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Abstract

In a bounded open domain Ω ⊂ RN , where N ≥ 2, with Lipschitz boundary ∂Ω, we consider the
Dirichlet problem for the elliptic systems given by

−
N∑
i=1

Di (ai(x, u(x), Diu(x))) + F (x, u) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(0.0.1)

where ai(x, u,Diu) =
|Diu|pi(x)−2Diu

(1 + |u|)γ(x)
, and the exponents γ(·) > 0, pi(·), i = 1, ..., N are continu-

ous functions, here, u : Ω → Rd, d ≥ 2, represents a vector-valued function, Diu =
∂u

∂xi
denotes

the partial derivative of u with respect to xi, and the vectors fields ai : Ω × Rd × Rd → Rd and

F : Ω× Rd → Rd are Carathédory functions.

In this thesis, we focus on nonlinear degenerate anisotropic elliptic systems with variable growth

and Lm data. Specifically, the differential operator A(u) = −
N∑
i=1

Di (ai(x, u,Diu)) of the type

pseudo-monotone, which is well defined between W
1,−→p (·)
0 (Ω;Rd) and its dual space, also it is not

coercive if u large. Moreover, we consider the case where the right-hand side term f belongs to

Lm(Ω;Rd).

On the other hand, to analyze these systems, we work with an appropriate functional setting

that involves anisotropic Sobolev spaces with variable exponents W
1,−→p (·)
0 (Ω;Rd) and weak Lebesgue

(Marcinkiewicz) spaces with variable exponents Mp(·)(Ω;Rd).

keywords : Elliptic systems, Degenerate coercivity, Anisotropic Sobolev spaces, Weak Lebesgue

spaces, Variable exponents, Distributional solutions, Structural conditions, Lm Data.
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Résumé

Dans un domaine ouvert borné Ω ⊂ RN , où N ≥ 2, avec une frontière de Lipschitz ∂Ω, nous

considérons le problème de Dirichlet pour les systèmes elliptiques donnés par


−

N∑
i=1

Di (ai(x, u(x), Diu(x))) + F (x, u) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(0.0.2)

où, ai(x, u,Diu) =
|Diu|pi(x)−2Diu

(1 + |u|)γ(x)
, et les exposants γ(.) > 0, pi(·), i = 1, ..., N sont des fonctions

continues, ici, u : Ω→ Rd, d ≥ 2, représente une fonction vectorielle, Diu =
∂u

∂xi
désigne la dérivée

partielle de u par rapport à xi, et les champs de vecteurs ai : Ω×Rd×Rd → Rd et F : Ω×Rd → Rd

sont des fonctions de Carathédory.

Dans cette thèse, nous nous concentrons sur les systèmes elliptiques anisotropes non linéaires

dégénérés avec une croissance variable et des données Lm. Plus précisément, l’opérateur différentiel

A(u) = −
N∑
i=1

Di (ai(x, u,Diu)) du type pseudo-monotone, qui est bien défini entre W
1,−→p (·)
0 (Ω;Rd)

et son espace dual, n’est pas coercitif si u est grand. De plus, nous considérons le cas où le terme

du côté droit f appartient à Lm(Ω;Rd). D’autre part, pour analyser ces systèmes, nous travail-

lons avec un cadre fonctionnel approprié qui implique des espaces de Sobolev anisotropes avec des

exposants variables W
1,−→p (·)
0 (Ω;Rd) et des espaces de Lebesgue faibles (Marcinkiewicz) avec des ex-

posants variables Mp(·)(Ω;Rd).

Mots-clés : Systèmes elliptiques, Coercitivité dégénérée, Espaces de Sobolev anisotropes, Espaces

de Lebesgue faibles, Exposants variables, Solutions distributionnelles, Conditions structurelles,

Données Lm.
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Notations

Everywhere in the sequel we use the following notations:

• RN : The N -dimensional Euclidean space with the distance |x| =

(
N∑
i=1

x2
i

) 1
2

, where

x = (x1, x2, ..., xN ) is an element in RN .

• Md×N : the real vector space of d×N matrices.

• Ω: open bounded set in RN .

• Ω: closure of Ω in RN

• ∂Ω: boundary of Ω.

• |A| or meas(A): Lebesgue measure of the subset A.

• a.e.: abbreviation for almost everywhere (with respect to the Lebesgue measure).

• V ′ : the dual space of V , where V is a Banach space.

• 〈·, ·〉: the duality pairing between V and V
′
.

• Di =
∂

∂xi
: the partial derivative with respect to xi.

• ∇u =

(
∂

∂x1
,
∂

∂x2
, ...,

∂

∂xN

)
: the gradient of u.

• χA: the characteristic function of a measurable set A.

• C(Ω): the space of continuous real-valued functions on Ω.
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• Ck0 (Ω): the space of k times differentiable functions on Ω with continuity 0 on Ω.

• C∞0 (Ω): the space of smooth functions with compact support in Ω.

• C0
+(Ω) =

{
p ∈ C(Ω) : min

x∈Ω
p(x) > 0 for all x ∈ Ω

}
.

• C+(Ω) =

{
p ∈ C(Ω) : min

x∈Ω
p(x) > 1 for all x ∈ Ω

}
.

• p+ = max
x∈Ω

p(x), and p− = min
x∈Ω

p(x) for p ∈ C0
+(Ω).

• p′(·) =
p(·)

p(·)− 1
: the Hölder conjugate exponent of p ∈ C+(Ω).

• p∗(·) =
Np(·)
N − p(·)

if 1 ≤ p(·) < N , the Sobolev critical exponent of p ∈ C(Ω).

• Lp(·)(Ω) =

{
u : Ω→ Rmeasurable,

∫
Ω

∣∣∣u
λ

∣∣∣p(x)
<∞ for someλ positive

}
, variable exponent Lebesgue

space.

• Mp(·) (Ω) =

{
u : Ω→ Rmeasurable, sup

λ>0
λ‖χ{|u|>λ}‖Lp(.)(Ω) <∞

}
, variable exponent weak

Lebesgue space.

• W 1,p(·)(Ω) =
{
u ∈ Lp(.)(Ω), |∇u| ∈ Lp(.)(Ω)

}
,where p(·) ∈ C(Ω) and p ≥ 1, variable exponent

Sobolev space.

• D1,p(·)
0 (Ω): closure of C∞0 (Ω) with respect to W 1,p(.)(Ω) norm.

•
(
W 1,p(·)(Ω)

)′
: the dual space of W 1,p(·)(Ω).

• 1

p(x)
=

1

N

N∑
i=1

1

pi(x)
: the harmonic mean of pi(x).

• For −→p (·) = (p1(·), ..., pN (·)) ∈ C
(
Ω
)
, we set:

p+(x) = max {p1(x), ..., pN (x)} , p−(x) = min {p1(x), ..., pN (x)} , x ∈ Ω.

p+
+ = max

{
p+

1 , ..., p
+
N

}
, p−+ = max

{
p−1 , ..., p

−
N

}
, and p−− = min

{
p−1 , ..., p

−
N

}
.

• W 1,−→p (·)(Ω) =
{
u ∈ Lp+(·)(Ω) : Diu ∈ Lpi(·)(Ω), i = 1, ..., N

}
, the anisotropic variable expo-

nent Sobolev space.
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• W 1,−→p (·)
0 (Ω) = W 1,1

0 (Ω) ∩W 1,−→p (·)(Ω).

• D1,−→p (·)
0 (Ω) = C∞0 (Ω)

W 1,−→p (·)(Ω)
.

•
(
W

1,−→p (·)
0 (Ω)

)′
: the dual space of W

1,−→p (·)
0 (Ω).

• W 1,−→p (·)(Ω;Rd): the Rd- valued version of W 1,−→p (·)(Ω).

• W 1,−→p (·)
0 (Ω;Rd): the Rd- valued version of W

1,−→p (·)
0 (Ω).

• λg(·) : k 7→ |{x ∈ Ω : |g| > k}| , ∀ k ≥ 0, the distribution function of g.

viii



General introduction and thesis

overview

In recent years, there has been significant development in the field of variable exponent spaces.

The emergence of variable exponent Lebesgue spaces dates back to 1931, as documented by W.

Orlicz [69]. However, the contemporary evolution commenced with the seminal paper by Kováčik

and Ráksońık in 1991 [56]. This work primarily delves into fundamental aspects, including reflexivity,

separability, duality, and initial findings related to the embedding and density of smooth functions.

Subsequently, these spaces found application in examining functionals in the calculus of variations

exhibiting non-standard growth. The comprehensive development of the theory of variable exponent

spaces is presented in [28, 31, 38, 41, 44, 79]. Refer to the extensive books [6, 23, 34] for an overview.

One of the reasons for the rapid development of variable exponent function spaces theory can be

attributed, in part, to the paradigm of electrorheological fluids proposed by Rajagopal and Růžička

[73, 72, 76]. This model necessitates a functional framework incorporating function spaces with

varying exponents. To clarify, we present the following model


−divS + div (v ⊗ v) +∇π = g + [∇E]P

divv = 0

(0.0.3)

where v is the velocity, div(v ⊗ v) is the connective term with v ⊗ v denoting the tensor product

of the vector v, π the pressure, S the extra stress tensor, g the external body forces, E the electric

fields and P the electric polarization. Furthermore, the tensor S satisfies the coercivity, growth
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condition and monotonicity. In this case, we can use the theory of monotone operator to show the

existence of weak solution to problem (0.0.3). For more details about the way, we refer the following

papers [77, 78, 33, 32].

Electrorheological fluids change their mechanical properties dramatically when an external electric

field is applied. They are one example of smart materials, whose development is currently one of

the major task in engineering sciences. Electrorheological fluids have been used in robotics and

space technology. The experimental research has been done mainly in the USA, for instance in

NASA laboratories. For more information on properties, modelling and the application of variable

exponent spaces to these fluids, we refer [63, 30, 80].

In [25], Chen, Levine and Rao proposed a framework for image restoration based on a Laplacian

variable exponent, see also [26].

This thesis (see [1]) deals with a class of nonlinear anisotropic elliptic systems with variable

exponents and degenerate coercivity. In a bounded open domain Ω ⊂ RN , where N ≥ 2, with

Lipschitz boundary ∂Ω, we consider the Dirichlet problem for the elliptic systems given by


−

N∑
i=1

Di (ai(x, u(x), Diu(x))) + F (x, u) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(0.0.4)

Our aim is to prove the existence and regularity of distributional solutions for anisotropic nonlin-

ear elliptic systems with variable exponents and degenerate coercivity. The right-hand side of the

systems (0.0.4) is in Lm(Ω;Rd) where m satisfies the following condition

1 < m <
Np(x)

Np(x)−N + p(x)
, (0.0.5)

under additional assumptions on ai and F .

The primary difficulty of the systems (0.0.4) stems from the fact that, due to the following

hypothesis

α1
|ξ|pi(x)

(1 + |u|)γ(x)
≤ ai(x, u, ξ).ξ,

2



where α1 is a positive constant, the differential operator

u 7−→ −
N∑
i=1

Di (ai(x, u,Diu)) ,

is not coercive on W
1,−→p (·)
0 (Ω;Rd) despite being well-defined between W

1,−→p (·)
0 (Ω;Rd) and its dual(

W 1,−→p (·)(Ω;Rd)
)′

. Degenerate coercivity implies that as |u| becomes large,
1

(1 + |u|)γ(·) tends to

zero. This indicates that conventional techniques for elliptic operators are not applicable. To solve

this issue, we will address the operator approximation by employing truncations in ai to derive a

coercive differential operator. Subsequently, we will establish anisotropic a priori estimates for the

sequence of approximate solutions, ultimately we pass to the limit within the approximate systems.

This process will establish the existence of a distributional solution for the systems (0.0.4).

Numerous studies have delved into the context of elliptic problems, and an extensive array of

articles and books on this subject has surfaced. A comprehensive overview of the literature exceeds

the scope of our introduction and cannot be accommodated. Nonetheless, we will examine select

results pertaining to the specific problem that we find noteworthy, highlight our contributions.

