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Résumé

La théorie des réseaux trouve des applications dans divers disciplines, ils sont
étudiés en théorie des nombres et en géométrie. De nombreux problèmes sur la
théorie des codes ont une relation avec des problèmes sur les réseaux. Cette thèse
est consacrée à la construction des réseaux arithmétiques à partir des codes, le but
est de construire des réseaux arithmétiques à partir des codes sur les anneaux à
chaine finis en utilisant une construction A générale. On considère deux construc-
tions A des réseaux arithmétiques: une construction A à partir des codes sur les
corps finis, cette construction est généralisée en une construction A à partir des
codes sur les anneaux à chaines finis en utilisant une méthode générale des lifted-
codes basée sur la relation entre les anneaux à chaines finis et les corps p-adiques.
Une construction particulière des réseaux arithmétiques à partir des codes sur les
anneaux à chaines finis est proposée pour construire des codes auto-duaux sur les
anneaux à chaines finis.
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Abstract

Lattices theory is a research topic related to a broad range of subjects, they are
studied in number theory and in geometry. Many problems about coding theory
are related to problems about lattices. This thesis dedicated to the construction
of lattices from codes.
The goal is to construct lattices from codes over finite chain rings using a gener-
alized construction A. There are two construction considered: the construction A
of lattices from codes over number fields, this construction is generalized to a con-
struction A of lattices from codes over finite chain rings via a general treatment of
lifted codes and using the connection between finite chain rings and p-adic fields.
A particular construction of lattices from codes over finite chain rings is proposed
to construct self-dual codes over finite chain rings.

4



Contents

1 Lattices and Codes 10
1.1 Lattices Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Linear codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Cyclic codes over finite fields Fq . . . . . . . . . . . . . . . . 20
1.2.2 Linear codes over finite chain rings . . . . . . . . . . . . . . 24
1.2.3 Cyclic Codes over finite chain rings . . . . . . . . . . . . . . 27

1.3 Construction A of lattices . . . . . . . . . . . . . . . . . . . . . . . 30

2 Construction A of lattices over number fields 37
2.1 Number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 A general lattice construction . . . . . . . . . . . . . . . . . . . . . 39
2.3 The case of totally ramified prime . . . . . . . . . . . . . . . . . . . 40

2.3.1 The case of a totally ramified prime and self-orthogonal codes 44
2.3.2 Maximal totally real subfields of cyclotomic fields . . . . . . 47

2.4 Construction of Lattices from Codes over Fp . . . . . . . . . . . . . 50
2.4.1 Theta Function over Number Fields . . . . . . . . . . . . . . 52

3 Lattices from codes over finite chain rings 57
3.1 p-adic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5



6 CONTENTS

3.1.1 Absolute Value: . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.2 Irreducible polynomial: . . . . . . . . . . . . . . . . . . . . . 62
3.1.3 Finite algebraic extension of an ultrametric field: . . . . . . 64
3.1.4 Lattices over Integers of p-adic Fields . . . . . . . . . . . . . 66
3.1.5 Znp -Ideal Lattices . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 p-adic fields and finite chain rings . . . . . . . . . . . . . . . . . . . 70
3.2.1 Construction of finite chain rings using p-adic fields . . . . . 70

3.3 Lifted codes over finite chain rings . . . . . . . . . . . . . . . . . . . 75
3.4 Lattices and Codes over Finite Chain Rings . . . . . . . . . . . . . 78

3.4.1 Construction A of Lattices . . . . . . . . . . . . . . . . . . . 78
3.4.2 The case of cyclic codes . . . . . . . . . . . . . . . . . . . . 81
3.4.3 Lattices over p-adic Cyclotomic Fields . . . . . . . . . . . . 83

Appendix 87
A.1 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2 Product of rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.3 Homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.4 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.5 Fields, Integral domain, Euclidean domain . . . . . . . . . . . . . . 90

A.5.1 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.5.2 Integral domain . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.5.3 Polynomial rings . . . . . . . . . . . . . . . . . . . . . . . . 91

A.6 Quotient rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.7 Finite fileds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.7.1 Finite extension . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.8 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.9 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



Introduction

Brief introduction to Lattices Coding theory addresses the problem of reli-
able communication over noisy channels and is concerned with developing codes
that can detect and correct errors in a digital communication. Coding theory is
closely related to lattices in the setting of wiretap channel. Many problems about
codes have their counterpart in problems about lattices.
Lattices theory is a research topic which is related to a different subjects, ranging
from theoretical mathematics to real life. The connection between lattices and
codes has been studied by many authors [34], [47], [48], [6], [10] and [16]. Early
studies were focusing on unimodular lattices and their construction, for their re-
lation with modular forms and sphere packings [44], [45]. The construction of
lattices over number fields was introduced in [17], [12], [13], [3] and [16].
The focus of this thesis will be the algebraic construction of lattices from codes
over number fields and more generally from codes over finite chain rings [5], we
will give a general construction of lattices from codes over finite chain rings using
the connection between finite chain rings and p-adic fields.

Brief introduction to p-adic fields In digital computer it is not possible to
represent a rational number a

b
in terms of some radix. The set of numbers that

are representable is a finite subset of the field of real numbers such as 2(binary),
8(octal) or 10(decimal). It is difficult to use a finite subset to simulate the infinite
field of real numbers to solve problems using inexact arithmetic, as a consequence
it is necessary to investigate finite number systems with exact arithmetic, that is
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why attention was turned to p-adic numbers due to its possible applications in
digital computer to get exact computations.
p-adic number fields were introduced by Kurt Hensel [21], [22] in 1897, recently, p-
adic number systems for error-free computations was initiated by Krishnamurthy
[32], [30], [31] and Alparslan [1]. The main idea was to put the infinite p-adic
expansion into a fixed number of digits, r, for all numbers in a subset of Q, we call
this fixed-length representations Hensel codes.
The finite number system which contains these Hensel codes has been recently
used and applied to many areas of research for example: design of algorithms
for error-free computations [19], in matrix processors [32], [30], [31] and in digital
signal processing. Recently, p-adic transformation have been introduced and are
currently investigated [18], [33], [35], [37], [38], [39], [43].
At the same time, p-adic numbers became crucial in the development of arith-
metic geometry, where methods from algebraic geometry are applied to arithmetic
problems. One of the most significant achievements in this field is Deligne’s proof
of Weil’s conjectures, we can also cite the proof of Fermat’s big theorem, whose
proof uses crucially the study of certain p-adic Galois representations. Since then,
p-adic numbers have reached many other areas of mathematics, such as dynamical
systems theory, Lie theory or cryptography.

Outline of the Thesis Chapter 2 introduces construction A of lattices over
number fields. In Chapter 3 we present Construction A of lattices over number
fields using linear codes over Fp. Further we gave a generalization of the construc-
tion A to maximal real subfields of cyclotomic fields.

We propose a new construction A of lattices, a generalization of construction A
from codes over finite chain rings using the fact that: a finite commutative chain
ring is a finite local ring whose maximal ideals are principal. Any finite chain
ring can be constructed from p-adic fields (see for example [26]) as follows: let K
be a finite extension of the field of p-adic numbers Qp with residue degree r and
ramification index s, let OK be the ring of integers of K and let π be a prime of K.
Then OK/π(n−1)s+t is a finite commutative chain ring with invariants (p, n, r, s, t).
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Further every finite commutative chain ring can be obtained in this way.
Using the definition of chain rings as non-trivial quotient of ring integers of p-
adic fields we provide a general and a unified treatment of lifted codes for any
finite chain ring. This definition allows to introduce a general construction of
lifted cyclic codes that can be used to lift codes over finite fields Fpr to codes over
finite chain rings. Thus the lifted codes are used to give a general construction A
of lattices from codes over finite chain rings that generalizes the construction of
lattices in [28], we finish the work with a particular constructions of lattices that
can be used to construct self-dual codes over finite chain rings.



Chapter 1

Lattices and Codes

In this chapter we will give the elementary definitions of lattices and linear codes
and their relevant properties and parameters, then we will illustrate the connection
between lattices and linear codes.

1.1 Lattices Fundamentals

We will start by the elementary definitions of lattices and some properties. The
proofs and details of this section can be found in [16]

Definition .1. A subset Λ of Rn with a basis (e1, . . . , en) of Rn such that Λ =

Ze1 ⊕ . . .⊕ Zen is called a lattice, it consists of all integral linear combinations of

the vectors e1, . . . , en.

Definition .2. A generator matrix MΛ for a lattice Λ in Rn is a full rank matrix

10
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whose rows generates Λ:

MΛ =



g1

:

gn


∈ Rn×n and Λ = {vMΛ; v ∈ Zn} .

Example .1. 1. The lattice Zn ⊂ Rn is a standard example, we call it the cubic

lattice or the integer lattice.

2. The lattice Z2 (square lattice) is a lattice of rank 2 in R2 with basis {(1, 0), (0, 1)}

Definition .3. Let Λ be a lattice such that Λ ⊆ Rn defined by:

Λ := {x ·MΛ ; x ∈ Zn}.

The matrix given by GΛ := MΛM
T
Λ is called a Gram matrix of Λ. Hence a

lattice is a discrete additive subgroup of Rn.

Definition .4. Let Λ be a free Z-module of rank n associated by a symmetric

bilinear form

b : Λ× Λ→ Z

The pair (Λ, b) is called an integral lattice over R.
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Definitions .1. Let (Λ, b) be a lattice of dimension n with basis (g1, . . . , gn) the

rows of its generator matrix MΛ.

We define the fundamental parallelotope that is formed by the set of rows

{g1, . . . , gn}, as follows:

P = {λ1g1 + . . .+ gn ; 0 ≤ λi < 1} of Λ.

The volume of Λ which is the volume of the fundamental parallelotope is given by:

vol(Λ) = vol(P ) =| det(MΛ) | .

The discriminant of Λ is the square of the volume of Λ:

disc(Λ) = det(GΛ) = det(MΛ)2

Definition .5. The dual lattice

The lattice (Λ∗, b) such that:

Λ∗ = {x ∈ Λ ; b(x, y) ∈ Z , ∀y ∈ Λ}

is called the dual lattice of the lattice (Λ, b) with generator matrix

M∗
Λ := (MT

Λ )−1 where MΛ is the generator matrix of Λ.
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If Λ ⊆ Λ∗ we say that Λ is integral and:

vol(Λ) = vol(Λ∗) | Λ∗/Λ |

and disc(Λ) =| Λ∗/Λ | .

Definition .6. Let (Λ1, b1) and (Λ2, b2) be two lattices we say that Λ1 and Λ2 are

isometric if there exists a Z-module isomorphism

ϕ : Λ1 → Λ2 satisfying

b2(ϕ(x), ϕ(y)) = b1(x, y) for x, y ∈ Λ1

Definition .7. [24] Let (Λ, b) be an integral lattice and l be a positive integer, if

(Λ, lb) is isomorphic to (Λ, b) i.e., by applying the previous definition there exists a

Z-module isomorphism ϕ∗ → ϕ such that b(ϕ(x), ϕ(y)) = lb(x, y) for all x, y ∈ Λ∗,

then Λ is called l-modular or modular of level l.

When l = 1, we say that Λ is a unimodular lattice.

Definition .8. Let (Λ, b) be an integral lattice then

• If b(x, x) ∈ 2Z for all x ∈ Z we say that (Λ, b) is even and odd otherwise.
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• The minimal norm of (Λ, b) is

µΛ = min{b(x, x) ; x ∈ Λ, x 6= 0}

The cardinality of the set {x ∈ Λ ; b(x, x) = µΛ} is called the kissing number

of Λ.

Next we propose another characterization of integral lattices:

Definition .9. Let R be a unitary commutative ring, and Λ be a free R-

module of rank n. We associate to Λ a symmetric bilinear form b : Λ×Λ→ R.

The pair (Λ, b) is called a symmetric bilinear form module over R.

Proposition .1. A lattice Λ is integral over Rn if (Λ, b) is a symmetric

bilinear form module over the ring of integers Z, where b : Λ × Λ → Z is a

positive definite symmetric bilinear form.

For a proof see [16]

Let (Λ, b) and (Λ′ , b′) be two symmetric bilinear form modules over R, we

say that (Λ, b) and (Λ′ , b′) are isomorphic if there is an R-linear bijection

φ : Λ→ Λ′ such that b′(φ(x), φ(y)) = b(x, y) for all x, y ∈ Λ.

Let Λ be an integral lattice with a basis (e1, . . . , en). A is a matrix with an
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integer determinant det A. The determinant det A is independent of the

choice of the basis.

Let ẽ1, . . . , ẽ2 such that ẽi = ∑n
j=1 qijej be another basis of Λ with Ã =

(( ˜ei · ẽj)). Let Q = ((qij)) be a matrix in GLn(Z) in particular det Q = ±1.

We have that Ã = QAQt then, detÃ = detA. Then det A is independent to

the choice of the basis (e1, . . . , en).

The number given by det A is called the discriminant of the lattice Λ and we

write disc(Λ).

The volume of Λ in this case is given by

vol(Rn/Λ) =
√
disc(Λ),

vol(Rn/Λ∗) = 1√
disc(Λ)

Then we have disc(Λ) =| Λ∗/Λ | since we have that

vol(Rn/Λ) = vol(Rn/Λ)· | Λ∗/Λ | .

We say that a lattice Λ ⊂ Rn is unimodular if Λ = Λ∗ and we have that

vol(Λ) = 1.
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Theta function of a lattice The theta series of the lattice Λ is the func-

tion :

θΛ(τ) :=
∑
x∈Λ

qppxpp
2 =

∑
m∈Z≥0

Amq
m ; τ ∈ H,

where H = {τ ∈ C ; Im(τ) > 0}. We can see that the kissing number of Λ is

the coefficient of q in the second term of θΛ, and the minimum of Λ is giving

by the power of q in the second term.

