2k0 and that the integer l must be odd.
It follows that 2l = (1 + 2mi)ordpi(q). Which means that 2‖ordpi(q). This completes the
proof. 2

Example 2.5 Let R = Z9, n = 3724 = 22 · 72 · 19. We have ord7(3) = 6, ord19(3) = 18.

Since 2‖6, 2‖18 and 22 | 4, so all free cyclic codes of length n = 3724 are LCD codes.



Chapter 3
Existence of Self Dual Cyclic Codes over Rings

Self dual cyclic codes constitute an important class of linear codes due to their rich algebraic
structures and their wide applications. In this Chapter we focuse on the existence of self
dual cyclic codes over finite chain rings of arbitrary length as a generalization of the results
obtained in [6].

1 Generalities on Self Dual Codes over Finite Fields

Let C be a linear code over Fq. Recall that C is said to be self dual if and only if C = C⊥. It
is well know that a linear code C and its dual C⊥ verify the property dimC + dimC⊥ = n.
Hence, the following result is obvious.

Lemma 1.1 [58] Let Fq be a finite field. If C is a self dual code over Fq of length n, then

n must be even.

Of course, this is not true when the underlying alphabet is not a field. For example, the
code {0, 2} is a self dual code of length 1 over Z4.

Lemma 1.2 [41] Let C be a linear code of length n = 2n′ over Fq with generator matrix

G = [In′|A]. Then C is a self dual code if and only if AAT = −In′.

Proof. Assume that C is self dual code, then C = C⊥. Hence G is also a generator matrix
of C⊥. Therefore GGT = AAT + In′ = 0. 2

Proposition 1.1 [41] Let C be a self dual code of length 2n′ over Fq with a standard

32
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generator matrix G = [In′ |A]. Then

ATG = [AT | − In′ ]

is also a generator matrix of C.

Proof. Since C is self dual, then AAT = −I and A−1 = −AT . Thus AT is not singular.
This implies that the rows of the matrix ATG form a basis of C and

ATG = [AT In′ |ATA] = [AT | − In′ ]

2

Corollary 1.1 [41] Let G = [In′ |A] and G′ = [In′|AT ] be generator matrices of self dual

codes C and C ′, respectively. Then C and C ′ are equivalent.

Proof. From Proposition 1.1, we have that ATG = [AT | − In′ ] generates also the code C
and it is a permutation equivalent to G′ = [In′ |AT ] 2

For cyclic codes, it was shown in [36] that self dual cyclic codes of length n over Fq exist if
and only if q is a power of 2 and n is even. When these conditions are met, there is always
a self dual cyclic code with generator polynomial x

n
2 − 1 called a trivial self dual code.

Proposition 1.2 [36] A cyclic code C of length n is self dual if and only if g(x) = h∗(x);

where g(x) is the generator polynomial of C, h(x) is the check polynomial and h∗(x) is the

reciprocal polynomial of h(x).

Theorem 1.1 [36] There exists at least one self dual cyclic code of length n = 2n′ over Fq
if and only if q is a power of 2.

Proof. Suppose that C is a self dual cyclic code of length n = 2n′ over Fq. Then
deg g = deg h = n

2
= n′. As g(x)h(x) = xn − 1, we have g0h0 = −1, where g0 and h0 are the

constant terms of g(x) and h(x), respectively. Therefore,

g(x−1)h(x−1) = x−n − 1

⇒ (g0g
∗(x))(h0h

∗(x)) = 1− xn

⇒ g∗(x)h∗(x) = xn − 1

(3.1)
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By Proposition 1.2, we have

g(x) = h∗(x)

⇒ x
n
2 g(x−1) = h−10 h(x)

⇒ g0g
∗(x) = h−10 h(x)

⇒ g∗(x) = −h(x)

(3.2)

Therefore, we have g∗(x)h∗(x) = −g(x)h(x) = −(xn − 1) . Then by equations (3.1) and
(3.2), we have

xn − 1 = −(xn − 1)

Hence, the following identity holds:

2(xn − 1) = 0

which implies that the characteristic of the field Fq is 2, i.e., q is a power of 2. Conversely,
if q is a power of 2 , then the polynomial xn − 1 can be written as follows over Fq:

xn − 1 = xn + 1 = (xn
′
+ 1)2

Hence, we get the trivial self dual cyclic code with generator polynomial xn′ + 1. 2

Assume that q = 2m and n = 2an′ such that n′ is an odd integer. Each cyclic code over
F2m is uniquely determined by its generator polynomial, a monic divisor of xn− 1 over F2m .
In order to describe the generator polynomials of [n, n

2
, d] self dual cyclic codes, we need to

know the factorization of the polynomial xn − 1 over F2m . The polynomial xn′ − 1 can be
factorized into distinct irreducible polynomials as follows:

xn
′ − 1 = f1(x)f2(x)...fs(x)h1(x)h∗1(x)...ht(x)h∗t (x)

where fi(x), (1 ≤ i ≤ s) are monic irreducible self reciprocal polynomials over F2m while
hj(x) and its reciprocal polynomial h∗j(x), (1 ≤ j ≤ t) are both monic irreducible polynomials
over F2m . Therefore

xn − 1 = (xn
′ − 1)2

a

= f1(x)2
a

f2(x)2
a

...fs(x)2
a

h1(x)2
a

h∗1(x)2
a

...ht(x)2
a

h∗t (x)2
a

(3.3)

Theorem 1.2 [36] Let xn− 1 be factorized as in Equation (3.3). A cyclic code C of length
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n is self dual over F2m if and only if its generator polynomial is of the form

f1(x)2
a−1f2(x)2

a−1...fs(x)2
a−1h1(x)β1h∗1(x)2

a−β1 ...ht(x)βth∗t (x)2
a−βt (3.4)

where 0 ≤ βi ≤ 2a for each 1 ≤ i ≤ t.

Proof. Let C be a cyclic code of length n over F2m and let g(x) be its generator polynomial.
We need to show that C is self dual if and only if g(x) is of the form as in Equation (3.4).
Since the generator polynomial g(x) of a cyclic code of length n is monic and divides xn−1,
we may assume that

g(x) = f1(x)α1f2(x)α2 ...fs(x)αsh1(x)β1h∗1(x)γ1 ...ht(x)βth∗t (x)γt

where 0 ≤ αi ≤ 2a for each 1 ≤ i ≤ s, and 0 ≤ βj, γj ≤ 2a for each 1 ≤ j ≤ t. Then the
check polynomial is

h(x) = f1(x)2
a−α1f2(x)2

a−α2 ...fs(x)2
a−αsh1(x)2

a−β1h∗1(x)2
a−γ1 ...ht(x)2

a−βth∗t (x)2
a−γt

Hence

h∗(x) = f1(x)2
a−α1f2(x)2

a−α2 ...fs(x)2
a−αsh∗1(x)2

a−β1h1(x)2
a−γ1 ...h∗t (x)2

a−βtht(x)2
a−γt

since fi(x)(1 ≤ i ≤ s) are self-reciprocal while hj(x) and h∗j(x)(1 ≤ j ≤ t) are reciprocal
polynomial pairs over F2m . By Proposition 1.2, C is self dual if and only if g(x) = h∗(x),
i.e., αi = 2a − αi for each 1 ≤ i ≤ s

γi = 2a − βj for each 1 ≤ j ≤ t

or, equivalently,  αi = 2a−1 for each 1 ≤ i ≤ s

γi = 2a − βj for each 1 ≤ j ≤ t

2

Example 1.1 Consider the case: n = 14 and q = 2. Now n′ = 7. The factorization of

x14 + 1 over F2 is

x14 + 1 = (x+ 1)2(x3 + x+ 1)2(x3 + x2 + 1)2
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It is observed that the polynomial x+ 1 is a self reciprocal polynomial and x3 + x+ 1 is the

reciprocal polynomial of x3 + x2 + 1 over F2. There are 3 binary self dual cyclic codes of

length 14 with the following generator polynomials respectively:

(x+ 1)(x3 + x+ 1)2 = x7 + x6 + x3 + x2 + x+ 1;

(x+ 1)(x3 + x+ 1)(x3 + x2 + 1) = x7 + 1;

(x+ 1)(x3 + x2 + 1)2 = x7 + x6 + x5 + x4 + x+ 1 :

The one with generator polynomial x7 + 1 is the trivial self dual cyclic code.

2 Existence of Self Dual Cyclic codes over Finite Rings

2.1 Generalities of Self Dual Codes over Finite Frobenius Rings

We start this part with the following Lemmas which are standard tools to determine when
self dual codes exist.

Lemma 2.1 [23] Let R be a finite commutative Frobenius ring. If |R| is not a square and

there exists a self dual code C of length n, then n must be even.

Proof. We know from Corollary 2.1 that |C||C⊥| = |R|n. This gives that |C| = |R|n2 . If
|R| is not a square, then |C| is not an integer, which is a contradiction. Hence n must be
even. 2

Lemma 2.2 [23] Let R be a finite commutative Frobenius ring and let C and D be self

dual codes of length n and m respectively. Then the direct product C ×D is a self dual code

of length n+m over R.

Proof. Let (v, w), (v′, w′) ∈ C ×D. Then

(v, w).(v′, w′) = (v.v′) + (w.w′) = 0 + 0 = 0

This gives that C ×D is a self orthogonal code. Since

|C ×D| = |C|.|D| = |R|
n
2 .|R|

m
2 = |R|

n+m
2

Therefore C ×D is a self-dual code of length n+m.
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2

Lemma 2.3 [23] Let R be a finite local commutative Frobenius ring with maximal ideal m

such that R/m is a field of characteristic p, where p is an odd prime. Let Si = R/mi. If

there exists α in Si with α2 = −1, then there exists β in Si+1 with β2 = −1 .

Proof. Let α in Si with α2 = −1. Let β = α + si be an element in Si+1, where si +

mi+1 is in mi/mi+1. Then we have

(α + si)
2 ≡ α2 + 2αsi + s2i mod mi+1

≡ α2 + 2αsi mod mi+1

≡ δ − 1 + 2αsi mod mi+1

for some δ in mi since α2 = −1 is in Si. Next we show that there exists an element si such
that δ − 1 + 2αsi is in Si+1. We have

δ − 1 + 2αsi = −1 mod mi+1 ⇔ δ = −2αsi mod mi+1

Since p is odd, 2 is relatively prime to p. Hence the element 2 is a unit. Since α2 = −1

mod m, this implies that α is a unit inR/m. Let si = −δ(2α)−1. Then si+mi+1 is in mi/mi+1

and β2 = (α + si)
2 ≡ δ − 1 + 2αsi = −1 is in Si+1 since elements of mi+1 are 0 in Si+1. 2

Corollary 2.1 [23] Let R be a finite local commutative Frobenius ring with characteristic

congruent to 1 mod 4. Then there exists an α in R with α2 = −1.