Degenerate elliptic equations were initially explored by Boccardo et al. in [16]. Existence and

regularity results have been demonstrated for the linear case under various conditions on f . The

problem they considered is outlined as follows


−div

(
∇u

(1 + |u|)γ
)

= f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(0.0.6)

where Ω is a bounded open subset of RN , N > 2, 0 < γ < 1 and u : Ω→ R and f ∈ Lm (Ω). Fol-

lowing that, Gao et al. in [48] provided a partial generalization of the anisotropic Laplacian type,

where f ∈ Lm(Ω). They demonstrated the existence and regularity of weak energy solutions.On the

other hand, it is worth pointing out that different ranges have an important impact on the behavior

of solutions to the problem (0.0.6), Boccardo et.al in [16], considered the non-existence result of

problem (0.0.6) they required that γ > 1 even f is in L∞(Ω). Several papers have addressed and

3



expanded upon this case; for further details, we recommend consulting the references [75, 50, 53,

81, 71].

The author of [11], has extensively investigated a class of anisotropic elliptic equations with vari-

able exponents. Subsequently, these results were extended to the case where f ∈ Lm(·) (Ω), as

detailed in [67].

Building upon these findings, the authors of [9] expanded the scope of the aforementioned problem

to a coercive case. More precisely, they addressed the following problem


−

N∑
i=1

(
|Diu|pi(x)−2Diu

(1 + |u|)γi(x)

)
+ |u|s(x)−1u = f, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

They examined the regularity of these solutions under various assumptions regarding m(·) and s(·),

also the regularity result is associated with γ+
+(defined as max

x∈Ω
max

1≤i≤N
γi(x)).

The study of nonlinear elliptic equations involving the p-Laplace operator is based on the theory

of standard Sobolev spaces W 1,p(Ω) in order to find weak solutions see [36, 46, 21], and their

method cannot apply her due to the nonhomogeneous pi(·)-Laplace operators, for this the natural

setting for this approach is the use of the variable exponent anisotropic Sobolev spaces W 1,−→p (·)(Ω),

we refer this paper [41].

Existence of weak solutions u has been profoundly examined in [59, 84, 16], while uniqueness

seems to be a delicate matter, see [37, 70]. For the scalar case with lower order term, we refer the

reader to [15, 13, 27, 51]. The anisotropic case, in which each component of the gradient Diu may

have a possibly different exponent pi, is dealt with in [58, 54]. For some papers related to elliptic

and parabolic equations with degenerate coercivity, we refer the reader to [8, 11, 45, 66, 51].

At present, to our knowledge, there are only a few results available regarding the regularity of so-

lutions for anisotropic elliptic systems with variable exponents. In [12, 2], the authors explored the

existence and regularity of distributional solutions for anisotropic pi-harmonic systems. In the realm

of anisotropic elliptic systems with variable exponents, the author of [10] broadened the scope from

p-Laplacian systems to p(x)-Laplacian systems, building upon the same structural condition. Subse-

4



quently, in [64], the focus shifted towards pi(x)-Laplacian systems characterized by degenerate coer-

civity and an L1 right-hand side. The study established that u belongs to the solution space, and the

results are as follows u is in W
1,−→r (·)
0 (Ω;Rd), where 1 ≤ ri(·) <

Npi(·)(p(·)− 1− γ+)

p(·)(N − 1− γ(·))−N(γ+ − γ(·))
.

For some developments on isotropic and anisotropic elliptic systems and recent research, we refer

reader to [49, 88, 62, 24, 74].

The systems (0.0.4) with variable exponents is new and has never been studied before when the

data f in Lm(Ω;Rd). The following inequality holds for m goes to 1:

Nmpi(·)(p(·)− 1− γ+)

Nm(p(·)− 1− γ+) + (1 + γ(·))(N −mp(·))
>

Npi(·)(p(·)− 1− γ+)

p(·)(N − 1− γ(·))−N(γ+ − γ(·))
.

Thus, the regularity provided by Theorem 3.2.3 improves Theorem 4.2 presented in [64].

The thesis consists of three chapters that are briefly presented below

Chapter 01 : Preliminaries and basic concepts

In the first chapter, we establish the functional framework for our study, which encompasses

Lebesgue–Sobolev and weak Lebesgue spaces with variable exponents. Accordingly, we provide

an overview of foundational theories related to these spaces. The chapter begins by presenting

Lebesuge and Sobolev spaces with variable exponents, then defining the anisotropic Sobolev spaces

with variable exponents and presenting fundamental theorems. Subsequently, we delve into the

definitions of weak Lebesgue spaces, both in cases of constants and non-constants and we discuss

the embedding between these spaces and the Sobolev spaces.

In the following part, our focus is on introducing the truncation function, a crucial element in

our analysis. We present the truncation function with values in Rd, using the definition of the

tensor product, explicitly establish the derivatives of the truncation function. Finally, we define key

concepts and present results related to the theory of monotone/pseudomonotone operators.

Chapter 02: Anisotropic elliptic systems with variable exponents and regular

data

In the second chapter, our attention is directed towards the analysis of nonlinear anisotropic

elliptic systems characterized by variable exponents and regular data. We then shift our focus

5



to contextualizing the problem within the framework of variational issues and elliptic systems ex-

hibiting non-standard pi(x)-growth conditions. More specifically, we delve into scenarios where the

right-hand side is situated in the dual space
(
W 1,−→p (·)

(
Ω;Rd

))′
.

Our initial step involves formulating the problem under coercive conditions with lower-order

terms. Subsequently, we establish the theorem outlining the existence of solutions, formalize the

approximation problem, and finally transition to the limit.

Chapter 04: Anisotropic elliptic system with variable exponents and degenerate

coercivity with Lm data

In the third chapter, drawing from the insights of the paper [1], our focus is on nonlinear degener-

ate anisotropic elliptic systems exhibiting variable growth. Specifically, we explore cases where the

right-hand side term f belongs to Lm(Ω;Rd). To prove existence and regularity of distributional so-

lutions, we work with an appropriate functional setting that involves anisotropic Sobolev spaces and

weak Lebesgue (Marcinkiewicz) spaces with variable exponents. We introduce continuous functions,

defined for all x ∈ Ω and all i = 1, ..., N

q(x) =
Nm(p(x)− 1− γ+)

N −mp(x)
, qi(x) =

Nmpi(x)(p(x)− 1− γ+)

Nm(p(x)− 1− γ+) + (1 + γ(x))(N −mp(x))
. (0.0.7)

The proof follows the conventional strategy of obtaining uniform estimates for a sequence of

suitable approximate solutions (un)n and their weak derivatives Diun in weak Lebesgue spaces with

variable exponents Mq(·)(Ω;Rd) and Mqi(·)(Ω;Rd), respectively. To establish these estimates, we

employ an anisotropic Sobolev inequality and leverage the embedding between Marcinkiewicz and

Lebesgue spaces. We demonstrate that un belongs to anisotropic Sobolev spaces W
1,−→r (·)
0 (Ω;Rd) for

every ri(·) < qi(·), i = 1, ..., N where qi(·) is as defined in (0.0.7). We then prove almost everywhere

convergence of the partial derivatives Diun. With this convergence established, we proceed to pass

to the limit in the strong L1 sense in the nonlinear vector fields ai (x, un, Diun) and ultimately

conclude that the approximate solutions un converge to a solution of (0.0.4).

6



Chapter 1

Preliminaries and basic concepts

In this chapter, we endeavor to offer a comprehensive examination of pivotal findings arising from

functional analyses, laying the groundwork for subsequent utilization. Furthermore, we elucidate

essential details pertaining to the requisite function spaces, enhancing the reader’s understanding

of their fundamental characteristics.

In the context of this chapter, unless specified otherwise, Ω ⊂ RN is defined as a bounded open set

endowed with N -dimensional Lebesgue measure. It is crucial to recognize that the results outlined

here are not exhaustively presented. Rather, they will be unfolded as required throughout our study

for a more targeted and nuanced exploration.

1.1 Variable exponents Lebesgue / Sobolev spaces

In the following two parts, we present fundamental results concerning Lebesgue-Sobolev spaces

Lp(.) (Ω) and W 1,p(.) (Ω). These findings establish the essential groundwork for the exploration of

variational problems and elliptic equations featuring non-standard p(x)-growth conditions. For a

more in-depth understanding, we recommend consulting the works of Musielak [68], Edmunds et al

[39, 40], Kováčik and Rákosńık [56], Diening [28, 29], and the references provided therein.

Let Ω be a bounded open subset in RN with positive measure. Considering the set of all continuous

7



functions p(.) : Ω→ (0,+∞), we introduce the set C0
+(Ω) defined as

C0
+(Ω) =

{
p ∈ C(Ω) : min

x∈Ω
p(x) > 0 for all x ∈ Ω

}
.

For any variable exponent p ∈ C0
+(Ω), We introduce the following notations

p+ = max
x∈Ω

p(x) and p− = min
x∈Ω

p(x).

Note that if p ∈ C0
+(Ω), then, for all x ∈ Ω, 0 < p− ≤ p(x) ≤ p+ < +∞. Moreover, if p− > 1, we

define the conjugate exponent of p(.) by

p
′
(·) =

p(·)
p(·)− 1

.

Definition 1.1.1. ([23]) Let p ∈ C0
+(Ω). We define the variable exponent Lebesgue space Lp(·)(Ω)

as the set of all measurable functions u : Ω→ R for which the modular

ρp(·)(u) =

∫
Ω
|u(x)|p(x) dx,

is finite. The space Lp(·)(Ω) is equipped with the Luxemburg-Nakano quasi-norm

‖u‖Lp(·)(Ω) := inf
{
λ > 0 : ρp(.)

(u
λ

)
≤ 1
}
, (1.1.1)

The space Lp(·)(Ω) is a quasi-Banach space (see [3]). In particular, if p− ≥ 1 then the exponent on

(1.1.1) defines a norm in Lp(·)(Ω) and the space
(
Lp(·)(Ω), ‖.‖Lp(·)(Ω)

)
becomes a separable Banach

space.

If p, q ∈ C0
+(Ω) with q ≤ p, then the inclusion Lp(·)(Ω) ⊆ Lq(·)(Ω) holds. Moreover, if 1 ≤ q− ≤

q ≤ p, the embedding Lp(·)(Ω) ↪→ Lq(·)(Ω) is continuous, and its norm does not exceed 1 + |Ω|.

Henceforth, we denote

C+(Ω) =

{
p ∈ C(Ω) : min

x∈Ω
p(x) > 1 for all x ∈ Ω

}
.
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Lemma 1.1.2. ([56]) Let p ∈ C+(Ω), the space Lp(·)(Ω) is reflexive and its dual space can be

identified with Lp
′
(·)(Ω).

Lemma 1.1.3. (The Hölder inequality) For all u ∈ Lp(·)(Ω) and v ∈ Lp
′
(·)(Ω), the following Hölder

inequality

∣∣∣∣∫
Ω
uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖u‖Lp(·)(Ω)‖v‖Lp′ (·)(Ω)

≤ 2‖u‖Lp(·)(Ω)‖v‖Lp′ (·)(Ω)
,

holds true, where

• (p−)
′

=
p−

p− − 1
,

• (p+)
′

=
p+

p+ − 1
.

Proposition 1.1.4. ([4]) Let p ∈ C+(Ω), if (un), u ∈ Lp(·)(Ω), then the following relations holds

(i) ‖u‖Lp(·) < 1(> 1; = 1)⇐⇒ ρp(·)(u) < 1(> 1; = 1),

(ii) min
(
ρp(·)(u)

1
p+ ; ρp(·)(u)

1
p−
)
≤ ‖u‖Lp(·)(Ω) ≤ max

(
ρp(·)(u)

1
p+ ; ρp(·)(u)

1
p−
)
,

(iii) min
(
‖u‖p

+

Lp(·)
; ‖u‖p

−

Lp(·)

)
≤ ρp(·)(u) ≤ max

(
‖u‖p

+

Lp(·)
; ‖u‖p

−

Lp(·)

)
,

(iv) ‖un − u‖Lp(·) → 0⇐⇒ ρp(·)(un − u)→ 0.

Throughout this section, we consider Ω ⊂ RN , where N ≥ 2, as a bounded open domain with

a Lipschitz boundary.

Definition 1.1.5. Let p : Ω→ [1,+∞) be a continuous functions, we define the variable exponent

Sobolev space W 1,p(·)(Ω) as the set of all measurable functions u : Ω → R such that u in Lp(·)(Ω)

and ∇u are in (Lp(·)(Ω))N . Subsequently, we express it as

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω), |∇u| ∈ Lp(·)(Ω)

}
,
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where ∇u =

(
∂u

∂x1
, ...,

∂u

∂xN

)
. We make use of the norm

‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω).

Remark 1.1.6. We define D
1,p(·)
0 (Ω) as the completion of C∞0 (Ω) with respect to the above norm.