Lattices are lied with codes in wireless communication, they can achieve the
capacity of additive white Gaussian noise channel with and without power con-
struction. It is well known that lattices can be constructed from codes, they can
provide a classical information theoretic way to obtain achievable rate. An applic-
able range of lattices in digital communications have been treated including the
well known root lattices, Construction A and construction A′. In our work we are
interesting in construction A.
Before introducing this construction we have to give some fundamental definitions
of error-correcting codes.

1.2 Linear codes

Suppose that we have a message and we want to send it using a channel in such
a way that it can be correctly recovered even if there is noise or transmission
errors. Therefore the message is encoded with a certain redundancy such that
errors can be detected and corrected. The design of such error correcting code is
the main subject of coding theory, where error correcting codes are important for
the transmission of information as an example: satellite, communication and in
telephone.
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By definition a message is a finite sequence of symbols such that for a finite field
Fq the encoding is given by an injective mapping f : Fkq → Fnq n > k > 0
and the image f(Fkq) := C ⊂ Fnq defines a code of length n.
We will start by giving some basic definitions.

Definition .10. Let x ∈ Fnq and y ∈ Fnq with x = (x1, . . . , xn) and y = (y1, . . . , yn),

the Hamming distance between x and y denoted by d(x, y) is defined as follows:

d(x, y) := w(x− y)

where w(x) is the number of nonzero xi.

Definition .11. Let C be a nontrivial code over Fq of length n, the minimum

distance of C denoted by d is defined by the minimum of distances d(x, y), x 6= y

with x ∈ C and y ∈ C.

We have that an [n, k]-linear code over Fq is a k-dimensional subspace of Fnq .

• If | C |= 1 we say that C is trivial code,

• q = 2 we say that C is a binary code,

• q = 3 we say that C is a ternary code.
The elements of a linear code C are called codewords.The codewords are of
length n.

Remark 1. The minimum weight of non-zero codewords in a code C is the min-

imum distance of C.



18 CHAPTER 1. LATTICES AND CODES

Since C is a subspace, then there exists a basis B = {β1, . . . βk}, where k is the
dimension of the subspace. We say that C is an [n, k]-code and every element w
of C has a unique representation as a linear combination

w =
k∑
i=1

αiβi ; α1, . . . , αk ∈ Fq.

and the number of codewords in an [n, k]-linear code is qk.
The corrective capacity of a code has an important link with the minimum distance
of this code, a linear code C with minimum distance d can correct up to bd−1

2 c
errors and detect d− 1 errors.

Definition .12. Let C be an [n, k]-linear code over Fq.

A generator matrix for C is given by:

G =



g1

g2

:

gk



,

where {g1, . . . , gk} is any basis of C and we write:

C =
{
uG;u ∈ Fkq

}
.

We say that the matrix G is under systematic form if:

G =

Ik A

 where Ik is the k × k identity matrix, and A is some k × (n − k)

matrix.
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Let x, y ∈ Fnq , we may define an "inner product" in Fnq as follows:

〈x, y〉 =
n∑
i=1

xiyi.

Let C be an [n, k]-code over Fq. The Euclidean dual code C⊥ of C is given by:

C⊥ =
{
v ∈ Fnq ;∀c ∈ C, 〈v, c〉 = 0

}
and we say that a linear code C is self-orthogonal in the Euclidean sense if we

have that C ⊂ C⊥. Furthermore, if C satisfies C = C⊥ then we say that C is
self-dual and we have that:

dim C + dim C⊥ = n.

Hence, an [n, k]-linear code C is self-dual if and only if C is self-orthogonal and
k = n/2.
The generator matrix of the dual code is given as follows:

Definition .13. Let C be an [n, k]-code over Fq, the parity check matrix for C is

given as follows:

H =
−AT In−k


such that H satisfies: GHT = 0k×(n−k) for every generator matrix G of C.

Equivalently, we have:

C =
{
c ∈ Fnq ; cHT = 0

}

Proposition .2. The Euclidean dual code of a linear code C of rank k over Fq is

an [n, n− k]-linear code and the parity check matrix H of C is a generator matrix
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for C⊥, where H satisfies:

GHT = 0k×(n−k)

for every generator matrix G of C and we write:

C =
{
c ∈ Fnq ; cHT = 0

}
.

Remark 2. The minimum distance of the dual code C⊥ is denoted by d⊥ and it

is called the dual distance.

The Hermitian dual: For a code over Fp2 , we should consider the Hermitian
inner product. The dual code with respect to this inner product is a linear code
denoted by C⊥h and called Hermitian dual. It is given by:

C⊥h =
{
x ∈ Fnq2 ;

n∑
i=1

xiy
q
i = 0,∀y ∈ C

}
.

A linear code is said to be self-orthogonal in the Hermitian sense if it satisfies
C ⊂ C⊥h. We say that C is self-dual in the Hermitian sense if C = C⊥h.

1.2.1 Cyclic codes over finite fields Fq

Cyclic codes are among the first codes used due to there rich algebraic structure.

Definition .14. Let C be a linear code over Fq we say that C is a cyclic code if

C is invariant under a cyclic shift:

c = (c0, c1, c2, . . . , cn−2, cn−1) ∈ C
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if and only if

c̃ = (cn−1, c0, c1, . . . , cn−3, cn−2) ∈ C.

Since C is invariant under a single right cyclic shift then it is invariant under

n− 1 right cyclic shifts by iteration, hence we say that the linear code C is cyclic

when it is invariant under all cyclic shifts.

Example .2. 1. The repetition code is cyclic.

2. The binary parity check code is cyclic.

Now let a = (a0, a1, . . . , an−1) ∈ Fnq , since we can consider codewords of the
code C as polynomials, then we can associate the polynomial of degree less then
n to a ∈ Fnq as follows:

a(x) = a0 + a1x+ . . .+ aix
i + . . .+ an−1x

n−1 ∈ Fq[x]

we say that a(x) is the associated code polynomial.
The shifted codeword c̃ can also be associated by a code polynomial as follows:

c̃ = cn−1 + c0x+ c1x
2 + . . .+ cix

i+1 + . . .+ cn−2x
n−1

such that c̃ = x(c(x)) = xc(x), more precisely,

˜(c) = xc(x)− cn−1(xn)− 1

hence c̃ has degree less than n such that the degree of (xc(x)) is divided by xn−1,
moreover c̃(x) and xc(x) are equal in the ring of polynomials Fq[x](mod xn − 1)
where arithmetic is done modulo the polynomial xn−1 and we will write c(x) ∈ C.
Let f(c) ∈ C(mod xn − 1), then the definition of cyclic codes using this notation
c(x) ∈ C will be:

c(x) ∈ C(mod xn − 1) if and only if
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c(x) ∈ C(mod xn − 1),

moreover we have that xic(x) ∈ C(mod xn − 1) and by linearity we have that:

aix
ic(x) ∈ C(mod xn − 1) for ai ∈ Fq.

Then:
d∑
i=0

aix
ic(x) ∈ C(mod xn − 1).

Therefore, the product of two polynomials a(x) = ∑d
i=0 x

i ∈ Fq[x] and c(x)(mod xn−
1) belongs to C.

Theorem .1. Let C be a cyclic code over Fq of length n such that C 6= 0, then:

1. If g(x) is a monic code polynomial of minimal degree r in C, then g(x) can

be uniquely determined in C and we have:

C = {q(x)g(x)/q(x) ∈ Fq[x]}

and we say that C has dimension n− r.

2. The polynomial g(x) divides xn − 1 in Fq.

Now let h(x) ∈ Fq[x] such that:

g(x)h(x) = xn − 1,

then the polynomial h(x) is called the check polynomial of C.

Proposition .3. Let C be a cyclic code over Fq of length n and let h(x) ∈ Fq be

the check polynomial of C, then:

C = {c(x) ∈ Fq[x] ; c(x)h(x) = 0(mod xn − 1)}
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Proof. Let c(x) ∈ C then there exists a polynomial q(x) such that c(x) = q(x)g(x),

but we have:

c(x)h(x) = q(x)g(x)h(x) = q(x)(xn − 1) = 0(mod xn − 1)

for an arbitrary polynomial c(x) ∈ Fq, where

c(x)h(x) = p(x)(xn − 1),

we have that:

c(x)h(x) = p(x)(xn − 1) = p(x)g(x)h(x), then (c(x) − p(x)g(x))h(x) = 0 and we

have

c(x)− p(x)g(x) = 0, because g(x)h(x) = xn − 1 with h(x) 6= 0.

Therefore c(x) = p(x)g(x).

Definition .15. Let C be a cyclic code over Fq of length n with a generator poly-

nomial g(x) = ∑r
j=0 gjx

j, then a generator matrix for C is given by

G =



g0 g1 . . . gn−k

g0 g1 . . . gn−k

. . . . . .

g0 g1 . . . gn−k



↔



g(x)

xg(x)

...

xk−1g(x)


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such that the matrix G is an n(n− r) matrix, where each successive row is the

cyclic shift of the previous row such that G is in echelon form and the k = dim(C)

rows of G are linearly independent.

1.2.2 Linear codes over finite chain rings

Finite chin rings are the most studied rings in coding theory. In this part we will
extend the study of linear codes from finite fields to finite chain rings.
A finite chain ring R is a finite commutative local ring such that for a fixed gen-
erator π of the maximal ideal of R with nilpotency index s, the ideals of R form
a chain given as follows:

0 = 〈πs〉 (
〈
πs−1

〉
( . . . (

〈
π1
〉
(
〈
π0
〉

= R.

The elements of the residual field Fq = R/ 〈π〉 are units with q = pr for some
integer r and prime p and we have that:

| R |=| Fq | · | 〈π〉 |= psr

where | Fq |=| Fpr |= pr. For more details over finite chain rings see [4], [36], [8], [9].

A linear code C ⊆ Rm of length m over a finite chain ring R is a submodule
of Rm. The length m is assumed to be not divisible by the characteristic of the
residue field R/M = Fpr . A matrix G with entries in R is called a generator matrix
for the code C if its rows span C and none of them can be written as an R-linear
combination of other remaining rows of G. The generator matrix is in standard
form if it is written as follows (see [41])

Ik0 A0,1 A0,2 A0,3 · · · A0,s−1 A0,s

0 πIk1 πA1,2 πA1,3 · · · πA1,s−1 πA1,s

0 0 π2Ik2 π2A2,3 · · · π2A2,s−1 π2A2,s
... ... ... ... ... ...
0 0 0 0 · · · πs−1Iks−1 πs−1As−1,s


(1.1)
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where the columns are grouped into blocks of sizes k0, k1, ..., ks−1,m = ∑s−1
i=0 ki.

Definition .16. Let C be a linear code with a generator matrix of the form given

in equation 1.1. We say that C is of type 1k0πk1(π2)k2 . . . (πs−1)ks−1 .

It is clear that the size of the code is |C| = |M |
∑s−1

i=0 (s−i)ki . The rank of the
code C is defined to be k(C) = ∑s−1

i=0 ki. Both the type and the rank are invariants
of the code. The linear code C is free if its rank is equal to the maximum of the
ranks of the free submodules of C. Then, the code C is a free R-submodule which
is isomorphic as a module to Rk(C).

The dual code

We attach the standard inner product to the ambient space, i.e., x · y = ∑
xiyi

where x, y ∈ Rm. The dual code C⊥ of C is defined by C⊥ = {x ∈ Rm|x · y =
0 for all y ∈ C}. If C ⊆ C⊥ we say that the code is self-orthogonal, and if C = C⊥

we say that the code is self-dual.

Theorem .2. Let C be a code with generator matrix G in standard form. Then

(i) If for 0 ≤ i ≤ v, Bi,j = −∑j−1
k=i+1Bi,kA

tr
s−j,s−k − Atrs−j,v−i, then

H =



B0,s B0,s−1 · · · B0,1 Tn−k(C)

πB1,s πB1,s−1 · · · πIks−1(C) 0

... ... ... ...

πs−1Bs−1,s πs−1Ik1(C) · · · 0


is a generator matrix for C⊥ and a parity check matrix for C.
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(ii) |C⊥| = |Rn|/|C| and (C⊥)⊥ = C.

For any code C and any r ∈ R, we define a sub-module quotient as follows:

(C : r) = {x ∈ Rn|rx ∈ C}.

Definition .17. To any code C over R we associate the tower of codes

C = (C : π) ⊆ · · · ⊆ (C : πi) ⊆ · · · ⊆ (C : πs−1).

over R, for i = 1, 2, ..., s−1 the projections of (C : πi) over the field M are denoted

by Tori(C) = (C : πi). We call this projections the torsion codes associated with

the code C and we have:

|Tori(C)| =
i∏

j=0
qkj ,

such that

Tor0(C) ⊂ Tor1(C) ⊂ · · · ⊂ Tors−1(C) ⊂ Tor0(C)⊥

Free codes

Definition .18. (Free codes) a code C over R is said to be free if it is a free

R-module.

Obviously, over a field any code is free. the following characteristic of a free
code are immediate:

Proposition .4. Let C be a code over R. The following assertions are equivalent:
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(i) C is a free code.

(ii) If G is a generator matrix for C in standard form, then G = (I N) for some

matrix N .

(iii) k(C) = k0(C).

(iv) C = C : π = · · · = (C : πs−1).

(v) C⊥ is a free code.

(vi) C has generator matrix G and parity check matrix H

For more details see [23].

1.2.3 Cyclic Codes over finite chain rings

Although this section n is a positive integer such that p - n; wich implies that
xn − 1 is square free in R[x] where R is the residue field, and xn − 1 has a unique
decomposition as a product of basic irreducible pairwise coprime polynomials in
R[x] (a polynomial f is said to be basic irreducible in R[x] if f̄ is irreducible in
R[x]). As defined previously, a linear code C of length n over R is an R-submodule
of Rn, we say that C is cyclic code if it is invariant under the cyclic shift i.e;
if c = (c0, c1, ..., cn−1) is a codeword of C then the cyclic shift of c defined as
(cn−1, c0, c1, ..., cn−2) is also a codeword of C. We can associate to every codeword

c = (c0, c1, ..., cn−1) a polynomial g(x) = c0 + c1x+ ...+ cn−1x
n−1 ∈ R[x]

xn − 1, we say
that g is the polynomial representation of c.
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Theorem .3. [14] Let xn−1 = ∏r
i=1 fi where fi for i = 1, ..., r are basic irreducible

pairwise-coprime polynomials in R[x]. Then the ideals of the quotient ring R[x]
xn − 1

are sums of ideals of the form

〈aj f̂i + 〈xn − 1〉〉

where f̂i = xn − 1
fi

and 0 ≤ j ≤ s, 1 ≤ i ≤ r.