Proof. The field R/m has characteristic 1 mod 4 and hence has a square root of −1.
Then, by induction using Lemma 2.3, we have the result. 2

Notice that this result does not necessarily hold when R/m has characteristic 2. For example,
Z4 is a local ring and Z4/ 〈2〉 ∼= F2, which has a square root of −1 , but the ring Z4 does
not. We can use this result to get the following theorem

Theorem 2.1 [23] Let R be a finite local commutative Frobenius ring with characteristic

congruent to 1( mod 4). Then there exist self dual codes for all even lengths over R.

Proof. By Corollary 2.1, the ring R has an element α with α2 = −1. Then the code
generated by (1, α) is a self dual code of length 2. Then, by applying Lemma 2.2, inductively,
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we have the result. 2

Lemma 2.4 [23] Let R be a finite local commutative Frobenius ring with maximal ideal m

such that R/m is a field of characteristic p, where p is an odd prime. Let Si = R/mi. If

there exist α, β in Si with α2 + β2 = −1, then there exist γ, δ in Si+1 with γ2 + δ2 = −1.

Corollary 2.2 [23] Let R be a finite local commutative Frobenius ring with characteristic

congruent to 3( mod 4). Then there exist α, β in R with α2 + β2 = −1.

Proof. The field R/m has characteristic 3( mod 4) and hence there exist γ, δ with γ2+δ2 =

−1. Then by induction using Lemma 2.4 we have the result 2

This result leads naturally to the following theorem.

Theorem 2.2 [23] Let R be a finite local commutative Frobenius ring with characteristic

congruent to 3( mod 4). Then there exist self dual codes for all lengths congruent to 0(

mod 4) over R.

Proof. By Corollary 2.2, the ring R has elements α, β with α2 + β2 = −1. Then the code
C = 〈(1, 0, α, β), (0, 1,−β,−α)〉 is a self-dual code of length 4. Then, by applying Lemma
2.2 inductively, we have the result. 2

2.2 Existence of Self Dual Cyclic Codes over Chain rings

Let R be a finite chain ring with maximal ideal 〈γ〉, residue field Fq and nilpotency index e
of the maximal ideal 〈γ〉, (Recall that R can be considered as a finite local frobenius ring).
We have |R| = |Fq|e and if C is a code of length n over R, then |C||C⊥| = |R|n.

Theorem 2.3 [23] If e is even, then a =
〈
γ

e
2

〉
is a self dual code of length 1, called trivial

self dual code.

Proof. We have that
〈
γ

e
2

〉 〈
γ

e
2

〉
= 〈γe〉 = 0 and so a ⊆ a⊥. Assume that a 6= a⊥. Then

a⊥ = 〈γj〉 with j < e
2
. Then

〈
γ

e
2

〉
〈γj〉 = 0 contradicting that e is minimal. Therefore

a = a⊥ and is a self dual code of length 1. 2

The following results give necessary and sufficient conditions for the existence of non trivial
self dual cyclic codes of length n over R .

Corollary 2.3 [23] If e is even, then there exists self dual codes of length n for all n.
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Proof. The result follows immediately by applying Lemma 2.2 to the self dual code of
length 1 in Theorem 2.3. 2

Proposition 2.1 [22] Let C be a cyclic code of length n over R. Assume that xn − 1 =

F0F1...Fe−1Fe and let C =
〈
F̂1, γF̂2, ..., γ

e−1Fe

〉
be a cyclic code (as in Theorem 2.5 in

Chapter 1) such that F̂i(x) =
xn − 1

Fi(x)
. Then C is self dual if and only if Fi is an associate

of F ∗j for all i, j in {0, 1, ..., e} such that i+ j ≡ 1 mod (e+ 1).

Cyclic codes of length n which is not divisible by the characteristic of R are called simple
root cyclic codes. Batoul et al. [6] proved that there are no simple root self dual cyclic codes
over finite chain rings when the nilpotency index of the generator of the maximal ideal is
odd.

Theorem 2.4 [6] If e is odd, then there are no non trivial self dual cyclic codes of length

n over R when gcd(n, q) = 1.

Proof. If q = 2k, then gcd(n, q) = 1 and so n must be odd. Let C be a non trivial cyclic
code of length n over R, so that there exist monic coprime polynomials F0, F1, .., Fe−1, Fe

such that xn− 1 = F0F1...Fe−1Fe and C =
〈
F̂1, γF̂2, ..., γ

e−1Fe

〉
. If C is self-dual, then from

Proposition 2.1, Fi is an associate of F ∗j for i, j in {0, 1, ..., e} and i + j ≡ 1 mod (e + 1).
Hence Fi = ξF ∗j for some unit ξ in R. Since e is odd, then i + i = 2 6≡ 1 mod (e + 1) and
Fi 6= F ∗i for all 0 ≤ i ≤ e. Therefore

xn − 1 = F0F
∗
0F1F

∗
1 ...F e+1

2
F ∗e+1

2

Thus none of the Fi are self reciprocal. On the other hand, the polynomial (x−1) is a factor
of xn − 1, so there is an 0 ≤ i0 ≤ e such that Fi0 = (x − 1)g(x) for some polynomial g(x).
Hence

F ∗i0 = (x− 1)∗g(x)∗ = (x− 1)g∗(x) = F1−i0 mod (1+e)

which is impossible since the Fi are coprime for all 0 ≤ i ≤ e, and xn − 1 has no repeated
roots since gcd(n, q) = 1.

2

Throughout the rest of this section, we assume that e is even.

Theorem 2.5 [22] There exists a non trivial self dual cyclic code over R if and only if

there exists a basic irreducible factor f(x) in R[x] of xn − 1 such that f(x) and f ∗(x) are
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not associate.

Theorem 2.6 [6] Non trivial self dual cyclic codes of length n over R exist if and only if

for all i in N, we have qi 6≡ −1 mod n.

Proof. Recall that if f(x) is a monic basic irreducible polynomial which divides xn−1, then
f(x) is the minimal irreducible polynomial over Fq[x]. And hence there exists a cyclotomic
coset Cu associated with f(x). Therefore f(x) =

∏
i∈Cu

(x− αi), where α is a primitive nth

root of unity. The reciprocal polynomial of f(x) is the polynomial

f(x)
∗

= (
∏
i∈Cu

(x− αi))∗ = xr
∏
i∈Cu

(x−1 − αi) =
∏

i∈Cn−u

(x− αi)

Since we have f(x)
∗

= f ∗(x), then by Theorems 2.5, a non trivial self dual cyclic code exists
if and only if there is a basic irreducible polynomial f(x) which is a factor of xn − 1 such
that f(x) and f ∗(x) are not associate. We show that this can occur if and only if qi 6≡ −1

mod n for all positive integers i.
Assume now that qi 6≡ −1 mod n for all positive integers i, then C1 6= C−1. Hence
f(x) 6= f(x)∗ where f(x) =

∏
i∈C1

(x − αi). Hence the code
〈
f(x)g(x), γ

e
2f(x)f ∗(x)

〉
is

a non trivial self dual code where f(x)f ∗(x)g(x) = xn − 1. Conversely, if a non triv-
ial self dual cyclic code exists then by Theorem 2.5 there exists a factor f(x)|xn − 1 with
f(x) 6= f ∗(x). Hence Cu 6= C−u, and then C1 6= C−1 where f(x) =

∏
i∈Cu

(x−αi) . Therefore
qi 6≡ −1 mod n for all positive integers i. 2

In [6], the authors introduce a simple criterion for the existence of non trivial self dual
cyclic codes over R when the length of the code is an odd prime power and the nilpotency
index of the maximal ideal of the ring is even.

Lemma 2.5 [6] If n is an odd prime power coprime with q, then there exists a non trivial

self dual cyclic code of length n over R if and only if ordn(q) is odd.

Using Lemmas 2.8 and 2.6 in Chapter 2, we will generalize this result and provide conditions
on the existence of non trivial self dual codes of arbitrary length over R.

Theorem 2.7 Let n be an odd integer coprime to q such that the factorization of n is given

by n = pk11 p
k2
2 ...p

kt
t , with ki in N∗ for all 1 ≤ i ≤ t and t ≥ 2. Denote by ai the integers of

N such that 2ai‖ordpi(q), for all 1 ≤ i ≤ t. Then non trivial self dual cyclic codes of length

n exist if and only if one of the following statements holds:
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(i) There exist at least i0, 1 ≤ i0 ≤ t such that ai0 = 0.

(ii) For all 1 ≤ i ≤ t, ai 6= 0, and there exist two distinct integers i1, i2 with 1 ≤ i1, i2 ≤ t

such that ai1 6= ai2.

Proof. Assume that there exists i0, 1 ≤ i0 ≤ t such that ai0 = 0. This means that
ordpi0 (q) is odd. Lemma 2.5 garanties that there is no integer l such that ql ≡ −1 mod pi0 .
Hence, for all i in N we have qi 6≡ −1 mod n. Thus, from Lemma 2.6, a non trivial self dual
cyclic code over R exists.
Assume now that (ii) is satisfied. Therefore, all ordpi(q), for 1 ≤ i ≤ t, are even. Lemma
2.8 shows that if there exist two distinct integers i1, i2, 1 ≤ i1, i2 ≤ t such that ai1 6= ai2 , then
there is no integer l such that ql ≡ −1 mod n. Hence, a non trivial self dual codes over R
exist. Conversely, assume that non trivial self dual codes exist. So for any integer l, ql 6≡ −1

mod n. We need to prove that either there exists i0 such that ai0 = 0 or every ai is different
to zero and at least two of them are distincts. Suppose that for all 1 ≤ i ≤ t, ai 6= 0. This
implies that ordpi(q) is even for all 1 ≤ i ≤ t. Since there is no integer l such that ql ≡ −1

mod n, by Lemma 2.8, we have that there exists i1, i2 with 1 ≤ i1, i2 ≤ t such that ai1 6= ai2 .
2

Example 2.1 Let R = Z4 and n = 3 · 5, we have ord3(2) = 2 and ord5(2) = 4, and hence

21‖ord3(2) and 22‖ord5(2). So there exist non trivial self dual codes over Z4 of length 15.

