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Abstract

In this thesis, we study several classes of algebraic operations on ordered structures.
More precisely, we study classes of associative and weakly associative operations
on bounded lattices and bounded trellises. First, we generalize the notion of
aggregation operator to f -aggregation operator with respect to an arbitrary
function on a bounded lattice and we discuss its fundamental properties. Second,
we study several classes of associative (resp. weakly associative) operations on
trellises with additional properties, like; commutative, increasing and neutral
elements.

Key-words: Lattice, Trellis, Binary Operation, f-aggregation, Uninorm, T-
norm, T-conorm.



Résumé

Dans cette thèse, nous étudions des classes des opérations algébriques dans des
structures ordonnées. Plus précisément, nous étudions des classes d’opérations
associatives et faiblement associatives dans un treillis bornés et trellis bornés. Tout
d’abord, nous généralisons la notion d’agrégation à f -agrégation par rapport à
une fonction arbitraire sur un treillis borné et nous discutons ses propriétés. Deux-
ièmement, nous étudions des classes particulières d’opérations associatives (resp.
faiblement associatives) dans des trellis borné avec des propriétés supplémentaires,
comme; la commutativité, la croissance et les éléments neutres.

Mots-clés : Treillis, Trellis, Opération binaire, f-agrégation, Uninorme, T-
norme, T-conorme.



Introduction

It is well-known that the transitivity of order relations are fundamental in a wide
variety of mathematical theories [12, 49]. An important step in the theory of
partial orderings was the postulation of greatest lower bounds (meets) and least
upper bounds (joins) and the development of the lattice theory. Transitivity is a
necessary property for the associativity of meet and join on lattices. Associativity
has been regarded as essential of many theorems heavily dependent upon it.

Binary operations have become essential tools in lattice theory and its applications.
Several notions and properties and the notion of the lattice itself can be expressed
in terms of binary operations [12, 49]. Further, several classes of binary operations
on bounded lattices with specific properties appear in various theoretical and ap-
plication domains. Aggregation operators or aggregation functions as a particular
class of binary operations have appeared in many theoretical and applied areas,
for instance, in the fuzzy set theory [5, 23], in operations research, computer and
information sciences, economics and social sciences [8, 15, 24, 28, 50].

Several subclasses of aggregation operators on the interval [0, 1] or on bounded
lattices (e.g. triangular norms (t-norms, for short) and conorms (t-conorms),
uninorms, nullnorms, ...etc) were introduced, and discussed [29, 30, 32, 36, 37, 38,
48]. These subclasses play important role in the theory of fuzzy sets and fuzzy
logics [3] as they generalize the basic connectives between fuzzy sets. Recently,
t-norms and t-conorms have been used in multicriteria decision support and several
branches of information sciences. On the interval [0, 1] or on bounded lattices, the
transitivity of the order relation ≤ and the associativity of meet (∧) and join (∨)
play an important role in the constructions, representations, and characterization
of t-norms and t-conorms [30]. For instance, the meet (∧) (resp. the join (∨)) is
a t-norm (resp. t-conorm).

However, many theoretical and practical developments warrant us to look beyond
transitivity [56]. The notions of non-transitive relations arising in everyday
observations such as games, the relation of closeness, and some from mathematical
considerations such as the theory of graphs, and logic of non-transitive implications
can not be overlooked. Maybe, the most common and illustrative example of a
non transitive relation in our real life is the acquaintance relation: If A knows B,
and B knows C, persons A and C don’t need to be acquainted. The preference
loop or cycle (A is preferred to B, B is preferred to C, and C is preferred to

vi



A) is a non-transitive relation. For instance, the non-transitive relations also
appear in the football tournament (e.g.; team A beats team B and team B beats
team C, but it is not necessarily that team A will beat team C). Furthermore,
the non-transitive relations appear in the different fields of pure and applied
mathematics. In topology, the closeness relation is another example (e.g.; in the
power set of R2 the closeness relation defined by: A is close to B if and only if
d(A,B) = 0 is not-transitive relation). In geometry, (e.g.; let 4 be the set of
straight lines in the plane R2 and we define the binary relation R on 4 as follows:
d1Rd2 if and only if d1 and d2 are orthogonal, for any d1, d2 ∈ 4. The relation
R is not-transitive). The theory of graphs is also concerned with non-transitive
relations (e.g.; a vertex A is adjacent to B, and vertex B is adjacent to C, but A
is not necessarily adjacent to C).

Fried obtained a generalized lattice called a T-lattice or a weakly associative
lattice. In a series of his papers [17, 18, 19], he discussed the properties and
various characterizations of weakly associative lattices and tournaments. In [20],
E. Fried and G. Gratzer studied the non-associative extension of the class of
distributive lattices. Skala [51] defined a reflexive and antisymmetric but not
necessarily transitive relation on a given set and called it a pseudo-ordered set.
Skala could extend many theorems from lattices to trellises. In [11], Chajda and
Niederle studied ideals of weakly associative lattices. Gladstien [22] proved that
trellises of finite length are complete if and only if every cycle of elements has a
least upper bound and a greatest lower bound. Bhatta and Shashirekha [6, 42, 43]
generalized this characterization in terms of joins of cycles and pseudo-chains in
pseudo-ordered sets. Some fixed point theorems on lattices were extended to the
case of pseudo-ordered sets and trellises by Bhatta and George [40], Stouti and
Zedam [53].

In this thesis, inspired by the above extensions and developments of the notions of
binary operations on lattices, we generalize specific classes of binary operations on
lattices to the trellis trellises. Before that, we generalize the notion of aggregation
operators to f -aggregation operators with respect to an arbitrary function on a
bounded lattice and we discuss its fundamental properties. Moreover, we study
particular classes of associative operations on trellises. More precisely, we study
classes of binary operation that are associative, commutative increasing, and have
1 (resp. 0) as a neutral element. These classes generalize the classes of t-norms
and t-conorms on bounded lattices. Furthermore, we extend the same classes on
bounded trellises by considering a weakest associativity property.

This thesis is structured as follows:
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• In Chapter 1, we present some preliminaries on lattices and trellises that
will be needed in this thesis.

• In Chapter 2, we introduce some basic concepts on aggregation operators
on bounded lattices and study the notion of f -aggregation operators with
respect to a given function f on a bounded lattice. More precisely, we show
some new properties of binary operations based on a given function on a
lattice.

• In Chapter 3, we generalize the class of triangular norms and the class of
triangular conorms on bounded lattices to the setting of bounded trellises.

• In Chapter 4, we study two classes of weakly associative operations and
investigate its various properties. A class of weakly associative operations
with neutral element 1 and a class of weakly associative operations with
neutral element 0.

• Finally, we give a conclusion including the important results of this thesis
and some future works.
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Notations

1. ≤: Order relation.

2. �: Pseudo-order relation.

3. (P,≤): Partially ordered set.

4. (P,�): Pseudo-ordered set.

5. a ∧ b: The meet operation of a and b.

6. a ∨ b: The join operation of a and b.

7. (L,≤,∧,∨): Lattice.

8. (L,�,∧,∨): Trellis.

9. Xrtr: the set of all right-transitive elements of X.

10. X ltr: the set of all left-transitive elements of X.

11. Xtr: the set of all transitive elements of X.

12. X∧-ass: the set of all ∧-associative elements of X. ‘

13. X∨-ass: the set of all ∨-associative elements of X.

14. Xass: the set of all associative elements of X.

15. Xdis: the set of all distributive elements of X.

16. f−1: The reciprocal function of f .

17. Af (L): The set of all f -aggregation operators on L.

18. T ↓ L1: The restriction of the t-norm T to L1.

19. AOe(X): The class of all binary operations on X that are associative, commuta-
tive, increasing, and have an arbitrary element e ∈ X as neutral element.

20. Atom(X): The set of all atoms of X.

21. Coatom(X): The set of all coatoms of X.

22. WAOe(X): The class of all binary operations on X that are commutative,
weakly-increasing, weakly-associative and have e as a neutral element.
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1 Generalities on lattices and trellises

In this chapter, we recall the necessary basic concepts and properties of partially
ordered sets and lattices. Also, we recall some basic notions of pseudo-ordered
sets and trellises. Moreover, we present and study binary operations on those
structures that will be needed throughout this thesis.

1.1. Partially ordered sets and lattices

This section contains the basic definitions and properties of partially ordered sets
(posets, for short) and lattices. Further information can be found in [12, 31, 33,
41, 45, 49, 54].

1.1.1. Partially ordered sets

A binary relation R on a set X is a subset of the Cartesian product X ×X. A
binary relation R thus contains all the pairs of points that are related to each
other under R. For any binary relation R in this text we will write pRq instead
of (p, q) ∈ R, whenever p is related to q via R.

An order relation (a partial order) ≤ on X is a binary relation on X that is
reflexive (i.e., x ≤ x, for any x ∈ X), antisymmetric (i.e., x ≤ y and y ≤ x implies
x = y, for any x, y ∈ X) and transitive (i.e., x ≤ y and y ≤ z imply x ≤ z, for any
x, y, z ∈ X). A set P equipped with an order relation ≤ on P is called a partially
ordered set (poset, for short) and denoted by (P,≤).

Let (P,≤) be a poset and A a subset of P . An element x0 ∈ P is called a lower
bound of A if x0 ≤ x, for any x ∈ A. x0 is called the greatest lower bound (or the
infimum) of A if x0 is a lower bound and m ≤ x0, for any lower bound m of A.
The upper bound and least upper bound (or supremum) are defined dually.

Example 1.1. Let D(60) be the set of positive divisors of 60 and let | be the
divisibility relation. One can easily verify that the divisibility relation | is a reflexive,
antisymmetric and transitive binary relation on D(60). Thus, | is an order relation
(a partial order) on D(60) and the structure (D(60), |) is a poset.

2



Chapter 1. Generalities on lattices and trellises

A poset (P,≤) is called bounded, if it has a least and a greatest element, respectively
denoted by 0 and 1, i.e., 0 ≤ x ≤ 1, for any x ∈ L. Usually, the notation (P,≤, 0, 1)
is used to describe a bounded poset.
Example 1.2. The poset (D(60), |) given in Example 1.1 has 1 as the least
element and 60 as the greatest element. Indeed, 1 devises all the elements of D(60)
and any element of D(60) devises 60. Thus, the structure (D(60), |, 1, 60) is a
bounded poset.

For a poset (P,≤), we say that an element y ∈ P covers an element x ∈ P if
x < y (i.e., x ≤ y and x 6= y) and there is no element z ∈ P such that x < z < y.
The set of pairs (x, y) such that y covers x is called the covering relation of (P,≤).

Since an order is an example of a relation, we can draw it as a directed graph.
But there is a more concise and attractive way to draw partial orders and linear
orders, in which the reflexivity and transitivity of the order are implicit. A Hasse
diagram for a partial order ≤ on a set X is a graph drawn in the plane, with
vertices corresponding to the elements of X and edge going up from x to y if
x < y (so excluding x = y) and there is no element z with x < z < y. In general a
poset can be conveniently represented by Hasse diagram, displaying the covering
relation <. Note that x < y if there is a sequence of connected lines upwards from
x to y.
Example 1.3. The Figure 1.1 presents the Hasse diagram of the bounded poset
(D(60), |, 1, 60) given in Example 1.1.

Figure 1.1: The Hasse diagram of the bounded poset (D(60), |, 1, 60).

Throughout this thesis, for a given function f : P −→ P , we shortly write fx
instead of f(x).

3



Chapter 1. Generalities on lattices and trellises

Definition 1.1. Let (P,≤) be a poset and f a function on P . Then f is called
isotone (resp. antitone) if x ≤ y implies fx ≤ fy (resp. fy ≤ fx), for any
x, y ∈ P .

1.1.2. Lattices

A poset (P,≤) is called a ∧-semilattice if any two elements x and y have a
greatest lower bound, denoted by x ∧ y and called the meet (infimum) of x and y.
Analogously, it is called a ∨-semilattice if any two elements x and y have a least
upper bound, denoted by x∨ y and called the join (supremum) of x and y.

A poset (L,≤) is called a lattice if it is both a ∧- and a ∨-semilattice. Usually,
the notation (L,≤,∧,∨) is used for a lattice. A poset (L,≤) is called a complete
lattice if every subset A of L has both a greatest lower bound, denoted by ∧A
and called the infimum of A, and a least upper bound, denoted by ∨A and called
the supremum of A, in (P,≤).

Example 1.4. (i) If X is a nonempty set, then the power set ℘(X) is a com-
plete lattice under the union and intersection;

(ii) The set of real numbers R ordered by the usual order ≤ is a lattice, where
min and max are its meet and join operations;

(iii) The set of positive natural numbers N∗ with the divisibility order | has a
structure of a lattice, where pcm and gcd are its meet and join operations;

(iv) The poset given in Examples 1.1 is a complete lattice.

Proposition 1.1. Let L be a finite lattice. Then L is complete.

We introduced lattices as ordered sets of a special type. However, we may adopt
an alternative viewpoint, and we view a lattice as an algebraic structure 〈L;∧,∨〉.
For a lattice (L,≤,∧,∨), the binary operations meet and join on the non-empty
set L defined by

a ∧ b := inf{a, b} and a ∨ b := sup{a, b} (a, b ∈ L)

satisfy the following algebraic properties:

(i) x ∧ x = x ∨ x = x (idempotency);

(ii) x ∧ y = y ∧ x and x ∨ y = y ∨ x (commutativity);

4



Chapter 1. Generalities on lattices and trellises

(iii) x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z (associativity);

(iv) x ∧ (y ∨ x) = x = x ∨ (y ∧ x) (absorption-laws);

(v) the order relation ≤ and ∧, ∨ are connected as:

x ≤ y iff x ∧ y = x iff x ∨ y = y, for any x, y ∈ L.

A bounded lattice is a lattice that additionally has a greatest element 1 and a
smallest element 0, which satisfy 0 ≤ x ≤ 1, for any x ∈ L. A finite lattice
is automatically bounded with 1 = ∨

L and 0 = ∧
L. Usually, the notation

(L,≤,∧,∨, 0, 1) is used to describe a bounded lattice.

A lattice (L,≤,∧,∨) is distributive if, for any x, y, z ∈ L, the following additional
conditions hold

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A lattice (L,≤,∧,∨) is modular if the following condition holds

x ≤ z implies that x ∨ (y ∧ z) = (x ∨ y) ∧ z, for any x, y, z ∈ L.

Let (L,≤,∧,∨) be a lattice and A is a proper non-empty subset of L (i.e., A  L

and A 6= ∅). The set A is called:

(i) a ∧-sublattice (resp. a ∨-sublattice) of L if x ∧ y ∈ A (resp. x ∨ y ∈ A), for
any x, y ∈ A;

(ii) a sublattice of L if it is both a ∧- and a ∨-sublattice of L.

Let (L,≤,∧,∨) and (M,≤,∧,∨) be two lattices. A function ϕ : L → M is
called:

(i) a ∧-homomorphism if ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y), for any x, y ∈ L;

(ii) a ∨-homomorphism if ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y), for any x, y ∈ L;

(iii) a lattice-homomorphism if it is both a ∧- and a ∨-homomorphism;

(iv) a lattice-isomorphism if it is a bijective lattice-homomorphism.

If L = M , a lattice-homomorphism ϕ : L→ L is called a lattice-endomorphism.
Further, a lattice-isomorphism ϕ : L→ L is called a lattice-automorphism.

5



Chapter 1. Generalities on lattices and trellises

Proposition 1.2. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and ϕ a function on L.
If ϕ is a lattice-automorphism, then ϕ−1 is isotone. Moreover, ϕ(0) = ϕ−1(0) = 0
and ϕ(1) = ϕ−1(1) = 1.

Definition 1.2. Let (L,≤,∧,∨, 0, 1) be a bounded lattice. A function N on L is
called a negation on L if it satisfies the following conditions:

(i) N(0) = 1 and N(1) = 0;

(ii) N is antitone.

Additionally, N is called a strong negation, if it is also involutive (i.e., N(N(x)) =
x, for any x ∈ L).

1.1.3. Binary operations on lattices

A binary operation on a non-empty set X is any function from the Cartesian
product X×X into X (i.e., F : X×X → X). A binary operation F is called:

(i) commutative, if F (x, y) = F (y, x), for any x, y ∈ X;

(ii) associative, if F (x, F (y, z)) = F (F (x, y), z), for any x, y, z ∈ X.

An element e ∈ X is called a neutral element of F , if F (e, x) = F (x, e) = x, for
any x ∈ X.

Example 1.5. On the set of real numbers R, the addition (+) and the multipli-
cation (×) operations are commutative and associative operations. Where, 0 is
the neural element of (+) and 1 is the neural element of (×).

Definition 1.3. Let (L,≤,∧,∨) be a lattice and F : L2 −→ L a binary operation
on L. A binary operation F on L is called:

(i) idempotent, if F (x, x) = x, for any x ∈ L;

(ii) increasing, if x1 ≤ x2 and y1 ≤ y2 imply F (x1, y1) ≤ F (x2, y2), for any
x1, x2, y1, y2 ∈ L;

(iii) conjunctive (resp. disjunctive), if F (x, y) ≤ x ∧ y (resp. x ∨ y ≤ F (x, y)),
for any x, y ∈ L;

(iv) averaging, if x ∧ y ≤ F (x, y) ≤ x ∨ y, for any x, y ∈ L.

6



Chapter 1. Generalities on lattices and trellises

1.2. Pseudo-ordered sets and trellises

This section contains the basic definitions and properties of pseudo-ordered sets,
trellis structure and some notions that will be needed later. Moreover, we present
and study binary operations on those structures that will be needed throughout
this thesis. More information can be found in [17, 20, 21, 51, 52, 54].

1.2.1. Pseudo-ordered sets

A pseudo-order relation � on a set X is a binary relation on X that is reflexive
(i.e., x� x, for any x ∈ X) and antisymmetric (i.e., x� y and y� x implies x = y,
for any x, y ∈ X). A set X equipped with a pseudo-order relation � is called
a pseudo-ordered set ( psoset, for short) and denoted by (X,�). For any two
elements a, b ∈ X, if a� b and a 6= b, then we denote it as a� b. If a� b does not
hold, then we denote it by a 5 b. Similarly to the setting of ordered sets, a finite
pseudo-ordered sets can be represented by Hasse diagram with the convention
that: x is below y and is joined to y by a line if x� y. Otherwise, i.e., if x and y
are not related, then x and y will be joined by a dashed curve.

Remark 1.1. It is easily seen that any order relation on a set X is a pseudo-order
relation on X.

Example 1.6. (i) Let X = {a, b, c, d, e} and � a binary relation defined on X
as follows:

� = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c), (a, d), (a, e),

(b, c), (b, e), (c, d), (c, e), (d, e)}.