Corollary 1. [14] If xn−1 = f1f2...ft where fi are monic basic irreducible coprime

polynomials, then the number of cyclic codes over R of length n is (s+ 1)t.

The next theorem defines the structure of a cyclic code and its cardinality.

Theorem .4. [14] If C is a cyclic code over R then there exists a unique family

of pairwise coprime monic polynomials F0, F1, ..., Fs ∈ R[x] such that xn − 1 =

F1F2...Fs and C = 〈F̂1, πF̂2, ..., π
s−1F̂s〉. And we have

|C| = (|R|)
∑s−1

i=0 (s−i)deg Fi+1

Theorem .5. [14] Let C be a cyclic code over R such that C = 〈F̂1, πF̂2, ..., π
s−1F̂s〉.

Then

|C⊥| = (|R|)
∑s

i=0(s−i)deg F ∗i+1 ,

and

C⊥ = 〈F̂ ∗0 , πF̂ ∗t , ..., πt−1F̂ ∗2 〉.
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Cyclic dual codes

Proposition .5. [14]

Let F0, F1, . . . , Ft = xn − 1 and Â, C is said to be self-dual if and only if Fi is

an associate of F ∗j ∀i, j ∈ {0, . . . , t} such that i+ j ≡ 1(mod t+ 1).

Lemma .1. [14] If deg f ≥ deg g, then

1. (f(x) + g(x))∗ = f ∗(x) + xdeg f−deg gg∗.

2. (f(x)g(x)) = f ∗(x)g∗(x)

Theorem .6. [14] For t an even integer, we have that non-trivial self-dual codes

exists if and only if there exists f ∈ R[x] where f is a basic irreducible factor of

xn − 1 such that f and f ∗ are not associate.

The next theorem gives a necessary and sufficent condition for existence of
non-trivial self-dual cyclic codes of length n over R for t even.

Theorem .7. [14] Let R be a finite chain ring with maximal ideal 〈π〉, | R |= plt,

where | R̄ |= pl and t is the nilpotency of π, then non-trivial self-dual cyclic codes

of length n over R exist if and only if pi 6= −1(mod n) for all i ≥ 0.
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1.3 Construction A of lattices

A natural way of constructing lattices is to associate a lattice in Rn to a linear code
in Znq . This construction is called construction A of lattices and the obtained lattice
is called q-ary lattice, this construction has several applications in information
theory and cryptography for example in the development of good codes for the
Gaussian channel, for some channels with side information and also for wiretap
coding.
Let q ≥ 2 be a positive integer, such that q = m1m2, m1,m2 6= 0 is a composite
integer. For q = p where p is a prime number we write Znp = Fnp .

Definition .19. A linear code C in Znq is an additive subgroup of Znp .

Example .3. [11] Let C be a code over Z2
5. Since q = 5 where 5 = p is a prime

integer, then we write Z2
5 = F2

5.

The code C is given by

C =
{
a(1, 2); a ∈ F2

5

}
= {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)} .

We have that C is a subspace of the vector space F2
5, generated by the vector (1, 2)

so we write C = 〈( 1, 2)〉.

Next we will show the connection between lattices and linear codes in Znq .
We consider the map:

ψ : Z→ Zq, x 7→ x( mod q)

ψ is the reduction of x modulo q and the preimage of x by ψ−1(x) is the set of
integers that are mapped to x by ψ such that:

ψ−1(x) = {x+ bq ; b ∈ Z} .
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The set of all ordered pairs (a, b), a, b ∈ {1, . . . , q − 1} given by

Zp × Zp = {(a, b) ; a, bZq}

is the Cartesian product of integers modulo q.
Let ψ : Z × Z → Zq × Zq, (a, b) 7→ (a(mod q), b(mod q)) be the map of reduction
modulo q component-wise. The preimage ψ−1((a, b)) is the set of 2-dimensional
vectors with entries in Z.
For an arbitrary number n of copies of Z, the map ψ can be defined as follows:

ψ : Zn → Znq , x 7→ ψ(x)

such that we apply the reduction modulo q over the n components of x. The next
result will establish the connection between linear codes and lattices:

Proposition .6. [11] Let S be a subset of Znq , then ψ−1(S) is a lattice in Rn if

and only if S is a linear code in Znq .

For a proof see [11]

Definition .20. Let C be a linear code in Zn, for q ≥ 2 such that q is prime or

composite integer. The component-wise reduction modulo q map is given by

ψ : Zn → Znq ,

The preimage of C by ψ denoted by ΓC = ψ−1(C) defined a lattice and we say

that ΓC is obtained via construction A. The lattice ΓC is also called q-ary lattice

or modulo q lattice.
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Proposition .7. [11]

1. If ΓC is a q-ary lattice obtained via construction A from the code C ⊂ Znq ,

then: ∣∣∣∣∣ ΓC
qZn

∣∣∣∣∣ = qn

vol(ΓC) =| C |

where | C | is the number of codewords of C.

2. Any full rank integer lattice Γ ⊂ Zn is q-ary for q = vol(Γ).

Proof. 1. Since there is an isomorphism between ΓC/qZ and C then the first

property is verified.

2. Since Γ ⊂ Zn, then vol(Γ) ∈ Z. If we take a generator matrix B for Γ, then

vol(Γ) =| det(B) |= q, therefore Bx = qz is a linear system with an integer

solution for any z ∈ Zn, it follows that qZn ⊂ Γ then Γ is a q-ary lattice.

Now we consider the case of q is a prime number, hence a linear code C over
Zp = Fp is a subspace moreover C has a basis formed by k vector such that the k
vectors form a generator matrix. For a linear code C we can write any element a
of C using a set of generators as follows:

a =
l∑

i=1
aivi, vi = (vi1, . . . , vin) i=1,. . . , l.
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(l = k) for the case of an [n, k]-linear code over Fp.
Now for h1, . . . , hn ∈ Z we have that:

a =
l∑

i=1
aivi ∈ C ⇔ ψ−1(a) =

l∑
i=1

aivi +
n∑
1
qhili ∈ R

with 0 ≤ ai, vij ≤ m − 1 such that for all i, j ei, i = 1, . . . , n form the canonical
basis of Rn. Moreover we have that ψ−1(a) is an integral linear combination of
v1, . . . , vl, qe1, . . . , qen. An expanded generator matrix B can be obtained using
the next proposition:

Proposition .8. [11]

1. Let ΓC be a modulo-p lattice then: pZn ⊆ ΓC ⊆ Zn.

2. Let C be an [n, k]-linear code over Fp with generator matrix G. Then the

determinant of ΓC is: det(ΓC) = pn−k.

3. A generator matrix of ΓC is:

GΓC =


G

pIn



4. When the generator matrix G is of the systematic form such that

G =

Ik Ak×(n−k)

 ,

then the generator matrix GΓC of ΓC can be reduced to a standard n × n
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generator matrix for ΓC:

GΓC =


Ik Ak×(n−k)

0 pIn−k


To obtain an expanded generator matrix B we will proceed as follows:

Put all the column vectors in an n × (n + l) matrix, then we have to get a row
echelon of this matrix. But we are working over lattices and only Z-linear combin-
ations are allowed and only elementary operations on the columns (Addition and
subtractions) can be applied. Hence we will replace the notion of reduced echelon
form by the notion of Hermite normal form (HNF).
An integer matrix of full row rank is in column Hermite normal form if it is of the
form

(
H 0

)
where H =

(
hij
)
is a square matrix such that it satisfies the two

next conditions:

1. hij = 0 for i < j

2. 0 ≤ hij < hii for i > j

The first condition means that H will be a lower triangle matrix.
The second condition means that its entries are nonnegative and each row has a
maximum entry on the diagonal. Note that we can reduce any matrix A with
integer entries to a column Hermite normal form, A =

(
H 0

)
U , where U is a

square unimodular matrix.

Proposition .9. [11] Let C be a linear code over Zq with generators v1, . . . , vl

and let e1, . . . , en be the canonical basis of R.

A generator matrix for the lattice ΓC = ψ−1(C) is given by
Ik 0l×(n−l)

A qI(n−l)


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where


Ik

A

 is the generator matrix of C under systematic from.

Note that for the case Zp = Fp, l = k.

Proof. A generator matrix for the lattice ΓC = ψ−1(C) is obtained by the Hermite

normal form

H 0

 of [v1, . . . , vl, qe1, . . . , qen] where v1, . . . , vl, qe1, . . . , qen gen-

erates the lattice.

Now, we have to extract a basis by computing the Hermite normal form from the

next matrix: 
Il qIk 0l×(n−l)

A 0(n−l)×l qIn−l


If we multiply the first l columns by −q and we add them to the next l columns

we get: 
Ik 0l 0l×(n−l)

A −qA qIn−l


Then we multiply the column containing the ith 1 of In−l in turn by aij, with

j = 1, . . . , n − 1 then we will add it to the corresponding column in −qA, Hence

we will get the desired result.

Example .4. [11] Let C be a linear code over F2 such that:
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C =
{

(a1, . . . , an−1,
∑n−1
i=1 ai); a1, . . . , an−1 ∈ F2

}
with length n and dimension n− 1. A systematic generator matrix for ΓC is given

by: 
In−1

1 . . . 1


and a generator matrix for ΓC is given by:

In−1 0(n−1)×1

1 . . . 1 2



Conclusion

In this chapter, we initiate the construction A of lattices from codes over finite
fields. In the next chapter we will give a more general construction A of lattices
from codes over number fields.



Chapter 2

Construction A of lattices over

number fields

The importance of construction A is due to a series of dualities between theoretical
properties of lattices obtained via Construction A and linear codes, for example the
theta series of the lattice and the weight enumerator of the code. In this chapter
we consider a generalized construction A of lattices over number fields from linear
codes. We will show the connection between lattices and codes using number fields
that have a prime that totally ramifies and cyclotomic fields. The proofs of this
chapter can be found in [28] and [16].

2.1 Number fields

Let K be a finite extension of the field of rational numbers Q. The field K is a
number field, let {e1, . . . , en} be a basis that generates K over Q, we say that K

37
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is an extension of degree n over Q and we write [K : Q] = n.
The element of the basis {e1, . . . , en} can be chosen from the ring of integers of K,
denoted by OK and given as follows:

OK = {x ; x ∈ K such that x satisfies a monic polynomial with integral coefficients} .

The set OK is a commutative ring.
In general, a notion of ideals is studied: fractional ideals which are finitely gener-
ated OK-submodules of K.
The ideals form a commutative group on the set of nonzero prime ideals of OK
such that each ideal a admit a unique representation as a product:

a =
∏

π
πvπ(a)

where π denotes a prime ideal of OK and vπ(π) ∈ Z and vπ(a) = 0 for almost
all π.
We have that since OK is a free Z-module of rank n, fractional ideals are also free
Z-modules with rank n; for a prime integer p ∈ Z, the ideal generated by p in OK
satisfies:

pOK =
g∏
i=1

πeii ,

the exposent ei is the ramification index, and the degree

fi ≡ [OK/π : Zp]

is called the inertia degree of π over p.
Moreover, we have:

g∑
i=1

eifi = n.

If e1 = n we say that p is totally ramified.
The number field K has exactly n Q-embeddings of K into C. Let σ1, . . . , σn be
this embeddings such that σi : K → C is a field homomorphism that becomes the
identity map on Q.

1. We say that K is totally real if σi(K) ⊆ R for all i.
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2. The field K is said to be a CM field, if there exists T ⊆ K, a totally real
number field such that [K : T ] = 2 and σi(K) * R ∀ 1 ≤ i ≤ n.

3. The field K is a Galois extension of Q, if σi(K) = K for all i, in this case
we have:

e1 = e2 = . . . = eg.

We denote this integers e and we say that e is the ramification index of p,
similarly we have f1 = . . . = fn. we denote this integer f , f is called the
inertia degree of p.

The trace map and the norm map of any element x ∈ K are given as follows:
The trace map:

TrK/Q(x) =
n∑
i=1

σi(x).

The norm map:

NK/Q(x) =
n∏
i=1

σi(x).

Let {e1, . . . , en} be a basis of K over Q. The integer dK = det(Tr(eiej))ni,j=1 is
called the discriminant of K.

2.2 A general lattice construction

Let K be a number field and π ∈ OK a prime (π is a prime above p).
Fpf = OK/π is the residual field. Let C be a linear code over Fpf of length m and
rank k.

Definition .21. [28] Let ψ : OmK → Fmpf be the reduction modulo π in each

coordinate map. We define a lattice from the code C as follows:

ΓC := ψ−1(C) ∈ OmK
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Now let ψ−1(C) ⊂ OmK .
We have that C is a subgroup of Fmpf , then ψ−1(C) is a subgroup of OmK . Further-
more, ψ−1(C) is a free Z-module since OmK is a free Z-module of rank nm.

2.3 The case of totally ramified prime

In this section we will give a generator matrix for the lattice ΓC and its discrim-
inant.
We will focus on the case where K is a Galois extension and the prime π totally
ramified. Therefore, we have pOK = πn, e = n and f = 1.
A generator matrix for the lattice ΓC can be computed using a generator matrix
for the lattice formed by (OK , 〈w, z〉), where 〈w, z〉 = Tr(wz);w, z ∈ OK is the
standard trace from.