The factorization of x15 − 1 over Z4 is given by

x15 − 1 = f1(x)f2(x)f3(x)f4(x)f ∗4 (x),

where

f1 = x+3, f2 = x2+x+1, f3 = x4+x3+x2+x+1, f4 = x4+2x2+3x+1 and f ∗4 = x4+3x3+2x2+1.

Let g(x) = f1(x)f2(x)f3(x) and h(x) = f4(x). Then the following codes

〈g(x)h(x), 2h(x)h∗(x)〉 and 〈g(x)h∗(x), 2h(x)h∗(x)〉

are non trivial self dual cyclic codes of length 15.

Example 2.2 Let R = Z16 and n = 21. We have ord3(2) = 2 and ord7(2) = 3. Then, there

exist non trivial self dual cyclic codes over R of length 21. The factorization of x21− 1 over
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R is equal to

x21 − 1 = f1(x)f2(x)f3(x)f ∗3 (x)f4(x)f ∗4 (x),

where

f1(x) = x− 1, f2(x) = x2 + x+ 1, f3(x) = x3 + 6x2 + 5x− 1, f ∗3 (x) = x3 + 11x2 + 10x− 1,

f4(x) = x6 − 6x5 − x4 − x2 + 5x+ 1. and f ∗4 (x) = x6 + 5x5 − x4 − x2 + 10x+ 1

Let x21 − 1 = g(x)h(x)h∗(x), where g(x) = f1(x)f2(x) is a self reciprocal polynomial and

h(x) = f3(x)f4(x). Thus, for example, the code 〈g(x)h(x), 2h(x)h∗(x)〉 is self dual.

We give now the necessary and sufficient conditions for the existence of non trivial self dual
cyclic codes when the length is oddly even.

Theorem 2.8 Let n be an oddly even integer coprime to q such that the irreducible factor-

ization of n is given by n = 2.pk11 p
k2
2 ...p

kt
t , where t ≥ 2, and ki in N∗ for all 1 ≤ i ≤ t. Let

ai ∈ N such that 2ai‖ordpi(q). Then a non trivial self dual cyclic code of length n exists if

and only if one of the following statements holds:

(i) There exists at least i0, 1 ≤ i0 ≤ t such that ai0 = 0.

(ii) For all 1 ≤ i ≤ t, ai 6= 0, there exist two distincts integers i1, i2 with 1 ≤ i1, i2 ≤ t such

that ai1 6= ai2.

Proof. Since gcd(n, q) = 1, then q must be an odd integer. Hence for all l in N∗ we have
2 | ql + 1. If a1 = a2 = ... = at = a, and a 6= 0, by Lemma 2.8, we know that there exists
l in N∗ such that ql ≡ −1 mod

∏t
i=1 p

ki
i . Therefore, ql ≡ −1 mod n. Hence, there do not

exist non trivial self dual codes on R by Lemma 2.6.
Conversely, assume (i) holds. Thus, from Lemma 2.5, there is no integer l such that

ql ≡ −1 mod pi0 . Hence, there does not exist an integer l in N, such that ql ≡ −1 mod n.
This proves by Lemma 2.6 that non trivial self dual cyclic codes over R exist.
Assume now that (ii) is satisfied. By Lemma 2.8, if there exist two distinct integers i1, i2, 1 ≤
i1, i2 ≤ t such that ai1 6= ai2 , then there is no integer l such that ql ≡ −1 mod

∏t
i=1 p

ki
i .

Even if we have 2 divides ql + 1 for all l ∈ N∗, we cannot find any integr l such that ql ≡ −1

mod n. Hence by Lemma 2.6, non trivial self dual codes over R exist.
2
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Example 2.3 Let R = Z9 and n = 70 = 2 · 5 · 7. We have ord5(3) = 4, ord7(3) = 6, and

hence 2‖ord7(3) and 22‖ord5(3). So there exist non trivial self dual cyclic codes of length 70

over Z9. The factorization of x70 − 1 over Z9 is given by

x70 − 1 = f1(x)f2(x)f3(x)f4(x)f5(x)f6(x)f7(x)f ∗7 (x)f8(x)f ∗8 (x),

where

f1(x) = x+ 1

f2(x) = x+ 8,

f3(x) = x4 + x3 + x2 + x+ 1,

f4(x) = x4 + 8x3 + x2 + 8x+ 1,

f5(x) = x6 + x5 + x4 + x3 + x2 + x+ 1,

f6(x) = x6 + 8x5 + x4 + 8x3 + x2 + 8x+ 1,

f7(x) = x12 + 4x10 + 6x9 + 8x8 + x7 + 3x6 + 4x5 + 5x4 + 7x3 + 5x2 + 8x+ 1,

f ∗7 (x) = x12 + 8x11 + 5x10 + 7x9 + 5x8 + 4x7 + 3x6 + x5 + 8x4 + 6x3 + 4x2 + 1

f8(x) = x12 + 4x10 + 3x9 + 8x8 + 8x7 + 3x6 + 5x5 + 5x4 + 2x3 + 5x2 + x+ 1.

f ∗8 (x) = x12 + x11 + 5x10 + 2x9 + 5x8 + 5x7 + 3x6 + 8x5 + 8x4 + 3x3 + 4x2 + 1.

Let x70−1 = g(x)h(x)h∗(x), where g(x) = f1(x)f2(x)f3(x)f4(x)f5(x)f6(x) is a self reciprocal

polynomial and h(x) = f7(x)f8(x). Thus, for example, the code 〈g(x)h(x), 3h(x)h∗(x)〉 is
self dual.

Example 2.4 Let R = Z49 and n = 30 = 2 · 3 · 5. We have ord3(7) = 1, ord5(7) = 4. We

have that ord3(7) is odd, so there exist non trivial self dual cyclic codes of length 30 over

Z49. The factorization of x30 − 1 over Z49 is given by

x30 − 1 = f1(x)f2(x)f ∗2 (x)f3(x)f ∗3 (x)f4(x)f5(x)f6(x)f7(x)f ∗7 (x)f8(x)f ∗8 (x),
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where

f1(x) = x+ 1, f2(x) = x− 19 f ∗2 (x) = x+ 18

f3(x) = x− 18, f ∗3 (x) = x+ 19 f4(x) = x− 1,

f5(x) = x4 + x3 + x2 + x+ 1, f6(x) = x4 − x3 + x2 − x+ 1,

f7(x) = x4 − 19x3 + 18x2 + x− 19, f ∗7 (x) = x4 + 18x3 + 30x2 + x+ 18,

f8(x) = x4 − 18x3 − 19x2 − x+ 18, f ∗8 (x) = x4 + 19x3 + 18x2 + 48x+ 30,

Let x30−1 = g(x)h(x)h∗(x), where g(x) = f1(x)f4(x)f5(x)f6(x) and h(x) = f2(x)f3(x)f7(x)f8(x).

Thus, for example, the code 〈g(x)h(x), 7h(x)h∗(x)〉 is self dual.

We determine now, necessary and sufficient conditions for the existence of non trivial self
dual cyclic codes over R for doubly even lengths.

Theorem 2.9 Let n be a doubly even integer coprime to q, such that the irreducible factori-

sation of n is given by n = 2k0pk11 p
k2
2 ...p

kt
t where ki in N∗ for all 1 ≤ i ≤ t and k0 ≥ 2. Let

ai in N such that 2ai‖ordpi(q), for 1 ≤ i ≤ t. The following statements are equivalent:

(i) Non trivial self dual cyclic codes over R exist.

(ii) There exits i, 1 ≤ i ≤ t, such that ai 6= 1 or 2k0 - (q + 1).

Proof. Assume that (ii) is not satisfied. This implies that a1 = a2 = ... = at = 1

and 2k0 | (q + 1). Then from Lemma 2.8, there is an odd integer l such that ql ≡ −1

mod
∏t

i=1 p
ki
i . Since q ≡ −1 mod 2k0 and l is odd, it follows that ql ≡ −1 mod 2k0 . Thus

ql ≡ −1 mod n. Lemma 2.6 shows that non trivial self dual cyclic code over R does not
exist.
Conversely, suppose that it does not exist any non trivial self dual cyclic codes of length n
over R. Then, by Lemma 2.6, there exist some positive integer l such that ql ≡ −1 mod n.
Thus, ql ≡ −1 mod 2k0 . By Lemma 2.10, we have that q ≡ −1 mod 2k0 and that the
integer l is odd. On the other hand ql ≡ −1 mod n implies again that ql ≡ −1 mod pi.
Lemma 2.5 gives that 2l = (1 + 2mi)ordpi(q), for some integers mi. Since l is odd, it follows
that 2‖ordpi(q). This means that ai = 1 for each 1 ≤ i ≤ t. 2

Example 2.5 Let R = Z25 and n = 84 = 22 · 3 · 7. We have that 22 - (5 + 1). Then there

are non trivial self dual cyclic codes of length 84 over Z25. The factorization of x84− 1 over



2. EXISTENCE OF SELF DUAL CYCLIC CODES OVER FINITE RINGS 45

Z25 is given by

x84 − 1 =
10∏
i=1

fi(x)
15∏
i=11

fi(x)f ∗i (x),

where

f1(x) = x+ 1, f2(x) = x+ 24,

f3(x) = x2 + x+ 1, f4(x) = x2 + 24x+ 1,

f5(x) = x6 + 5x5 + 22x4 + 2x3 + 22x2 + 5x+ 1, f6(x) = x6 + 20x5 + 22x4 + 23x3 + 22x2 + 20x+ 1,

f7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1, f8(x) = x6 + 6x5 + 8x4 + 9x3 + 8x2 + 6x+ 1,

f9(x) = x6 + 24x5 + x4 + 24x3 + x2 + 24x+ 1, f10(x) = x6 + 19x5 + 8x4 + 16x3 + 8x2 + 19x+ 1,

f11(x) = x+ 7, f∗11(x) = x+ 18

f12(x) = x2 + 7x+ 24, f∗12(x) = x2 + 18x+ 24

f13(x) = x6 + 10x5 + 3x4 + 11x3 + 22x2 + 10x+ 24, f∗13(x) = x6 + 15x5 + 3x4 + 14x3 + 22x2 + 15x+ 24,

f14(x) = x6 + 17x5 + 17x4 + 12x3 + 8x2 + 17x+ 24, f∗14(x) = x6 + 8x5 + 17x4 + 13x3 + 8x2 + 8x+ 24,

f15(x) = x6 + 7x5 + 24x4 + 18x3 + x2 + 7x+ 24 f∗15(x) = x6 + 18x5 + 24x4 + 7x3 + x2 + 18x+ 24

Let x84 − 1 = g(x)h(x)h∗(x) where g(x) =
∏10

i=1 fi(x) and h(x) =
∏15

i=11 fi(x). Thus for

example the code 〈g(x)h(x), 5h(x)h∗(x)〉 is self dual.

