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Abstract

Network coding is a transmission paradigm that relies on packet encoding at a subset

of the intermediate nodes that are usually referred to as the encoding intermediate nodes

to differentiate them from their forwarding counterparts. Encoding is generally modelled as

a form of packet mixing, in which the received packets at an encoding intermediate node

are combined following a predefined bijective mapping to form an output packet. In the

literature of NC, Random Linear Network Coding (RLNC) is the NC scheme that is con-

sidered more practical. This scheme opts for linear transformations as encoding operations

along with a random selection of the encoding coefficients allowing for possible deployment

in noncoherent situations. While packet mixing has allowed for many advantages such as

throughput enhancement and security against wiretap attacks, it induced another set of

challenges, from which error propagation is the crucial one.

Packet mixing combined with the error propagation problem as well as the nature of

RLNC that assumes no prior knowledge of network topology make the use of a pre-designed

classical correcting code insufficient for this system Those problems were addressed via the

introduction of a new family of error correcting codes referred to as subspace codes. Those

codes have been proposed to be used as outer codes in RLNC based networks to provide

error correction capability in the network. In subspace codes, codewords are not vectors but

rather vector spaces taken from an ambient vector space over a finite field Fq where q is a

prime power. In this regard, information will not be treated packetwise (vectorwise) but

rather as a whole subspace injected in the network.

While the main work in this thesis lies in the investigation of error control in RLNC via

the use of subspace coding, our obtained results span both error control and other areas

in RLNC such as its encoding complexity as well as data security. In error control, we

provided a comparative analysis between subspace codes and rank metric codes, from which

a set of remarks concerning their differences and uses were obtained. A scheme for secure

data transmission for subspace codes has also been introduced as a solution for both error

correction and data security in RLNC networks where we have opted for a randomized

codeword selection to induce an ambiguity about the subspace code used for transmission.

As for security in RLNC, three schemes have been proposed to provide data transmission

making use of the intrinsic security of RLNC in addition to a set of other steps aimed at



increasing the computational as well as the information-theoretic security of RLNC. A final

contribution regarding the encoding complexity of RLNC has been provided, in which we

have minimized the number of required multiplicative operations in RLNC.
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General introduction

Since the advent of public internet, network theory has become a central part in all modern

communication systems. Broadly speaking, a network is a set of communicating elements

along with another set of interconnections providing paths for message transmission. Math-

ematically, a network may be modelled as a graph G with a set V of nodes and a set E

of edges. A node in a network is essentially a communicating entity and the edges are the

channels through which messages can be exchanged between those entities.

In networking, one of the main problems that we are faced with is how to efficiently

convey or route traffic from a given source to some destination throughout a network. We

call the rules that are made to specify how this endeavor is carried out routing protocols.

The traditional way of treating routed data in communication networks is to consider it as

a commodity. In other words, packets are supposed to stay intact throughout the network.

The routers separating the source from destination will just receive the packets on their

ingoing interfaces and forward them to the next hops in the network via their outgoing

interfaces. In this system, a received packet that is not an exact copy of its original version

is considered corrupt and should be retransmitted. Treating packets as a commodity has

remained the de jure and de facto procedure until the very beginning of the current century

where Yeung et al [1] have proposed a novel routing system called Network Coding (NC).

In this new paradigm, packets can be mixed, coded or transformed into new packets and

as long as the used transformation is bijective, the source packets can always be recovered.

This simple yet insightful idea has resulted in remarkable outcomes in terms of throughput,

security, latency . . . etc.

In a secure and error free environment, NC will be the optimal solution for data transmis-

sion in terms of throughput. However, in real world scenarios, network errors are inevitable

and by mixing packets, NC will provide a ground for error propagation problems and even-

tually loss of information. Error control solutions are therefore crucial to consider before the

deployment of any NC-based transmission system.

In practice, Random Linear Network Coding (RLNC) is the NC scheme that is deemed

practical given that the encoding operations are just linear transformations using randomly

selected coefficients. Since packets get combined, using classical error correcting solutions is

not advisable with RLNC. This problem has been solved using a new class of error correcting

1



codes referred to as subspace codes.

This thesis focuses on RLNC from an error control perspective as well as its applications

to data security. In this regard, We provide a solution for secure transmission of subspace

coded data.

Outline
The remainder of the thesis is organized as follows. Chapter 1 provides a general overview

on Network Coding (NC), in which the basic theory of this paradigm is reviewed with a focus

on Random Linear Network Coding (RLNC). Chapter 2 tackles the theory of network error

correction codes for RLNC via the use of subspaces, where we review some mathematical

preliminaries on abstract algebra and finite field theory followed by a presentation of the

main results in the literature of subspace codes. Chapter 3 is an investigation of secure

RLNC schemes followed by a proposition of a scheme that shows a possible scenario of using

subspace codes to provide security for RLNC schemes while maintaining error correction.

The last chapter will take the form of a general conclusion on the work and results obtained

in this thesis with some perspectives on our future work.

Contributions
This thesis is an attempt to tackle the problem of error control in Random Linear Network

coding. In the thesis, we try to investigate the main work that has been introduced in the

literature as well as to add some contributions to both the area of RLNC and subspace

coding. Our contributions and results span three main areas:

Random Linear Network Coding

In this area, we have introduced a novel approach to minimize the encoding complexity

resulting from the multiplicative operations required by the encoding intermediate nodes.

The idea was to decide on the usefulness of the multiplicative operation in terms of its effects

on the decoding failure probability at the network. This approach was based on the fact that

uniform distributions are preserved under auto-convolution on finite multiplicative groups.

Security in Random Linear Network Coding

In the area of secure RLNC, three schemes have been provided to preserve data con-

fidentiality against wiretapping attacks. The three schemes rely on the idea of securing

the encoding matrix in RLNC in addition to some other steps that aim to increase the

computational security of the system.

2



Error Control in Random Linear Network Coding

A comparative analysis between rank-metric codes and lifted Rank-metric codes, which

are a family of subspace codes that are based on Rank-Metric codes, has been carried out

in order to get insights of the main differences between the two code families as well as the

scenarios where the two codes may replace each other.

A scheme that provides both error control and security against wiretap attacks has also

been introduced for subspace codes. This scheme is based on randomizing the dimension of

the transmitted codeword based on a subspace code selection strategy to increase the search

cost of a wiretapper while ensuring data integrity.
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1.1 Introduction
Network Coding[1] is the transmission scheme upon which our work is based. Therefore,

this chapter will constitute a general discussion of this paradigm with a focus on Random

Linear Network Coding[2], given the fact that most of the work done on NC in the literature

is about RLNC. In this regard, in this thesis, we will be using the terms "Network Coding"

and "Random Linear Network Coding" interchangeably. As for our objective in this chapter,

we try to provide a glimpse on the necessary background that we need, to advance into the

main subject of this thesis.

1.2 Network Coding
Before we tackle the subject of Network Coding (NC), It is crucial to clarify some possible

ambiguities that may arise in the treatment of the subject. One of those ambiguities engulfs

the word “coding”. In communication theory, coding usually refers to either source coding or

channel coding. Source coding is the suppression of unnecessary or uncontrolled redundancy

from the source data before transmission. It is usually labelled as data compression in real-

world applications. Channel coding, on the other side, is the process of adding controlled

redundancy to the transmitted data as a way to maximize the probability of data recovery

in the presence of channel errors. In the literature of Network Coding, the word “coding”

is ascribed a different meaning. It is the mapping of a set of input packets to another set

of output packets either deterministically using a set of rules or randomly following some

probability distribution. Using this new connotation of the word “coding”, we can define

Network Coding as follows.

Definition 1. Given a network N , Network Coding (NC) is a bijective mapping of a set of

input packets onto another set of output packets. It can be carried out at intermediate nodes

as well as the source node.

Before the idea of Network Coding, packets were treated as a commodity. The only

difference between them and cars in vehicular networks is their ability to be replicated.

Rigorously speaking, in conventional routing protocols, an intermediate node may only store,

forward or replicate packets. Each transmitted packet’s payload has to stay intact for the

whole transmission period from source to destination, otherwise it would be considered

corrupt and re-transmission is usually required.

As the definition states, in Network Coding, intermediate nodes are equipped with the
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ability to produce output packets out of the received ones following some predefined bijective

mapping. Note that in some applications such as in [3], the source node may also be allowed

to perform coding as well.

This paradigm has been first introduced by Yeung et al in their seminal paper [1], where

they proved that this simple idea of allowing intermediate nodes to alter their received

packets instead of just replicating them can offer a multitude of benefits such as those

discussed below.

1.2.1 Throughput
The network of Figures 1.1 and 1.2 is called "The Butterfly Network" in the literature

of Network Coding. It is commonly used to outline the throughput increase that Network

Coding offers compared to conventional routing solutions. The butterfly network is modeled

as a directed graph with one source s, four intermediate nodes and two sinks D1 and D2.

The channels share the same capacity of one packet per time slot. The source tries to

multicast data to both destinations using the highest rate possible. Using conventional

routing solutions, the source will be able to send 3 packets to each destination in two time

slots , that is a throughput of 1.5 packet/ time slot, given that the edge (I3, I4) can only

forward one packet per time slot. By using a simple network coding solution, consisting of

the XOR operation, we can transmit a packet P1 and its XOR with a packet P2 to D1 and the

packet P2 and its XOR with packet P1 to D2. In this way, both destinations can recover the

coded packet by adding the two received ones. This simple coding solution has allowed for

a throughput of 2 packets per time slot, exceeding what is possible by conventional routing

solutions and achieving the optimal throughput in this scenario.

Another useful scenario is the wireless network of Figure 1.3 and Figure 1.4. This network

has a relay node R and two users U1 and U2. The links are all half-duplex. Each user has

a single packet to send to the other user passing by the relay node R. Being Half-duplex,

using routing alone, four transmissions are required since each packet will consume two time

slots to reach the destination. Using Network coding, one may cut down on the number

of required transmissions by using the broadcast nature of the wireless channel. In this

scenario, each user will send its packet to R, which will then broadcast the XOR of the two

packets. Each user will eventually be able to recover the intended packet by adding the

received packet with its own packet. In this network, using coding has saved us one time

slot compared to a routing solution.
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Figure 1.1: A routing scenario for the Butterfly Network.
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half-duplex channels

Figure 1.4: A network coding scenario for a network consisting of two users, one relay node
with half-duplex channels
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1.2.2 Security
Consider a wiretapper Eve that is going to wiretap the network in FIGURE 1.2 to

extract some information about the source message. Suppose that Eve can only wiretap

one channel of her choosing at a time. If this channel happens to be (I3, I4) of the network

of Figure 1.2, she will not be able to get any of the packets without wiretapping another

channel that is transmitting uncoded data, which is only possible if she has access to more

channels. Therefore, this network has some edges that are immune against wiretappers

with wiretapping capacity of one packet/time slot. This example provides an insight on the

intrinsic security of Network Coding. In fact many schemes have been built around this idea

where a pre-encoding step was carried out at the source and then the encoding coefficients

were encrypted to hinder the decoding operation at unauthorized receivers. In SPOC [4]

the source encoding matrix was encrypted and another coefficient matrix was attached to

the augmented matrix for storing the encoding coefficients used across the network.[5], the

source encoding matrix was permuted and transmitted as the encoding coefficient itself. P-

coding[3], On the other side is based on the permutation of the augmented matrix columns

to hide the coefficient matrix. In [6], Homomorphic encryption functions has been used to

encrypt the coefficient matrix in order to circumvent the problem of SPOC that required the

transmission of two coefficient matrices. In [7], security was based on number of wiretapped

vectors as well as other steps applied at the source. These works were all based on the fact

that mixing packets makes NC inherently weakly secure.

1.2.3 Data Storage
In distributed data storage systems, an intuitive solution to ensure data availability

through backup is to replicate the disks on which data is stored. However, a better solution

may consist of saving combinations of all the datasets in the redundant disks to increase the

chances of data recovery in case of many disk failures.

In Figure 1.7, the failure of two disks may lead to permanent data loss. With coding as

shown in Figure 1.8, data recovery is possible as long as 4 disks are operational

1.2.4 Packet Loss
In real world networks, especially the wireless case, there is always a non-zero probability

that a packet will be lost before reaching its intended destination due to various factors

such as collisions, link outage ...etc. This issue is usually addressed using ARQ protocol[8],
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Figure 1.6: A distributed data storage system with network coding based backup

which is a system of acknowledgements and timeouts, where a packet is retransmitted if its

reception is not acknowledged before a timeout event that specifies the allowed period to

wait for an acknowledgement. An alternative method is to model the network channels as

erasure channels and then design an erasure code that will allow for data recovery in the

case of data loss.

Erasure codes are applied at the source code and decoded at destination nodes. Network

Coding is coding at intermediate nodes. If the network code is also an erasure code, the

maximum theoretical rate will also increase.

Consider a network N with some random acyclic topology. For the sake of simplicity, let

all the links be identical erasure channels with erasure probability e. Let r and R denote the

maximum rate allowed between any two adjacent nodes and the maximum rate between the

source and a destination node, respectively. Since the edges are all erasure channels, we have

r = 1 − e. A destination node separated by k edges from the source will dictate an overall

rate R = (1− e)K . If the erasure code is applied at every intermediate node, R will equal to

the minimum rate r on any edge in the path between the source and the given destination

node. In this case, it is just R = 1 − e. Since network coding is applied at intermediate
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nodes, a proper design of this latter would provide resilience against packet loss [9],[10].

1.3 Designing Network Coding Schemes
The aforementioned examples may have provided some insight into what can be achieved

by using Network Coding. However, real world networks are huge, complex and most of them

are constituted ad hoc. A network coding scheme has to be scalable and universal in the

sense that it would not require a specific set of network topologies to operate. Moreover, the

advantages of the designed scheme has to outweigh the incurred complexity of the encoding

and decoding operations that are required by the scheme as well as the overall deployment

cost resulted from the installation of coding-capable nodes.

In the literature of Network Coding, two schemes have been proven sufficient to accom-

plish the benefits of Network coding with minimum requirements, Linear Network Coding

(LNC) [11] and Random Linear Network Coding (RLNC)[2]. In both schemes, encoding and

decoding operations consist of a set of linear operations over finite fields. In this case, packets

will be modelled as vectors over the underlying finite field. Encoding consists of the addition

of scaled packets and decoding consists of solving a set of linear equations. The validity

of both schemes lies in the proper selection of the encoding coefficients to make sure that

all sinks in a network would receive a set of linearly independent vectors whose cardinality

equals the number of source packets. In LNC, selecting the coefficients is carried out deter-

ministically, taking into consideration all the encoding operations at the other intermediate

nodes. In the absence of network errors, this approach will guarantee that no information

is lost but it requires full awareness of the used network topology. This latter constraint is

lifted in RLNC by opting for a randomized approach. The coefficients will be chosen ran-

domly and as long as the used finite field is sufficiently large, the decoding failure probability

will be significantly low. This approach has made RLNC suitable for non-coherent and ad

hoc networks. In the literature, RLNC is the NC scheme that has attracted a lot of research

and usually whenever NC is deployed, it is actually RLNC. In this thesis, we also focus on

RLNC.

1.4 Random Linear Network Coding

1.4.1 Network Model
A network N is modelled as an acyclic multigraph G(V,E), with V being the set of

vertices and E ⊆ V 2 the set of edges. Usually, we refer to a vertex as a node and to an
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edge as a channel to relate our analysis to the used terminology in communication theory.

V is partitioned into three disjoint sets : S, I and D. S is the set of sources from which

all information is originated. Without loss of generality, one may consider S to be a single

element set, |S| = 1, by thinking of all the sources as being attached to one virtual super-

source, in analogy to the super-node in electrical networks. Therefore s will be used to denote

the source node. I is the set of intermediate nodes and D is the set of sinks or destination

nodes. The elements of D are the nodes to which information is intended.

We let e = (n1, n2) denote the edge emanating from the node n1 and into the node n2.

Moreover, the node n1, denoted as n1 = tail(e) is called the tail of e. Similarly, the node n2

is the head of e and we write n2 = head(e).

∀n ∈ V , we let Out(n) = {e ∈ E | tail(e) = n} and In(n) = {e | head(e) = n} denote

the set of incoming and outgoing channels of the node n, respectively. Based on our network

model, note that head(s) = 0 and ∀d ∈ D, tail(d) = 0.

A node n1 is adjacent to a node n2 if (n1, n2) ∈ E or (n2, n1) ∈ E. Similarly, two edges

e1 and e2 are adjacent if the head of one of them is the tail of the other one. A sequence of

channels e1, e2, · · ·, en with the property that tail(ei) = head(ei+1) ∀i ∈ {1, 2, · · ·, n − 1} is

referred to as a path from the node head(e1) to the node tail(en).

The edges of E are all unit capacity edges. If two nodes are able to communicate at a

higher capacity, multiple unit capacity edges will be employed to model this scenario.

A cut between a node n1 and a node n2 is a set of edges whose removal disconnects the

two nodes. the smallest cut amongst all the cuts in terms of the number of edges is called

the minimum cut, or simply the min-cut. For the edges of our network, the capacity of the

cut will be equal to the number of edges in the cut.

We refer to a unicast transmission to the case when s wishes to communicate with a

single element of D and to a multicast transmission when s simultaneouly transmits the

same data to a multiple elements of D. We denote by Cm, the mulicast capacity of the

network N , which is defined as the maximum rate at which the source can multicast data

to the elements of D.

Theorem 1. The maximum rate h at which information can be sent from the source s to

any d ∈ D equals the capacity of the min-cut between s and d. Equivalently, there exists

h-edge disjoint paths from s to d.

This theorem[1] is usually referred to us the Min-Cut Max-Flow theorem. Network
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Coding is interesting in terms of improving throughput because it achieves this theorem

even for the multicast case. Consider the following theorem[11].

