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ABSTRACT

In recent years, several work investigated the periodicity of linear recurrence sequences over
elliptic curves. This thesis is devoted to the study of the periodicity of some bi-periodic
recurrence sequences over elliptic curves.

In part, we investigate the periodicity of some bi-periodic recurrence sequences reduced
modulo a given positive integer m. We extend some properties of Fibonacci sequence modulo
m to bi-periodic sequences which are: the generalized bi-periodic Fibonacci sequence and the
bi-periodic Horadam sequence. Moreover, since the set of points of an elliptic curve defined
on a finite field forms a finite abelian group, we define the bi-periodic Horadam sequence and
we investigate the periods of the bi-periodic Horadam sequence over a such elliptic curves.
We establish the link between the periods of the bi-periodic Fibonacci sequence modulo m
and the periods of the Horadam sequence on an elliptic curve.

Keywords: Generalized bi-periodic Fibonacci sequence, bi-periodic Horadam sequence,
period, finite fields, elliptic curves.
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RESUME

L’étude des points periodiques sur une courbe elliptique régis par la suite de Fibonacci et
de ses extensions a fait l’objet de plusieurs papiers récents. Nous nous proposons dans cette
thèse d’étudier les points périodiques sur une courbe elliptique régis par certaines suites
récurrentes bi-periodiques.

L’objectif de cette thèse est d’une part l’étude des périodes de certaines suites récurrentes
bi-périodiques qui sont périodiques lorsqu’elles sont considérées modulo un entier m > 1.
Notre contribution a été d’étudier la périodicité de ces suites et de généraliser certaines
propriétés des suites de Fibonacci modulo m aux suites bi-périodiques qui sont : la suite
de Fibonacci bi-périodique généralisée et la suite de Horadam bi-périodique.

D’autre part, puisque l’ensemble des points d’une courbe elliptique définie sur un corps
fini forme un groupe abélien fini, nous définissons la suite de Horadam bi-périodique que
nous étudions sur de telles courbes elliptiques, ce qui nous donne des suites périodiques.
Nous établissons, également, le lien entre les periodes de la suite de Fibonacci bi-périodique
modulo un entier m > 1 et les periodes de la suite de Horadam bi-périodique sur une courbe
elliptique.

Mots-clés : Suite de Fibonacci bi-periodic généralisée, suite de Horadam bi-periodique,
periode, corps finis, courbe elliptique.
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NOTATIONS

1. K : Field.

2. K̄ : Algebraic closure of K.

3. R : Ring.

4. Z : Ring of integers.

5. Zm : The ring of integers modulo m.

6. Fq : Finite field with q elements.

7. F∗q : The set of cyclic group of nonzero elements of Fq.

8. orde(q) : Multiplicative order of q modulo e.

9. ϕ : Frobenius automorphism.

10. K[x] : Ring of polynomials with coefficients in K.

11.
(

q
p

)
: Legendre Symbol.

12. (n
k) : Binomial coefficient.

13. Matm(R) : Ring of matrices of size m×m with coefficients in R.

14. det(A) : Determinant of square matrix A.

15. GLm(R) : The general linear group of matrices of size m×m with coefficients in R.

16. ord(g) : Multiplicative order of an element g in the group G.

17. bxc : Floor function.

18. ξ(.) : Parity function.

19. gcd(a, b) or (a, b) : greatest common divisor of a and b.

20. n! : n factorial.

21. (qn)n : Bi-periodic Fibonacci sequence.

22. (Fn)n : Generalized bi-periodic Fibonacci sequence.

23. (Hn)n : Bi-periodic Horadam sequence.
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INTRODUCTION

The study of recurrence sequences is plainly of intrinsic interest and has been a central part
of number theory for many years. These sequences appear in many parts of the mathematical
sciences in the wide sense (which includes applied mathematics and applied computer science).
The study of the behavior of linear recurrence sequences when reduced modulo a positive
integer was begun about one hundred years ago. Two important aspects of the modular
situation are the periodicity of the sequence and the distribution of the residues in a period.
The interest in this topic is the diversity of the fields of application such that cryptography
(the generation of pseudo-random numbers), coding theory and electrical engineering.

Wall [52] studied the periodicity of the Fibonacci sequence modulo an arbitrary integer m
and established many interesting results. Vinson [48] extended the work of Wall and studied
the rank of apparition of m in the Fibonacci sequence. Vince [51] considered the generalized
linear recurrence sequence defined over a ring of integer A of an algebraic number field and
he studied the properties on the periods of these sequences modulo an ideal of A. Recently,
the periodicity of various generalizations of the Fibonacci sequence has been investigated in
several papers, see [18, 25, 31, 49, 50].

Moreover, several work establishing links between elliptic curves and linear recurrent
sequences have been carried out, mainly with Fibonacci sequence and their generalizations,
for example, in [30] Ribenboim provides the points with integral coordinates in certain elliptic
curves. Another link is to determine perfect powers in elliptic divisibility sequences, see [33].
Bilu et al. [9] studied the sequence of numbers whose mth term is the number of points of E
on Fqm , where E is an elliptic curve over the finite field Fq.

In particular, we are interested in the periodicity of linear recurrence sequence over elliptic
curves. Coleman et al. [10] were the first authors that investigated periodicity of classical
Fibonacci sequence over elliptic curves. Ait-Amrane et al. [2] made a link between enumerative
combinatorics and number theory through elliptic curves by exploring the case of Morgan-
Voyce sequence on elliptic curves. This work has been extended to a third order linear
recurrence sequence, in particular the Tribonacci sequence [3].

The goal of this thesis is to study of periods of bi-periodic sequences over elliptic curves.
We first investigate periods of some bi-periodic sequences reduced modulo a given positive
integer m, which are: the generalized bi-periodic Fibonacci sequence and the bi-periodic
Horadam sequence. Next, we investigate the periods of the bi-periodic Horadam sequence
over an elliptic curve defined over a finite field.
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INTRODUCTION 2

This thesis is structured into the following chapters:

Chapter 1

In the first chapter, we introduce some preliminaries on number theory and abstract algebra
that we will use in the rest of the present thesis. We also give some definitions and results on
bi-periodic recurrence sequences.

Chapter 2

In this chapter, we consider the generalized bi-periodic Fibonacci sequence defined by a
second-order non-linear recurrence relation depending on four positive integers a, b, c, and
d, defined by

F0 = 0, F1 = 1, and Fn =

{
aFn−1 + cFn−2, for n even;
bFn−1 + dFn−2, for n odd,

(n ≥ 2).

We investigate the periodicity of the sequence (Fn)n when reduced modulo m ≥ 2. We prove
that (Fn mod m)n is periodic when m is relatively prime to c and d, i.e., there exists a positive
integer r such that Fn+r = Fn, for all n ≥ 0. We extend some well-known results on the period
and the rank of the classical Fibonacci sequence to the bi-periodic case.

Chapter 3

In this chapter, we use the matrix approach to study the periodicity of the sequence (Fn)n≥0.
Considering a matrix representation C of (Fn)n≥0, we show that the study of the period of the
sequence (Fn)n≥0, whose elements are in Zm is equivalent to the study of the period of the
sequence (Cn mod m)n≥0 over the group GL2(Zm). The main purpose is to investigate the
behavior of (Fn)n≥0 over finite fields and show that we can express the period of the sequence
(Fn)n modulo a power of prime p in terms of the period modulo p, which allows us to obtain
bounds for the period for each positive integer m.

Chapter 4

In the last chapter, we let a, b, H0, H1, and c be positive integers and we consider the bi-
periodic Horadam sequence defined by

Hn =

{
aHn−1 + cHn−2, for n even;
bHn−1 + cHn−2, for n odd,

(n ≥ 2).

with arbitrary initial conditions H0, H1. Motivated by papers that study periods of linear
recurrence sequences over elliptic curves [10, 2, 3], we extend this idea to the bi-periodic
Horadam sequence. We first investigate the period of the bi-periodic Horadam sequence
modulo a positive integer m. Next, we define the bi-periodic Horadam sequence associated
to an elliptic curve E over the finite field Fp, for an odd prime p, and we investigate periods
of the bi-periodic Horadam sequence on the elliptic curve E. Finally, we show that the study
of periods of the bi-periodic Horadam sequence on E is closely related to the study of periods
of the generalized bi-periodic Fibonacci sequence (Fn mod m)n≥0.



CHAPTER 1

PRELIMINARIES

In this chapter, we introduce some preliminaries that we will use in the rest of the present
thesis. The first two section is devoted to the main mathematical notions on number theory
and abstract algebra employed in this work.

In the last section, we introduce the bi-periodic sequences that will be studied throughout
this thesis. We also gather some results given in [8, 13, 34, 54].

1.1 Some Results on Number Theory

This section contains some definitions and results from number theory and abstract algebra,
which can be found in [17, 21, 24, 27].

Definition 1.1. For any two integers 0 ≤ n and 0 ≤ k ≤ n, the binomial coefficient (n
k) is

defined by (
n
k

)
=

n!
k!(n− k)!

.

Theorem 1.1. (Binomial Theorem) Let x and y be variables, and n be any positive integer.
Then

(x + y)n =
n

∑
i=0

(
n
i

)
xn−iyi. (1.1)

Definition 1.2. Let φ(n) be the number of positive integers less than or equal to n, and
relatively prime to n. Also, let φ(1) = 1. The function φ : N∗ −→ N∗ is called the Euler
function.

We can now announce Euler’s theorem which is a generalization of Fermat’s theorem.

Theorem 1.2. (Euler’s Theorem)[17] Let a and n be positive integers, and let (a, n) = 1. Then
we have

aφ(n) ≡ 1 (mod n).

Corollary 1.1. (Fermat’s little theorem) Let p be a prime and let a be an integer.
If p - a, then

ap−1 ≡ 1 (mod p).

3



CHAPTER 1. PRELIMINARIES 4

In particular,
ap ≡ a (mod p).

Proof. Since φ(p) = p− 1 then the first statement follows from Theorem 1.1. For the second
statement there are two cases. If (a, p) = 1 multiply by a both sides of

ap−1 ≡ 1 (mod p).

If (a, p) 6= 1, then a is a multiple of p so a ≡ 0 (mod p). The equation ap ≡ a (mod p) is true
as zero equals zero.

Definition 1.3. For a multiplicative group G, the order of an element g ∈ G, if there exists, is
the smallest positive integer k for which gk = 1G, where 1G is the identity element of G.

If G is a finite group, the order of G is the number of elements in G. The basic result about
orders is the following.

Theorem 1.3. (Lagrange’s Theorem) Let G be a finite group.

1. Let g ∈ G. Then the order of g divides the order of G.

2. Let H be a subgroup of G. Then the order of H divides the order of G.

Definition 1.4. Let R be a ring with identity and let Mm(R) be the set of all m× m matrices
with entries in the ring R. We define the general linear group GLm(R) to be the subset of
Mm(R) consisting of all invertible matrices.

Theorem 1.4. The set GLm(R) forms a group under matrix multiplication; with identity
matrix as the identity element of the group.

Over a field K, a matrix is invertible if and only if its determinant is nonzero. Therefore
GLm(K) is the group of matrices with nonzero determinant. Moreover, if K is a finite field
with q elements, the order of GLm(K) is given by:

m−1

∏
k=0

(qm − qk) = (qm − 1)(qm − q)(qm − q2) · · · (qm − qm−1).

Let m be a positive integer and let Zm be the set of integers modulo m. It is a group with
respect to the addition. We can represent the elements of Zm by the numbers 0̄, 1̄, . . . , m− 1.
Let

Z×m = {a | 1 ≤ a ≤ m, gcd(a, m) = 1}.

Then Z×m is a group with respect to the multiplication modulo m. Let a ∈ Z×m , and let
ordm(a) denotes the order of a modulo m, i.e., the smallest positive integer k such that ak ≡ 1
(mod m). The order of a mod m divides φ(m).
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1.1.1 Chinese Remainder Theorem

Theorem 1.5. (Chinese Remainder Theorem) Let m1, m2, . . . , mk be pairwise relatively prime
positive integers. Let a1, a2, . . . , ak be integers, and consider the system of congruences:

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),
...

x ≡ ak (mod mk).

This system has a unique solution x modulo M = m1m2 · · ·mk.

The unique factorization of an integer is implicit in the statement of many results, such as
the Chinese remainder theorem stated above. That is, when the modulus m of a congruence
is composite it is sometimes possible to reduce a congruence modulo m to a system of simpler
congruences.

Theorem 1.6. (Fundamental Theorem of Arithmetic). Every positive integer can be written
as a finite product of prime numbers. This decomposition is unique up to the order.

Another way to state the Chinese Remainder Theorem is to say that for any integer m, we
have the factorization

m = pe1
1 · · · p

ek
k ,

where pi are prime numbers and ei > 0. Then we get

Zm ' Zp
e1
1
× · · · ×Zp

ek
k

.

An important consequence of Theorem 1.5 is that when studying modular arithmetic in
general, we can first study modular arithmetic a prime power and then appeal to the Chinese
remainder theorem to generalize any results.

1.1.2 Quadratic Residues

In what follows, we consider a ∈ Z, and p a prime number. Considering the equation a = x2

(mod p). If a solution of the congruence a = x2 (mod p) with (a, p) = 1 exists then a is said
to be a quadratic residue modulo p; otherwise a is a quadratic nonresidue modulo p.

Definition 1.5. Let p be an odd prime. The Legendre symbol
(

a
p

)
is defined for all a which

are not divisible by p; it is equal to 1 if there exists an x such that a = x2 (mod p); otherwise
it is equal to −1. That is,

(
a
p

)
=


1, if a a nonzero quadratic residue modulo p;

−1, if a a quadratic nonresidue modulo p.
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By convention, if a is a multiple of p the Legendre symbol is defined to be zero.

The Legendre symbol is a very practical tool for studying quadratic residues. We will list
some of its properties.

Proposition 1.1. [21] Let p be an odd prime and a, b ∈ Z. Then

(a)
(

a
p

)
≡ a

p−1
2 (mod p).

(b)
(

ab
p

)
=
(

a
p

) (
b
p

)
.