Example 2.6 Let R = Z81 and n = 140 = 22 · 5 · 7. We have that 22 | (3 + 1), ord7(3) = 6

and ord5(3) = 4. Thus 21‖ord7(3) and 22‖ord5(3). Therefore, there exist non trivial self

dual cyclic codes of length 140 over Z81. The factorization of x140 − 1 over Z81 is given by

x140 − 1 =
9∏
i=1

fi(x)
14∏
i=10

fi(x)f ∗i (x),

where

f1(x) = x+ 1, f2(x) = x− 1,

f3(x) = x2 + 1, f4(x) = x4 + x3 + x2 + x+ 1,

f5(x) = x4 − x3 + x2 − x+ 1, f6(x) = x6 + 13x5 + 3x4 + 13x3 + 3x2 + 13x+ 1,

f7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1, f8(x) = x6 − 13x5 + 3x4 − 13x3 + 3x2 − 13x+ 1,

f9(x) = x6 − x5 + x4 − x3 + x2 − x+ 1, f10(x) = x4 − 20x3 − 3x2 + 20x+ 1,
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f11(x) = x12 − 24x11 + 9x10 − 17x9 + 5x8 + 31x7 − 4x6 + 11x5 − 12x4 + 4x3 − 8x2 + 37x+ 1,

f12(x) = x12 + 24x11 + 9x10 + 17x9 + 5x8 + 50x7 − 4x6 − 11x5 − 12x4 − 4x3 − 8x2 + 44x+ 1,

f13(x) = x12 − 9x11 + 4x10 + 15x9 + 53x8 + 19x7 + 12x6 + 49x5 + 23x4 − 2x3 − 13x2 + 8x+ 1,

f14(x) = x12 + 9x11 + 4x10 − 15x9 + 53x8 − 19x7 + 12x6 + 32x5 + 23x4 + 2x3 − 13x2 − 8x+ 1.

Let x140 − 1 = g(x)h(x)h∗(x) where g(x) =
∏9

i=1 fi(x) and h(x) =
∏14

i=10 fi(x). Thus the

code 〈g(x)h(x), 9h(x)h∗(x)〉 is self dual.



Chapter 4
Construction of Isodual cyclic Codes over

Finite Rings

In this chapter we will present another class of formally self dual codes called isodual codes,
those are codes which are equivalent to their duals. For some parameters, one can prove
that there are no cyclic self dual codes over finite fields or finite rings, whereas isodual codes
can exist.

1 Generalities of Isodual codes over Finite Fields

For linear codes over finite fields, we have that if C is an [n, k, d] isodual code, then n = 2k.

Proposition 1.1 [60] Let A be a matrix satisfying AT = QAQ, with Q a monomial matrix

that satisfies Q2 = I, where I is identity of order n. The code C with generator matrix

G = [I|A] is an isodual code of length 2n.

Proof. The parity check matrix of C is then H = [−AT |I]. Recall that H spans C⊥. Using

the hypothesis, we have HQ̄ = [−QA|Q], where Q̄ =

Q 0

0 Q

. Hence Q̄HQ̄ = [−A|I], is

a matrix which spans an equivalent code to C. The result follows. 2

Let a be an integer such that gcd(a, n) = 1. The function µa defined on Zn = {0, 1, ..., n−1}
by µa(i) ≡ ia mod n is a permutation of the coordinate positions {0, 1, 2, ..., n − 1} and
is called a multiplier. Multipliers also act on polynomials and this gives the following ring

47
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automorphism

µa : Fq[x]/(xn − 1) −→ Fq[x]/(xn − 1)

f(x) 7−→ µa(f(x)) = f(xa)

If C is a cyclic code generated by f(x), then µa(C) = 〈f(xa)〉. Thus two cyclic codes
C1 = 〈f(x)〉 and C2 = 〈g(x)〉 are multiplier equivalent if there exists a multiplier µa such
that g(x) = µ(f(x)) = f(xa).

Proposition 1.2 [31] Let C be a cyclic code of length n over Fq generated by the polynomial

g(x) and λ in F∗q such that λn = 1. Then the following holds

i. C is equivalent to the cyclic code generated by g∗(x), and

ii. C is equivalent to the cyclic code generated by g(λx).

Proof. (i.) Consider the multiplier

µ−1 : Fq[x]/(xn − 1) −→ Fq[x]/(xn − 1)

f(x) 7−→ µ−1(f(x)) = f(x−1)

Assume that deg(g(x)) = r. If C1 is the code generated by g∗(x), then

C1 = {xrg−1(0)µ−1(g(x))f(x) mod (xn − 1); f(x) ∈ Fq[x]/(xn − 1)}

Clearly, we have

{xrf(x−1) mod (xn−1); f(x) ∈ Fq[x]/(xn−1)} = {µ−1(a(x)) mod (xn−1); a(x) ∈ Fq[x]/(xn−1)}

So that

{g(0)−1µ−1(g(x)a(x)) mod (xn − 1); a(x) ∈ Fq[x]/(xn − 1)} = µ−1(C)

Hence, C is equivalent to C1 because µ−1 is a permutation of the coordinates {1, x, x2, ..., xn−1}.
(ii.) Suppose there exists λ ∈ F∗q such that λn = 1 and let

φ : Fq[x]/(xn − 1) −→ Fq[x]/(xn − 1)

f(x) 7−→ φ(f(x)) = f(λx)
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For polynomials f(x), g(x) in Fq[x] we have that f(x) ≡ g(x)mod(xn−1) if and only if there
exists a polynomial h(x) in Fq[x] such that

f(x)− g(x) = h(x)(xn − 1)

Thus, it must be that

f(λx)− g(λx) = h(λx)[(λx)n − 1]

= h(λx)[(λ)nxn − 1]

= h(λx)[xn − 1]

Which is true if and only if f(λx) ≡ g(λx)mod(xn−1). Hence for f(x), g(x) in Fq[x]/(xn−1)

φ(f(x)) = φ(g(x))

if and only if
g(x) = f(x)

Therefore φ is well defined and is a ring automorphism of Fq[x]/(xn − 1). Let C2 be the
cyclic code generated by g(λx). Arguing as in part (i) we have that C2 = φ(C). So that C
is equivalent to C2.

Remark 1.1 With the same assumptions as in Proposition 1.2 we have :

i. C is equivalent to the cyclic code generated by g∗(λx) .

ii. C is equivalent to the cyclic code generated by (g(λx))∗.

Proposition 1.3 [31] Let n be a positive integer . If f(x) and g(x) are polynomials in

Fq[x] such that xn− 1 = g(x)f(x), then the cyclic code generated by g(x) is equivalent to the

dual of the cyclic code generated by f(x).

Proof. Let C be a cyclic code generated by g(x) and C ′ a cyclic code generated by f(x).
We have that the dual of C ′ is generated by g∗(x). By Propostion 1.2, C is equivalent to
C ′⊥. 2

Theorem 1.1 [31] Let m be an odd integer and f(x) a polynomial over Fq such that

xm − 1 = (x − 1)f(x). Then the cyclic codes of length 2m generated by (x − 1)f(−x) and

(x+ 1)f(x) are isodual codes.
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Proof. If xm − 1 = (x− 1)f(x), then xm + 1 = (x+ 1)f(−x) and

x2m − 1 = (xm − 1)(xs + 1) = (x− 1)f(x)(x+ 1)f(−x).

Let g(x) = (x − 1)f(−x) be the generator polynomial of a cyclic code C. Then the dual
code C⊥ is generated by

h∗(x) = (x+ 1)f ∗(x) = g∗(−x)

Hence from Proposition 1.2, C is equivalent to the cyclic code generated by g∗(x). Further,
from Proposition 1.2 again, the cyclic code generated by g∗(x) is equivalent to the cyclic
code generated by g∗(−x) = h∗(x), as the latter code is C⊥, so that C is isodual. The same
result holds for g(x) = (x+ 1)f(x) 2

The following theorem give a natural construction for cyclic isodual codes.

Theorem 1.2 Let n be a positive integer such that there exists λ in F∗
q
verifying λn = 1. If

xn − 1 = αg(x)g(λx) or xn − 1 = αg(x)g(λx)∗ for some α in F∗q, then the code generated by

g(x) is isodual.

Proof. Assume that xn−1 = αg(x)g(λx)∗. Let C be a code generated by the polynomial
g(x). From Proposition 1.3, C is equivalent to the dual of the cyclic code C ′ generated by
αg(λx)∗. Up to normalization and since λn = 1 and α in F∗q, we obtain that the code C ′ is
equivalent to the code generated by g(x) which is C itself. Therfore C is isodual. With the
same argument, we get the result for the second part. 2

Remark 1.2 The dual of an isodual cyclic code is also isodual.

Let m be an odd integer and n = 2m. Write the factorization of xm− 1 in Fq[x] at the form

xm − 1 = (x− 1)u(x)v(x)

where u, v are arbitrary in Fq[x]. Therefrom we get immediately by the identity xn − 1 =

(xm − 1)(xm + 1) the relation

xn − 1 = (x2 − 1)u(x)u(−x)v(x)v(−x).

Corollary 1.1 [1] Any cyclic code of length n and generated by one of the following poly-

nomial g(x) in the below table is isodual.
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N◦ g(x)
[
xn−1
g(x)

]∗
1 (x− 1)u(x)v(x) [−g(−x)]∗

2 (x− 1)u(−x)v(x) [−g(−x)]∗

3 (x− 1)u(−x)v(−x) [−g(−x)]∗

4 (x− 1)u(x)v(−x) −g(−x)

Example 1.1 Let q = 3,m = 25 and n = 2m. The factorization of x50 − 1 is given by

x50 − 1 = (x+ 1)(x+ 2)(x4 + x3 + x2 + x+ 1)(x4 + 2x3 + x2 + 2x+ 1)

×(x20 + x15 + x10 + x5 + 1)(x20 + 2x15 + x10 + 2x5 + 1)

Let f(x) = x− 1, h(x) = x4 + x3 + x2 + x + 1 and p(x) = x20 + x15 + x10 + x5 + 1 . Hence

the codes generated by g(x) are isodual, where

g(x) Minimum weight u(x) v(x)

f(x)h(x)p(x) 2 h(x) p(x)

f(x)h(x)p(−x) 4 h(x) p(x)

f(x)h(−x)p(x) 4 h(−x) p(x)

f(−x)h(x)p(x) 4 h(x) p(x)

f(x)h(−x)p(−x) 4 h(−x) p(−x)

f(−x)h(x)p(−x) 4 h(x) p(−x)

f(−x)h(−x)p(x) 4 h(−x) p(x)

f(−x)h(−x)p(−x) 2 h(−x) p(−x)

As a special case, consider the factorization of xn−1 in the form xn−1 = (x2−1)u(x)u(−x),
where u is an irreducible polynomial over Fq and deg(u) = m− 1.