The couple (X,�) is a pseudo-ordered set. We note that � is not transitive

because (b, c) and (c, d) ∈ �, while (b, d) /∈ �.

(ii) Let X = R be the set of real numbers. The relation E on X defined, for any
x, y ∈ X as:

x E y if and only if 0 6 y − x 6 a, where a is a constant element of R+

is a pseudo order relation on X.

(iii) Let X = {a, b, c, d, e, f} be a set and � a pseudo-order relation on X. The
Hasse diagram of X is depicted by the following figure:

7
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a

b c

d

e

f

Figure 1.2: Hasse diagram of (X,�).

For a subset A ⊆ X, the notions of a lower bound, an upper bound, greatest
lower bound and least upper bound are defined analogously to the corresponding
notion in a poset. Now, we will only introduce the new concepts related to the
pseudo-order relation.

According to Skala [52], we have the following definition.

Definition 1.4. Let (X,�) be a psoset and A is a nonempty subset of X. A
transitive and reflexive, but not necessarily antisymmetric relation �A can be
defined on A by setting x �A x

′, for any x, x′ ∈ A if and only if there exists a
finite sequence (x1, . . . , xn) of elements from A such that x� x1 � . . . , xn � x′. If
one of the relations x �A x

′ or x′ �A x holds, for any x, x′ ∈ A, then (A,�) is
called a pseudo-chain. A subset A is called a cycle if, for each pair of elements x
and x̀ of A both the relations x�A x̀ and x̀�A x hold. Empty set is a cycle, any
single element set on psoset is also a cycle. A non-trivial cycle is a cycle having
more than one element and it contains at least three elements. A psoset is called
acyclic if it does not contain a non-trivial cycle.

1.2.2. Trellises

The notion of trellis was introduced by Fried [17] and Skala [51, 52] as one of the
most important algebraic structures in order theory. Which is considered as an
extension of the notion of lattice by dropping the property of transitivity. A trellis
is defined as a psoset (X,�) in which pair of elements has a least upper bound
and a greatest lower bound. If A is a subset of X and has a greatest lower bound
or a least upper bound, then they are unique and will be denoted by ∧A and∨
A, respectively. If A is a pair {a, b}, we also write ∧A = a ∧ b and ∨A = a ∨ b.

8



Chapter 1. Generalities on lattices and trellises

Definition 1.5. Let (X,�) be a non-empty pseudo-ordered set.

(i) (X,�) is called a ∧-semitrellis if x ∧ y exists, for any x, y ∈ X.

(ii) (X,�) is called a ∨-semitrellis if x ∨ y exists, for any x, y ∈ X.

(iii) (X,�) is called a trellis if it is both a ∧- and a ∨-semitrellis.

In other words, a trellis is an algebra (X,∧,∨), where the binary operations ∧
and ∨ satisfy the following properties, for any x, y, z ∈ X.

(i) x ∧ y = y ∧ x and x ∨ y = y ∨ x (commutativity);

(ii) x ∧ (x ∨ y) = x = x ∨ (x ∧ y) (absorption identity);

(iii) x ∧ ((x ∨ y) ∧ (x ∨ z)) = x = x ∨ ((x ∧ y) ∨ (x ∧ z)) (weak-associativity).

For a given trellis (X,�,∧,∨) and x, y ∈ X, the following statements are equiva-
lent:

(i) x� y;

(ii) x ∧ y = x;

(iii) x ∨ y = y.

Theorem 1.1. [51, 52] A set X with two commutative, absorptive, and weak-
associative binary operations ∧ and ∨ is a trellis if a� b is defined as a ∧ b = a

and/or a ∨ b = b. These operations are also idempotent.

Theorem 1.2. [52] Let (X,�,∧,∨) be a trellis. The following statements are
equivalent:

(i) � is transitive;

(ii) The meet (∧) and the join (∨) operations are associative;

(iii) One of the operations (∧) or (∨) is associative.

Let (X,�,∧,∨) be a trellis and A a proper non-empty subset of X (i.e., A  X

and A 6= ∅). The set A is called:

(i) a ∧-subtrellis (resp. a ∨-subtrellis) of X if x ∧ y ∈ A (resp. x ∨ y ∈ A), for
any x, y ∈ A, where ∧ and ∨ are taken in X;

(ii) a sublattice of X if it is both a ∧- and a ∨-subtrellis of X.

The notions of complete trellis, distributive and modular trellis are defined analo-
gously to the corresponding notions in lattices.

9



Chapter 1. Generalities on lattices and trellises

Remark 1.2. It is well-known that every finite lattice is complete, but it is not
true in the finite trellis. Indeed, let us consider the trellis (X,�,∧,∨) given in
the following table and Figure 1.3 .

∧
∨

a b c d e

a b c d a
b a e e e
c a a e e
d a a a e
e e b c d

•
a

• b• c•d

•e

Figure 1.3: Finite trellis not complete.

One easily verifies that X is not complete, since for example ∨{a, b, d} does not
exist.

Definition 1.6. [52] Let (X,�,∧,∨) be a trellis. We say X has a greatest element
if there exists u ∈ X such that x � u, for any x ∈ X. Dually, we say X has a
smallest element if there exists v ∈ X such that v � x, for any x ∈ X. A trellis
(X,�,∧,∨) possessing 0 and 1 is called a bounded trellis.

Proposition 1.3. [51] Let (X,�,∧,∨, 0, 1) be a bounded modular trellis. The
following implications hold for any x, y, z ∈ X:

(i) If x� y and y ∧ z = 0, then x� y ∨ z;

(ii) If y � x and y ∨ z = 1, then y ∧ z � x.

Definition 1.7. [52] A function ϕ from a trellis (X,�,∧,∨) into a trellis
(Y,�,∧,∨) (i.e., ϕ : X → Y ) is called

(i) a ∧-homomorphism if ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y), for any x, y ∈ X;

(ii) a ∨-homomorphism if ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y), for any x, y ∈ X;

10
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(iii) a homomorphism if ϕ is both ∧- and ∨-homomorphism;

(iv) a isomorphism if ϕ is both one to one and onto homomorphism.

A homomorphism ϕ of a trellis (X,�,∧,∨) into itself is called an endomorphism.

Next, we introduce some specific elements of a trellis.

Definition 1.8. [52] Let (X,�,∧,∨) be a trellis. An element α ∈ X is called:

(i) right-transitive, if α� x� y implies α� y, for any x, y ∈ X;

(ii) left-transitive, if x� y � α implies x� α, for any x, y ∈ X;

(iii) middle-transitive, if x� α� y implies x� y, for any x, y ∈ X;

(iv) transitive, if it is right-, left- and middle-transitive.

Example 1.7. In the trellis (X,�,∧,∨) given in Figure 1.2, note that b� d� e

and b 5 e, then b isn’t right-transitive. Otherwise, since if x� y� d implies x� d,
for any x, y ∈ X, then it holds that d is a left-transitive element.

Definition 1.9. [52] Let (X,�,∧,∨) be a trellis.

(i) A sequence (x, y, z) ∈ X3 is called ∧-associative (resp. ∨-associative), if
(x ∧ y) ∧ z = x ∧ (y ∧ z) (resp. (x ∨ y) ∨ z = x ∨ (y ∨ z));

(ii) An element α ∈ X is called ∧-associative (resp. ∨-associative), if any
sequence of three elements of X including α is ∧-associative (resp. ∨-
associative);

(iii) α is called associative, if it is both ∧- and ∨-associative.

Notice that for the notion of associative element α ∈ X, the commutativity
of the meet and the join operations is sufficient to consider only the sequence
(α, x, y) ∈ X3 .

Theorem 1.3. [52] Let (X,�,∧,∨) be a trellis. Then any ∧-associative (resp.
∨-associative) element is transitive .

Remark 1.3. The converse of the Theorem 1.3 does not hold in general. Indeed,
let (X,�,∧,∨) the trellis given by the Hasse diagram in Figure 1.2. Note that c
is transitive but not ∨-associative since (c ∨ b) ∨ e = e but c ∨ (b ∨ e) = f .

The following results show two cases that the notion of associative elements and
transitive elements are equivalent.
Theorem 1.4. [52] Let (X,�,∧,∨) be a modular trellis. Then any element is
associative if and only if it is transitive.

11
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Proposition 1.4. [52] Let (X,�,∧,∨) be a pseudo-chain. Then any element is
associative if and only if it is transitive.

1.2.3. Binary operations on trellises

A binary operation F on a psoset (X,�) is called:

(i) commutative, if F (x, y) = F (y, x), for any x, y ∈ X;

(ii) associative, if F (x, F (y, z)) = F (F (x, y), z), for any x, y, z ∈ X;

(iii) right-increasing, if x� y implies F (z, x) � F (z, y), for any x, y, z ∈ X;

(iv) left-increasing, if x� y implies F (x, z) � F (y, z), for any x, y, z ∈ X;

(v) increasing, if x� y and z � t implies F (x, z)�F (y, t), for any x, y, z, t ∈ X.

If a binary operation F on X is increasing, then it is right- and left-increasing.
The converse holds if � is transitive.

A binary operation F on a trellis (X,�,∧,∨) is called:

(i) conjunctive, if F (x, y) � x ∧ y, for any x, y ∈ X;

(ii) disjunctive, if x ∨ y � F (x, y), for any x, y ∈ X.
Remark 1.4. Consider a trellis (X,�,∧,∨).

(i) The meet ∧ (resp. join ∨) is conjunctive (resp. disjunctive);

(ii) If a binary operation F on X satisfies F (x, y) � x and F (x, y) � y (resp.
x� F (x, y) and y � F (x, y)) for any x, y ∈ X, then it is conjunctive (resp.
disjunctive). The converse holds if � is transitive (i.e., (X,�,∧,∨) is a
lattice) or F is (right and left)-increasing and (X,�,∧,∨) has a greatest
element that is the neutral element of F .

Example 1.8. Consider the trellis (X = {0, a, b, c, d, 1},�,∧,∨) with the Hasse
diagram displayed in Figure 1.4. The binary operation F on X defined by the
following table:
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F (x, y) 0 a b c d 1
0 0 a b c c 1
a 0 a b c c 1
b 0 a c d d 1
c a a c d d 1
d b c c d 1 1
1 c c c 1 1 1

is right- and left-increasing, but it is not increasing since a� b and b� c, while
F (a, b) = b 5 d = F (b, c).

0
a
b

c
d
1

Figure 1.4: The Hasse diagram of the trellis (X = {0, a, b, c, d, 1},�).

The binary operations ∧ and ∨ of a trellis (X,�,∧,∨) are not necessarily right-
and left-increasing.
Example 1.9. Consider again the trellis (X = {0, a, b, c, d, 1},�,∧,∨) with the
Hasse diagram displayed in Figure 1.4. Since c� d and b ∧ c = c ∧ b = b 5 a =
b ∧ d = d ∧ b, it holds that the meet ∧ is neither right-, nor left-increasing. A
similar observation holds for the join operation ∨.

In fact, the increasingness of ∧ and ∨ are reserved for the case of lattices.
Proposition 1.5. Let (X,�,∧,∨) be a trellis. Then it holds that the binary
operation ∧ (or ∨) is increasing if and only if � is transitive (i.e., (X,�,∧,∨) is
a lattice).

Proof. We only give the proof for ∧. Suppose that ∧ is increasing and � is not
transitive (i.e., x� y � z and x 5 z, for some x, y, z ∈ X). Since ∧ is increasing
and y � z, it follows that x = x ∧ y � x ∧ z. Hence, x = x ∧ z. Thus, x � z, a
contradiction. The proof of the converse implication is immediate.

Combining Theorem 1.2 and Proposition 1.5 leads to the following corollary.
Corollary 1.1. Let (X,�,∧,∨) be a trellis. The following statements are equiv-
alent:

13
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(i) ∧ (resp. ∨) is increasing;

(ii) � is transitive;

(iii) ∧ (resp. ∨) is associative.

1.2.4. Specific subsets on trellises

Next, we need to recall the following notations on a given trellis and some related
results.
Notation 1.1. [56] Let (X,�,∧,∨) be a trellis. We denote by:

(i) Xrtr: the set of all right-transitive elements of X;

(ii) X ltr: the set of all left-transitive elements of X;

(iii) Xtr: the set of all transitive elements of X;

(iv) X∧-ass: the set of all ∧-associative elements of X;

(v) X∨-ass: the set of all ∨-associative elements of X;

(vi) Xass: the set of all associative elements of X;

(vii) Xdis: the set of all distributive elements of X.
Proposition 1.6. [56] Let (X,�,∧,∨) be a trellis. It holds that

(i) Xdis ⊆ Xass ⊆ X∧-ass ⊆ Xtr ⊆ Xrtr;

(ii) Xdis ⊆ Xass ⊆ X∨-ass ⊆ Xtr ⊆ X ltr.

The following corollary is an immediate result of Propositions 1.4 and 1.6.
Corollary 1.2. Let (X,�,∧,∨) be a pseudo-chain or a modular trellis. It holds
that

Xass = X∧-ass = X∨-ass = Xtr .

Next, we need to recall the following results related to the above subsets.
Proposition 1.7. [52] Let (X,�,∧,∨) be a trellis and x, a ∈ X. It holds that

(i) if a is right-transitive, then

(a) a� x1 � · · ·� xk, implies a� xk;

(b) a� x, implies that a ∨ y � x ∨ y, for any y ∈ X.

(ii) if a is left-transitive, then

(a) x1 � · · ·� xk � a, implies x1 � a;

14
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(b) x� a, implies that x ∧ y � a ∧ y, for any y ∈ X.

(iii) if a is ∧-associative, then x� y implies that a∧ x� a∧ y, for any x, y ∈ X.

(iv) if a is ∨-associative, then x� y implies that a∨ x� a∨ y, for any x, y ∈ X.

The following results provide two subsets of a trellis that have the structure of
lattice with respect to the operations of that trellis.
Proposition 1.8. [52] Let (X,�,∧,∨) be a pseudo-chain or a modular trellis.
Then the set of all transitive (resp. associative) elements is a sublattice.
Proposition 1.9. [52] Let (X,�,∧,∨) be a trellis. Then the set of all distributive
elements of X is a distributive sublattice.
Proposition 1.10. [56] Let (X,�,∧,∨) be a trellis. It holds that

(i) (Xrtr,�,∨) (resp. (X ltr,�,∧)) is a ∨-semitrellis (resp. ∧-semitrellis);

(ii) (X∧-ass,�,∧) (resp. (X∨-ass,�,∨)) is a ∧-semitrellis (resp. ∨-semitrellis).
Proposition 1.11. [56] Let (X,�,∧,∨) be a pseudo-chain.

If Xrtr is finite, then it is a subtrellis on (X,�,∧,∨).

In the same line, we obtain the following propositions.
Proposition 1.12. Let (X,�,∧,∨) be a trellis. The following implications hold:

(i) If α ∈ {dis, ass,∧-ass,∨-ass, tr, rtr}, then x ∨ (y ∨ z) = (x ∨ y) ∨ z, for any
x, y, z ∈ Xα;

(ii) If α ∈ {dis, ass,∧-ass,∨-ass, tr, ltr}, then x ∧ (y ∧ z) = (x ∧ y) ∧ z, for any
x, y, z ∈ Xα.

Proof. (i) We only give the proof for α = rtr, as the other cases proved from
Proposition 1.6. Let x, y, z ∈ Xrtr, since x � x ∨ y � (x ∨ y) ∨ z, y �

x ∨ y � (x ∨ y) ∨ z and z � (x ∨ y) ∨ z , it follows that x � (x ∨ y) ∨ z,
y � (x ∨ y) ∨ z and z � (x ∨ y) ∨ z. Moreover, y ∨ z � (x ∨ y) ∨ z. Hence,
x∨(y∨z)�(x∨y)∨z. In a similar way, we prove that (x∨y)∨z�x∨(y∨z).
Thus, x ∨ (y ∨ z) = (x ∨ y) ∨ z.

(ii) The proof is dual to that of (i).

For a given trellis X, the following proposition shows that if a specific subsets Xα

is a subtrellis of X, then it is a sublattice of X.
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Proposition 1.13. Let (X,�,∧,∨) be a trellis and α ∈
{ass,∧-ass,∨-ass, tr, ltr, rtr}. If Xα is subtrellis of X, then it is a sublat-
tice of X.

Proof. Let α ∈ {ass,∧-ass,∨-ass, tr, ltr, rtr}. Suppose that Xα is subtrellis of X.
If α ∈ {ass,∧-ass,∨-ass, tr}, then Theorem 1.2 and Propositions 1.12 and 1.3
guarantee that Xα is sublattice of X. If α ∈ {ltr, rtr}, then from Proposition 1.12
it follows that ∨ is associative on Xrtr and ∧ is associative on X ltr. Next, we
show that ∧ is associative on Xrtr and ∨ is associative on X ltr. Let x, y, z ∈ Xrtr,
then the fact that Xrtr is a subtrellis implies that x ∧ (y ∧ z) ∈ Xrtr. Moreover,
x ∧ (y ∧ z) � x, x ∧ (y ∧ z) � y ∧ z � y and x ∧ (y ∧ z) � y ∧ z � z. This implies
that x∧ (y ∧ z)� x, x∧ (y ∧ z)� y and x∧ (y ∧ z)� x. Hence, x∧ (y ∧ z)� x∧ y
and x ∧ (y ∧ z) � z. Thus, x ∧ (y ∧ z) � (x ∧ y) ∧ z. In a similar way, we obtain
that (x ∧ y) ∧ z � x ∧ (y ∧ z). Hence, x ∧ (y ∧ z) = (x ∧ y) ∧ z. Thus, Xrtr is a
sublattice of X. Analogously, we prove that X ltr is a sublattice of X.

For further use, we recall the following results.
Proposition 1.14. [56] Let (X,�,∧,∨) be a trellis. The following statements
are equivalent:

(i) (X,�,∧,∨) is a lattice;

(ii) X ltr = X ;

(iii) Xrtr = X ;

(iv) X∧-ass = X ;

(v) X∨-ass = X .
Theorem 1.5. [52] Let (X,�,∧,∨) be a trellis. It holds that

(i) if x1, . . . , xk are right-transitive, then the join of {x1, . . . , xk} exists and
equals xi1 ∨ . . . ∨ xik for any permutation i1, . . . , ik of 1, . . . , k. Moreover,∨ {x1, . . . , xk} is right-transitive. Similarly for the left-transitive elements
x1, . . . , xk and the meet of {x1, . . . , xk}.