Theorem 2. ∀i ∈ {1, 2, · · ·, |D|}, let ri denote the capacity of the min-cut between the source

s and the sink di ∈ D. let r = min<i>(ri). There exists a multicast transmission scheme

over a large enough finite field Fq, where the nodes of I linearly combine their incoming

information symbols over Fq, that simultaneously delivers information from s to each sink

at a rate equal to r.

In commodity flow networks, it is common that the maximum rate between a source and

a destination node equals the capacity of the min-cut separating them as dictated by the

Min-Cut Max-Flow theorem. However, generalizing this to multicast transmissions was not

possible due to possible overlap between the different unicast paths. By treating Information

as an abstract quantity and not as a physical commodity, Network coding has allowed for

achieving the optimal multicast rate i.e. the mulicast capacity Cm. In fact, Therorm 2 shows

that linearly combining the incoming packets at intermediate nodes is sufficient to attain

the optimal multicast transmission rate. We refer to this scheme as Linear Network Coding

(LNC).

1.4.2 Encoding Model
In linear network coding, the source information symbols as well as their combinations

are all n−dimensional vectors over a finite field Fq where q is a prime power. In practice,

we usually have q = 2r with r ∈ N+. Let U = {u1, u2, · · ·, uCm} denote the source uncoded

information symbols. In a network code, the source and at least some of the intermediate

nodes are equipped with coding capabilities, we refer to them as NC-capable nodes. The set

of all NC-capable nodes is denoted by IC ⊆ S
⋃
I. While the source can choose to inject U

without prior coding, some scenarios require a pre-coding step at the source node. This is

usually the case of secure network coding schemes.

Linear network coding at an NC-capable node consists of summing scaled versions of its

incoming packets using coefficients taken from the underlying finite field Fq. Consider the

following definitions[12].

Definition 2. The local encoding function Le at a node ni ∈ IC is a linear mapping from

F|In(ni)|×n
q onto F|Out(ni)|×n

q .

The local encoding function is the building block on which the network code is based.
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Definition 3. A Cm-dimensional linear network code on an acyclic network over an un-

derlying finite field Fq at a node ni ∈ IC consists of a scalar encoding coefficient kij ∈ Fq
for every adjacent pair (i, j) of channels in the network. The |In(ni)| × |Out(ni)| matrix

Lni
= (kij)i ∈ In(ni), j ∈ Out(ni) is called the local encoding kernel at the node ni. The

local encoding kernel is the matrix form of the local encoding function Le. All local encoding

kernels constitute a local description of a linear network code.

In order to use the encoding kernel we have to assume the existence of some order at

which the incoming and the outgoing edges of a node ni are enumerated. the set of input

edges will be In(ni) = {ein1 , ein1 , · · ·, ein|In(ni)|} . Similarly, the set of output edges will be

Out(ni) = {eout1 , eout1 , · · ·, eout|Out(ni)|}

This order will also help us define the In(ni)×n input matrix P
(ni)
in and the Out(ni)×n

output matrix P
(ni)
out . The rows of those matrices are the input and output packets of the

node ni which are n−dimensional vectors over Fq. The encoding operation will then be a

simple matrix multiplication as follows,

P
(ni)
out = LnP

(ni)
in (1.1)

One way to look at a linear code is to also analyse it edgewise. In this case, the jth node

in Out(ni) will carry the symbol P (ni)
outj calculated as,

P
(ni)
outj =

|In(ni)|∑
k=1

α
(ni)
k P

(ni)
ink

(1.2)

where ∀k ∈ {1, 2, · · ·, |In(ni)|}, αk is an encoding coefficient taken from Fq.

This edgewise description is more intuitive in relating P (ni)
outj to U . Each packet P (ni)

ink
∈

In(ni) can be written as,

P
(ni)
ink

=
|In(tail(eink

)|∑
l=1

β
(tail(eink

))
l P

(tail(eink
))

inl
(1.3)

Hence,

P
(ni)
outj =

|In(ni)|∑
k=1

α
(ni)
k

|In(tail(eink
)|∑

l=1
β

(tail(eink
))

l P
(tail(eink

)
inl
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=
|In(ni)|∑
k=1

|In(tail(eink
)|∑

l=1
α

(n)
k β

(tail(eink
))

l P
(tail(eink

)
inl

(1.4)

∀k ∈ {1, 2, ···, |In(ni)|}, and ∀l ∈ {1, 2, ···, |In(tail(eink
))|}, let λtail(eink

)
l = α

(ni)
k β

(tail(eink
))

l .

Hence, P (ni)
outj can be expressed as,

P
(ni)
outj =

|In(ni)|∑
k=1

|In(tail(eink
)|∑

l=1
λ

(tail(eink
))

l P
(tail(eink

)
inl

(1.5)

In equation (1.5), P (ni)
outj has been written as a linear combination of the input packets

that precedes the node ni in the ancestral order of the graph. Using recursion we can write

P
(ni)
outj in terms of the source packets. While P (ni)

outj is not necessarily a combination of all the

source packets, we can just zero out the coefficients corresponding to the packets that are

excluded. Let goutj be the vector formed by those coefficients,

P
(ni)
outj = goutj ·U (1.6)

We call the vector goutj the global encoding vector at ni corresponding to the edge eoutj .

Rewriting this equation in terms of P (ni)
out results in the following equation,

P
(ni)
out = G(ni) ·U (1.7)

G(ni) is the matrix whose row vectors are the global encoding vectors for the outgoing edges

of ni and it is referred to as the global encoding kernel of the network code at ni. A global

description of the network code consists of a local description as well as a global one. the

local description is the one given in Definition. 3 and it relates the input packets to the

output packets of each node ni ∈ Ic. The global description, on the other side, is given in

Definition. 4 and it relates the output packet of the node ni to the source original packets.

Definition 4. A Cm-dimensional linear network code on an acyclic network over an under-

lying finite field Fq at a node ni ∈ IC consists of

1. a scalar encoding coefficient kij ∈ Fq for every adjacent pair (i, j) of channels in the

network. The |In(ni)|× |Out(ni)| matrix Lni
= (kij), i ∈ In(ni), j ∈ Out(ni) is called

the local encoding kernel at the node ni. The local encoding kernel is the matrix form of

the local encoding function Le. All local encoding kernels constitute a local description
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of a linear network code.

2. A global encoding vector ge for each channel e ∈ IC relates each packet injected in an

outgoing channel of the node ni to the source original packets. The matrix whose rows

are the global encoding vectors at a node ni is called the global encoding kernel at the

node ni and denoted by G(ni).

1.4.3 Decoding model
Decoding is the inverse operation of encoding. It is the process of extracting the source

original packets by the sink nodes from their received packets. Let d ∈ D be a sink node and

let Cd denote the capacity of the cut between the source and d. Clearly Cd ≥ Cm. While

some sink nodes may have cut capacities higher than Cm, the extra capacity will only carry

redundant information since the source maximum multicast rate is Cm.

Definition 5. The received packets at a sink d ∈ D are related to U by the matrix Gd

satisfying,

P
(d)
in = Gd ·U (1.8)

provided that Rank(Gd) = Cm, where Rank(·) denotes the rank function. Gd is called the

global encoding matrix at the sink d.

Note that Gd is based only on the previous encoding operations since the sinks do

not perform encoding operations. Upon receiving the encoded packets and constructing

the Gd matrix whose rows are the received packets at d, the sink will try to perform the

decoding operation. Decoding will be performed by applying Gauss elimination on the

matrix [Gd Gd ·U ]. If after reduction, the rank of the resulted matrix is Cm, its row vectors

will be taken as the source original information packets. Otherwise, information is lost due

to some bad coefficient selection and retransmission will be required.

1.4.4 Network Code construction
In the previous sections, we have seen that NC provides many advantages over classical

routing protocols, from which throughput enhancement is the main aspect due to its in-

trinsic relation to the Min-Cut Max-Flow theorem for multicast transmissions. However, a

network based on an NC transmission scheme has to guarantee the basic requirement for any

communication system: "Reliably delivering information from source to destination". In NC
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schemes, reliability is monitored by a parameter called "the decoding failure probability",

which is defined as the probability of unsuccessful decoding at a given sink node. In Linear

Network Coding, two main factors are responsible for an eventual loss of information: the

induction of external unsolicited information to that flowing across the network and bad co-

efficient selection. The first factor can be either caused by random network errors or a set of

malicious nodes intentionally injecting corrupt packets into the network. The effect of extra

unsolicited information is more serious in NC schemes compared to traditional routing pro-

tocols due to packet mixing. This latter will allow for errors to propagate and contaminate

other packets, increasing the decoding failure probability in the network. When first intro-

duced, NC was only considered for error-free environments and error-correction mechanisms

were later devised for NC allowing for real-world deployment. The second problem in linear

coding schemes lies in coefficient selection. To be decoded successfully, the received packets

at a given sink d have to span the vector space spanned by the original source packets. In

other words, if V is the vector space spanned by P d
in = {Pin1 , Pin2 , · · ·, Pin|P d

in
|
} for some d,

then we must have dim(V ) = Cm. Each input packet in P d
inis issued by linearly combin-

ing the source packets or some encoded versions of them. For decoding to be carried out

successfully at the sink nodes, the encoding coefficients have to be chosen carefully at every

encoding operation to ensure that no linear dependency results between any two encoded

packets across the network. Two main approaches have been proposed in the literature of

NC to deal with this problem.

1.4.4.1 Deterministic Construction

The choice of the encoding coefficients is carried out deterministically based on the used

network topology. This is usually done following the Jaggi-Sanders algorithm [13] that

works by assigning a priori the global encoding kernels at the encoding intermediate nodes.

Deterministic approach does not result in any linear dependency between the encoded packets

resulting in zero decoding failure probability in the absence of errors.

1.4.4.2 Random Construction

In real world scenarios, network topologies tend to be more flexible and prone to changes.

An illustration of this would be the mobile ad hoc network[14] where nodes join and leave

the network constantly. These variations render a topology-based solution unattractive and

unscalable. To deal with this problem, Ho et al[2],[15] proposed Random Linear Network

Coding (RLNC) as a solution to the problem of coefficient selection in noncoherent networks.
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In their approach, the encoding intermediate nodes will randomly choose their encoding

coefficients from the underlying finite field Fq. To minimize the probability of choosing an

encoding coefficient that results in a linear dependency with another encoded packet, the

size of Fq has to be sufficiently large[16], [17]. The decoding failure probability has been

proven to be a decreasing function of q. Figure 1.9 illustrates this relation.
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Figure 1.7: Decoding failure probability in a network of one source, 8 intermediate nodes
and three sinks Vs. F2m for different values of m.

In the absence of network errors, the decoding failure probability is null for deterministic

LNC. However, RLNC alleviates the cost of pre-designing a code for every network toplogy.

Besides, It is more practical in noncoherent situations where network topology is unknown

or dynamic in nature. These advantages come at the expense of a non-zero decoding failure

probability that decreases as a function of q as mentioned earlier.

1.4.5 Coefficient Transmission in RLNC
Decoding at the sinks requires knowledge of the global encoding matrix G(d) at every

sink node d ∈ D. Since the global encoding coefficients are updated across the network, a
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sink node d does not know a priori G(d). Therefore, the used encoding operations have to

be recorded across the network such that d would be able to construct G(d) upon receiving

a sufficient number of innovative packets. Those latter packets are the ones that provide

information that has not yet been received.

The source will transform its data matrixU into the augmented matrixUaug by attaching

a distinct 1× Cm unit vector to each one of its rows such that Uaug = [ICm
U ], where ICm

is the Cm×Cm identity matrix over Fq. The transmission of Uaug instead of U will provide

a means of recording the encoding operations across the network. In this case, a sink node

d ∈ D will receive a matrix of the form [G(d) G(d) · U ], of which reduction using Gauss

Elimination will be possible. An illustration of this operation is provided in Figure 1.10.

(a) The matrix U

(b) The matrix Uaug

(c) The matrix G(d)

(d) The matrix [G(d) G(d)U ]

Figure 1.8: An illustration of the source matrix, its augmented version as well as the global
encoding matrix and the encoded version of the source message as received at a sink d over
the field F28 .
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1.5 Challenges of Network Coding

1.5.1 Overhead
Applying Network Coding requires the transmission of extra information to allow for

decoding at the sink nodes such as the encoding matrix in RLNC. This extra information will

induce an additional amount of overhead [18],[19], [20] that will eventually affect the global

throughput in the network. A proper deployment of RLNC for throughput enhancement

requires justification of the possible throughput gain that the scheme offers for the application

in question.

1.5.2 Complexity
Encoding and decoding operations naturally require a certain amount of time as a result

of the increased computational complexity, which will eventually induce some level of latency

in the network. While RLNC uses only linear operations, which are known to be fast, some

authors tried to reduce this complexity to increase its efficiency. In [21], the autors attempted

to solve this problem by reducing the number of required multiplications in the scheme. Their

idea was based on the fact that uniform distribution is preserved under convolution on finite

multiplicative groups [22]. In this scheme, the nodes will decide on the usefulness of the

RLNC multiplicative operations based on the previous encoding operations performed on

the received packets. Other schemes that aim to reduce the encoding complexity are also

available in the literature. The authors of [23] have considered the cause of this complexity

to be the number of nodes undergoing NC, which have to be equipped with NC-capabilities,

making them expensive compared to their forwarding counterparts. Their solution was to

find a feasible network code where a bounded number of NC-capable nodes is sufficient to

solve the multicast problem. The same idea was revisited in [24], [25], and [26] for different

cases and , as an evolutionary problem [27] and as an optimization problem in [28], and [29].

1.5.3 Error Propagation
When Yeung et al introduced Network Coding, they only considered error-free environ-

ments. It is evident that errors are inevitable in real-world scenarios. Therefore, one can

deduce that the authors thought of Network Coding and error correction as two separate

problems. Network Coding is based on packet mixing, making error propagation a real

problem. In RLNC, one corrupt packet has the potential to corrupt all transmitted infor-

mation. Even if some information is correctly received, decoding will still be impossible
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without the whole set of valid packets. Therefore, RLNC has to be accompanied by error

correction mechanisms that are suitable for the scheme. This thesis is dedicated mainly for

this purpose.

1.6 Summary
Network coding is a transmission paradigm that incorporates the encoding intermediate

nodes in a given network with the ability to perform encoding operations on their received

packets. This feature has allowed for many advantages such as throughput enhancement,

secure transmission and packet loss mitigation. While the term “Network Coding” is a global

term that engulfs all transmission schemes that allow for packet alteration at the intermediate

nodes. In practice, two such schemes are considered useful: Linear Network Coding (LNC)

and Random Linear Network Coding (RLNC). Encoding operations for both of those schemes

are based on linear transformations using coefficients taken from the underlying finite field

Fq. Those coefficients are pre-selected in LNC based on the network topology, and randomly

generated in RLNC, making RLNC more practical and scalable, especially for noncoherent

networks. However, this comes at the expense of a nonzero decoding failure probability that

decreases as a function of q.

Aside from its benefits, Network Coding faces a set of challenges that have been heavily

addressed in the literature such as the increased computational complexity, overhead and

error propagation. While the first two challenges do not result in information loss, error

propagation is a serious problem that may lead to a total information loss. In this thesis, we

focus on this problem where we investigate the approaches that are adopted in the literature

and we try to propose solutions that combine both error control and data security.
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Chapter 2. Error Control in Random Linear Network Coding

2.1 Introduction
The idea of providing the set of intermediate nodes with coding capabilities has offered a

set of advantages over classical routing protocols at the expense of some emerging challenges

as illustrated in the previous chapter. While complexity and overhead may result in latency

and decreased throughput, they do not cause any information loss unlike the error problem.

Errors in network coding have the tendency to propagate [30], [31], eventually corrupting all

transmitted information. Even without propagation, decoding requires the very absence of

errors.

Error propagation makes errors overwhelm any traditional codes that are designed for

the hamming metric [32]. Therefore, those codes are not generally adopted for network

coding, which calls for novel error-correcting codes that are designed specifically for network

codes. Those error codes are labelled as network error correction codes to distinguish them

from their classical counterparts. Network error correction codes were first proposed in

[33], followed by generalizations of bounds and constructions from the classical error coding

theory [34],[35],[36],[37]. Similar to the difference between LNC and RLNC, most of those

codes assumed a priori knowledge and well awareness of the network topology, making them

unsuitable for noncoherent scenarios, for which RLNC is the proper choice. In RLNC, the

channel transfer characteristics are assumed unknown by both the source and sink nodes,

which complicates any design that is based on classical coding theory. In this chapter, we

investigate network error correction codes for RLNC based networks.

2.1.1 Notations
Let q ≥ 2 be a prime power. We denote the finite field with q elements by Fq. The

ambient space of dimenstion n over Fq is denoted by Fnq and the set of n×m matrices over

Fq is denoted by Fn×mq .

The set of all subspaces of Fnq or the projective space over Fq is denoted by P(n). The

set of all k-dimensional subspaces of Fnq with 0 ≤ k ≤ n, or the Grassmannian, is denoted

by G(k, n).

If M is a matrix, we represent the subspace spanned by the row vectors of M by 〈M〉.

Similarly, we represent a subspace by choosing, as a representative, a matrix whose row

vectors span that subspace. To simplify computation as well as implementation, we opt for

the simplest representation of such matrices which is arguably their reduced row echelon

form (RREF).

22



Chapter 2. Error Control in Random Linear Network Coding

The dimension of a subspace V is denoted by dim(V ) and the rank of a matrix M is

denoted by Rank(M).