Corollary 1.2 [1] The cyclic codes over Fq of parameters [2m,m, d]q are all isodual.

Example 1.2 Let q = 5,m = 3. The factorization of x6 − 1 is given by
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x6 − 1 = (x+ 1)(x+ 4)(x2 + x+ 1)(x2 + 4x+ 1)

Let f(x) = x+ 1 and h(x) = x2 + x+ 1. Then C = 〈g(x)〉 is isodual, where

g(x) Minimum weight u(x)

f(x)h(x) 4 h(x)

f(x)h(−x) 2 h(−x)

f(−x)h(x) 2 h(x)

f(−x)h(−x) 4 h(−x)

2 Construction of Isodual cyclic Codes over Finite Chain Rings

In this section some constructions of monomial isodual free cyclic codes for odd character-
istics are presented as a generalization of those obtained in [5].

2.1 Structure of Free Cyclic Codes of Length 2am over R

Let R be a finite chain ring with residue field Fq and m an odd integer such that gcd(m, q) =

1. In the following we give the structure of cyclic codes of length 2am where a ≥ 1. We
begin with the following Lemmas

Lemma 2.1 [5] There exists a primitive 2a-th root of the unity ξ in R∗ if and only if q ≡ 1

mod 2a. Further, x2a − 1 =
∏2a

k=1(x− ξk) in R[x].

Proof. Since q is an odd prime power, by [ [4], Proposition 4.2], there exists a primitive
2a-th root of the unity in R∗ if and only if there exists a primitive 2a-th root of unity in Fq.
If there exists a primitive 2a-th root of unity ξ in Fq, then ξ2

a
= 1, so that 2a divides q − 1.

Conversely, if 2a divides q − 1 then there exists an integer k such that q = k2a + 1. If ξ is a
primitive element of F∗q, then 1 = ξq−1 = (ξk)2

a and

ord(ξk) =
ord(ξ)

gcd(k, ord(ξ))
=

q − 1

gcd(k, q − 1)
=

k2a

gcd(k, k2a)
= 2a

Let ξ be a primitive 2a-th root of the unity in R∗. Since gcd(2a, q) = 1, it must be that ξ̄ is a
primitive 2a-th root of unity in F∗q. So that x2a − 1 =

∏2a

k=1(x− ξ̄k) in Fq[x]. By Lemma 2.1,
the monic polynomial x2a−1 factors uniquely as a product of monic basic irreducible pairwise
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coprime polynomials over R. Furthermore, there is a one-to-one correspondence between
the set of basic irreducible polynomial divisors of x2a − 1 in R[x] and the set of irreducible
divisors of x2a − 1 in Fq[x]. If x2a − 1 =

∏2a

k=1(x− ak), then (x− ak) = (x− āk) = (x− ξ̄k).
Since (x− ξk) = (x− ξ̄k) = (x− ξ̄k), from the unique decomposition of x2a − 1 in R[x], the
result follows. 2

Lemma 2.2 [5] .

i. If there exists a primitive 2a-th root of unity ξ in R∗, then ξ2
i is a primitive 2a−i-th

root of unity in R∗; for all i ≤ a.

ii. Let ξ be a primitive 2a-th root of the unity in R∗. Then ξm is also a primitive 2a-th

root of the unity in R∗.

iii.
∏2a

k=1 ξ
k = 1, if a > 2.

Proposition 2.1 If R∗ contains a primitive 2a-th root of unity ξ, and xm− 1 =
∏l

i=1 fi(x),

where fi(x), 1 ≤ i ≤ l, are monic basic irreducible pairwise coprime factors in R[x], then

x2
am − 1 =

2a∏
k=1

l∏
i=1

fi(ξ
kx)

Proof. Assume that xm − 1 =
∏l

i=1 fi(x). Let ξ be a primitive 2a-th root of unity. Then
(ξkx)m − 1 =

∏l
i=1 fi(ξ

kx). Thus xm − ξ−km = ξ−km
∏l

i=1 fi(ξ
kx). Since ξ is a primitive

2a-th root of unity and
∏2a

k=1 ξ
−km = 1, we get

x2
am − 1 = (xm)2

a − 1 =
∏2a

k=1(x
m − ξk) =

∏2a

k=1(x
m − ξ−km)

=
∏2a

k=1(ξ
−km∏l

i=1 fi(ξ
kx)) =

∏2a

k=1

∏l
i=1 fi(ξ

kx))

2

Corollary 2.1 [5] If R∗ contains a primitive 2a-th root of unity and x− 1, fi(x), 1 ≤ i ≤ l,

are the monic basic irreducible pairwise coprime factors of xm − 1 in R[x], then

x2
am − 1 = (x2

a − 1)
l∏

i=1

fi(ξ
kx)
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We now give a structure of free cyclic codes of length 2am over R.

Corollary 2.2 If R∗ contains a primitive 2a-th root of unity ξ and fi(x), 1 ≤ i ≤ l are the

monic basic irreducible factors of xm−1 in R[x], then a free cyclic code C of length n = 2am

is generated by
∏2a

k=1

∏l
i=1 f

ji
i (ξkx) with 0 ≤ ji ≤ 1.

Proof. The result follows from Proposition 2.1 and from the fact that a free cyclic code is
generated by a divisor of x2am − 1. 2

2.2 Construction of Cyclic Isodual Codes over Finite Chain Rings

In this part, explicit constructions of monomial isodual free cyclic codes over finite chain
rings are presented. We begin with the following result given in [5] which is a generalisation
of the result of the proposition 1.2 to codes over finite chain rings.

Lemma 2.3 [5] Let R be a finite chain ring and C be a free cyclic code of length n over

R generated by a polynomial g(x) and δ a unit in R such that δn = 1. Then the following

holds:

(i) C is equivalent to the cyclic code generated by g∗(x).

(ii) C is equivalent to the cyclic code generated by g(δx).

(iii) C is equivalent to the cyclic code generated by g∗(δx) or (g(δx))∗.

(iv) If n is even, then C is equivalent to the cyclic code generated by g(−x).

Assume we have q an odd prime power such that q ≡ 1 mod 2a with a ≥ 1 and m an odd
integer coprime to q. The following give us some constructions of isodual cyclic codes of
length 2am over R.

Theorem 2.1 Suppose that xm − 1 = f1(x)f2(x). Then the free cyclic codes of length 2am

generated by
2a−1∏
k=1

fi(ξ
2kx)

2a−1−1∏
k=0

fj(ξ
2k+1x), i,j ∈ {1, 2}, i 6= j,

and
2a−1∏
k=1

f1(ξ
2kx)f2(ξ

2kx),

and
2a−1−1∏
k=0

f1(ξ
2k+1x)f2(ξ

2k+1x)



2. CONSTRUCTION OF ISODUAL CYCLIC CODES OVER FINITE CHAIN RINGS 55

are isodual, where ξ is a primitive 2a-th root of unity.

Proof. Let xm − 1 = f1(x)f2(x). From Proposition 2.1, we have

x2
am − 1 =

2a∏
k=1

f1(ξ
kx)f2(ξ

kx) =
2a−1∏
k=1

f1(ξ
2kx)f2(ξ

2kx)
2a−1−1∏
k=0

f1(ξ
2k+1x)f2(ξ

2k+1x).

Let

g(x) =
2a−1∏
k=1

f1(ξ
2kx)

2a−1−1∏
k=0

f2(ξ
2k+1x).

Knowing that ξ2a = 1, we get

g(ξx) =
2a−1∏
k=1

f1(ξ
2k+1x)

2a−1−1∏
k=0

f2(ξ
2k+2x) =

2a−1−1∏
k=0

f1(ξ
2k+1x)

2a−1∏
k=1

f2(ξ
2kx).

In other words, we have that x2am− 1 = g(x)g(ξx). Since ξ2am = 1, then from Theorem 1.2
the code generated by g(x) is isodual. A similar argument is employed to prove the other
cases. 2

Corollary 2.3 [5] Let f(x) be a polynomial such that xm−1 = (x−1)f(x). The free cyclic

codes of length 2am generated by

(x2
a−1 − 1)

2a−1−1∏
k=0

f(ξ2k+1x)

and

(x2
a−1

+ 1)
2a−1∏
k=1

f(ξ2kx)

are isodual codes of length 2am.

Proof. Just take f1(x) = x− 1 in the theorem 2.1 and use Lemma 2.1. 2

Example 2.1 Let R = Z25 and n = 36 = 22 · 32, q = 5 ≡ 1 mod 22. We have

x9 − 1 = (x− 1)(x2 + x+ 1)(x6 + x3 + 1).

Thus, we get the isodual codes given in Table (4.1), where ξ is a primitive 4-th root of unity

.
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Table 4.1: List of isodual codes obtained of length 36 over Z25.

Polynomial generator g(x) of the isodual code C

g(x)= x9 + (ξ − ξ2)x6 + (ξ2 − ξ3)x3 − 1

g(x)= ξ3x9 + (ξ − 1)x6 + (ξ3 − ξ2)x3 − 1

g(x)= ξ3x9 − (ξ2 − ξ)x8 + (ξ3 − 1)x7 − (ξ2 − 1)x6 + (ξ2 − ξ3)x5−
(ξ − 1)x4 + (ξ − ξ3)x3 + (ξ3 − 1)x2 + (ξ − ξ2)x− 1

g(x)= x9 − (ξ2 − ξ3)x8 − (ξ − ξ2)x7 + (ξ2 − 1)x6 + (ξ − 1)x5−
(ξ3 − 1)x4 + (ξ2 − 1)x3 − (ξ2 − ξ3)x2 − (ξ − ξ2)x− 1

g(x)= ξ2x9 − (ξ − 1)x8 − (ξ3 − 1)x7 − (ξ2 − ξ3)x6 − (ξ − ξ2)x5+
(ξ − 1)x4 − (ξ3 − 1)x3 − (ξ2 − ξ3)x2 − (ξ − ξ2)x− 1

g(x)= ξx9 + (ξ3 − 1)x8 + (ξ − ξ2)x7 + (ξ3 − 1)x6 + (ξ − ξ2)x5+
(ξ3 − 1)x4 + (ξ − ξ2)x3 + (ξ3 − 1)x2 + (ξ − ξ2)x− 1

g(x)= ξ2x9 − 1

g(x)= ξx9 − 1

Corollary 2.4 Let pk be a prime power. Assume that xpk−1 = f1(x)f2(x). Then the cyclic

codes generated by

f1(x)f2(−x) or f1(−x)f2(x) or xp
k − 1 or xp

k

+ 1

are isodual codes of length 2pk. Further, if ordp(q) is even, then these codes are LCD-isodual

codes.