The matrix

M =


σ1(v1) σ2(v1) . . . σn(v1)

: : :
σ1(vn) σ2(vn) . . . σn(vn)

 (2.1)

is a generator matrix for the lattice OK . We know that MMT = TrK/Q(vivj). Let
w be a vector of the lattice OK then w is a combination of the rows of M such
that w = ∑n

i=1wivi, w is embedded in Rn as (σ1(∑n
j=1 wjvj), . . . , σn(∑n

i=j wjvj)),
and

〈w, z〉 = TrK/Q(wz)

as it should be (when m = 1 and α = 1 in the bilinear form defined before
Next we derive a generator matrix for the lattice ΓC . The prime ideal π is a

Z-module of rank n. It has a Z-basis {u1, . . . , un}, where ui = ∑n
j=1 uijvj, uij ∈ Z.

The next matrix which is the last step to get a generator matrix for the lattice
ΓC , is the matrix of embeddings of a Z-basis of π:
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
σ1(u1) . . . σn(un)

: :
σ1(un) . . . σn(un)

 =


∑n
j=1 u1jσ1(vj) . . .

∑n
j=1 u1jσn(vj)

: :∑n
j=1 unjσ1(vj) . . .

∑n
j=1 unjσn(vj)

 = DM

where D = (uij)ni,j=1

Proposition .10. [28] The lattice ΓC is a sublattice of ONK with discriminant

disc(ΓC) = dNK(pf )2(N−k)

where dK = (det(σi(wj))ni,j=1)2 is the discriminant of K.

Proof. Since by definition the bilinear form 〈u, v〉 = TrK/Q(uv), u, v ∈ OK has

determinant:

dK = det(MMT )

then the bilinear form 〈x, y〉 = ∑m
i=1 Tr(xiyi) has determinant dmK over OmK .

The map ψ defined above is sutrjective and ψ−1(C) has (pr)m−k as index, thus

disc(ΓC) = dmK(pr)2m−2k

is the discriminant of ΓC .

Proposition .11. ; [28] Let

Ik A

 be a generator matrix of the code C, and

M be the matrix of embeddings of Z-basis of OK. A generator matrix for the lattice
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ΓC is given by

MC =


Ik ⊗M A⊗M

0n(N−k),nk IN−k ⊗DM



Where ⊗ is the tensor product of matrices, the matrix DM is the matrix of
embeddings of a Z-basis of π.

Proof. From the generator matrix MC it is clear that this lattice has the right

rank.

The embedding of a basis of C correspond to the first nk rows of MC and the

embedding of a basis of π correspond to the last n(m− k) rows of MC . To make

this more precise:

Let ui = (ui1 , . . . , uin) ∈ Zn where

xi =
n∑
l=1

uilvl, i = 1, . . . ,m

and we define the canonical embedding of K as follows: σ = (σ1, . . . , σn) : OK →

Rn.

We have that

σj(xi) = σj(
n∑
l=1

uilvl) = ui · (Mlj)nl=1
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(u1, . . . , uk, uk+1, . . . , um)


Ik ⊗M A⊗M

0n(N−k),nk IN−k ⊗DM


= (σ(x1), . . . , σ(xk),

∑k
j=1 aj,1σ(xj) + σ(x′k+1), . . . ,∑k

j=1 aj,m−kσ(xj) + σ(x′m))

where x′k+1, . . . , x
′
m ∈ π. Then the above vector is an element of ΓC .

If we define

ρ : σ(xi) = (σ1(xi), . . . , σn(xi)) 7→ xi =
n∑
l=1

uilvl ∈ OK ,

then applying ρ and ψ componentwise in order gives:

c = (ψ(ρ(σ(x1))), . . . , ψ(ρ(σ(xk))),
k∑
j=1

aj,1ψ(ρ(σ(xj))), . . . ,
k∑
j=1

aj,m−kψ(ρ(σ(xj)))),

we have that x′i ≡ 0(mod π), the codeword c of C is given by

c = (ψ(ρ(σ(x1))), . . . , ψ(ρ(σ(xk)))) ·

Ik M



by computing the absolute value of the determinant of MC we get

| det(MC) |=
√
dK

m

(pr)m−k,

This shows that MC generates a lattice with the same volume as ΓC . Which

complete the proof.

Next, we propose the case of a totally ramified prime. In this case the matrix
A can be easily lifted, because it has coefficient in Fp.
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Let x = (x1, . . . , xm) ∈ ΓC ⊂ OmK for i = 1, . . . , k, ∑j=1, xi = ∑n
j=1 xijvj.

The above results tell us that x is embedded to Rnm as

x = (σ(x1), . . . , σ(xk),
k∑
j=1

aj,1σ(xj) + σ(x′k+1, . . . ,
k∑
j=1

aj,m−kσ(xj) + σ(x′m))

= (σ1(x1), . . . , σn(x1), . . . , σ1(xm), . . . , σn(xm))

where xk+1 = ∑k
j=1 aj,1xj + x

′
k+1, . . . , xm = ∑k

j=1 aj,m−kxj + x
′
m. Then,

〈x, y〉 =
m∑
i=1

TrK/Q(xiyi).

Corollary 2. [28] The matrix

GGT ⊗ Tr(vivj) A⊗ Tr(uivj)

AT ⊗ Tr(uivj) Im−k ⊗ Tr(uiuj)


is the Gram matrix of the integral lattice ΓC, where u1, . . . , un is a Z-basis of π

and G =

Ik A

.

2.3.1 The case of a totally ramified prime and self-orthogonal

codes

Let K be a totally real extension of Q. We have that ȳi = yi, then we can treat
the real and CM -fields at the same time.
Let ΓC be a lattice defined as in the previous subsection. We have that ΓC is an
integral lattice of rank nm with respect to the bilinear form

〈x, y〉 =
m∑
i=1

TrK/Q(αxiyi)
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where α is a totally positive element such that α ∈ OK ∩ R. Let C be a self-
orthogonal code, i.e. C ⊂ C⊥.

ΓC := ψ−1(C) ⊂ OmK .

Next, we will derive some proposition of the lattice ΓC when C is self-orthogonal.
Let C be an [m, k]-linear code over Fp such that C ⊂ C⊥. Since∑m

i=1 TrK/Q(xiȳi) ∈
pZ, then we can normalize the symmetric bilinear form by choosing α to be 1/p.
The next lemma characterize the case of α = 1/p.

Lemma .2. [28] Let C be an [m, k]-self-orthogonal code over Fp. We have that the

lattice ΓC is an integral lattice with respect to the bilinear form 〈x, y〉 = ∑m
i=1 TrK/Q(xiȳi/p)

Proof. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) such that x, y ∈ ΓC = ψ−1(C).

We have that:

ψ(x · y) = ψ(
m∑
i=1

xiyi) =
m∑
i=1

ψ(xi)ψ(yi) = ψ(x) · ψ(y) = 0 ∈ Fp.

Thus 〈x, y〉 is an integer for all x, y ∈ ΓC . and since ψ(x), ψ(y) ∈ C and C ⊂ C⊥.

It follows that

x · y ≡ 0(mod π)

. Next we have to show that ȳi ≡ yi(mod π) for all i = 1, . . . ,m.

Since OK/π ' Fp and yi ∈ OK , then yi = y
′
i + y”

i for each i, where y′i ∈ Z and

y”
i ∈ π.
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(̄· is the automorphism of K induces by complex conjugation).

We have that π is the only prime above p and y”
i ∈ π, then ȳi = y

′
i + ȳ

′
i ≡

y
′
i + y”

i ≡ yi(mod π) as desired. Thus ∑m
i=1 xiyi ≡

∑m
i=1 xiȳi ≡ 0(modπ) and all

of conjugates of ∑m
i=1 xiȳi must lie in π, therefore TrK/Q(∑m

i=1 xiȳi) ∈ π, implying

that TrK/Q(∑m
i=1 xiȳi) ∈ π ∩ Z = pZ, since the trace map is linear, then

〈x, y〉 =
m∑
i=1

TrK/Q(xiȳi)/p = 1
p
TrK/Q(

m∑
i=1

xiȳi).

as a result of this lemma, instead of considering the lattice ψ−1(C) with
〈x, y〉 = ∑m

i=1 TrK/Q
xiȳi
p

, we can consider the lattice ψ−1(C)/√p with 〈x, y〉 =∑m
i=1 TrK/Q(xiȳi).

The generator matrix for ΓC in this case is

M = 1
√
p

Ik ⊗M A⊗M
0(mk),nk Im−k ⊗DM


The discriminant of ΓC is then

disc(ΓC) = dmKp
2m−2k−nm

It can be computed directly from the determinant of MC :

disc(ΓC) = (1
p

)nmdmK(pr)2(m−k) = dmK
p2(m−k)

pnm
.

The Gram matrix is:

1
p

GGT ⊗ Tr(vivj) A⊗ Tr(uivj)
AT ⊗ Tr(uivj) Im−k ⊗ Tr(uiuj)

 .
for more details see [28]
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2.3.2 Maximal totally real subfields of cyclotomic fields

In this subsection we will consider the case of cyclotomic fields and their subfields.
Then we will consider the case where π is a prime above p.
The prime p is an odd prime such that p totally ramifies in K. Let ζpr be a
primitive prth root of unity and let K+ = Q(ζpr + ζ−1

pr ), r ≥ 1 be the maximal
totally real subfield of the cyclotomic field K = Q(ζpr), such that:
OK+ = Z[ζpr + ζ−1

pr ] is the ring of integers and OK = Z[ζpr ] is the ring of integers
of K and [K+ : Qp] = pr−1(p−1)

2 .

The ideal β = 〈1− ζpr〉 is a principal prime ideal, thus:

pOK = βp
r−1(p−1),

and OK/π ' F is the residue field and we write:

e(β | p) = pr−1(p− 1)

by transitivity of ramification indices.
Now for π the prime above p in K+ we conclude that
e(π | p) = pr−1(p− 1)/2 and pOK+ = π

pr−1(p−1)
2

Lemma .3. [28] Let K+ = Q(ζpr + ζ−1
pr ) and let C be an [m, k]-code over Fp such

that C is self-orthogonal.

The lattice ΓC given by ψ−1(C) together with the bilinear form

〈x, y〉 =
m∑
i=1

TrK/Q(αxiyi)

is an integral lattice of rank mpr−1(p− 1)/2.

The matrix

MC = 1
√
p


Ik ⊗M A⊗M

0(mk),nk Im−k ⊗DM


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is a generator matrix of the lattice ΓC = ψ−1(C), where G =

Ik A

 is a gener-

ator matrix of C.

The ideal π =
〈
(2− ζpr − ζ−1

pr )
〉
is principal and

{
ζ ipr + ζ−ipr

}n−1

i=0
is a Z-basis of

OK+ .
By applying the n embeddings of K ζpr + ζ−1

pr 7→ ζ ipr + ζ−ipr , with i coprime to p, we
obtain the matrix M from the Z-basis of OK+ .

Lemma .4. [28] Consider the field K+ = Q(ζp+ζ−1
p ), and let C be an [m, k]-code

over Fp such that C is self-orthogonal, then:

Γ∗C = ΓC⊥ .

Proof. For x ∈ ΓC , y ∈ ΓC⊥ . By definition new have that ψ(x) ∈ C and ψ(y) ∈

C⊥, it follows that

ψ(x) · ψ(y) ≡ 0(mod p). Then (x, y) ∈ Z, therefore ΓC⊥ ⊂ Γ∗C .

The discriminant of the lattice ΓC is given by

disc(ΓC) = pm−2k.

Since dK+ = p(p−1)/2−1, then

vol(Rnm/ΓC) = (pm−2k)1/2 = p
m
2 −k
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and

vol(Rnm/Γ∗C) = pk−
m
2 .

Since the dimension of C⊥ is m− k, then

disc(ΓC⊥) = pm−2(m−k) = p2k−m,

Which imply

vol(Rnm/ΓC⊥) = pk−
m
2 .

Therefore Γ∗C = ΓC⊥ .

Corollary 3. [28] Let K+ be a field such that K+ = Q(ζp + ζ−1
p ) and let C be an

[m, k]-code over Fp such that C is self-orthogonal.Then the lattice ΓC = ψ−1(C)

together with the bilinear form 〈x, y〉 = ∑m
i=1 TrK/Q(αxiyi) is an integral lattice of

rank mpr−1(p− 1)/2. In addition, ΓC is an odd unimodular lattice for C self-dual.

Proof. Let Γ be a lattice such that Γ contains a vector x with 〈x · x〉 is an odd

integer, then we say that the lattice is an odd integral lattice.

If we take x = (2− ζpr − ζ−1
pr , 0, . . . , 0) ∈ Γ, we have that

〈x · x〉 = TrK+/Q((2− ζpr − ζ−1
pr )2/p) = 1

p
TrK+/Q(6− 4(ζp + ζ−1

p ) + (ζ2
p + ζ−2

p ))
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Since ζp + ζ−1
p and ζ2

p + ζ−2
p are conjugate and

TrK+/Q(ζp + ζ−1
p ) = TrQ(ζp)/Q(ζp) = 1

Then we have 〈x · x〉 = 6(p− 1)
2p + 3

p
= 3.

2.4 Construction of Lattices from Codes over Fp
In this section we propose the study of the case r = 1 to show the connection
between lattices and self-dual codes.

Let C be an [m, k]-code over Fp (p is an odd prime), such that C is self-
orthogonal (C ⊂ C⊥). Let OK be the ring of integers of the cyclotomic field
K = [ζ].

Definition .22. The map ψ : OmK → Fmp is the map defined by the reduction

modulo the principal ideal β = (1 − ζ) in each coordinate. The preimage of the

code C by the map ψ:

ΓC := ψ−1(C) ⊂ OmK

is a lattice.

Let x, y ∈ OK such that x = (x1, . . . , xn) and y = y1, . . . , yn with xi, yi ∈ OK
for i = 1, . . . , n.
Using the symmetric bilinear form (xi, yi) 7→ Tr(xiȳi

p
) we can define a symmetric

bilinear form over OmK as follows:

〈xi, yi〉 =
m∑
i=1

Tr(xiȳi
p

).
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Since for any a ∈ OK , we have a ≡ ā(mod β), then x · ȳ ≡ x · y(mod β).
by assuming that ψ(x), ψ(y) ∈ C, we have 0 ≡ x · y ≡ x · ȳ(mod β). This implies
that the lattice ΓC is an even integral lattice of rank m(p − 1), because we have
that 〈x, y〉 ∈ Z and 〈x, x〉 ∈ 2Z for all x, y ∈ ΓC ⊂ OmK .