2.2 Subspace codes
Subspace codes are a family of codes whose codewords are subspaces of an ambient vector

space. They have been traditionally used in authentication theory [38] as a tool to validate

the source of information as well as its integrity. In this setting, they are usually referred

to as linear authentication codes. They are also adopted in distributed storage systems

[39],[40] to design a backup system such that when a subset of storage nodes fails, the lost

data may be recovered up to a certain threshold. In [41],[42], the authors showed that those

codes can be used as network error correction codes as well. In RLNC, we usually think of

data as a set of vectors or packets to be transmitted across the network. Those vectors are

treated as matrices for the mere purpose of encoding and decoding operations. However,

what is really transmitted is the vector space spanned by those vectors and as long as this

vector space is not altered across the network, information is preserved. In this system,

decoding will be seen as finding the normal basis for the received vector space. Based on

this observation, Kotter and Kschischang proposed the use of subspace codes as an outer

code for error correction with RLNC, where RLNC is the inner code.

Definition 6. A subspace code C is a non-empty subset of P(n). If C ⊆ G(k, n) for some

0 ≤ k ≤ n, we call C a Constant Dimension Code (CDC). Otherwise, C is a Mixed Dimension

Code (MDC).

Let N be a network following the model introduced in the previous chapter and let C be a

subspace code used by the source node s as an outer code for error correction in RLNC. Let

V ∈ C be the source codeword to be injected in its outgoing channels at a given transmission

round. Note that the transmitted codeword satisfies the following inequality.

dim(V ) ≤ Cm (2.1)

The received subspace at a given sink d ∈ D will be denoted by R.

Errors that may occur during transmission are either erasures, which are defined as a

decrease in the dimension of the transmitted codeword V , or insersions, which are defined

as an increase in its dimension. This increase occurs when the codeword R contains a set of
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vectors that do not belong to 〈V 〉. The received codeword R can be expressed as,

R = V ′ ⊕ Es (2.2)

Where V ′ is a subspace of U and Es ∈ P(n) is the error space resulting from insertions.

Definition 7. A random linear network channel in which insertions and erasures occur is

called the operator channel whose input alphabet I and output alphabet O are subsets of P(n)

satisfying,

O = Hk(I)⊕ Es (2.3)

where Hk is a stochastic operator that randomly returns a k-dimensional subspace of I re-

sulting in dim(I)− k erasures and Es is the error subspace resulting in dim(Es) insertions.

Similar to classical error control theory, it is crucial to define a metric to allow for

meaningful decoding at the sink nodes. In the literature of subspace codes, two main metrics

are widely used, the subspace distance [41]and the injection distance [43].

The minimum subspace and injection distances of a code C ∈ P(n) provides the basis to

evaluate the error detection and correction capability of the code.

Definition 8. The minimum subspace distance of a subspace code C ∈ P(n) is defined as,

dSmin
= min{dS(U, V )|U, V ∈ C, U 6= V } (2.4)

Similarly, we introduce the minimum injection distance of a code C ∈ P(n)

Definition 9. The minimum injection distance of a subspace code C ∈ P (n) is defined as,

dImin
= min{dI(U, V )|U, V ∈ C, U 6= V } (2.5)

Aside from the distance measure, decoding algorithms in classical coding theory have

their counterparts in subspace coding. The maximum likelihood decoder and the minimum

distance decoder are defined as follows.

Definition 10. Consider a subspace code C ∈ P(n). Let U be the source transmitted code-

word at a given transmission round and let R be the received version of U at a given sink
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d ∈ D. A maximum likelihood decoder decodes R as Û , where Û ∈ C is the codeword that

maximizes the probability

P (R|V ) (2.6)

over all V ∈ C.

Definition 11. Consider a subspace code C ∈ P(n). Let U be the source transmitted code-

word at a given transmission round and let R be the received version of U at a given sink

d ∈ D. A minimum distance decoder chooses the closest codeword to the received word with

respect to the used metric.

min d(V,R) (2.7)

over all V ∈ C, where d(·, ·) is either the subspace or injection distance.

If more than one codeword satisfies this inequality, the decoder returns “failure”.

Let λ be the minimum (injection or subspace) distance of a code C ∈ P(n). Let U be a

transmitted codeword and R be its received version at a given sink d ∈ D. If V ∈ C is at

distance that is at most λ−1
2 , V will be always chosen by the minimum distance decoder.

2.3 Bounds on Subspace Codes
Definition 12. The cardinality |C| of a subspace code C ∈ P (n) is defined as the number of

codewords in the code. .

The cardinality of a code has a direct impact on the code rate and its error correction

capability. A set of bounds have been derived in the literature to provide a certain insight

on its value when its hard to obtain an empirical estimation. Some of these bounds are

reviewed below,

2.3.1 Sphere packing and covering bounds
Those bounds are similar to their counterparts in linear block codes. They have been

derived by Koetter and Kschischang in [41].

Definition 13. Let Fnq be an n-dimensional vector space over the finite field Fq and let

G(n, k) be the set of k-dimensional subspaces of Fnq .the sphere S(V, t) centred at the subspace
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V and with radius t is defined as the set of subspaces in G(n, k) satisfying

S(V, t) = {U ∈ G(n, k)| dS(V, U) ≤ 2t} (2.8)

The number of subspaces in a given sphere S(V, t) is given by,

|S(V, t)| =
t∑
i=0

qi
2

k

i


q

n− k

k


q

(2.9)

Based on the previous definition, the sphere packing and the sphere covering bounds can

be stated as:

1. Sphere packing bound

|C| ≤ |G(k, n)|
|S(V, d−1

2 )|
(2.10)

≤

[
n
k

]
q∑ d−1

2
i=0 q

i2
[
k
i

]
q

[
n−k
i

]
q

(2.11)

2. Sphere covering bound

|C| ≥ |G(k, n)|
|S(V, d− 1)| (2.12)

≥

[
n
k

]
q∑d−1

i=0 q
i2

[
k
i

]
q

[
n−k
i

]
q

(2.13)

2.3.2 Singleton bound
In the same paper where the authors introduced the packing and covering bounds, they

also derived a Singleton bound to subspace codes. As the name suggests, this bound is
analogous to its counterpart in classical coding theory. In order to do so, they defined a
puncturing operation where a subspace V ∈ C is replaced by one of its (k − 1)- dimensional
subspaces. This bound is stated as follows,

|C| ≤ |G(n− d + 1, k − d + 1)|

≤

n− d + 1

n− k


q

(2.14)
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2.3.3 The anticode bound
This bound has been derived in [44], in which the authors used subspace codes as linear

authentication codes. The same bound has been revisited by Etzion and Vardy [45],[46],

where they proved that the sphere packing bound is a special case of Delsarte’s bound [47]

for a Grassmannian association scheme. Note that the name "anticode" is derived from the

structures that are used in obtaining this bound similar to the packing spheres. An antidote

An(t) of diameter t is defined as being any subset of G(k, n) satisfying,

∀U, V ∈ An(t), dS(V, U) ≤ 2t (2.15)

The anticode bound is formulated as:

|C| ≤

[
n

k−d+1

]
q[

k
k−d+1

]
q

(2.16)

2.4 Constructions of subspace codes
Subspace code constructions are divided into two main families: Lifted Rank-Metric

codes and Orbit codes. The first family makes use of rank metric codes.

2.4.1 Rank Metric codes
Rank-metric codes are matrix codes that are designed for the Rank-metric. There are

two representations of those codes : the matrix representation and the vector representation.

In the first representation, those codes are taken as subsets from the vector space Fn×mq .

However, in the vector representation, the codewords are taken as m-dimensional vectors

over the extension field Fqn . Clearly, the two representations are isomorphic. In our work,

we are more interested in the matrix representation, given that a codeword from a subspace

code is represented as the row space of given matrix in its reduced row echelon form.

Rank metric codes have been independently introduced by Gabidulin [48], Delsarte[49]

and Roth[50]. They have been traditionally used to correct crisscross errors [51]–[52]. These

errors occur in situations when information is stored or transmitted as an array such as in

memory chip arrays and magnetic tapes. In this model, corrupted symbols are usually seen
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as row errors and column errors and since those errors are generally bursty, codes designed

for the hamming metric are not generally suitable in these situations. Note that those codes

have also been used in the design of cryptosystems [53], [54], [55] and space-time codes

[56],[57].

Since those codes are based on matrices, they provide a ground upon which subspace

codes may be constructed. A formal definition of rank metric codes for matrix representation

may be summarized as follows,

Definition 14. A rank metric code is a subset of the vector space Fn×mq of rectangular m×n

matrices.

When the the rank metric code is a subspace of the vector space Fn×mq , we refer to it as

linear rank metric code

Definition 15. A linear rank-metric code is a subspace of Fn×mq .

Rank metric codes are in fact named after their distance measure, which is referred to as

the rank distance. Note that in the literature, codes are also defined based on their distance

measure. In this case, the code will be seen as a subset of a normed (or metric) space

endowed with a particular metric.

The rank distance is defined as follows,

Definition 16. The rank distance dR is a metric on Fn×mq defined as,

∀X, Y ∈ Fn×mq , dR(X, Y ) = Rank(A−B) (2.17)

Similar to all codes, a formal definition of the minimum distance measure is required to

allow for meaningful decoding at destination nodes.

Definition 17. The minimum rank distance dRmin of a code C ∈ Fn×mq is defined as,

dRmin = min{dR(X, Y )|X, Y ∈ C, X 6= Y } (2.18)

When we talk about rank metric codes, we usually refer to the maximum rank metric

codes (MRD). Those codes were the first rank metric codes and they are usually referred to

as Gabidulin codes to highlight their author. Those codes achieve the Singeton-like bound.

In this regard, those codes are a matrix version of the maximum distance separable (MDS)

codes for classical linear block codes.
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Definition 18. Let C ∈ Fn×mq be a linear rank metric code with minimum rank distance λ.

If the cardinality of C satisfies the following Singleton bound with equality,

|C| ≤ qmax{m,n}(min{m,n}−λ+1) (2.19)

we call C a maximum rank distance code (MRD).

We usually denote a rank metric code C ∈ Fm×nq with cardinality |C| and a minimum

rank distance dRmin
by (n, |C|, dRmin

,m).

In the literature of MRD codes, Gabidulin MRD codes are the ones that attracted a

lot of attention. Those codes may be considered as the Reed-Solomon (RS) codes for the

rank metric codes. Let Fm×n
q be the set of m × n matrices over Fq with mn. Consider the

mth extension of Fq and let G = {g1, g2, · · ·, gn} ∈ Fqm be a linearly independent set. The

generator matrix for a Gabidulin code with minimum distance dRmin
for G is shown below.

Note that [i] denotes qi.



g1 g2 · · · gn
g[1]

1 g[1]
2 · · · g[1]

n

g[2]
1 g[2]

2 · · · g[2]
n

· · · · · · · · · · · ·
g[n−dRmin

]
1 g[n−dRmin

]
2 · · · g[n−dRmin

]
n



As an illustration for Gabidulin codes, let m = n = 3 and consider the (3, 8, 3, 3)

Gabidulin code. The elements of extension field F23 can be generated using the irreducible

polynomial P = x3 + x+ 1. Let α be a root of this polynomial. and let G = {1, α + 1, α2}.

The elements of the extension fields in terms of α are F23 = {0, 1, α, α2, α + 1, α2 +

α, α2 + α + 1, α2 + 1} Hence, the codewords will be:

(i) [0 0 0].

(ii) [1 α + 1 α2].

(iii) [α α2 + α α + 1].

(iv) [α2 α2 + α + 1 α2 + α].

(v) [α + 1 α2 + 1 α2 + α + 1].
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(vi) [α2 + α 1 α2 + 1].

(vii) [α2 + α + 1 α α2].

(viii) [α2 + 1 α2 α].

While the vector representation is helpful in the evaluation of the different codewords of

the book, as we have already stated, we are more interested in the matrix representation

of rank metric codes. Below is an illustration of the matrix representation of the code.The

minimum rank distance of this code can be easily checked out by noticing that the rank of

the difference of any two codewords is always 3 for this code.

0 0 0
0 0 0
0 0 0


(a)

1 0 0
1 1 0
0 0 1


(b)0 1 0

0 1 1
1 1 0


(c)

0 0 1
1 1 1
0 1 1


(d)1 1 0

1 0 1
1 1 1


(e)

0 1 1
1 0 0
1 0 1


(f)1 1 1

0 1 0
1 0 0


(g)

1 0 1
0 0 1
0 1 0


(h)
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2.4.2 Lifted Rank-Metric Codes
One the most important subspace error correcting codes in the literature are the KK

codes, named after their respected authors Kotter and Kschichang. Those codes are based

on Gabidulin codes. In their construction, the authors have made use of the notion of lifting.

Definition 19. Let C ∈ Fn×mq be a linear rank metric code. The lifting of C is the set Lft(C)

defined as,

Lft(C) = {〈InV 〉|V ∈ C} (2.20)

The following theorem states how constant dimesion codes may be constructed from

MRD codes via lifting [58].

Theorem 3. Let C ∈ Fn×(m−n)
q be an MRD code. Lft(C) ⊆ G(n,m) is a constant dimension

code.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


(a)

1 0 0 1 0 0
0 1 0 1 1 0
0 0 1 0 0 1


(b)1 0 0 0 1 0

0 1 0 0 1 1
0 0 1 1 1 0


(c)

1 0 0 0 0 1
0 1 0 1 1 1
0 0 1 0 1 1


(d)1 0 0 1 1 0

0 1 0 1 0 1
0 0 1 1 1 1


(e)

1 0 0 0 1 1
0 1 0 1 0 0
0 0 1 1 0 1


(f)1 0 0 1 1 1

0 1 0 0 1 0
0 0 1 1 0 0


(g)

1 0 0 1 0 1
0 1 0 0 0 1
0 0 1 0 1 0


(h)

A legitimate quest is to investigate the main properties of Gabidulin codes and their

counterparts in their lifted version i.e. KK codes.

31



Chapter 2. Error Control in Random Linear Network Coding

Table 2.1 provides a comparison between the cardinality of subspace codes and Gabidulin

codes for some matrix dimensions. For Gabidulin codes, the matrix dimension is the dimen-

sion of the codewords. However, for KK codes,the matrix dimension represents the dimension

of the matrix representative of the code. The minimum distance of all the codes is equal to

its maximum value , which ism for Gabidulin codes and 2m for KK codes. As an illustration,

when the matrix dimension is 2 × 4, the minimum subspace distance of the corresponding

code is 4 and that of Gabidulin code is 2.

From this table, we notice that for a given matrix dimension and highest minimum

distance, Gabidulin codes enjoy higher cardinality as compared to KK codes. This table also

shows that when a KK code has the same cardinality as a rank metric code, its codewords

will be greater in dimension and hence, more symbols are required per transmitted codeword.

Table 2.1: Comparsion between the cardinality of a set of KK subspace codes (denoted as
C) and Gabidulin codes (denoted as CR) for given matrix dimensions.

Matrix dimension Cardinality of C Cardinality of CR
2× 4 4 16
3× 6 8 64
4× 8 16 256
4× 10 64 1024
8× 16 256 65536

To evaluate the correction capability of the two code families, we consider the following

codes: the (16, 256, 16, 8)2 KK code and the two Gabidulin codes, the (16, 65536, 8, 8)2 and

the (8, 256, 8, 8)2. We randomly select a codeword of each code and flip a certain number

of its bits at random. We proceed by decoding the erroneous codeword. This experiment

is repeated 1000 times to allow for an estimation of the decoding failure probability. This

latter occurs when the decoder fails to output the original codeword. FIGURE 2.4 depicts

the results of this experiment. KK codes are endowed with a better performance compared to

their Gabidulin counterparts for almost all the time. More specifically, it is more probable

that decoding will be successful as long as error flips are less that about 40 for the KK

code. As for Gabidulin codes, this is true only when error flips do not exceed 27 for the

(16, 65536, 8, 8)2 code and 20 for the (8, 256, 8, 8)2 code. note that we can also notice that

for a given minimum distance, the greater the dimension of the the rank metric code, the

better its correction capability will be.

As for the effects of random error flips on the distance between a codeword and its
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Figure 2.3: Decoding failure probability Vs. Number of random bit flips for the
(16, 256, 16, 8)2 KK subspace code, and the two gabidulin codes : (16, 65536, 8, 8)2 and
(8, 256, 8, 8)2 .

erroneous version, Table II shows the distance between a codeword and its erroneous version

after one and two random bit flips. For subspace codes, this distance is either 0,1 or 2 for

both cases. This means that random error flips on a codeword from a subspace code can

result in no error , an erasure or both an erasure and an insertion. This last case is when the

error transforms the affected vector into another vector that is not in the subspace spanned

by the corresponding codeword. As for Gabidulin codes, error flips can never result in a

0 distance between the valid codeword and its erroneous version. However, for single bit

errors, the distance is always 1 and for two random flips, it is more likely to be 2.

Based on the nature of KK codes and rank metric codes as well as the results of the

previous experiments, one may draw the following remarks:

1. KK codes can replace their Gabidulin counterparts at the expense of less cardinality.

In this case, however, the error correction capability of the system will increase. In

case the cardinality is crucial for the system, more symbols will be required to use
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Table 2.2: Occurrence probabilities for the distance between a codeword and its erroneous
version after one and two bit flips for both of the (16, 256, 16, 8)2 KK subspace code and
the (16, 65536, 8, 8)2 Gabidulin code.

Distance Occ. probability (KK) Occ. probability (Gab.)
One flip Two flips One flip Two flips

2 0.698 0.835 0 0.921
1 0.053 0.023 1 0.079
0 0.249 0.142 0 0

subspace codes instead of rank metric codes.

2. KK codes are usually used in situations when the vectors of the transmitted codeword

can be combined as in RLNC. In this case, rank metric codes cannot replace them.

However, if the vectors of a transmitted codeword are not combined, rank metric codes

will increase the number of possible transmitted messages given their higher cardinality

at the expense of less correction capability.

3. The effects of single random errors on the distance between a codeword and its erro-

neous version is generally higher for subspace codes compared to rank metric codes.

However, this does not affect the results on the correction capability of the two code

families, which is better in the case of subspace codes. In fact, we can see that the

effects of random flips are more apparent on Gabidulin codes starting from the case of

two random flips.