Proof. The result follows from Theorem 2.4 and Theorem 2.1 for a = 1, m = pk and
ξ = −1. 2

Corollary 2.5 Let m be an odd integer such that the irreducible factorisation of m is given

by m = pk11 p
k2
2 ...p

kt
t and xm − 1 = f1(x)f2(x). Assume that there exists a in N∗ such that

2a‖ordpi(q), for all 1 ≤ i ≤ t. Then, the cyclic codes generated by

f1(x)f2(−x) or f1(−x)f2(x) or xm − 1 or xm + 1

are LCD-isodual codes of length 2m.

Proof. The result follows immediately from Theorem 2.5 and Theorem 2.1 with ξ = −1. 2
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Example 2.2 Let R = Z9 and n = 50 = 2 · 52. We have

x25 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)(x20 + x15 + x10 + x5 + 1).

Further ord5(3) = 4. So we get the LCD isodual codes shown in Table (4.2).

Table 4.2: List of LCD-isodual codes obtained of length 50 over Z9.

Polynomial generator g(x) of LCD-isodual code C

g(x) = x25 − 2x20 + 2x15 − 2x10 + 2x5 − 1

g(x) = x25 + 2x20 + 2x15 + 2x10 + 2x5 + 1

g(x) = −x25 − 2x24 − 2x23 − 2x22 − 2x21 + 2x19 + 2x18 + 2x17+

2x16 − 2x14 − 2x13 − 2x12 − 2x11 + 2x9 + 2x8+

2x7 + 2x6 − 2x4 − 2x3 − 2x2 − 2x− 1

g(x) = x25 − 2x24 + 2x23 − 2x22 + 2x21 − 2x19 + 2x18 − 2x17+

2x16 − 2x14 + 2x13 − 2x12 + 2x11 − 2x9 + 2x8−
2x7 + 2x6 − 2x4 + 2x3 − 2x2 + 2x− 1

g(x) = x25 − 2x24 + 2x23 − 2x22 + 2x21 − 2x20 + 2x19 − 2x18 + 2x17−
2x16 + 2x15 − 2x14 + 2x13 − 2x12 + 2x11 − 2x10 + 2x9 − 2x8+

2x7 − 2x6 + 2x5 − 2x4 + 2x3 − 2x2 + 2x− 1

g(x) = x25 + 2x24 + 2x23 + 2x22 + 2x21 + 2x20 + 2x19 + 2x18 + 2x17+

2x16 + 2x15 + 2x14 + 2x13 + 2x12 + 2x11 + 2x10 + 2x9 + 2x8+

2x7 + 2x6 + 2x5 − 2x4 + 2x3 + 2x2 + 2x+ 1

g(x) = x25 − 1

g(x) = x25 + 1

Another construction of isodual cyclic codes is given by the following Theorem.

Theorem 2.2 Assume that we have the factorization xm − 1 = f1(x)f2(x)f ∗2 (x), such that

the polynomial f1 is self reciprocal. Then the free cyclic codes of length 2am over R generated

by
2a−1∏
k=1

f1(ξ
2kx)

2a∏
k=1

f2(ξ
kx);
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and
2a−1∏
k=1

f1(ξ
2kx)

2a∏
k=1

f ∗2 (ξkx)

are isodual, where ξ is a primitive 2a-th root of unity.

Proof. Let xm − 1 = f1(x)f2(x)f ∗2 (x) then

x2
am − 1 =

2a∏
k=1

f1(ξ
kx)f2(ξ

kx)f ∗2 (ξkx) =
2a−1∏
k=1

f1(ξ
2k)

2a−1−1∏
k=0

f1(ξ
2k+1)

2a∏
k=1

f2(ξ
kx)f ∗2 (ξkx)

Let g(x) =
∏2a−1

k=1 f1(ξ
2kx)

∏2a

k=1 f2(ξ
kx). Since ξ2a = 1, we get

g(ξx) =
2a−1∏
k=1

f1(ξ
2k+1x)

2a∏
k=1

f2(ξ
k+1x) =

2a−1−1∏
k=0

f1(ξ
2k+1x)

2a∏
k=1

f2(ξ
kx).

Since the polynomial f1 is self reciprocal, we get the factorization x2
am−1 = g(x)g(ξx)∗. The

desired result follows from Theorem 1.2. The same result is obtained for codes generated by

2a−1∏
k=1

f1(ξ
2kx)

2a∏
k=1

f ∗2 (ξkx).

2

Example 2.3 Let R = Z25 and n = 132 = 22 · 33. We have 5 ≡ 1 mod 22. The factoriza-

tion of x33 − 1 over R is given by

x33 − 1 = f1(x)f2(x)f ∗2 (x)

where
f1(x) = (x− 1)(x2 + x+ 1)

f2(x) = (x5 − 8x4 − x3 + x2 − 9x− 1)(x10 − 9x9 + 7x8 + 11x7 + 9x6 − 4x5 − 7x4 − 6x3 − 10x2 + 8x+ 1)

f∗2 (x) = (x5 + 9x4 − x3 + x2 + 8x− 1)(x10 + 8x9 − 10x8 − 6x7 − 7x6 − 4x5 + 9x4 + 11x3 + 7x2 − 9x+ 1)

Thus, for example, the codes generated by

〈
f1(x)f1(ξ

2x)f2(x)f2(ξ
2x)f2(ξ

3x)
〉

and 〈
f1(x)f1(ξ

2x)f ∗2 (x)f ∗2 (ξx)f ∗2 (ξ2x)f ∗2 (ξ3x)
〉
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are isodual, where ξ is a primitive 4-th root of unity.

Corollary 2.6 Let p be an odd prime number and k in N such that xpk−1 = f1(x)f2(x)f ∗2 (x).

Assume that ordp(q) is even. Then the cyclic codes of length 2pk generated by

f1(x)f2(x)f2(−x) and f1(x)f ∗2 (x)f ∗2 (−x)

are LCD-isodual codes.

Proof. The result follows from Theorem 2.4 and Theorem 2.2 with ξ = −1. 2

Corollary 2.7 Let m be an odd integer such that the irreducible factorisation of m is given

by m = pk11 p
k2
2 ...p

kt
t and xm − 1 = f1(x)f2(x)f ∗2 (x). Assume that there exists a in N∗ such

that 2a‖ordpi(q), for all 1 ≤ i ≤ t. Then the cyclic codes of length 2m generated by

f1(x)f2(x)f2(−x) and f1(x)f ∗2 (x)f ∗2 (−x)

are LCD-isodual codes.

Proof. The result follows immediately from Theorem 2.5 and Theorem 2.2 with ξ = −1.
2

Example 2.4 Let R = Z27 and n = 70 = 2 ·5 ·7. We have x35−1 = f1(x)f2(x)f ∗2 (x), where

f1(x) = (x− 1)(x4 + x3 + x2 + x+ 1)(x6 + x5 + x4 + x3 + x2 + x+ 1)

f2(x) = x12 − 9x11 + 4x10 − 12x9 − 3x8 − 7x7 + 12x6 − 5x5 − 4x4 − 2x3 + 14x2 + 8x+ 1.

f ∗2 (x) = x12 + 8x11 + 14x10 − 2x9 − 4x8 − 5x7 + 12x6 − 7x5 − 3x4 − 12x3 + 4x2 − 9x+ 1

So the cyclic codes of length 70 over Z27 generated by

g(x) = f1(x)f2(x)f2(−x)

and

h(x) = f1(x)f ∗2 (x)f ∗2 (−x)

are isodual.

We cite now construction of isodual codes as a direct sum of isoduals codes. For this , the
following Lemma is needed.
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Lemma 2.4 [5] Let C1 and C2 be linear codes of lengths n1 and n2, respectively over R.

Define the direct sum as C1 ⊕ C2 = {(c1, c2), c1 ∈ C1, c2 ∈ C2}. Then the following holds

i. (C1 ⊕ C2)
⊥ = C⊥1 ⊕ C⊥2 .

ii. If C1 and C2 are isodual codes with minimum weights d1 and d2, respectively, then

C1 ⊕ C2 is an isodual code of length n1 + n2 with minimum weight min(d1, d2).

Theorem 2.3 [5] Let R be a finite chain ring with residue field Fq, q an odd prime power

and m an odd integer such that gcd(m, q) = 1. Let Ci, 1 ≤ i ≤ 2a (a ≥ 1 an integer), be

cyclic isodual codes over R of length m. We then have

i. Ci ⊕ Cj,∀i, j, 1 ≤ i, j ≤ 2a, are cyclic isodual codes of length 2m over R.

ii. If q ≡ 1 mod 2a (a ≥ 2), then the direct sum ⊕2a

i=1Ci is a cyclic isodual code of length

2am over R.



Chapter 5
Conclusion

Finding new construction methods for LCD and formally self dual codes opens up new venues
of research and possibilities for researchers working on these codes. Finite chain rings have
recently been shown to be of interest in finding new construction methods since they can
be considered as Frobenius rings. In our work we have used only algebraic properties to
find new LCD, self dual and isodual cyclic codes of arbitrary lengths over finite chain rings.
We have shown the effectiveness of these constructions by producing several of these codes.
There are a some possible directions for future research. One consists in trying to construct
new LCD and isodual negacyclic codes or more generally constacyclic and quasi cyclic codes
over rings. the second possible direction is to try to construct repeated root LCD and isodual
codes. the third possible direction is to construct Hermetien LCD codes or more generally
the σ− LCD cyclic codes.
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Appendix

This Chapter covers the main basic concepts, Definitions and Theorems from abstract al-
gebra, which have been used in our construction of codes. For more details the reader is
referred to some basic texts on commutative algebra such as [3, 14, 21,37,42,46,52,54]

1 Whole Numbers

Definition 1.1 We say that an integer d in Z divides m in Z if and only if m = dq for

some q in Z\{0}. This is denoted d | m.

If d does not divide m, then we write d - m.

Definition 1.2 An integer p in N∗\{1} is prime if it is only divisible by ±1 and ±p.