Proposition .12. [16] The discriminant of the lattice ΓC is:

disc(ΓC) = pm−2k.

Proof. We have that the map ψ is surjective and ψ−1(C) has index pm−k in OmK ,

with m = dimC, moreover the bilinear form 〈 , 〉 on OmK has determinant (1
p
)n

then the discriminant of C is pm−2k.

Lemma .5. [16]

Let C be an [m, k]-code over Fp such that C ⊂ C⊥. Then

Γ∗C = ΓC⊥ .

Proof. For a proof see [16].

Proposition .13. [16] Let C be an [m, k]-linear code over Fq such that C is

self-orthogonal, then the lattice formed by the preimage of C by ψ together with

the symmetric bilinear form 〈x, y〉 = ∑m
i=1 Tr(xiȳip ) is an even integral lattice of

discriminant pm−2k and rank m(p − 1). Moreover if C is self-dual then ΓC is

unimodular.
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2.4.1 Theta Function over Number Fields

A theta function is a function from the product of p−1
2 upper half planes H to C.

We shall associate a theta function to the lattice ΓC , for one variable the theta
function is given by:

vρ+Γ(z) :=
∑

x∈ρ+Γ
eπizx

2
, z ∈ H.

For more details see [16].
For our purposes we shall consider a generalized theta function of several variables.
Let K = Q(ζ) where ζ = e2πi/p and let k = Q(ζ + ζ−1) be the real subfield of
K, the ring of integers of K is denoted by OK and the principal ideal of OK is
denoted by β such that β = 〈1− ζ〉.
If we identify the lattice ΓC with the lattice β with symmetric bilinear form 〈x, y〉 =
TrK/Q(xȳ

p
) and we identify the dual lattice with OK we get:

vj =
∑

x∈β+j
eπizTrK/Q(xx̄

p
) =

∑
x∈β+j

e2πizTrk/Q(xx̄
p

)

for i = 0, . . . , p−1
2 , since we have that [k : Q] = p−1

2 , then there exist exactly p−1
2

distinct real embeddings σl = k → R, l = 1, . . . , p−1
2 . The embeddings are of the

form ζ + ζ−1 7→ ζa + ζ−a, such that σl(k) = k.
σl form a group called the Galois group of k over Q and it is denoted by Gal(k,Q).
Now we consider the product of p−1

2 upper half planes

H
p−1

2 = H×H× . . .×H (p− 1)/2 times.

The next step is to define a theta function depending on p−1
2 variables zl ∈ H by:

θj(z) :=
∑

x∈β+j
e2πiTrk/Q(z xx̄

p
),

where

Trk/Q(zxx̄
p

) :=
∑
l=1

zl ·
σl(xx̄)
p
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(The function θj is holomorphic in z ∈ H(p−1)/2)
The group SL2(OK) is the group of all 2× 2 matrices:α β

γ δ


where α, β, γ, δ ∈ OK .
The determinant is given by:

αγ − βγ = 1.

By the definition of the norm given before

Nk/Q(γz + δ) :=
(p−1)/2∏
l=1

(σl(γ)zl + σl(δ))

where σ ∈ Gal(K,Q) we set

σ(z) = (zε(1), . . . , zε( p−1
2 ))

the ε are the permutation of indices 1, . . . , p−1
2 such that σl ◦ σ = σε(l) with

1 ≤ l ≤ p−1
2 .

for more details see [16] Let Γ be a subgroup of SL2(OK), then we have the next
definition:

Definition .23. [16] We call a holomorphic function f : H
p−1

2 → C a Hilbert

modular form of weight m for Γ, if it is given by:

f

(
αz + β

γz + δ

)
= f(z) ·Nk/Q(γz + δ)m

for all


α β

γ δ

 ∈ Γ. We say that f is symmetric if we have that

f(σ(z)) = f(z) for all σ ∈ Gal(k,Q).

See [16]
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As we have seen in the previous section that:

π := β ∩ OK, then π = (ζ + ζ−1 − 2) = ((ζ − 1)(ζ−1 − 1)

and also we have π p−1
2 = p. Now we define:

Γ(π) =


α β

γ δ

 ∈ SL2(OK) ; γ ≡ (mod π)

 .
Then the next theorem hold:

Theorem .8. [16] The Hilbert modular form θj, j = 0, 1, . . . , p−1
2 is of weight 1

for the group Γ(π). Further we have:

θ0

(
αz + β

γz + δ

)
= θ0(z) ·

(
δ

p

)
·Nk/Q(γz + δ) for all


α β

γ δ

 ∈ Γ0(π).

Let C be a self-dual code over Fp and let ΓC be the lattice constructed from the
code C ⊂ Fmp together with symmetric bilinear form given by 〈x, y〉 = ∑

x∈Γ Trk/Q(xx̄
p

).
The lattice Γ is an even unimodular lattice of rank m(p−1), furthermore the theta
function of one variable of the lattice ΓC is given by:

vC =
∑
x∈ΓC

e2πizTrk/Q(xx̄
p

), where z ∈ H.

Since ΓC is an Z-module and also an Ok, then we can define a theta function in
several variables as follows:

θC(z) :=
∑
x∈ΓC

e2πiTrk/Q(z xx̄
p

).

Definition .24. The Lee weight enumerator of a code C ⊂ Fnp is given by: the

homogeneous polynomial of degree n:

WC(X0, X1, . . . , X p−1
2

) :=
∑
u∈C

X
l0(u)
0 X

l1(u)
1 . . . X

l(p−1)/2(u)
p−1

2
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with u is the number of zeros in u, and li(u), i = 1, . . . , p−1
2 is the number of +i

or −i occurring in the codewords u.

Theorem .9. [16] The theta function θC is a Hilbert modular form of weight n

for the whole group SL2(Ok).

Theorem .10. Let C be an [m, k]-code over Fp such that C ⊂ C⊥, then:

θC = WC(θ0, θ1, . . . , θ p−1
2

).

For a proof see [16].

Example .5. [16] Let as consider the case of n = 12. Let C ⊂ F12
3 be a self-dual

code of length 12, the weight enumerator of C has the form (θ4
0 + 8θ0θ

3
1)3 + a(θ4

1 −

θ4
1 − θ3

0θ1)3.

Since C is self-dual code, then the weight of every codeword is divisible by 3. We

now look for a code C with no codewords of weight 3, to have such a code the

coefficient θ9
0θ

3
1 must be zero. Therefore we have that:

3 · 8− a = 0,

then a = 24. Thus the weight enumerator of such a code is the polynomial

WC = (X0, X1) = X12
0 + 26X6

0X
6
1 + 440X3

0X
9
1 + 24X12.
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This code is the ternary Golay code.

Conclusion

Given a linear code C over Fp, then C can be lifted to a linear code C̃ over a finite
chain ring R. Using lifted codes it is possible to construct lattices. In the next
chapter we will give a generalized construction A of lattices using lifted codes over
finite chain rings.



Chapter 3

Lattices from codes over finite

chain rings

Finite chain rings can be defined as non-trivial quotient of ring integers of p-adic
fields, this allows us to give a unified treatment valid for all finite chain rings which
can be used to construct new lattices from codes over finite chain rings. In this
chapter we start by preliminaries over p-adic fields and we conclude this chapter
by a lattices construction that can be used to construct self-dual codes over finite
chain rings.

3.1 p-adic Fields

In this section we will give some basic definitions on p-adic fields for the proofs
and more details see [2] and [27]. Starting by p-adic absolute value and valuation:

57
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3.1.1 Absolute Value:

Definition .25. Let K be a field. An absolute value over K is an application

| · | : K → R+ that associate to an element a of K, an element |a| in R+, such

that:

1) ∀a ∈ K, |a| = 0⇔ a = 0;

2) ∀a, b ∈ K, |ab| = |a||b|;

3) ∀a, b ∈ K, |a+ b| ≤ |a|+ |b|.

And we say that K is an valued field.

Definition .26. If the absolute value over K satisfies the following condition:

3’) ∀a, b ∈ K, |a + b| ≤ Max(|a|, |b|) (which stronger then conditon 3 in .25),

we say that | · | is an ultrametric absolute value and that K is an ultrametric

valued field.

Definition .27. Let K be a field. An application v : K → R∪{+∞} is a valuation

if it satisfies the next conditions:

1) ∀a ∈ K, v(a) = +∞⇔ a = 0;
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2) ∀a, b ∈ K, v(ab) = v(a) + v(b);

3) ∀a, b ∈ K, v(a+ b) ≥Min(v(a), v(b)),

Proposition .14. Let K be a field and w ∈]0, 1[.

1) If v is a valuation over K, then the application | · | defined by |0| = 0 and

∀a ∈ K − {0}, |a| = wv(a) is an ultrametric absolute value over K.

2) Reciprocally, if | · | is an ultrametric absolute value over K, then the applica-

tion defined by v(0) = +∞ and ∀a ∈ K − {0}, v(a) = Log|a|
Log w is a valuation

over K.

Example .6. Let

v0(0) = +∞, v0(x) = 0 for all x 6= 0 in K.

Then v0 is a valuation of K. It is called the trivial valuation of K.

Example .7. Let p be a prime number. Each non-zero rational number x can be

uniquely written in the form x = pey, where e is an integer and y is a rational

number whose numerator and denominator are not divisible by p. We define a

function vp on the rational field Q by

vp(0) = +∞; vp(x) = e, if x 6= 0 and x = pey as above.
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Then vp is a valuation of Q; it is the well-known p−adic valuation of the rational

field. vp is the unique valuation on Q satisfying v(p) = 1.

Proposition .15. Let w fixed in ]0, 1[, v a valuation over a field K and | · | the

corespondant absolute value (ie ∀a ∈ K − {0}, |a| = wv(a)).

1) The set OK = {a ∈ K; v(a) ≥ 0} = {a ∈ K; |a| ≤ 1} is a unitary ring of K

called the valuation ring of K.

2) If a ∈ K, we have that a ∈ OK or a−1 ∈ OK .

3) K = F(OK) (ie K is the field of fractions of OK).

4) m = {a ∈ K; v(a) > 0} = {a ∈ K; |a| < 1} is the unique maximal ideal of

the ring OK. We say that m is the ideal of the valuation v and that OK is a

local ring.

5) The set of units of the ring OK is:

U(OK) = {a ∈ K; v(a) = 0} = {a ∈ K; |a| = 1}.

Definition .28. The quotient ring OK/m is a field. We call this field the residual

field of the valuation v. we call residual degree, the dimension of the Fp−vector

space O/m is called residual degree and we denote by k with fm = dimFp(OK/m)
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Example .8. The ring of integers OK of K = Qp is Zp and m = pZp, the residue

field for m is Fp.

Hensel’s way of writing: Let π be in m such that ordmπ = 1. Then π is
called a uniformizer of m or of OK . For example, for the ring of p-adic integers
Zp, π = p.
Let Ξ = {r0 = 0, r1, ..., rq−1}; q = N(π) = |O/m| be a system of representatives of
OK/m, in the case of OK = Zp we have that Ξ = {0, 1, 2, ..., p− 1} and the set

{πkr0, π
kr1, ..., π

krq−1},

is a system of representatives for mk/mk+1 the next lemma show the way of writing
for the ring of valuation.

Lemma .6. 1. Let α ∈ OK then it can be written in a unique way as

α = a0 + a1π + a2π
2 + ...

with ai ∈ Ξ.

2. An element of α ∈ K can be written as

α = a−kπ
−k + a−k+1π

−k+1 + ...

3. The uniformizer generates the ideal m, such that

πkOK = mk.
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Properties of ultrametric valued fields:

(P1): ∀n ∈ N− {0, 1}, ∀a1, ..., an ∈ K,∑n
i=1 ai = 0⇒ ∃i, j ∈ {1, ..., n}, i 6= j, ; |ai| = |aj|; and∑n
i=1 ai = 0⇒ ∃i, j ∈ {1, ..., n}, i 6= j, ; v(ai) = v(aj).

(P2): an Cauchy’s sequence ⇔ |an+1 − an| → 0⇔ v(an+1 − an)→∞.

(P3): If K is complet, then the series ∑ an converges if and only if it general term
an tends to zero.

(P4): If an converges, then an is a Cauchys sequence.

Remark 3. Let v be a valuation over K and |.| an ultrametric absolute value over

K, then v(K∗) is a subgroup of the group (R,+) (said the valuation group) and

|K∗| is a subgroup of the group (R∗,+).

3.1.2 Irreducible polynomial:

We have a criterion of irreducibility (Eisenstein) and a criterion of reducibility
(Hensel): obviously, this two criterion are not sufficient to determine the all irre-
ducible polynomials. However, they are valuable for many applications.

Theorem .11. (Eisenstein criterion) Let K be a valued field, OK the valuation

ring, p the maximal ideal of OK and let P be a monic polynomial with coefficient

in OK:

P (X) = Xn + a1X
n−1 + ...+ an.
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If ai ∈ OK for i = 1, ..., n end an /∈ O2
K, the polynomial P is irreducible in K[X].

The polynomials satisfying this criterion is called an Eisenstein polynomial.

Theorem .12. (Hensel’s lemma) Let K be a complete valued field and P ∈ OK a

non-zero polynomial, d = degree (P ).

We suppose that there is two monic polynomials g and h in OK [X] such as:

P̄ = ḡh̄, dg g + dg h ≤ d and (ḡ, h̄) = 1.

Then there exist G and H in OK [X] such that:

Ḡ = ḡ, H̄ = h̄, dg G = dg g and P = GH.

Recall that P̄ means the image of P in OK/m[X].

Next we will show the existence of the roots of unity over the ring of integers
OK

Corollary 4. Let K be a valued field, and q = |OK/m|. Then the set Uq−1 of

(q − 1)th roots of unity belongs to OK.