(c) If a ≡ b (mod p), then
(

a
p

)
=
(

b
p

)
.

(d) (−1
p ) ≡ p (mod 4).

Corollary 1.2. [21] There are as many residues as nonresidues modulo p.

Corollary 1.3. [21] The product of two residues is a residue, the product of two nonresidues
is a residue, and the product of a residue and a nonresidue is a nonresidue.

Proposition 1.2. [21] 2 is a quadratic residue of primes of the form 8k + 1 and 8k + 7. 2 is a
quadratic nonresidue of primes of the form 8k+ 3 and 8k+ 5. This information is summarized
in the formula (

2
p

)
= (−1)

p2−1
8 .

Theorem 1.7. (Quadratic reciprocity law)[21] Let p and q be odd primes. Then(
p
q

)(
q
p

)
= (−1)

(p−1)(q−1)
4 .

1.1.3 Finite Fields

The theory of finite fields is a branch of modern algebra that has come to the fore in the
last fifty years. Finite fields give rise to particularly useful applications of rings and fields,
both in mathematics and in other fields; for example, in communication theory, in computing
and in statistics. Technological breakthroughs like space and satellite communications, and
guarding the privacy of information in data banks all depend in one way or another on the
use of finite fields.

Definition 1.6. A finite field is a field with a finite number of elements.

Example 1.1. For every prime p, the residue class ring

Zp = {0̄, 1̄, . . . , p− 1}

forms a finite field with p elements, which we denote by Fp.
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Remark 1.1. The fact that(
p
i

)
=

p(p− 1) · · · (p− i + 1)
i!

≡ 0 mod p

for all i ∈ Z with 1 ≤ i ≤ p − 1 along with Fermat’s Little Theorem imply that, for any
a, b ∈ Fp, we have ap = a and

(a + b)p =
p

∑
i=0

(
p
i

)
aibp−i

= ap +
p−1

∑
i=1

(
p
i

)
aibp−i + bp

= ap + bp

= a + b.

The prime field Fp, also called the Galois field of order p, plays an important role in general
field theory, since every field of characteristic p can be thought of as an extension of Fp. We
use the notation Fq for finite fields with q elements.

Theorem 1.8. [24] Let Fq be a finite field. Then, Fq has pn elements, where the prime p is the
characteristic of Fq and n is the degree of Fq over its prime subfield Fp.

Theorem 1.9. [24] For every finite field Fq, the multiplicative group F∗q of nonzero elements
of Fq is cyclic.

Proposition 1.3. [24] Let Fq be a finite field with q elements. Then, every a ∈ Fq satisfies
aq = a.

Proof. If a = 0, then aq = a. On the other hand, the multiplicative group F∗q has order q− 1.
Then, aq−1 = 1 for all a ∈ F∗q , and the multiplication by a yields the desired result.

1.1.4 Irreducible Polynomials and Splitting Fields

Definition 1.7. Let f (x) ∈ Fq[x] of degree n ≥ 1. We say that f (x) is irreducible over Fq

if f (x) = g(x)h(x) with g(x), h(x) ∈ Fq[x] implies that either g(x) or h(x) is a constant
polynomial.

Theorem 1.10. [24] For every finite field Fq and every positive integer n, there exists an
irreducible polynomial in Fq[x] of degree n.

Theorem 1.11. [24] Let R be a commutative ring with identity. If R is a principal ideal domain,
then R/(c) is a field if and only if c is a prime element of R.

Since Fq is a field and the commutative ring Fq[x] is a principal ideal domain, we have the
following result.
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Theorem 1.12. [24] Let f (x) ∈ Fq[x]. The residue class ring Fq[x]/( f (x)) is a field if and only
if f (x) is irreducible over Fq.

Proof. Note that the ring Fq[x] is a Euclidean domain. Therefore, the Euclidean division and the
Bézout’s identity for polynomials hold in Fq[x], i.e., for any nonzero polynomials g(x), h(x) ∈
Fq[x], there exist nonzero polynomials u(x), v(x) ∈ Fq[x] such that

u(x)g(x) + v(x)h(x) = gcd(g(x), h(x)).

If Fq[x]/( f (x)) is a field and f (x) = g(x)h(x) is reducible, with 1 ≤ deg(g(x)), deg(h(x)) ≤
deg( f (x)), then both g(x)+ f (x) and h(x)+ f (x) are nonzero and not invertible in Fq[x]/( f (x)),
a contradiction. The other implication is a consequence of the Bézout’s identity.

Remark 1.2. In order to construct Fqn , we need an irreducible polynomial over Fq of degree
n. Then, let f (x) be an irreducible polynomial over Fq of degree n, Theorem 1.12 implies that

Fq[x]/( f (x)) =
{

h(x) mod f (x) : h(x) ∈ Fq[x] and deg(h) < n
}

is a field with qn elements which we denote by Fqn .

Example 1.2. Consider the irreducible polynomial f (x) = x2 + x + 1 over F2. Then, the field
F4 = F22 can be represented by the field

F2[x]/( f (x)) = {a + bx mod f (x) : a, b ∈ F2}.

Definition 1.8. If f (x) is irreducible over Fq of degree n, then the field Fqn = Fq[x]/( f (x)) is
called the splitting field of f (x) over Fq.

For a1, a2, . . . , ar ∈ Fqn , we denote by Fq(a1, a2, . . . , ar) the smallest subfield of Fqn containing
both Fq and a1, a2, . . . , ar, that is, the extension of Fq obtained by adjoining a1, a2, . . . , ar to Fq.
In particular, if α is a root of an irreducible polynomial f (x), then we have

Fq(α) =

{
n−1

∑
i=0

aiα
i : ai ∈ Fq

}
.

Theorem 1.13. [24] Let f ∈ Fq[x] be irreducible of degree n. Then f has a root α in Fqn and
all roots of f in Fqn are different and given by

α, αq, αq2
, . . . , αqn−1 ∈ Fqn .

Proof. the polynomial f splits completely over Fqn and it has n roots. Let β be some root of f .
We now show that βq is also a root of f . Let f (x) = ∑n

i=0 aixi.
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Using the fact that if ai ∈ Fq, then aq
i = ai and Remark 1.1, we have

f (βq) = a0 + a1βq + a2 (βq)2 + . . . + an (βq)n

= aq
0 + aq

1βq + aq
2

(
β2
)q

+ . . . + aq
n (βn)q

=
(

a0 + a1β + a2β2 + . . . + anβn
)q

= ( f (β))q = 0q = 0.

This shows that α and αq are roots and thus also αq2
, . . . , αqn−1

are roots of f (x). If any two of
these powers would coincide, e.g. αqi

= αqj
for some 0 ≤ i ≤ j ≤ n− 1, then we would have

αqn+j−i
= αqn

= α,

and α would satisfy a polynomial of degree n− j + i ≤ n which contradicts the definition of
α as root of an irreducible polynomial of degree n.

Corollary 1.4. Let f be an irreducible polynomial in Fq[x] of degree n. Then the splitting field
of f over Fq is given by Fqn .

Corollary 1.5. Any two irreducible polynomials in Fq of the same degree have isomorphic
splitting fields.

1.1.5 The Frobenius Automorphism

Definition 1.9. Let Fq be a finite field of characteristic p. The Frobenius automorphism of Fq is
defined by

φ : Fq → Fq (1.2)

t 7→ tp.

We can extend φ to the following map :

ϕ : Fqm → Fqm

t 7→ tq.

Proposition 1.4. The map ϕ is an automorphism of Fqm called, for convenience, the Frobenius
automorphism.
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Proof. Suppose that q = pn, for some integer n ≥ 1. For all a, b ∈ Fqm , we have

ϕ(a + b) = (a + b)q = ((a + b)p)pn−1

= (ap + bp)pn−1

= (ap2
+ bp2

)pn−2

...

= aq + bq

= ϕ(a) + ϕ(b),

and
ϕ(ab) = (ab)q = aqbq = ϕ(a)ϕ(b).

Therefore, ϕ is a endomorphism of Fqm . On the other hand, we have

ker(ϕ) = {c ∈ Fqm : cq = 0} = {0},

so ϕ is injective. Finally, let c ∈ Fqm , then by Proposition 1.3 we have(
cqm−1

)q
= cqm

= c

. Hence, ϕ is surjective and thus ϕ is an automorphism of Fqm .

Remark 1.3. Note that, the surjection of ϕ in the proof above could also be deduced from the
fact that Fqm is finite and ϕ is injective.

Theorem 1.14. [27] The distinct automorphisms of Fqm over Fq are given by the maps ϕ0, . . . , ϕm−1

where

ϕi : Fqm → Fqm

a 7→ aqi
.

Remark 1.4. The set of automorphisms of Fqm over Fq forms a group under composition.
This group is called the Galois group of Fqm over Fq. It is a cyclic group with generator ϕ, that
is, ϕi = ϕi for all 0 ≤ i ≤ m− 1.

1.2 Elliptic Curves

In this section we present the basic concepts from the theory of elliptic curves required for
this thesis, which are taken, in large part, from [37] and [53].

1.2.1 Weierstrass Equation

An elliptic curve E is a smooth curve given by the graph of an equation of the form
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y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, (1.3)

where a1, . . . , a6 are constants. The Equation (1.3) is called the generalized Weierstrass equation.
We will need to specify what set a1, a2, a3, a4, a6, x, and y belong to. Usually, they are elements
of a field, for example, the real numbers R, the complex numbers C, the rational numbers
Q, one of the finite fields Fp for a prime p, or one of the finite fields Fq, where q = pn with
n ≥ 1. The generalized Weierstrass equation (1.3) is useful when working with fields of
characteristic 2 and characteristic 3. If the characteristic of the field is not 2, then we can
divide by 2 and complete the square:

(
y +

a1x
2

+
a3

2

)2
= x3 +

(
a2 +

a2
1

4

)
x2 +

(
a4 +

a1a3

2

)
x +

(
a2

3
4
+ a6

)
,

which can be written as

y2
1 = x3 + a′2x2 + a′4x + a′6, (1.4)

with y1 = y + a1
x
2 + a3

2 and with some constants a′2, a′4, a′6. If the characteristic is also not 3,

then we can let x1 = x +
a′2
3 , then for some constants A and B we get

y2
1 = x3

1 + Ax1 + B. (1.5)

This will be referred to as the Weierstrass equation. We say that E is defined over K, where K

is a field and A, B ∈ K. Let O denote the point at infinity that will be defined in Subsection
1.2.3. If we want to consider points with coordinates in some field L ⊇ K, we write E(L). By
definition, this set always contains the point at infinity O:

E(L) = {O} ∪
{
(x, y) ∈ L×L | y2 = x3 + Ax + B

}
.

It is not possible to draw meaningful pictures of elliptic curves over most fields. However,
it is easy to graph the real locus of a Weierstrass equation. These have two basic forms,
represented in Figure 1.1.

The cubic y2 = x3 − 3x + 3 In the first case and the cubic y2 = x3 + x in the second case
have only one real root. In the last case, the cubic y2 = x3 − x has three distinct real roots.

In the general case, there can be no multiple root. Namely, we assume that

4A3 + 27B2 6= 0.

If the roots of the cubic are x1, x2, x3, then it can be shown that the discriminant of the cubic is

((x1 − x2)(x1 − x3)(x2 − x3))
2 = −(4A3 + 27B2).

Therefore, the roots of the cubic must be distinct.
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FIGURE 1.1: Three elliptic curves over R

We have seen that in characteristics different from 2 and 3, any elliptic curve is given by
the graph of a Weierstrass equation (1.5). However, in characteristic 3, there are also elliptic
elliptic curves which are given by a Weierstrass equation (1.5). The two last examples in
Figure 1.1 are elliptic curves on F3.

For technical reasons, it is useful to add a point at infinity to an elliptic curve. In Subsection
1.2.3, this concept will be made rigorous. However, it is easiest to regard it as a point (∞, ∞),
usually denoted by O, sitting at the top of the y-axis. For computational purposes, it will be
a formal symbol satisfying certain computational rules. For example, a line is said to pass
through ∞ exactly when this line is vertical. The point O might seem a little unnatural, but
we will see that including it has very useful consequences.

1.2.2 Group Law

Elliptic curves carry an interesting structure, namely their points form a group under a certain
addition law that defined by the following rule:

Let P, Q ∈ E be two points and L be the line connecting P and Q (tangent to E if P = Q),
and let R be the third point of intersection of L with E. Let L′ be the line connecting R and O,
and a third point. We denote that third point by P + Q.

FIGURE 1.2: Addition on an elliptic curve
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The addition law + has the following properties:

Theorem 1.15. [37, Proposition 2.2]

1. If a line L intersects E at the (not necessarily distinct) points P, Q, R, then

(P + Q) + R = O.

2. P + O = P, for all P ∈ E.

3. P + Q = Q + P, for all P, Q ∈ E.

4. Let P ∈ E. There is a point of E, denoted by −P, satisfying

P + (−P) = O.

5. Let P, Q, R ∈ E. Then
(P + Q) + R = P + (Q + R).

In other words, the addition law + makes E into an abelian group with identity element
O. Further:

6. Suppose that E is defined over K. Then

E(K) = {O} ∪
{
(x, y) ∈ K×K | y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

}
.

is a subgroup of E.

For m ∈ Z and P ∈ E, we let

[m]P = P + · · ·+ P︸ ︷︷ ︸
m terms if m>0

, [m]P = −P− · · · − P︸ ︷︷ ︸
|m| terms if m<0

, and [0]P = O. (1.6)

Now, we derive explicit formulas for the group operations on E. Let E be an elliptic curve
given by the Weierstrass equation

F(x, y) = y2 + a1xy + a3y− x3 − a2x2 − a4x− a6 = 0,

and let P0 = (x0, y0) ∈ E. In order to calculate −P0, we take the line L through P0 and O and
find its third point of intersection with E. The line L is given by

L : x− x0 = 0.

Substituting this into the equation for E, we see that the quadratic polynomial F (x0, y) has
roots y0 and y′0, where −P = (x0, y′0). Writing out

F (x0, y) = c (y− y0)
(
y− y′0

)
,
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and equating the coefficients of y2 gives c = 1, and similarly equating the coefficients of y
gives y′0 = −y0 − a1x0 − a3. This yields

−P0 = − (x0, y0) = (x0,−y0 − a1x0 − a3) .