Also, the Sobolev space with zero boundary values W
1,p(·)
0 (Ω) is the space W 1,p(·)(Ω) ∩W 1,1

0 (Ω)

equipped with the norm of W 1,p(·)(Ω).

As Ω is assumed to be a bounded open Lipschitz domain, we can establish the following definition

Definition 1.1.7. We define W
1,p(·)
0 (Ω) the Sobolev space with zero boundary values by

W
1,p(·)
0 (Ω) =

{
u ∈W 1,p(·)(Ω); u = 0 on ∂Ω

}
,

endowed with the norm ‖.‖W 1,p(·)(Ω).

Lemma 1.1.8. The function spaces W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are reflexive uniformly convex Ba-

nach spaces. Moreover, for any measurable bounded exponent p(·)
(
1 < p− ≤ p+ < +∞

)
, the spaces

W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are separable.

The following lemma presents the Poincaré inequality.

Lemma 1.1.9. ([6]) For every u ∈W 1,p(.)
0 (Ω)

‖u‖Lp(·)(Ω) ≤ c‖∇u‖Lp(·)(Ω). (1.1.2)

For some constant c that depends on Ω and p(·), considering the Poincaré inequality (1.1.2), it

becomes possible to define the equivalent norm of the space W
1,p(·)
0 (Ω) using the relation

‖u‖W 1,p(·)(Ω) = ‖∇u‖Lp(·)(Ω).

We point out that, the above norm is equivalent to the following norm (see [6])

N∑
i=1

‖Diu‖Lp(·)(Ω).
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Remark 1.1.10. The following inequality in general does not holds

∫
Ω
|u|p(x) dx ≤ c

∫
Ω
|∇u|p(x) dx

but by Proposition 1.1.4 and the inequality (1.1.2), we obtain

∫
Ω
|u|p(x) dx ≤ C max

(
‖Du‖p

+

Lp(·)
; ‖Du‖p−

Lp(·)

)
.

The following definition is from [87].

Definition 1.1.11. Let p : Ω −→ R. If there exist a positive constant C such that

|p(x)− p(y)| ≤ −C
ln |x− y|

, ∀x, y ∈ Ω, |x− y| ≤ 1

2
.

Then, p(·) is called log-Hölder continuous on Ω.

Theorem 1.1.12. ([6, 52]) Let p, q ∈ C+

(
Ω
)

such that q(x) < p∗(x) in Ω, then for every u ∈

W
1,p(·)
0 (Ω)

‖u‖Lq(·)(Ω) ≤ C ‖∇u‖Lp(.)(Ω) ,

with a constant C depending on N, p and Ω. The embedding W
1,p(·)
0 (Ω) ↪→ Lq(·) (Ω) is continuous

and compact.

1.2 Anisotropic Sobolev spaces with variable exponents

Let Ω be a bounded open subset of RN and pi > 1, i = 1, . . . , N , N ≥ 2. We introduce the

anisotropic Sobolev space W 1,−→p
0 (Ω) which is defined by

W 1,−→p
0 (Ω) =

{
g ∈W 1,1

0 (Ω) : Dig ∈ Lpi(Ω), ∀i = 1, ..., N
}
,
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which is a Banach space under the norm

‖g‖
W 1,−→p

0 (Ω)
= ‖g‖L1(Ω) +

N∑
i=1

‖Dig‖Lpi (Ω) .

We need the anisotropic Sobolev embedding Theorems.

Theorem 1.2.1. ([83]) Suppose g ∈W 1,−→p
0 (Ω). Then

‖g‖Lq(Ω) ≤ C
N∏
i=1

‖Dig‖
1
N

Lpi (Ω) . (1.2.1)

where
1

p
=

1

N

N∑
i=1

1

pi
and: 

q = p∗ =
Np

N − p
if p < N,

q ∈ [1,∞) if p ≥ N,

The constant C, depends on p1, ..., pN , N if p < N . Furthermore, if p ≥ N , the inequality (1.2.1)

is true for all q ≥ 1 and C depends on q and |Ω|.

Theorem 1.2.2. ([83]) Assume Q is a cube in RN with faces parallel to the coordinate planes, and

pi ≥ 1 for i = 1, ..., N . Suppose u ∈W 1,−→p (Q), and set


q = p∗, if p < N,

q ∈ [1,∞), if p ≥ N.

Then, there exists a constant C depending on −→p = (p1, ..., pN ), N if p < N . Moreover, if p ≥ N ,

the inequality (1.2.2) is true for all q ≥ 1 and C depends on q and |Q|.

‖u‖Lq(Q) ≤ C
N∏
i=1

(
‖u‖Lpi (Q) + ‖Diu‖Lpi (Q)

) 1
N . (1.2.2)

One has the following Lemma.
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Lemma 1.2.3. ([65]) Let v ∈W 1,−→p
0 (Ω). Then there exists a positive constant C such that

‖v‖Lpi (Ω) ≤ C‖∂iv‖Lpi (Ω).

We use standard notations for the vector and matrix-valued versions of the space/ norm intro-

duced above. For example, the Rd-valued version of W 1,−→p (Ω) is denoted by W 1,−→p (Ω;Rd).

In this part, we define the anisotropic Lebesgue and Sobolev spaces with variable exponent and

give some of their properties. Roughly speaking, anisotropic Lebesgue and Sobolev spaces are func-

tional spaces of Lebesgue’s and Sobolev’s type in which different space directions have different

roles, see [17, 42, 43].

Everywhere in this part, Ω be a bounded open subset of RN , N ≥ 2. Let pi : Ω → [1,+∞), i =

1, ..., N , be continuous vectorial functions. We denote by −→p (x) = (p1(x), ..., pN (x)), and p+(x) =

max
1≤i≤N

pi(x). The anisotropic Sobolev spaces with variable exponents are defined as

W 1,−→p (·)(Ω) =
{
u ∈ Lp+(·)(Ω) : Diu ∈ Lpi(·)(Ω), i = 1, ..., N

}
,

which is a Banach space with respect to the norm

‖u‖W 1,−→p (·)(Ω) = ‖u‖
Lp+(·)(Ω)

+
N∑
i=1

‖Diu‖Lpi(·)(Ω). (1.2.3)

We define W
1,−→p (·)
0 (Ω) as follow

W
1,−→p (·)
0 (Ω) = W 1,1

0 (Ω) ∩W 1,−→p (·)(Ω).

If Ω is a bounded open set with Lipschitz boundary ∂Ω, then

W
1,−→p (·)
0 (Ω) =

{
u ∈W 1,−→p (·)(Ω) ; u|∂Ω = 0

}
,

where, u|∂Ω denotes the trace on ∂Ω of u in W 1,1
0 (Ω).

Definition 1.2.4. We define the space D
1,−→p (·)
0 (Ω) as the closure of C∞0 (Ω) in W 1,−→p (·)(Ω) as the
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intersection of W 1,−→p (·)(Ω) and W 1,1
0 (Ω), thus

D
1,−→p (·)
0 (Ω) = C∞0 (Ω)

W 1,−→p (·)(Ω)
.

Remark 1.2.5. It is well-known that in the constant exponent case, that is, when −→p (·) = −→p ∈

([1,+∞))N , D1,−→p
0 (Ω) = W 1,−→p

0 (Ω). However, in the variable exponent case, in general D
1,−→p (·)
0 (Ω) $

W
1,−→p (·)
0 (Ω) and the smooth functions are in general not dense in W

1,−→p (·)
0 (Ω), but if for all i =

1, ..., N, pi is log-Hölder continuous, then C∞0 (Ω) is dense inW
1,−→p (·)
0 (Ω), thusD

1,−→p (·)
0 (Ω) = W

1,−→p (·)
0 (Ω).

The spaces W 1,−→p (·)(Ω), D
1,−→p (·)
0 (Ω) and W

1,−→p (·)
0 (Ω) are separable and reflexive Banach spaces when

they are supplied with the norm defined in (1.2.3) (see [41]).

Moreover, we proceed to define the function p∗(x) for p(x) < N as

p∗(x) =
Np(x)

N − p(x)
.

Lemma 1.2.6. ([41]) Suppose Ω is a bounded domain in RN and −→p (x) ∈ (C+(Ω))N . If q(·) ∈

C+(Ω) verifies q(x) < max (p∗(x), p+(x)) for all x ∈ Ω, then the embedding

W
1,−→p (·)
0 (Ω) ↪→ Lq(·)(Ω),

is continuous and compact.

Lemma 1.2.7. ([41]) Suppose Ω is a bounded domain in RNand −→p (·) ∈ (C+(Ω))N . If p(·) ∈ C+(Ω),

satisfies the condition

p+(x) < p∗(x), ∀x ∈ Ω. (1.2.4)

Then, the following Poincaré-type inequality holds

‖u‖
Lp

+(·)(Ω)
≤ C

N∑
i=1

‖Diu‖Lpi(·)(Ω), ∀u ∈W
1,−→p (·)
0 (Ω),

where C is a positive constant independent of u. Thus,
N∑
i=1

‖Diu‖Lpi(·)(Ω) is an equivalent norm on
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W
1,−→p (·)
0 (Ω).

In order to facilitate the manipulation of the space W
1,−→p (·)
0 (Ω), we introduce the following

notations

−→p − =
{
p−1 , ..., p

−
N

}
, p−+ = max

{
p−1 , ..., p

−
N

}
, p−− = min

{
p−1 , ..., p

−
N

}
.

We represent the harmonic mean of −→p − as p−

1

p−
=

1

N

N∑
i=1

1

p−i
.

If 1 < p− < N , we define (p−)∗ ∈ R+ and p−,∞ ∈ R+ by

(p−)∗ =
N∑N

i=1

1

p−i
− 1

=
Np−

N − p−
,

where p−,∞ = max
{

(p−)∗, p−+
}

.

In the work of [79], a concise embedding result was established for the space W
1,−→p (·)
0 (Ω)

Theorem 1.2.8. Let Ω ⊂ RN (N ≥ 2) be a bounded domain with Lipschitz boundary. Assume that

N∑
i=1

1

p−i
> 1. (1.2.5)

Then, for any q ∈ C+

(
Ω
)

satisfying

q(x) < p−,∞ for all x ∈ Ω, (1.2.6)

the embedding

W
1,−→p (·)
0 (Ω) ↪→ Lq(·) (Ω) ,

is continuous and compact.

We use standard notations for the vector and matrix-valued versions of the space/ norm intro-

duced above. For example, the Rd-valued version of W 1,−→p (·)(Ω) is denoted by W 1,−→p (·)(Ω;Rd).
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1.3 Weak Lebesgue spaces

Weak Lebesgue spaces are essential for demonstrating uniform and a priori estimates on both the

sequence of solutions and their derivatives. In this context, we provide a comprehensive overview,

beginning with the constant case. Additionally, we introduce a recent definition of these spaces in

the variable case. To initiate, let’s revisit the definition of weak Lebesgue spaces, also referred to

as Marcinkiewicz spaces

Definition 1.3.1. ([4]) We define the spaceMq(Ω) for 1 < q <∞ as the set of measurable functions

g : Ω :→ R for which the distribution function

λg(k) = |{x ∈ Ω : |g| > k}| , ∀ k ≥ 0,

satisfies an estimate of the form

λg(k) ≤ ck−q,

for some finite constant c.

Proposition 1.3.2. The space Mq(Ω) is a Banach space under the norm

‖g‖∗Mq(Ω) = sup
k>0

k
1
q

(
1

k

∫ k

0
g∗(s) ds

)
,

where g∗ denotes the non-increasing rearrangement of g

g∗(r) = inf {k > 0 : λg(k) ≤ r} .

Remarks 1.3.3. • We will in what follows use the pseudo norm

‖g‖Mq(Ω) = inf
{
C : λg(k) ≤ Ck−q , ∀k > 0

}
,

which is equivalent to the norm ‖g‖∗Mq(Ω) i.e.,

(
‖g‖Mq(Ω) ≤ ‖g‖∗Mq(Ω) ≤

q

q − 1
‖g‖Mq(Ω)

)
.
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• It is clear that Lq(Ω) ⊂Mq(Ω), let us prove it, if g ∈ Lq(Ω), we have

k−q| {x ∈ Ω : |g(x)| > k} | ≤
∫
{|g|>k}

|g|q dx

≤
∫

Ω
|g|q dx = ‖g‖qLq(Ω),

then, λg(k) ≤ ‖g‖qLq(Ω) and g ∈Mq(Ω). Moreover, ‖g‖Mq(Ω) ≤ ‖g‖Lq(Ω).