Proof. Let Xq−1 − 1 be a polynomial over the finite field OK/m with q elements,

this polynomial is a product of linear factors, and its roots are exactly the invertible

elements of OK/m. By Hensel’s lemma, f ∈ OK [X] can be completely factorized



64 CHAPTER 3. LATTICES FROM CODES OVER FINITE CHAIN RINGS

and it has q − 1 roots in OK . More precisely, we can write

Xq−1 − 1 =
∏
ζ∈OK

(X − ζ) ∈ OK [X].

3.1.3 Finite algebraic extension of an ultrametric field:

Let K be an ultrametric valued field and L a finite algebraic extension of K,
n = [L : K]. We denote OL the set of element of x ∈ L satisfying the equation
P (x) = 0 where P is a minimal polynomial, P ∈ OK [x]. We also call OL the
ring of valuation (integer) of L. Let x ∈ L, we denote NL/K(x) (or simply N(x)
) the determinant of the endomorphism of the K−vector space L defined by the
multiplication by x. the caracteristic polynomial of this endomorphism is:

Xn + ...+ (−1)nN(x)

is annulled by x in L. It is equivalent to say that x is un integer of L (ie. an
element of B) or its normal polynomial is coefficient in OK . We have also that
OK = OL∩K we call also the integer ofK the element ofOK . The next proposition
define the valuation of L.

Proposition .16. Let K be a complete ultrametric valued field and L an extension

of K with degree n, the expression:

w(x) = 1/nv(NL/K(x))

define the unique valuation w of L extending the valuation v of K.
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Lemma .7. The function w(x) = 1/nv(N(x)) is a valuation over L.

We will now note v the only extension of v to L. by definition, v(L∗) =
1/nv(K∗). If Γ = v(K∗) is discrete, Γ ⊆ v(L∗) ⊆ 1/nΓ trains that Γ is a subgroup
of v(L∗), of finite index. Let e be this index, then e divides n.

Definition .29. The index e of v(K∗) in v(L∗) is called index of ramification of

L over K. We call residuel degree of L over K the quotient f = n/e. We say that

L is totally ramified if e = n and unramified if e = 1.

The totally ramified extensions are described by the next proposition:

Proposition .17. Let K be a complete ultrametric field with discrete valuation.

(i) Let P be an Eisenstein polynomial of K[X], P define a totally ramified ex-

tension L of K and a root x of P in L is an uniformizer of L.

(ii) Let L be a totally ramified extension of degree n of K and x be an uniformizer

of L, the normal polynomial of x in L is an Eseinstein polynomial, and x is

of degree n.

Now let L be an extension of K of degree n, then we have:

(i) OL/mL = Fpf we say that f is the inertial degree.

(ii) Let πK be a uniformizer of K, and πL a uniformizer of L. Then

|πK |p = |πL|ep

where e is the ramification index.
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(iii) [L : K] = n = ef

Theorem .13. The OK−module OL is free of rank

n = [L : K] = ef.

such that if α1, ..., αf ⊂ OK is a set where the reductions {αi} generates Fpf as an

Fp−vector space, and the set

{αjπkL}0≤k≤e,1≤j≤f

is an OK-basis of OL.

Definition .30. We say that an extension is totally ramified if f = 1 i.e.; n = e.

And is non-ramified if e = 1 i.e.; n = f.

3.1.4 Lattices over Integers of p-adic Fields

Let L be a vector space of dimension n over Qp and let Λ be a Zp-submodule of L
of finite rank associated by a non-degenerate bilinear form b : Λ × Λ → Zp. The
pair (Λ, b) is called an integral lattice over L. The dual lattice of Λ over L is given
by

Λ∗ = {y ∈ L ; b(y, x) ∈ Zp,∀x ∈ Λ}.

The lattice Λ is a unimodular lattice if Λ = Λ∗. If Λ is a free lattice with a Zp-basis
{x1, · · · , xn}, then the matrix given by G = ((xi, xj))i,j is the generator matrix
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corresponding to the lattice Λ. For an integral lattice Λ, the discriminant group is
dΛ = Λ∗/Λ. If Λ is free, then the discriminant of Λ denoted by disc(Λ) is

disc(Λ) = det(G) = det((xi, xj))i,j.

The norm ideal of Λ is the Zp-ideal generated by {b(x, x);x ∈ Λ}.
Now, let K be a Galois extension over Qp of degree n, K can be seen as a

Qp-vector space of dimension n. Let Ω be an algebraic closure of Qp. Since K is a
separable extension of Qp, there are n distinct Qp-embeddings σ1, . . . , σn from K

into Ω. For an element α ∈ K the norm and the trace maps are given by

NK|Qp(α) =
n∏
i=1

σi(α), TrK|Qp(α) =
n∑
i=1

σi(α).

Note that the Qp-bilinear symmetric form that associates (x, y) ∈ K ×K to the
element TrK|Qp(xy) ∈ Qp is non-degenerate.

The ring of integers OK of the field K can be considered as the set of those
elements in K which are integral over Zp, then OK can be written as

OK = Zpe1 ⊕ · · · ⊕ Zpen,

where {e1, . . . , en} is a free basis of the Zp-module OK . Since for α ∈ OK we can
write αei = ∑n

j=1 αijej, where αij ∈ Zp, then TrK|Qp(α) is the trace of the n × n
matrix αij and TrK|Qp(x) ∈ Zp.

As OK is a free Zp-module of rank n, with a basis {e1, . . . , en} over Zp, then a
generator matrix of the lattice is written as follows:

M =


σ1(e1) σ2(e1) · · · σn(e1)

... ... ...
σ1(en) σ2(e2) · · · σn(en)

 .
The discriminant of K over Qp is denoted by DK and it is the discriminant of

the lattice Λb = (OK , b), DK = det
(
TrK|Qp (eiej)ni,j=1

)
(see [46]). If I is an ideal

of OK , then I is a Zp-submodule. The following section considers the ideals of
OK as lattices by defining ideal lattices which are the general framework for the
construction A of lattices [5]. Before that we will introduce one further notion.
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Definition .31. [5] A lattice Λ ∈ OK is cyclic if rot(x1, · · · , xn−1, xn) = (xn, x1, · · · , xn−1)

for every (x1, · · · , xn−1, xn) ∈ Λ, where rot(x) is the rotational shift operator in

OK.

3.1.5 Zn
p-Ideal Lattices

Let I be an ideal of OK , note that I is also an OK-submodule of K different
from {0}. The norm NK|Qp(I) of I is defined as the Zp-submodule generated by
NK|Qp(x) for all x ∈ I.

Lemma .8. [5] Let I be an ideal of OK, then NK|Qp(I) = pri for some i > 0.

Proof. Since OK is a principal ideal domain, then every ideal I of OK is of the

form I = 〈πi〉 ; i > 0, and NK|Qp(〈π〉) = p, then NK|Qp(〈πi〉) = (pr)i = pri.

The lattice (I, bI) associated to the ideal I ⊆ OK is called an ideal lattice. We
have an associated symmetric bilinear form bI : I × I → Zp by

bI(x, y) = TrK|Qp(αxȳ), ∀x, y ∈ I,

where α is an element in K such that σi(α) > 0 for all i. A generator matrix of
(I, bI) is given by

GI =


√
α1σ1(u1) √α2σ2(u1) · · · √αnσn(u1)

... ... · · · ...
√
α1σ1(un) √α2σ2(un) · · · √αnσn(un)


Its discriminant is (see [46]) disc(ΛI) = NK|Qp(α) · NK|Qp(I)2 ·DK .
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Ideal lattices for cryptography

Let Γ be a lattice of dimension n in OnK . Then we have the property that for every
x = (x1, . . . , xn) ∈ Γ the shift (xn, x1, . . . , xn1) belongs to Γ which means that all
shifts of (x1, . . . , xn) must be in Γ.

Lemma .9. [5] A lattice Γ in OnK is cyclic if Γ is an ideal of OK/(xn − 1).

Proof. Let a = (a1, . . . , an), we associate to a a polynomial in OK [x] as follows:

p(x) = a1 + a2x+ a3x
2 + . . .+ anx

n−1

Since the degree of p(x) is less than n, then p(x) to OK [x]/(xn − 1). Moreover

we have that Γ is an ideal, then it is closed under multiplication. Therefore, by

multiplying p(x) by x we get:

(a1 + a2x+ a3x
2 + . . .+ anx

n−1)x = a1x+ a2x
2 + a3x

3 + . . .+ anx
n,

but we have that xn ≡ 1 in OK [x]/(xn − 1), then

(a1 + a2x+ a3x
2 + . . .+ anx

n−1)x ≡ a1x+ a2x
2 + a3x

3 + . . .+ an.

Therefore, (an−1, a1, . . . , an) ∈ Γ as desired.
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Cyclic ideal lattices have been considered to build efficient cryptographic prim-
itives and homomorphic encryption schemes. To give a generalization, we will
consider a polynomial p(x) ∈ OK [x] different then xn − 1 . In the literature the
family that has been considered is that of cyclotomic polynomials.
The q-th cyclotomic polynomial is given by:

φq(x) =
∏
ζ∈OK

(x− ζ) ∈ OK [x]

where the roots of φq are exactly the invertible elements of O/π. If q is prime,
then

φp(x) = xp − 1
x− 1

if q is a power of 2, then we have that φq(x) = xq/2 + 1, Hence:

OK [x]/(φp(x)) ' OK [ζq] ⊂ Qp(ζq) ' OK(x)/(φp(x))

where ζp is the q-th primitive root of unity, such that:

Qq(ζq) = {a1 + a2ζ + . . .+ ad−1, a1, . . . , ad−1 ∈ Qp}

with d = ϕ(n) is the Euler totient of n.

Remark 4. The notions of cyclotomic polynomials and "ideal lattices" coincide in

the quotient OK [x]/(xn − 1).

3.2 p-adic fields and finite chain rings

3.2.1 Construction of finite chain rings using p-adic fields

A commutative ring with identity is called a chain ring if its ideals form a chain
under inclusion. A finite chain ring, roughly speaking, is an extension over a



3.2. P-ADIC FIELDS AND FINITE CHAIN RINGS 71

Galois ring of characteristic pn using an Eisenstein polynomial. Let R be a finite
commutative chain ring with maximal ideal M . The residue field R/M is a finite
field GF (pr). The characteristic of R is a power of p, say, pn. All the ideals of R
are powers of M . Let s be the nilpotency of M and we write pR = M e (e ≤ s)
and s = (n − 1)e + t, where t = e when n = 1 and 1 ≤ t ≤ e when n > 1. The
integers (p, n, r, e, t) are called the invariant of R. Let GR(pn, r) be the Galois ring
of characteristic pn and rank r, i.e., GR(pn, r) = Zpn [X]/(f), where f ∈ Zpn [X] is
a monic polynomial of degree r whose image in Zpn [X] is irreductible. Then every
finite commutative chain ring is of the form

R = GR(pn, r)[X]/(g, pn−1xt),

where g ∈ GR(pn, r)[X] is an Eisensein polynomial of degree e, i.e.,

g = xe − p(ae−1x
e−1 + ...+ a0), ai ∈ GR(pn, r), a0 ∈ GR(pn, r)×.

Finite commutative chain rings can be also constructed from the p−adic fields.
Choose a prime p, positive integers n, f, and a monic polynomial φ ∈ (Z/pnZ)[X]/(φ)
(the Galois ring of characteristic pn and rank f) it is determind up to isomorphism
by p, n, and f. Every finite commutative chain ring is isomorphic to a ring of the
form R[X]/(Ψ, pn−1X t), where R = GR(pn, f) is a Galois ring, Ψ ∈ R[X] is an
Eisenstein polynomial of degree e, and

t = e if n = 1,

1 ≤ t ≤ e if n ≥ 2.

The integers p, n, f, e, t are called the invariants of the commutative chain ring.
The following proposition summarize the connections between finite commutative
chain rings and p−adic fields.

Proposition .18. [26], [25] Let K/Qp be a finite extension with residue degree r

and ramification index s. Let OK the ring of integer of K and π be an uniformizer
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of K, then R = OK/π(n−1)e+tOK is a finite chain ring, and we have |R| = pn and

|R| = pr where

pn is the characteristic of R

pr = |R/〈π〉|

e is the degree of the Eisenstein polynomial h such that h(π) = 0

s = (n− 1)e+ t, 1 ≤ t ≤ e. nilpotency index of π.

The proof of this proposition follows immediately from the next well-known
results

(i) Let a ∈ Ok be such that k̄ = (Z/pZ)[ā], where ā is the image of a in k̄, and
let Φ ∈ Zp[X] be the minimal polynomial of a over Qp. Then the image Φ̃ of
Φ in (Z/pZ)[X] is monic of degree fand the image Φ̄ of Φ̃ in (Z/pnZ)[X] is
irreductible.
Therefore

Ok/pnOk ∼= GR(pn, f).

(ii) The minimal polynomial of πK over k is an Eisenstein polynomial Ψ ∈ Ok[X]
of degree e such that

OK/πsKOK ∼= (Ok/pnOk)[X]/(Ψ̃, pn−1X t) ∼= GR(pn, f)[X]/(Ψ, pn−1X t),

where
Ψ̃ ∈ (Ok/pnOk)[X] ∼= GR(pn, f)[X]

is an Eisenstein polynomial over GR(pn, f)
Thus OK/πsK is a finite commutative chain ring with invariants

(p, 1, f, t, t) if n = 1,
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(p, n, f, e, t) if n > 1.

Moreover, every finite chain commutative chain ring is isomorphic toOK/πsKOK
for some finite extension K/Qp and some s ≥ 1.

the integers p, n, r, e and t are called the invariant of R. And the ideals of R
form the following chain:

〈0〉 = 〈πs〉 ( 〈πs−1〉 ( ... ( 〈π〉 ( 〈π0〉 = R

The next conditions are equivalent for any finite chain ring:

Proposition .19. (i) R is a local ring and and the maximal ideal M is prin-

cipal.

(ii) R is a local principal ideal ring.

(iii) R is a chain ring.