Next we derive a formula for the addition law. Let

P1 = (x1, y1) and P2 = (x2, y2)

be points of E. If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then we have already shown that
P1 + P2 = O. Otherwise the line L through P1 and P2 (or the tangent line to E if P1 = P2 ) has
an equation of the form

L : y = λx + ν,

where the formulas for λ and ν are given below. Substituting the equation of L into the
equation of E, we see that F(x, λx + ν) has roots x1, x2, x3, where P3 = (x3, y3) is the third
point of L ∩ E. Since we have

P1 + P2 + P3 = O.

We write out
F(x, λx + ν) = x(x− x1)(x− x2)(x− x3)

and equate coefficients. The coefficient of x3 gives c = −1, and then the coefficient of x2

yields
x1 + x2 + x3 = λ2 + aaλ− a2.

This gives a formula for x3, and substituting into the equation of L gives the value of y3 =
λx3 + ν.

Finally, to find P1 + P2 = −P3, we apply the negation formula to P3. All of this is
summarized in the following:

Let E be an elliptic curve given by Equation (1.3), and let P1 + P2 = P3, where Pi =
(xi, yi) ∈ E for i = 1, 2, 3.

1. Let P0 = (x0, y0). Then
−P0 = (x0,−y0 − a1x0 − a3).

If P0 is on the curve described by the Weierstrass equation (1.5), then

−P = (x0,−y0).

2. If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P1 + P2 = O.

Otherwise, λ and ν are defined by the following formulas:

• If x1 = x2, then

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
,
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and

ν =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3
.

• If x1 6= x2, then λ and ν are given by

λ =
y2 − y1

x2 − x1
,

and
ν =

y1x2 − y2x1

x2 − x1
.

Then y = λx + ν is the line through P1 and P2, or tangent to E if P1 = P2.

3. With notation as in part 2, P3 = P1 + P2 has coordinates

x3 = λ2 + a1λ− a2 − x1 − x2,

and
y3 = − (λ + a1) x3 − ν− a3.

We have seen that if P is a point on an elliptic curve and k is a positive integer, then [k]P
is given by Relation 1.6. However, to compute [k]P for a large integer k, it is inefficient to add
P to itself repeatedly. It is much faster to use successive doubling. For example, to compute
[19]P, we compute [2]P,

[4]P = [2]P + [2]P, [8]P = [4]P + [4]P, [16]P = [8]P + [8]P, [19]P = [16]P + [2]P + P.

This method allows us to compute [k]P for very large k, say of several hundred digits, very
quickly. The only difficulty is that the size of the coordinates of the points increases very
rapidly if we are working over the rational numbers. However, when we are working over
a finite field, for example Fp, this is not a problem because we can continually reduce mod
p and thus keep the numbers involved relatively small. Note that the associative law allows
us to make these computations without worrying about what order we use to combine the
summands.

1.2.3 Projective Space and The Point at Infinity

We know that parallel lines meet at infinity. Projective space allows us to make sense out of
this statement and also to interpret the point at infinity on an elliptic curve.

Let K be a field. Two-dimensional projective space P2
K over K is given by equivalence

classes of triples (x, y, z) with x, y, z ∈ K and at least one of x, y, z nonzero. Two triples
(x1, y1, z1) and (x2, y2, z2) are said to be equivalent if there exists a nonzero element λ ∈ K

such that
(x1, y1, z1) = (λx2, λy2, λz2) .

We write (x1, y1, z1) ∼ (x2, y2, z2). The equivalence class of a triple only depends on the
ratios of x to y to z. Therefore, the equivalence class of (x, y, z) is denoted (x : y : z).
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If (x : y : z) is a point with z 6= 0, then (x : y : z) = (x/z : y/z : 1). These are the "finite"
points in P2

K. However, if z = 0 then dividing by z should be thought of as giving infinity in
either the x or y coordinate, and therefore the points (x : y : 0) are called the points at infinity in
P2

K. The point at infinity on an elliptic curve will soon be identified with one of these points
at infinity in P2

K.
The two-dimensional affine plane over K is often denoted

A2
K = {(x, y) ∈ K×K}

We have an inclusion
A2

K ↪→ P2
K

given by
(x, y) 7→ (x : y : 1).

In this way, the affine plane is identified with the finite points in P2
K. Adding the points at

infinity to obtain P2
K can be viewed as a way of "compactifying" the plane.

A polynomial is homogeneous of degree n if it is a sum of terms of the form axiyjzk with
a ∈ K and i + j + k = n. For example, F(x, y, z) = 2x3 − 5xyz + 7yz2 is homogeneous of
degree 3 . If a polynomial F is homogeneous of degree n then F(λx, λy, λz) = λnF(x, y, z) for
all λ ∈ K. It follows that if F is homogeneous of some degree, and (x1, y1, z1) ∼ (x2, y2, z2),
then F (x1, y1, z1) = 0 if and only if F (x2, y2, z2) = 0. Therefore, a zero of F in P2

K does not
depend on the choice of representative for the equivalence class, so the set of zeros of F in P2

K
is well defined.

If F(x, y, z) is an arbitrary polynomial in x, y, z, then we cannot talk about a point in P2
K

where F(x, y, z) = 0 since this depends on the representative (x, y, z) of the equivalence class.
For example, let F(x, y, z) = x2 + 2y− 3z. Then F(1, 1, 1) = 0, so we might be tempted to say
that F vanishes at (1 : 1 : 1). But F(2, 2, 2) = 2 and (1 : 1 : 1) = (2 : 2 : 2). To avoid this
problem, we need to work with homogeneous polynomials.

If f (x, y) is a polynomial in x and y, then we can make it homogeneous by inserting
appropriate powers of z. For example, if f (x, y) = y2 − x3 − Ax − B, then we obtain the
homogeneous polynomial F(x, y) = y2z− x3 − Axz2 − Bz3.

If F is homogeneous of degree n then

F(x, y, z) = zn f
(x

z
,

y
z

)
and

f (x, y) = F(x, y, 1).

We can now see what it means for two parallel lines to meet at infinity.
Let

y = mx + b1 and y = mx + b2

be two nonvertical parallel lines with b1 6= b2. They have respectively the homogeneous
forms

y = mx + b1z and y = mx + b2z.

When we solve the simultaneous equations to find their intersection, we obtain z = 0 and
y = mx. Since we cannot have all of x, y, z being 0, we must have x 6= 0. Therefore, we can



CHAPTER 1. PRELIMINARIES 17

rescale by dividing by x and find that the intersection of the two lines is

(x : mx : 0) = (1 : m : 0).

Similarly, if x = c1 and x = c2 are two vertical lines, they intersect in the point (0 : 1 : 0). This
is one of the points at infinity in P2

K.
Now let us look at the elliptic curve E given by y2 = x3 + Ax + B. Its homogeneous form

is y2z = x3 + Axz2 + Bz3. The points (x, y) on the original curve correspond to the points
(x : y : 1) in the projective version. To see what points on E lie at infinity, set z = 0 and
obtain 0 = x3. Therefore x = 0, and y can be any nonzero number (recall that (0 : 0 : 0) is not
allowed). Rescale by y to find that (0 : y : 0) = (0 : 1 : 0) is the only point at infinity on E. As
we saw above, (0 : 1 : 0) lies on every vertical line, so every vertical line intersects E at this
point at infinity. Moreover, since (0 : 1 : 0) = (0 : −1 : 0), the "top" and the "bottom" of the
y-axis are the same.

1.2.4 Torsion Points

The torsion points, namely those whose orders are finite, play an important role in the study
of elliptic curves. We will see in the next subsection for elliptic curves over finite fields, where
all points are torsion points.

Let E be an elliptic curve defined over a field K.

Definition 1.10. For a non-negative integer n, the set of n-torsion points of E, denoted by
E[n], is defined by

E[n] = {P ∈ E(K̄) | [n]P = O},

where K̄ is an algebraic closure of K.

Notice that E[n] is defined over E(K̄), not E(K). It is easy to see that E[n] is a subgroup
of E. By definition, O ∈ E[n] for all n.

We are interested in the case where the characteristic of K is not 2. In this case, E can be
put in the form y2 = cubic, (see Equation 1.4) and it is easy to determine E[2]. Let

y2 = (x− e1) (x− e2) (x− e3) ,

with e1, e2, e3 ∈ K̄. A point P satisfies [2]P = O if and only if the tangent line at P is vertical.
It is easy to see that this means that y = 0, so

E[2] = {O, (e1, 0) , (e2, 0) , (e3, 0)} .

Proposition 1.5. Let E be an elliptic curve over a field K. If the characteristic of K is not 2,
then

E[2] ' Z/2Z×Z/2Z.

If the characteristic of K is 2, then

E[2] ' (0) or Z/2Z.

The general situation is given by the following.
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Theorem 1.16. Let E be an elliptic curve over a field K and let n be a positive integer. If the
characteristic of K does not divide n, or is 0, then

E[n] ' Zn ×Zn.

If the characteristic of K is p > 0 and p | n, write n = prn
′

with p - n
′
.

Then
E[n] ' Zn′ ×Zn′ or E[n] ' Zn ×Zn′ .

1.2.5 Elliptic Curves over Finite Fields

Let E be an elliptic curve defined over the finite field Fq. The most important arithmetic
quantity associated to such a curve is its number of rational points. Since there are only
finitely many pairs (x, y) with x, y ∈ Fq, the group E(Fq) is finite and then E(Fq) has approximately
q points, with an error of no more than 2

√
q. Let #E(Fq) denote the order of E(Fq). The next

theorem, which was conjectured by E. Artin and proven by Hasse in the 1930s, states an
estimate for the number of points in E(Fq).

Theorem 1.17. (Hasse’s Theorem) Let E be an elliptic curve over the finite field Fq. Then∣∣#E(Fq)− q− 1
∣∣ ≤ 2

√
q,

Theorem 1.18. [53] Let E be an elliptic curve over the field field Fq. Then

E(Fq) ' Zn,

for some integer n > 1. Or
E(Fq) ' Zn1 ×Zn2 ,

for some integers n1, n2 > 1 with n1 | n2.

1.3 Generalized Fibonacci Sequences

In this section we give the definitions of some bi-periodic sequences such as the bi-periodic
Fibonacci and Lucas sequences, the generalized bi-periodic Fibonacci sequence and the bi-
periodic Horadam sequence. We also give some algebraic properties of these sequences, that
will be useful throughout this thesis.

1.3.1 Bi-periodic Fibonacci and Lucas Sequences

The Fibonacci sequence has been generalized in different ways, by preserving the recurrence
relation and altering the first two terms of the sequence, while others by preserving the first
two terms of the sequence but altering the recurrence relation.

A generalization which has recently increased interest is the bi-periodic Fibonacci sequence
introduced by Edson and Yayenie [13], by considering a non-linear recurrence relation depending
on two non-zero real parameters defined as follows:
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Definition 1.11. For any two nonzero real numbers a and b, the bi-periodic Fibonacci sequence
(qn)n is defined by

qn =

{
aqn−1 + qn−2, for n even;

bqn−1 + qn−2, for n odd,
n ≥ 2, (1.7)

with initial conditions q0 = 0 and q1 = 1.

Many sequences in the literature are special cases of this sequence. The sequence descriptions
that follow give reference numbers found in Sloane’s On-Line Encyclopedia of Integer Sequences
[39].

• The case a = b = 1 corresponds to the classical Fibonacci sequence A000045.

• The case a = b = 2 gives the Pell sequence A000129.

• For a = b = k, with some positive integer k, we obtain the k-Fibonacci sequence [14].

Similarly, Bilgici [8] defined the bi-periodic Lucas sequence using a non-linear recurrence
relation depending on two non-zero real parameters defined as follows:

Definition 1.12. For any two nonzero real numbers a and b, the bi-periodic Lucas sequence
(ln)n is defined by

ln =

{
bln−1 + ln−2, for n even;

aln−1 + ln−2, for n odd,
n ≥ 2, (1.8)

with initial conditions l0 = 2 and l1 = a.

For particular values of a, b, we have some well-known companion sequences.

• If a = b = 1, we obtain the classical Lucas sequence A000032.

• If a = b = 2 then we have the Pell-Lucas sequence A002203.

• For a = b = k, with some positive integer k, we obtain the k-Lucas sequence [16].

Definition 1.13. The parity function of n is defined by

ξ(n) =

{
0, if n is even,

1, if n is odd.
(1.9)

Here some properties of the parity function (1.9) which will be useful in the sequel.

ξ(m + n) = ξ(m) + ξ(n)− 2ξ(m)ξ(n); (1.10)

ξ(m)ξ(n + 1) =
1
2
(ξ(m) + ξ(n + 1)− ξ(m + n + 1)) , (1.11)

ξ(m) = m− 2
⌊m

2

⌋
. (1.12)

https://oeis.org/A000045
https://oeis.org/A000129
https://oeis.org/A000032
https://oeis.org/A002203
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The Binet formula for the bi-periodic Fibonnaci sequence (qn)n (see [13]) and the bi-
periodic Lucas sequence (ln)n (see [8]) are, respectively,

qm =
1

ab
m−1

2 cbb
m
2 c

(
αm − βm

α− β

)
,

and
lm =

1

a[
m
2 cbb

m+1
2 ]

(αm + βm) ,

with b.c denotes the floor function and α = ab+
√

a2b2+4ab
2 , β = ab−

√
a2b2+4ab
2 are the roots of

the quadratic equation
x2 − abx + ab = 0.

The generating function for the bi-periodic Fibonnaci sequence (qn)n and the bi-periodic
Lucas sequence (ln)n are, respectively,

∑
n≥0

qnxn =
x(1 + ax− x2)

1− (ab + 2)x2 + x4 ,

and

∑
n≥0

lnxn =
2 + ax− (ab + 2)x2 + a3

1− (ab + 2)x2 + x4 .

A further generalization has been introduced in [34, 54] by preserving the initial conditions
and modifying the recurrence relation (1.7) in such a way that the resulting sequence (1.13)
depends on four real parameters using in a non-linear recurrence relation.