(ii) if x1, . . . , xk are ∧-associative, then the meet of {x1, . . . , xk} exists and
equals xi1 ∧ . . . ∧ xik for any permutation i1, . . . , ik of 1, . . . , k. Moreover,∧ {x1, . . . , xk} is ∧-associative. Similarly for the ∨-associative elements
x1, . . . , xk and the join of {x1, . . . , xk}.

Next, we need to show the following result. This result completes the cases to
that given by Skala in the above Theorem 1.5.
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Proposition 1.15. Let (X,�,∧,∨) be a trellis and α ∈ {ass,∧-ass, tr}. If Xα

is subtrellis of X, then for any finite subset {x1, . . . , xk} ⊆ Xα it holds that∨{x1, . . . , xk} exists and equals xi1 ∨ . . . ∨ xik for any permutation i1, . . . , ik of
1, . . . , k. Moreover, ∨{x1, . . . , xk} ∈ Xα.

Proof. We only give the proof for α = tr, as the other cases can be proved
similarly. Let {x1, . . . , xk} ⊆ Xtr. Since Xtr ⊆ Xrtr, it follows from Theorem 1.5
that ∨{x1, . . . , xk} exists and

∨{x1, . . . , xk} = xi1 ∨ . . . ∨ xik for any permutation
i1, . . . , ik of 1, . . . , k. Now, we prove that ∨{x1, . . . , xk} is transitive. Since X tr is
a subtrellis, it follows that xi ∨ xj is transitive for any two elements xi, xj ∈ X tr.
The fact ∨{x1, . . . , xk} = xi1 ∨ . . . ∨ xik for any permutation i1, . . . , ik of 1, . . . , k,
implies that ∨{x1, . . . , xk} ∈ Xα.
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2 Aggregation operators on bounded
lattices

In this chapter, we recall the necessary basic concepts and properties of aggregation
operators on bounded lattices. Further, we introduce and study the notion of
aggregation operator with respect to a given function f (f -aggregation operator,
for short) on bounded lattices. This new notion is a natural generalization of
the aggregation operators on bounded lattices. More precisely, we show some
new properties of binary operations based on a given function on a lattice, and
study their composition with respect to a given aggregation operator. Also,
we investigate the transformation of f -aggregation operators based on a lattice-
automorphism and a strong negation. Moreover, under some conditions on a given
function f , we give the smallest (resp. the greatest) f -aggregation operator on a
given bounded lattice.

2.1. Definitions and examples

This section contains the basic definitions and properties of Aggregation operators
and some illustrative examples on bounded lattices. More information can be
found in [8, 14, 28, 54].

Definition 2.1. [38] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and n ∈ N. An
(n-ary) aggregation operator on L is a function A : ⋃k≤n Lk −→ L such that:

(i) A (x1, . . . , xn) ≤ A (y1, . . . , yn) whenever xi ≤ yi, for any i ∈ {1, . . . , n};

(ii) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Example 2.1. (i) Let (L,≤,∧,∨, 0, 1) be a bounded lattice and let χ be an
unary operator on L (i.e., χ : L −→ L) defined for any a ∈ L by

χa(x) =
 1 if x ≥ a, x 6= 0;

0 otherwise.

Obviously, χa is an unary aggregation operator, for any a ∈ L. Moreover, it
represents a characteristic function of the principal filter F (a) = {x ∈ L :
x ≥ a} generated by a, provided a 6= 0.
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(ii) Consider the diamond lattice D = {0, a, b, 1} given by the Hasse diagram in
Figure 2.1. Then a function A : D → D is an unary aggregation operator on
D if and only if A(0) = 0 and A(1) = 1 (i.e., the values A(a) and A(b) can
be chosen arbitrarily). Let B : D2 → D be a commutative binary operation
defined by

B(x, y) =


0, if 0 ∈ {x, y};
1, if 1 ∈ {x, y} and 0 /∈ {x, y};
x, if x = y.

Then B is well defined and it is an aggregation operator on D.

0

a b

1

Figure 2.1: The Hasse diagram of diamond lattice D

Using the same notion of (n-ary) aggregation operator for n = 2 leads to the
following definition.
Definition 2.2. [38] Let (L,≤,∧,∨, 0, 1) be a bounded lattice. An aggregation
operator on L is a binary operation A on L which is increasing and it fulfills the
boundary conditions A(0, 0) = 0 and A(1, 1) = 1.

Denote by A(L) the set of all aggregation operator and consider A(L) with the
following order: For A,B ∈ A(L),

A ≤ B whenever A(x, y) ≤ B(x, y), for any x, y ∈ L.

Proposition 2.1. [32] Let (L,≤,∧,∨, 0, 1) be a bounded lattice. Then the smallest
and the greatest aggregation operators in A(L) are, respectively, defined by

A⊥(x) =
1 if x = y = 1;

0 otherwise;
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and

A>(x) =
0 if x = y = 0;

1 otherwise.

Thus, we have A⊥ ≤ A ≤ A>, for any aggregation operator A ∈ A(L).

2.2. Function-based new generalized properties
of binary operations on lattices

In this section, we discuss some new generalized properties of binary operations
on lattice with respect to a given function on that lattice. These new properties
are generalization of known properties of binary operations on a lattice with
respect to a function f , and coincide with them when f is the identity function.
As an application, with respect to a given function we study the relationships
between some interesting properties of binary operations on a lattice and their
extensions.

2.2.1. New generalized properties of binary operations on
a lattice

In this subsection, we introduce some new properties of binary operations on
lattices with respect to a given function and we present an illustrative example.
More precisely, we introduce the notions of f -increasing (resp. f -decreasing),
f -conjunctive (resp. f -disjunctive) and f -idempotent binary operations on lattices
and investigate their properties.
Definition 2.3. Let (L,≤,∧,∨) be a lattice, A a binary operation on L and f a
function on L. Then A is called:

(i) left increasing (resp. left decreasing) with respect to f (left f -increasing (resp.
left f-decreasing), for short), if x ≤ y implies A(fx, z) ≤ A(fy, z) (resp.
A(fy, z) ≤ A(fx, z)), for any x, y, z ∈ L;

(ii) right increasing (resp. right decreasing) with respect to f (right f -increasing
(resp. right f-decreasing), for short), if x ≤ y implies A(z, fx) ≤ A(z, fy)
(resp. A(z, fy) ≤ A(z, fx)), for any x, y, z ∈ L;

(iii) increasing (resp. decreasing) with respect to f (f-increasing (resp. f-
decreasing), for short), if A is both left and right f-increasing (resp. f-
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decreasing).
Definition 2.4. Let (L,≤,∧,∨) be a lattice, A a binary operation on L and f a
function on L. Then A is called:

(i) left (resp. right) f -conjunctive if it satisfies A(fx, y) ≤ x (resp. A(x, fy) ≤
y), for any x, y ∈ L;

(ii) f -conjunctive if it is both left and right f -conjunctive;

(iii) left (resp. right) f -disjunctive if it satisfies x ≤ A(fx, y) (resp. y ≤ A(x, fy)),
for any x, y ∈ L;

(iv) f -disjunctive if it is both left and right f -disjunctive.

In the following, we give an illustrative example of the above new generalized
properties of binary operations on a lattice.
Example 2.2. Let (D(12), |, gcd, lcm) be the bounded lattice of positive divisors
of 12 ordered by the divisibility order given by the Hasse diagram in Figure 2.2.
Let f : D(12) −→ D(12) be a function and A,B two binary operations on D(12)
defined as follows:

x 1 2 3 4 6 12
fx 6 2 1 12 3 4

,

A(x, y) 1 2 3 4 6 12
1 3 1 3 3 1 1
2 1 2 2 2 1 2
3 3 2 6 6 1 2
4 3 2 6 12 1 4
6 1 1 1 1 1 1
12 1 2 2 4 1 4

and

B(x, y) 1 2 3 4 6 12
1 3 6 6 12 3 12
2 6 2 6 12 2 4
3 6 6 6 12 6 12
4 12 12 12 12 12 12
6 3 2 6 12 1 4
12 12 4 12 12 4 4

One easily verifies that A and B are f-increasing but they are not increasing.
Indeed, Let x, y ∈ D(12) such that x | y. Setting x = 3, y = 6 and z = 1. Then
x | y, but A(x, z) = A(3, 1) = 3 - 1 = A(6, 1) = A(y, z) and B(x, z) = B(3, 1) =
6 - 3 = B(6, 1) = B(y, z). Hence, A and B are not increasing. Therefore, A and
B are not aggregation operators on D(12).

Furthermore, it is not difficult to check that A is f-conjunctive and B is f-
disjunctive on D(12). Notice that A (resp. B) is not conjunctive (resp. disjunctive)
on D(12).
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1

2 3

4 6

12

Figure 2.2: The Hasse diagram of the bounded lattice (D(12), |, gcd, lcm).

Definition 2.5. Let (L,≤,∧,∨) be a lattice, A a binary operation on L and f a
function on L. An element e ∈ L is called:

(i) left (resp. right) f -neutral element of A, if A(e, fx) = x (resp. A(fx, e) = x),
for any x ∈ L;

(ii) f -neutral element of A if it is both a left and a right f -neutral element of A.
Example 2.3. Let (L = {0, a, b, c, 1},≤,∧,∨) be the lattice given by the Hasse
diagram in Figure 2.3, f a function on L and A a binary operation on L defined
as follows:

x 0 a b c 1
fx 1 b c a 0

and

A(x, y) 0 a b c 1
0 1 1 0 0 0
a 1 c a b 0
b 0 a b c 1
c 0 b c a 1
1 0 0 1 1 1

It is not difficult to show that the element a ∈ L is an f -neutral element of A, but
it is not a neutral element of A.

Figure 2.3: The Hasse diagram of the lattice (L = {0, a, b, c, 1},≤).

The following proposition shows that if any element is both a neutral and an
f -neutral element of a binary operation on a lattice, then f is the identity function.
The proof is straightforward.
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Proposition 2.2. Let (L,≤,∧,∨) be a lattice, A a binary operation on L and f
a function on L. If e ∈ L is both a neutral and an f -neutral element of A, then f
is the identity function of L.
Definition 2.6. Let (L,≤,∧,∨) be a lattice, A a binary operation on L and f a
function on L. A is called f -commut, if A(fx, y) = A(x, fy), for any x, y ∈ L.
Example 2.4. Let A a binary operation on L and f a function on L given in
Example 2.3. One easily verifies that A is f -commut.
Definition 2.7. Let (L,≤,∧,∨) be a lattice, A a binary operation on L and f a
function on L. A is called f -idempotent, if A(fx, fx) = x, for any x ∈ L.
Example 2.5. Consider the binary operation A and the function f given in
Example 2.2. One easily verifies that A is f -idempotent, but not idempotent.

2.2.2. Binary operations on lattices and their f-
extensions

In this subsection, we study the relationships between some interesting properties
of binary operations on lattices and their extensions with respect to a given function
on that lattice. Moreover, we provide some properties of a binary operation based
on an arbitrary function on a lattice in order that it can be represented by the
meet and the join operations of that lattice.
Proposition 2.3. Let (L,≤,∧,∨) be a lattice and A a binary operation on L.
Then it holds that

(i) If A is increasing, then A is f -increasing, for any isotone function f on L;

(ii) If A is increasing, then A is f -decreasing, for any antitone function f on L.

The following proposition shows that the interaction of the notion of f -increasing
with the function composition.
Proposition 2.4. Let (L,≤,∧,∨) be a lattice, A a binary operation on L and f ,
g two functions on L such that g is isotone. If A is f -increasing on L, then A is
f ◦ g-increasing on L.

Proof. Let x, y ∈ L such that x ≤ y. Since g is isotone, it holds that gx ≤ gy.
The fact that A is f -increasing implies that A(f(g(x)), z) ≤ A(f(g(y)), z), for any
z ∈ L. Thus, A((f ◦ g)(x), z) ≤ A((f ◦ g)(y), z), for any z ∈ L. Therefore, A is
f ◦ g-increasing.

The above propositions lead to the following corollary.
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Corollary 2.1. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and A an f -increasing
binary operation on L. The following statements hold:

(i) If f is isotone, then A is fn-increasing, for any n ∈ N∗;

(ii) If f is antitone, then A is f 2n+1-increasing, for any n ∈ N.
Remark 2.1. Let (L,≤,∧,∨) be a lattice, A a binary operation on L and f a
function on L. The following implications hold:

(i) If A is conjunctive and fx ≤ x, for any x ∈ L, then A is f -conjunctive;

(ii) If A is disjunctive and x ≤ fx, for any x ∈ L, then A is f -disjunctive.

The following proposition shows that a given binary operation on a lattice has at
most one f -neutral element.
Proposition 2.5. Let (L,≤,∧,∨) be a lattice, A a binary operation on L and f
a function on L. If A is f -commut, then A has at most one f -neutral element.

Proof. Let A be an f -commut binary operation on L having two f -neutral elements
e1, e2 ∈ L. Then e1 = A(fe1, e2) = A(e1, fe2) = e2. Therefore, e1 = e2.

In the following, we give an example to explain the result of Proposition 2.5 .
Example 2.6. Let A be an f -commut binary operation on L and f function on L
given in Example 2.3. One easily verifies that a ∈ L is the only f -neutral element
of A.

In the following theorem, we characterize the f -conjunctive (resp. f -disjunctive)
binary operation on a bounded lattice in terms of f -neutral element. This
characterization is an extension to that known in (Proposition 5.3, in [54]).
Theorem 2.1. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and A a binary operation
on L having an f -neutral element e ∈ L such that A is f -commut and f -increasing.
The following equivalences hold:

(i) A is f -conjunctive if and only if e = 1;

(ii) A is f -disjunctive if and only if e = 0.

Proof. (i) The fact that A is f -commut and f -conjunctive imply that 1 =
A(f(1), e) = A(1, f(e)) ≤ e. Hence, e = 1. Conversely, suppose that e = 1
and let x, y ∈ L. Since A is f -commut and f -increasing, it follows that
A(fx, y) = A(x, fy) ≤ A(x, f1) = A(fx, 1) = x. In a similar way, we obtain
that A(x, fy) ≤ y. Hence, A is left and right f -conjunctive. Thus, A is
f -conjunctive.
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(ii) The proof is dual to that of (i).

The following result provides some properties of a binary operation based on an
arbitrary function on a lattice in order that it can be represented by the meet and
the join operations of that lattice.
Proposition 2.6. Let (L,≤,∧,∨) be a lattice, A a binary operation on L and f
a function on L. If f is surjective, then the following implications hold:

(i) if A is f -idempotent, f -increasing and f -conjunctive, then for any a, b ∈ L,
there exist x, y ∈ L such that A(a, b) = x ∧ y;

(ii) if A is f -idempotent, f -increasing and f -disjunctive, then for any a, b ∈ L,
there exist x, y ∈ L such that A(a, b) = x ∨ y.

Proof. (i) Let a, b ∈ L, then there exist x, y ∈ L such that fx = a and fy = b by
using the fact that f is surjective. Since A is f -increasing and f -idempotent,
it follows that x ∧ y = A(f(x ∧ y), f(x ∧ y)) ≤ A(fx, fy) = A(a, b). The
fact that A is f -conjunctive implies that A(a, b) = A(fx, fy) ≤ x∧ y. Thus,
A(a, b) = x ∧ y.

(ii) The proof is dual to that of (i).

Proposition 2.6 leads to the following result.
Proposition 2.7. Let (L,≤,∧,∨) be a lattice, A a binary operation on L and f
a function on L. If f is surjective, then the following equivalences hold:

(i) A is f-idempotent, f-increasing and f-conjunctive if and only if for any
x, y ∈ L there is A(fx, fy) = x ∧ y;

(ii) A is f-idempotent, f-increasing and f-disjunctive if and only if for any
x, y ∈ L there is A(fx, fy) = x ∨ y.

Proof. (i) The proof of the direct implication follows from Propositions 2.6.
Next, we prove the converse implication. Let x, y, z ∈ L such that x ≤ y, it
is clear that f is surjective, then there exists t ∈ L such that z = ft. Thus,
A(fx, z) = A(fx, ft) = x ∧ t ≤ y ∧ t = A(fy, ft) = A(fy, z). Hence, A is
left f -increasing. In similar way, we obtain that A is right f -increasing. Now,
we prove that A is f -conjunctive. Let x, y ∈ L, since f is surjective, then
there exists s ∈ L such that y = fs. Then A(fx, y) = A(fx, fs) = x∧s ≤ x.
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In a similar way, we obtain that A(x, fy) ≤ y. Hence, A is f -conjunctive.
It is obvious that A is f -idempotent.

(ii) The proof is dual to that of (i).

2.3. f-aggregation operators on bounded lat-
tices

In this section, we extend the notion of aggregation operator on bounded lattices
introduced by Mesiar and Komorníková [38] to f -aggregation operator, where f is
an arbitrary function on that bounded lattice. Furthermore, various properties of
this notion and its links with the notion of an aggregation operator on bounded
lattices is discussed.

2.3.1. Definitions and examples

In this subsection, we introduce the notion of the f -aggregation operator on
bounded lattices and we give some illustrative examples for clarity. First, we
recall the definition of aggregation operator on bounded lattices.
Definition 2.8. [38] Let (L,≤,∧,∨, 0, 1) be a bounded lattice. An aggregation
operator on L is a binary operation A on L which is increasing and it fulfills the
boundary conditions A(0, 0) = 0 and A(1, 1) = 1.

Next, we extend this definition by using a given function f on a bounded lattice
as follow.
Definition 2.9. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and f a function on L.
An aggregation operator with respect to the function f (f -aggregation operator, for
short) on L is a binary operation A on L which is f -increasing and it fulfills the
f -boundary conditions A(f(0), f(0)) = 0 and A(f(1), f(1)) = 1.
Remark 2.2. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and A an f-aggregation
operator on L. If f is a constant function on L, then L = {0}. Indeed, let A an
f -aggregation operator on L. Since f is constant, it holds that fx = fy, for any
x, y ∈ L. Then 0 = A(f(0), f(0)) = A(f(1), f(1)) = 1. Hence, 0 = 1. Therefore,
L = {0}.

For the rest of the work, we will assume that f is not a constant function.
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Example 2.7. Let f : [0, 1] −→ [0, 1] be a function and A a binary operation on
[0, 1] defined by:

fx = 1
2x and A(x, y) =


1 , if x = y = 1

2 ;
1

(1+x)(1+y) , if (x, y) ∈]1
2 , 1]×]1

2 , 1];
xy , otherwise.