Definition 1.3 The greatest common divisor of a, b in Z is the largest k in Z such that k | a
and k | b. This element is denoted gcd(a, b).

If gcd(a, b) = 1, then we say that a is coprime to b.

Lemma 1.1 For any integers a, b in N\{1}, if a | bc and gcd(a, b) = 1, then a | c.

Theorem 1.1 Any number a in N∗\{1} can be expressed uniquely as a product of primes,

a =
∏r

i=1 p
ki
i , where ki ≥ 1 and pi+1 > pi.

Definition 1.4 Given an integer n > 1, two integers a and b are said to be congruent

modulo n, if n is a divisor of their difference. So we write

a ≡ b mod n⇔ n | (a− b)
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Definition 1.5 Let a be an element of Z and n a positive integer such that gcd(a, n) = 1,

the multiplicative order of a modulo n is the smallest positive integer l, 0 < l < n such that

al ≡ 1 mod n. We write ordn(a) = l

2 Finite Fields

Definition 2.1 A finite field is a finite set which is a field; this means that multiplication,

addition, subtraction and division (excluding division by zero) are defined and satisfy the

rules of arithmetic known as the field axioms.

Definition 2.2 The characteristic of a field F is denoted char(F ) and is the smallest pos-

itive integer k such that k.1 = 0. If no such integer exists, then the characteristic is defined

to be 0.

A finite field with q elements will be denoted by Fq, in such case the number q is called order
of Fq.

Theorem 2.1 Let Fq be a finite field of q elements, then we have

i. q is a prime power pk, where p is a prime number and k is a positive integer.

ii. The characteristic of Fq is p.

iii. Every element a in Fq satisfies aq = a.

iv. The multiplicative group F∗q = Fq − {0} is cyclic (i.e. generated by one element).

v. (α± β)p
m

= αp
m ± βpm, for all m in N and α, β in Fq.

Theorem 2.2 All finite fields of the same size are isomorphic to each other.

Example 2.1 The set Z/pZ = {0, 1, ..., p− 1}, is a field if and only if p is a prime number.

Definition 2.3 An element α in Fq is primitive if its multiplicative order satisfies ord(α) =

q−1. It is a generator of the cyclic group F∗q. In such case we have Fq = {0, α, α2, ..., αq−1}.

Theorem 2.3 The q − 1 elements of F∗q have the following properties:

i. They are in one-to-one correspondence to the roots of the polynomial xq−1 − 1 and

xq−1 − 1 =
∏
λ∈F∗q

(x− λ)
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ii. There exists a primitive element α in Fq and

xq−1 − 1 =

q−2∏
i=0

(x− αi)

2.1 Extension Fields and Minimal Polynomials

Definition 2.4 An extension field K of a field Fq is a field which contains Fq as a proper

subfield.

Definition 2.5 A non-constant polynomial f(x) with coefficients in the field Fq is called

reducible over Fq if it can be written as a product of multiple non-constant polynomials in

Fq[x]. Otherwise, it is called irreducible over Fq.

Theorem 2.4 The quotient ring K = Fq[x]/ 〈f(x)〉 is an extension field of Fq with qm

elements if and only if f(x) is an irreducible polynomial over Fq of degree m. In such case

we denote Fqm = Fq[x]/ 〈f(x)〉.

Theorem 2.5 If f is an irreducible polynomial in Fq[x] of degree m, then f has a root

α in Fqm. Furthermore, all the roots of f are simple and are given by the m elements

α, αq, αq
2
, ..., αq

m−1, which are called the conjugates of α in Fqm with respect to Fq.

Definition 2.6 The minimal polynomial of α in Fqm with respect to Fq is the unique minimal-

degree monic irreducible polynomial mα(x) in Fq[x] such that mα(α) = 0.

Assume that we have the minimal polynomial of a primitive element α in Fqm , we would
like to find the minimal polynomial of αs, for any s. In order to do so, we have to start with
cyclotomic cosets

Definition 2.7 Let n be coprime to q. The cyclotomic coset of q (or q-cyclotomic coset)

modulo n containing s is defined by

Cs =
{
s, sq, sq2, ..., sqls−1

}
,

where ls is the smallest positive integer such that s ≡ sqls( mod n).

The smallest integer in Cs is called the coset leader of Cs. Let Pn,q be the set of all the coset
leaders. Then we have Cs ∩ Ct = ∅ for any two distinct elements s and t in Pn,q, and⋃

s∈Pn,q

Cs = {0, 1, 2, ..., n− 1}.
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Hence, the distinct q-cyclotomic cosets modulo n form a partition of Zn = {0, 1, 2, ..., n−1}.

Example 2.2 Consider the cyclotomic cosets of q = 2 modulo n = 15:

C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 9, 12}, C5 = {5, 10}, C7 = {7, 11, 13, 14}

Hence

P15,2 = {0, 1, 3, 5, 7}

Theorem 2.6 Let α be a primitive element of Fqm. Then the minimal polynomial of αs

with respect to Fq is
ms(x) =

∏
j∈Cs

(
x− αj

)
where Cs is the unique cyclotomic coset of q modulo qm − 1 containing s.

Remark 2.1

i. The degree of the minimal polynomial of αs is equal to the size of the cyclotomic coset

containing s.

ii. From Theorem 2.6 we know that αs and αt have the same minimal polynomial if and only

if s, t are in the same cyclotomic coset.

Example 2.3 Let α ∈ F9 be a root of 2 + x+ x2 in F3[x] ; i.e.,

2 + α + α2 = 0 (5.1)

Then the minimal polynomial of α as well as α3 is 2 + x + x2. The minimal polynomial of

α2 is

m2(x) =
∏
j∈C2

(
x− αj

)
= (x− α2)(x− α6) = α8 − (α2 + α6) + x2

Since α ∈ F9 then α8 = α. To find m2(x), we have to simplify α2 + α6. We make use of the

relationship 5.1 to obtain

α2 + α6 = (1− α) + (1− α)3 = 2− α− α3 = 2 + α + α2

Hence, the minimal polynomial of α2 is 1+x2. In the same way, we may obtain the minimal

polynomial 2 + 2x+ x2 of α5.
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Theorem 2.7 Let n be a positive integer coprime with q. Suppose thatm is a positive integer

satisfying n | qm − 1. Let α be a primitive element of Fqm and let ms(x) be the minimal

polynomial of α
qm−1

n
s with respect to Fq. Then the polynomial xn − 1 has the factorization

into monic irreducible polynomials over Fq :

xn − 1 =
∏
s∈Pn,q

ms(x)

It follows that the number of monic irreducible factors of xn − 1 over Fq is equal to the
number of distinct cyclotomic cosets of q modulo n.

3 Finite Commutative Rings

A finite commutative ring is a finite set R equipped with two binary operations called
addition and multiplication, such that R is an additive abelian group with identity element
0, the multiplication holds the distributive laws and it is abelian and associative. We say
that R is a ring with unit if R has a multiplicative identity denoted 1 = 1R.

An element r in R is nilpotent if rn = 0, for some positive integer n. So, a nilpotent
element is a zero-divisor in R.

An element e in R is called idempotent if e2 = e.
An invertible element (unit) x in R is an element for which there exists y in R such that

xy = 1. The subset U(R) = {x ∈ R | ∃y ∈ R, xy = 1} of R is a multiplicative group and its
elements are called the units of R.

A ring R is a field if every non-zero element is a unit, i.e U(R) = R∗ = R/{0}.

Definition 3.1 Let R and R′ be two rings. A ring homomorphism φ : R → R′ is an

application that preserves both operations of R, so for all a, b in R:

i. φ(a+ b) = φ(a) + φ(b);

ii. φ(ab) = φ(a)φ(b);

iii. φ(1R) = 1R′.

Definition 3.2 A sub set I in R is an ideal if I is an additive subgroup of R and ”ar” is in I,

for all a in I and for all r in R.
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Definition 3.3 Let S = {s1, s2, ..., sk} ⊆ R. The set {
∑k

i=1 risi | ri ∈ R} is an ideal of R

called ideal generated by S. So we write

〈S〉 = 〈s1, s2, ..., sk〉 = {
k∑
i=1

risi | ri ∈ R}

Definition 3.4 A ring < is said to be principal ideal ring if each ideal of < is generated by

one element.

For ideals I and J of a ring R, their sum is

I + J = {i+ j | i ∈ I and j ∈ J}

it is just the ideal generated by I ∪ J .
And their product is

IJ = {i1j1 + i2j2 + ...+ injn | ik ∈ I and jk ∈ J for n = 1, 2...}

Note that the product IJ is contained in the intersection of I and J . The sum I + J is
called a direct sum if each element a in I + J is uniquely expressible in the form a = i + j

with i in I and j in J . If the sum is a direct sum we write it as I + J = I ⊕ J .

Definition 3.5 Two ideals I and J in a ring R are called coprime if I + J = R.

Proposition 3.1 Let R be a ring and I1, I2, ..., Ik be ideals of R. We have

i. If whenever i 6= j, Ii and Ij are coprime then ∩ki=1Ii =
∏k

i=1 Ii.

ii. If Ii and Ij are coprime, then Imi and Imj are coprime for all m in N∗.

Definition 3.6 An ideal I of a ring R is a maximal ideal if there does not exist any other

ideal I ′ such that I ⊂ I ′ ⊂ R. A ring R is a local ring if it has a unique maximal ideal.

Definition 3.7 The nilradical of R consists of the nilpotent elements of the ring.

Given an ideal I of finite commutative ring R, we may define a relation ∼ on R as follows:
a ∼ b if and only if a− b is in I. Using the ideal properties, it is not difficult to check that
∼ is an equivalence relation. The equivalence class of the element a modulo I in R is given
by

[a] = a+ I = {a+ r, r ∈ I}
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The set of all such equivalence classes is denoted by R/I; it becomes a ring, for the usual
composition laws and it’s called the quotient ring of R modulo I.

R/I = {a+ I, a ∈ R}

Theorem 3.1 Let R be a commutative ring. The ideal I is maximal R if and only if the

quotient ring R/I is a field.

Theorem 3.2 Let I1, I2, ..., Ik be ideals in a ring R, and consider the ring homomorphism

ψ : R −→ R/I1 ×R/I2 × ...×R/Ik

a −→ (a+ I1, a+ I2, ..., a+ Ik)

Then we have

i. ψ is injective if and only if I1 ∩ I2 ∩ ... ∩ Ik = {0}.

ii. ψ is surjective if and only if I1, I2, ..., Ik are pairwise coprime.