2.4.3 Orbit codes
Orbit codes [59], [60] are subspace codes that are based on group theory. They are

constructed using group actions on the subgroups of the general linear group GLm defined

below.

Definition 20. The set of full-rank m×m square matrices on Fq constitutes the linear group

of degree m on Fq, denoted GLm.

A formal definition of orbit codes can be formulated as,

Definition 21. Orbit codes are the orbits of subgroups of the general linear group GLm on

the Grassmanian G(n,m).

An interesting quality of orbit codes is that the cardinality of the code is easily obtained

in a closed form equality using group theory.

34



Chapter 2. Error Control in Random Linear Network Coding

Theorem 4. Let V ∈ G(n,m) and let G be a subgroup of the general linear group GLm.

Consider the orbit code C = V G.The cardinality of C is then given by,

|C| = |G|
|StG(V )| (2.21)

Note that other code families can be seen as orbit codes as well. In [59],the authors have

proven that KK codes are in fact orbit codes. Moreover, If the acting group is cyclic, the

corresponding orbit codes are called cyclic orbit codes. Consider the following example [59].

Let G be a group generated by G,

G =



0 1 1 0

0 0 0 1

0 1 0 0

1 0 1 0


One can check that the order of G is 4. Consider the following matrix U whose row space

span a 2-dimensional space from G(2, 4).

U =

 1 0 0 0

0 1 0 0


In this case the orbit code generated by G and U , will take the form,

C = {〈UGi〉|i ∈ {1, 2, 2, 4}} (2.22)

2.5 Summary
Error correction in RLNC is carried out using subspace codes. In this setting, the code-

words are vector spaces taken as subspaces from an ambient vector space over the base field

used for representing information. The operator channel is used with those codes where it is

defined as a mapping from source to destination where insertions and erasures are present.

Erasures are characterized by a decrease in the dimension of a transmitted codeword, where

an insertion is the opposite scenario, i.e. an increase in dimension.

Subspace codes belong to two families : Lifted Rank-Metric codes and Orbit codes. The
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first family depicts constant dimension codes that are constructed by lifting Gabidulin codes.

Orbit codes, on the other side, are constructed using right group actions on subgroups of the

general linear group GLm. While orbit codes are endowed with more structure compared to

the lifted rank metric codes which has allowed for some advantages such as a closed form

expression for the cardinality, they are still young and lack practical uses compared to the

lifted rank metric codes. Those latter codes are the ones that are mainly used whenever

subspace codes are considered.

In our work we are mainly interested in Lifted Rank-Metric Codes. In the next chapter,

those codes will be used to ensure both error correction and data confidentiality.
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Chapter 3. Investigation of Error Control in Random Linear Network Coding for Security
Against Wiretap Attacks

3.1 Introduction
Error codes and encryption schemes are usually carried out separately. Information is

first encrypted and the resulted bit stream will undergo coding operations to allow for data

recovery in the case of erroneous data transmission. In RLNC, packets are linearly combined

at every encoding intermediate node, which provide intrinsic security against wiretap attacks

for eavesdroppers listening on wiretap sets of cardinality inferior to the multicast capacity of

the network. The use of RLNC for security purposes is referred to as Secure RLNC (SRLNC)

in the literature of Network Coding. Most of SRLNC schemes are based on encrypting or

obscuring the coefficient matrix such that a wiretapper with access to Cm channels will have

to guess on the global matrix before extracting the source data [4],[6],[5].

Subspace codes for both error correction and security have been used in [61], where the

authors proposed a universal security scheme that can be applied to RLNC-based networks,

provided that the outer code is a rank-metric code. Rank metric codes can be easily made

into subspace codes using lifting as explained in the previous chapter. In [62], the authors

introduced new code parameters, the relative dimension/intersection profile (RDIP), which

is defined as the greatest dimension of intersections between a code and one of its subcodes

for each extension of the underlying finite field up the dimension of the ambient vector

space, and the relative generalized rank weight (RGRW), which stands for the dimension of

the smallest subspace ensuring a dimension of intersection between a code and its subcode

exceeding a predefined value that ranges from 0 to the dimension of the quotient space

(code/subcode). In the same paper, they showed that those two parameters can be used to

analyze the security performance of the used network code. Similar papers dealing with the

problem of communication security with subspace codes for specific constructions are also

available in the literature [63],[64].

In this chapter, we investigate random linear network coding security and introduce four

secure schemes. The first three schemes are for error-free environments, provided to highlight

the intrinsic security of RLNC. In the second and third ones, the security is based on the

encryption of the encoding matrix as well as the partial permutation of the data matrix

symbols after the application of field homomorphisms to control the number of symbols in

the data representation . As for the third one, the idea is to obscure the global encoding

matrix via the use of a predefined matrix followed by a permutation step applied on its rows.

However, the fourth one is a secure scheme for data security for subspace codes based on a
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codeword selection strategy that is referred to as the Subspace Coding Strategy (SCS)[7]. In

this scheme, the data stream is permuted according to a permutation key Pk distributed via

a Key Distribution Center (KDC) and then encoded into codewords that are chosen from

a set of Grassmannian codes using the SCS. This step will increase the ambiguity on the

correct codewords used for transmission, resulting in a more secure data transmission. The

last step consists of inducing some correctable random errors before injecting the codeword

into the network. While the first two schemes are not related to error control, they are

provided to highlight the intrinsic security of RLNC upon which secure schemes can be built

and which will also be useful in the last scheme.

3.2 On encrypting the coefficient and data matrices
In this section two SRLNC schemes are reviewed. The results in this section are available

in [65].

3.2.1 System model
3.2.1.1 Network Topology

The wiretap network model as proposed by [66] will be used to model the topology of

the network N . This network may be seen as a quadruple i.e. N = (G(V,E), s,D,W ).

In our system, G(V,E) is an acyclic directed multigraph with two sets: a set V of

vertices and a set E of edges. The node s ∈ V is the source node serving as the origin

of all information transmitted across the network. D ⊂ V , on the other side, is the set of

legitimate destination nodes or users and W = {w|w ⊂ W} is a collection of sets consisting

of wiretap edges. Note that a wiretapper may wiretap the network using only one element

of W at a time. In this regard, the number of wiretappers is not limited as long as they do

not cooperate.

As for G, The capacity is unity for all the channels in the network. If two nodes require

more capacity, parallel edges are used. We define the multicast capacity Cm as being the

maximum rate at which the source can send data to the set of destination nodes in D at a

given time slot. In the proposed schemes, we consider that ∀w ∈ W , the number of elements

is superior or equal to Cm. Note that in this system, the network is assumed error-free and

therefore error analysis is excluded for these schemes.
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3.2.1.2 Security Model

The source message is divided into a set of m packets that are represented as vectors over

a finite field Fq where q = 2r and r ∈ Z+. r is chosen to be as sufficiently large as possible

to minimize the decoding failure probability [16]. Before transmission, those packets are

encrypted without affecting the underlying RLNC scheme. Therefore, the intermediate nodes

will just perform RLNC on the packets they receive on their incident edges. The destination

nodes, on the other side, will decode the received packets using Gauss Elimination and then

decrypt the resulted packets to obtain the source message.

In order to have control over the generated coefficients, the source and the destination

nodes are equipped with PRNGs. Those generators are synchronized and fed with the

same seed that is assumed to be generated from the same True Random Number Generator

(TRNG) . Permutation keys (Pk) are also required to be used by the two schemes. Both of

the permutation keys and the TRNG seed that is used for both the PRNGs are distributed

using a Key Distribution Center (KDC).

3.2.1.3 Definitions

Definition 22. Let Fq1 and Fq2 be two extensions of the binary field such that q1 = 2r1

and q2 = 2r2 where r1 = t · r2 with {r1, r2, t} ⊂ Z+. The symbol vectorization function

T : Fq1 −→ Ftq2 is a function transforming a symbol α ∈ Fq1 to a vector v ∈ Ftq2 such that

v = {α1, α2, · · ·, αt} and the concatenation of the elements of v yields α, i.e, α = α1α2 · · ·αt.

T is an isomorphism from Fq1 to Ftq2 . This function is used to increase the number of

symbols in a given data stream, which will evidently increase the overall number of possible

permutations of the data symbols. The inverse of T is the T−1 transformation.

Definition 23. Let Fq1 and Fq2 be two extensions of the binary field such that q1 = 2r1 and

q2 = 2r2 where r1 = t · r2 with {r1, r2, t} ⊂ Z+. The function T−1 : Ftq2 −→ Fq1 denotes the

inverse of the function T : Fq1 −→ Ftq2.

The combination of T and T−1 provides us with the ability to perform data manipulations

on different fields without affecting the other operations that are carried out on data in its

original representation.
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3.2.2 First Encryption Scheme
3.2.2.1 Encryption

The source message is transformed into the matrixMP = Pm×l with m and l denote the

number of data packets and their length, respectively. This matrix will be RLNC-encoded

using a randomly generated encoding matrix Lm×m. Note that this matrix is generated using

the PRNG of the source. Unlike conventional RLNC, the Lm×m matrix is not transmitted but

rather discarded and replaced with the Im×m identity matrix. Let Cm×l denote the encoded

version of Pm×l. This matrix will undergo a partial permutation after the application of

the T transformation (Cm×l 7→ Cm×(l·t)). The new matrix will then be treated as being in

its original representation by (virtually) applying the T−1 transformation. The transmitted

matrix is thenMC = [Im×m Cm×l].

Algorithm 1 summarizes the aforementioned steps.

Note that we have adopted the same notation for the matrix , i.e. Cm×l because it

overrides itself at every new step.

Algorithm 1 First Encryption Algorithm
Input: MP = Pm×l, q1 = 2t·r, q2 = 2r, Pk
Output: MC = [Im×m Cm×l]
generate Lm×m;
[Lm×m Cm×l]← RLNC([Im×m Pm×l], Lm×m);
Cm×(l·t) ← partial-Permute(T (Cm×l, q1, q2), Pk);
Cm×l ← T−1(Cm×(l·t), q1, q2);
MC ← [Im×m Cm×l]

T (Cm×l, q1, q2) and T−1(Cm×(l·t), q1, q2) are used to denote T : Fq1 −→ Ftq2 and T−1 :

Ftq2 −→ Fq1 , as applied to each symbol of the matrix Cm×l and Cm×(l·t), respectively. Figure

3.1 is an illustration of the different steps of the encoding process in the first scheme.

3.2.2.2 Decryption

The received matrix at a given sink d will take the form MR = [Gm×m Em×l] with

Gm×m and Em×l being the global encoding matrix and an RLNC–encoded version of Cm×l
respectively.

Once the RLNC decoding step is successfully done, the inverse of the encryption opera-

tions performed at the source is carried out in reverse order to extract the source plain data

packets. Algorithm 2 depicts the different steps of the decryption process.

Note that RREF stands for the Reduced Row Echelon Form method, Om×l denotes the
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Figure 3.1: An illustration of the encryption process of the first scheme with q1 = 256,
q2 = 16.
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m×l zero matrix and Am×m, Bm×m arem×m matrices for storing temporary results. Figure

3.2 is an illustration of the decoding algorithm.

Algorithm 2 Decryption of the First Encryption Algorithm
Input: MR = [Gm×m Em×l], q1 = 2t·r, q2 = 2r, Pk
Output: MP = Pm×l, Success
Success← False;
Pm×l ← Om×l
[Am×m Cm×l]← RREF (MR);
if Rank(Am×m) = m then
Cm×(l·t) ← partial-Permute−1(T (Cm×l, q1, q2), Pk);
Cm×l ← T−1(Cm×(l·t), q1, q2);
generate Lm×m;
[Bm×m Cm×l]← RREF ([Lm×m Cm×l]);

if Rank(Bm×m) = m then
Pm×l ← Cm×l;
Success← True;

end
end
MP ← Pm×l;

3.2.3 Second Encryption Scheme
3.2.3.1 Encryption

In this scheme, the source plain data matrix MP = Pm×l will be transformed into an

encrypted matrix Cm×(l+1) and the transmitted matrix will beMC = [Im×m Cm×(l+1)].

Lm×m is first generated using the source PRNG and then each vector v ∈ Lm×m is

attached to one of the packets of Pm×l to serve as its header as done in conventional RLNC.

However, no encoding will be carried out but rather, the RREF will be applied. If after

reduction, Lm×m is transformed into the identity matrix Im×m, we proceed to the next step.

Otherwise, this step will be repeated for N < q1 times at most, where N is the maximum

number this step is allowed to be repeated before the encryption stops and returns failure.

Note that this should not be the case under ordinary circumstances since the RLNC failure

probability is very small given that q1 is sufficiently large.

The second step, which is the partial permutation, will be identical to that of the first

scheme. However, in this time, an extra symbol is concatenated to each encrypted packet

from Cm×l to get Cm×(l+1). Given that q1 is sufficiently large and 0 < N < q1, the extra
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Figure 3.2: An illustration of the decryption process in the first scheme with q1 = 256,
q2 = 16.
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symbol will suffice to inform the destination nodes of the number of generations carried out

at the source to get Lm×m, in order to synchronize the PRNG.

Figure 3.3 shows an example depicting the different steps of the encryption process.

Algorithm 3 Second Encryption Algorithm
Input: MP = Pm×l, q1 = 2t·r, q2 = 2r, Pk, N
Output: MC = [Im×m Cm×(l+1)], Success
n← 0;
Success← False;
MC ← [Om×m Om×(l+1)]
do
n← n+ 1;
generate Lm×m;

[Am×m Cm×l]← RREF ([Lm×m Pm×l]);

while Rank(Am×m) 6= m and n < N ;
if n ≤ N then
Cm×(l·t) ← partial-Permute(T (Cm×l, q1, q2), Pk);

Cm×l ← (T−1(Cm×(l·t), q1, q2));
Success← True;
for c1×l ∈ Cm×l do
c1×(l+1) ← concatenate(n, c1×l);

end
MC = [Im×m Cm×(l+1)]

end

3.2.3.2 Decryption

After the reception of the encoded packets, a destination node will form the matrix

MR = [Gm×m Em×(l+1)]. This matrix will undergo a decoding operation followed by its

decryption in order to extract the source message. Upon a successful decoding ofMR, the

Lm×m will be generated by the PRNG using the first symbol of any received packet for

synchronization. Those symbols are then discarded resulting in the matrix [Im×m Cm×l].

An inverse permutation using the key Pk is then applied on Cm×l over a representation

on Fq2 using the T transformation, followed by its inverse T−1. The last step will be to

RLNC–encode the resulted Cm×l with Lm×m.

Figure 3.4 provides an illustration of the different steps of the decryption algorithm of

the second scheme. Note that in the provided example, the column vector [n1, n2, n3, n4]′

is the vector resulting from the RLNC encoding of the vector [n, n, n, n]′ with [·]′ denoting
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the transpose of [·].

Algorithm 4 Decryption of the Second Encryption Algorithm
Input: MR = [Gm×m Em×(l+1)], q1 = 2t·r, q2 = 2r, Pk
Output: MP = Pm×l, Success
Success← False;
Pm×l = Om×l;
[Am×m Cm×(l+1)]← RREF (MR);
if Rank(Am×m) = m then

choose a row c1×(l+1) from Cm×(l+1)
generate Lm×m using c1×(l+1)[0];

for c1×(l+1) ∈ Cm×(l+1) do
discard c1×(l+1)[0];

end
Cm×(l·t) ← partial-Permute−1(T (Cm×l, q1, q2), Pk);
Cm×l ← (T−1(Cm×(l·t), q1, q2));
[Lm×m Pm×l]← RLNC([Im×m Cm×l], Lm×m);
Success← True;

end
MP ← Pm×l;

3.2.4 Evaluation of the proposed schemes
Let Eve be a wiretapper using a set w ∈ W with a full knowledge of the system except

for the used keys: the permutation key Pk and the source local encoding matrix Lm×m.

3.2.4.1 Computational security

Eve will try to get the source data matrix by guessing on the used encryption keys.

Aside from the RLNC decoding required by any receiver including the wiretapper, note that

two main operations are required to extract the source plain data. The first one consists of

inverting the permutation step, which is identical for both of the schemes. The second step in

the first scheme is the application of the Gauss Elimination algorithm on the received matrix,

after discarding the identity matrix resulted from the RLNC decoding and attaching the right

encoding matrix used at the source. For the second scheme, this last step consists of matrix

multiplication with the right matrix, instead of an application of the Gauss Elimination

algorithm. Eventually, she will end up with a list of permutation keys Pk and another one

for all probable Lm×m matrices.

For both of the schemes, the permutation step complexity is in the order of O((m · t · l)!)

given that the permutation is performed partially on any subset of all the possible subsets
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Figure 3.3: An illustration of the encryption process in the second scheme with q1 = 256,
q2 = 16.

of the set of the plain data matrix symbols after applying T .

Being aware of the multicast capacity Cm, Eve will create a dictionary of all possible full

rank m ×m matrices. Note that from [67], the number NF of m ×m′ matrices of rank R
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Figure 3.4: An illustration of the decryption process in the second scheme with q1 = 256,
q2 = 16.
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over Fq is given by the following equation,

NF =
R−1∏
i=0

(qm − qi)(qm′ − qi)
(qR − qi) , (3.1)

In our case m = m′ = R, and therefore (3.1) is simplified to,

NF =
m−1∏
i=0

(qm − qi). (3.2)

Guessing the right encoding matrix will incur a complexity in the order of O(qm2). Each

one of those matrices will undergo a Gauss Elimination algorithm of complexity O(m3) or

O(m2 · l) depending on the used scheme. To get the overall complexity, one should not forget

the RLNC decoding complexity which is in the order of O(m3). The overall computational

complexity for the two schemes is, therefore, in the order of O(m3 · qm2 · (m · t · l)!) for the

first scheme and O(m3 +m2 · l · qm2 · (m · t · l)!) for the second one.