Definition .32. The quotient R/〈π〉 is called the residue field of R and we denote

it by R.

We define the natural ring homomorphism from R[x] into R[x] as follow:

µ : R[x]→ R[x] (3.1)
n−1∑
i=0

aix
i 7→ f =

n−1∑
i=0

aix
i. (3.2)

(3.3)
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where ai ∈ R. The ideals of R are of the form 〈πi〉, we can compute the cardinality
of 〈πi〉 from the cardinality of R: |〈πi〉| = |R|s−i, and so the cardinality of R;

|R| =|R| · |〈π〉|

=|R| · |R|s−1

=|R|s = psr

The next definition collect the definitions of coprime polynomials, basic irreductible
polynomial, and regular polynomial.

Definition .33. i) Two polynomials f, g ∈ R[x] are coprime if there exist

u, v ∈ R[x] such that uf + vg = 1.

ii) We say that a polynomial f ∈ R[x] is basic irreducible if its image in R[x]

i.e.; µf is irreducible.

iii) f ∈ R[x] is regular if µf 6= 0 i.e.; f is not a divisor of zero.

Let T be the set of f ∈ R[x] that has distinct zeros in the algebraic closure of
R[x]. the following proposition gives the relation between irrducibility and basic
irreducibility of regular polynomials.

Proposition .20. Let f ∈ R[x] be a regular polynomial, the next conditions are

equivalent:

i) f is basic irreducible then f is irreducible.
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ii) If f is irreducible then f = ugk, where u ∈ R and g is a monic irreducible in

R[x].

iii) If f is in T then f is irreducible if and only if f is basic irreducible.

3.3 Lifted codes over finite chain rings

Let π be a uniformizer of the valuation ring OK . For each i ≤ n we define

Ri = OK/πiOK = {a0 + a1π
1 + . . .+ ai−1π

i−1 | ai ∈ E ′},

where E ′ is a complete set of representatives of the residue field Fpr = OK/πOK
in OK containing 0.
Since every finite chain ring is isomophic to a nontrivial quotient of rings of integers
of p-adic fields, then the ring Ri is a finite chain ring with maximal ideal 〈π〉. The
ring of formal power series in π with coefficient in a finite chain ring R is defined
to be

R[[π]] =
{
a(x) =

∞∑
i=0

aiπ
i | ai ∈ R for all i ∈ N

}
,

where addition and multiplication operators are defined as usual. We have that
the uniformizer of the valuation ring OK is the generator of the maximal ideal of
the finite chain ring Ri, then:

Theorem .14. [5] The ring of formal power series in π with coefficients in a

nontrivial quotient rings of integers of K is the ring of integers of K, that is

R∞ = OK .
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Proof. Every element α ∈ OK can be written in a unique way as α = ∑∞
j=0 bjπ

j

where bj ∈ E ′, then:

R∞ =


∞∑
i=0

 ∞∑
j=0

bjπ
j

 πi
 =


∞∑
s=0

 ∑
i+j=s

bij

 πs; bij ∈ E ′
 .

Consider as = ∑
i+j=s bij with bij ∈ E ′, then ∑

i+j=s bij with bij ∈ E ′ is a finite

sum. Therefore:

R∞ =
{ ∞∑

s

asπ
s; as ∈ E ′

}
= OK .

The chain of ideals of OK is given as (see [27]) {0} ⊂ · · · 〈πn〉 ⊂ · · · ⊂ 〈π2〉 ⊂
〈π〉 ⊂ 〈π0〉 = OK . Thus R∞ satisfies the ascending chain condition, which means
that R∞ = OK is a Noetherian ring. Moreover, it is an Euclidean domain (and
therefore is a Dedekind domain). Indeed, if a and b 6= 0 are in R∞, then there are
q and r in R∞ such that a = bq + r and either r = 0 or f(r) < f(b), where f is
a function from R∞ to Z+. Moreover, V : R∞ → Z+ is the function defined by
V (0) = 0 and V (r) = v(r) if r 6= 0.
If v(a) ≥ v(b), then v(a/b) = v(a)v(b) ≥ 0 and if q = a/b ∈ R∞, then r = 0. Thus,
if v(a) < v(b), then q = 0 and r = a.

A submodule C of rank k over Rm
∞ is called π-adic code of length m and rank

k. Let C be a nonzero linear code over R∞ of length m, then any generator matrix
of C is permutation-equivalent to a matrix of the following form

G =



πm0Ik0 πm0A0,1 πm0A0,2 πm0A0,3 πm0A0,z

πm1Ik1 πm1A1,2 πm1A1,3 πm1A1,z

πm2Ik2 πm2A2,3 πm2A2,z
. . . . . .

. . . . . .
πmz−1Ikz−1 πmz−1Az−1,z


(3.4)
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The code C with generator matrix of this form is said to be of type (πm0)k0(πm1)k1 · · · (πmz−1)kz−1 ,

where k = k0 + k1 + · · ·+ kz−1 is called its rank and kz = m− k.
For two integers i < j, we define a map as in [15]:

Ψj
i : Rj → Ri∑j−1

l=0 alπ
l 7→ ∑i−1

l=0 alπ
l.

(3.5)

If Rj is replaced with R∞, then Ψ∞i is denoted by Ψi. For any two elements
a, b ∈ R∞ we have that Ψi(a + b) = Ψi(a) + Ψi(b), Ψi(ab) = Ψi(a)Ψi(b). The
two maps Ψi and Ψj

i can be extended naturally from Rm
∞ to Rm

i and Rm
j to Rm

i

respectively.

Remark 5. based on the above construction in (3.5) the following series of chain

rings is obtained:

R∞ → · · · → Rs · · · → Rs−1 → Rl → · · · → R1

Note that R1 = OK/πOK ∼= Fpr , Rl = OK/πlOK , Rs−1 = OK/πs−1OK and

Rs = OK/πsOK.

The following definition gives the lifts of a code C over a finite chain ring which
are defined in a similar way as described in [15] but using this more general setting.

Definition .34. [5] Let i, j be two integers such that 1 ≤ i ≤ j <∞. An [m, k]-

code C1 over Ri lifts to an [m, k] code C2 over Rj, denoted by C1 ≤ C2, if C2 has a

generator matrix G2 where Ψj
i (G2) is a generator matrix of C1.

It can be proven (the proof in [15] can be followed in our general setting) that
C1 = Ψj

i (C2). If C is an [m, k]-π-adic code, then for any i <∞, Ψi(C) will be called
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the projection of C. The image Ψi(C) is denoted by Ci and we have the following
result:

Lemma .10. [5] Let C be a linear code over Ri and C̃ be the lifted code of C over

Rj, where i < j 6∞. Hence if C is free over Ri, then C̃ is free over Rj.

3.4 Lattices and Codes over Finite Chain Rings

3.4.1 Construction A of Lattices

Let R = OK/πsOK be a finite chain ring defined as in Section 3.2 and let C
be a code over the ring R of length m. We consider the map Ψ : OK → R the
reduction modulo the prime πs such that the preimage of C by Ψ is the lifted code
of C over OK . Then, Ψ−1(C) is an OK-module of finite rank and since Ψ−1(C) is a
Zp-submodule, then a lattice can be described as follows:

Definition .35. [5] Given a code C over the finite chain ring R = OK/πsOK and

the symmetric bilinear form bC = ∑m
i=1 TrK|Qp(αxiȳi) where α ∈ OK the lattice

ΛC = (Ψ−1(C), bC) is defined as the preimage Ψ−1(C) of C in OmK together with the

symmetric bilinear form bC.

Lemma .11. [5] The lattice ΛC = (Ψ−1(C), bC) is an integral lattice.

Proof. Let x, y ∈ OmK , then TrK/Qp(xiȳi) ∈ Zp for all i = 1, . . . ,m. Since α ∈ OK ,
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then Tr(αxiyi) belongs to Zp, thus, bC(x, y) ∈ Zp and therefore, ΛC is an integral

lattice.

The dual lattice of (Ψ−1(C), bC) is the pair Λ∗C = (Ψ−1(C)∗, bC) defined as follows:

Ψ−1(C)∗ = {x ∈ Km ; bC(x, y) ∈ Zp,∀y ∈ Ψ−1(C)}.

Let A and B be two finite OK-modules such that B ⊂ A, then the quotient A/B
is a module of finite rank. The invariant of A/B denoted by χ(A/B)(see [46]) is a
non-zero ideal of A. The following statement is straightforward.

Proposition .21. [5] Let ΛC be the integral lattice defined above. The discrimin-

ant of ΛC is

disc(ΛC) = NK/Qp(α)m ·Dm
K · NK/Qp(χ(OmK/C))2.

If C is a free code, then the lifted code given as the preimage of C by Ψ is also
free, thus Ψ−1(C) is isomorphic as a module to OkK , where k = k(Ψ−1(C)) is the
rank of the lifted code of C. Then, the following result follows.

Corollary 5. [5] For a free code C the discriminant of ΛC is

disc(ΛC) = Dm
K(pr)2(m−k).

If we let K|Qp be a Galois extension and the prime π is chosen so that π is
totally ramified, therefore, we have n = e, f = 1, and πn = p, and let Ci be a
self-orthogonal code of length m over a finite chain ring Ri = OK/πsOK . Then,
we have the following result.

Lemma .12. [5] The lattice formed by the lifted code of a self-orthogonal code Ci
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over Ri = OK/πiOK is integral with respect to the bilinear form given by

bCi =
m∑
i=1

TrK|Qp(xiȳi/p).

Proof. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) in ΛC, then:

Ψ(x · y) = Ψ
(

m∑
i=1

xiyi

)
=

m∑
i=1

Ψ(xi)Ψ(yi) = Ψ(x) ·Ψ(y) = 0.

Since Ψ(x) ·Ψ(y) ∈ C and C ⊂ C⊥, then:

m∑
i=1

xiyi = x · y ≡ 0 mod πs.

Since π is the only prime above p, all conjugates of∑m
i=1 xiyi must lie in π and thus

this is also true for its trace. In other words, TrK|Qp(xiȳi) ∈ πs, thus TrK|Qp(xiȳi) ∈

pZp. Therefore, by the linearity of the trace we have:

〈x, y〉 =
m∑
i=1

TrK|Qp
(
xiȳi
p

)
= 1
p
· TrK|Q

(
m∑
i=1

xiȳi

)

and ΛC is integral.

Example .9. Let us consider lattices over integers of p-adic cyclotomic fields as

follows. Let L be the field obtained from Qp by adjoining a pth root of unity ζ,

where [L : Qp] = p− 1. The ring of integers of L is given by the set

OL =

α =
p−2∑
i=0

aiζ
i ; αi ∈ Zp for i = 0, 1, · · · , p− 2

 .
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Note that the principal ideal of OL is mL = 〈1− ζ〉 . There exist p − 1 distinct

embeddings σi : L → Cp, the trace of an element α ∈ L over Qp is TrL|Qp(α) =

∑p−1
i=1 σi(α). Therefore, TrL|Qp(α) ∈ Zp.

For x ∈ Qp(ζ) x̄ denotes the complex conjugate. We consider the symmetric

bilinear form (x, y) 7→ TrL|Qp(xȳ).

Now, let l be the subfield of L such that l = Qp(ζ + ζ−1) then [L : l] = 2 and

[l : Qp] = p− 1
2 . Moreover, TrL|Qp(xx̄) = 2Trl|Qp(xx̄). This shows that the bilinear

form above is even.

Finally, consider C a code over the finite chain ring R ' OL/(1 − ζ)sOL. The

lattice formed by the preimage of C over OL associated with the bilinear form

TrL|Qp is integral, because TrL|Qp(x) ∈ Zp then is also even. Therefore, the lattice

is unimodular.

3.4.2 The case of cyclic codes

A cyclic code of length m over the ring of integers OK is a linear code C such
that if (c0, c1, · · · , cm−1) ∈ C, then (cm−1, c0, · · · , cm−2) ∈ C. The codewords of a
cyclic code over OK are represented as usual by polynomials, more precisely they
are the ideals of the ring OK/〈xn − 1〉. We propose in this subsection a general
construction of lifting cyclic codes which generalizes the construction given in [42].
This general construction allows to lift cyclic codes over finite fields Fpr to finite
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chain rings and to the ring of integers OK and the case of cyclic lattices will be
treated. We will need the Hensel’s lemma for the construction. Its proof can be
found in [40].

Theorem .15. (Hensel’s Lemma) [5] Let K be a finite extension of Qp of degree

n, and let OK be the ring of integers of K with maximal ideal M = 〈π〉 and residue

field k := OK/〈π〉. Let f ∈ OK [x] and let f be its image in k[X]. Let g, h be two

coprime polynomials of k[x] such that f = gh, then there exist g, h ∈ OK [x] for

which f = gh and g ≡ g[π] and h ≡ h[π] with deg g = deg g.

It is well known that if C is a cyclic code of length m over the finite field Fpr =
OK/〈π〉 then, C is generated by a monic factor g(x) of xm− 1 = g(x)h(x). Taking
into account Hensel’s Lemma, any decomposition modulo π can be generalized to
a decomposition modulo πs by xn − 1 = gs(x)hs(x)[πs] and therefore to OK as
xm − 1 = g(x)h(x). If we consider now C a cyclic code over a finite chain ring R
we have the following result.

Theorem .16. [5] Let C be a cyclic code over R. The lattice ΛC = (Ψ−1(C), bC)

is a cyclic lattice of OK.

Proof. We have that a lattice Λ in OmK is cyclic if Λ is an ideal of OK [x]/(xm− 1),

and since Ψ−1(C) is a cyclic code of OK , it means that Ψ−1(C) is an ideal of

OK [x]/(xm − 1) then the lattice ΛC = (Ψ−1(C), bC) is cyclic.
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Corollary 6. [5] Let ΛC = (Ψ−1(C), bC) be a cyclic lattice in OK, then C is a

cyclic code.

Thus we can construct cyclic codes over finite chain rings easily using cyclic
lattices over OK .