Definition 1.14. For any real numbers a, b, c, and d, the generalized bi-periodic Fibonacci
sequence (Fn)n is defined by initial conditions F0 = 0, F1 = 1 and the following recurrence
relation for n ≥ 2

Fn =

{
aFn−1 + cFn−2, for n even;

bFn−1 + dFn−2, for n odd.
(1.13)

Many sequences in the literature are special cases of this sequence.

• If we take a = b = p and c = d = q, we get the generalized Fibonacci sequence [26].

• If we take a = b = 1 and c = d = 2, we get the Jacobsthal sequence [20].

• If we take a = b = k and c = d = 2, we get the k-Jacobsthal sequence [46].

The recurrence (1.13) involve the following relations, which reduce the odd and even
subscripted sequences to the kind of generalized Fibonacci sequence studied in [26].

F2n+1 = (ab + c + d)F2n−1 − cdF2n−3,

and
F2n = (ab + c + d)F2n−2 − cdF2n−4.
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The generating function for the sequence (Fn)n is

F(x) = ∑
n≥0

Fnxn =
x(1 + ax− cx2)

1− (ab + c + d)x2 + cdx4 .

Binet’s formula for even and odd indices of the sequence (Fn)n is given by

F2n = a
αn − βn

α− β
;

F2n+1 =
αn+1 − βn+1

α− β
− c

αn − βn

α− β
,

(1.14)

here α and β are the roots of the quadratic equation

f (x) = x2 − (ab + c + d)x + cd = 0. (1.15)

That is

α =
(ab + c + d) +

√
a2b2 + c2 + d2 + 2abc + 2abd− 2cd

2
,

and

β =
(ab + c + d)−

√
a2b2 + c2 + d2 + 2abc + 2abd− 2cd

2
.

So that,
α + β = ab + c + d and α · β = cd. (1.16)

In the following theorem, we list a number of properties including generalizations of Cassini’s,
Catalan’s and d’Ocagne’s identities for the classical Fibonacci numbers.

Theorem 1.19. [54] Suppose that c = d. Then the sequence (Fn)n satisfies the following
identities:

(a) Cassini’s Identity:

(a/b)ξ(n+1)Fn+1Fn−1 = (a/b)ξ(n)F2
n − (a/b)(−c)n−1.

(b) Catalan’s Identity:

(a/b)ξ(n+m)−ξ(m)Fn+mFn−m − (b/a)ξ(n)−ξ(m)F2
n = (−1)n−m+1cn−rF2

m.

(c) d’Ocagne’s Identity:

aξ(mn+m)bξ(mn+n)FmFn+1 − aξ(mn+n)bξ(mn+m)FnFm+1 = aξ(m−n)(−c)nFm−n. (1.17)

(d) Binomial Sum:
m

∑
k=0

(
m
k

)
aξ(k)(ab)b

k
2 ccm−kFk = F2m.
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The following theorem contain some additional properties of (Fn)n that will be needed in
Chapter 2.

Theorem 1.20. [44] Suppose that c = d. Then the sequence (Fn)n≥0 satisfies the following
identities:

(i) (b/a)ξ(ij+i)FjFi+1 + (b/a)ξ(ij+j)cFiFj−1 = Fj+i (g ≥ 1, n ≥ 0).

(ii) (b/a)ξ(ng+n)FnFg+1 + (b/a)ξ(ng+g)Fn+1Fg = (−c)gFn−g (g ≥ 0, n ≥ 0).

1.3.2 Bi-periodic Horadam Sequence

The second order recurrence sequence has been generalized in two ways mainly, by preserving
the initial conditions or by preserving the recurrence relation. In 1965, Horadam [19] gave
a sequence generated by the second-order linear homogeneous recurrence relation hn =
shn−1 + thn−2 for n ≥ 2, with arbitrary initial conditions h0 and h1. This sequence is now
called the Horadam sequence. Similar to the Fibonacci and Lucas sequences that were generalized
as the Horadam sequence, the bi-periodic Fibonacci and Lucas sequences were generalized
in [13] as follows:

Definition 1.15. Given nonzero real numbers a and b, the sequence (Qn)n is defined by the
recurrence relation

Qn =

{
aQn−1 + Qn−2, for n even;

bQn−1 + Qn−2, for n odd,
n ≥ 2, (1.18)

and general initial conditions Q0 and Q1, where Q0 and Q1 are nonzero values.

Tan and Leung [44] introduced a further generalization of the sequence (1.18) defined as
follows:

Definition 1.16. The bi-periodic Horadam sequence (Hn)n≥0 is defined by

Hn =

{
aHn−1 + cHn−2, for n even;

bHn−1 + cHn−2, for n odd,
n ≥ 2, (1.19)

with arbitrary initial conditions H0, H1, where H0, H1, a, b, and c are nonzero real numbers.

Several famous sequences in the literature can be stated in terms of the bi-periodic Horadam
sequence. We list some of these sequences in Table 1.1.
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Bi-periodic Horadam sequence Hn(H0, H1; a, b, c)
Horadam sequence [19] Hn(H0, H1; a, a, b)
Bi-periodic Lucas sequence [8] Hn(2, b; a, b, 1)
Bi-periodic Jacobsthal Lucas sequence [47] Hn(2, b; a, b, 2)
Pell-Lucas sequence A002203 Hn(2, 2; 2, 2, 1)
Lucas-balancing sequence A001541 Hn(1, 3; 6, 6,−1)
k-Fibonacci sequence [14] Hn(0, 1; k, k, 1)
(p, q)-Fibonacci sequence [26] Hn(0, 1; p, q, 1)
Pell sequence A000129 Hn(0, 1; 2, 2, 1)
Balancing sequence A001110 Hn(0, 1; 6, 6,−1)
Jacobsthal sequence [20] Hn(0, 1; 1, 1, 2)
Bi-periodic Jacobsthal sequence [47] Hn(0, 1; a, b, 2)
Bi-periodic Fibonacci sequence [13] Hn(0, 1; a, b, 1)

TABLE 1.1: Special cases of the sequence Hn = Hn(H0, H1; a, b, c).

The bi-periodic Horadam sequence will be studied in Chapter 4. We give in the following
theorem an identity relating the terms of the sequence (1.13) for the case c = d and the
sequence (Hn)n≥0, which will be crucial in our study.

Theorem 1.21. [44] Let n and l be any positive integers. Then we have

Hn+l = (b/a)ξ(n+1)ξ(l)Hl+1Fn + c(b/a)ξ(n)ξ(l+1)Hl Fn−1. (1.20)

For more details on these sequences, we refer the reader to [4, 23, 45].

https://oeis.org/A002203
https://oeis.org/ A001541
https://oeis.org/ A000129
https://oeis.org/ A001110


CHAPTER 2

THE GENERALIZED BI-PERIODIC FIBONACCI

SEQUENCE MODULO m

For given positive integers a, b, c, and d, we let (Fn)n be the generalized bi-periodic Fibonacci
sequence defined by the recurrence relation Fn = aFn−1 + cFn−2 for n even and Fn = bFn−1 +
dFn−2 for n odd, with initial conditions F0 = 0 and F1 = 1. This chapter is devoted to the
study the periodicity of (Fn)n≥0 modulo a given integer m ≥ 2 relatively prime to c and d.
We extend some well-known results on the period and the rank of the classical Fibonacci
sequence to the bi-periodic case.

2.1 Periodicity of The Generalized Bi-periodic Fibonacci Sequence
Modulo m

We consider the generalized bi-periodic Fibonacci sequence. We assume that a, b, c, and d are
positive integers.

F0 = 0, F1 = 1, and Fn =

{
aFn−1 + cFn−2, for n even;
bFn−1 + dFn−2, for n odd,

(n ≥ 2). (2.1)

Notice that for c = d = 1, (Fn)n reduces to the sequence (1.7). For the case a = b and c = d,
we have the generalized Fibonacci sequence [26].

In this section, we investigate the period of (Fn)n reduced modulo m. We Assume that m
is chosen such that m is relatively prime to c and d, and we prove that (Fn)n reduced modulo
m is periodic, i.e., there exists a positive integer r such that

Fn+r = Fn, for all n ≥ 0. (2.2)

Since we are dealing with the generalized bi-periodic Fibonacci sequences when reduced
modulo m, then the condition a 6≡ b (mod m) or c 6≡ d (mod m) ensures that the considered
sequence are actually bi-periodic. For the case where a ≡ b (mod m) and c ≡ d (mod m), the
sequence (Fn mod m) coincides with the the generalized Fibonacci sequence, see [25, 31, 49].

24
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We show in the next theorem that the sequence (Fn mod m)n is periodic. Our proof
follows the proof in the Wall paper [52].

Theorem 2.1. The sequence (Fn)n is periodic modulo m.

Proof. Since there are only m2 pairs of integers modulo m, then at least one repetition of a pair
must occur within the following m2 + 1 pairs of the sequence

(F0, F1), (F2, F3), . . . , (F2m2 , F2m2+1).

Let i, j and r be integers such that 0 ≤ i < j ≤ m2 and r = 2j− 2i. Let (F2i, F2i+1) ≡ (F2j, F2j+1)

(mod m). It follows by induction that

Fn+r = Fn, for all n ≥ 2i.

Now, since c and d are invertible modulo m, by backward induction, we see that the
sequence (Fn)n is periodic. Indeed, from the recurrence relation (2.1) we have

F2i−1 ≡ F2j−1 mod m,

F2i−2 ≡ F2j−2 mod m,
...

F2j−2i+1 ≡ Fr+1 = F1 mod m,

F2j−2i ≡ Fr = F0 mod m.

Let k(m) denote the period of the sequence (Fn mod m), i.e., the least positive integer r
that satisfies Property (2.2).

Example 2.1. We consider the generalized bi-periodic Fibonacci sequence generated by a = 2
and b = c = d = 1 that we find in A048788. The first few terms of this sequence reduced
modulo m = 3 are

0, 1, 2, 0, 2, 2, 0, 2, 1, 0, 1, 1, . . . .

Then we only have repetitions of these terms and k(3) = 12.

In [41], the authors investigated the period of the generalized bi-periodic Fibonacci sequences
(Fn)n for the case c = d = 1. The period of (Fn mod m) is defined to be the least positive
integer r such that 

Fr ≡ 0 (mod m);

Fr+1 ≡ 1 (mod m).

However, unlike the case where a = b, the integer r does not necessarily satisfy Relation (2.2).
We can see in Example 2.1 that we have F9 = 0 and F10 = 1, however r = 9 is not the period
of (Fn mod 3) since Fr+2 6= F2.

https://oeis.org/A048788
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Theorem 2.2. Let r be a positive integer. If a 6≡ b (mod m) or c 6≡ d (mod m) , the following
assertions are equivalent

(i) Fn+r ≡ Fn (mod m) for all n ≥ 0;

(ii) (Fr, Fr+1, Fr+2, Fr+3) ≡ (F0, F1, F2, F3) (mod m);

(iii) (Fr, Fr+1) ≡ (F0, F1) (mod m), and the integer r is even.

In particular, the period k(m) is an even number.

Proof. It is immediate that (i) =⇒ (ii).
Next, let (Fr, Fr+1, Fr+2, Fr+3) ≡ (F0, F1, F2, F3) (mod m), and suppose that r is an odd

number. Then we have the following

a = F2 ≡ Fr+2 = bFr+1 + dFr ≡ bF1 + dF0 = b,

and
bF2 + dF1 = F3 ≡ Fr+3 = aFr+2 + cFr+1 ≡ aF2 + cF1.

It follows that a ≡ b mod m and c ≡ d mod m, which contradict the assumptions. This shows
that (ii) =⇒ (iii).

We now prove that (iii) =⇒ (i). Let (Fr, Fr+1) ≡ (F0, F1) mod m, with r an even number.
We show by induction that

Fn+r ≡ Fn(modm), for all n ≥ 0

For n = 0 we have Fr ≡ F0(modm), and for n = 1 we have Fr+1 ≡ F1 mod m. Assume now
that the formula holds for all positive integers up to n, in particular for n and n− 1. So, using
the recurrence relation (2.1) and the fact that r is an even number, we obtain

Fr+n+1 =

{
aFn+r + cFr+n−1, for n odd ;

bFn+r + dFr+n−1, for n even .

Now, we consider Fr+n+1 modulo m. Using the induction hypothesis we obtain the following

Fr+n+1 ≡ Fn+1(modm), for all n ≥ 1.

This proves that Fn+r ≡ Fn(modm) for all n ≥ 0, and complete the proof.

If a 6≡ b (mod m) or c 6≡ d (mod m), then the period k(m) is the smallest integer r satisfying
the properties of Theorem 2.2. Furthermore, since any positive integer r that satisfies (2.2) is a
multiple of the period k(m). Hence, by Theorem 2.2 the following equivalence holds for any
r ∈ 2N:
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k(m) | r ⇐⇒


Fr ≡ 0 (mod m);

Fr+1 ≡ 1 (mod m).
(2.3)

The next theorem shows that we can reduce the computation of k(m) to that of k(pe) for all
prime power factor pe of m. This is an analogue of [52, Theorem.2] for the case of the classical
Fibonacci sequence.

Theorem 2.3. Let m = pe1
1 pe2

2 · · · p
es
s be the prime decomposition of m. Then

k(m) = lcm(k(pe1
1 ), k(pe2

2 ), . . . , k(pes
s )).

Proof. Our proof is similar to the proof of [52, Theorem. 2]. Let m be a positive integer, and
let m = ∏s

i=1 pei
i be its prime factorization. Let ki = k(pei

i ) denotes the period of (Fn mod pei
i ),

and k denotes the period of (Fn mod m). We prove that

k = lcm(k1, k2, . . . , ks).

Since k is the period of (Fn mod m), then we have
Fk ≡ 0 (mod m);

Fk+1 ≡ 1 (mod m).

From the Chinese remainder Theorem, we have

Zm ' Zp
e1
1
× · · · ×Zpes

s
.

Then for all 1 6 i 6 s, 
Fki ≡ 0 (mod pei

i );

Fki+1 ≡ 1 (mod pei
i ).