Proposition 1.3.4. A useful property of weak Lebesgue spaces is the following version of Hölder’s

inequality. Let E ⊂ Ω, g ∈Mq(Ω), r < q, then

‖g‖Mr(E) ≤
(

q

q − r

) 1
r

|E|
1
r
− 1
p ‖g‖Mq(E),

it is then immediate that Mq(Ω) ⊂Mr(Ω) if r < q.

Remark 1.3.5. In similarly with the anisotropic Sobolev spaces, we employ conventional notations

for the vector/matrix-valued versions of weak Lebesgue spaces.

We recall the definition of weak Lebesgue spaces (Marcinkiewicz spaces) with variable exponents.

Definition 1.3.6. Let p(·) ∈ C(Ω) such that p− > 0. We say that a measurable function u : Ω→ R

belongs to the Marcinkiewicz space Mp(·)(Ω) if

‖u‖Mp(·)(Ω) = sup
λ>0

λ‖χ{|u|>λ}‖Lp(·)(Ω) <∞, (1.3.1)

where χA denotes the characteristic function of a measurable set A.

Proposition 1.1.4 suggests that (1.3.1) is equivalent to asserting the existence of a positive constant

M such that ∫
{|u|>λ}

λp(x) dx ≤M, for all λ > 0. (1.3.2)

The following results are form [82].

Proposition 1.3.7. Let p, q ∈ C0
+(Ω). If (p− q)− > 0, then

Lp(.)(Ω) ⊂Mp(·)(Ω) ⊂Mq(·)(Ω).
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Lemma 1.3.8. Let η(·), r(·) in C(Ω) such that r− > 0, (η − r)− > 0. If u ∈ Mη(·)(Ω), then

|u|r(·) ∈ L1(Ω). In particular, Mη(·)(Ω) ⊂ Lr(.)(Ω) for all η(·), r(·) ≥ 1 such that (η − r)− > 0.

Moreover, the following property holds.

Lemma 1.3.9. ([61]) If u ∈Mp(·)(Ω), with p− > 0, then

λu(k) ≤ c 1

kp−
(M + |Ω|) ,∀k > 0,

where M is the constant appeared in (1.3.2).

Remark 1.3.10. We use standard notations for the vector and matrix-valued versions of the space/

norm introduced above. For example, the Rd-valued version ofMq(·)(Ω) is denoted byMq(·)(Ω;Rd).

1.4 Truncation function

In the following, our attention is directed towards the introduction of the truncation function, a

pivotal component in our analytical framework. We expound on the truncation function, aligning its

values within Rd through the application of the tensor product. Moreover, we explicitly determine

the derivatives of the truncation function, shedding light on its mathematical intricacies.

First of all, we begin by the definition of tensor product a ⊗ b of two vectors a, b ∈ Rd, a =(
(ai)i=1,...,d

)T
and b =

(
(bi)i=1,...,d

)T
, is defined to be the d × d matrix of entries (aibj)ij with

i, j = 1, ..., d. Then

⊗ : Rd × Rd −→Md×d

(a, b) −→ a⊗ b =

((
(aibj)j=1,...,d

)
i=1,...,d

)T
,
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here Md×d denotes the space of real d×d matrices equipped with inner product a : b =
d∑
i=1

d∑
j=1

aijbij .

Moreover, we can write

a : b =



a1b1 a2b1 · · · adb1

a1b2 a2b2 · · · adb2

...
...

. . .
...

a1bd a2bd · · · adbd


.

Proposition 1.4.1. If u : Ω → R is a measurable function such that Tk(u) ∈ W 1,−→p (.)(Ω) for all

k > 0, then there exists a unique measurable function v : Ω→ Rd such that

∇Tk(u) = v1{|u|≤k} a.e. in Ω, Tk(t) = max {−k,min {k, t}} (1.4.1)

Furthermore, if u ∈W 1,1
0 (Ω) then v coincides with standard distributional gradient of u.

The truncation function will be used repeatedly to derive a priori estimates for our approximate

solutions. For that reason, we present for any k > 0, the spherical radially symmetric truncation

Tk by

Tk : Rd −→ Rd

s −→ Tk(s) =


s, if |s| ≤ k,

k
s

|s|
, if |s| > k.

The mapping s 7→ Tk(s) as a mapping from Rd into Rd is not differentiable at s ∈ ∂Ω. We clarify

the derivative of Tk as follow, we begin by the first case, if |s| ≤ k then we have

DTk(s) =



∂s1

∂s1

∂s2

∂s1
· · · ∂sd

∂s1

∂s1

∂s2

∂s2

∂s2
· · · ∂sd

∂s2

...
...

. . .
...

∂s1

∂sd

∂s2

∂sd
· · · ∂sd

∂sd


= I
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It is worth noting that, the Euclidean norm of a vector s ∈ Rd is denoted by |s| =

(
d∑
l=1

|sl|2
) 1

2

.

Therefore, if |s| > k : Tk(s) =

(
k
s1

|s|
, ...,

sd
|s|

)
, then we can express our derivative as following

DTk(s) =



k

|s|2

(
|s| − s2

1

|s|

)
−ks1s2

|s|3
· · · −ks1sd

|s|3

−ks2s1

|s|3
k

|s|2

(
|s| − s2

2

|s|

)
· · · −ks2sd

|s|3
...

...
. . .

...

−ksds1

|s|3
−ksds2

|s|3
· · · k

|s|2

(
|s| −

s2
d

|s|

)



=
k

|s|


I − 1

|s|2



s2
1 s1s2 · · · s1sd

s2s1 s2
2 · · · s2sd

...
...

. . .
...

sds1 sds2 · · · s2
d




Thanks to the definition of tensor product, we deduce that

DTk : Rd −→Md×d

s −→ DTk(s) =


I, if |s| < k,

k

|s|

(
I − (s⊗ s)

|s|2

)
, if |s| > k,

Remark 1.4.2. We have the following equality for all s ∈ Rd

|Tk(s)| =


|s|, if |s| ≤ k,

k, if |s| > k.

(1.4.2)
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Furthermore, we define the truncation function T+
k : R+ → R+ as follow

T+
k (|s|) =


|s|, if |s| ≤ k,

k, if |s| > k.

(1.4.3)

From (1.4.2) and (1.4.3), we have the following equality

|Tk(s)| = T+
k (|s|). (1.4.4)

It is important to observe that s ∈ Rd represents a vector, while |s| ∈ R+ represents a norm value.

Therefore, Tk(s) on the first side of the equality (1.4.4) is different from T+
k (|s|) on the right-hand

of this equality.

We explore the following cubic truncation function

Tk(y) = (Tk(y1), ..., Tk(yd))

= (max(−k,min(k, y1)), ...,max(−k,min(k, yd))) ,

which satisfies

|Tk(y)| ≤ |y|, |Tk(y)| ≤ dk. (1.4.5)

For a comprehensive discussion on Tk, Tk, and other test functions pertinent to elliptic systems, we

direct the reader to [57]. This topic is indeed nuanced and requires careful consideration.

Within this section, we intricately explore fundamental outcomes tied to surjectivity, a pivotal

factor in establishing the existence of solutions to nonlinear problems involving pseudo-monotone

operators. Before unveiling the distinguished theorem concerning pseudo-monotone operators, it is

imperative to introduce key definitions referenced in [14].
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1.5 The theory of monotone operators with application

The method of monotone operators, initiated by G. Minty in 1962, has played a pivotal role

in the development of the theory of pseudo-monotone operators, which has undergone significant

advancements and found numerous applications. The extension of this concept to multi-valued

operators and its application to variational inequalities have been extensively explored, as discussed

in [18, 19, 20].

Throughout the ensuing discussion, we denote V as a real Banach space, with V
′

representing its

topological dual.

Definition 1.5.1. ([85]) An operator

L : V −→ V
′

u 7→ (v 7→ 〈L(u), v〉) ,

is said to be monotone if, for every u, v ∈ V , the inequality 〈Lu − Lv, u − v〉 ≥ 0 holds, and it is

strictly monotone if this inequality is strict whenever u 6= v

Example 1.5.2. We examine the function h : R→ R defined as follows

h(u) =


|u|p−2u if |u| 6= 0,

0 if |u| = 0.

if p > 1, then h is strictly monotone. This is evident from the inequality

(
|u|p−2u− |v|p−2v

)
(u− v) ≥ c |u− v|p ,

for all u, v ∈ R and fixed p > 2, c > 0

Definition 1.5.3. ([85]) An operator L : V → V
′

is said to be a bounded if the image of a bounded
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subset of V is a bounded open subset of V
′
, i.e.,

∀C > 0, ∃C ′ > 0 : ‖u‖V ≤ C =⇒ ‖L(u)‖V ′ ≤ C
′
.

Example 1.5.4. Let Ω denote a bounded open set in RN , and let V = W 1,p
0 (Ω) equipped with the

norm ‖v‖V = ‖|∇v|‖Lp . It is known that V
′

= W−1,p
′
(Ω).

Consider the operator L(u) = −div
(
|∇u|p−2∇u

)
, where 1 < p < ∞. For any ϕ ∈ W 1,p

0 (Ω), the

definition yields

〈L(u), ϕ〉 =

∫
Ω
|∇u|p−2∇u.∇ϕdx.

We assert that the operator L is bounded on V . Take ρ > 0, and for u ∈ Bv (0, ρ), we can represent

‖Lv‖V = sup
{ϕ∈V,‖ϕ‖V ≤1}

|〈Lu, ϕ〉| = sup
{ϕ∈V,‖ϕ‖V ≤1}

∣∣∣∣∫
Ω
|∇u|p−2∇u.∇ϕdx

∣∣∣∣ .
But ∣∣∣∣∫

Ω
|∇u|p−2∇u.∇ϕ

∣∣∣∣ ≤
∫

Ω
|∇u|p−1 |∇ϕ| dx

≤
(∫

Ω
|∇u|p dx

) 1

p
′
(∫

Ω
∇ϕdx

) 1
p

= ‖u‖p−1
V ‖ϕ‖V ′ ≤ ρ

p−1.

Therefore, ‖Lu‖V ′ ≤ ρ
p−1. This establishes that L (BV (0, ρ)) ⊂ BV ′

(
0, ρp−1

)
.

Definition 1.5.5. Consider a reflexive Banach space V . An operator L : V → V
′

is said to be

coercive if, for all v ∈ V ,

〈Lv, v〉
‖v‖V

→ +∞ as ‖v‖V → +∞.

Definition 1.5.6. ([7]) Consider a Banach space. An operator L : V → W is said to be hemicon-

tinuous at point u∞ of V if, for any sequence (un)n converging to u∞ along a line, the sequence

(Lun)n converges weakly to L(u) in W . More explicitly

∀v ∈ V,∀(λn)n ∈ R, λn −→ 0,L (u∞ + λnv) ⇀ Lu∞ weakly in W.

23



If L is semicontinuous at every point of V , it is described as said to be semicontinuous on V . In

reflexive spaces, when W = V
′
, and passing from sequential to continuous, we can define hemicon-

tinuity on V can be defined by ensuring that

∀u, v, w ∈ V the application λ 7−→ 〈L (u+ λv) , w〉 ∈ R,

is continuous for all λ in R.

Example 1.5.7. The operator L : W 1,p
0 (Ω) → W−1,p

′
(Ω) defined by L(u) = −div

(
|∇u|p−2∇u

)
is

hemicontinuous. Consider u, v, w ∈ W 1,p
0 (Ω) and λ ∈ R. We aim to demonstrate the continuity of

the function from R to R given by

λ 7→ 〈L(u+ λv), w〉

=

∫
Ω

(
|∇ (u+ λv) |p−2∇ (u+ λv)

)
.∇w dx

is continuous. Let λ ∈ R be fixed, and let (λn)n be a real sequence converging to λ. Define

Kn(x) =
(
|∇ (u+ λv) |p−2

)
.∇w.

Since ai are Carathédory functions and λn → λ in R, we have

Kn → K a.e. in Ω.