A finite family (Ii, i = 1, ..., k) of ideals of R, such that the homomorphism ψ is an isomor-
phism is called a direct decomposition of R.

Proposition 3.2 Let I1, I2, ..., Ik be ideals of R. The following are equivalent:

i. A family (Ii, i = 1, ..., k) is a direct decomposition of R;

ii. For i 6= j, Ii and Ij are coprime and ∩ki=1Ii = {0};

iii. There exists a family (e1, e2, ..., ek) of idempotents of R such that eiej = 0 for i 6= j,∑k
i=1 ei = 1 and Ii = (1− ei)R for i = 1, 2, ..., k.

3.1 Modules

In this part, we give the definition of a module over a commutative ring and some of its
properties.

Definition 3.8 A module M over a commutative ring R is a set of objects, which can be

added, subtracted and multiplied by scalars (members of the underlying ring). Thus M is an

additive abelian group, and scalar multiplication is distributive over the operation of addition

between elements of the ring or module and is compatible with the ring multiplication.
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Definition 3.9 If N is a nonempty subset of an R-moduleM , we say that N is a submodule

of M if for every x, y ∈ N and r, s ∈ R, we have rx+ sy ∈ N .

Example 3.1

i. If I is an ideal of a ring R, then I is an R−module.

ii. For all n in N∗, Rn is an R−module.

iii. If I is an ideal of R and M is an R-module, then M/IM = {m + IM,m ∈ M} is also

an R-module.

Definition 3.10 Let X be a subset of an R-module M . Then

i. X is said to be linearly independent if

λ1x1 + λ2x2 + ...+ λkxk = 0⇒ λ1 = λ2 = ... = λk = 0

for λi in R and distinct xi in X.

ii. X spans or generates M if every m in M can be writen as

m = λ1x1 + λ2x2 + ...+ λkxk

for λi in R and xi in X.

iii. X is a basis of M if X is linearly independent and X spans M .

Definition 3.11 An R- module M is said to be free if it has a nonempty basis X.

Example 3.2 Rn is a free R-module,

Definition 3.12 Let M and N be two R-modules. The direct sum of M and N , denoted

M ⊕N , is the R-module, which as a set is the Cartesian product of M and N , with addition

and multiplication defined coordinate by coordinate:

(m1, n1) + (m2, n2) = (m1 +m2, n1 + n2) and r(m,n)=(rm,rn)

Note that if {Mi | i ∈ I} is a collection of R modules, their Cartisien product
∏

i∈IMi is
the set of all tuples (mi)i∈I with mi in Mi. The direct sum ⊕i∈IMi of Mi is a submodule of∏

i∈IMi consisting of all tuples (mi)i∈I in which only a finite number of (mi) are nonzero.
When I is a finite then

∏
i∈IMi ' ⊕i∈IMi.
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Proposition 3.3 A module M of a ring R is a free if it is a direct sum of isomorphic copies

of R.

Any two bases for a vector space over a field have the same cardinality. This property does
not hold for arbitrary free modules, but the following result covers quite a few cases.

Theorem 3.3 Any two bases for a free module M over a commutative ring R have the

same cardinality, which is called rank of M .

Definition 3.13 Let M and N be two R-modules. An R-module homomorphism is a map

φ : M −→ N

such that

φ(m1 +m2) = φ(m1) + φ(m2) and φ(rm) = rφ(m), (mi ∈M ; r ∈ R)

We also say that φ is a R-linear map. In such case the set

kerφ = {m ∈M ;φ(m) = 0N}

is a submodule of M and it is called the kernel of φ.

Proposition 3.4 Let I1, I2, ..., Ik be ideals of R, relatively prime in pairs and let I = ∩ki=1Ii.

For every R-module M , the canonical homomorphism φ : M −→
∏k

i=1(M/IiM) is surjective

and its kernel is IM . Further if (Ii, i = 1, 2, ..., k) is a direct decomposition of R, then φ is

an isomorphism.

3.2 Finite Chain Rings

Definition 3.14 A finite commutative ring with identity is called a finite chain ring if its

ideals are linearly ordered by inclusion.

Proposition 3.5 Let R be a finite commutative ring the following conditions are equivalent:

i. R is a local ring and the maximal ideal M of R is principal;

ii. R is a local principal ideal ring;

iii. R is a chain ring.
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Let R be a finite chain ring, m the unique maximal ideal of R, and let γ be a generator of
m. Then, γ is nilpotent and we denote its nilpotency index by e. The ideals of R form a
chain

{0} = 〈γe〉 ( 〈γe−1〉 ( . . . ( 〈γ〉 ( R,

The nilradical of R is m = 〈γ〉, so all the elements of m are nilpotent. Therefore, the group
of units of R is R∗ = R\〈γ〉. Since m is maximal, the residue ring R/m is a field with q

elements which we denote by Fq.

Proposition 3.6 Let R be a finite commutative chain ring, with maximal ideal m = 〈γ〉,
and let e be the nilpotency index of m. Then we have the following statements.

i. |R| = |Fq|e

ii. |R/γjR| = | 〈γj〉 | = |Fq|e−j for 0 ≤ j ≤ e− 1.

Example 3.3 Let p be a prime number, n ∈ N∗ and a ∈ Zpn. We represent a in Z as the

number which lies in {0, 1, ..., pn − 1}. Then gcd(a, pn) ∈ {0, 1, p, p2, ..., pn−1} and aZpn =

gcd(a, pn)Zpn. We obtain, that the principal ideals of Zpn are exactly

Zpn , pZpn , p2Zpn , ..., pnZpn = {0Zpn
}

We get the chain

{0Zpn
} = pnZpn ⊂ pn−1Zpn ⊂ pn−2Zpn ⊂ ... ⊂ pZpn ⊂ Zpn

Hence Zpn is a finite chain ring with maximal ideal 〈γ〉 = 〈p〉. The characteristic of Zpn is

p and the residue field Fp = Z/pZ.

Denote by (−) the natural surjective ring morphism given by

− : R −→ Fq
a 7−→ ā = a mod γ

(5.2)

The map given in (5.2) extends naturally to a map from R[x] −→ Fq[x].

Definition 3.15 A polynomial f(x) of R[x] is called basic irreducible if f(x) is irreducible

in Fq[x]. It is a unit in R[x] if and only if f(x) is a unit in Fq[x] and it is a zero divisor if

and only if f(x) = 0. otherwise it is called regular.

(Recall that a polynomial f(x) is irreducible in R[x] if f is not unit and whenever f = gh

then g or h is unit).



3. FINITE COMMUTATIVE RINGS 72

Proposition 3.7 Let f(x) = a0 + a1x + ... + anx
n be an element of R[x]. The following

conditions are equivalent:

i. f is a unit in R[x];

ii. f̄ is a unit in Fq[x];

iii. a0 is a unit in R and a1, ..., an are nilpotent.

Lemma 3.1 If f(x) is a monic polynomial over R such that f(x) is square free (has no

multiple root), then f(x) factors uniquely as product of monic basic irreducible pairwise

comprime polynomials.

LetD denote the set of all polynomials f inR[x] such that f has distinct zeros in the algebraic
closure of Fq. The following proposition explores the relationships between irreducibility and
basic irreducibility for regular polynomials and for elements of D .

Proposition 3.8 Let f be a regular polynomial in R[x]. Then we have the following.

i. If f is basic irreducible then f is irreducible .

ii. If f is irreducible then f̄ = ugk, where u in Fq and g is monic irreducible in Fq[x].

iii. If f is in D then f is irreducible if and only if f is basic irreducible.

Definition 3.16 Two polynomials f(x) and g(x) in R[x] are called coprime if 〈f(x)〉 +

〈g(x)〉 = R[x]. The polynomials f and g are called associated if there exists an invertible

element u of R such that f = ug.

The following so-called Hensel’s lemma guarantees that factorizations into product of pair-
wise coprime polynomials in Fq lift to such factorizations over R.

Lemma 3.2 Let g(x) be a monic polynomial in R[x] . Assume that there are monic,

pairwise coprime polynomials f1(x), f2(x), . . . , fk(x) in Fq[x] such that g(x) =
∏i=k

i=1 fi(x),

then there are monic pairwise coprime polynomials g1(x), g2(x), ..., gk(x) in R[x] such that

g(x) =
∏i=k

i=1 gi(x) and gi(x) = fi(x), for all 0 ≤ i ≤ k.

Lemma 3.3 Let R be a finite chain ring with maximal ideal 〈γ〉, and e be the nilpotency

of γ. If f is a regular basic irreducible polynomial of the ring R[x], then R[x]/〈f〉 is also a

chain ring with precisely the following ideals

〈0〉, 〈1〉, 〈1 + 〈f〉〉, 〈γ + 〈f〉〉, 〈γ2 + 〈f〉〉, ..., 〈γe−1 + 〈f〉〉
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Theorem 3.4 Let R be a finite chain ring with maximal ideal 〈γ〉, and e is the nilpotency

of γ. Let xn − 1 = f1f2...fr be a representation of xn − 1 as a product of basic irreducible

pairwise-coprime polynomials in R[x] . Then any ideal in R[x]/〈xn − 1〉 is a sum of ideals

of the form 〈γj f̂ + 〈xn − 1〉〉 where 0 ≤ j ≤ e, 0 ≤ i ≤ r and f̂ =
xn − 1

f
.

3.3 Frobenius Rings

Definition 3.17 Let R be a commutative ring. Then the Jacobson radical J(R) of R is the

intersection of all maximal ideals of R.

Definition 3.18 A module M over R is simple if it is non-zero and does not admit a proper

non-zero submodule. And it is semisimple if it is a sum of simple submodules. Thus, simple

modules are cyclic.

‘

Definition 3.19 Let M be an R-module. Then its socle is the submodule

SocM =
∑
{N |N is a simple submodule of M}

So the socle of M is the largest submodule of M generated by simple modules, or equiva-
lently, it is the largest semisimple submodule of M . It is also the sum of the minimal R -
submodules.

Definition 3.20 An R-moduleM is injective if for all R-module homomorphisms φ : E −→
F and ψ : E −→M where φ is injective, there exists an R-linear homomorphism θ : F −→
M such that θoφ = ψ.

Theorem 3.5 An R-module M is injective if and only if every R-module homomorphism

m −→M , where m is an ideal, extends to an homomorphism R −→M .

Definition 3.21 A commutative finite ring R is Frobenius if R as R-module is injective.

Alternatively, we can say a finite ring R is Frobenius if R/J(R) is isomorphic to soc(R) (as

R-modules)
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