One easily verifies that A is an f -aggregation operator, but A is not an aggregation
operator on [0, 1]. Indeed, Let x, y ∈ [0, 1[ such that x ≤ y. Setting x = 2

3 , y = 3
4

and z = 1. Then x ≤ y, but A(x, z) = 1
(1+x)(1+z) = 3

10 ≥
2
7 = 1

(1+y)(1+z) = A(y, z).
Hence, A is not increasing. However, A is not an aggregation operator.
Example 2.8. Let A,B be the binary operations on D(12) and f the function on
D(12) defined in Example 2.2. One easily verifies that A and B are f -increasing
and fulfills the f -boundary conditions. Thus, A and B are f -aggregation operators
on D(12).
Remark 2.3. In general, we use the aggregation operators (increasing binary
operations) on a given universe to aggregate objects on that universe. While
the notion of f -aggregation operators (f -increasing operations) allows the use of
non-increasing operations to aggregate objects with respect to specific functions on
that universe.

2.3.2. Properties of f-aggregation operators on bounded
lattices

In this subsection, we investigate basic properties of f -aggregation operators on
bounded lattices. First, we show that any aggregation operator is an f -aggregation
operator, for any isotone function on that lattice and not conversely.
Proposition 2.8. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and A a binary op-
eration on L. If A is an aggregation operator on L, then A is an f-aggregation
operator, for any isotone function f on L satisfying f(0) = 0 and f(1) = 1.

Proof. Since A is increasing and f is isotone, then Proposition 2.3 guarantees that
A is f -increasing. The fact that f(0) = 0 and f(1) = 1 imply that A(f(0), f(0)) =
0 and A(f(1), f(1)) = 1. Thus, A is an f -aggregation operator on L.

The following counter example shows that the converse implication of Proposi-
tion 2.8 does not necessarily hold.

27



Chapter 2. Aggregation operators on bounded lattices

Example 2.9. Let (D(30), |, gcd, lcm) be the lattice of the positive divisors of
30, f an isotone function on D(30) and A a binary operation on D(30) defined
as follows:

x 1 2 3 5 6 10 15 30
fx 1 5 5 3 10 15 30 30

and

A(x, y) =
{

lcm(x, y), if (x, y) ∈ {2, 6} × {2, 6};
gcd(x, y), otherwise.

.

One easily verifies that A(f(1), f(1)) = 1 and A(f(30), f(30)) = 30. Next, we
prove that A is an f-increasing. Let x, y ∈ D(30) such that x | y, since f is
isotone, it holds that fx | fy. The fact that fx, fy ∈ D(30) \ {2, 6} implies that
A(fx, z) = gcd(fx, z) and A(fy, z) = gcd(fy, z). Then A(fx, z) | A(fy, z), for
any z ∈ D(30). Hence, A is left f -increasing. Similarly, we prove that A is right
f -increasing. Thus, A is an f -aggregation operator on D(30). On the other hand,
setting x = 2, y = 10 and z = 6. Then x | y, but A(x, z) = A(2, 6) = lcm(2, 6) = 6
and A(y, z) = A(10, 6) = gcd(10, 6) = 2. Hence, 6 - 2, i.e., A is not increasing.
Consequently, A is not an aggregation operator.

In the same line, the following example gives an f -aggregation operator A such
that f is not an isotone function and A is not an aggregation operator.
Example 2.10. Let A be a binary operation on D(12) and f a function on D(12)
given in Example 2.2. Then A is an f -aggregation operator, f is not an isotone
function and A is not an aggregation operator on D(12).
Theorem 2.2. Let (L,≤,∧,∨, 0, 1) be a bounded lattice, f a lattice-automorphism
on L and A a binary operation on L. Then it holds that A is an f-aggregation
operator if and only if A is an f−1-aggregation operator.

Proof. Since f is a lattice-automorphism, then Proposition 1.2 guarantees that
A(f−1(0), f−1(0)) = A(f(0), f(0)) = 0 and A(f−1(1), f−1(1)) = A(f(1), f(1)) = 1.
Assume x, y ∈ L such that x ≤ y, then there exist s, t ∈ L such that x = f 2(s) and
y = f 2(t). The fact that f−1 is isotone implies that f−2(x) ≤ f−2(y), i.e., s ≤ t.
Since A is an f -aggregation operator on L, it follows that A(fs, z) ≤ A(ft, z),
for any z ∈ L, this equivalent to A(f−1(f 2(s)), z) ≤ A(f−1(f 2(t)), z), for any
z ∈ L. Hence, A(f−1(x), z) ≤ A(f−1(y), z), for any z ∈ L. Thus, A is left
f−1-increasing. Similarly, we obtain that A is right f−1-increasing. Therefore,
A is an f−1-aggregation operator on L. The proof of the converse implication
follows from the fact that (f−1)−1 = f .

Proposition 2.9. Let (L,≤,∧,∨, 0, 1) be a bounded lattice, f a lattice-
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automorphism on L and A a binary operation on L. The following statements are
equivalent:

(i) A is an aggregation operator;

(ii) A is an f -aggregation operator;

(iii) A is an f−1-aggregation operator.

Proof. (i) ⇒ (ii): Follows from Propositions 1.2 and 2.8.
(ii) ⇒ (iii): The proof is a direct application of Theorem 2.2.
(iii) ⇒ (i): Obvious that A satisfies the f -boundary conditions. Next, let x, y ∈ L
such that x ≤ y, then fx ≤ fy. Since A is an f−1-aggregation operator, it holds
that A(f−1(fx), z) ≤ A(f−1(fy), z), for any z ∈ L. Thus, A(x, z) ≤ A(y, z), for
any z ∈ L. Therefore, A is an aggregation operator on L.

Proposition 2.10. Let (L,≤,∧,∨) be a lattice and f : L −→ L a lattice-
epimorphism. If A is an idempotent f-aggregation operator on L, then A is
averaging.

Proof. Let x, y ∈ L such that ft = x and fs = y. The fact that A is f -
increasing implies that A(x, y) = A(ft, y) ≤ A(f(t ∨ s), y) = A(f(t ∨ s), fs) ≤
A(f(t ∨ s), f(t ∨ s)). Thus, A(x, y) ≤ A(f(t ∨ s), f(t ∨ s)). Since A is idempotent
and f is a homomorphism, it follows that A(x, y) ≤ f(t∨ s) = x∨ y. Analogously,
we show that x ∧ y ≤ A(x, y). Hence, x ∧ y ≤ A(x, y) ≤ x ∨ y. Therefore, A is
averaging.

2.3.3. Composition and transformations of f-aggregation
operators on bounded lattices

In this subsection, we study the composition of f -aggregation operators on
a bounded lattice. Further, we investigate the transformations of a given f -
aggregation operator on a bounded lattice by a lattice-automorphism and a strong
negation. First, we show that the aggregation of two f -aggregation operators on
a bounded lattice is also an f -aggregation operator.
Proposition 2.11. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and A,F1, F2 three
binary operations on L. If A is an aggregation operator and F1, F2 are two f-
aggregation operators on L, then the aggregation of F1 and F2 by A defined for
any x, y ∈ L as

A(F1, F2)(x, y) = A(F1(x, y), F2(x, y)) ,
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is also an f -aggregation operator on L.

Proof. Let x, y ∈ L such that x ≤ y. Since F1, F2 are two f -aggregation opera-
tors and A is an aggregation operator on L, it follows that A(F1, F2)(fx, z) =
A(F1(fx, z), F2(fx, z)) ≤ A(F1(fy, z), F2(fy, z)) = A(F1, F2)(fy, z), for any
z ∈ L. Thus, A(F1, F2) is left f -increasing on L. Similarly, we obtain that
A(F1, F2) is right f -increasing. Therefore, A(F1, F2) is f -increasing. Next, it is
obvious that A(F1, F2) satisfies the f -boundary conditions. Thus, A(F1, F2) is an
f -aggregation operator on L.

Proposition 2.12. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and A,F1, F2 three
binary operations on L. If A is an f -aggregation operator and F1, F2 are two idem-
potent aggregation operators on L such that f(F1(x, y)) = F1(fx, y) = F1(x, fy)
and f(F2(x, y)) = F2(fx, y) = F2(x, fy). Then A(F1, F2) is an f-aggregation
operator on L.

Proof. Let x, y ∈ L such that x ≤ y. Since F1, F2 are two aggrega-
tion operators and A is an f -aggregation operator on L, it follows that
A(F1, F2)(fx, z) = A(F1(fx, z), F2(fx, z)) = A(f(F1(x, z)), f(F2(x, z))) ≤
A(f(F1(y, z)), f(F2(y, z))) = A(F1, F2)(fy, z), for any z ∈ L. Thus, A(F1, F2)
is left f -increasing on L. In a similar way, we obtain that A(F1, F2) is right f -
increasing. Therefore, A(F1, F2) is f -increasing. Next, since F1, F2 are idempotent,
then A(F1, F2)(f(0), f(0)) = A(F1(f(0), f(0)), F2(f(0), f(0))) = A(f(0), f(0)) =
0. Similarly, we obtain that A(F1, F2)(f(1), f(1)) = 1. Consequently, A(F1, F2) is
an f -aggregation operator on L.

Example 2.11. Let F1, F2 be two binary operations on L such that F1 = F2 = ∧
and f a meet-translation on L (i.e., f(x∧y) = x∧fy, for any x, y ∈ L). One easily
verifies that f(F1(x, y)) = F1(fx, y) = F1(x, fy) and f(F2(x, y)) = F2(fx, y) =
F2(x, fy). Since F1 = F2 = ∧ are idempotent aggregation operators, then A(F1, F2)
is an f -aggregation operator on L, for any f -aggregation operator A on L.
Theorem 2.3. Let (L,≤,∧,∨, 0, 1) be a bounded lattice with a lattice-
automorphism ϕ and f a function satisfies f ◦ ϕ = ϕ ◦ f . Then it holds that A is
an f -aggregation operator on L if and only if Aϕ is an f -aggregation operator on
L, where Aϕ is a binary operation on L given by:

Aϕ(x, y) = ϕ−1(A(ϕx, ϕy)), for any x, y ∈ L.

Proof. Suppose that A is an f -aggregation operator on a bounded lattice L and
we show that Aϕ is also an f -aggregation operator on L. First, we prove that
Aϕ(f(0), f(0)) = 0 and Aϕ(f(1), f(1)) = 1. Since ϕ is a lattice-automorphism,
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it follows from Proposition 1.2 that ϕ(0) = ϕ−1(0) = 0 and ϕ(1) = ϕ−1(1) = 1.
From f ◦ ϕ = ϕ ◦ f , it follows that Aϕ(f(0), f(0)) = ϕ−1(A(ϕ(f(0)), ϕ(f(0)))) =
ϕ−1(A(f(ϕ(0)), f(ϕ(0)))) and Aϕ(f(1), f(1)) =
ϕ−1(A(ϕ(f(1)), ϕ(f(1)))) = ϕ−1(A(f(ϕ(1)), f(ϕ(1)))). Thus, Aϕ(f(0), f(0)) =
ϕ−1(A(f(0), f(0))) = ϕ−1(0) = 0 and Aϕ(f(1), f(1)) = ϕ−1(A(f(1), f(1))) =
ϕ−1(1) = 1. Next, we prove that Aϕ is f -increasing. Let x, y ∈ L such that
x ≤ y, then ϕx ≤ ϕy. Since A is an f -aggregation operator on L, it fol-
lows that A(f(ϕx), ϕz) ≤ A(f(ϕy), ϕz), for any z ∈ L. The fact that ϕ is a
lattice-automorphism guarantees that ϕ−1 is isotone, then ϕ−1(A(f(ϕx), ϕz)) ≤
ϕ−1(A(f(ϕy), ϕz)), for any z ∈ L. The equality f ◦ ϕ = ϕ ◦ f implies that
ϕ−1(A(ϕ(fx), ϕz)) ≤ ϕ−1(A(ϕ(fy), ϕz)), for any z ∈ L. Hence, Aϕ(fx, z) ≤
Aϕ(fy, z), for any z ∈ L. Thus, Aϕ is left f -increasing. Similarly, we obtain that
Aϕ is also right f -increasing. Therefore, Aϕ is an f -aggregation operator on L.
The proof of the converse implication follows from the fact that A = (Aϕ)ϕ−1 .

In the following, we give an example to explain the result of Theorem 2.3.
Example 2.12. Let (D(30), |, gcd, lcm) be the lattice of the positive divisors of
30, f, ϕ two functions on D(30) and A a binary operation on D(30) defined as
follows:

x 1 2 3 5 6 10 15 30
fx 1 15 10 6 5 3 2 30
ϕx 1 3 5 2 15 6 10 30

and
A(x, y) 1 2 3 5 6 10 15 30

1 1 1 1 1 1 1 1 1
2 1 30 30 30 6 5 6 30
3 1 30 30 6 6 2 2 30
5 1 30 6 30 2 10 6 30
6 1 30 6 6 3 1 2 30
10 1 10 2 10 2 5 2 10
15 1 6 2 6 2 2 2 6
30 1 30 30 30 30 30 30 30

One easily verifies that ϕ is a lattice-automorphism and f ◦ ϕ = ϕ ◦ f . Also, it is
not difficult to check that A is an f -aggregation operator on D(30) and Aϕ defined
in the following table is also an f -aggregation operation on D(30).
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Aϕ(x, y) 1 2 3 5 6 10 15 30
1 1 1 1 1 1 1 1 1
2 1 30 10 30 5 10 5 30
3 1 10 30 30 10 5 15 30
5 1 30 30 30 10 10 3 30
6 1 5 10 10 5 5 5 10
10 1 10 10 30 5 2 1 30
15 1 5 15 15 5 5 3 15
30 1 30 30 30 30 30 30 30

Theorem 2.2, Theorem 2.3 and Proposition 2.4 lead to the following corollary.
Corollary 2.2. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and f, ϕ two lattice-
automorphisms on L such that f ◦ ϕ = ϕ ◦ f . Let A be a binary operation on L.
The following statements are equivalent:

(i) A is an f -aggregation operator;

(ii) A is an f−1-aggregation operator;

(iii) Aϕ is an f -aggregation operator;

(iv) Aϕ is an f−1-aggregation operator.

For a given binary operation A on a bounded lattice (L,≤,∧,∨, 0, 1) with a
negation N , we denote by AN its dual, i.e., AN (x, y) = N−1(A(Nx,Ny)), for any
x, y ∈ L. One easily observes that if N is a strong negation, then N−1 = N ,
(AN)N = A and AN(x, y) = N(A(Nx,Ny)), for any x, y ∈ L.

In the same line, the following theorem shows that the transformation of an
f -aggregation operator on bounded lattice by a strong negation is also an f -
aggregation operator. The proof is analogous to that of Theorem 2.3.
Theorem 2.4. Let (L,≤,∧,∨, 0, 1) be a bounded lattice with a strong negation N
and a function f such that f ◦N = N ◦ f . Then A is an f -aggregation operator
on L if and only if its dual operation AN is an f -aggregation operator on L, where
AN(x, y) = N(A(Nx,Ny)), for any x, y ∈ L.

In the following, we show an illustrative example of Theorem 2.4.
Example 2.13. Let f and N be two functions on the bounded lattice D(30) given
by:

x 1 2 3 5 6 10 15 30
fx 15 1 5 2 10 30 6 3
Nx 30 10 15 6 5 2 3 1

Let A be a binary operation on D(30) given by the following table:
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A(x,y) 1 2 3 5 6 10 15 30
1 1 2 6 2 6 6 1 2
2 2 3 30 1 30 6 1 6
3 30 30 30 30 30 30 6 30
5 2 2 30 5 10 10 1 2
6 6 6 30 5 30 30 1 30
10 6 2 30 10 30 30 2 6
15 1 1 6 1 6 2 1 2
30 2 6 30 2 30 6 2 30

One easily verifies that N is a strong negation, f ◦ N = N ◦ f and A is an
f -aggregation operator. Applying Theorem 2.4 we obtain that AN defined by the
following table:

AN(x, y) 1 2 3 5 6 10 15 30
1 1 5 10 1 10 5 1 10
2 5 1 10 1 2 10 1 5
3 10 10 30 5 30 30 5 30
5 1 1 30 1 6 5 1 5
6 10 2 30 2 6 10 1 10
10 5 5 30 1 30 15 1 10
15 1 1 5 1 1 1 1 1
30 10 5 30 5 10 10 5 30

is also an f -aggregation operator on D(30).

2.4. Smallest and greatest f-aggregation opera-
tors on bounded lattices

In this section, we provide some conditions on a given function f to define the
smallest and the greatest f -aggregation operators on a bounded lattice.

For a given function f on a bounded lattice (L,≤,∧,∨, 0, 1), we define the binary
operations A⊥ and A> as:

A⊥(x, y) =
1, if x = y = f(1);

0, otherwise;
and A>(x, y) =

0, if x = y = f(0);
1, otherwise.
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Remark 2.4. One can observe that:

(i) A⊥ and A> are not aggregation operators on L, in general. However, if
f(0) = 0 and f(1) = 1, then A⊥ (resp. A>) is an aggregation operator on L.

(ii) A⊥ and A> are not f -aggregation operators on L, in general. Indeed, let f
be a function on D(12) defined as follows:

x 1 2 3 4 6 12
fx 6 2 4 12 6 4

.

It is not difficult to see that A⊥ (resp. A>) is not f -increasing on D(12) (3 | 6,
but A⊥(f(3), 4) - A⊥(f(6), 4)) (resp. 2 | 6, but A>(f(2), 6) - A>(f(6), 6).
Thus, A⊥ and A> are not f -aggregation operators on D(12).

The following propositions provide some conditions on the function f under which
A⊥ and A> are f -aggregation operators.
Proposition 2.13. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and f a function on
L. The following equivalences hold:

(i) A⊥ is an f -aggregation operator on L if and only if for any x ≤ y it holds
(fx = f(1)⇒ fy = f(1));

(ii) A> is an f -aggregation operator on L if and only if for any x ≤ y it holds
(fy = f(0)⇒ fx = f(0)).

Proof. We only give the proof of (i), as (ii) can be proved analogously. Let
x, y ∈ L such that x ≤ y and fx = f(1). The fact that A⊥ is f -increasing
implies that A⊥(fx, z) ≤ A⊥(fy, z), for any z ∈ L. For z = f(1), we get that
A⊥(fy, f(1)) = 1. Hence, fy = f(1). Next, for the converse implication, let
x, y, z ∈ L such that x ≤ y. If A⊥(fx, z) = 0, then A⊥(fx, z) ≤ A⊥(fy, z), for
any z ∈ L. If A⊥(fx, z) = 1, then fx = f(1) and z = f(1). Hence, fy = f(1).
Thus, A⊥(fy, z) = 1. Then A⊥(fx, z) ≤ A⊥(fy, z), for any z ∈ L. Therefore,
A⊥ is left f -increasing. Similarly, we obtain that A⊥ is right f -increasing. Next,
since f is a non-constant function, then f(0) 6= f(1). Thus, A⊥(f(0), f(0)) = 0.
Obviously, A⊥(f(1), f(1)) = 1. Hence, A⊥ satisfies the f -boundary conditions.
Therefore, A⊥ is an f -aggregation operator on L.