For any r ∈N the following congruences hold
Frki ≡ 0 (mod pei

i );

Frki+1 ≡ 1 (mod pei
i ).
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We let r = k1 × · · · × ki−1 × ki+1 × · · · × ks, and let M = rki = ∏s
i=1 ki. We have

FM ≡ 0 (mod pei
i );

FM+1 ≡ 1 (mod pei
i ).

By the Chinese remainder theorem we obtain
FM ≡ 0 (mod m);

FM+1 ≡ 1 (mod m).

Since lcm(ki) | M, then we conclude that k(m) = lcm(k(pe1
1 ), k(pe2

2 ), . . . , k(pes
s )).

Theorem 2.4. If m | a, then k(m) = 2 · ordm(d), where ordm(d) is the order of d in Z∗m.

Proof. The first few terms of the sequence (Fn)n are

0, 1, a, ab + d, a(ab + d + c), a2b2 + 2abd + abc + d2, . . . .

Assume a ≡ 0 (mod m), then following an induction we obtain the formula that gives the
terms of the sequence reduced modulo m:

Fn mod m =

{
0, if n is even;

d
n−1

2 , if n is odd.
(2.4)

Let r = 2 · ordm(d) be the least positive integer satisfying Fr ≡ 0 (mod m) and Fr+1 ≡ 1
(mod m). Furthermore, using Relation (2.4) we obtain the following congruences for all n

Fn+r mod m =


0, if n is even;

dordm(d)+ n−1
2 = d

n−1
2 , if n is odd.

Since r is the least positive integer such that Fn+r ≡ Fn mod m. Thus, we have k(m) =

2 · ordm(d).

2.2 The Generalized Bi-periodic Fibonacci Sequence Over a
Finite Field

Let Fq denote the finite field of order q = pe with e ≥ 1, and p is an odd prime. We assume
that gcd(c, p) = gcd(d, p) = 1 to guarantee that (Fn)n is periodic over the field Fq. The main
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tool of our discussion is the Binet formula for even and odd indices given as follows
F2n = a

αn − βn

α− β
;

F2n+1 =
αn+1 − βn+1

α− β
− c

αn − βn

α− β
.

(2.5)

Where α, β = A±
√

∆
2 are the roots of the quadratic equation f (x) = x2 − Ax + B = 0 with

A = ab + c + d, B = cd, and ∆ is the discriminant of f (x).
In order to prove statements in Fq, we start from Fp, and generalize up to Fq. The most

important case to study is therefore Fp. We establish a divisibility relation for k(p) according
to the nature of the polynomial f in Fp. However, if p | ∆ we obtain an equality statement
for k(p) in terms of the order of the zero of equation f (x) = 0 in F∗p. Finally, we consider the
case of the period modulo pe.

In the sequel, we deal only with the cases where a 6≡ b (mod p) or c 6≡ d (mod p). For
analogous results in the case a ≡ b (mod p) and c ≡ d (mod p), see [25, 18, 31]. We also
assume that gcd(a, p) = 1, since when p | a Theorem 2.4 gives k(p) = 2 · ordp(d), where
ordp(d) is the order of d in F∗p.

Theorem 2.5. Let p be an odd prime. If ∆ is a nonzero quadratic residue modulo p, then
k(p) | 2(p− 1). Furthermore,

(
α
p

)
=
(

β
p

)
= 1 if and only if k(p) | (p− 1).

Proof. Suppose that ∆ is a nonzero quadratic residue modulo p. Then we have α, β ∈ Fp, and
by the Fermat little theorem we get

αp−1 ≡ 1 (mod p) and βp−1 ≡ 1 (mod p).

Now, using the Binet formula for even and odd indices (2.5), we obtain

F2(p−1) = a
αp−1 − βp−1

α− β
≡ 0 (mod p),

and

F2(p−1)+1 =
αp − βp

α− β
− c

αp−1 − βp−1

α− β
≡ 1 (mod p).

Thus, by Relation (2.3), k(p) | 2(p− 1).
For the second part, we have the following equivalences:

Fp−1 = a
α

p−1
2 − β

p−1
2

α− β
≡ 0 (mod p)⇐⇒ α

p−1
2 ≡ β

p−1
2 (mod p),

and

Fp =
α

p+1
2 − β

p+1
2

α− β
− c

α
p−1

2 − β
p−1

2

α− β
≡ 1 (mod p)⇐⇒ α

p−1
2 ≡ 1 (mod p).
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So,

α
p−1

2 = β
p−1

2 ≡ 1 (mod p)⇐⇒


Fp−1 ≡ 0 (mod p);

Fp ≡ 1 (mod p).

Therefore, from (2.3) we get(
α

p

)
=

(
β

p

)
= 1⇐⇒ k(p) | p− 1.

Remark 2.1. Suppose that c = d, then from (1.16), we have α + β = ab + 2c and αβ = c2.
Moreover, since (c, p) = 1, then the Fermat little theorem gives cp−1 ≡ 1 (mod p). Hence

(αβ)
p−1

2 = cp−1 ≡ 1 (mod p).

From part (a) and part (b) of Proposition 1.1, we obtain(
αβ

p

)
=

(
α

p

)(
β

p

)
= (αβ)

p−1
2 ≡ 1 (mod p).

Thus, (
α

p

)
=

(
β

p

)
.

Now, since α ∈ Fp and using the fact that αβ = c2 and α + β = ab + 2c, we have

ab ≡ α−1(α− c)2 (mod p),

where α−1 is the inverse of α modulo p. It follows that

(ab)
p−1

2 = (α−1(α− c)2)
p−1

2 = α
p−1

2 (α− c)p−1 ≡ α
p−1

2 (mod p).

Thus, (
α

p

)
=

(
ab
p

)
. (2.6)

Remark 2.2. We mention that [41, Theorem. 4] is true only if we add the condition ab is also
a quadratic residue modulo p. We illustrate this case in Example 2.2.

Now, if ∆ is a quadratic nonresidue modulo p, thus the roots α, β are not in Fp. That is,
the polynomial f (x) is irreducible over Fp. We construct the splitting field of the polynomial
f (x).

Fp2 ' Fp[x]( f (x)).
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Since the Frobenius automorphism of Fp2 fixes Fp, it must permute the zeros of any
irreducible quadratic polynomial of Fp[x]. Therefore, by applying the Frobenius automorphism
to α, a root of the equation f (x) = 0, we obtain the other root β = αp. Hence,

αp+1 = βp+1 = αβ.

Now, we are ready to give a specific bound of k(p) when ∆ is a quadratic nonresidue
modulo p.

Theorem 2.6. Let p be an odd prime. If ∆ is a quadratic nonresidue modulo p, then k(p) |
2 · ordp(cd)(p + 1).

Proof. Suppose that ∆ is a quadratic nonresidue modulo p, then αp+1 = βp+1 = cd. Using the
Binet formula (2.5), we get

F2 ordp(cd)(p+1) = a
(αp+1)ordp(cd) − (βp+1)ordp(cd)

α− β
≡ 0 (mod p),

and

F2 ordp(cd)(p+1)+1 =
α(αp+1)ordp(cd) − β(βp+1)ordp(cd)

α− β
−c

(αp+1)ordp(cd) − (βp+1)ordp(cd)

α− β

≡ 1 (mod p).

Therefore, Relation (2.3) implies that k(p) | 2 · ordp(cd)(p + 1).

Example 2.2. We take a = c = d = 1 and b = 2, and then (Fn0n corresponds to A002530 in
[39], So that, we have ∆ = 12.

Let p = 11. Then ∆ is a nonzero quadratic residue and ab is a quadratic nonresidue. From
Theorem 2.5 we have k(p) | 2(p− 1), with k(p) - (p− 1). So, since F2 = 1, we conclude that
k(11) = 20.

Let p = 7, ∆ is a quadratic nonresidue modulo p. Then by Theorem 2.6, we have k(p) | 16.
We only have to calculating the first nine terms of the sequence reduced modulo 7

0, 1, 1, 3, 4, 4, 1, 6, 0, 6.

Thus, k(7) = 16.

Example 2.3. Take a = 3, b = d = 1, and c = 4. For p = 11 both ∆ and ab are nonzero
quadratic residues modulo p, and from Theorem 2.5 we have k(p)|(p− 1). Moreover, k(p) is
an even integer and F2 mod 11 = 3. So the only possible value is k(11) = 10.

We consider the case where ∆ ≡ 0 (mod p), and investigate the period of the sequence
(Fn)n reduced modulo p. We first need to simplify the Binet formula of Fn for even and odd
indices (2.5) as follows:

F2n = a
(

αn−1 + αn−2β + · · ·+ αβn−2 + βn−1
)

;

https://oeis.org/A002530
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and

F2n+1 =
(

αn + αn−1β + · · ·+ αβn−1 + βn
)
− c

(
αn−1 + αn−2β + · · ·+ αβn−2 + βn−1

)
.

It follows, 
F2n = a

n

∑
i=1

αn−iβi−1;

F2n+1 = αn +
n

∑
i=1

αn−(i+1)βi(α− c).
(2.7)

Since for the case where ∆ ≡ 0 (mod p) the equation f (x) = 0 has a repeated root α in Fp, it
follows from (2.7) that the terms of the sequence (Fn)n reduced modulo p have the following
form: 

F2n ≡ anαn−1 (mod p);

F2n+1 ≡ (n + 1)αn − cnαn−1 (mod p).

(2.8)

The above formula allows us to give an explicit equality statement for k(p) in terms of the
order of the root α in F∗p.

Theorem 2.7. Let p be an odd prime. If ∆ ≡ 0 (mod p), then k(p) = 2p · ordp(α).

Proof. Assume that ∆ ≡ 0 (mod p) and gcd(a, p) = 1. Working modulo p and using Relation
(2.8), we obtain the following:

F2n ≡ 0 mod p and F2n+1 ≡ 1 mod p⇐⇒ nαn−1 ≡ 0 mod p and αn ≡ 1 mod p

⇐⇒ p | n and ordp(α) | n

⇐⇒ lcm(p, ordp(α))| n

⇐⇒ p · ordp(α) | n.

The last congruence is due to the fact that (ordp(α), p) = 1 since ordp(α) | p − 1. From
(2.3), we know that the period k(p) is the least even integer k such that Fk ≡ 0 (mod p) and
Fk+1 ≡ 1 (mod p). Therefore, we get k(p) = 2p · ordp(α).

We have seen in Theorem 2.3 that it is easy to compute k(m) once we know k(pe
i ) for

all prime power factors pe
i of m. The corollary of the following theorem is crucial to the

investigation of the period modulo pe.

Theorem 2.8. Let p be a prime number and n be a positive integer. If a ≡ 1 (mod p), then
we have apn ≡ 1 (mod pn+1).
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Proof. Let P(n) be the proposition

apn ≡ 1 (mod pn+1).

Suppose that a ≡ 1 (mod p), then we have a = sp + 1, for some s ∈ Z .
For n = 1, we have

ap = (sp + 1)p

=
p

∑
i=0

(
p
i

)
(sp)i

= 1 + p2
p

∑
i=2

(
p
i

)
(sp)i−2

≡ 1 mod p2.

Thus, P(1) is true.
Assume that P(n) is true up to some n and consider P(n + 1):

apn+1
= (apn)p

= (spn+1 + 1)p

=
p

∑
i=0

(
p
i

)
(spn+1)i

= 1 + spn+2 +
p

∑
i=2

(
p
i

)
(spn+1)i.

Since pn+2 | (spn+1)i for 2 ≤ i ≤ p, it follows

apn+1 ≡ 1 mod pn+2.

Hence P(n) holds by induction.

Corollary 2.1. Let p be an odd prime such that gcd(a, p) = 1, and let e be a positive integer.
Then

α
k(p)

2 pe−1 ≡ β
k(p)

2 pe−1 ≡ 1 (mod pe).

Proof. Let α and β be the roots of the quadratic equation f (x) = x2 − (ab + c + d)x + cd = 0.

• If ∆ ≡ 0 (mod p), then we have α ≡ β (mod p). We know from Theorem 2.7 that
k(p) = 2p · ordp(α). Thus, it follows

α
k(p)

2 ≡ β
k(p)

2 ≡ 1 (mod p). (2.9)
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Thus, applying Theorem 2.8 to Relation 2.9, we get

α
k(p)

2 pe−1 ≡ β
k(p)

2 pe−1 ≡ 1 (mod pe).

• Suppose that ∆ 6≡ 0 (mod p). We have
Fk(p) ≡ 0 (mod p);

Fk(p)+1 ≡ 1 (mod p).

Since k(p) is even, then the Binet formula for even indices gives

a
α

k(p)
2 − β

k(p)
2

α− β
≡ 0 (mod p).

Now, since gcd(a, p) = 1 and gcd(∆, p) = 1, then we obtain

α
k(p)

2 ≡ β
k(p)

2 (mod p).

Now, we use the last congruence in the Binet formula for odd indices

Fk(p)+1 =
αα

k(p)
2 − ββ

k(p)
2

α− β
− c

α
k(p)

2 − β
k(p)

2

α− β

≡ α
k(p)

2 .

It follows that α
k(p)

2 ≡ β
k(p)

2 ≡ 1 (mod p).

By applying Theorem 2.8 to α
k(p)

2 and β
k(p)

2 , we obtain the desired result.

Now that we have results helping in the calculation of k(p). In Theorem 2.9 we connect
k(p) to k(pe).

Theorem 2.9. Let p be an odd prime such that gcd(a, p) = 1, and let e be a positive integer.
Then k(pe) | pe−1k(p).

Proof. Suppose that (a, p) = 1. From Corollary 2.1, we have

α
k(p)

2 pe−1 ≡ β
k(p)

2 pe−1 ≡ 1 (mod pe). (2.10)

• If gcd(p, ∆) = 1, then using Relation 2.10 we have

Fk(p)pe−1 = a
α

k(p)pe−1
2 − β

k(p)pe−1
2

α− β
≡ 0 (mod pe),
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and

Fk(p)pe−1+1 =
αα

k(p)pe−1

2 − ββ
k(p)pe−1

2

α− β
− c

α
k(p)pe−1

2 − β
k(p)pe−1

2

α− β

≡ 1 (mod pe).