Example .10. Let L = Qpr be the unramified extension of Qp of degree r obtained

by adjoining to Qp a primitive (pr − 1)st root of unity. The ring of integers of

L is denoted by OL, the maximal ideal is given by m = 〈p〉 and the residue field

is Fpr . Let C be a cyclic code over Fpr = OL/(p), then C is generated by a monic

factor gr(x) such that xm − 1 = gr(x)hr(x). Using the Hensel’s Lemma any class

of cyclic codes can be generalized from Fpr to OL by xm− 1 = g(x)h(x). Then, the

lattice formed by the lifted code of C is a cyclic lattice over OL.

3.4.3 Lattices over p-adic Cyclotomic Fields

Now, we propose the construction A from codes over finite chain rings to p-adic
cyclotomic fields and their subfields using the same steps in Lemma 2 and Lemma
3 from [28]. This construction can be used to construct self-dual codes over finite
chain rings.
Let p be an odd prime and let ζpr be the prth primitive root of unity. We consider
l = Qp(ζpr + ζ−1

pr ) the subfield of the cyclotomic field L = Qp(ζpr). Hence the rings
Ol = Zp[ζpr + ζ−1

pr ] and OL = Zp[ζpr ] are respectively their rings of integers. The

prime p totally ramifies in l and the degree of l over Qp is [l : Qp] = pr−1(p− 1)
2 .

Therefore pOL = βp
r−1(p−1) and β is a principal prime ideal with generator (1−ζpr)
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with residue field OL/π ' Fp, with

π = β ∩ Ol = ((1− ζpr)(1− ζ−1
pr )) = (2− ζpr − ζ−1

pr ).

Using the preceding facts and notations we can generalize the results on codes over
finite fields in Corollary 2 from [28] to codes over finite chain rings.

Lemma .13. [5]

Let l = Qp(ζpr + ζ−1
pr ) and let C be a k-dimensional code over Rm such that

C ⊂ C⊥. The lattice (Ψ−1(C), b), where b = Σm
i=1TrL/Qp(αxiyi) is integral of rank

mpr−1(p− 1)/2. Using the same steps in [28], we get the same results over finite

chain rings. A generator matrix of the lattice ΛC = (Ψ−1(C), b) is

MΛC = 1
√
p


Ik ⊗M A⊗M

0n(m−k),nk Im k⊗DM



where G =

Ik A

 is a generator matrix of C. The ring of integers Ol = Zp[ζpr +

ζ−1
pr ] has

{
ζpr + ζ−1

pr

}n−1

i=0
as a Zp-basis and the principal ideal π is generated by

2− ζpr − ζ−1
pr .

Lemma .14. [5] Let l = Qp(ζpr + ζ−1
pr ) and let C be a k-dimensional code over

Rm such that C ⊂ C⊥. Then:

Λ∗C = ΛC⊥ .
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Corollary 7. [5] Let l = Qp(ζpr + ζ−1
pr ) and let C be a k-dimensional code over

Rm such that C ⊂ C⊥ then the lattice (ΛC, b) where b is the bilinear form b =

Σm
i=1Trl/Qp(αxiyi) is an integral lattice of rank mpr−1(p − 1)/2. We have that the

lattice ΛC is an odd unimodular if the code C is self-dual code.

Note that, using this corollary we can construct self-dual codes over finite chain
rings from odd unimodular lattices over Qp(ζpr + ζ−1

pr ).



Conclusion

The thesis was dedicated to construction A of lattices over number fields from
codes over Fq, then we propose a new construction A of lattices from codes over
finite chain rings, a general construction of lattices from codes over finite chain
rings using p-adic fields. The connection between finite chain rings and p-adic
fields was highlighted and based on this connection, the lifting of codes over finite
chain rings was generalized. Also lattices were defined over p-adic integers with
allow us to deal with lattices over the ring of integers of a Galois extension of Qp

from lifted codes over finite chain rings were constructed.
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Appendix

A.1 Rings

Definition .36. Let R be a non-empty set such that + and · are the binary oper-

ations given by:

+ : R×R→ R , (a, b) 7→ a+ b

· : R×R→ R , (a, b) 7→ a · b

We say that the structure (R,+, ·) define a ring if:

1. R is an abelian group with respect to +, so that:

2. For any a, b, c ∈ R we have: a · (b · c) = (a · b) · c (associativity of ·).

3. For any a, b, c ∈ R we have a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c

(distributivity of ·).
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4. There exists 0 ∈ R.

5. For any a ∈ R there exists the inverse element −a ∈ R such that a+(−a) = 0

If the ring R has a neutral element for the law (·) then we say that the ring R is
a unitary ring. The ring R is said to be commutative if the law (·) is commutative.
An element a ∈ R is a unit if there exists an element b ∈ R such that a·b = b·a = 1,
moreover a is said to be invertible with inverse b (and vice versa. We call the set
of units of R the group of units of R and we denote it by R×.
An nonzero element a ∈ R is a zerodivisor if for any element b ∈ R, with b 6= 0 we
have: a · b = b · a = 0. The element a is nilpotent if ak = 0 for some k ∈ N and
idempotent if a2 = a.

A.2 Product of rings

The product of two rings R and S is called the direct product denoted by R × S
is given by:

{(r, s) ; r ∈ R, s ∈ S} .

The set R × S defined a ring with respect to addition and a multiplication com-
ponentwise: (r1 + s1) + (r2 + s2) = (r1 + r2, s1 + s2)
(r1 + s1) · (r2 + s2) = (r1r2, s1s2).
The zero element is (0, 0) and the multiplication identity is (1, 1).

A.3 Homomorphism

Let R, S be two rings. The function φ : R→ S is a ring homomorphism if:

1. φ(a+ b) = φ(a) + φ(b)
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2. φ(a · b) = φ(a) · φ(b)

3. φ(1) = 1
The homomorphism φ is injective if it is injective as a map and surjective if
it is surjective as a map.
We denote the set of all homomorphism from R to S by Hom(R, S).

Definition .37. A bijective homomorphism from a ring R to another ring S is

called an isomorphism, if ther is an isomorphism between R and S and we say

that R and S are isomorphism and we write R ' S

A.4 Ideals

Definition .38. We call a subset I of a commutative ring R an ideal, if I satisfies

the next conditions:

1. For any r ∈ R and for any i ∈ I we have r · i ∈ I

2. (I,+) is an additive subgroup of (R,+).

Let X = (x1, . . . , xk) be a subset of R. The ideal generated by (X) is the smal-
lest ideal containing all elements of X, we call the element x1, . . . , xk generators
of the ideal.

Definition .39. Let I be an ideal of the ring R such that I is generated by one

element: I = (x), then the ideal I = (x) is called principal.
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A.5 Fields, Integral domain, Euclidean domain

A.5.1 Fields

Let (R,+, ·) be a ring such that:

1. (R,+) is an abelian group.

2. (R {0} , ·) is an abelian group.

3. The distributive law hold.

Then we say that R defines a field.

Example .11. Q,R,C are fields.

A.5.2 Integral domain

Let R be a commutative ring with identity in which 0 6= 1, we say that R is
an integral domain (ID) if R has no zero divisors. Moreover if R is an integral
domain such that every ideal in it is principal which mean that every ideal can
be generated by a single element then we say that R is a principal ideal domain
(PID).

Definition .40. A norm on R is a function N defined from R {0} to N, such

that:

1. If f, g ∈ R with g 6= 0, there exist q, r ∈ R so that,

f = qg + r, with either r = 0 or N(r) < N(g).



A.5. FIELDS, INTEGRAL DOMAIN, EUCLIDEAN DOMAIN 91

2. If g, f ∈ R such that g 6= 0 and f 6= 0, then N(f) ≤ N(fg)

Definition .41. An Euclidean domain is an integral domain R such that there is

a norm on it.

A.5.3 Polynomial rings

Let R be a ring. A polynomial f(x) over R is given by:

f(x) =
n∑
i=0

aix
i = a0 + a1x+ a2x

2 + . . .+ anx
n

with n ≥ 0 and a0, a1, . . . , an ∈ R.
The degree of f(x) is n if an 6= 0 and we write degf(x) = n, undefined if f(x) = 0.
The set of all polynomials in the indeterminate x with coefficients in the ring R is
denoted by R[x] and it is called a polynomial ring.

Proprieties .1. 1. R[x] is a ring with respect to the operations of polynomial

addition and multiplication.

2. The ring R[x] is commutative if R is a commutative ring.

3. If R is with unity 1, then the ring R[x] is a ring with unity.

4. R[x] is an integral domain if R is an integral domain.

5. In the case where F is a field, then F [x] is an integral domain.
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A.6 Quotient rings

Let R be a ring and let I be an ideal of R, we define an equivalence relation ∼ on
R as follows:
x ∼ y if and only if x− y ∈ I and we say that x ∼ y are congruent modulo I (∼
is a congruence relation) and

[x] = x+ I := {x+ r ; r ∈ I}

is the congruence class of x in R and we write x mod I, it is called the residue
class of x modulo I.
The set of all equivalence classes is a ring denoted by R/I and we say that R/I is
the quotient ring of R modulo I.
The map given by ϕ : R→ R/I , ϕ(x) = x+ I

is a surjective ring homomorphism.

Proprieties .2. 1. If R is a commutative ring then R/I is also commutative

(the converse it is not true in general).

2. For a commutative ring R, R/I is a field if and only if I is a maximal ideal.

3. R/I is an integral domain if and only if I is a prime ideal.

A.7 Finite fileds

A field with finite number of elements is called a finite field or a Galois field so that
the operations the operations of addition, subtraction, multiplication and division
are defined with certain basic rules.
The order of a field is given by its number of elements, it is either a prime number
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or a prime power.
The characteristic of a finite field is the least positive n ∈ N such that n · 1 = 0.
Generally fields are denoted Fq with q = pk or GF (q).

Example .12. The field of order p, denoted by Fp is the field constructed as the

integers modulo p, Z/pZ.

A.7.1 Finite extension

Let K and F be two fields such that K ⊂ F , then:

Theorem .17. The multiplicative group F ∗ is a cyclic group and we call any

generator of this group a primitive element of F .

Proposition .22. Any finite field with characteristic p is a simple algebraic ex-

tension of GF (p).

Proprieties .3. 1. The identity given by (x + y)p = xp + yp is true in a field

of characteristic p.

2. For a prime number p and x ∈ GF (p) then xp = x by the Fermat’s little

theorem. The next equality holds:

xp − x =
∏

a∈GF (p)
x− a)

And every x ∈ GF (pn) satisfies the equation xpn − x = 0
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A.8 Vector spaces

Let F be a commutative field a vector space over F is a set whose elements are
called vectors and in which we can make linear combinations, such that:

1. (E,+) is an abelian group.

2. ∀(x, y) ∈ E2, (λ, µ) ∈ F 2:

· λ · (x+ y) = λ · x+ λ · y

· (λ+ µ) · x = λ · x+ µ · x

· λ · (µ · x) = (λ · µ) · x

· 1 · x = x

A non-empty part E ′ of E is a vector subspace if it is stable by linear combination.
Let E ′ and E” be two subspaces of E, then the intersection of E ′ and E” is also a
subspace of E.

Definition .42. Let K be a commutative field and let E, J be two vector spaces

over K, an application ψ from E to J is called a linear map or a morphism if:

∀(x, y) ∈ E2, (α, β) ∈ K2, f(αx+ αy) = αf(x) + βf(y).

The set of all linear maps from the vector space E to the vector space J is also a

vector space over K.

Proposition .23. The sum of two subspaces E1 and E2 of the vector space E is

a vector subspace generated by E1 ∪ E2 and we denote it by E1 + E2, such that:

E1 + E2 = {x1 + x2;x1 ∈ E and x2 ∈ E2} .
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Definition .43. Let E1 and E2 be two subspaces of E. The vector space E is a

direct sum of E1 and E2 if we have that:

1. E = E1 + E2,

2. E1 ∩ E2 = {0} ,

and we write E = E1 ⊕ E2.

Theorem .18. Let E1, . . . , E2, nN∗ be n vector subspaces of E, we have that:

1. If x ∈ E, then x can be written in a unique way x = x1 + x2 + . . .+ xn with

xi ∈ Ei, i ∈ {1, . . . , n}

2. E = E1 +E2 + . . .+En, where i ∈ {1, . . . , n} and Ei ∩ (∑j 6=iEj) = {0} We

say that E is the direct sum of Ei if one of this two conditions is true, and

we write:

E = E1 ⊕ E2 ⊕ . . .⊕ En = ⊕ni=1Ei.

A.9 Modules

Let R be a unitary commutative ring.



96 APPENDIX

Definition .44. A module over R is an abelian group (M,+) with a map µ :

R×M →M so that:

1. a(x+ y) = ax+ ay

2. (a+ b)x = ax+ bx

3. (ab)x = a(bx)

4. 1x = x

for all a, b ∈ R and x, y ∈M .

We call a module over R an R-module.

Proprieties .4. Let M be an R-module (we distinguish the zero vector 0M from

the zero scalar 0R). We have that:

1. r0M = 0M

2. 0rx = 0M

3. (−r)x = r(−x)

4. In the case where R is a field, then rx = 0M implies that either r = 0R or

x = 0M .
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Definition .45. Let M be an R-module. A subgroup N of M such that ax ∈ N

for a ∈ R and x ∈ N is called a submodule of M.

and we have that a subset N of M is a submodule of M if and only if x, y ∈ N

and a, b ∈ R imply ax+ by ∈ N, in other words if and only if N is stable by linear

combination.

Free modules

Definition .46. Let M be an R-module, a subset T of M form a basis of M if:

1. for all x ∈M , x can be written as follows:

x = Σn
i=1aibi

where n ∈ N∗, bi ∈ T and ai ∈ R.

We say that T generates M .

2. T is a free part of M if the elements of T are linearly independent on R.

Definition .47. An R-module M is free if it has a basis.

Example .13. For a finite commutative ring R, the R-module given by

Rn {(a1, . . . , an) ; ai ∈ A}



is a free R-module with basis β = (e1, . . . , en).
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