Proposition 2.13 leads to the following corollaries.
Corollary 2.3. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and f a function on L.
If f is injective, then A⊥ and A> are f -aggregation operators on L.
Corollary 2.4. Let (L,≤,∧,∨, 0, 1) a bounded lattice and f a function on L. If
f satisfies fx = f(1) implies x = 1 (resp. fx = f(0) implies x = 0), then A⊥
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(resp. A>) is an f -aggregation operator on L.

The following corollary shows that if A⊥ and A> are f -aggregation operators on
a given bounded lattice, then A⊥ (resp. A>) is the smallest (resp. the greatest)
f -aggregation operator on that lattice.
Corollary 2.5. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and f a function on
L. If A⊥ and A> are f-aggregation operators on L, then A⊥ (resp. A>) is the
smallest (resp. the greatest) f -aggregation operator on L.

For a given function f on a bounded lattice (L,≤,∧,∨, 0, 1), let us denote by
Af(L) the set of all f -aggregation operators on L. Next, we provide a lattice
structure of the set Af (L).
Proposition 2.14. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and f a function on
L. If A⊥ and A> are f -aggregation operators on L, then (Af (L),v,u,t, A⊥, A>)
is a bounded lattice. Where A v B if A(x, y) ≤ B(x, y), (AuB)(x, y) = A(x, y)∧
B(x, y) and (AtB)(x, y) = A(x, y)∨B(x, y), for any A,B ∈ Af (L) and x, y ∈ L.

Proof. Follows from Proposition 2.11 and Corollary 2.5.

The result of this chapter are published in [34].
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3 Class of associative operations on
trellises

The different classes of aggregation operations (or associative operations in gen-
eral) based on additional properties (e.g., commutativity, increasingness, neutral
elements) on the unit interval or a bounded lattice are useful in lots of different
theoretical and applied areas, for instance, fuzzy logic, fuzzy system modeling,
neural networks, expert systems, data sets, aggregation of information, ...etc.
Motivated by this usefulness, this chapter is devoted to generalizing some of these
classes of associative operations to the trellis setting. Some of these results are
either inspired from or discussed in [10, 16, 52, 56], and others are investigated
during the preparation of this thesis. For further use, we recall some classes of
associative operations on lattices.

3.1. Classes of associative operations on lattices

This section contains basic definitions and properties of specific associative opera-
tions on latices. We pay particular attention to the notion of uninorms, triangular
norms and triangular conorms on bounded lattices.

3.1.1. Definitions and basic properties

Definition 3.1. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and e ∈ L. A binary
operation U : L2 → L is called a uninorm if it is commutative, increasing,
associative , and has e as a neutral element.

If e = 1, then U is called a triangular norm (t-norm, for short). If e = 0, then U
is called a triangular conorm (t-conorm, for short).

Next, we present some illustrative examples.
Example 3.1. For a given bounded lattice (L,≤,∧,∨, 0, 1), ∧ (resp. ∨) is a
t-norm (resp. a t-conorm) on L. Moreover, it well known that ∧ (resp. ∨) is the
greatest t-norm (resp. the smallest t-conorm) on L.
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Example 3.2. For a given bounded lattice Let (L,≤,∧,∨, 0, 1) be a bounded
lattice and TD and SD be two binary operations defined on L as follows:

TD(x, y) =
 x ∧ y if x = 1 or y = 1;

0 otherwise;

and

SD(x, y) =
 x ∨ y if x = 0 or y = 0;

1 otherwise.

One easily verifies that TD (resp. SD) is a t-norm (resp. a t-conorm) on
L. Moreover, TD (resp. SD) is the smallest t-norm (resp. the greatest t-conorm)
on L.

Proposition 3.1. [10] Let (L,≤,∧,∨, 0, 1) be a bounded lattice. Then it holds
that:

(i) TD ≤ T ≤ ∧, for any t-norm T on L ;

(ii) ∨ ≤ S ≤ SD, or any t-conorm S on L .

Let T1 and T2 be t-norms on bounded lattices L and M , respectively. A lattice
homomorphism ρ : L→M is a t-norm morphism from T1 into T2 if there exists a
lattice morphism ψ : M → L such that:

T2(x, y) = ρ (T1(ψ(x), ψ(y))) , for any x, y ∈M. (3.1)

We will call ψ the pseudo-inverse of ρ. Moreover, if ρ is a lattice morphism, then
ρ is increasing.
Theorem 3.1. [4] Let T1 and T2 be t-norms on bounded lattices L and M ,
respectively. If ρ : L → M is a t-norm morphism from T1 into T2 with pseudo-
inverse ψ, then ρ ◦ ψ = IdM .

Proof. Let x ∈M , then it holds that

x = T2 (x, 1M)
= ρ (T1 (ψ(x), ψ (1M)) by equation (3.1)
= ρ (T1 (ψ(x), 1L))
= ρ(ψ(x)).
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Corollary 3.1. [4] Let T1 and T2 be t-norms on bounded lattices L and M ,
respectively. If ρ : L → M is a t-norm morphism from T1 into T2 and ψ is a
pseudo-inverse, then it holds that ρ is surjective and ψ is injective.
Remark 3.1. From the Corollary 3.1, it follows that a t-norm morphism can
have several pseudo-inverses.
Definition 3.2. [4] Let (L,≤,∧,∨, 0, 1) be a bounded lattice. A function ρ :
L −→ L is an automorphism on L if it is bijective and monotonic with respect to
their respective order, i.e. if x ≤L y then ρ(x) ≤L ρ(y). Notice that this implies
that automorphisms are strictly increasing functions.
Remark 3.2. When the bounded lattice is [0, 1], then the notion of automorphism
coincides with the usual automorphism notion.
Proposition 3.2. [4] Let (L,≤,∧,∨, 0, 1) be a bounded lattice. Then any auto-
morphism on L is a lattice homomorphism.

In general, the reverse implication of proposition 3.2 is not valid.
Proposition 3.3. [4] Let (L,≤,∧,∨, 0, 1) be a bounded lattice, T a t-norm on L
and ρ an automorphism on L. Then the binary operation T ρ is defined by:

T ρ(x, y) = ρ
(
T
(
ρ−1(x), ρ−1(y)

))
,

is a t-norm on L.

Proof. Analogous to the classical result.

Corollary 3.2. Let (L,≤,∧,∨, 0, 1) be a bounded lattice, T a t-norm on L and ρ
an automorphism on L. Then ρ is a t-norm morphism from T into T ρ.
Proposition 3.4. Let (L,�,∧,∨, 0, 1) be a bounded modular lattice. Then the
binary operation TZ is defined as follows:

TZ(x, y) =
 x ∧ y if x ∨ y = 1,

0 otherwise,

is a t-n m on L.

Proof. One easily verifies that TZ is commutative, increasing and satisfies the
boundary conditions. Now, we only have to show the associativity of TZ. Let
x, y, z ∈ L. On the one hand, we have that

TZ (x, TZ(y, z)) =
 x ∧ y ∧ z if y ∨ z = 1 and x ∨ (y ∧ z) = 1,

0 otherwise.
On the other hand, it holds that

TZ (TZ(x, y), z) =
 x ∧ y ∧ z if x ∨ y = 1 and z ∨ (x ∧ y) = 1,

0 otherwise.
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We will show, for instance, that y∨ z = 1 and x∨ (y∧ z) = 1 implies x∨y = 1 and
z ∨ (x ∧ y) = 1. Since x ∨ (y ∧ z) = 1 and ∧ in increasing, it holds that x ∨ y = 1.
The fact that x∨ (y ∧ z) = 1 implies y = y ∧ (x∨ (y ∧ z)). From y = z ≤ y and L
is modular, it follows that that y = (x∧ y)∨ (y ∧ z). Thus, y ≤ (x∧ y)∨ z. Since
z ≤ (x∧ y)∨ z, it holds that y ∨ z ≤ (x∧ y)∨ z. Then (x∧ y)∨ z = 1. The proof
of the converse implication is similar. Hence, TZ is associative. Therefore, TZ is a
t-norm on L.

Remark 3.3. In general, TZ is not necessarily a t-norm. Indeed, let (X =
{0, a, b, c, d, e, 1},≤,∧,∨, 0, 1) be a bounded lattice given by the Hasse diagram in
Figure 3.1.

0

e d c

b

a

1

Figure 3.1: The Hasse diagram of the lattice (X = {0, a, b, c, d, e, 1},≤).

Since d ∨ c = 1, d ∧ c = a and e ∨ a = e < 1, it holds that TZ (e, TZ(d, c)) =
TZ(e, a) = 0. On the other hand, e ∨ d = 1, e ∧ d = b, b ∨ c = 1 and b ∧ c = a

imply that TZ (TZ(e, d), c) = TZ(b, c) = a > 0. Hence, TZ is not associative and
therefore not a t-norm.
Definition 3.3. [16] Let (L,≤,∧,∨, 0, 1) be a bounded lattice. A function int:
L → L is called an interior operator on L if, for any x, y ∈ L, it satisfies the
following properties:

(i) int(x) ≤ x;

(ii) int(x) = int(int(x));

(iii) int(x ∧ y) = int(x) ∧ int(y).

A large class of lattice-valued t-norms can be described using interior operators.
The following result proposed a method for generating t-norms on bounded lattices
based on interior operators.
Theorem 3.2. [16] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and int: L→ L an
interior operator on L. Then the binary operation T : L2 → L is a t-norm on L,
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where

T (x, y) =
x ∧ y if 1 ∈ {x, y};

int(x) ∧ int(y) otherwise.

3.1.2. Construction and representations of t-norms on
bounded lattices

Consider a bounded lattice (L,≤,∧,∨, 0, 1), an element a ∈ L\{0, 1}, a t-norm V :
[a, 1]2 → [a, 1]. An ordinal sum extension T of V to L is given by (see [46])

T (x, y) =
V (x, y) if (x, y) ∈ [a, 1]2;
x ∧ y otherwise .

(3.2)

However, the above-defined function T need not be a t-norm, in general.
Example 3.3. Let (L = {0, a, b, c, d, 1},≤) be a bounded lattice given by the
Hasse diagram in Figure 3.2 and consider the t-norm V : [c, 1]2 → [c, 1] defined by

V (x, y) =
 x ∧ y 1 ∈ {x, y};
c otherwise.

Then the operation T is constructed as Table 1 by using the formula (3.2), but T
is not a t-norm on L.

T 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a a a

b 0 0 b 0 b b

c 0 a 0 c c c

d 0 a b c c d

1 0 a b c d 1
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0

a b

c

d

1

Figure 3.2: The Hasse diagram of the lattice (L = {0, a, b, c, d, 1},≤).

If we take elements b, d ∈ L, then b ≤ d. But we have that T (b, d) = b‖c = T (d, d).
Hence, the operation T does not satisfy monotonicity. Moreover, T (T (d, d), b) =
T (c, b) = 0 and T (d, T (d, b)) = T (d, b) = b for elements b, d ∈ L. Hence, the
operation T does not satisfy associativity. So, we obtain that T is not a t-norm
on L.
Theorem 3.3. [9] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and a ∈ L\{0, 1}. If
V is a t-norm on [a, 1], then the binary operation T : L2 → L is a t-norm on L,
where

T (x, y) =


V (x, y) if (x, y) ∈ [a, 1 [2;
x ∧ y if 1 ∈ {x, y};
0 otherwise.

(3.3)

Corollary 3.3. [9] Let a ∈ L\{0, 1}. If we put V (x, y) =
 x ∧ y 1 ∈ {x, y},
a otherwise,

on [a, 1] in the formula (3.3) in Theorem 3.3. Then the following t-norm is the
smallest t-norm on L that extends V .

T (x, y) =


a if (x, y) ∈ [a, 1 [2;
x ∧ y if 1 ∈ {x, y};
0 otherwise.

Example 3.4. Let (L = {0, a, b, c, d, e, 1},≤) b a bounded lattice given by the
Hasse diagram in Figure 3.3.
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0

a

b c d

e

1

Figure 3.3: The Hasse diagram of the lattice (L = {0, a, b, c, d, e, 1},≤).

(i) Consider the t-norm V : [c, 1]2 → [c, 1] such that V (x, y) = x ∧ y. By using
Theorem 3.3, it holds that the t-norm T on L is given by the following table.

T 0 a b c d e 1
0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 a

b 0 0 0 0 0 0 b

c 0 0 0 c 0 c c

d 0 0 0 0 0 0 d

e 0 0 0 c 0 e e

1 0 a b c d e 1

(ii) Consider the t-norm V : [c, 1]2 → [c, 1] such that

V (x, y) =
 x ∧ y 1 ∈ {x, y},
c otherwise.

By using Theorem 3.3, it holds that the t-norm T on L is given by the
following table.

T 0 a b c d e 1
0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 a

b 0 0 0 0 0 0 b

c 0 0 0 c 0 c c

d 0 0 0 0 0 0 d

e 0 0 0 c 0 c e

1 0 a b c d e 1
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Theorem 3.4. [16] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and a ∈ L\{0, 1}.
If V is a t-norm on [a, 1], then the binary operation T : L2 → L is a t-norm on L,
where

T (x, y) =


V (x, y) if (x, y) ∈ [a, 1]2

x ∧ y if 1 ∈ {x, y}
x ∧ y ∧ a otherwise

(3.4)

Now, in the following Theorem 3.5. Considering any bounded lattice L, we
introduce a construction method for generating t-norms on L by means of a
t-norm V acting on [a, 1] for an element a ∈ L\{0, 1}. First, we start with the
following definition.
Definition 3.4. Let (L,≤,∧,∨, 0, 1) be a bounded lattice and a, b ∈ L. If a and b
are incomparable, we use the notation a‖b. We denote the set of all incomparable
elements with a by Ia, i.e., Ia = {x ∈ L | x‖a}.
Theorem 3.5. [16] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and a ∈ L\{0, 1}.
If V is a t-norm on [a, 1], then the function T : L2 → L is a t-norm on L, where

T (x, y) =



V (x, y) if (x, y) ∈
[
a, 1

[2,

0 if (x, y) ∈
[
0, a

[2 ∪ [0, a [×Ia ∪ Ia × [0, a [∪Ia × Ia,

x ∧ y if 1 ∈ {x, y}
x ∧ y ∧ a otherwise.

(3.5)

Remark 3.4. One easily Observe that the above t-norm T can be described as
follows:

T (x, y) =



V (x, y) if (x, y) ∈ [a, 1 [2,
0 if (x, y) ∈ [0, a]2 ∪ [0, a [×Ia ∪ Ia × [0, a [∪Ia × Ia,
y ∧ a if (x, y) ∈ [a, 1 [×Ia,
x ∧ a if (x, y) ∈ Ia × [a, 1[,
x if (x, y) ∈ [0, a]× [a, 1[,
y if (x, y) ∈ [a, 1[×[0, a]
x ∧ y if 1 ∈ {x, y}.

And represent the t-norm T on L as shown in Figure 3.4.
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Figure 3.4: The t-norm T on L given in the Theorem 3.5.

3.1.3. Ordinal sum construction for t-norms on bounded
lattices

Ordinal sums have been introduced in many different contexts (e.g., for posets,
semigroups, t-norms, copulas, aggregation operators, or quite recently for hoops).
In [7], Birkhoff provides a definition for building the ordinal sum X and Y of two
disjoint posets X, Y . Due to the associativity of this construction we immediately
extend this concept to families of pairwise disjoint posets for some linearly ordered
index set (I,4I) , I 6= ∅. Note that ordinal sums of disjoint posets in the sense of
Birkhoff are also referred to as linear sums of posets [12].
Definition 3.5. [12] Let a linearly ordered index set (I,4I) , I 6= ∅ and a family
of pairwise disjoint posets (Xi,≤i)i∈I . The ordinal sum ⊕

i∈I Xi is defined as the
set ⋃i∈I Xi equipped with the following order ≤ such that:

x ≤ y ⇔ (∃i ∈ I|x, y ∈ Xi and x ≤i y) or (∃i, j ∈ I|x ∈ Xi, y ∈ Xj and i ≺I j) .

In this contribution, we focus on ordinal sums of t-norms acting on some bounded
lattice that is not necessarily a chain or an ordinal sum of posets. Necessary
and sufficient conditions are provided for an ordinal sum operation yielding again
a t-norm on some bounded lattice whereas the operation is determined by an
arbitrary selection of subintervals as carriers for arbitrary t-norms.

The following definition of an ordinal sum of t-norms defined on subintervals of a
bounded lattice (L,≤,∧,∨, 0, 1), which generalizes the one given in [30, 47] on
subintervals of [0, 1].
Definition 3.6. [46] Let (L,≤,∧,∨, 0, 1) be a bounded lattice, (I,4I) a totally
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Chapter 3. Classes of associative operations on trellises

ordered index set such that I 6= ∅, {]ai, bi[}i∈I a family of pairwise disjointed
subintervals of L and

{
T [ai,bi]

}
i∈I

a family of t-norms on the corresponding intervals
{[ai, bi]}i∈I . Then the binary operation T =

{〈
ai, bi, T

[ai,bi]
〉}

i∈A
: L × L → L

defined for any x, y ∈ L, as

T (x, y) =
T

[ai,bi](x, y) if x, y ∈ [ai, bi] and i ∈ I;
x ∧ y otherwise.

(3.6)

is called ordinal sum of the family
{
T [ai,bi]

}
i∈I

on the bounded lattice L.
Theorem 3.6. [9] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and {a0, a1, a2, . . . , an}
be a finite chain in L such that a0 = 1 > a1 > a2 > . . . > an = 0. Let
V : [a1, 1]2 → [a1, 1] be a t-norm on the sublattice [a1, 1]. Then the operation
T = Tn : L2 → L defined recursively as follows is a t-norm, where V = T1 and
the operation Ti : [ai, 1]2 → [ai, 1], for any i ∈ {2, 3, . . . , n} is given by

Ti(x, y) =


Ti−1(x, y) if (x, y) ∈ [ai−1, 1 [2;
x ∧ y if 1 ∈ {x, y};
ai otherwise.

(3.7)

Remark 3.5. The proof follows easily from Theorem 3.3 by induction and there-
fore it is omitted. The construction described inductively by formula (3.7) can
be considered as an ordinal sum construction for t-norms. Obviously, if L in
Theorem 3.6 is a chain, then the formula (3.7) reduces to

Ti(x, y) =


Ti−1(x, y) if (x, y) ∈

[
ai−1, 1

[2;
x ∧ y if 1 ∈ {x, y};
ai if (x, y) ∈

[
ai, ai−1

[2 ∪ [ai, ai−1 [× [ai−1, 1 [∪ [ai−1, 1 [× [ai, ai−1[.