Consequently,

〈L(u+ λnv), w〉 =

∫
Ω

∣∣∣(∇u+ λn∇v)p−2 . (∇u+ λ∇v)
∣∣∣ |∇w|

≤
∫

Ω
|∇u+ λn∇v|p−1 |∇w| dx

≤ Cp
∫

Ω

(
|∇u|p−1 + |λn|p−1 |∇v|p−1

)
|∇w| dx

≤ C
∫

Ω

(
|∇u|p−1 + |∇v|p−1

)
|∇w| dx,
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where Cp = max
{

1, 2p−2
}

. Since the sequence (λn)n is bounded, the Dominated Convergence

Theorem implies

lim
n7→∞

〈L(u+ λnv), w〉 = 〈L(u+ λv), w〉.

This establishes the hemicontinuity of L.

Definition 1.5.8. ([14]) Consider a reflexive Banach space V . An operator L : V → V
′

is deemed

pseudo-monotone if it satisfies the following conditions

• L is bounded.

• For any weak convergence um ⇀ u in V , and if lim sup
m7→+∞

〈Lum, um−v〉 ≤ 0, then lim inf
m7→+∞

〈Lum, um−

v〉 ≥ 〈Lu, u− v〉, for every v ∈ V , where 〈., .〉 denotes the duality product between V and V
′
.

The fundamental theorem on pseudo-monotone operators is credited to Brézis, as detailed in

[22, 85].

Theorem 1.5.9. Suppose the operator L : V → V
′

is both pseudo-monotone and coercive on the

real, separable, and reflexive Banach space V . In this case, for every f ∈ V ′, there exists a solution

u ∈ V such that L(u) = f .

Theorem 1.5.10. (Browder and Minty) Consider a reflexive Banach space V and an operator

L : V → V
′

with the following properties

• Boundedness,

• Coerciveness,

• Hemicontinuity,

• Monotonicity.

Under these conditions, for every f ∈ V ′, there exists a solution u ∈ V such that L(u) = f .

Example 1.5.11. (Application of Theorem 1.5.10) Consider a bounded open subset Ω in R, and

let the operator L : W 1,p
0 (Ω)→W−1,p

′
(Ω) be defined by

L(u) = −div
(
|∇u|p−2∇u

)
, 1 < p <∞.
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The operator L satisfies all the hypotheses of Theorem 1.5.10, as illustrated in examples 1.5.4,

1.5.2, and 1.5.7, where it is shown to be monotone, bounded, and hemicontinuous. Moreover, L

is coercive: for all u ∈ V , 〈Lu, u〉 = ‖u‖pV . Consequently, according to Theorem 1.5.10, for every

f ∈W−1,p
′
(Ω), there exists u ∈W 1,p

0 (Ω) such that

−div
(
|∇u|p−2∇u

)
= f.
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Chapter 2

Anisotropic elliptic systems with

variable exponents and regular data

In this chapter, we establish the existence of distributional solutions for anisotropic nonlinear

elliptic systems with variable exponents and regular data. The system we aim to investigate is

presented under the specified conditions outlined below.

2.1 Setting of the problem and assumptions

Let us defining the following anisotropic nonlinear elliptic systems


−

N∑
i=1

Di (ai(x, u(x), Diu(x))) + F (x, u) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(2.1.1)

where Ω is a bounded open subset of RN , N ≥ 2 with Lipschitz boundary ∂Ω, and the right-hand

side f belongs to
(
W

1,−→p (·)
0 (Ω;Rd)

)′
. We assume that the variable exponents pi(·) are in C+(Ω) for

all i = 1, ..., N . The function u : Ω→ Rd, where u = (u1, ..., ud) for d ≥ 2, represents a vector-valued

function, and Diu =
∂u

∂xi
denotes the partial derivative of u with respect to xi.

We make the assumption that the vector fields ai : Ω × Rd × Rd → Rd, where i = 1, ..., N are
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Carathédory functions, meet the following conditions: for almost every x ∈ Ω, and all u ∈ Rd, and

all ξ, ξ
′ ∈ Rd, there exist positive constants α1, α2. The conditions are given by

α1|ξ|pi(x) ≤ ai(x, u, ξ).ξ, (2.1.2)

|ai(x, u, ξ)| ≤ α2

|h|+ |u|p− +
N∑
j=1

|ξ|pj(x)

1− 1
pi(x)

, |h| ∈ L1(Ω), (2.1.3)

(
ai(x, u, ξ)− ai(x, u, ξ

′
)
)
.
(
ξ − ξ′

)
> 0, ξ 6= ξ

′
, (2.1.4)

Additionally, consider the perturbation F : Ω × Rd → Rd, which depends on the vector-valued

function u. This function is Carathédory and satisfies the following conditions for almost every

x ∈ Ω

F (x, y).
(
y − y′

)
≥ 0, ∀y, y′ ∈ Rd, |y| = |y′ |, (2.1.5)

F (x, y).y ≥ |y|s(x)+1, ∀y ∈ Rd, (2.1.6)

sup
|y|≤t
|F (x, y)| ∈ L1(Ω), ∀t ∈ R. (2.1.7)

2.2 Statement of the result along with its proof

For the systems (2.1.1), the following existence Theorem holds.

Theorem 2.2.1. Under the hypotheses (2.1.2)-(2.1.7), let f ∈
(
W

1,−→p (·)
0

(
Ω;Rd

))′
. Then, there

exists a function u ∈W 1,−→p (·)
0 (Ω;Rd), which allows to solve (2.1.1) in the sense

∫
Ω

N∑
i=1

ai(x, u,Diu).Diϕdx+

∫
Ω
F (x, u).ϕ dx = 〈f.ϕ〉, (2.2.1)

for all ϕ ∈ C∞0 (Ω;Rd).

Proof. To establish the aforementioned Theorem, let us examine the sequence of approximate prob-
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lems 
−

N∑
i=1

Di (ai(x, u(x), Diu(x))) + Fn(x, u) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(2.2.2)

where u ∈W 1,−→p (·)
0 (Ω;Rd) and Fn(x, s) =

F (x, s)

1 + F (x, s)/n
,∀n ∈ N. Note that

|Fn(x, s)| ≤ |F (x, s)| and |Fn(x, s)| ≤ n.

We denote by Ln : W
1,−→p (·)
0 (Ω;Rd)→

(
W 1,−→p (·)(Ω;Rd)

)′
the operator, for u, v ∈W 1,−→p (·)

0 (Ω;Rd)

Ln : u→

(
v →

∫
Ω

N∑
i=1

ai(x, u,Diu).Div dx+

∫
Ω
Fn(x, u).v dx

)
.

We consider

b(u, v) =

∫
Ω

N∑
i=1

ai(x, u,Diu).Div dx,

and

cn(u, v) =

∫
Ω
Fn(x, u).v dx,

and we seek u ∈W 1,−→p (·)
0 (Ω;Rd) such that

b(u, v) + cn(u, v) = 〈f, v〉; ∀v ∈W 1,−→p (·)
0 (Ω;Rd). (2.2.3)

The generalized problem (2.2.4), associated with (2.2.2) is equivalent to

Ln(u)(v) = 〈f, v〉,∀v ∈W 1,−→p (·)
0 (Ω;Rd),

where Ln := B + Cn, with B, Cn : W
1,−→p (·)
0 (Ω;Rd)→

(
W

1,−→p (·)
0

(
Ω;Rd

))′
characterized by

〈B(u)(v)〉 = b(u, v); 〈Cn(u)(v)〉 = cn(u, v).

Here 〈., .〉 denotes the duality pairing between W
1,−→p (·)
0 (Ω;Rd) and

(
W

1,−→p (·)
0

(
Ω;Rd

))′
.
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• The operator Ln is bounded on W
1,−→p (·)
0 (Ω;Rd)

(i) The boundedness of B. Using Hölder’s inequality and the given hypothesis (2.1.3), we obtain

|〈B(u), v〉|

≤
N∑
i=1

∫
Ω
|ai (x, u,Diu) ||Div| dx

≤ α2

N∑
i=1

∫
Ω

|h|+ |u|p− +

N∑
j=1

|Dju|pj(x)

1− 1
pi(x)

|Div| dx

≤ 2α2

N∑
i=1

‖

|h|+ |u|p− +

N∑
j=1

|Dju|pj(x)

1− 1
pi(x)

‖
Lp
′
i
(.)(Ω;Rd)

‖Div‖Lpi(.)(Ω;Rd)

≤ 2α2

N∑
i=1

1 +

∫
Ω

|h|+ |u|p− +

N∑
j=1

|Dju|pj(x)

 dx

1− 1

p−− N∑
i=1

‖Div‖
Lp
′
i
(.)(Ω;Rd)

≤ 2α2

N∑
i=1

1 +

∫
Ω
|h| dx+

∫
Ω
|un|p

−
dx+

N∑
j=1

∫
Ω
|Dju|pj(x) dx

1− 1

p−−

‖v‖
W

1,−→p (·)
0 (Ω;Rd)

≤ 2α2N

(
1 + C +

∫
Ω
|u|p− dx+ ‖u‖p

+
+

W
1,−→p (·)
0 (Ω;Rd)

)1− 1

p−− ‖v‖
W

1,−→p (·)
0 (Ω;Rd)

.

(2.2.4)

Therefore, given that the solution |u| belongs to Lp
−

(Ω), it is due to the existence of l ∈ {1, ..., N}

such that p−l ≥ p−. Consequently, u ∈ Lp−
(

Ω;Rd
)

by applying Lemma 1.2.3. Based on the final

estimate (2.2.4), we can infer that B is bounded.

(ii) On another note, leveraging Hölder’s inequality, we obtain for all u, v ∈W 1,−→p (.)
0

(
Ω;Rd

)

|〈Cn(u), v〉| =

∣∣∣∣∫
Ω
Fn(x, u).v dx

∣∣∣∣
≤
∫

Ω
|Fn(x, u)||v| dx

≤

(
1

p−+
+

1

(p
′
+)−

)
‖Fn(x, u)‖

L
p
′
+(.)

(Ω;Rd)
‖v‖

Lp+(·)(Ω;Rd)

≤

(
1

p−+
+

1

(p
′
+)−

)(
1 +

∫
Ω
np
′
+(.) dx

) 1

(p′+)
−

‖v‖
W

1,−→p (·)
0 (Ω;Rd)

.
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This, in turn, implies the boundedness of Cn. Additionally, combining the results from (i) and (ii),

we conclude the boundedness of Ln.

• Next, we consider the coerciveness of the operator Ln on W
1,−→p (·)
0 (Ω;Rd). Indeed, by using

the assumptions (2.1.2) and (2.1.6), we have

〈Ln(u), u〉
‖u‖

W
1,−→p (.)
0 (Ω;Rd)

≥ α1

N∑
i=1

∫
Ω
ai (x, u,Diu) .Diu

‖u‖
W

1,−→p (·)
0 (Ω;Rd)

≥ α1

N∑
i=1

∫
Ω
|Diu|pi(x) dx

‖u‖
W

1,−→p (·)
0 (Ω;Rd)

≥ α1

N∑
i=1

min

{
‖Diu‖

p−i
Lpi(·)(Ω;Rd)

; ‖Diu‖
p+i
Lpi(.)(Ω;Rd)

}
‖u‖

W
1,−→p (.)
0 (Ω;Rd)

≥ α1

(
N∑
i=1

‖Diu‖
p−−

W
1,−→p (·)
0 (Ω;Rd)

−N

)
‖u‖

W
1,−→p (.)
0 (Ω;Rd)

≥
α1

(
1
N

N∑
i=1

‖Diu‖Lpi(·)(Ω;Rd)

)p−−
− α1N

‖u‖
W

1,−→p (·)
0 (Ω;Rd)

=
α1

Np−−
‖u‖p

−
−−1

W
1,−→p (·)
0 (Ω;Rd)

− α1N

‖u‖
W

1,−→p (·)
0 (Ω;Rd)

.

This implies that Ln is coercive.

• The operator Ln is hemicontinu.

Let u, v, and w ∈ W 1,−→p (·)
0 (Ω;Rd), and λ ∈ R. We aim to prove the continuity of the function from

R to R given by

λ → 〈Ln (u+ λv) , w〉

=

∫
Ω

N∑
i=1

ai (x, u,Di (u+ λv)) .Diw dx.
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Let λ ∈ R be fixed, and consider the sequence (λn)n in R converging to λ. Define

K(x) = ai (x, u,Diu(u+ λkv)) .Diw.

Since ai are Carathédory functions and λk → λ in R, we have for k tends to +∞

ai (x, u,Diu(u+ λkv))→ ai (x, u,Diu(u+ λv)) a.e. in Ω. (2.2.5)

Furthermore, from the hypotheses (2.1.3) and as the sequence (λk)k converges, it is bounded.