Table 1 compares the two schemes to P–Coding [3] and SPOC [4] in terms of computa-

tional complexity, where we clearly notice that both of the schemes outperform P–Coding

and SPOC in terms of the complexity associated with an exhaustive search attack.

Table 3.1: Computational Complexity for the proposed schemes, P–Coding and SPOC.

Scheme Complexity
1stScheme O(m3 · qm2 · (m · t · l)!)
2ndScheme O(m3 +m2 · l · qm2 · (m · t · l)!)
P–Coding O(m3 · (m+ l)!)
SPOC O(m3 · qm2)

3.2.4.2 Guess probability

In a guessing attack, Eve will attempt to get the required security parameters for a

successful decryption at random from a single guess. For more on the guess probability, see

the appendix. For both of the schemes, to decrypt the encrypted matrix, the wiretapper

requires knowledge of the used L matrix with a total of ∏m−1
i=0 (qm − qi) possibilities as well

as the used permutation key with a total (m · t · l)! of possibilities , making the effective key
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space Ks being,

Ks = ((m · t · l)!)(
m−1∏
i=0

(qm − qi) (3.3)

Yielding a guess probability of,

Pg = 1
((m · t · l)!)(∏m−1

i=0 (qm − qi) (3.4)

Figures 3.5, 3.6, and 3.7 provide a comparison between the two schemes reviewed in this

chapter, SPOC, and P–Coding in terms of the guess probability of Eve with respect to the

field size, the multicast capacity, and the value of t. . Our schemes have the same level

of guess probability, which is highlighted in the aforementioned figures via their identical

(overlapping) curves. As shown in the figures, they both outperform P–Coding and SPOC

almost all the time. Note that P–Coding has a constant guess probability throughout the

three experiments because it does not depend on the field size but rather on the number of

symbols on the data packets, i.e, l.

3.2.4.3 Confusion and diffusion

Confusion and diffusion are two measures to evaluate the correlation between the key,

plaintext, and ciphertext. A cipher with good confusion would require each symbol in the

ciphertext to depend on many symbols from the key, and therefore one symbol change in

the key should affect a large number of symbols in the ciphertext. Diffusion, on the other

side, deals with how much the plaintext bits are spread on the ciphertext. In a cipher with

good diffusion, one expects that each symbol in the ciphertext depends on many symbols

from the plaintext.

Based on matrix algebra, one symbol change in the plain data matrix would induce at

most m changed symbols in the encoded data matrix (or one entire column), while one

symbol change in the encoding matrix will result in n changed symbols at most (or one

entire row). This clearly holds for SPOC, given that the entire encryption process is based

on RLNC. The same remark may be drawn about P–Coding, given that the permutation

step does not change any symbols. Concerning our proposed schemes, an increase in the

changed symbols is expected due to the T transformation and the Gauss Elimination step in

the second scheme. In Table 2, we notice an improvement of the percentage of the changed

symbols in the two proposed schemes as compared to SPOC and P–Coding. This is a result
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Figure 3.5: The comparison of the guess probability of a wiretapper vs the field size (q1)as
the source alters his security scheme between the first scheme, the second scheme, SPOC
and P–Coding with m = 4, t = 2 and l = 8.

of the used T transformation. Along with this latter factor, in Table 3, the effect of the

Gauss Elimination process is quite apparent, since one symbol change in the key has the

potential to change the entire encrypted data matrix symbols.

Table 3.2: Average percentage of changed symbols in the encrypted data matrix when one
symbol is changed in the plain data matrix for an 8× 16 matrix over F28 with t = 2 for 1000
iterations.

Scheme Changed symbols (%)
1st scheme 24.56
2nd scheme 24.56
P–Coding 6.231
SPOC 6.231

3.2.4.4 Computational Complexity and packet overhead

In this subsection, we discuss the computational complexity and the RLNC packet over-

head, which is the number of symbols added to the traditional RLNC packet, as required by
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Figure 3.6: The comparison of the guess probability of a wiretapper vs the multicast capacity
as the source alter his security scheme between the first scheme, the second scheme, SPOC
and P–Coding with q1 = 4, t = 2 and l = 8.

Table 3.3: Average percentage of changed symbols in the encrypted data matrix when one
symbol is changed in the encoding matrix for an 8× 16 matrix over F28 with t = 2 for 1000
iterations.

Scheme Changed symbols (%)
1st scheme 43.28
2nd scheme 96.13
P–Coding 12.27
SPOC 12.27

the used scheme.

Let k = m+ l. the overall computational complexity resulted from P–Coding is in the order

of O(m · k + m2 · l) and that of SPOC is in the order of O(m3 + m2 · l + M ·N ·m) where

M is the average number of re–encoding operations and N is the average number of packets

re–encoded at a given intermediate node. As for the two schemes discussed in this chapter,

the first scheme has a total complexity in the order of O(m3 + m2 · l + t ·m · l) where the
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Figure 3.7: The comparison of the guess probability of a wiretapper vs the value of t as the
source alter his security scheme between the first scheme, the second scheme, SPOC and
P–Coding with m = 4, q1 = 32 and l = 8.

first term is related to the decoding step, the second term is related to the RLNC encoding

operation at the source and the last term is related to the permutation operations at the

source and sink nodes. This latter term may be ignored given that t is a constant, which

yields a complexity of O(m3 +m2 · l). Similarly, the second scheme has a complexity in the

order of O(m3 + m2 · l + M ·N). The second term is due to the re-encoding operations on

the extra symbol required by the second scheme, similar to the SPOC scheme.

Table 4 shows the resulted run-times for our proposed schemes, SPOC, P–Coding, and

AES. Taking P-coding as a reference, one can notice that the two schemes consume 15% and

27% more time compared to that required by P–Coding. SPOC, on the other hand, requires a

57% increase and AES has an encryption time in the order of 423%. This experiment confirms

the lightweight nature of the two schemes. The results of this experiment are intuitive since

permutations are just memory re-indexing which makes P–Coding the fastest amongst all 5

schemes. In fact, in [3], the authors have already compared P–Coding with AES, in which
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its lightweight nature has been verified. As for our proposed schemes, the second scheme is

based on Gauss Elimination which consumes more time than a matrix multiplication with

the same matrix dimension. In SPOC, in addition to the matrix multiplication, the encoding

matrix is encrypted using AES, which is known to be time consuming [3].

Table 3.4: Average consumed time required for the encryption of 512 bytes in Windows 7
running on an Intel i5-2430M machine.

Scheme Time (µs)
1stscheme 1.15
2ndscheme 1.27
P–Coding 1.00
SPOC 1.57
AES 4.23

Regarding packet overhead, as shown in Table 5, the first scheme does not incur any

extra packet overhead whereas the second scheme incurs a small amount of overhead, which

is equal to unity, as a result of the extra symbol inserted for PRNG synchronization.

Table 3.5: Packet overhead resulted from the proposed schemes, P–Coding and SPOC.

Scheme Packet overhead
1stScheme 0
2ndScheme 1
P–Coding 0
SPOC m

3.2.4.5 Decoding failure probability

In this experiment, the authors considered a network with a single source s, 3 destination

nodes, 11 (encoding) intermediate nodes, and with a multicast capacity Cm = 46. 46 source

data packets are transmitted unencrypted, encrypted using the first scheme, the second

scheme, SPOC and P–Coding. Randomness has been provided via The Boost Random

Library while the permutation keys have been generated using the chaotic permutation

algorithm depicted in [68]. The source packets are re-encoded using RLNC as they travel

across the network and the sink nodes will try to decode them upon reception. To have an

estimation of the decoding failure probability, This experiment is repeated 100 times with

different field sizes and with the same q2 = 4. Figure 3.8 shows the results obtained from

this experiment.

As clearly shown in Figure 3.8, P–Coding has the same level of decoding failure proba-

bility as conventional RLNC, which is expected given that the permutation does not affect
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the RLNC encoding operations. Using SPOC or one of the two proposed schemes slightly

affects the decoding failure probability at q = 8. This difference is almost non-existent as q

gets bigger. This fact has been already explored in the literature, and it is related to the idea

that for larger q, the probability of a randomly chosen coefficient producing a rank deficiency

gets smaller.
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Figure 3.8: Decoding failure probability Vs. Field size (q1) for data transmission using plain
RLNC, SPOC, P–Coding and the proposed schemes.

3.3 On encrypting the coefficient matrix in RLNC
Another scheme that we proposed for providing data confidentiality against wiretap at-

tacks was provided in [5], where a lightweight encryption algorithm for networks using Ran-

dom Linear Network Coding (RLNC) has been proposed. The system model used for this

scheme is the same as the one used in the previous section.

3.3.1 The Proposed Algorithm
We let E = {e1, e2, · · · , e|E|} be a subset of Fm×nq , that is, the set of m×m matrices over

Fq, and let P = {p1, p2, · · · , p|P|} be a set of permutation keys. E and P are stored at the
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KDC. Note that the elements of E are deemed full-rank matrices. The source and sink nodes

will be using the same key ken ∈ E × P for the encryption and decryption operations.

3.3.1.1 Encryption

Let A be the plain data matrix and let Aaug = [I A] be its augmented version. The

effective key ken = (e, pk) is to be distributed by the KDC and it is made up of the matrix

e and the permutation key pk that are required for both of the encryption and decryption

operations. Aaug will be first multiplied by e, which yields [e eA]. The rows of e are then

permuted using pk. An RLNC encoding operation is then applied on the new version of the

augmented matrix using a local m × m matrix Lm of random coefficients. The rationale

behind this operation is to obscure the coefficient matrix used at the source node, resulting

in a meaningless decoding operation without prior knowledge of ken. The algorithm is sum-

marized as follows

Algorithm 5 Encryption Algorithm
Input: Aaug = [Im×m Am×n], pk, em×m
Output: AEnc = [Rm×m Cm×n]
Cm×n ← em×mAm×n

Rm×m ← permute(em×m, pk)
generate Lm×m

Cm×n ← Lm×mCm×n

Rm×m ← Lm×mRm×m
AEnc ← [Rm×m Cm×n]

3.3.1.2 Decryption

Upon receiving m linearly independent packets, a sink node will create a matrix B =

[R′ C ′] where R′ = Rep and C ′ = ReA with R being the global encoding matrix as seen

by the sink node and ep is the permuted version of e. Using ken, the sink node will then

try to reverse all the transformations on Aaug to obtain the source message. The following

algorithm depicts the required steps for a successful decryption.
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Algorithm 6 Decryption Algorithm
Input: B = [R′m×m C ′m×n], pk, em×m
Output: Aaug = [Im×m Am×n]
epm×m ← permute(em×m)
Rm×m ← R′m×mep−1

m×m

Am×n ← e−1
m×mR−1

m×mC ′m×n

AAug ← [Im×m Am×n]

3.3.2 Evaluation of the Proposed Algorithm
The proposed algorithm is evaluated in terms of its resilience against wiretap attacks as

well as its performance as compared with the SPOC and P-Coding.

3.3.2.1 Computational Security

We also consider a wiretapper Eave as in the previous schemes. Eave wiretaps the network

using an element w ∈ W and tries to collect any meaningful information injected by the

source into the network. The search space of Eave depends on its wiretapping capacity i.e.

|w| , the multicast capacity Cm as well the number of linearly independent vectors amongst

the wiretapped ones. The worst case scenario for the system’s security is when |w| = Cm

and all the wiretapped vectors are linearly independent. In this case, the wiretapper will

have to guess only on the used element ken = (e, pk). For Eave, e can be any full-rank m×m

matrix. The number of such matrices is

N =
m−1∏
i=0

(qm − qi) (3.5)

where q is the size of the underlying field.

The computational complexity resulted from the number of all possible matrices e will be

O(qm2). The number of all possible permutation keys will be O(m!). For every guess on ken,

the wiretapper has to perform some matrix arithmetic to find the inverse of the permuted

version of e and to apply the decoding step, each with a complexity of the order O(m2n).

The overall complexity will be much reduced If Eave chose to discard the coefficient matrix

and try all the possible full-rank matrices. This approach will yield a search complexity

in the order of O(qm2). Note that this computational complexity would be much worse if

|w| < Cm or the wiretapped vectors are not linearly independent since Eave will have to

guess on the lost information as well. Table I compares the proposed algorithm to both
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SPOC and P-coding in terms of computational complexity arising from the search space for

the worst case scenario.

Table 3.6: Computational Complexity for the Proposed Algorithm, P–Coding and SPOC

Algorithm Complexity
The proposed algorithm O(qm2)

P–Coding O((m+ n)!)
SPOC O(qm2)

As shown on the table, the minimum computational complexity guaranteed for a brute

force attack for the proposed algorithm is the same as that provided by SPOC.

3.3.2.2 Guess probability

In order to extract the source plain matrix, the wiretapper requires knowledge of the

used e matrix with a total of ∏m−1
i=0 (qm − qi) , making the effective key space Ks being,

Ks = (
m−1∏
i=0

(qm − qi) (3.6)

Yielding a guess probability of,

Pg = 1∏m−1
i=0 (qm − qi) (3.7)

FIGURE 3.9 and FIGURE 3.10 compare the guess probability of the wiretapper Eave as

a function of the multicast capacity and the field size. Both of the proposed algorithm and

SPOC enjoy the same level of guess probability that exponentially decreases as a function

of the multicast capacity Cm and the field size q. P–coding on the other side depends only

on the number of columns of the augmented matrix Aaug.

3.3.2.3 Performance Analysis

In this subsection, the three algorithms are compared in terms of the amount of com-

putational complexity required for achieving the intended security as well as the packet

overhead, which is the amount of bits added to the augmented packets to ensure successful

decoding at the legitimate destination nodes. The proposed algorithm requires two matrix

multiplications for the encryption and encoding as well as another three ones for the decryp-

tion and decoding at the level of legitimate destination nodes, each multiplication is with

a complexity in the order of O(m2n), The permutation step has a linear complexity in the
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Figure 3.9: Guess probability Vs. multicast capacity for the proposed algorithm, SPOC and
P–coding with q = 2 and m+ n = 32.
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Figure 3.10: Guess probability Vs. field size for the proposed algorithm, SPOC and P–coding
with m=8 and n=24.

order of O(m) since it is only a memory swap. At the level of the intermediate nodes, the

packets will be just RLNC encoded and therefore no computational complexity is induced

by the algorithm at the level of intermediate nodes. P–coding, on the other hand, requires

one matrix multiplication operation at the source node and another one at the destination

nodes, each with a computational complexity in the order of O(m2n) along with a permuta-

tion operation with a complexity O(m + n). The spoc algorithm is similar to the proposed

algorithm in terms of the number of matrix multiplications at the source and destination

nodes. However, this algorithm has an extra induced computational complexity at the level

of encoding intermediate nodes due to the transmission of the encrypted coefficients.

As for the transmission overhead, the proposed algorithm does not incur any extra control

information compared to conventional RLNC–encoded packets as shown in Table II.
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Table 3.7: Packet Overhead Resulted From the Proposed Algorithm, P–Coding and SPOC.

Algorithm Packet overhead
The proposed algorithm 0

P–Coding 0
SPOC m

3.4 Subspace coding based secure RLNC
In the previous section, we have reviewed two SRLNC schemes that mainly make use

of the security provided by the encryption matrix to ensure data confidentiality. However,

both of those schemes assume error-free environment, which suggests that their deployment

in real world scenarios requires the existence of another layer of error correction. In this

section, we investigate another scheme that provides both error correction and secure data

transmission for RLNC-based networks.

3.4.1 System Model
The same wiretap network used in the previous section is adopted here with slight no-

tation changes concerning the network : N = (G, s, U,We). U is used for the destination

nodes or valid users and We is the collection of sets of the wiretap edges.

For data transmission, G will maintain all of its characteristics. However, in the back-

ground an extra node that will be serving as the Key Distribution Center (KDC) is added

to the network. As per wiretapping, an illustration of this network is shown on FIGURE

3.11.

a wiretapper is limited to using one single elementW ∈ We at a time, such that |W | < Cm.

Since the wiretappers are working independently and without cooperation, we will focus our

analysis on a single wiretapper that will be referred to as Eve.

The source information is a binary stream D of nD bits. The source wants to multicast

D to the set of sinks in U using RLNC as an inner code and a subspace code as an outer code

to allow for error correction in the network. a security layer is also added to counterpart any

potential wiretapping attacks.

D will be divided into a set of bitstrings, each of length m. If m does not divide nD,

padding will be used to ensure that all bitstrings are of equal length m. A permutation

using a key Pk, distributd via the KDC, is then applied on those bitsrings. Finally, each

permuted bitsring will be encoded using a collection Sc of subspace codes. Moreover, the

source will adopt the notion of induced correctable errors, in which a set of valid vectors
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Figure 3.11: A network with one source, 10 intermediate nodes, two destination nodes and
a Key Distribution Center, with a multicast capacity Cm = 8.

in a codeword c will be replaced by a randomly generated set of erroneous vectors up to a

predefined threshold. The erroneous version of c will be RLNC-encoded and injected into

the network.

A user u ∈ U receives an RLNC-encoded version of c, with some errors, on which decoding

is applied, followed by an inverse permutation in order to get the original bitstring. Once all

those bitstrings are available, they are made into a stream that will be taken as the source

message.

The wiretapper Eve is aware of Sc and Cm. Let W ∈ We denote Eve’s wiretap edges.

The number |W | of Eve’s collected vectors will be referred to as the eavesdropping capacity

and will be denoted by Ce with,

Cm = Ce + S0. (3.8)

We call S0 the secure rate offset.
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3.4.2 The subspace coding scheme
This scheme aims to provide security against wiretapping attacks for subspace encoded

data in RLNC-based networks. It requires some operations to be carried out at the Key

Distribution Center, the source as well as destination nodes.