Example 3.5. Let (L = {0, a, b, c, d, 1},≤) be a bounded lattice given by the
Hasse diagram in Figure 3.5 and a finite chain {0, a, b, c, 1} such that 0 ≤ a ≤
b ≤ c ≤ 1. Suppose that V : [c, 1]2 → [c, 1] is a t-norm on the sublattice [c, 1]. By
using Theorem 3.6, where V = T1, it holds that the t-norms T2 : [b, 1]2 → [b, 1], T3 :
[a, 1]2 → [a, 1] and T = T4 : L2 → L are defined as follows:
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T2 b c d 1
b b b b b

c b c b c

d b b b d

1 b c d 1

,

T3 a b c d 1
a a a a a a

b a b b b b

c a b c b c

d a b b b d

1 a b c d 1

and

T = T4 0 a b c d 1
0 0 0 0 0 0 0
a 0 a a a a a

b 0 a b b b b

c 0 a b c b c

d 0 a b b b d

1 0 a b c d 1

0

dc

a

b

1

Figure 3.5: The Hasse diagram of the lattice (L = {0, a, b, c, d, 1},≤).

Remark 3.6. By using the t-norm T defined by the formula (3.3) in Theorem 3.3,
it holds that T on the lattice (L,≤,∧,∨, 0, 1) given by the Hasse diagram in
Figure 3.5 is defined for a given t-norm V = T1 : [c, 1]2 → [c, 1] on the sublattice
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[c, 1] by the following table.

T 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 0 0 a

b 0 0 0 0 0 b

c 0 0 0 c 0 c

d 0 0 0 0 0 d

1 0 a b c d 1

3.1.4. A T-partial order obtained from T-norms

A natural partial order for semigroups was defined by H. Mitsch in 1986 (see [39]).
In this section, we define a t-partial order obtained from t-norms and investigate
its properties (see, e.g. [1, 2]).
Definition 3.7. [27] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and T a t-norm
on L. The following order is called a triangular order (t-order, for short) for a
t-norm T .

x �T y ⇔ T (`, y) = x, for some ` ∈ L.

Proposition 3.5. [27] The binary relation �T is a partial order on L.

Proof. Since 1 ∈ L and T (1, x) = x, x � Tx holds. Thus, the reflexivity is
satisfied. Let x �T y and y �T x. Then there exist `1, `2 of L such that
T (`1, y) = x and T (`2, x) = y. Hence, x = T (`1, y) ≤ T (1, y) = y; i.e, x ≤ y. On
the other hand, y = T (`2, x) ≤ T (1, x) = x; i.e, y ≤ x. So, x = y. Thus, the
antisymmetry is satisfied. Let x �T y and y �T z. Then there exist `1, `2 of L
such that T (`1, y) = x and T (`2, z) = y. For T (`1, `2) of L, T (T (`1, `2) , z) =
T (`1, T (`2, z)) = T (`1, y) = x. Thus, x �T z. Hence, �T satisfies the transitivity.
Therefore, �T is a partial order on L.

Proposition 3.6. [27] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and T a t-norm
on L. If (x, y) ∈�T , then (x, y) ∈≤.

Proof. Let (x, y) ∈�T . Then there exists an element ` of L such that x =
T (`, y) ≤ T (1, y) = y. Thus, (x, y) ∈≤.

Remark 3.7. If (x, y) ∈≤, then (x, y) ∈�T may not be true. Indeed, let (L =
{0, a, b, c, 1},≤,∧,∨, 0, 1) be a bounded lattice given by the Hasse-diagram in
Figure 3.6.
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0

a

b c

1

Figure 3.6: The Hasse diagram of the lattice (L = {0, a, b, c, 1},≤).

Now, suppose that T = TD, we can see a ≤ b but a �TD
b. Indeed, if a �TD

b, then
there exists an element ` of L such that TD(`, b) = a. If ` = 0, then a = 0, which
is a contradiction. If ` = a, b or c, then TD(`, b) = 0 = a. This is a contradiction.
If ` = 1, then TD(1, b) = b = a, which is not possible. Therefore, there doesn’t
exist any element ` of L satisfying TD(`, b) = a. Thus, a �TD

b. Hence, the order
�TD

on L is given by the following Hasse diagram:

0

a b c

1

Figure 3.7: The order �TD
on L.

Proposition 3.7. [27] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and T a t-norm
on L. If T = TD, then it holds that a∧T b = 0, for any a ∈ L\{0, 1} and a∨T b = 1,
for any b ∈ L\{0, 1, a}. Moreover, (L,�TD

) is a lattice.

Proof. Let a, b ∈ L\{0, 1} such that a 6= b, since TD(a, b) = 0 and for any k ∈ L,
TD(a, k) 6= b and TD(b, k) 6= a, a and b are not comparable with respect to �TD

.
We claim that for an arbitrary a ∈ L\{0, 1} it satisfies a ∧TD

b = 0 for any b ∈
L\{0, 1, a}. If a ∧TD

b = x 6= 0, then x �TD
a and x �TD

b. Thus, there exists
x1 ∈ L\{0} such that 0 6= x = TD (a, x1). If x = a, then this is a contradiction
since a and b aren’t comparable with respect to �TD

. If TD (a, x1) = 1 or x1,
then we obtain that a = 1. This contradicts the choice of a. Hence, a ∧TD

b = 0.
Similarly, let us show that for an arbitrary a ∈ L\{0, 1}, a ∨TD

b = 1 for any
b ∈ L\{0, 1, a}. Let a ∨TD

b = x. Then a �TD
x and b �TD

x, and so there
exist x1, x2 ∈ L\{0} such that TD (x, x1) = a and TD (x, x2) = b. If x = a, then
TD (a, x2) = b which is a contradiction since a and b aren’t comparable with
respect to �TD

. Then, x1 = a, so it must be x = 1. Therefore, a ∨TD
b = 1.
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Finally, we have that (L,�TD
) is a lattice. Now, we give an example such that

(L,�T ) is a lattice and T 6= TD.

Proposition 3.8. [27] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and T a t-norm
on L. If a �T b, then T (a, c) �T T (b, c), for any a, b, c ∈ L.

Proof. Let a, b ∈ L such that a �T b. Then there exists x ∈ L such that
T (x, b) = a. Since T (a, c) = T (T (x, b), c) = T (x, T (b, c)), it holds that there exists
x ∈ L such that T (x, T (b, c)) = T (a, c). Thus, T (a, c) �T T (b, c).

Corollary 3.4. [27] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and T a t-norm on
L. If (L,�T ) is a lattice, then T : (L,�T )2 → (L,�T ) is a t-norm.

Let (L,≤,∧,∨) be a complete lattice, T a t-norm on L and L1 ⊆ L. The notation
T ↓ L1 will be used for the restriction of T to L1.
Proposition 3.9. [27] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and T be a t-norm
on L. Then T ↓ I(T ) is a t-norm on (I(T ),�T ).

Proof. Let a, b ∈ I(T ). Then we must show that T (a, b) ∈ I(T ). Since T is
associative, it holds that

T (T (a, b), T (a, b)) = T (T (T (a, b), a), b)
= T (T (T (b, a), a), b) = T (T (b, T (a, a)), b)
= T (T (b, a), b) = T (T (a, b), b)
= T (a, T (b, b)) = T (a, b)

Then, T (a, b) is an element of I(T ). Proposition 3.8 guarantees that T is increasing
with respect to �T . Also, T is associative with respect to �T and. Since 1 ∈ I(T ),
it holds that T (x, 1) = x, for any x ∈ I(T ). Therefore, T ↓ I(T ) is a t-norm on
I(T ).

Proposition 3.10. [27] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and T a t-norm
on L such that K ⊆ L be a lattice with respect to the order on L. If x∧T y = T (x, y)
for any x, y ∈ K, then T ↓ K = ∧. Moreover, if K = L, then T = ∧.

Proof. Since x ∧T x = x = T (x, x), for any x ∈ K, it holds that x ∧ y =
T (x∧y, x∧y) ≤ T (x, y) ≤ x∧y, for any x, y ∈ K. Therefore, T (x, y) = x∧y.

Corollary 3.5. [27] Let L = [0, 1] and T a t-norm on L. Then (I(T ),�T ) =
(I(T ),≤).
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3.1.5. Representation of a Boolean Algebra by its t-
Norms

We will show that a particular subset of τ of all triangular norms on L forms
a Boolean algebra that is isomorphic to L, where L is a complete and atomic
Boolean algebra.
Definition 3.8. [44] Let (L,≤,∧,∨, 0, 1) be a bounded lattice. A subset α of L,
which does not contain 0 is a J-set in L, if α satisfies the following condition:

0 < y ≤ x ∈ α implies y ∈ α, for any x, y ∈ L.

We note that the empty set is a J-set in L. The importance of a J-set in L can
be gauged from the following results, which indicate how to characterize a general
t-norm on L.
Theorem 3.7. [44] Let (L,≤,∧,∨, 0, 1) be a bounded lattice, T a t-norm on L

and ω ⊆ L such that ω = {x ∈ L : x 6= 0, T (x, x) = 0}. Then it holds that

(i) ω is a J-set in L;

(ii) If a ∈ ω and b ≤ a, then T (a, b) = 0;

(iii) If a ∈ ω, b ≤ a and c ≤ a, then T (b, c) = 0.

In the following result, we present a new family of t-norms based on J-sets subset
in L. This family will be needed to characterize an atomic Boolean algebra.
Theorem 3.8. [44] Let (L,≤,∧,∨, 0, 1) be a bounded lattice and α a J-set in L.
Then the binary operation Tα on L defined by

Tα(x, y) =
0 if x 6= 1 6= y and x ∧ y ∈ α;
x ∧ y otherwise.

is a t-norm on L.

Now, let B be an atomic Boolean algebra that is complete (i.e., Boolean algebra
which is isomorphic to power sets). If γ is the set of all atoms of B, then B is
isomorphic to the Boolean algebra P (γ) of all subsets of γ under the set inclusion.
Further, γ is a J-set in B such that if α ⊆ γ, then both α and γ − α are J-sets in
B.
Proposition 3.11. [44] Let B be an atomic Boolean algebra and γ is the set of
all atoms of B such that |γ| ≥ 2. If α ⊆ γ and β ⊆ γ. Then it holds that α ⊆ β

if and only if Tβ ≤ Tα.

Proof. Let x, y ∈ B, α ⊆ γ and β ⊆ γ such that α ⊆ β. If x = 1, then
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Tβ(x, y) = y = Tα(x, y). If y = 1, then Tβ(x, y) = x = Tα(x, y). If x 6= 1 and y 6= 1
such that x ∧ y ∈ β, then Tβ(x, y) = 0 ≤ Tα(x, y). If x 6= 1 6= y and x ∧ y /∈ β,
then Tβ(x, y) = x ∧ y = Tα(x, y). Conversely, let Tβ ≤ Tα. Let c ∈ α such that
c /∈ β. Then Tβ(c, c) = c ∧ c = c > 0 = Tα(c, c), hence a contradiction.

Theorem 3.9. [44] Let B be an atomic Boolean algebra and γ is the set of all
atoms of B such that |γ| ≥ 2. Then τγ = {Tα | α ⊆ γ} of t-norms Tα on B defined
in Theorem 3.8 forms a Boolean algebra, under the partial ordering ≤ for t-norms
and meet (∧), join (∨), and the complement T ′α given by

Tα ∧ Tβ = Tα∪β′

Tα ∨ Tβ = Tα∩β′

T ′α = Tα′ ,

where α′ = γ − α. Furthermore, B is isomorphic to τγ under the identification
map

α −→ Tα′, for any α ⊆ γ.

Proof. One easily verifies that ∧ and ∨ are commutative and that each operation
is distributive over the other. Proposition 3.11 guarantees that T∅ is the greatest
member of τγ and it is the meet operation ∧ on B. Also, Tγ is the least member
of τγ and it is the smallest t-norm on B (i.e., TD). Moreover, since B is a Boolean
algebra, it holds that

Tα ∨ Tα′ = Tα∩α′ = T∅ and Tα ∧ Tα′ = Tα∪α′ = Tγ.

According to Huntington [25], it follows that τγ is a Boolean algebra. Furthermore,
let a map defined on B by:

α −→ Tα′ , α ⊆ γ,

y then one easily verifies that P (γ) is isomorphic to τγ . Therefore, B is isomorphic
to τγ.

Example 3.6. Let (D(6), |, gcd, lcm, ′) be a Boolean algebra of the positive divisors
of 6. Then D(6) has two atoms are 2 and 3. Thus, Theorem 3.9 guarantees that
all t-norms on D(6) are T{2,3} = TD, T{2}, T{3} and T∅ = gcd defined as follows:
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TD 1 2 3 6
1 1 1 1 1
2 1 1 1 2
3 1 1 1 3
6 1 2 3 6

gcd 1 2 3 6
1 1 1 1 1
2 1 2 1 2
3 1 1 3 3
6 1 2 3 6

T{2} 1 2 3 6
1 1 1 1 1
2 1 1 1 2
3 1 1 3 3
6 1 2 3 6

T{3} 1 2 3 6
1 1 1 1 1
2 1 2 1 2
3 1 1 1 3
6 1 2 3 6

3.2. Special classes of associative operations on
bounded trellises

In this section, we study associative operations on a bounded trellis. More precisely,
we generalize the class of triangular norms and the class of triangular conorms on
bounded lattices to the setting of bounded trellises. We pay particular attention
to what happens when we eliminate the property of transitivity.
Notation 3.1. (i) AOe(X): the class (or the set) of all binary operations on a

bounded trellis (X,�,∧,∨, 0, 1) that are associative, commutative, increasing,
and have an arbitrary element e ∈ X as neutral element. If (X,�,∧,∨, 0, 1)
is a bounded lattices, then AOe(X) is the class of uninorms on X.

(ii) If e = 0, AO0(X) is the class of associative, commutative, increasing, and
have 0 as a neutral element. If (X,�,∧,∨, 0, 1) is a bounded lattices, then
AO0(X) is the class of triangular norms (t-norms)on X.

(iii) If e = 1, AO1(X) is the class of associative, commutative, increasing, and
have 1 as a neutral element. This class was called the class of t-norms on a
bounded trellis on (X,�,∧,∨, 0, 1) and it was studied in detail in [56].

Remark 3.8. (i) For a given bounded trellis (X,�,∧,∨, 0, 1), the binary op-
eration ∧ (resp. ∨) is not necessarily an element of AO1(X) (resp. of
AO1(X)). Indeed, ∧ and ∨ are not necessarily associative operations.

(ii) In view of (i), we were more careful to use the same names of the above
classes on bounded lattices in the trellis setting. Of course, we generalize
these classes to bounded trellises, but they are not extensions (in sense of
inclusion) to the same classes on bounded lattices.
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Next, we present some elements of the classes AO0(X) and AO1(X).
Example 3.7. Let (X,�,∧,∨, 0, 1) be a bounded trellis.

(i) The binary operation TD on X, called drastic t-norm, defined by

TD(x, y) =


x if y = 1;
y if x = 1;
0 otherwise;

(3.8)

is the smallest element on AO1(X).

(ii) The binary operation SD on X, called drastic t-conorm, defined by

SD(x, y) =


x if y = 0;
y if x = 0;
1 otherwise;

(3.9)

is the greatest element on AO0(X).
Example 3.8. Let (X = {0, a, b, c, d, e, 1},�,∧,∨) be a bounded trellis given by
the Hasse diagram in Fig. 3.8.

0

a

b

c d

e

1

Figure 3.8: The Hasse diagram of the trellis (X = {0, a, b, c, d, e, 1},�).

The operation S on X defined by the following table is an element of AO0(L).
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S 0 a b c d e 1
0 0 a b c d e 1
a a a b e d e 1
b b b b e d e 1
c c e e e 1 e 1
d d d d 1 d 1 1
e e e e e 1 e 1
1 1 1 1 1 1 1 1

On a bounded modular lattice X [13], the binary operation TZ defined by

TZ(x, y) =
 x ∧ y if x ∨ y = 1;

0 otherwise;
(3.10)

is a t-norm. This example was extended to the setting of bounded modular trellises
under a suitable necessary and sufficient condition [56].
Proposition 3.12. [56] Let (X,�,∧,∨, 0, 1) be a bounded modular trellis. Then
it holds that TZ ∈ AO1(X) if the following condition is satisfied:

(∀(x, y, z, t) ∈ X4)(((x ∧ y 6= 0) and (x ∨ y = 1)) implies (x ∨ z) ∨ (y ∨ t) = 1) .
(3.11)

Dually, we obtain the following example.

On a bounded modular lattice X [13], the binary operation SZ defined by

SZ(x, y) =
 x ∨ y if x ∧ y = 0;

1 otherwise;
(3.12)

is a t-conorm. This example was extended to the setting of bounded modular
trellises under a suitable necessary and sufficient condition [56].
Proposition 3.13. Let (X,�,∧,∨, 0, 1) be a bounded modular trellis. Then it
holds that SZ ∈ AO0(X) if the following condition is satisfied:

(∀(x, y, z, t) ∈ X4)(((x ∨ y 6= 1) and (x ∧ y = 0)) implies (x ∧ z) ∧ (y ∧ t) = 0) .
(3.13)

Remark 3.9. [56] For a given bounded modular trellis (X,�,∧,∨, 0, 1), the
condition (3.13) does not necessarily hold. Indeed, let (X = {0, a, b, c, d, 1},�,∧,∨)
be the bounded modular trellis given by the Hasse diagram displayed in Figure 1.4.
It is clear that X does not satisfy this condition.
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The following example presents a family of elements in AO0(X) and AO1(X)
based on the notions of atom and coatom on a bounded trellis. First, we recall the
following definition of atom and coatom on trellises. This definition is a natural
generalization of the same notions on lattices (see, e.g. [26]).
Definition 3.9. Let (X,�,∧,∨) be a trellis. An element α ∈ X is called:

(i) atom, if it is a minimal element of the set X\{0};

(ii) coatom, if it is a maximal element of the set X\{1}.

We denote by Atom(X) (resp. Coatom(X)), the set of all atoms (resp. coatoms)
of X.
Proposition 3.14. Let (X,�,∧,∨, 0, 1) be a bounded trellis and i ∈ Atom(X).
The binary operation Si on X, defined by

Si(x, y) =


x ∨ y if x = 0 or y = 0;
i if (x, y) = (i, i);
1 otherwise.

(3.14)

is an element of AO0(X).