Therefore, we have

|ai (x, u,Diu(u+ λkv)) .Diw| ≤ |ai (x, u,Diu(u+ λkv)) ||Diw|

≤ α2

|h|+ |u|p− +

N∑
j=1

|Dju+ λkDjv
pj(x)

|

1− 1
pi(x)

|Diw|

≤ α2

|h|+ |u|p− + C
′
p


N∑
j=1

|Dju|pj(x) +

N∑
j=1

|λk|pj(x)||Djv|pj(x)


1− 1

pi(x)

|Diw|

≤ α2

|h|+ |u|p− + C
′
p

N∑
j=1

|Dju|pj(x) + C
′
p

(
|λk|p

+
+ + 1

) N∑
j=1

|Djv|pj(x)

1− 1
pi(x)

|Diw|

≤ α2

|h|+ |u|p− + C
′
p

N∑
j=1

|Dju|pj(x) + C
′
pC

N∑
j=1

|Djv|pj(x)

1− 1

p−−

|Diw|,

where C
′
p = 1/min

{
1, 21−p++

}
. Put

Gk(x) =

|h|+ |u|p− + C
′
p

N∑
j=1

|Dju|pj(x) + C
′
pC

N∑
j=1

|Djv|pj(x)

1− 1

p−−

|Diw|,

Now, let’s demonstrate that the function |Gk| is integrable in L1 (Ω) for all j = 1, ..., N . Conse-
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quently, we can apply Hölder’s inequality

∫
Ω
|Gk(x)| dx ≤

∥∥∥∥∥∥∥
|h|+ |u|p− + C

′
p

N∑
j=1

|Dju|pj(x) + C
′
pC

N∑
j=1

|Djv|pj(x)

1− 1

p−−

∥∥∥∥∥∥∥
Lp
′
i
(.)(Ω;Rd)

N∑
i=1

‖Dw‖Lpi(.)(Ω;Rd)

≤

1 +

∫
Ω

|h|+ |u|p− + C
′
p

N∑
j=1

|Dju|pj(x) + C
′
pC

N∑
j=1

|Dju|pj(x)

 dx

1− 1

p−−

N∑
i=1

‖Diw‖Lpi(.)(Ω;Rd) .

Given that |h| ∈ L1 (Ω), |u| ∈ Lp−(Ω), and u, v, w ∈ W 1,−→p (·)
0

(
Ω;Rd

)
, we can conclude that |Gk| ∈

L1 (Ω) using Hölder’s inequality. Consequently, by the Dominated Convergence Theorem, we deduce

the following

lim
k 7→+∞

∫
Ω
Kk(x) dx = lim

k 7→+∞
〈Ln (u+ λkv) , w〉 dx

= lim
k 7→+∞

∫
Ω

N∑
i=1

ai(x, u,Di(u+ λkv)).Diw

=

∫
Ω

N∑
i=1

ai(x, u,Di(u+ λv)).Diw

= 〈Ln (u+ λkv) , w〉 =

∫
Ω
K(x) dx,

which implies the hemicontinuous of B.

• B is strictly monotone.

Let u, v ∈W 1,−→p (·)
0 (Ω;Rd) with u 6= v, by the hypothesis (2.1.4), we have

〈B(u)− B(v), u− v〉 =

∫
Ω

(ai(x, u,Diu)− ai(x, v,Div)) .Di (u− v) dx > 0.

Consequently, the Theorem applies and ensures existence of least one distributional solution un ∈
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W
1,−→p (·)
0 (Ω;Rd) to (2.2.2) in the sense that

∫
Ω

N∑
i=1

ai(x, un, Diun).Diϕdx+

∫
Ω
Fn(x, un).ϕ dx = 〈f, ϕ〉, (2.2.6)

for all ϕ ∈W 1,−→p (·)
0 (Ω;Rd).

Finally, we pass to the limit in the approximate systems to obtain the existence of a distributional

solution for problem (2.2.1). Inserting un in (2.2.6) and by (2.1.2) and (2.1.6), we have

α1

N∑
i=1

∫
Ω
|Diun|pi(x) dx ≤ ‖f‖

W
1,−→p ′ (·)
0 (Ω;Rd)

‖un‖W 1,−→p (·)
0 (Ω;Rd)

.

By using Young’s inequality and (iii) in the Proposition 1.1.4, we have

α1

Np−−
‖un‖W 1,−→p (·)

0 (Ω;Rd)
≤ C(ε∗) ‖f‖(p

−
−)
′(

W
1,−→p (.)
0 (Ω;Rd)

)′ + ε∗ ‖un‖
p−−

W
1,−→p (.)
0 (Ω;Rd)

+Nα1, ε
∗ > 0,

it suffice to take ε∗ =
α1

2Np−−
to get the boundedness of the sequence un in W

1,−→p (·)
0 (Ω;Rd) (still

denoted (un)n). Then, there exists a function u ∈W 1,−→p (·)
0 (Ω;Rd) such that

un ⇀ uweakly inW
1,−→p (.)
0 (Ω;Rd) and a.e. in Ω.

We present the following Lemma

Lemma 2.2.2. Assume (2.1.2) -(2.1.4), and let (un)n be a sequence in W
1,−→p (·)
0 (Ω;Rd) such that

un ⇀ u weakly in W
1,−→p (·)
0 (Ω;Rd), (2.2.7)

and ∫
Ω

N∑
i=1

(ai(x, un, Diun)− ai(x, un, Diu)) .Di (un − u) dx −→ 0, asn→ +∞, (2.2.8)

Then

un −→ u in W
1,−→p (·)
0 (Ω;Rd)and a.e. in Ω, (2.2.9)
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for a subsequence.

We adopt the techniques outlined in [5, 86] with certain modifications.

Proof. Consider 4i
n = (ai(x, un, Diun)− ai(x, un, Diu)) .Di (un − u). According to (2.1.4) we have

4i
n is a positive function. Moreover, from (2.2.8), we have

4i
n −→ 0 in L1(Ω;Rd) as n→∞.

Thanks to (2.2.7), we have un → u a.e. in Ω. Since 4i
n −→∞ a.e. in Ω there exists a subset E in

Ω with measure zero such that for all x ∈ Ω\E,

|u(x)| <∞, |Diu| <∞, h(x) <∞, un → u, 4i
n → 0.

Given the hypotheses (2.1.2) and (2.1.3), we have

4i
n(x) = (ai(x, un, Diun)− ai(x, un, Diu)) .Di (un − u)

= ai(x, un, Diun).Diun + ai(x, un, Diu).Diu− ai(x, un, Diun).Diu− ai(x, un, Diu).Diun

≥ α1|Diun|pi(x) + α1|Diu|pi(x) − α2

|h|+ |un|p− +

N∑
j=1

|Djun|pj(x)

1− 1
pi(x)

|Diu|

−α2

|h|+ |un|p− +

N∑
j=1

|Dju|pj(x)

1− 1
pi(x)

|Diun|

≥ α1|Diun|pi(x) − Cx

1 +

(
N∑
i=1

|Djun|pj(x)

)1− 1
pi(x)

+ |Diun|


≥ α1|Diun|pi(x) − Cx

(
1 +

1

C

(
1 +

N∑
i=1

|Djun|pi(x)−1

)
+ |Diun|

)
,

where Cx depending on x, without dependence on n, and C = min

{
1, 2

1− 1

p++

}
.

Since un → u then (un)n is bounded, we obtain

4i
n(x) ≥ |Diun|pi(x)

(
α1 −

Cx

|Diun|pi(x)
− C

′
x

|Diun|
− C

′
x

|Diun|pi(x)−1

)
.
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Using the standard argument, we conclude that Diun is bounded almost everywhere in Ω. Specifi-

cally, if |Diun| → ∞ on a measurable subset E ∈ Ω, then

lim
n→0

∫
Ω
4i
n(x) dx ≥ lim

n→0

∫
E
|Diun|pi(x)

(
α1 −

Cx

|Diuε|pi(x)
− C

′
x

|Diun|
− C

′
x

|Diun|pi(x)−1

)
dx =∞,

which is absurd since 4i
n −→ 0 in L1(Ω;Rd).

Let Diw an accumulation point of Diun, we have |Diw| <∞ and by the continuity of ai, we obtain

(ai(x, u,Diw)− ai(x, u,Diu)) . (Diw −Diu) = 0.

Thanks to (2.1.4), the uniqueness of the accumulation point implies that

Diun −→ Diu a.e. in Ω,∀i = 1, ..., N.

Since (ai(x, un, Diun))n is bounded in Lp
′
i(·)(Ω;Rd) and for all i=1,...,N, we have

ai (x, un, Diun) −→ ai (x, u,Diu) a.e. in Ω.

Then we can establish that

ai (x, un, Diun) ⇀ ai (x, u,Diu) inLp
′
i(·)(Ω;Rd).

Let Y n,i = ai (x, un, Diun) .Diun and Y i = ai (x, u,Diu) .Diu, then

Y n,i −→ Y i inL1
(

Ω;Rd
)

for all i = 1, ..., N.

According to the condition (2.1.2), we have

α1|Diun|pi(x) ≤ ai (x, un, Diun) .Diun.
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Let Zn,i = Diun, Zi = Diu and Yn,i =
Y n,i

α1
, Yi =

Y i

α1
, in view of the Fatou Lemma, we obtain

∫
Ω

2.Yi dx ≤ lim inf
n→∞

∫
Ω

(
Y n,i + Y i − |Zn,i − Zi|pi(x)

)
dx,

then,

0 ≤ − lim sup
n→∞

∫
Ω
|Zn,i − Zi|pi(x) dx,

and since

0 ≤ lim inf
n→∞

∫
Ω
|Zn,i − Zi|pi(x) dx ≤ lim sup

n→0

∫
Ω
|Zn,i − Zi|pi(x) dx ≤ 0,

it follows that

lim
n→∞

∫
Ω
|Diun −Diu|pi(x) dx = 0,

and we get

Diuε −→ Diu inLpi(.)(Ω;Rd) and a.e. in Ω. (2.2.10)

In the following, by (2.2.10) this implies for all i = 1, ..., N

ai (x, un, Diun) ⇀ ai (x, u,Diu) Lp
′
i(.)(Ω;Rd),

from (2.2.7) and Lebesgue dominated convergence Theorem, we obtain, for every ϕ ∈W 1,−→p (·)
0 (Ω;Rd)

and all i = 1, ..., N

ai (x, un, Diun) .Diϕ −→ ai (x, u,Diu) .Diϕ. (2.2.11)
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Chapter 3

Anisotropic elliptic systems with

variable exponents and degenerate

coercivity with Lm data

Within this chapter, drawing from the insights of the paper [1], our attention is directed towards

nonlinear degenerate anisotropic elliptic systems that manifest variable growth. More precisely, we

investigate the case in which the right-hand side term f is a member of Lm(Ω;Rd). To establish the

existence and regularity of distributional solutions, we engage with a suitable functional framework,

incorporating anisotropic Sobolev spaces and weak Lebesgue (Marcinkiewicz) spaces characterized

by variable exponents.

3.1 Setting of the problem and assumptions

In a bounded open domain Ω ⊂ RN , where N ≥ 2, with Lipschitz boundary ∂Ω, we consider the

Dirichlet problem for the elliptic systems given by


−

N∑
i=1

Di (ai(x, u(x), Diu(x))) + F (x, u) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(3.1.1)
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here, u : Ω → Rd, d ≥ 2, represents a vector-valued function, Diu =
∂u

∂xi
denotes the partial

derivative of u with respect to xi, and the vector fields ai : Ω×Rd×Rd → Rd and F : Ω×Rd → Rd

are Carathédory functions.