3.4.2.1 At the Key Distribution Center

The role of the Key Distribution Center (KDC) lies in dispatching the security parameters

and their eventual updates as required by the scheme. The design of the subspace codebook

follows the following algorithm.

1. Choose the targeted Ĉe. where Ĉe is a guess on the maximum wiretapping capacity

Ce of Eve.

2. Choose the length m of the permutation keys and the set Sc = {Ck ⊆ G(k, n) |

Cm− Ŝ0 + 1 6 k 6 Cm} of Grassmannian codes in the projective space P(n) with Ŝ0

being the guess on the secure rate offset resulted from the guess on the wiretapping

capacity. The selection of those parameters have to satisfy the following conditions:

(a) The number of symbols in A = ∑Cm

k=Ĉe+1
|Ck| has to satisfy: A ≥ 2m.

(b) ∀Ck ∈ Sc, dCk
≥ 2Ĉe + dmin, where dCk

is the minimum subspace distance

of the code Ck and dmin is the minimum distance required for optimal error

correction on the network.

3. Let Ssym = ⋃Cm

k=Ĉe+1
Ck. Randomly create a surjective mapping θ : Ssym −→ {0, 1}m.

The KDC also creates the set ET of the encrypted tags such that there is a bijective

mapping φ : {Ĉe + 1, Ĉe + 2, · · · , Cm} −→ ET . Those tags carry information about the

dimension of the transmitted codeword.

For security purposes, ET , θ and φ are updated regularly by the KDC depending on

its security policy. Note that the use of the encrypted tags requires the adoption of CDC

instead of MDC in the code structure.

3.4.2.2 At the source

Three steps are required at the source:

1. D Permutation

D is divided into a set of l permutable bitstrings, each of length m. Those strings will

undergo a permutation using a permutation key Pk delivered by the KDC. Note that if the
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last string has a length inferior to m, padding will be used. At the end of this step, the

strings are concatenated again to form Dp, the permuted version of D.

2. Data Encoding

In RLNC, we usually opt for the maximum transmission rate Cm. While this will allow

for optimal throughput, it results in a vulnerability that may be exploited by potential

wiretappers. If Eve succeeds in decoding one generation, she will not need to guess on the

dimension again but only on the basis. To solve this problem, we will be using a varying

transmission rate R with,

Ce + 1 ≤ R ≤ Cm. (3.9)

Each permuted string out of the l substrings will be transformed into a codeword. Those

codewords will also be referred to as generations since, at every transmission round, a code-

word is sent. The used subspace codes, and consequently the codewords, differ in dimension

as specified by equation (3.9), with the possibility that many codewords may be used to

represent the same information. This variety in codeword dimension will increase the data

transmission security by increasing Eve’s search space.

This step is based on Eve’s eavesdropping capacity Ce. However, due to the passive

nature of wiretapping attacks, Eve is essentially undetectable and therefore the KDC cannot

deterministically figure out Ce. Consequently, the KDC will decide a priori on the guaran-

teed level of transmission security by specifying a value for Ce as indicated in the previous

subsection. This value is denoted by Ĉe. The secure rate offset in this case will be denoted

by Ŝ0. The source then alters the transmission rate R in the following interval,

Ĉe + 1 ≤ R ≤ Cm. (3.10)

This is achieved using the Subspace Coding Strategy (SCS) defined below.

Definition 24. Given a network with a multicast capacity Cm and a substring length of m,

the subspace coding strategy (SCS) is a quintuple (P(n), Ŝ0,Sc, θ, φ). where,

(i) P(n) is the projective space of dimension n over Fq.

(ii) Ŝ0 is a positive integer called the secure rate offset.

(iii) Sc = {Ck ⊆ G(k, n) | Cm − Ŝ0 + 1 6 k 6 Cm} is a set of Grassmannian codes in

P(n).
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(iv) θ : Ssym −→ {0, 1}m is a randomly generated surjective mapping with Ssym =⋃Cm

k=Ĉe+1
Ck.

(v) φ : {Ĉe + 1, Ĉe + 2, · · · , Cm} −→ ET is a bijective mapping, assigning to each

dimension d ∈ {Ĉe + 1, Ĉe + 2, · · · , Cm} an encrypted tag from the set ET .

The use of the SCS strategy dictates the codebook to be a collection of Grassmannian

codes with different dimensions. The set Sc and the mappings θ and φ, as well as the set

ET , are provided by the KDC as we have previously noted.

3. Error based security

Let 〈V 〉 ∈ C denote the chosen codeword for the current generation where C ∈ SC . Let

dC denote the minimum subspace distance of the code C. Before injecting the codeword

into the network, the codeword 〈V 〉 is transformed into 〈Ve〉 such that d(〈V 〉, 〈Ve〉) = Ĉe.

Recalling that, dC ≥ 2Ĉe + dmin, the destination nodes will still be able to extract the valid

codeword since network random errors have already been covered by dmin. On the other

hand, those intended errors will be used to increase the security of the system by reducing

the effectiveness of arranging the possible codewords based on their distance measure from

the subspace spanned by the wiretapped vectors when performing the exhaustive search

attack as explained later in this paper.

At the end of this step, the source RLNC–encodes the codeword and injects it into the

network. Note that an encrypted tag is attached to each one of its vectors to specify the

dimension of the used subspace for successful decoding.

3.4.2.3 At destination nodes

To reverse the operations that have been carried out at the source node, two steps are

required by the destination nodes to extract the source message.

1. Data Decoding

Using one of the received packets, a destination node will extract the encrypted tag and

use the lookup table to get the dimension of the transmitted codeword. Upon receiving a

number of innovative packets equal to the codeword dimension, decoding is carried out to

get the bitstring that corresponds to the received codeword. This step will be repeated for

all the received codewords until all of them are successfully received and decoded.

2. Inverse Permutation

After a codeword is decoded, the resulted bitstring will undergo a reverse permutation

to get the original bitstring. Once all the bitstrings are available, they are joined together
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to form the source datastream D.

3.4.3 Security Analysis
An exhaustive search attack is considered where Eve wiretaps the network and tries to

guess the source message. Depending on how Eve may attempt to solve this problem, two

possible approaches may be adopted.

3.4.3.1 First Approach

In this approach, Eve assumes that at least some of the innovative vectors in the set

of the wiretapped vectors are valid i.e belong to the subspace 〈V 〉 where 〈V 〉 is the valid

codeword for the current transmission round. If this assumption turns out to be valid, Eve

may help reduce its exhaustive search attack complexity at the expense of more decoding

complexity. two steps may be required to carry out the exhaustive search attack, a decoding

step and an exhaustive search step.

1. The decoding step: As seen earlier, at every transmission round, the source will

inject a subspace 〈Ve〉, which is an erroneous version of 〈V 〉. Eve will receive a subspace 〈W 〉

where W is a set whose elements are the wiretapped vectors. In addition to the unknown

dim(〈V 〉) − |W | rank deficiency that is experienced by Eve. 〈W 〉 may itself be affected by

the erroneous vectors used to get 〈Ve〉 as well as possibly other network-induced errors. With

all the aforementioned information taken into account, in this first approach, the wiretapper

will assume that the received subspace 〈W 〉 contains itself some valid subspace that will be

used to reduce the number of possibilities concerning the transmitted codeword.

Regardless of the used subspace code, a decoder at a legitimate user node will always

try to output the best codeword. For example, if a legitimate user receives a subspace 〈T 〉

with the knowledge of the used subspace code, a distance decoder will output 〈V̂ 〉 as an

estimation of the transmitted codeword 〈V 〉 if the the following condition is satified,

∀X ∈ C, dC(〈V̂ 〉, 〈T 〉) ≤ dC(〈X〉, 〈T 〉) (3.11)

where C is the subspace used in the transmission and dC(·, ·) is the distance measure on C.

Such decoders are not of much interest to Eve given the fact that they will consider the

unknown dim(〈V 〉) − dim(〈W 〉) as erasures and they can at best produce one codeword

as a possible estimation for the valid codeword 〈V 〉. Therefore, from Eve’s perspective,

the decoder’s criteria for decoding have to change in such a way that the aforementioned
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problems are addressed i.e. the unknown dim(〈V 〉) − dim(〈W 〉) are not taken as erasures

and all the possible codewords have to be output. Given the lack of information surrounding

the subspace 〈V 〉, a possible decoder for Eve may try to produce a set V for every wiretapped

set W as follows,

V = {V ∈ C, ∀C ∈ SC | dC(〈V 〉 ⊕ 〈W 〉, 〈V 〉) ≤ dCmin
/2} (3.12)

where dCmin
is the minimum distance of the subspace code C.

The problem with this decoder is the complexity arising from having to check all the

codewords in Ssym. To check the distance between two subspaces 〈V 〉 ⊕ 〈W 〉 and 〈V 〉, Eve

may multiply a transposed version of the matrix representing the subspace 〈W 〉 by that

representing 〈V ⊥〉 where 〈V ⊥〉 is the dual subspace of 〈V 〉 and output dC(〈V 〉 ⊕ 〈W 〉, 〈V 〉)

as the number of nonzero columns in the resulted matrix, similar to syndrome decoding in

classical coding theory. This latter approach will produce a decoding complexity of O(n ·

|W | · dim(C)) for every measure of the distance. Even for an optimized version of Eve’s

decoder, Eve will still have to check all the possible |Ssym| codewords due to the dimension

deficiency in the wiretapped sets. Eve may choose to arrange the possibilities according to

the obtained value of dC . Note that the use of the induced errors is meant to weaken this

latter strategy by altering the value of dC . At the end of this step, every set V will be

transformed into a setM of message strings.

2. An illustration of the decoding step: As an illustration of the distance measure

of the aforementioned decoder, consider a source using the SCS strategy with Ce = 4 and

an Sc containing the code C(12, 5, 6) with q = 2 constructed using [69], where the first two

quantities are the size of the ambient finite field and the code dimension respectively, while

the last number is the minimum subspace distance of the code. Suppose now that, at a given

transmission round, a codeword 〈V 〉 from this subspace code as represented by the matrix

shown in Figure 3.9.a is transmitted (after inducing the errors). In this case, the dual space

of the used codeword will be the one shown in Figure 3.9.b. Now suppose that Eve has an

eavesdropping capacity Ce = 4 and the received matrix is that of Figure 3.9.c. After the

multiplication of the matrix representing the dual space of the transmitted codeword by the

received matrix, Eve will obtain a 7 × 4 matrix as shown in Figure 3.9.d. Given that the

number of nonzero columns is inferior or equal to half of the minimum distance of the code,
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Eve may choose to consider the codeword represented by the row vector space of this matrix

as a possible transmitted codeword.


1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0


(a) The matrix V representing the codeword 〈V 〉



0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


(b) The matrix V ⊥ representing 〈V ⊥〉, the dual
subspace of 〈V 〉


0 1 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0


(c) the matrix W representing the wiretapped sub-
space 〈W 〉



0 1 0 0
0 0 1 1
0 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(d) the resulted matrix of multiplying V ⊥ by the
transpose of W

3. The exhaustive search step: Let SW = {W1,W2, ···,Wl} withWi being the set of

the wiretapped vectors at the ith transmission round. Once the decoding step is carried out

for all the elements of SW , we will end up with a setMW = {M1,M2, ···,Ml} withMi being

the set of all possible data strings resulted from decoding 〈Wi〉. The concatenation of the

elements of the tuples in ∏i=l
i=1Mi will produce the different possible values of the permuted

string Dp. For every such stream, Eve will keep trying all possible permutations until a

meaningful data stream is found. This latter stream will be taken as D. The complexity of

this step is O(m!|∏i=l
i=1Mi|) which is related to the different possible arrangements for Dp

and the overall number of possible permutations.

3.4.3.2 Second Approach

In this approach, Eve will focus on the possibility that all the received vectors are erro-

neous and therefore she skips the decoding step and simply treats all the codewords in |Ssym|

as possible guesses. This approach is less risky and eliminates the complexity that arises

from the decoding process at the expense of more combinatorial complexity. The second

step is the same as the first approach. The overall complexity of this approach will therefore
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be O(m! · |Ssym|l).

3.4.3.3 Comparison of the two approaches

The first approach might be useful if the permutation key is too large that Eve is willing

to afford more decoding complexity to reduce the cardinality of the elements of MW and

hence reducing the overall complexity resulting from trying the m! possible permutations

|∏i=l
i=1Mi| times. Note that using a decoder similar to the one discussed in the previous

section will not be useful if the real wiretapping capacity satisfies dC ≥ 2Ce for all the codes

in SC . Eve may use this latter inequality to decide on the approach, which is the basis of

the following corollary.

Corollary 1. Maximum combinatorial complexity is obtained when dCmin/2 ≥ Ce for all

codes C ∈ Sc.

Proof. The proof stems from the fact that when this inequality is satisfied. Eve will have to

treat all the codewords as possible guesses.

3.4.3.4 Comparison with other schemes

Table 3.6 provides a comparison of the exhaustive search complexity between our pro-

posed scheme, the universal secure network coding scheme [61] (denoted as USNC in this

paper), SPOC [4] and P–coding [3] for a wiretapper with Ce < Cm. The USNC complexity

was estimated given the fact that Eve will have to guess on the missed packets. As for SPOC

and P–coding, the guess on the missed packets has to be followed by a guess on the secu-

rity parameters for each scheme which are the permutation key and the locked coefficients,

respectively.

The USNC scheme provides both security and error correction to the transmitted data

by using rank–metric codes as outer codes without altering the network code used for trans-

mission. SPOC and P–coding, on the other side, are secure RLNC schemes that provide

data confidentiality by securing the coefficient matrix. This latter is encrypted in SPOC and

hidden using a permutation cipher columnwise in P–coding. However, neither of those two

schemes incorporate an error–correction solution. Note that DC and D′C denote the overall

decoding complexity for the first approach of our scheme and that of USNC, respectively.

Each decoding step by Eve has a complexity in the order of O(n · |W | ·dim(C)) where C ⊂ S,

for the first approach of our proposed scheme and O(Cm ·n) for the universal secure network

coding scheme.
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The exhaustive search complexity for our scheme (both approaches) depends on the

number of possible codeword combinations as well as the factorial complexity arising from

the permutation of the substrings at the source. Its complexity partially depends on Ce

since the search complexity depends on m as well. USNC’s search complexity depends only

on the number of possibilities for the missed packets, making this scheme’s security highly

dependent on Ce. When Ce ≥ Cm, USNC will no longer be considered secure. In SPOC and

P–coding, the search complexity depends on the number of missing packets as well as the

security parameters of the two schemes.

Table 3.8: Computational complexity for the proposed algorithm, USNC, P–Coding and
SPOC.

Scheme Search Complexity
The proposed scheme (1st approach) O(m!|∏i=l

i=1Mi|+DC)
The proposed scheme (2nd approach) O(m! · |Ssym|l)

USNC O(q((Cm−Ce)·n) +D′C)
P–Coding O(q((Cm−Ce)·n) · (m+ n)!)
SPOC O(q((Cm−Ce)·n) · qm2)

3.4.4 Scheme Evaluation
This scheme is an error-correcting scheme that is also intended to be used to secure data

transmission via the use of two main operations:

1. A permutation step.

2. A dimension hiding step with error induction.

Both of the two operations are meant to increase the computational complexity of an

exhaustive search attack of a given adversary. While the first step does not technically make

any assumptions on Eve’s wiretapping capacity, the second one targets a very specific set

of wiretappers by guessing their wiretapping capacity Ce. This guess is used to specify the

possible codeword dimensions to be used as well as their required subspace distance.

In this section, we evaluate our scheme in terms of its security as well as its performance.

To achieve that, we have adopted the network shown in Figure 3.13 and a bitstream of 120

bits as the source D stream and we set our environment such that dmin = 3 i.e. single errors

are more probable than multiple errors. We let Ĉe = 3. In this case, the codes to be used

have to satisfy a minimum distance d ≥ 9. Using these requirements we have opted for

m = 11 with a set Sc = {C5, C6, C7, C8} where the characteristics of the used codes are stated
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in Table 2. Note that we have excluded the 0 codeword from the θ mapping for each code

from SC

Figure 3.13: A network with one source, 10 intermediate nodes, two destination nodes and
a Key Distribution Center, with a multicast capacity Cm = 8.

Table 3.9: The characteristics of the codes of Sc.

Code C5 C6 C7 C8

Ambient vector space F16
2 F16

2 F16
2 F16

2
Dimension 5 6 7 8

Cardinality -1 2048 1024 512 256
Minimum subspace distance 10 12 14 16

The elements of the used SC are subspaces from the 16-dimensional ambient vector

space over F2. Those codes are taken from [70] where they have already been evaluated and

classified. RLNC in this case will be equivalent to XOR encoding where output packets of

a given node are created by XORing its incoming packets. To solve the problem of erasures

that may be induced due to the underlying field size, we have adopted the network in Figure

3.13 where erasures resulting from encoding operations are excluded. The red edges on the
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figure represent the edges that can be wiretapped by Eve for our experiment i.e. 0 ≤ Ce ≤ 8,

where 0 means that Eve has no access to network edges. We have chosen the worst case

scenario where the wiretapped vectors are all linearly independent.

Figure 3.14 shows the effects of the real capacity on the search space for one transmission

round with Eve using the first approach i.e. selecting only the possible codewords. As shown

in Figure 3.14, the combinatorial complexity arising from the number of possible codewords

depends on the validity of the guess Ĉe.
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Figure 3.14: The search space cardinality for one transmission round Vs. Eve’s wiretapping
capacity.