• If p | ∆, then we work modulo p using Relation 2.8

Fk(p)pe−1 ≡ ape−1 k(p)
2

α
k(p)pe−1

2 −1,

and

Fk(p)pe−1+1 ≡
(

k(p)
2

pe−1 + 1
)

α
k(p)pe−1

2 − cpe−1 k(p)
2

α
k(p)pe−1

2 −1.

Since from Theorem 2.7, we have k(p) = 2p · ordp(α). Then

Fk(p)pe−1 ≡ ape ordp(α)α
k(p)pe−1

2 −1,

and
Fk(p)pe−1+1 ≡

(
ordp(α)pe + 1

)
α

k(p)pe−1
2 − cpe ordp(α)α

k(p)pe−1
2 −1.

Thus, by (2.10) we obtain 
Fk(p)pe−1 ≡ 0 (mod pe);

Fk(p)pe−1+1 ≡ 1 (mod pe).

Therefore, by (2.3) we have k(pe) | pe−1k(p).

2.3 The Rank of The Generalized Bi-periodic Fibonacci Sequence
Modulo m

Let gcd(c, m) = 1. The rank of (Fn)n modulo m is the least positive integer r such that Fr ≡ 0
(mod m). Let d(m) denote the rank of (Fn mod m). It is obvious that if m | a then d(m) = 2.
In the rest, we assume that c = d, and m - a.

Wall [52, Theorem. 3] proved that the indices of the Fibonacci sequence terms that are zero
modulo m form an arithmetic progression. In the following theorem we give an analogous
result for the bi-periodic case.

Theorem 2.10. Let gcd(a, m) = 1, then the terms for which Fn ≡ 0 (mod m) have subscripts
that form a simple arithmetic progression, i.e., n = xl; for x = 0, 1, 2, . . .. Moreover, l = d(m)

gives all n with Fn ≡ 0 (mod m).
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Proof. Assume that Fi ≡ 0 (mod m) and Fj ≡ 0 (mod m). By setting m = i and n = j in the
d’Ocagne identity 1.17, we have

aξ(ij+i)bξ(ij+j)FiFj+1 − aξ(ij+j)bξ(ij+i)FjFi+1 = aξ(i−j)(−c)jFi−j.

Since gcd(c, p) = gcd(a, m) = 1, then for (i ≥ j) we get

Fi−j ≡ 0 (mod m). (2.11)

Now, we consider the identity (i) of Theorem 1.20

Fi+j = (b/a)ξ(ij+j)FiFj+1 + (b/a)ξ(ij+i)cFjFi−1 (i ≥ 1, j ≥ 0).

It follows that
Fi+j ≡ 0 (mod m). (2.12)

Let
S = {k ∈ Z∗ | Fk ≡ 0 (mod m)} .

Since Fk(m) ≡ 0 (mod m), the set S is not empty. Let d be the smallest integer in S. By using
induction and congruence (2.12), we get Fld ≡ 0 (mod m) for l ∈ Z∗. Now let λ ∈ S and
suppose that d | λ. Then there are two positive integers θ and γ such that λ = dθ + γ with
0 < γ < d. From (2.11), we have Fλ−θd = Fγ ≡ 0 (mod m). A contradiction, since d is the
smallest integer in S. Thus, λ is a multiple of d.

From Theorem 2.10, we have

Fn ≡ 0 (mod m)⇐⇒ d(m) | n. (2.13)

In particular, since Fk(m) ≡ (mod m), then d(m) | k(m).
Let c = 1 and a, b ∈ F2. Table 2.1 gives the rank of (Fn mod 2).

a b c d(p)
0 1 1 2
1 0 1 4

TABLE 2.1: p=2

We are now ready to state some fundamental results about the rank of (Fn mod m).

Theorem 2.11. Let m ≥ 2, and p be an odd prime such that gcd(a, p) = gcd(c, p) = 1. Then

(a) If ∆ is a nonzero quadratic residue modulo p, then d(p) | (p− 1).

(b) If ∆ is a quadratic nonresidue modulo p, then d(p) | 2(p + 1).

(c) If ∆ ≡ 0 (mod p), then if p | b, d(p) = 2p otherwise, d(p) = p.
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(d) If n | m, then d(n) | d(m).

(e) Let m = pe1
1 pe2

2 · · · p
en
n be the prime decomposition of m. Then

d(m) = lcm(d(pe1
1 ), d(pe2

2 ), . . . , d(pen
n )).

Proof. Let p be an odd prime, and let gcd(a, p) = 1.

(a) Suppose that ∆ is a nonzero quadratic residue modulo p. Then α, β ∈ Fp and from

Relation 2.6, we have
(

α
p

)
=
(

β
p

)
. Hence,

Fp−1 = a
α

p−1
2 − β

p−1
2

α− β
≡ 0 (mod p).

Thus, by (2.13), we get d(p) | (p− 1).

(b) Suppose that ∆ is a quadratic nonresidue modulo p. Then, αp+1 = βp+1 = αβ and we
have

F2(p+1)=a
αp+1 − βp+1

α− β
≡ 0 (mod p).

Thus, from (2.13), we get d(p) | 2 (p + 1).

(c) Suppose that ∆ ≡ 0 (mod p).

If we assume that p | b, then we have α = c. Using (2.8), we obtain

F2n ≡ an(c)n−1 and F2n+1 ≡ (c)n.

Then we have F2n+1 6≡ 0 (mod p), since gcd(c, p) = 1 and d(p) must be even. Note
that we have F2n ≡ 0 (mod p) if and only if p | n. Therefore, we obtain d(p) = 2p.

Now, if p - b then we have α = −c. Then

F2n ≡ an(−c)n−1 ≡ 0 (mod m)⇐⇒ p | n

and
F2n+1 ≡ (2n + 1)(−c)n ≡ 0 (mod m)⇐⇒ p | (2n + 1).

Since d(p) is the smallest positive integer n for which Fn ≡ 0 (mod p), we obtain d(p) =
p.

(d) Since Fd(m) ≡ 0 (mod m) and n | m, then we have Fd(m) ≡ 0 (mod n). Thus, by (2.13), it
follows that d(n) | d(m).

For the proof of (e), see [48, Lemma 2].



CHAPTER 3

PERIODICITY OF THE GENERALIZED BI-PERIODIC

FIBONACCI SEQUENCE USING MATRIX METHOD

The generalized bi-periodic Fibonacci sequence (Fn)n≥0 reduced modulo an arbitrary positive
integer have been studied in chapter 2 using modular arithmetic on its Binet formula for odd
and even indices. In this chapter, we use the matrix approach to study the periodicity of
(Fn)n≥0. For a given positive integer m, we show that (Fn mod m)n≥0 is periodic using matrix
method. We investigate the behavior of the sequence (Fn)n≥0 whose elements are in the finite
field Fq, where q = pe with e ≥ 1 and p a prime.

3.1 Introduction

Matrix representation has played a very important role in the study of the properties of
certain linear recurrent sequences. In [38], Silvester showed that a number of the properties
of the Fibonacci sequence can be derived from a matrix representation. For more details, we
refer to [22]. This approach, allowed to expressing explicitly the general term of certain linear
recurrent sequence and derived many of the basic properties of these sequences, like the Pell
sequence and the Stirling sequence; see [5, 15]. Robinson [29] defined the Fibonacci matrix

U =

(
0 1
1 1

)
.

By induction on n, we have ( fn, fn+1) = (0, 1)Un and the nth power Un has the following
matrix form

Un =

(
fn−1 fn

fn fn+1

)
.

He used the matrix U in a novel approach to prove the results of Wall [52] on the periodicity
of the Fibonacci sequence reduced modulo a given positive integer m. He established many
other properties of the Fibonacci sequence and showed how the idea can be adapted to the
study of more general recurrent linear sequences. The study of the periodicity of the recurrent
linear sequences using matrix method has continued in recent years. In [18], the authors
hve given alternative proofs of the Robinson results which also use the Fibonacci matrix U.
Renault [31] investigated the periodicity of general second-order linear recurrence sequence
by matrix method. Our purpose is to deal with the case of bi-periodic recurrence sequence.

38
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Namely, the generalized bi-periodic Fibonacci sequence.

F0 = 0, F1 = 1, and Fn =

{
aFn−1 + cFn−2, for n even;
bFn−1 + dFn−2, for n odd,

(n ≥ 2). (3.1)

With a, b, c, and d are positive integers.
In Chapter 2, we investigated the periodicity of the sequence (Fn)n≥0 defined over Zm,

where m is a given positive integer. We established properties on the period and the rank of
(Fn mod m)n≥0, using modular arithmetic on the extended Binet formula (2.5).

In this chapter, we use the matrix approach to study the periodicity of the sequence
(Fn)n≥0. Considering an appropriate matrix representation

C =

(
ab + d bc

a c

)
,

we show that the study of the period of the sequence (Fn)n≥0, whose elements are in Zm
is equivalent to the study of the period of the sequence (Cn mod m)n≥0 over the group
GL2(Zm). Then we investigate the behavior of (Fn)n≥0 over the finite field of order q = pe.

We have seen in Theorem 2.3 that we can simplify the problem of finding the period of
(Fn mod m)n≥0 by considering the prime factorization of m. Thus, combining knowledge of
k(pe

i ) with the fact that k(m) = lcm(k(pei
i )), one can obtain a bound on k(m) for each positive

integer m. However, in Theorem 2.9 we have obtained a divisibility relation between k(pe)
and k(p). Here, we complete this result and we show that we can express k(pe) in terms of
k(p).

3.2 Matrix Representation for The Sequence (Fn)n≥0

Recently, several algebraic and combinatorial properties of the bi-periodic Fibonacci sequence
and its generalizations were established by means of matrices; see [4, 36, 43]. In this chapter,
we consider the matrix representation of (Fn)n≥0 given in [43] as follows:

C =

(
ab + d bc

a c

)
.

We have its trace and determinant defined by

tr(C) = ab + c + d and det(C) = cd.

Its nth power gives the following matrix:

Cn =

(
F2n+1

bc
a F2n

F2n
c
a (F2n − dF2n−2)

)
.

Using the above matrix representation, we give in the next lemma an identity which is
useful in the computation of the terms of the sequence (Fn)n for a very large n, as well as for
proving properties of this sequence.
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Lemma 3.1. Let C =

(
ab + d bc

a c

)
be the matrix representation of the sequence (Fn)n≥0. Set

the vector vn =

(
F2n+1

F2n

)
. Then for all n ≥ 0, we have v0Cn = vn.

Proof. Relation (3.1) gives rise to the matrix equation vn+1 = vnC, for n ≥ 0. Thus, inductively
we obtain vn = v0Cn.

3.3 Periodicity by Matrix Method

In this section, we use the matrix approach to prove that the generalized bi-periodic Fibonacci
sequence (Fn)n whose elements are in the ring Zm is periodic. The proofs in this section follow
those of [29]. Let C be an element of the finite group GL2(Zm). Then the entries of the matrix
Cn are elements of the ring Zm, the desired objective of the study. In fact, the study of the
period of sequence (Fn)n over Zm is equivalent to the study of the period of the sequence
(Cn)n over GL2(Zm). In particular, since there are only a finite number of distinct matrices in
GL2(Zm), there are positive integers k and n, with k + n > k > 0 such that

Cn+k = Ck.

But since C has finite order in this group, this means that for some positive integer n, Cn ≡ I
(mod m), where I is the identity matrix.

We give in the next theorem the relationship between the period k(m) and the order of C
in GL2(Zm).

Theorem 3.1. Let a 6≡ b (mod m) or c 6≡ d (mod m). Let ord(C) denotes the multiplicative
order of C in GL2(Zm). Then ord(C) = k(m)

2 , and we have

Cn = I mod m if and only if k(m) | 2n. (3.2)

Proof. Since C ∈ GL2(Zm), then there is a positive integer r such that Cn+r = Cn, for all n ≥ 0.
Then using Lemma 3.1, we get the following

Cn+r = Cn ⇐⇒ vn+r = vn

⇐⇒ F2(n+r)+1 ≡ F2n+1 (mod m) and F2(n+r) ≡ F2n (mod m)

⇐⇒ F2r+n ≡ Fn mod m, for all n ≥ 0.

Note that r = ord(C) is the least integer satisfying Cn+r = Cn, for all n ≥ 0. Moreover, the
period k(m) is the smallest integer satisfying Fn+k(m) ≡ Fn (mod m), for all n ≥ 0. Hence, we

conclude that ord(c) = k(m)
2 . Indeed, from Theorem 2.2 we know that the period k(m) is an
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even number, except in the case where a ≡ b (mod m) and c ≡ d (mod m). It follows that

Cn = I if and only if k(m) | 2n.

Corollary 3.1. Let gcd(cd, m) = 1, and let ordm(cd) denotes the order of cd in Z∗m. Then

ordm(cd) | k(m).

Proof. Since det(C) = cd and Ck(m) ≡ I (mod m), then we have

(cd)k(m) = det(C)k(m) = det(Ck(m)) ≡ 1 (mod m).

It follows that, ordm(cd) | k(m).

3.4 Period of (Fn)n≥0 Modulo Prime

Let C ∈ GL2(Fp). We formulate a method with the aid of the matrix C for determining upper
bound of the period of the sequence (Fn)n over the finite fields Fp. Let fC(x) = det(C− xI) =
x2 − (ab + c + d)x + cd ∈ Fp[x] be the characteristic polynomial of the matrix C, and let ∆
be its discriminant. If the matrix C is diagonalizable, with λ1, λ2 be its eigenvalues. Then we
have

C = P
(

λ1 0
0 λ2

)
P−1,

where P =

(
λ1−c

a
λ2−c

a
1 1

)
.

Then

Cn = P
(

λn
1 0

0 λn
2

)
P−1.

Theorem 3.2. Let p be an odd prime. Assume that p - ∆. We have

i) If ∆ is a quadratic residue modulo p, then k(p) | 2(p − 1). Furthermore, if
(

λ1
p

)
=(

λ2
p

)
= 1 then k(p) | p− 1.

ii) If ∆ is a quadratic nonresidue modulo p, then k(p) | 2(p + 1) ordp(cd).