We assume that the vector fields ai : Ω × Rd × Rd → Rd, i = 1, ..., N , satisfying the following

conditions: for almost every x ∈ Ω, and all u ∈ Rd, and all ξ, ξ
′ ∈ Rd, i = 1, ..., N , there exist

α1, α2 > 0 and γ(·) ∈ C(Ω) such that γ(·) > 0 for all x ∈ Ω, and we have

α1
|ξ|pi(x)

(1 + |u|)γ(x)
≤ ai(x, u, ξ).ξ, (3.1.2)

|ai(x, u, ξ)| ≤ α2

|h|+ |u|p− +

N∑
j=1

|ξ|pj(x)

1− 1
pi(x)

, |h| ∈ L1(Ω), (3.1.3)

(
ai(x, u, ξ)− ai(x, u, ξ

′
)
)
.
(
ξ − ξ′

)
> 0, ξ 6= ξ

′
. (3.1.4)

Moreover, the variable exponents pi : Ω → (1,+∞) and s : Ω → (0,+∞) are continuous

functions. Let the perturbation F : Ω × Rd → Rd depends on the vector-valued function u, which

satisfies the following conditions for almost every x ∈ Ω

F (x, y).
(
y − y′

)
≥ 0, ∀y, y′ ∈ Rd, |y| = |y′ |, (3.1.5)

F (x, y).y ≥ |y|s(x)+1, ∀y ∈ Rd, (3.1.6)

sup
|y|≤t
|F (x, y)| ∈ L1(Ω), ∀t ∈ R. (3.1.7)

We introduce the following notations

γ+ = max
x∈Ω

γ(x),
1

p(x)
=

1

N

N∑
i=1

1

pi(x)
p− =

1

N

N∑
i=1

1

p−i
, p−i = min

x∈Ω
pi(x), p+

i = max
x∈Ω

pi(x) m
′

=
m

m− 1
.

Assuming

0 < γ+ < p(x)− 1. (3.1.8)
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The fundamental problem in extending the results from an equation to a system is to obtain an

estimation of the truncation, as the truncation differs for scalar and vector cases. Therefore, an

additional structural condition is needed to prove the existence of a solution for the elliptic systems

with Lm data. To overcome this obstacle, we have developed a novel technique and we use the

following anisotropic version of the so-called (right-) angle condition: for all x ∈ Ω, ξ ∈ Rd, and all

s ∈ Rd with |s| ≤ 1, we have

ai(x, s, ξ). [(I − s⊗ s) ξ] ≥ 0, i = 1, ..., N, (3.1.9)

here I − s⊗ s represents the rank d− 1 orthogonal projector onto the space orthogonal to the unit

vector s ∈ Rd. Please refer to the assumed condition in [35]. If al,i, l = 1, ..., d denotes components

of the vector ai, then the angle condition can be stated more explicitly as

d∑
i,l=1

al,i (x, s, ξ) ξl (δl,i − sisl) ≥ 0,

here δl,l = 1 and δl,i = 0 if l 6= i. In the case d = 1, the assumption (3.1.9) is void, and the

hypotheses (3.1.2)-(3.1.7) are sufficient to prove the results in this paper.

In particular, (3.1.9) implies for all s, ξ ∈ Rd the crucial property, for all i = 1, ..., N

ai(x, s, ξ).DTk(s)ξ ≥ ai(x, s, ξ).ξχ{|s|≤k}. (3.1.10)

As prototype examples, we consider the following models


−

N∑
i=1

Di

(
|Diu(x)|pi(x)−2Diu(x)

(1 + |u(x)|)γ(x)

)
+ |u(x)|s(x)−1u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(3.1.11)
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and


−

N∑
i=1

Di

(
v(u(x))|Diu(x)|

pi(x)−2

2 Diu(x)

(1 + |u(x)|)γ(x)

)
+ |u(x)|s(x)−1u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

here v : Rd −→ (0,+∞) is a bounded continuous function. Moreover, we have f ∈ Lm(Ω;Rd),

s(·), and the exponents pi(·) are restricted as in Theorem 3.2.3.

3.2 Statement of the results

Definition 3.2.1. A function u is a distributional solution to systems (3.1.1) if

u ∈W 1,1
0 (Ω;Rd) and ai(x, u,Diu), F (x, u) ∈ L1(Ω;Rd), i = 1, ..., N.

Additionally ∫
Ω

N∑
i=1

ai(x, u,Diu).Diϕdx+

∫
Ω
F (x, u).ϕ dx =

∫
Ω
f.ϕ dx, (3.2.1)

for all ϕ ∈ C∞0 (Ω;Rd).

Our main results are the following

Theorem 3.2.2. Let −→p (·) = (p1(.), ..., pN (.)) ∈ (C+(Ω))N , p(·) < N such that (1.2.4) holds. Under

our given assumptions (3.1.2)-(3.1.7), let f ∈ Lm(Ω;Rd) with m as follow

m >
Np(·)

Np(·)−N + p(·)
. (3.2.2)

Then the systems (3.1.1) has a distributional solution u ∈W 1,−→p (·)
0 (Ω;Rd).
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Theorem 3.2.3. Let f ∈ Lm(Ω;Rd), where m is defined as in (0.0.5) and γ+ satisfies (3.1.8). We

assume that pi(·), i = 1, ..., N , and s(.) are continuous functions on Ω such that p(·) < N for all

i = 1, ..., N

s(·) ≥ pi(·), (3.2.3)

and
Nm(p(·)− 1− γ+) + (1 + γ(·))(N −mp(.))

Nm(p(·)− 1− γ+)
< pi(·)

<
Nm(p(·)− 1− γ+) + (1 + γ(·))(N −mp(·))

(1 + γ(·))(N −mp(·))
.

(3.2.4)

Let ai and F be Carathédory functions, where ai satisfies (3.1.2)-(3.1.4) and (3.1.9), and F satisfies

(3.1.5)-(3.1.7). Then the systems (3.1.1) has a distributional solution u ∈ W
1,−→r (·)
0 (Ω;Rd) where

ri(·), i = 1, ..., N are continuous functions on Ω satisfying

1 ≤ ri(·) < qi(·) =
Nmpi(·)(p(·)− 1− γ+)

Nm(p(.)− 1− γ+) + (1 + γ(·))(N −mp(·))
, ∀i = 1, ..., N. (3.2.5)

Remark 3.2.4. Let us remark that 1 < p(x) < N implies

Np(·)
Np(·) + p(·)−N

<
N

p(·)
,

which means that the condition m <
Np(·)

Np(·) + p(·)−N
implies m <

N

p(·)
. Therefore, we have

qi(·) < pi(·) for all i = 1, ..., N . The lower bound of pi(·) guarantees
ri(·)

pi(·)− 1
> 1 and the upper

bound of pi(·) guarantees
Nmpi(·)(p(·)− 1− γ+)

Nm(p(·)− 1− γ+) + (1 + γ(·))(N −mp(·))
> 1. However, the condition

(3.1.8) ensures that (3.2.4) is well-defined.

Remark 3.2.5. Ifm = 1, then u ∈W 1,−→r (·)
0 (Ω;Rd) with 1 ≤ ri(·) <

Npi(·)(p(·)− 1− γ+)

p(·)(N − 1− γ(·))−N(γ+ − γ(·))
,

which is the same result as in Theorem 3.1 in [64]. Additionally, if m = 1 and d = 1, and γ(x) = 0,

then u ∈ W 1,−→r (·)
0 (Ω) with 1 ≤ ri(·) <

Npi(·)(p(·)− 1)

p(·)(N − 1)
, which is the same result as Theorem 3.1 in

[11].

In the subsequent section, we introduce a technical lemma, a pivotal outcome of our work, which
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serves as a key element in proving the estimate of the modulus of u in Mq(·) (Ω).

3.2.1 Technical Lemma

The following Lemma assumes a central role in substantiating the estimate of the modulus of u

within the space Mq(·) (Ω).

Lemma 3.2.6. ([1]) Let pi(·) and s(·) be continuous functions, where

s(·) ≥ pi(·), i = 1, ..., N, (3.2.6)

and m satisfies

1 < m <
Np(x)

Np(x)−N + p(x)
. (3.2.7)

Let g be a nonnegative function in W
1,−→p (·)
0 (Ω). Suppose that there exists a constant c such that

‖g‖Ls(·)(Ω) ≤ c, (3.2.8)

and
N∑
i=1

∫
{g≤k}

|Dig|pi(x) dx ≤ c(1 + k)γ
+

(∫
Ω
|T+
k (g)|m

′
dx

) 1

m
′

. (3.2.9)

Subsequently, there exists a constant C, depending on c, for all k > 0, ensuring that

∫
{g>k}

kq(x) dx ≤ C, q(x) =
Nm(p(x)− 1− γ+)

N −mp(x)
, ∀x ∈ Ω.

Proof. We initiate our analysis by examining the case, for all x in Ω

q(x) <
Nm(p(x)− 1− γ+)

N −mp(x)
. (3.2.10)

Firstly, let q+ be a constant satisfying

max
x∈Ω

q(x) = q+ < min
x∈Ω

Nm(p(x)− 1− γ+)

N −mp(x)
=
Nm(p− − 1− γ+)

N −mp−
.
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Additionally, given (3.2.7)

m < (p−∗)
′ ⇐⇒ m

′
> p−∗, p−∗ =

Np−

N − p−
. (3.2.11)

Thus, we can express

(∫
Ω
|T+
k (g)|m

′
dx

) 1

m
′

=

(∫
Ω
|T+
k (g)|p−∗ |T+

k (g)|m
′−p−∗ dx

) 1

m
′

≤ k1− p
−∗

m
′

(∫
Ω
|T+
k (g)|p−∗ dx

) 1

m
′

.

(3.2.12)

Using the hypothesis (3.2.9), we derive

N∑
i=1

∫
Ω
|DiT

+
k (g)|pi(x) dx =

N∑
i=1

∫
{g≤k}

|Dig|pi(x) dx

≤ c(1 + k)γ
+

(∫
Ω
|T+
k (g)|m

′
dx

) 1

m
′

.

Exploiting the fact that |DiT
+k(g)|p

−
i ≤ |DiT

+
k (g)|pi(x) + 1, we can reformulate the preceding

inequality for all i = 1, ..., N as follows

∫
Ω
|DiT

+
k (g)|p

−
i dx ≤

N∑
i=1

∫
Ω
|DiT

+
k (g)|p

−
i dx

≤ c(1 + k)γ
+

(∫
Ω
|T+
k (g)|m

′
dx

) 1

m
′

+ |Ω|

≤ c(1 + k)γ
+

(∫
Ω
|T+
k (g)|m

′
dx

) 1

m
′

+ |Ω|(1 + k)γ
+

≤ c1(1 + k)γ
+

((∫
Ω
|T+
k (g)|m

′
dx

) 1

m
′

+ 1

)
.

(3.2.13)

Subsequently, we deduce

N∏
i=1

(∫
Ω
|DiT

+
k (g)|p

−
i dx

) 1

Np−
i ≤ c2(1 + k)

γ+

p−

((∫
Ω
|T+
k (g)|m

′
dx

) 1

m
′

+ 1

) 1
p−

. (3.2.14)
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By virtue of the Sobolev inequality, we attain

(∫
Ω
|T+
k (g)|p−∗ dx

) p−

p−∗

≤ c3(1 + k)γ
+

((∫
Ω
|T+
k (g)|m

′
dx

) 1

m
′

+ 1

)
. (3.2.15)

By combining (3.2.12) and (3.2.15), we arrive at

(∫
Ω
|T+
k (g)|p−∗ dx

) p−

p−∗

≤ c4(1 + k)γ
+

(
k

1− p
−∗

m
′

(∫
Ω
|T+
k (g)|p−∗ dx

) 1

m
′

+ 1

)
. (3.2.16)

Drawing on (3.2.11), we can articulate

k
1− p

−∗

m
′ ≤ (1 + k)

1− p
−∗

m
′ ,

This observation, coupled with the estimate (3.2.16), implies

(∫
Ω
|T+
k (g)|p−∗ dx

) p−

p−∗

≤ c4(1 + k)γ
+×(

(1 + k)
1− p

−∗

m
′

(∫
Ω
|T+
k (g)|p−∗ dx

) 1

m
′

+ (1 + k)
1− p

−∗

m
′

)

≤ c4 (1 + k)
1+γ+− p

−∗

m
′

((∫
Ω
|T+
k (g)|p−∗ dx

) 1

m
′

+ 1

)
.

(3.2.17)

We can distinguish between two cases. First, if

(∫
Ω
|T+
k (g)|p−∗ dx

) 1

m
′

≤ 1, and as m > 1 then,

p−

p−∗
− 1

m′
<

p−

p−∗
and for k ≥ 1, we have

(∫
Ω
|T+
k (g)|p−∗ dx

) p−

p−∗−
1

m
′

≤
(∫

Ω
|T+
k (g)|p−∗ dx

) p−

p−∗

+ |Ω| ≤ c5k
γ++1− p

−∗

m
′ .