To illustrate the effect of the errors induced by the source on Eve’s attack, we send a

codeword twice. The first time we send the codeword without any induced errors and the

second time, we send it with errors as specified by the scheme. Figure 3.15 shows that a

valid codeword will always maintain a zero distance with the wiretapped subspace, which

is expected, compared to the one with the induced errors. This difference will be useful

if Eve adopts the strategy of ranking the possible codewords according to how much the
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subspace spanned by the wiretapped vectors is close to a given codeword as specified by the

decoder. As we can see in Table 3.8, the greater Ce, the more the effects of the induced

errors are reduced since the real codeword will tend to be closer to the subspace spanned

by the wiretapped vectors compared to the other codewords. In this scenario, the effects of

the dimension hiding step will practically be less effective and the system security will be

guaranteed by the permutation step.
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Figure 3.15: The distance between the valid codeword and the subspace 〈W 〉 with and
without the induced errors Vs. Eve’s wiretapping capacity.

The guess probability of Eve is,

Pg = 1
m!|∏i=l

i=1Mi|
(3.13)

where m! results from the number of all possible values of the m-bit string and ∏i=l
i=1Mi

results from the number of possible codewords that can have been transmitted by the source

as indicated by Eve’s distance decoder shown in Figure 3.16 for our proposed scheme, USNC,

SPOC and P–coding. This quantity depicts the probability that Eve gets the source infor-
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Table 3.10: The number of codewords Vs. their distance from the wiretapped subspace 〈W 〉
as specified by the distance decoder as Eve’s wiratapping capacity changes.

Ce
d 0 1 2 3 4 5 6 7 8

1 4 3836 0 0 0 0 0 0 0
2 0 8 3832 0 0 0 0 0 0
3 0 0 12 3828 0 0 0 0 0
4 0 0 0 24 3816 0 0 0 0
5 0 0 0 12 4 3824 0 0 0
6 0 0 0 4 2 10 1779 0 0
7 0 0 0 2 2 2 7 759 0
8 0 0 0 1 1 1 1 5 251

mation by making a random guess based on the information obtained from the wiretapped

vectors. In our scheme, this quantity is related to the number of combinations in terms of

the possible codewords and the number of permutations of the m bitstring at the source.

While this latter is not affected by Ĉe, the number of possible codewords depends on it as

shown in Figure 3.14. Therefore, the search space of the wiretapper decreases as the wire-

tapping capacity exceeds its guessed value and as Ce reaches the multicast capacity Cm of

the network, the wiretapper will find it easier to deduce all the valid codewords. The se-

curity of the system against those wiretappers will be maintained by the permutation step.

The guess probability using USNC is related to the number of all possible missing packets.

Along with this latter, SPOC requires also to guess the right encoding coefficients that are

locked. While in P–coding, the main guess will be on the right column permutation. In this

experiment, we notice that SPOC and P–coding have better guess probability compared to

our scheme and USNC. Those latter two are close in terms of performance. However, USNC

will provide no security as Ce reaches Cm.

Figure 3.17 focuses on the case when Ce = Cm by providing a comparison between our

scheme, SPOC and P–coding in terms of Eve’s guess probability with len = 24 where len

is the length of the RLNC packets for SPOC and P–coding given that in RLNC without

subspace coding, the coefficient headers are sent along with the packets. As stated above,

the security of the system at this stage depends mostly on the permutation step.

Table 3.9 provides a general comparison of our scheme with USNC, SPOC and P–coding

in terms of confidentiality, error correction and encryption time. The four schemes provide

data confidentiality for the transmitted data when Ce < Cm with varying complexity as

shown in Figure 3.16 and Table 3.6. Our scheme, P–coding and SPOC will maintain the
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data confidentiality when Ce = Cm, This is not true for USNC since the security is only

guaranteed as long as Ce < Cm. Note that the scenario when Ce > Cm is excluded since

the extra capacity will not provide additional information. As for error correction, only the

proposed scheme and USNC provide such feature. SPOC and P–coding are only designed

for security purposes and therefore additional enhancements should be made before being

deployed in a lossy network. Concerning time comparison, 512 bytes of data were encrypted

using the four schemes. Our scheme slightly exceeds the time required by the lightweight

scheme P–coding followed by SPOC and USNC. The reason for the lightweight nature of

our scheme stems from the fact that the only operations performed by the source are the

permutation step and the codeword selection which are lightweight given that they are just

memory swap and memory indexing operations, respectively. Note that the time experiment

was repeated 100000 times and their expected value was taken. Moreover, to avoid the

bias from the operating system scheduler, the ThreadMXbean interface in Java was used to

measure the time individually consumed by the thread.

Table 3.11: Comparison between our scheme, USNC, SPOC and P–coding.

Scheme The proposed scheme USNW P–coding SPOC
Confidentiality for Ce ≤ Cm Yes Yes Yes Yes
Confidentiality for Ce = Cm Yes No Yes Yes

Error correction Yes Yes No No
Encryption time in µs (512 bytes) 1.27 2.49 1.00 1.57

3.5 Conclusion
In this chapter, RLNC has been investigated from a security perspective. We have

proposed Four schemes that aim for preserving confidentiality of RLNC-encoded data during

transmission. The first three schemes were based on the encryption of the encoding matrix in

addition to other steps. Those schemes were proposed for error-free environments to highlight

the intrinsic security of RLNC that is mainly a byproduct of the idea of packet mixing. In the

last scheme, we opted for data security in erroneous environments, where we have shown that

error correction codes in RLNC can also be deployed for security against wiretap attacks. The

scheme that has been proposed is a security scheme for constant dimension codes. It is based

on a permutation step applied on the source data stream followed by the application of the

SCS to create an ambiguity concerning the dimension of the subspace used for the encoding

operation as a way to increase the search space of a wiretapping attack. Correctable errors
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are also induced into the codewords before transmission. While in general, we prefer error-

free transmission, correctable errors can serve as an enhancement of data security against

wiretap attacks as they help mislead the wiretapper by decreasing the efficiency of ranking

the possible codewords according to their distance from a given valid codeword. Results

show that our scheme performance is based on the correctness of the guess Ĉe as well as

the value of m. When Ce reaches Cm, the system security will be mainly maintained by the

permutation step. For error free-environment SPOC and P-coding are more secure than our

proposed scheme. However, With a suitable value of m, our scheme may be able to provide

security for all values of Ce with a performance that can reach that provided by SPOC and

P–coding. However, those latter schemes have been proposed only for lossless environments,

making the proposed scheme more adequate for real-world lossy networks.
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General Conclusions and Perspectives

This thesis reflects an interest in Error Control in Random Linear Network Coding. The

problem of error propagation in RLNC overwhelms any end-to-end classical error correction

code that is designed for the hamming metric due the packet mixing feature that characterizes

NC schemes. To solve this problem, subspace codes were proposed by [41]. In those codes,

codewords are vector spaces from an ambient vector space over the underlying finite field Fq.

The channel used for those codes is the operator channel that treats errors as a combination

of erasures and insertions. Erasures are the result of a decrease in the dimension of a

transmitted codeword, whereas an insertion is an increase in its dimension. This increase is

a result of combining corrupt packets with valid ones at the encoding intermediate nodes.

This channel is virtual in nature and simplifies the complexities of the different links in the

network making it more appropriate for noncoherent scnenarios.

Given that data is essentially transmitted as vector spaces in RLNC, the use of subspace

codes as outer codes on top of RLNC is a logical approach. In this thesis, we tried to inves-

tigate those codes from error control and security perspectives in which we have proposed

a security transmission scheme to allow for secure data transmission of data encoded using

constant dimension codes. The proposed scheme is a combination of a permutation step

and the application of the SCS to create an ambiguity concerning the dimension of the sub-

space used for the encoding operation. This ambiguity is meant to increase the dimension

of the search space of the wiretapper. Correctable errors are also induced to help mislead

the wiretapper by decreasing the efficiency of ranking the possible codewords according to

their distance from the valid codeword.

The scheme has been analysed theoretically and compared to other secure schemes for

RLNC in the literature. Results have shown that with a suitable value of m, our scheme will

be able to provide security for all values of Ce with a performance similar to other schemes

in the literature such as SPOC and P–coding while deployed in real world situations where

errors cannot be excluded.

In this thesis, we mainly focused on subspace codes from an error control perspective,

especially when combined with a security scheme to offer both data integrity and trans-

mission security. However, we have also obtained results that belong to the area of RLNC

and SRLNC. In RLNC, a novel encoding scheme that reduces the number of multiplicative
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operations in RLNC has been introduced to reduce the encoding complexity in RLNC. On

the other hand, three security schemes for RLNC have been also proposed. Those schemes

rely on securing the coefficient matrix along with other steps to provide confidentiality to

the transmitted data.

In our future work, we aim to continue our work on error correction and security in

RLNC. As for error correction, we are working on the design of a list-decoder for subspace

codes that is based on the hamming distance and the subspace distance at the same time. A

novel construction for subspace codes that links classical error correcting codes to subspace

codes is also underway. As for security, we will be working on how to provide other forms of

security to RLNC networks such as authentication.
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Appendix

4.1 Guess Probability
Let Enc be an encryption scheme that encrypts a plain text Tp into an encrypted text

Te using an encryption key Ek from a key space Ks. Let Eve be a wiretapper that knows

everything about the encryption scheme except for the used keys. Eve obtains a copy of Te
and tries to obtain the Ek in order to get the transmitted plain text Tp. We define the guess

probability Pg as being the probability of successfully guessing the right encryption key Ek
from a single trial. Assuming uniform distribution on the key space Ks as observed by Eve,

Pg will be given as

Pg = 1
|Ks|

In the case of uniform distribution, this probability is uniquely determined by the cardi-

nality of the key space. This metric is used usually to attest the security performance of a

given encryption scheme [71].

As an illustration of the guess probability, consider the AES–256 encryption scheme. In

this case |Ks| = 2256. Hence,

Pg = 1
2256 ≈ 8.64× 10−78

For encryption schemes that are composed of many steps such as 3DES and where all keys

are uniform random variables, at least as observed by the wiratapper, the cardinality of

the effective key space will be the multiplication of the different cardinalities for all the key
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spaces.

In 2-Key 3DES

The key space cardinality is :256 × 256 = 2112

The guess probability

Pg = 1
2112 ≈ 1.96× 10−34

In 3-Key 3DES

The key space cardinality is : 256 × 256 × 256 = 2168

The guess probability

Pg = 1
2168 ≈ 2.67× 10−51

A more interesting illustration of the guess probability for our purposes on this thesis is

that related to SPOC. In SPOC, the coefficient matrix used at the source is encrypted and

another encoding matrix is attached to the data matrix for storing the encoding operations

performed across the network. A simple brute force attack on SPOC will be to try all

possible keys that can be used to encrypt the coefficient matrix. If the encoding matrix is

an m×m matrix over some finite field Fq, the number of all possibilities will be qm2 , which

is all possible m×m matrices over Fq. However, a better strategy for a search space attack

will be to search for the plain version of the encrypted coefficient matrix instead of the key

that has been applied to it. The rationale for this is that, any matrix can be used as a key.

However, only full rank matrices are used as coefficient matrices. In this case, the attacker

will neglect all matrices that have a rank inferior to m in order to reduce its key space. It

happens that the number of full rank matrices over Fq is ∏m−1
i=0 (qm − qi) and therefore the

guess probability will be,

Pg = 1∏m−1
i=0 (qm − qi)

For an 8× 8 coefficient matrix over F4

Pg = 1∏7
i=0 (48 − 4i)

= 1
65535× 65532× 65520× 65472× 65280× 64512× 61440× 49152
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≈ 4.27× 10−39

As it is shown from the number of keys or from the expression of the guess probability. The

value of this latter is a decreasing function of m and q. For high values of q and m, this

probability will be extremely low which shows that such systems are secure against guessing

attacks. For instance, when m = 16 and q = 4,

Pg = 1∏15
i=0 (416 − 4i) ≈ 1.08× 10−154

4.2 Preliminaries on abstract algebra

4.2.1 Basics
In this section, we review the algebraic structures that are used in the theory of subspace

codes as well as some related definitions. The first of those definitions is that of the group,

which is fundamental to all other structures.

Definition 25. A group G is a set X with an operation ◦ : X × X → X satisfying the

following axioms:

(i) Identity: There exists an element e ∈ G such that for any f ∈ G we have e ◦ f =

f ◦ e = f .

(ii) Inverses: For any element f ∈ G there exists f−1 ∈ G such that f ◦ f−1 = e.

(iii) Associativity: For any f, g, h ∈ G, we have (f ◦ g) ◦ h = f ◦ (g ◦ h).

In subspace coding, or more specifically, in orbit codes, the theory of group actions

is fundamental. Group actions may be seen as homomorphisms from a group G to the

symmetric group of a set X. In other words, when a group acts on a set, the elements of

that group will be applied to the elements of the set to yield new elements of the set. A

formal definition of group actions may be summarized as,

Definition 26. Let G be a group and X be a set. We say that G acts on X from the right

or that there is a right action of G on X if there exists a mapping,

φ : X ×G→ X

(x, g) 7→ x · g
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satisfying the following axioms:

(i) e · x = x for every x ∈ X, where e denotes the identity element of the group G.

(ii) g · (h · x) = (g · h) · x for every x ∈ X, every g in G, and every h in G.

Note that the previous definition is for right group actions. the same definition can be

formulated for left group actions.

Group actions will intuitively induce the following equivalence relation R.

∀x, y ∈ X xRy ⇔ ∃g ∈ G, x = g · y (4.1)

The equivalence classes that result from R are called the orbits of G. A formal definition of

them is provided as follows,

Definition 27. Let G be a group and let X be set. The orbit of an element x ∈ X is defined

as,

xG = {x · g|g ∈ G} (4.2)

We denote by X/G the set of all orbits of G on X.

X/G = {xG|x ∈ X} (4.3)

While orbits may be seen as the set whose elements are the objects resulted from the

action of G on a single element of X, the stabilizer of an element x ∈ X are the elements of

G that keep x unchanged under the action of G.

Definition 28. Let G be a group and let X be set. The stabilizer of an element x ∈ X is a

subset StG(x) ⊆ G satisfying,

StG(x) = {g ∈ G|x · g = x} (4.4)

The theory of orbits and stabilizers has been proven to be useful in the construction of

constant dimension codes [59], [60].

The most important structures in RLNC as well as in subspace coding are undoubtedly

fields and vector spaces. Both of these structures are defined below.
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Definition 29. A field F is a closed set under the two binary operations (+) and (·), such

that,

(i) F is an abelian group under the additive binary operation (+).

(ii) F\{0} is an abelian group under the multiplicative binary operation ( ·).

(iii) ∀a, b, c ∈ F, a · (b+ c) = a · b+ a · c.

Definition 30. Let V be a set. We say that V is a vector space if V is an additive abelian

group with a field action. A vector space V may also be defined in terms of the following

axioms.

(i) V is an abelian group under the additive binary operation.

(ii) ∀a, b ∈ F and v ∈ V , (a+ b)v = av + bv.

(iii) ∀a ∈ F and u, v ∈ V , a(u+ v) = au+ av.

(iv) ∀a, b ∈ F and v ∈ V , a(bv) = a(bv).

(v) ∀v ∈ V , 1F ·v = v, where 1F is the multiplicative identity of the multiplicative group

F\{0}.

We call any set of linearly independent vectors of a vector space V a basis of V if its

cardinality is maximum, i.e. there is no other set of linear independent vectors in V whose

cardinality is greater than the cardinality of the basis. The number of vectors in a basis is

referred to as the dimension of V . A subset of a vector space V that satisfies all the axioms

of a vector space is called a subspace of V . In subspace coding, two important sets that are

related to the set of subspaces of some vector space V are : the projective space P and the

Grassmannian G, defined below,

Definition 31. Let V be a vector space of dimension n ≥ 2 over a field F. Let 0 ≤ k < n be

an integer. Then, the Grassmannian G(k, n) over F is defined as the set of all k-dimensional

subspaces of V.

The number of distinct k-dimensional vector spaces in an n-dimensional vector space V

over a finite field F with q elements is given by

n
k


q

, where

n
k


q

is called the Gaussian
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coefficient or the q-analog of the binomial coefficient and is defined as,

Gk =

n

k


q

= (qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)
(qk − 1)(qk−1 − 1) · · · (q − 1)

=
k−1∏
n=0

(qn−i − 1)
(qk−i − 1) . (4.5)

Definition 32. The set of all subspaces of an n-dimensional vector space V over a finite field

F with q elements is called the projective space P(n) or the projective geometry of dimension

n− 1 over F .

The reason of the label "projective geometry" is due to the geometric properties of this

structure. Note that in this thesis, we only think of the projective geometry as a set of

subspaces. To relate the definition of the projective space to that of the Grassmannian,

consider the following equation.

P(n) = ∪0≤k≤n G(k, n). (4.6)

4.3 Theorems and proofs

4.3.1 The subspace distance
Theorem 5. The subspace distance ds(·, ·) defined as,

∀u, v ∈ P(n), ds(u, v) = dim(u ∪ v)− dim(u ∩ v). (4.7)

is a metric on P(n).

Proof. To prove that dS is a metric on P(n), we need to show that,

1. dS(U, V ) ≥ 0 with equality if and only if U = V , ∀U, V ∈ P(n).

2. dS(U, V ) = dS(V, U), ∀ U, V ∈ P(n).

3. dS(U, V ) ≤ dS(U,W ) + dS(W,V ), ∀ U, V,W ∈ P(n).
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The two first conditions are clearly true given the properties of the dim(·) function. For the

last one, we need to prove that ∆ = dS(U, V )− dS(U,W )− dS(W,V ) ≤ 0.

Note that,

d(U, V ) = dim(U + V )− dim(U ∩ V ) (4.8)

= dim(U + V )− (dim(U) + dim(V )− dim(U + V ))

= 2dim(U + V )− dim(U)− dim(V ) (4.9)

Based on this, one can get the following,

1
2∆ = dim(U ∩W ) + dim(V ∩W )− dim(W )− dim(U ∩ V )

= dim(U ∩W + V ∩W )− dim(W ) + dim(U ∩ V ∩W )

− dim(U ∩ V ) (4.10)

One can notice that dim(U∩W+V ∩W )−dim(W ) ≤ 0 and dim(U∩V ∩W )−dim(U∩V ) ≤ 0.