Proof. i) Suppose that the discriminant ∆ is a quadratic residue modulo p. So, the eigenvalues
λ1, λ2 exist in Fp and are distinct. Then the matrix C is diagonalizable in Fp. Thus, we
have

D =

(
λ1 0
0 λ2

)
∈ GL2(Fp).

Applying the Fermat little theorem, we get Dp−1 ≡ I (mod p). Therefore, we have
Cp−1 ≡ I (mod p). Thus, by (3.2), k(p) | (p− 1).
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Now, suppose that
(

λ1
p

)
=
(

λ2
p

)
= 1. Using the properties of Legendre symbol, we get

D
p−1

2 =

λ
p−1

2
1 0

0 λ
p−1

2
2

 = I.

It follows that C
p−1

2 = I. Thus, by (3.2), we get k(p) | p− 1.

ii) Suppose that ∆ is a quadratic nonresidue modulo p. Then the eigenvalues λ1, λ2 are not
in Fp. Then the matrix C is not diagonalizable over Fp. However, we can work in the
field Fp2 .

Fp2 ' Fp[
√

∆] = {a1 + a2
√

∆ | a1, a2 ∈ Fp}.

Since λ1, λ2 ∈ Fp2 , then C is diagonalizable over the field Fp2 .

We have

D =

(
λ1 0
0 λ2

)
∈ GL2(Fp2).

Now, consider the Frobenius automorphism defined by

ϕ : Fp[
√

∆] → Fp[
√

∆]
t 7→ tp.

Under the automorphism ϕ, ϕ(λ1) and ϕ(λ2) must be roots of ϕ( fC(x)). Since the
coefficients of fC(x) are all in Fp, then by the Fermat little theorem we get ∀t ∈ Fp, tp = t.
Thus, the Frobenius automorphism ϕ fixes fC(x), and ϕ(λ1) and ϕ(λ2) are the roots of
fC(x). However, λ1, λ2 /∈ Fp, and the equation xp = x has only p solutions so ϕ(λ1) 6= λ1

and ϕ(λ2) 6= λ2, but since fC(x) has only two roots, ϕ(λ1) = λ2 and ϕ(λ2) = λ1. Thus,
we have

λ2 = λ
p
1 and λ1 = λ

p
2 .

It follows that the diagonal matrix D has the following form:

D =

(
λ1 0
0 λ

p
1

)
∈ GL2(Fp2).

Now, let

D(p+1) ordp(cd) =

(
λ
(p+1) ordp(cd)
1 0

0 λ
p(p+1) ordp(cd)
1

)
.

Since det(D) = det(C) = cd = λ1λ2, then we have λ
p+1
1 = cd and λ

p(p+1)
1 = (cd)p.

Moreover, we have cd ∈ Fp, then (cd)p = cd. It follows that

D(p+1) ordp(cd) = I.
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Therefore, from (3.2) we have k(p) | 2(p + 1) ordp(cd).

Now, we consider the case where p | ∆. The eigenvalues of the matrix C are not distinct so
the matrix C is not diagonalizable. However, we can use the Jordan form of C. We get in the
following theorem an explicit statement of the period k(p), depending on the multiplicative
order of λ, the eigenvalue of C.

Theorem 3.3. Let p be an odd prime. If ∆ ≡ 0 (mod p), then k(p) = 2p ordp(λ). In particular,
we have k(p) | 2p(p− 1).

Proof. Suppose that ∆ ≡ 0 (mod p). We consider the Jordan form C = PJP−1, for some
invertible P. Then we have

C = P
(

λ 1
0 λ

)
P−1.

The form of the nth power of J is as follows

Jn =

(
λn nλn−1

0 λn

)
.

Working modulo p, we have Jn = I if and only if λn ≡ 1 mod p, and nλn−1 ≡ 0 mod p.
Then,

Jn = I ⇐⇒ lcm[ordp(λ), p] | n⇐⇒ p ordp(λ) | n.

The last equivalence is due to the fact that gcd(p, ordp(λ)) = 1, since ordp(λ) ≤ p − 1.
Moreover, since Cn = I if and only if Jn = I, then n = p ordp(λ) is the least positive integer
satisfying Cn = I. Thus, from Theorem 3.1, we obtain k(p) = 2p ordp(λ).

Theorem 3.2 and Theorem 3.3 are given in Section 2.2 of Chapter 2 using modular arithmetic
on the Binet formula of (Fn)n for even and odd indices (2.5). The most notable side of this
section is the proof method.

3.5 On The period of (Fn)n≥0 Modulo a Prime Power

Let C ∈ GL2(Fq), q = pe. We have seen in Theorem 2.9 that k(pe) divides pe−1k(p). The main
result in this work, Theorem 3.4, shows that we can express k(pe) in terms of k(p).

In the next lemma, we examine how the period of (Fn)n≥0 changes as we reduce it modulo
higher power of a given prime p.

Lemma 3.2. Let p be a prime. Let e and s be positive integers. Then we have the following:

1. If pe|ps, then k(pe) | k(ps).

2. k(pe+1) = k(pe) or k(pe+1) = pk(pe).
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3. Except for the single case p = 2 and e = 1, the following holds for any prime p and
positive integer e:

If k(pe+1) 6= k(pe), then k(pe+1) 6= k(pe+2).

Proof. 1. Let C ∈ GL2(Fps). From Theorem 3.1 we have ord(C) = k(ps)
2 , it follows that

C
k(ps)

2 = I (mod ps). Since pe|ps, then C
k(ps)

2 = I (mod pe). Thus, using Relation (3.2)
we obtain k(pe) | k(ps).

2. Let C ∈ GL2(Fpe). Then k(pe)
2 is the order of C in GL2(Fpe). Thus, Cn ≡ I (mod pe), and

we have C
k(pe)

2 = I + peN, where N is a 2 x 2 matrix with integer entries. Applying the
binomial formula, we obtain the following statement:

Cp k(pe)
2 =

p

∑
i=0

(
p
i

)
(peN)i. (3.3)

Note that all of the terms of (3.3) except the first are congruent to 0 (mod pe+1), thus

Cp k(pe)
2 ≡ I (mod pe+1). From Theorem 3.1, we get k(pe+1) | pk(pe). Moreover, part (a)

gives k(pe) | k(pe+1). Thus, k(pe+1) is either pk(pe) or k(pe).

3. Suppose that k(pe+1) 6= k(pe). Then we have C
k(pe)

2 = I + peM, for some matrix M with
integer entries not all of which are divisible by p. The binomial formula gives

Cp k(pe)
2 = I +

(
p
1

)
peM +

(
p
2

)
p2eM2 + · · ·+ ppeMp. (3.4)

Since (p
1)peM 6≡ 0 (mod pe+2), by way of the nature of the matrix M. Then all the

terms of (3.4) except the first two terms are divisible by pe+2. It follows that Cp k(pe)
2 6≡ I

(mod pe+2) so, k(pe+2) 6= pk(pe). Moreover, since k(pe+1) 6= k(pe), then part (b) gives
k(pe+1) = pk(pe). Therefore, we have k(pe+1) 6= k(pe+2).

The following theorem is an immediate consequence of Lemma 3.2.

Theorem 3.4. Let p be an odd prime, and let e be a given positive integer. Let e0 be the largest
positive integer such that k(pe0) = k(p). Then we have for 1 ≤ e ≤ e0, k(pe) = k(p), and for
e > e0, k(pe) = pe−e0k(p).

Proof. Let e0 be the largest positive integer such that k(pe0) = k(p). In fact, the existence of e0

is assured because if C
k(p)

2 ≡ I (mod pe) for e ≥ 1, then C
k(p)

2 = I, which is impossible.
Since k(pe0) = k(p), then for 1 ≤ e ≤ e0, part (c) of Lemma 3.2 gives k(pe) = k(p). From

the definition of e0, we have that k(pe0+1) 6= k(pe0). Then using part (b) of Lemma 3.2, we
obtain k(pe0+1) = pk(pe0) = pk(p). Therefore, inductively applying the above procedure
gives k(pe) = pe−e0k(p), for e > e0.
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In the next example we illustrate the fact that once we know k(p), it is easy to compute
the period for all prime power factors pe.

Example 3.1. Let b = c = d = 1, and a = 2. The generalized bi-periodic Fibonacci sequence
(Fn)n corresponds to A048788 in [39].

The period of (Fn)n reduced modulo 3 is k(3) = 12. We easily verified that k(32) 6= 12
then for p = 3, the value of e0 is 1. Hence, by the Theorem 3.4, k(3e) = 3e−1k(3). For instance,
we have k(9) = 36 and k(27) = 108.

https://oeis.org/A048788


CHAPTER 4

PERIODS OF THE BI-PERIODIC HORADAM

SEQUENCE AND ELLIPTIC CURVES

In this chapter, we consider the bi-periodic Horadam sequence (Hn)n≥0 defined by Hn =
χ(n)Hn−1 + cHn−2, where χ(n) = a if n is even and χ(n) = b if n is odd with arbitrary initial
conditions H0 and H1, where a, b, and c are positive integers. We investigate the periods of
the bi-periodic Horadam sequence modulo an integer m > 1. Moreover, we investigate the
periods of the bi-periodic Horadam sequence associated to an elliptic curve E defined over
the finite field Fp, p a prime number.

4.1 Introduction

This work is motivated by papers that studied periods of linear recurrence sequence over
elliptic curves. Firstly, Coleman et al. [10] investigated classical Fibonacci sequence on elliptic
curves. In [2], the authors explored the case of Morgan-Voyce sequence over elliptic curves,
and in [3] they extended the work to the Tribonacci sequence.

In this chapter, we extend this idea to the bi-periodic Horadam sequence over elliptic
curves. Let E be a an elliptic curve over the finite field Fp, where p is an odd prime. We
define the bi-periodic Horadam sequence associated to the elliptic curve E as follows:

H(U,V)
n =


[a]H(U,V)

n−1 + H(U,V)
n−2 , for n even;

[b]H(U,V)
n−1 + H(U,V)

n−2 ; for n odd,

(n ≥ 2). (4.1)

With two points U and V on E as initial conditions.
We investigate the period of the bi-periodic Horadam sequence (4.2) modulo a positive

integer m, and periods of the bi-periodic Horadam sequence on the elliptic curve E. We will
see that the study of periods of the sequence (H(U,V)

n )n≥0 is closely related to the study of
periods of the generalized bi-periodic Fibonacci sequence (Fn)n≥0.
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4.2 Periods of The Bi-periodic Horadam Sequence Modulo m

Let a, b and c be positive integers. The bi-periodic Horadam sequence is defined by the
following recurrence relation:

Hn =


aHn−1 + cHn−2, for n even;

bHn−1 + cHn−2, for n odd,
(n ≥ 2) (4.2)

with initial conditions H0 = u and H1 = v, where u, v are integers.
Notice that for particular value u = 2, v = b and c = 1, we have the bi-periodic Lucas

sequence. If u = 2, v = b and c = 2, we get the bi-periodic Jacobsthal Lucas sequence.
Suppose that c = d. For the initial conditions u = 0 and v = 1, the sequence (Hn)n reduces to
the generalized bi-periodic Fibonacci sequence:

F0 = 0, F1 = 1, and Fn =


aFn−1 + cFn−2, for n even;

bFn−1 + cFn−2, for n odd.

In the following lemma, we express terms of the sequence (Hn)n in terms of the sequence
(Fn)n≥0. It holds from the particular case l = 0 in Theorem 1.20.

Lemma 4.1. The sequence (Hn)n≥0 satisfies the following

Hn = vFn + uc(b/a)ξ(n)Fn−1. (4.3)

Let m be a positive integer such that gcd(m, c) = 1. We investigate the periodicity of the
bi-periodic Horadam sequence (Hn)n reduced modulo m.

Theorem 4.1. For positive integers a, b, c and m, such that gcd(c, m) = 1, the bi-periodic
Horadam sequence (Hn)n≥0 reduced modulo m is periodic.

Proof. The same proof as for the generalized bi-periodic Fibonacci sequence (Fn)n holds; see
the proof of Theorem 2.1.

Let k(u, v, m) denotes the period of the sequence (Hn)n reduced modulo m, which is the
smallest positive integer l satisfying Hn+l ≡ Hn (mod m), for all n ≥ 0. Also, it is clear that
every such l is a multiple of the period k(u, v, m). Moreover, if l is an even number then we
have

k(u, v, m) | l ⇐⇒


Hl ≡ u (mod m),

Hl+1 ≡ v (mod m).
(4.4)
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Example 4.1. We fix a = c = 1, b = 2 in Relation (4.2), and consider the initial conditions
u = 2, v = 3. We give in Table 4.1 some few terms of the corresponding bi-periodic Horadam
sequence reduced modulo 7.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Hn mod m 2 3 5 6 4 0 4 1 5 4 2 1 3 0 3 6 2 3

TABLE 4.1: Some few terms of (Hn mod 7)n.

We have H16 = 2 and H17 = 3, which repeats the two initial conditions and then all terms
repeat. So, the sequence (Hn (mod 7))n is periodic, with k(2, 3, 7) = 16. Note that for u = 0
and v = 1 we have k(7) = 16, so k(2, 3, 7) = k(7).

We summarize in the next lemma some properties of the period of the sequence (Fn)n≥0
reduced modulo m given in Chapter 2, which will be needed later.

Lemma 4.2. [6] Let ∆ = ab(ab + 4c) denotes the discriminant of the quadratic polynomial
f (x) = x2 − (ab + 2c)x + c2. Let m be a given positive integer such that gcd(m, c) = 1. Let p
be an odd prime, with p - c. We have

(a) If
(

∆
p

)
=
(

ab
p

)
= 1, then k(p) | (p− 1).

(b) If
(

∆
p

)
= −1, then k(p) | 2(p + 1) ordp(c2).

(c) If p | ∆, then k(p) = 2p ordp(θ), where θ is the repeated root of f (x).

(d) Let m = Πpei
i be the prime decomposition of m. Then k(m) = lcm(k(pei

i )).