In a similar way,
Proposition 3.15. Let (X,�,∧,∨, 0, 1) be a bounded trellis and i ∈ Coatom(X).
The binary operation Ti on X, defined by

Ti(x, y) =


x ∧ y if x = 1 or y = 1;
i if (x, y) = (i, i);
0 otherwise.

(3.15)

is an element of AO1(X).

The proof of the above propositions is straightforward.

Next, we present illustrative examples. Before that, we need to mention the
following abbreviation. Throughout the rest of the paper, the rows and columns
corresponding to 0 and 1 in the tables define elements of AO0(X) and AO1(X)
will not be considered, as they are fixed.

In the following remark, we illustrate that the greatest t-norm on a given bounded
trellis does not necessarily exist. This is one of the properties that we lose when
considering bounded trellises instead of bounded lattices.
Remark 3.10. On given bounded lattice L, it is well known that the classes
AO0(L) and AO1(X) have least and greatest elements. In the trellis setting, Ex-
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ample 3.7 mentions that AO0(X) has a greatest element and AO1(X) has a least el-
ement. While AO0(X) does not necessarily has a least element, and AO1(X) does
not necessarily has a greatest element. Indeed, let (X = {0, a, b, c, d, e, 1},�,∧,∨)
be the bounded trellis given in Example 3.8. The binary operations T1 and T2 on
X defined by the following tables are maximal elements in AO1(X) [56].

T1 a b c d e

a 0 0 0 a 0
b 0 b b b b

c 0 b c b c

d a b b d b

e 0 b c b e

T2 a b c d e

a 0 0 0 0 a

b 0 b b b b

c 0 b c b c

d 0 b b d b

e a b c b e

3.3. Constructions of elements of AO0(X) and
AO1(X) based on specific subsets on
bounded trellises

In this section, we construct several elements of AO0(X) and AO1(X) based on
specific subsets on a given bounded trellis.

3.3.1. Notations and auxiliary results

In this subsection, we introduce the following functions based on specific subsets
on a given bounded trellis (X,�,∧,∨) in order to define elements of AO0(X) and
AO1(X). First, we recall the following notations and auxiliary results. For more
detail, we refer to [56].

For a given trellis T = (X,�,∧,∨) and A ⊆ X, we recall the definition of the
following mapping λA : X → X:

λA(x) =
∨
{a ∈ A | a� x} =

∨
(A∩ ↓ x) .

Remark 3.11. [56] In general, the mapping λA is not well defined since the
supremum ∨(A∩ ↓ x) does not necessarily exist. However, if A is a finite subset
of Xrtr, then Proposition 1.5 guarantees that it is well-defined.

For further use, we recall the following properties of λA.
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Proposition 3.16. [56] Let T = (X,�,∧,∨) be a trellis and A a finite subset of
Xrtr. For any x ∈ X, it holds that

(i) λA(x) � x;

(ii) if x ∈ A, then λA(x) = x.

The following proposition lists additional properties of λA in case A is a ∨-sub-
trellis of T. Since λA behaves as the identity on A and maps to A, we refer to
this mapping as an embedding.
Proposition 3.17. [56] Let T = (X,�,∧,∨) be a trellis and A a finite subset of
Xrtr. If A is a ∨-sub-trellis of T, then it holds that

(i) λA(X) ⊆ A;

(ii) λA is idempotent, i.e., λA(λA(x)) = λA(x), for any x ∈ X;

(iii) λA is increasing, i.e., if x� y, then λA(x) � λA(y), for any x, y ∈ X.

The following theorem provides an element ofAO1(X) based on the above mapping
λA, where when A is a sub-trellis of (X,�,∧,∨, 0, 1).
Theorem 3.10. [56] Let T = (X,�,∧,∨, 0, 1) be a bounded trellis and A a finite
subset of Xrtr. If A is a sub-trellis of T, then the binary operation T [A] defined by:

T [A](x, y) =


y , if x = 1
x , if y = 1
λA(x ∧ y) , otherwise.

is an element of AO1(X).

In the same line, the following result provides an element of AO0(X). The proof
is dual to that of Theorem 3.10.
Theorem 3.11. Let T = (X,�,∧,∨, 0, 1) be a bounded trellis, A a finite subset
of X ltr and γ : X → X defined as:

γA(x) =
∧
{a ∈ A | x� a} =

∧
(A∩ ↑ x) .

If A is a sub-trellis of T, then the binary operation S[A] defined by:

S[A](x, y) =


y , if x = 0
x , if y = 0
γ(x ∧ y) , otherwise.

is an element of AO0(X).
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Remark 3.12. In general, the mapping γA is not well defined since the infmum∧(A∩ ↑ x) does not necessarily exist. However, if A is a finite subset of X ltr,
then it is well-defined.

Next, we will use the following notations:

(i) γα(x) = ∧{a ∈ Xα | x� a} = ∧(Xα∩ ↑ x);

(ii) λα(x) = ∨{a ∈ Xα | a� x} = ∨(Xα∩ ↓ x).

The following propositions are immediate.
Proposition 3.18. Let (X,�,∧,∨) be a trellis and α ∈
{dis, ass,∧-ass,∨-ass, tr, rtr}. If Xα is finite subtrellis of X, then it holds
that

(i) x� γα(x), for any x ∈ X;

(ii) if x ∈ Xα, then γα(x) = x.

(iii) γα is idempotent;

(iv) γα is isotone;

(v) γA is a join-homomorphism, i.e., γA(x∨y) = γA(x)∨γA(y), for any x, y ∈ X.
Proposition 3.19. Let (X,�,∧,∨) be a trellis and α ∈
{dis, ass,∧-ass,∨-ass, tr, rtr}. If Xα is finite subtrellis of X, then it holds
that

(i) λα(x) � x, for any x ∈ X;

(ii) if x ∈ Xα, then λα(x) = x.

(iii) λα is idempotent;

(iv) λα is isotone;

(v) λA is a meet-homomorphism, i.e., λA(x ∧ y) = λA(x) ∧ λA(y), for any
x, y ∈ X.

3.3.2. Elements of AO0(X) based on specific subsets on
bounded trellises

In this subsection, we give some examples of elements of AO0(X) on a bounded
trellis (X,�,∧,∨, 0, 1) based on its specific subsets of left-transitive elements.

58



Chapter 3. Classes of associative operations on trellises

In view of Theorem 3.11 and Proposition 3.18, we derive the following propositions
that define elements of AO0(X).
Proposition 3.20. Let (X,�,∧,∨, 0, 1) be a bounded trellis and α ∈
{ass,∧-ass,∨-ass, tr, ltr}. If (Xα,�,∧,∨) is finite subtrellis, then the binary
operation Tα defined by

Sα(x, y) =
 x ∨ y if x, y ∈ Xα or x = 0 or y = 0;
γα(x) ∨ γα(y) otherwise;

is an element of AO0(X).

The fact that Xdis is a sublattice of any trellis leads to the following particular
case.
Proposition 3.21. Let (X,�,∧,∨, 0, 1) be a bounded trellis. If Xdis is finite,
then the binary operation Sdis defined by

Sdis(x, y) =
 x ∨ y if x, y ∈ Xdis or x = 0 or y = 0;
γdis(x) ∨ γdis(y) otherwise;

is an element of AO0(X).

Under the same condition of Propositions 3.20 and 3.21, we obtain the following
result. The proof is achieved by Propositions 3.18.
Proposition 3.22. Let (X,�,∧,∨, 0, 1) be a bounded trellis and α ∈
{dis, ass,∧-ass,∨-ass, tr, ltr}. It holds that

Sα(x, y) ∈ Xα, for any x, y ∈ X .

Remark 3.13. (coincidence) If (X,�,∧,∨, 0, 1) is a bounded lattice, then Sα
coincides with the join (∨), for any α ∈ {dis, ass,∧-ass,∨-ass, tr, ltr}.
Example 3.9. Let (X = {0, a, b, c, d, 1},�) be a bounded trellis given by the
Hasse diagram in Figure 3.9.

0

a b

c

d e

1

Figure 3.9: The Hasse diagram of the trellis (X = {0, a, b, c, d, e, 1},�).
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One easily verifies that

Xrtr = {0, b, c, d, e, 1};
X ltr = {0, a, b, c, e, 1};
Xtr = {0, b, e, 1};
X∧-ass = {0, b, 1};
X∨-ass = {0, e, 1};
Xdis = Xass = {0, 1}.

The above subsets are subtrellises of X. Then the binary operations Sα, where
α ∈ {dis, ass,∧-ass,∨-ass, tr, ltr} defined in Propositions 3.20 and 3.21 are are
elements of AO0(X).

Before providing the operations Sα, we present the functions γα, for any α ∈
{dis, ass,∧-ass,∨-ass, tr, ltr}.

γα 0 a b c d e 1
γdis(x) 0 1 1 1 1 1 1
γass(x) 0 1 1 1 1 1 1
γ∧-ass(x) 0 1 b 1 1 1 1
γ∨-ass(x) 0 e e e 1 e 1
γtr(x) 0 e b e 1 e 1
γltr(x) 0 a b c 1 e 1

It is clear that Sass = Sdis = SD.

S∧-ass a b c d e

a 1 1 1 1 1
b 1 b 1 1 1
c 1 1 1 1 1
d 1 1 1 1 1
e 1 1 1 1 1

S∨-ass a b c d e

a e e e 1 e

b e e e 1 e

c e e e 1 e

d 1 1 1 1 1
e e e e 1 e

Str a b c d e

a e e e 1 e

b e b e 1 e

c e e e 1 e

d 1 1 1 1 1
e e e e 1 e

Sltr a b c d e

a a b c 1 e

b c b c 1 e

c c c c 1 e

d 1 1 1 1 1
e e e e 1 e

In this example, AO0(X) has a least element and it is given by:
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S a b c d e

a a c c 1 e

b c b c d e

c c c c 1 e

d 1 d 1 1 1
e e e e 1 e

3.3.3. Elements of AO1(X) based on specific subsets on
bounded trellises

In this subsection, we give some examples of elements ofAO1(X) on a bounded trel-
lis (X,�,∧,∨, 0, 1) based on its specific subsets of right-transitive elements.

In view of Theorem 3.10 and Proposition 3.19, we derive the following propositions
that define elements of AO1(X).
Proposition 3.23. Let (X,�,∧,∨, 0, 1) be a bounded trellis and α ∈
{ass,∧-ass,∨-ass, tr, rtr}. If (Xα,�,∧,∨) is finite subtrellis, then the binary
operation Tα defined by

Tα(x, y) =
 x ∧ y if x, y ∈ Xα or x = 1 or y = 1;
λα(x) ∧ λα(y) otherwise;

is an element of AO1(X).

The fact that Tdis is a sublattice of any trellis leads to the following particular
case.
Proposition 3.24. Let (X,�,∧,∨, 0, 1) be a bounded trellis. If Xdis is finite,
then the binary operation Tdis defined by

Tdis(x, y) =
 x ∧ y if x, y ∈ Xdis or x = 1 or y = 1;
λdis(x) ∧ λdis(y) otherwise;

is an element of AO1(X).

Under the same condition of Propositions 3.23 and 3.24, we obtain the following
result. The proof is achieved by Propositions 3.19.
Proposition 3.25. Let (X,�,∧,∨, 0, 1) be a bounded trellis and α ∈
{dis, ass,∧-ass,∨-ass, tr, rtr}. It holds that

Tα(x, y) ∈ Xα, for any x, y ∈ X .
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Remark 3.14. (coincidence) If (X,�,∧,∨, 0, 1) is a bounded lattice, then Tα
coincides with the meet (∧), for any α ∈ {dis, ass,∧-ass,∨-ass, tr, rtr}.
Example 3.10. Let (X = {0, a, b, c, d, 1},�) be a bounded trellis given in Exam-
ple 3.9. The binary operations Tα, where α ∈ {dis, ass,∧-ass,∨-ass, tr, rtr} defined
in Propositions 3.23 and 3.24 are elements of AO1(X). Before providing the oper-
ations Tα, we present the functions λα, for any α ∈ {dis, ass,∧-ass,∨-ass, tr, rtr}.

λα 0 a b c d e 1
λdis(x) 0 0 0 0 0 0 1
λass(x) 0 0 0 0 0 0 1
λ∧-ass(x) 0 0 b b b b 1
λ∨-ass(x) 0 0 0 0 0 e 1
λtr(x) 0 0 0 0 d e 1
λrtr(x) 0 0 b c d d 1

It is clear that Tass = Tdis = TD.

T∧-ass a b c d e

a 0 0 0 0 0
b 0 b b b b

c 0 b b b b

d 0 b b b b

e 0 b b b b

T∨-ass a b c d e

a 0 0 0 0 0
b 0 0 0 0 0
c 0 0 0 0 0
d 0 0 0 0 0
e 0 0 0 0 e

Ttr a b c d e

a 0 0 0 0 0
b 0 b b b b

c 0 b b b b

d 0 b b b b

e 0 b b b e

Trtr a b c d e

a 0 0 0 0 0
b 0 b b b b

c 0 b c c c

d 0 b c d c

e 0 b c c e

In this example, AO1(X) has a greatest element and it is given by:

T a b c d e

a 0 0 0 0 a

b 0 b b b b

c 0 b c c c

d 0 b c d c

e a b c c e
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4 Class of weakly associative
operations on trellises

In the previous chapter, we have studied two classes of associative operations
(associative aggregation operations) on a bounded trellis (X,�,∧,∨, 0, 1), the
class AO1(X) and the class AO0(X). As the meet and the join operations of
a given trellis are not in these classes, we aim in this chapter to study a more
general classes that contain them.

4.1. Definitions, examples and basic proper-
ties

In this section, we study two classes of weakly associative operations and investigate
its various properties. A class of weakly associative operations with neutral element
1 and a class of weakly associative operations with neutral element 0. Several
elements of these classes are given, and others are constructed. These classes are
extensions of the classes AO1(X) and AO0(X). First, we introduce the definitions
of weakly-associative and weakly-increasing operations on a bounded trellis.

4.1.1. Definitions and examples

Let (X,�,∧,∨) be a trellis and x1, x2, · · · , xn ∈ X. For further use, we recall
that if {x1, x2, · · · , xn} ∩X∧-ass 6= ∅ (resp. {x1, x2, · · · , xn} ∩X∨-ass 6= ∅), then we
said that [x1, x2, · · · , xn] ∈ X∧-ass (resp. [x1, x2, · · · , xn] ∈ X∨-ass).

Definition 4.1. Let (X,�,∧,∨) be a trellis and F a binary operation on X.

(i) F is called weakly-increasing if it satisfies:

x� y ⇒ F (x, z) � F (y, z), for any ([x, y] ∈ Xtr and z ∈ X);

(ii) F is weakly-associative if it satisfies:

F (x, F (y, z)) = F (F (x, y), z), for any ([x, y, z] ∈ X∧−ass or [x, y, z] ∈ X∨−ass) .
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Next, we illustrate the previous definition weakly-increasing and weakly-associative
operations on a bounded trellis.
Example 4.1. Let (X = {0, a, b, c, 1},�,∧,∨) be a trellis given by the Hasse
diagram in Figure 4.1 and F,G two binary operations defined by the following
tables:

F (x, y) 0 a b c 1
0 a a b c 1
a b b c c 1
b b b c c 1
c c 1 1 1 1
1 1 1 1 1 1

G(x, y) 0 a b c 1
0 0 0 0 0 0
a 0 a b c 1
b 0 a c c 1
c 0 0 1 b c

1 0 a c c 1

One easily verifies that F is weakly-increasing and G is weakly-associative.

0
a
b

c
1

Figure 4.1: Hasse diagram of the trellis (X = {0, a, b, c, 1},�).

Notation 4.1. Let WAOe(X) denotes the class (or the set) of all binary opera-
tions on a bounded trellis (X,�,∧,∨, 0, 1) that are commutative, weakly-increasing,
weakly-associative and have e as a neutral element.
Remark 4.1. (i) WAO1(X) (resp. WAO0(X)) extends the class of all t-

norms (resp. the class of t-conorms) on the bounded trellis X studied in
[56].

(ii) In general, one can easily observe that AOe(X) ⊆ WAOe(X), for any
e ∈ {0, 1}.

Next, we give some examples of these classes.
Example 4.2. Let (X,�,∧,∨) be a trellis. It holds that

(i) ∧ ∈ WAO1(X);

(ii) ∨ ∈ WAO0(X);

(iii) The binary operations TD (resp. SD) defined in Example 3.2 is an element
of WAO1(X) (resp. WAO0(X)).
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4.1.2. Basic properties of WAO0(X) and WAO1(X)

In this subsection, we investigate some properties of WAO1(X) and
WAO0(X).

The following Proposition shows the duality between the two classes WAO1(X)
and WAO0(X). We recall that for a given bounded trellis (X,�,∧,∨, 0, 1), its
dual bounded trellis is defined as (X∗,�∗,∧∗,∨∗, 0∗, 1∗), where X∗ = X, x�∗ y if
and only if y � x, 0∗ = 1 and 1∗ = 0.
Proposition 4.1. Let (X,�,∧,∨, 0, 1) be a bounded trellis and F a binary oper-
ation on X. Then the following implications hold:

(i) If F ∈ WAO1(X), then F ∈ WAO0(X∗);

(ii) If F ∈ WAO0(X), then F ∈ WAO1(X∗).

Proof. The proof is straightforward.

Proposition 4.2. Let (X,�,∧,∨, 0, 1) be a bounded trellis. The following impli-
cations hold:

(i) Any element of WAO1(X) is conjunctive;

(ii) Any element of WAO0(X) is disjunctive.

Proof. (i) Let T ∈ WAO1(X) and x, y ∈ X. Since 1 ∈ X tr and T is weakly-
increasing and commutative, it follows that T (x, y) � T (1, y) and T (x, y) �
T (x, 1). The fact that 1 is the neutral element of T implies that T (x, y) � y

and T (x, y) � x. Thus, T (x, y) � x ∧ y. Therefore, T is conjunctive.

(ii) The proof is dual to that of (i).

Proposition 4.3. Let (X,�,∧,∨, 0, 1) be a bounded trellis and F a binary oper-
ation on X. Then the following implications hold:

(i) If F ∈ WAO1(X), then F (x, 0) = 0, for any x ∈ X;

(ii) If F ∈ WAO0(X), then F (x, 1) = 1, for any x ∈ X.

Proof.

(i) Suppose that F ∈ WAO1(X) and x ∈ X. Since 1 ∈ X tr, x � 1 and F is
weakly-increasing, it follows that F (x, 0) � F (1, 0) = 0. Thus, F (x, 0) = 0,
for any x ∈ X.
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(ii) The proof is dual to that of (i).

Remark 4.2. If the cardinal of X is greater than 1 (i.e., |X| > 1), then

WAO0(X) ∩WAO1(X) = ∅.