Hence, ∆ ≤ 0 and dS(·, ·) is indeed a metric on P(n).

4.3.2 The injection distance
Theorem 6. The injection distance dI(·, ·) defined as,

∀u, v ∈ P(n), dI(u, v) = max{dim(u), dim(v)} − dim(u ∩ v). (4.11)

is a metric on P(n).

Proof. Similar to what we have done in the previous proof, we only need to prove the triangle

inequality. Since we have shown that the subspace distance is a metric on P(n), proving

that the injection distance dI(·, ·) is also a metric will be easier.

dI(U, V ) + dI(V,W ) = 1
2(dS(U, V ) + dS(V,W )) +max{dim(U), dim(V )}+max{dim(V ), dim(W )}

− 1
2(dim(U) + 2dim(V ) + dim(W ))

85



≥ 1
2dS(U,W ) +max{dim(U), dim(V )}+max{dim(V ), dim(W )}

− 1
2(dim(U) + 2dim(V ) + dim(W ))

≥ 1
2dS(U,W ) +max{dim(U), dim(W )} − 1

2(dim(U) + dim(W ))

= dI(U,W ) (4.12)

86



Bibliography

[1] R. Ahlswede, Ning Cai, S.-Y.R. Li, and R.W. Yeung. Network information flow. IEEE

Transactions on Information Theory, 46(4):1204–1216, July 2000.

[2] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong. A ran-

dom linear network coding approach to multicast. IEEE Transactions on Information

Theory, 52(10):4413–4430, 2006.

[3] P. Zhang, C. Lin, Y. Jiang, Y. Fan, and X. Shen. A lightweight encryption scheme for

network-coded mobile ad hoc networks. IEEE Transactions on Parallel and Distributed

Systems, 25(9):2211–2221, 2014.

[4] J. P. Vilela, L. Lima, and J. Barros. Lightweight security for network coding. In IEEE

International Conference on Communications, pages 1750–1754, 2008.

[5] Mohamed Amine Brahimi and Fatiha Merazka. A secure algorithm for random linear

network coding. In 2020 IEEE 5th International Symposium on Smart and Wireless

Systems within the Conferences on Intelligent Data Acquisition and Advanced Comput-

ing Systems (IDAACS-SWS), pages 1–4, 2020.

[6] Y. Fan, Y. Jiang, H. Zhu, and X. Shen. An efficient privacy-preserving scheme against

traffic analysis attacks in network coding. In IEEE INFOCOM, pages 2213–2221, 2009.

[7] Mohamed Amine Brahimi, Fatiha Merazka, and Gunes Karabulut Kurt. Secure network

coding for data encoded using subspace codes. Physical Communication, 48:101408,

2021.

[8] Hu Fei, Zhu Guangxi, and Zhu Yaoting. Enhanced arq-based packet loss recovery for

real-time communication. In 2001 International Conferences on Info-Tech and Info-Net.

Proceedings (Cat. No.01EX479), volume 2, pages 317–322 vol.2, 2001.

87



[9] Cuiping Jing, Xingjun Zhang, Yifei Sun, Huali Cui, and Xiaoshe Dong. A packet

loss protection scheme joint deterministic network coding and random linear network

coding for h.264/avc. In 2011 Fifth FTRA International Conference on Multimedia and

Ubiquitous Engineering, pages 149–154, 2011.

[10] Imen Jouili, Kawther Hassine, and Mounir Frikha. A network coding based solution

to minimize packet loss during handover in lte-a systems: Highway scenario. In 2016

International Wireless Communications and Mobile Computing Conference (IWCMC),

pages 458–462, 2016.

[11] S. . R. Li, R. W. Yeung, and Ning Cai. Linear network coding. IEEE Transactions on

Information Theory, 49(2):371–381, 2003.

[12] Raymond W. Yeung, Shuo-Yen Robert Li, Ning Cai, and Zhen Zhang. Network coding

theory, volume 2. Now Publ., 2005.

[13] S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, K. Jain, and L.M.G.M. Tolhuizen.

Polynomial time algorithms for multicast network code construction. IEEE Transactions

on Information Theory, 51(6):1973–1982, 2005.

[14] V. Geetha, Sridhar Aithal, and K. Chandra Sekaran. Effect of mobility over performance

of the ad hoc networks. In 2006 International Symposium on Ad Hoc and Ubiquitous

Computing, pages 138–141, 2006.

[15] T. Ho, R. Koetter, M. Medard, D.R. Karger, and M. Effros. The benefits of coding over

routing in a randomized setting. In IEEE International Symposium on Information

Theory, 2003. Proceedings., pages 442–, 2003.

[16] Carla-Fabiana Chiasserini, Emanuele Viterbo, and Claudio Casetti. Decoding probabil-

ity in random linear network coding with packet losses. IEEE Communications Letters,

17(11):1–4, 2013.

[17] Ali Farzamnia, Ling Hui Zhen, Liau Chung Fan, and Md. Nazrul Islam. Investigation

on decoding failure probability in erasure network coded channels. In 2017 IEEE 8th

Control and System Graduate Research Colloquium (ICSGRC), pages 241–245, 2017.

[18] Chamitha de Alwis, H. Kodikara Arachchi, Anil Fernando, and Ahmet Kondoz. Towards

minimising the coefficient vector overhead in random linear network coding. In 2013

88



IEEE International Conference on Acoustics, Speech and Signal Processing, pages 5127–

5131, 2013.

[19] Ye Li, Wai-Yip Chan, and Steven D. Blostein. Network coding with unequal size over-

lapping generations. In 2012 International Symposium on Network Coding (NetCod),

pages 161–166, 2012.

[20] Danilo Gligoroski, Katina Kralevska, and Harald Øverby. Minimal header overhead for

random linear network coding. In 2015 IEEE International Conference on Communi-

cation Workshop (ICCW), pages 680–685, 2015.

[21] Mohamed Amine Brahimi and Fatiha Merazka. On reducing the encoding complex-

ity of random linear network coding. In 2020 International Conference on Electrical

Engineering (ICEE), pages 1–5, 2020.

[22] Persi Diaconis. Group representations in probability and statistics. Institute of Mathe-

matical Statistics, Hayward, CA, 1988.

[23] M. Langberg, A. Sprintson, and J. Bruck. The encoding complexity of network coding.

IEEE Transactions on Information Theory, 52(6):2386–2397, 2006.

[24] C. Fragouli and E. Soljanin. Information flow decomposition for network coding. IEEE

Transactions on Information Theory, 52(3):829–848, 2006.

[25] Daniel E. Lucani, Morten Videbæk Pedersen, Diego Ruano, Chres W. Sørensen, Frank

H. P. Fitzek, Janus Heide, Olav Geil, Vu Nguyen, and Martin Reisslein. Fulcrum:

Flexible network coding for heterogeneous devices. IEEE Access, 6:77890–77910, 2018.

[26] K. Bhattad, N. Ratnakar, R. Koetter, and K.R. Narayanan. Minimal network coding

for multicast. In Proceedings. International Symposium on Information Theory, 2005.

ISIT 2005., pages 1730–1734, 2005.

[27] Wangshu Zhang, Jiarui Xie, and Xinjian Zhuo. An evolutionary approach to genetic

algorithm on minimizing network coding resources. In 2012 3rd IEEE International

Conference on Network Infrastructure and Digital Content, pages 275–279, 2012.

[28] Huanlai Xing, Fuhong Song, Zhaoyuan Wang, Tianrui Li, and Yan Yang. On minimizing

network coding resource: A modified particle swarm optimization approach. In 2016

89



12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), pages

330–334, 2016.

[29] Hanqi Tang, Qifu Tyler Sun, Zongpeng Li, Xiaolong Yang, and Keping Long. Circular-

shift linear network coding. IEEE Transactions on Information Theory, 65(1):65–80,

2019.

[30] Zhiyuan Yan and Hongmei Xie. Enhanced algebraic error control for random linear

network coding. In MILCOM 2012 - 2012 IEEE Military Communications Conference,

pages 1–6, 2012.

[31] Ning Chen, Zhiyuan Yan, Maximilien Gadouleau, Ying Wang, and Bruce W. Suter.

Rank metric decoder architectures for random linear network coding with error control.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(2):296–309,

2012.

[32] Huseyin Balli, Xijin Yan, and Zhen Zhang. On randomized linear network codes

and their error correction capabilities. IEEE Transactions on Information Theory,

55(7):3148–3160, 2009.

[33] Ning Cai and R.W. Yeung. Network coding and error correction. In Proceedings of the

IEEE Information Theory Workshop, pages 119–122, 2002.

[34] Zhen Zhang. Linear network error correction codes in packet networks. IEEE Transac-

tions on Information Theory, 54(1):209–218, 2008.

[35] Shenghao Yang, Raymond W. Yeung, and Chi Kin Ngai. Refined coding bounds and

code constructions for coherent network error correction. IEEE Transactions on Infor-

mation Theory, 57(3):1409–1424, 2011.

[36] Xuan Guang, Fang-Wei Fu, and Zhen Zhang. Variable-rate linear network error correc-

tion mds codes. IEEE Transactions on Information Theory, 62(6):3147–3164, 2016.

[37] Shenghao Yang, Chi Kin Ngai, and Raymond W. Yeung. Construction of linear network

codes that achieve a refined singleton bound. In 2007 IEEE International Symposium

on Information Theory, pages 1576–1580, 2007.

90



[38] Huaxiong Wang, Chaoping Xing, and R. Safavi-Naini. Linear authentication codes:

bounds and constructions. IEEE Transactions on Information Theory, 49(4):866–872,

2003.

[39] Netanel Raviv and Tuvi Etzion. Distributed storage systems based on intersecting

subspace codes. In 2015 IEEE International Symposium on Information Theory (ISIT),

pages 1462–1466, 2015.

[40] Natalia Silberstein, Ankit Singh Rawat, and Sriram Vishwanath. Error resilience in

distributed storage via rank-metric codes. In 2012 50th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), pages 1150–1157, 2012.

[41] Ralf Koetter and Frank R. Kschischang. Coding for errors and erasures in random

network coding. IEEE Transactions on Information Theory, 54(8):3579–3591, 2008.

[42] Ralf Koetter and Frank R. Kschischang. Coding for errors and erasures in random

network coding. In 2007 IEEE International Symposium on Information Theory, pages

791–795, 2007.

[43] Danilo Silva and Frank R. Kschischang. On metrics for error correction in network

coding. IEEE Transactions on Information Theory, 55(12):5479–5490, 2009.

[44] Huaxiong Wang, Chaoping Xing, and R. Safavi-Naini. Linear authentication codes:

bounds and constructions. IEEE Transactions on Information Theory, 49(4):866–872,

2003.

[45] Tuvi Etzion and Alexander Vardy. Error-correcting codes in projective space. In 2008

IEEE International Symposium on Information Theory, pages 871–875, 2008.

[46] Tuvi Etzion and Alexander Vardy. Error-correcting codes in projective space. IEEE

Transactions on Information Theory, 57(2):1165–1173, 2011.

[47] Philippe Delsarte. An algebraic approach to the association schemes of coding theory.

Philips Res. Rep. Suppl., 10:vi+–97, 1973.

[48] Ernst Gabidulin. Theory of codes with maximum rank distance (translation). Problems

of Information Transmission, 21:1–12, 01 1985.

91



[49] Ph Delsarte. Bilinear forms over a finite field, with applications to coding theory.

Journal of Combinatorial Theory, Series A, 25(3):226–241, 1978.

[50] R.M. Roth. Maximum-rank array codes and their application to crisscross error correc-

tion. IEEE Transactions on Information Theory, 37(2):328–336, 1991.

[51] Antonia Wachter-Zeh. List decoding of crisscross error patterns. In 2014 IEEE Inter-

national Symposium on Information Theory, pages 1236–1240, 2014.

[52] R.M. Roth. Probabilistic crisscross error correction. IEEE Transactions on Information

Theory, 43(5):1425–1438, 1997.

[53] Du Hoan Nguyen, Huu Loc Pham, and Linh Le Thi Trang. Security of the cryptosys-

tem gpt based on rank codes and term-rank codes. In 2021 International Conference

Engineering and Telecommunication (En T), pages 1–5, 2021.

[54] E.M. Gabidulin, A.V. Ourivski, B. Honary, and B. Ammar. Reducible rank codes

and their applications to cryptography. IEEE Transactions on Information Theory,

49(12):3289–3293, 2003.

[55] Haitham Rashwan, Ernst M. Gabidulin, and Bahram Honary. A smart approach for

gpt cryptosystem based on rank codes. In 2010 IEEE International Symposium on

Information Theory, pages 2463–2467, 2010.

[56] Sven Puchinger, Sebastian Stern, Martin Bossert, and Robert F.H. Fischer. Space-time

codes based on rank-metric codes and their decoding. In 2016 International Symposium

on Wireless Communication Systems (ISWCS), pages 125–130, 2016.

[57] P. Lusina, E. Gabidulin, and M. Bossert. Maximum rank distance codes as space-time

codes. IEEE Transactions on Information Theory, 49(10):2757–2760, 2003.

[58] Danilo Silva, Frank R. Kschischang, and Ralf Koetter. A rank-metric approach to

error control in random network coding. IEEE Transactions on Information Theory,

54(9):3951–3967, 2008.

[59] Felice Manganiello, Anna-Lena Trautmann, and Joachim Rosenthal. On conjugacy

classes of subgroups of the general linear group and cyclic orbit codes. In 2011 IEEE

International Symposium on Information Theory Proceedings, pages 1916–1920, 2011.

92



[60] Anna-Lena Trautmann, Felice Manganiello, and Joachim Rosenthal. Orbit codes — a

new concept in the area of network coding. In 2010 IEEE Information Theory Workshop,

pages 1–4, 2010.

[61] Danilo Silva and Frank R. Kschischang. Universal secure network coding via rank-metric

codes. IEEE Transactions on Information Theory, 57(2):1124–1135, 2011.

[62] Jun Kurihara, Ryutaroh Matsumoto, and Tomohiko Uyematsu. Relative generalized

rank weight of linear codes and its applications to network coding. IEEE Transactions

on Information Theory, 61(7):3912–3936, 2015.

[63] Umberto Martínez-Peñas and Frank R. Kschischang. Reliable and secure multishot

network coding using linearized reed-solomon codes. In 2018 56th Annual Allerton

Conference on Communication, Control, and Computing (Allerton), pages 702–709,

2018.

[64] Umberto Martínez-Peñas and Ryutaroh Matsumoto. Relative generalized matrix

weights of matrix codes for universal security on wire-tap networks. IEEE Transac-

tions on Information Theory, 64(4):2529–2549, 2018.

[65] Mohamed Amine Brahimi and Fatiha Merazka. Data confidentiality-preserving schemes

for random linear network coding-capable networks. Journal of Information Security

and Applications, 66:103136, 2022.

[66] N. Cai and R. W. Yeung. Secure network coding on a wiretap network. IEEE Trans-

actions on Information Theory, 57(1):424–435, 2011.

[67] Khaled A.S. Abdel-Ghaffar. Counting matrices over finite fields having a given number

of rows of unit weight. Linear Algebra and its Applications, 436(7):2665 – 2669, 2012.

[68] Yohan Suryanto, Suryadi, and Kalamullah Ramli. Chaos properties of the chaotic

permutation generated by multi circular shrinking and expanding movement. In 2015

International Conference on Quality in Research (QiR), pages 65–68, 2015.

[69] Daniel Heinlein. Generalized linkage construction for constant-dimension codes, 2019.

[70] Daniel Heinlein, Michael Kiermaier, Sascha Kurz, and Alfred Wassermann. Tables of

subspace codes, 2019.

93



[71] Yantao Liu and Yasser Morgan. Security against passive attacks on network coding

system – a survey. Computer Networks, 138:57–76, 2018.


	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	List of Symbols
	Abstract
	General Introduction
	Network Coding
	Introduction
	Network Coding
	Throughput
	Security
	Data Storage
	Packet Loss

	Designing Network Coding Schemes
	Random Linear Network Coding
	Network Model
	Encoding Model
	Decoding model
	 Network Code construction
	Deterministic Construction
	Random Construction

	Coefficient Transmission in RLNC

	Challenges of Network Coding
	Overhead
	Complexity
	Error Propagation

	Summary

	Error Control in Random Linear Network Coding
	Introduction
	Notations

	Subspace codes
	Bounds on Subspace Codes
	Sphere packing and covering bounds
	Singleton bound
	The anticode bound

	Constructions of subspace codes
	Rank Metric codes
	Lifted Rank-Metric Codes
	Orbit codes

	Summary

	Investigation of Error Control in Random Linear Network Coding for Security Against Wiretap Attacks
	Introduction
	On encrypting the coefficient and data matrices 
	System model
	Network Topology
	Security Model
	Definitions

	First Encryption Scheme
	Encryption
	Decryption

	Second Encryption Scheme
	Encryption
	Decryption

	Evaluation of the proposed schemes
	Computational security
	Guess probability
	Confusion and diffusion
	Computational Complexity and packet overhead
	Decoding failure probability


	On encrypting the coefficient matrix in RLNC 
	The Proposed Algorithm
	Encryption
	Decryption

	 Evaluation of the Proposed Algorithm
	Computational Security
	Guess probability
	Performance Analysis


	Subspace coding based secure RLNC
	System Model 
	The subspace coding scheme
	At the Key Distribution Center
	 At the source 
	At destination nodes

	Security Analysis
	First Approach
	Second Approach
	Comparison of the two approaches
	Comparison with other schemes

	Scheme Evaluation

	Conclusion

	General Conclusions and Perspectives
	Appendix
	Guess Probability
	Preliminaries on abstract algebra
	Basics

	Theorems and proofs
	 The subspace distance
	 The injection distance


	Bibliography