We show in the next proposition how k(u, v, m) is related with k(m). Then we make the
connection between k(u, v, m), k(u, 0, m) and k(0, v, m).

Proposition 4.1. Let m be a given positive integer such that gcd(m, c) = 1, and a 6≡ b
(mod m).

1. If m | a, then we have k(u, v, m) | mk(m).

2. If gcd(a, m) = 1, then k(u, v, m) | k(m).

3. If gcd(v, m) = 1, then k(0, v, m) = k(m).

4. k(u, v, m) | lcm(k(u, 0, m), k(0, v, m)).

Proof. Let k(m) be the period of (Fn mod m).

1. Suppose that m | a, then the first few terms of (Hn)n modulo m are given below.

n 0 1 2 3 4 5 6 7 8
Hn mod m q r cq bcq + cr c2q c2(2bq + r) c3q c3(3bq + r) c4q

TABLE 4.2: Some few terms of (Hn mod m)n, with m | a.
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From Table 1, it follows by induction on n that the terms of the sequence (Hn)n≥0 have
the following form

Hn =


c

n
2 u, for n even;

c
n−1

2 (n−1
2 bu + v), for n odd.

From Lemma 4.2(e), we have k(m) = 2 ordm(c). Then Hmk(m) = cm ordm(c)u and Hmk(m)+1 =

cm ordm(c)(m ordm(c)bu + v). Thus,
Hmk(m) ≡ u (mod m);

Hmk(m)+1 ≡ v (mod m).

By (4.4), we obtain k(u, v, m) | mk(m).

2. Assume that a 6≡ b (mod m). The period k(m) is an even number, by part (e) of Lemma
4.2. Then using Lemma 4.1, one gets

Hk(m) = vFk(m) + cuFk(m)−1,

and
Hk(m)+1 = vFk(m)+1 + uc(b/a)Fk(m).

Since Fk(m) ≡ 0 (mod m), Fk(m)+1 ≡ 1 (mod m) and Fk(m)−1 ≡ F−1 (mod m), where
cF−1 = F1 − bF0 = 1. Moreover, we have gcd(a, m) = 1. Then

Hk(m) ≡ u (mod m);

Hk(m)+1 ≡ v (mod m).

Therefore, by (4.4), k(u, v, m) | k(m).

3. Assume u = 0, then Lemma 4.1 gives Hn = rFn. Since gcd(v, m) = 1, it follows that for
any i, j ∈N, Fi ≡ Fj (mod m) if and only if vFi ≡ vFj (mod m).

Thus,
Fi ≡ Fj (mod m)⇐⇒ Hi ≡ Hj (mod m).

Therefore, we get k(0, v, m) = k(m).

4. Let δ = lcm(k(u, 0, m), k(0, v, m)). From Lemma 4.1, we have

Hδ+n = vFδ+n + uc(b/a)ξ(δ+n)Fδ+n−1.
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Since k(0, v, m) | δ and k(0, v, m) | δ, it follows that for all n ≥ 0,

Hδ+n ≡ vFn ++uc(b/a)ξ(n)Fn−1 (mod m).

Thus for all n ≥ 0, we obtain
Hδ+n ≡ Hn mod m.

We deduce that δ is a period of (Hn mod m)n.

Therefore, we have k(u, v, m) | δ = lcm(k(u, 0, m), k(0, v, m)).

4.3 Bi-periodic Horadam Sequence on Elliptic Curves

Let E : y2 = x3 + αx + β be a non-singular elliptic curve over the finite field Fp, where p is an
odd prime. Let

E(Fp) = {O} ∪ {(x, y) ∈ Fp ×Fp|y2 = x3 + αx + β}.

Let a and b be positive integers. Given two points U and V on E(Fp). We define the

bi-periodic Horadam sequence associated to the elliptic curve E, denoted by (H(U,V)
n )n≥0, as

follows:

H(U,V)
n =


[a]H(U,V)

n−1 + H(U,V)
n−2 , for n even;

[b]H(U,V)
n−1 + H(U,V)

n−2 ; for n odd,

for n ≥ 2, (4.5)

and initial conditions H(U,V)
0 = U, H(U,V)

1 = V.
We consider the non-singular elliptic curve E : y2 = x3 + 7 over the field F5. Then

E(F5) = {O} ∪ {(2, 0), (3, 3), (3, 2), (4, 1), (4, 4)}

Let a = 1, b = 2, and V = (4, 1) ∈ E(F5). We let (H(O,V)
n )n≥0 be the bi-periodic Horadam

sequence associated to E.
We list down the first few terms of H(O,V)

n :

O, (4, 1), (4, 1), (2, 0), (3, 2), (4, 4), (2, 0), (4, 4), (3, 3), (2, 0), (4, 4),

(4, 1), O, (4, 1), (4, 1), (2, 0), (3, 2), (4, 4), . . .

We can see that this sequence is periodic, since from n = 12 all terms repeat.
Now, we establish some basic properties of the sequence (H(U,V)

n )n≥0.

Proposition 4.2. Let U and V be two points on E. We have
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(1) The sequence (H(U,V)
n )n is given by

H(U,V)
n = [Fn]V + [(b/a)ξ(n)Fn−1]U.

(2) If U = O, then H(U,V)
n = [Fn]V.

(3) The sequence (H(U,V)
n )n is periodic.

Proof. (1) This is follows from a straightforward induction.

(2) This is a special case of part (1) with U = O.

(3) The proof follows from an argument similar to the proof of Theorem 2.1 using the fact
that an elliptic curve over a finite field has only finitely many points with coordinates
in that finite field.

In the sequel, we will need the following lemmas.

Lemma 4.3. If n | m, then k(n) | k(m).

Proof. Since Fk(m)+n ≡ Fn (mod m), for n ≥ 0 and n | m, then we have Fk(m)+n ≡ Fn (mod n).
Thus, k(n) | k(m).

Let h = #E(Fp) denotes the order of the group E(Fp). If [k]P = O for some minimal k,
then k is the order of P in E(Fp). Let hP = ord(P) denotes the order of any point P ∈ E(Fp).

Lemma 4.4. Let P be a point in E(Fp). Let l and n be positive integers. We have,

[l]P = [n]P if and only if l ≡ n (mod hP).

Proof. Since hP is the order of P in the finite group E(Fp), then we have

[l]P = [n]P if and only if [l − n]P = [0]P = O if and only if l − n = khP, k ∈ Z.

Let r = K(U, V, E) denotes the period of the sequence (H(U,V)
n )n. That is, the least positive

integer satisfying H(U,V)
n+r = H(U,V)

n , for all n ≥ 0. Every such r is a multiple of K(U, V, E).
Lemma 4.4 permit us to make the connection between periods of the sequence (H(U,V)

n )n and
periods of (Fn mod m)n. We will see that the period of the sequence (H(O,V)

n )n depends only
on the order of the point V, such that all points of E(Fp) with the same order will generate

sequence (H(O,V)
n )n with exactly the same length.

Theorem 4.2. Let a 6≡ 0 (mod hU). We have

1. K(O, V, E) = k(hV).
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2. K(U, O, E) | k(hU).

3. K(U, V, E) | lcm[K(U, O, E), K(O, V, E)].

4. K(U, V, E) | k(h).

Proof. 1. Assume that U = O. Then Proposition 4.2(2) gives H(O,V)
n = [Fn]V.

Now, using Lemma 4.4 we get

Fi ≡ Fj (mod hV)⇐⇒ [Fi]V = [Fj]V,

for any i, j ∈N. Then,

Fi ≡ Fj (mod hV)⇐⇒ H(O,V)
i = H(O,V)

j .

Therefore, K(O, V, E) = k(hV).

2. Let l = k(hU). We have Fn+l ≡ Fn (mod hU), for all n ≥ 0.

Assume a 6≡ b (mod hU), it follows from Theorem 2.2 that l is an even number. Then
Property (1.10) gives

ξ(n + l) = ξ(n) + ξ(l)− 2ξ(n)ξ(l).

So, we get ξ(n + l) = ξ(n). Thus,

Fn+l ≡ Fn (mod hU) =⇒ (b/a)ξ(n+l)Fn+l ≡ (b/a)ξ(n)Fn (mod hU).

By Lemma 4.4, we get

(b/a)ξ(n+l)Fn+l ≡ (b/a)ξ(n)Fn (mod hU)⇐⇒ [(b/a)ξ(n+l)Fn+l]U = [(b/a)ξ(n)Fn]U.

Therefore, for all n ≥ 0 we have

Fn+l ≡ Fn (mod hU) =⇒ [(b/a)ξ(n+l)Fn+l]U = [(b/a)ξ(n)Fn]U.

We conclude that K(U, O, E) | k(hU).

3. Let θ = lcm(K(U, O, E), K(O, V, E)). From the definition of K(U, V, E) and Proposition
4.2(1), we have for any n ∈N,

H(U,O)
K(U,O,E)+n = [(b/a)ξ(n)Fn−1]U,

H(O,V)
K(O,V,E)+n = [Fn]V.
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Now, since K(U, O, E) | θ and K(O, V, E) | θ, then for any n ∈ N we have H(U,O)
θ+n =

[(b/a)ξ(n)Fn−1]U and H(O,V)
θ+n = [Fn]V. These facts and part (1) of Proposition 4.2 give

H(U,V)
θ+n = H(U,V)

n .

Hence, K(U, V, E) | θ = lcm(K(U, O, E), K(O, V, E)).

4. Let hU = ord(U), hV = ord(V). We have hV | h and hU | h. Then by Lemma 4.3, we get
k(hV) | k(h) and k(hU) | k(h). The fact that K(O, V, E) = k(hV) and K(U, O, E) | k(hU)

gives K(O, V, E) | k(h) and K(U, O, E) | k(h). Thus, the result follows from part (3).

Corollary 4.1. Let U and V be points on E(Fp). Suppose that E(Fq) ' Zn1 × Zn2 , with
integers n1, n2 > 1 such that n1 | n2. Then we have K(U, V, E) | k(n2).

Proof. Let U and V ∈ E(Fp). Using Theorem 1.18 and the fact that the order of any point
in E(Fp) divides n2, we have hV | n2 and hU | n2. Then from Lemma 4.3 it follows that
k(hV) | k(n2) and k(hU) | k(n2).

Now, using the fact that K(O, V, E) = k(hV) and K(U, O, E) | k(hU) gives K(O, V, E) |
k(n2) and K(U, O, E) | k(n2). Thus, the result follows from part 3 of Theorem 4.2.

Since k(ord(V)) is equal to K(O, V, E) and k(ord(A)) is a multiple of K(O, V, E) when
a 6≡ b (mod hU). Then we can generalized some properties of the periods of the sequence
(Fn)n≥0 modulo a positive integer to the case of the sequence (H(O,V)

n )n≥0 and (H(U,O)
n )n≥0 on

elliptic curves.

Theorem 4.3. Let U and V be points on E(Fp), and let a 6≡ b (mod hU).

(a) If hV is an odd prime and
(

∆
hV

)
= 1, then K(O, V, E) | 2(hV − 1). If hU is an odd primes

and
(

∆
hU

)
= 1, then K(U, O, E) | 2(hU − 1).

(b) If hV is an odd prime and
(

∆
hV

)
= −1, then K(O, V, E) | 2(hV + 1). If hU is an odd prime

and
(

∆
hU

)
= −1, then K(U, O, E) | 2(hU + 1).

(c) If hV is an odd prime and hV | ∆, then K(O, V, E) = 2hV ordhV (θ). If hU is an odd
prime and hU | ∆, then K(U, O, E) | 2hU ordhU(θ), where θ is the repeated root of the
polynomial x2 − (ab + 2)x + 1.

(d) If hU has prime factorization pe1
1 pe2

2 · · · p
en
n , then K(O, V, E) = lcm(k(pei

i )) and K(U, O, E) |
lcm(k(pei

i )).

(e) If hU | hV , then K(U, O, E) | K(O, V, E).

Proof. For (e) suppose that hU | hV . Lemma 4.3 gives k(hU) | k(hV). From Theorem 4.2, we
have K(U, O, E) | k(hU) and k(hV) = K(O, V, E). Thus, K(U, O, E) | K(O, V, E).

For the others use the results of Theorem 4.2 in Lemma 4.2.



CONCLUSION AND PERSPECTIVES

Along this thesis, we have given some necessary definitions and mathematical preliminaries.
Then, we have investigated the periodicity of the generalized bi-periodic Fibonacci sequence
when reduced modulo m ≥ 2. We have extended some well-known results on the period
and the rank of the classical Fibonacci sequence to the bi-periodic case. Afterwards, we have
introduced the matrix method in the study of the periodicity of this sequence. We have shown
that the study of the period of this sequence whose elements are in Zm is equivalent to the
study of the period of the sequence (Cn)n≥0 over the group of invertible matrices with entries
in Zm, where C is a matrix representation of the sequence. We have seen that this method
permit to express the period modulo a power of prime m = pe in terms of the period modulo
p, which allows to give bounds for the period for each positive integer m. Furthermore, we
have first investigated the period of the bi-periodic Horadam sequence modulo a positive
integer m. Next, we have defined the bi-periodic Horadam sequence associated to an elliptic
curve E defined over the finite field Fp, for p an odd prime, and we investigate its periodicity
on E. Finally, we have shown that the study of periods of the bi-periodic Horadam sequence
on an elliptic curve is closely related to the study of periods of the generalized bi-periodic
Fibonacci sequence.

Some challenging questions are part of interest. As a first perspective, we are interested
in the application of the results obtained in this work in cryptography.

Our second perspective is to explore the case of the k-periodic Fibonacci sequence [12],
defined by a non-linear recurrence relation that depends on k real parameter:

un =



a1un−1 + un−2, for n ≡ 2 (mod k);
a2un−1 + un−2, for n ≡ 3 (mod k);
...
ak−1un−1 + un−2, for n ≡ 0 (mod k);
akun−1 + un−2, for n ≡ 1 (mod k),

and initial conditions u0 = 0 and u1 = 1. As a first step, we would like to investigate the case
of tri-periodic Fibonacci sequence obtain by setting k = 3.
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