4.1.3. Psoset structures of WAO0(X) and WAO1(X)

In this subsection, we discuss the bounded psoset structures of WAO1(X) and
WAO0(X).

For any F1, F2 ∈ WAOe(X), we define:

F1 �WAO F2 if and only if F1(x, y) � F2(x, y), for any x, y ∈ X.

The following result is a natural generalization to that of triangular norms in the
trellis setting[56].
Proposition 4.4. Let (X,�X ,∧X ,∨X , 0, 1) be a bounded trellis. Then it holds
that:

(i) TD �WAO F �WAO ∧, for any F ∈ WAO1(X) ;

(ii) ∨�WAO F �WAO SD, for any F ∈ WAO0(X) .

Proof. (i) On the one hand, Proposition 4.2 guarantees that F �WAO ∧, for
any F ∈ WAO1(X). On the other hand, TD(x, y) = 0 � T (x, y), for any
(x, y) ∈ (X\{1})2. If x = 1 (resp. y = 1), it holds that TD(1, y) = y = F (1, y)
(resp. TD(x, 1) = x = F (x, 1) ). Hence, TD(x, y) � F (x, y), for any x, y ∈ X.
Thus, TD �WAO F �WAO ∧, for any F ∈ WAO1(X) .

(ii) The proof is dual to that of (i).

In a bounded Trellis (X,�X ,∧X ,∨X , 0, 1), the structures
(WAO1(X),�WAO, TD,∧) and (WAO0(X),�WAO,∨, SD) are bounded
psosets.
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Remark 4.3. The bounded psosets (WAO1(X),�WAO, TD,∧) and
(WAO0(X),�WAO,∨, SD) are not necessary bounded trellises, since the
meet (resp. the join) of any two elements is not necessary an element of
WAO1(X) or WAO0(X).

The following proposition shows a case when an element of WAO1(X) (resp. an
element of WAO0(X)) coincides with the meet (resp. the join) operation. It is
particular case of the weaker types of increasing binary operations on a bounded
trellis that coincide with the meet (resp. the join) operation [55].

Proposition 4.5. Let (X,�,∧,∨) be a bounded trellis and F a binary operation
on X. The following statements hold:

(i) If F ∈ WAO1(X), idempotent and satisfying F (x ∧ y, x ∧ y) � F (x, y), for
any x, y ∈ X, then F is the meet (∧) operation of X;

(ii) If F ∈ WAO0(X), idempotent and satisfying F (x, y) � F (x ∨ y, x ∨ y), for
any x, y ∈ X, then F is the join (∨) operation of X.

Proof. (i) On the one hand, since F ∈ WAO1(X) which means that F is
conjunctive, it holds that F (x, y) � x ∧ y, for any x, y ∈ X. On the other
hand, the fact that F is idempotent and satisfying F (x∧ y, x∧ y)�F (x, y),
for any x, y ∈ X implies that x ∧ y = F (x ∧ y, x ∧ y) � F (x, y). Thus, F is
the meet operation (∧) of X.

(ii) The proof is dual to that of (i).

Remark 4.4. The converse of the above Proposition 4.5 is immediate.

4.2. Constructions of some elements of WAO0(X)
and WAO1(X)

In this section, we construct some elements of WAO1(X) and WAO0(X). For
the increasingness and associativity properties, we use similar techniques as
in [35].

Let (X,�,∧,∨, 0, 1) be a bounded trellis and e ∈ X. Let Te and Se two binary
operations on X defined as follows:
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Te(x, y) =
 x ∧ y if x = 1 or y = 1;

(x ∧ y) ∧ e otherwise;

and

Se(x, y) =
 x ∨ y if x = 0 or y = 0;

(x ∨ y) ∨ e otherwise.

Remark 4.5. [35] In general, Te (resp. Se) is not necessarily an element of
WAO1(X) (resp. WAO0(X)). Indeed, let (X = {0, a, b, c, d, e, f, 1},�,∧,∨, 0, 1)
be a bounded trellis given by the Hasse diagram in Figure 4.2.

0

a

b

c

de

f

1

Figure 4.2: Hasse diagram of the trellis (X = {0, a, b, c, d, e, f, 1},�).

Sitting x = f and y = d, then x � y and (x, y) ∈ (X tr)2. Since Te(f, c) =
(f ∧ c) ∧ e = a 5 Te(d, c) = (d ∧ c) ∧ e = 0, it follows that Te is not weakly-
increasing. Therefore, Te /∈ WAO1(X).

In view of remark 4.5, we give sufficient conditions under which the binary
operation Te is an element of WAO1(X).
Proposition 4.6. [35] Let (X,�,∧,∨, 0, 1) be a bounded trellis. The following
implications hold:

(i) If e ∈ X∧−ass, then Te ∈ WAO1(X);

(ii) If e ∈ X∨−ass, then Se ∈ WAO0(X).

Proof. We only give the proof of (i), as the proof of (ii) is similar. One easily
verifies that Te is commutative and satisfies the boundary condition. Now, let
(x, y) ∈ X ×X tr such that x� y and z ∈ X. Then we discuss the following two
possible cases:

(i) If z = 1, then Te(x, z) = x� y = Te(y, z).
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(ii) If z 6= 1, then we have three possible cases:

(i) If x = 1, then y = 1 and Te(x, z) = z � z = Te(y, z).

(ii) If x 6= 1 and y = 1, then the fact that e ∈ X∧−ass implies that
Te(x, z) = (x∧z)∧e = (x∧e)∧z�z = Te(y, z). Thus, Te(x, z)�Te(y, z).

(iii) If y 6= 1, then Te(x, z) = (x ∧ z) ∧ e and Te(y, z) = (y ∧ z) ∧ e. Since
x�y and y ∈ X tr, it follows that x∧z�y∧z. The fact that e ∈ X∧−ass
implies (x ∧ z) ∧ e� (y ∧ z) ∧ e. Thus, Te(x, z) � Te(y, z).

Therefore, Te is weakly-increasing.

Now, we prove that Te is weakly-associative. Let x, y, z ∈ X such that [x, y, z] ∈
X∧−ass. Since e ∈ X∧−ass, it holds that

Te(x, Te(y, z)) = (x ∧ ((y ∧ z) ∧ e)) ∧ e
= ((x ∧ (y ∧ z)) ∧ e) ∧ e
= (((x ∧ y) ∧ z) ∧ e) ∧ e
= (((x ∧ y) ∧ e) ∧ z) ∧ e
= (Te(x, y) ∧ z) ∧ e
= Te(Te(x, y), z) .

Hence, Te is weakly-associative. Therefore, Te ∈ WAO1(X).

Remark 4.6. Particular cases: since 0, 1 ∈ X∧−ass, we recognize that

(i) T0 = TD and T1 = ∧;

(ii) S0 = ∨ and S1 = SD.

The following result is slight modification of Propositions 4.6. The proof follows
the same method.
Proposition 4.7. Let X = (X,�,∧,∨, 0, 1) be a bounded modular trellis and the
binary operations Z and Z∗ defined as follows:

Z(x, y) =
 x ∧ y if x ∨ y = 1;

0 otherwise;
and Z∗(x, y) =

 x ∨ y if x ∧ y = 0;
1 otherwise;

Then, Z ∈ WAO1(X) and Z∗ ∈ WAO0(X).

In the following result, we propose a new ordinal sum construction of WAO1(X)
and WAO0(X) on bounded trellises according to [16]. We start by the following
immediate proposition.

69



Chapter 4. Classes of weakly associative operations on trellises

Proposition 4.8. [35] Let (X,�,∧,∨) be a trellis and a, b ∈ Xass such that a� b.
The following subintervals of X defined as:

[a, b] = {x ∈ X|a� x� b},

(a, b] = {x ∈ X|a� x� b},

[a, b) = {x ∈ X|a� x� b},

(a, b) = {x ∈ X|a� x� b},

are subtrellises of X.
Theorem 4.1. [35] Let (X,�,∧,∨, 0, 1) be a bounded trellis and a ∈ Xass\{0, 1}.
If V : [a, 1]2 → [a, 1] an element of WAO1([a, 1]) and W : [0, a]2 → [0, a] an
element ofWAO0([0, a]), then the binary operations T : X2 → X and S : X2 → X

defined as follows:

T (x, y) =


x ∧ y if x = 1 or y = 1;
V (x, y) if x, y ∈ [a, 1);
x ∧ y ∧ a otherwise;

and

S(x, y) =


x ∨ y if x = 0 or y = 0;
W (x, y) if x, y ∈ (0, a];
x ∨ y ∨ a otherwise;

are elements of WAO1(X) and WAO0(X), respectively.

Proof. The proof is similar to that of S. One easily verifies that T is commutative
and satisfies the boundary conditions. Now, let x, y ∈ X ×X tr such that x� y.
Then we discuss the following possible cases:

(i) If x = 1 or z = 1, then T (x, z) = T (y, z).

(ii) If x, z ∈ [a, 1), then, also a� y and T (x, z) = V (x, z) � V (y, z) = T (y, z).

(iii) If x /∈ [a, 1) and z ∈ [a, 1), it holds that T (x, z) = x ∧ a and we have three
possible cases:

(i) If y = 1, then T (y, z) = z. Since a ∈ Xass, then T (x, z) = x ∧ a� z =
T (y, z).

(ii) If y ∈ [a, 1), then T (y, z) = V (y, z) ∈ [a, 1). Since, a ∈ Xass, it follows
that T (x, z) = x ∧ a� V (y, z) = T (y, z).
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(iii) If y /∈ [a, 1], then T (y, z) = y ∧ a. Since a ∈ Xass, then it follows that
T (x, z) = x ∧ a� y ∧ a = T (y, z).

(iv) If x /∈ [a, 1] and z /∈ [a, 1], then T (x, z) = x ∧ z ∧ a and T (y, z) = y ∧ z ∧ a.
Thus, Proposition 4.5 guarantees that T (x, z) = x∧z∧a�y∧z∧a = T (y, z).

Hence, T is weakly-increasing. Next, we prove that T is weakly-associative. Let
x, y, z ∈ X such that [x, y, z] ∈ X∧. The proof is split into all possible cases.

(i) If x, y ∈ [a, 1), then we have two cases:

(a) If z ∈ [a, 1), then:

T (x, T (y, z)) = T (x, V (y, z))
= V (x, V (y, z))
= V (V (x, y), z)
= T (V (x, y), z)
= T (T (x, y), z).

(b) If z ∈ X \ [a, 1), then:

T (x, T (y, z)) = T (x, y ∧ z ∧ a)
= x ∧ (y ∧ z ∧ a) ∧ a
= z ∧ a (car, a ∈ Xass)
= V (x, y) ∧ z ∧ a
= T (V (x, y), z)
= T (T (x, y), z).

(ii) If x ∈ [a, 1) and y ∈ X \ [a, 1), then we have two cases:

(a) If z ∈ [a, 1), then this case have been studied in (i.b).

(b) If z ∈ X \ [a, 1), then:

T (x, T (y, z)) = T (x, y ∧ z ∧ a)
= x ∧ (y ∧ z ∧ a) ∧ a
= (x ∧ y ∧ a) ∧ z ∧ a (car, a ∈ Xass)
= T (x ∧ y ∧ a, z)
= T (T (x, y), z).

(iii) If x, y ∈ X \ [a, 1), then we have two cases:

(a) If z ∈ [a, 1), then this case have been studied in (ii.b).

(b) If z ∈ X \ [a, 1), then:
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T (x, T (y, z)) = T (x, y ∧ z ∧ a)
= x ∧ y ∧ z ∧ a
= T (x ∧ y ∧ a, z)
= T (T (x, y), z).

Hence, T is weakly-associative on X. Therefore, T ∈ WAO1(X).

One easily Observes that T and S on a bounded trellis considered in Theorem 4.1
can be described as follows:

T (x, y) =



V (x, y) if (x, y) ∈ [a, 1)2;
y ∧ a if x ∈ [a, 1), y‖a;
x ∧ a if y ∈ [a, 1), x‖a;
x ∧ y ∧ a if x‖a, y‖a;
x ∧ y otherwise;

and

S(x, y) =



W (x, y) if (x, y) ∈ (0, a]2;
y ∨ a if x ∈ (0, a], y‖a;
x ∨ a if y ∈ (0, a], x‖a;
x ∨ y ∨ a if x‖a, y‖a;
x ∨ y otherwise.

Thus, we get T and S by the next figures:
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4.3. Relationship among WAOe(X) and isomor-
phisms on bounded trellises

In this section, we conjugate elements ofWAO1(X) (resp. elements ofWAO0(X))
and an isomorphism map on a bounded trellis X. First, we start by the following
proposition.
Proposition 4.9. Let (X1,�1,∧1,∨1), (X2,�2,∧2,∨2) be two trellises and ρ :
X1 −→ X2 an isomorphism. Then ρ(X tr

1 ) ⊆ X tr
2 .

Proof. Let x, y ∈ X2 and z ∈ ρ(X tr
1 ) such that x �2 y �2 z. Then there exist

x′, y′ ∈ X1 and z′ ∈ X tr
1 such that ρ(x′)�2 ρ(y′)�2 ρ(z′). From the increasingness

of ρ−1, it holds that x′ �1 y
′ �1 z

′. The fact that z′ ∈ X tr
1 implies that x′ �1 z

′,
i.e., x′ ∧1 z

′ = x′. Since ρ is homomorphism; it follows that ρ(x′) ∧2 ρ(z′) =
ρ(x′ ∧1 z

′) = ρ(x′). Hence, ρ(x′) �2 ρ(z′), i.e., x�2 z. Thus, z ∈ X tr. Therefore,
ρ(X tr

1 ) ⊆ X tr
2 .

Proposition 4.10. Let (X1,�1,∧1,∨1), (X2,�2,∧2,∨2) be two trellises and ρ :
X1 −→ X2 an isomorphism. Then [x, y, z] ∈ X∧1

1 (resp. [x, y, z] ∈ X∨1
1 ) if and

only if [ρ(x), ρ(y), ρ(z)] ∈ X∧2
2 (resp. [ρ(x), ρ(y), ρ(z)] ∈ X∨2

2 ).

Proof. Let x, y, z ∈ X1 such that [x, y, z] ∈ X∧1
1 . Since ρ is an isomorphism, then

ρ(x) ∧2 (ρ(y) ∧2 ρ(z)) = ρ(x) ∧2 ρ(y ∧1 z))
= ρ(x ∧1 (y ∧1 z))
= ρ((x ∧1 y) ∧1 z)
= ρ(x ∧1 y) ∧2 ρ(z))
= (ρ(x) ∧2 ρ(y)) ∧2 ρ(z) .

Therefore, [ρ(x), ρ(y), ρ(z)] ∈ X∧2
2 . In a similar way, we prove that [x, y, z] ∈ X∨1

1
if and only if [ρ(x), ρ(y), ρ(z)] ∈ X∨2

2 .

Proposition 4.11. (X1,�1,∧1,∨1, 01, 11), (X2,�2,∧2,∨2, 02, 12) be two bounded
trellises, T ∈ WAO1(X2) and ρ : X1 −→ X2 an isomorphism. Then the binary
operation T ρ defined by:

T ρ(x, y) = ρ−1(T (ρ(x), ρ(y))), for any x, y ∈ X1 ,

is an element of WAO1(X1).
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Proof. One easily verifies that T ρ is commutative and satisfies the boundary
condition. Now, let (x, y) ∈ X1 ×X tr

1 such that x�1 y. Proposition 4.9 assures
that ρ(y) ∈ X tr

2 . Since T is weakly-increasing, it holds that T (ρ(x), ρ(z)) �2

T (ρ(y), ρ(z)), for any z ∈ X1. The fact that ρ−1 is increasing on X2 implies that
ρ−1(T (ρ(x), ρ(z))) �1 ρ

−1(T (ρ(y), ρ(z))), for any z ∈ X1, i.e., T ρ(x, z) �1 T
ρ(y, z),

for any z ∈ X1. Hence, T ρ is weakly-increasing on X1. Next, we prove that T ρ
is weakly-associative. Let x, y, z ∈ X1 such that [x, y, z] ∈ X∧1

1 . Proposition 4.10
assures that (ρ(x), ρ(y), ρ(z)) ∈ X∧2

2 . Thus

T ρ(T ρ(x, y), z) = ρ−1(T (ρ(T ρ(x, y)), ρ(z)))
= ρ−1(T (ρ(ρ−1(T (ρ(x), ρ(y)))), ρ(z)))
= ρ−1(T (T (ρ(x), ρ(y)), ρ(z)))
= ρ−1(T (ρ(x), T (ρ(y), ρ(z))))
= ρ−1(T (ρ(x), ρ(ρ−1(T (ρ(y), ρ(z))))))
= ρ−1(T (ρ(x), ρ(T ρ(y, z))))
= T ρ(x, T ρ(y, z)) .

Hence, T ρ is weakly-associative on X1. Therefore, T ρ ∈ WAO1(X1) .

Notice that in a bounded trellis (X,�,∧,∨, 0, 1), the identity map IdX of X (i.e.,
IdX(x) = x, for any x ∈ X) is an isomorphism (automorphism). Then T IdX = T ,
for any T ∈ WAO1(X).

Dually, we have the following result for the elements of WAO0(X).
Proposition 4.12. (X1,�1,∧1,∨1, 01, 11), (X2,�2,∧2,∨2, 02, 12) be two bounded
trellises, S ∈ WAO0(X2) and ρ : X1 −→ X2 an isomorphism. Then the binary
operation Sρ defined by:

Sρ(x, y) = ρ−1(S(ρ(x), ρ(y))), for any x, y ∈ X1 ,

is an element of WAO0(X1).
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General conclusions and future research

In this thesis, we have studied specific algebraic operations on lattices and trellises.
First, we have generalized the notion of aggregation operators to f -aggregation
operators on a bounded lattice and investigated their properties. This general-
ization is based on an arbitrary function f on that lattice. To that end, a lot
of preparatory work was required. In particular, several properties of binary
operations in terms of a given on a lattice have been investigated. We have
ended this part by finding the smallest and greatest f -aggregation operators on a
bounded lattice.

In the second part, we have studied particular classes of associative operations
on trellises in chapter 3. More precisely, on a given trellis (X,�,∧,∨, 0, 1), we
have studied AO1(X) (resp. AO0(X)) the class of associative, commutative,
increasing, and have 1 (resp. 0) as a neutral element. These classes generalize
the classes of t-norms and t-conorms on bounded lattices. In chapter 4, we
have extended the same classes on bounded trellises by considering a weakest
associativity property.

Future efforts will be directed to the study other important classes of associative
operations on bounded trellis. We anticipate that it will be interesting to study
other classes of algebraic operations on trellises with suitable weaker types of
associativity.
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