As a consequence, it follows

(∫
Ω
|T+
k (g)|p−∗ dx

) p−

p−∗−
1

m
′

≤ c5k
γ++1− p

−∗

m
′ .
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It is evident that |T+
k (g)| = k on Ak such that Ak = {x ∈ Ω : |g| > k}, which implies

|Ak|
p−

p−∗−
1

m
′ ≤ c6k

−(p−−1−γ+). (3.2.18)

Here, m > 1 ensures that the exponent
p−

p−∗
− 1

m′
> 0. Direct calculation implies that

|Ak| ≤ c7k
−Nm(p−−1−γ+)

N−mp− .

In the second case, if

(∫
Ω
|T+
k (g)|p−∗ dx

) 1

m
′

≥ 1, and from (3.2.17), we have

(∫
Ω
|T+
k (g)|p−∗ dx

) p−

p−∗

≤ c8(1 + k)
1+γ+− p

−∗

p−

(∫
Ω
|T+
k (g)|p−∗ dx

) 1

m
′

.

Subsequently,

k
p−− p

−∗

m
′ |Ak|

p−

p−∗−
1

m
′ ≤

(∫
Ω
|T+
k (g)|p−∗ dx

) p−∗

p− −
1

m
′

≤ c8(1 + k)
γ++1− p

−∗

m
′ .

Therefore, for k ≥ 1, and based on our direct calculation, we have

|Ak| ≤ c9k
−Nm(p−−1−γ+)

N−mp− .

If k < 1, it is straightforward to observe that

|Ak| ≤ |Ω| ≤ |Ω|k
−Nm(p−−1−γ+)

N−mp− .

This proves that g ∈M
Nm(p−−1−γ+)

N−mp− (Ω).

Now, let us consider a continuous variable exponent q(.) on Ω that satisfies the estimate (3.2.10).

Additionally, we have

q+ ≥ Nm(p− − 1− γ+)

N −mp−
. (3.2.19)
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Due to the continuity of q(x), p(x) on Ω, there exists a constant δ > 0 such that

max
y∈Q(x,δ)∩Ω

q(y) < min
y∈Q(x,δ)∩Ω

Nm(p(y)− 1− γ)

N −mp(y)
, (3.2.20)

where Q(x, δ) is a cube with center x and diameter δ. Observe that Ω is compact and therefore we

can cover it with a finite number of cubes (Qj)j=1,...,l with edges parallel to the coordinate axes.

Moreover, there exists a constant ν > 0 such that

δ > |Ωj | > ν, Ωj := Qj ∩ Ω, for all j = 1, ..., l. (3.2.21)

We denote by q+
j the local maximum of q on Ωj , respectively (p−i,j the local minimum of pi(.) on

Ωj), for all i = 1, ..., N .

Applying analogous arguments as before, but on a local scale, we observe that the inequality (3.2.13)

holds within the region Ωj . Therefore

∫
Ωj

|DiT
+
k (g)|p

−
i,j dx ≤ c′1(1 + k)γ

+

(∫
Ωj

|T+
k (g)|m′ dx

) 1
m′

+ 1

 . (3.2.22)

Consequently, we obtain

1 + ‖DiT
+
k (g)‖

L
p−
i,j (Ωj)

≤ c′2(1 + k)

γ+

p−
i,j

(∫
Ωj

|T+
k (g)|m′ dx

) 1
m′

+ 1


1

p−
i,j

+ 1

≤ c′3(1 + k)

γ+

p−
i,j

(∫
Ωj

|T+
k (g)|m′ dx

) 1
m′

+ 1


1

p−
i,j

+ (1 + k)

γ+

p−
i,j

≤ c′4(1 + k)

γ+

p−
i,j


(∫

Ωj

|T+
k (g)|m′ dx

) 1
m′

+ 1


1

p−
i,j

+ 1


≤ c′5(1 + k)

γ+

p−
i,j

(∫
Ωj

|T+
k (g)|m′ dx

) 1
m′

+ 1


1

p−
i,j

.

(3.2.23)
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The anisotropic Sobolev inequality 1.2.2 implies that

(∫
Ωj

|T+
k (g)|p

−∗
j dx

) 1

p−∗
j

≤ c′6
N∏
i=1

(
‖g‖

L
p−
i,j (Ωj)

+ ‖DiT
+
k (g)‖

L
p−
i,j (Ωj)

) 1
N

. (3.2.24)

Expanding (3.2.6), we get

p−i,j ≤ s
−
j , s

−
j = min

x∈Ωj

s(x).

By using Proposition 1.1.4 in conjunction with inequality (3.2.8), we can deduce that

‖g‖
L
p−
i,j (Ωj)

≤ 1 +

∫
Ωj

|g|p
−
i,j dx

≤ 1 + |Ωj |+
∫

Ωj

|g|s
−
j dx

≤ 1 + 2|Ωj |+
∫

Ωj

|g|s(x) dx

≤ 1 + 2|Ωj |+
∫

Ωj

|g|s(x) dx

≤ c′7.

This implies that

{∫
Ωj

|T+
k (g)|p

−∗
j dx

} 1

p−∗
j

≤ c′8
N∏
i=1

(
1 + ‖DiT

+
k (g)‖

L
p−
i,j (Ωj)

) 1
N

. (3.2.25)

According to (3.2.23) and (3.2.25), we obtain

(∫
Ωj

|T+
k (g)|p

−∗
j dx

) 1

p−∗
j

≤ c′9
N∏
i=1

(∫
Ωj

|T+
k (g)|m′ dx

) 1
m′

+ 1


1

Np−
i,j

≤ c′9

(∫
Ωj

|T+
k (g)|m′ dx

) 1
m′

+ 1


1

p−
j

.

(3.2.26)
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However, the inequality (3.2.12) remains valid on Ωj . Therefore, in light of (3.2.26), we obtain

(∫
Ωj

|T+
k (g)|p

−∗
j dx

) p−
j

p−∗
j

≤ c′10(1 + k)1−
p−∗
j
m′

(∫
Ωj

|T+
k (g)|p

−∗
j dx

) 1
m′

+ 1

 . (3.2.27)

Put

|Ajk| = | {x ∈ Ωj : |g(x)| > k} |, k ≥ 0, j = 1, ..., l.

Applying a similar approach as before, this time at the local level, we can conclude that for k ≥ 1

|Ajk| ≤ c
′
11k
−
Nm(p−

j
−1−γ+)

N−mp−
j .

Taking into account that, for all k < 1

|Ajk| ≤ |Ωj |k
−
Nm(p−

j
−1−γ+)

N−mp−
j .

Therefore,

g ∈M
Nm(p−

j
−1−γ+)

N−mp−
j (Ωj). (3.2.28)

Finally, since q(x) ≤ q+
j , for all x ∈ Ωj and all j = 1, ..., l, we have that g ∈Mq(.)(Ω).

Moreover, assuming q(x) =
Nm(p(x)− 1− γ+)

N −mp(x)
, ∀x ∈ Ω and let ε ∈ (0, q−), then

∫
{g>t}

tq(x)−ε dx ≤ C. (3.2.29)

By letting ε go to zero, we determine the proof.
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3.2.2 Approximate problems

In order to prove our main results, let us consider the sequence of approximate systems


−

N∑
i=1

Di (ai(x, Tn(un(x)), Diun(x))) + F (x, un) = fn(x), x ∈ Ω,

un(x) = 0, x ∈ ∂Ω.

(3.2.30)

Let (fn)n be a sequence of bounded functions defined in Ω which converge to f ∈ Lm(Ω;Rd) with

m > 1, and verifies the inequalities

|fn| ≤ n and |fn| ≤ |f |, ∀n ∈ N. (3.2.31)

and F (x, un) = Tn(F (x, u)), n > 0.

We are going to prove the existence of solution un to a systems (3.2.30).

Lemma 3.2.7. Let s : Ω → (0,+∞), pi : Ω → (1,+∞) , i = 1, ..., N be continuous func-

tion. Assume that (1.2.4) holds. Then, there exists at least one solution un = (u1,n, ..., ud,n) in

W
1,−→p (·)
0 (Ω;Rd) to systems (3.2.30) in the sense that

∫
Ω

N∑
i=1

ai(x, Tn(un), Diun).Diϕdx+

∫
Ω
F (x, un).ϕ dx =

∫
Ω
fn.ϕ dx (3.2.32)

∀ϕ ∈W 1,−→p (·)
0 (Ω,Rd) ∩ Ls(·)(Ω,Rd).

Proof. Consider the following systems


−

N∑
i=1

Di (ai(x, Tn(unm(x)), Diunm(x))) + F (x, unm) = fnm(x), x ∈ Ω,

unm(x) = 0, x ∈ ∂Ω.

(3.2.33)

In a similar way to the results obtained in Application 2.1, we deduce that there exists a solution
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unm ∈W
1,−→p (·)
0 (Ω,Rd) to systems (3.2.33), which satisfies

∫
Ω

N∑
i=1

ai(x, Tn(unm), Diunm).Diϕdx+

∫
Ω
F (x, unm).ϕ dx =

∫
Ω
fnm .ϕ dx (3.2.34)

for all ϕ ∈ W
1,−→p (·)
0 (Ω,Rd). Using (3.1.2) and (3.1.6), Hölder inequality, Young’s inequality and

inserting ϕ = unm as test function in (3.2.35), we obtain

N∑
i=1

∫
Ω
|Diunm |

pi(x) dx ≤ C1(n)

(
1 +

∫
Ω
|unm | dx

)
≤ C1(n)ε∗

(
1 +

∫
Ω
|unm |p

−
− dx

)
≤ C2(n)ε∗

(
1 +

∫
Ω
|Diunm |p

−
− dx

)
≤ C3(n)ε∗

(
1 +

N∑
i=1

∫
Ω
|Diunm |pi(x) dx

)
.

We put ε∗ =
1

2C3(n)
, we get

N∑
i=1

∫
Ω
|Diunm |pi(x) dx ≤ C4(n), i = 1, ..., N,

where Ci(n), i = 1, ..., 4 are positive constants depending on n. Consequently, there exists a sequence

un ⊂W 1,−→p (·)
0 (Ω,Rd) such that

unm ⇀ un weakly in W
1,−→p (·)
0 (Ω,Rd) and a.e. in Ω.

Using (3.1.4) and arguing as in the proof of (3.2.36), we obtain

Diunm −→ Diun strongly in Lpi(·)(Ω;Rd) and a.e. in Ω. (3.2.35)

So,

ai(x, Tn(unm), Diunm) ⇀ ai(x, Tn(un), Diun) weakly in
(
Lp
′
i(·)(Ω;Rd)

)′
. (3.2.36)
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Taking Tk(unm) as a test function in (3.2.35), by (3.1.2) and (3.1.10), we obtain

∫
Ω

N∑
i=1

ai(x, Tn(unm), Diunm).DTk(unm)Diunm dx ≥ α1

N∑
i=1

∫
{|unm |≤k}

|Diunm |
pi(x)

(1 + n)γ(x)
dx

By (3.1.6), (3.1.7) and the fact that

unm
|unm |

.Tm (F (x, unm)) ≥ |Tm (F (x, unm))| , |unm | > 0,

this implies ∫
Ω
Tm (F (x, unm)) .Tk (unm) dx ≥ k

∫
{|unm |>k}

|Tm (F (x, unm))| dx.

However, given that

|Tk(s)| ≤M + k1{|s|>M},∀s ∈ R,M > 0.

On the other hand, we have

∫
Ω
|fn| |Tk(unm)| dx ≤M ‖fn‖L1(Ω;Rd) + k

∫
{|unm |>M}

|fn| dx.

Through the above mentioned results, we obtain for all M > 0

∫
{|unm |>K}

|Tk (F (x, unm))| dx ≤
M ‖fn‖L1(Ω;Rd)

k
+

∫
{|unm |>M}

|fn| dx. (3.2.37)

Let E ⊂ Ω be any measurable set, we write

∫
E
|Tm (F (x, unm))| dx =

∫
{E∩{|unm |≤k}}

|Tm (F (x, unm))| dx+

∫
{E∩{|unm |>k}}

|Tm (F (x, unm))| dx

then, by (3.1.7) and (3.2.37), we deduce the sequence (Tm(F (x, unm)))m is equi-integrable in

L1(Ω;Rd). Therefore, we can obtain (3.2.32) by passing to the limit in (3.2.35).
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3.2.3 Uniform estimates

In this part, we establish uniform estimates for both the approximate solutions, denoted as un,

and their partial derivatives. Consistently throughout the chapter, the various constants introduced

in this section will represent positive values dependent solely on the problem’s data, remaining

unaffected by the variable n.

Lemma 3.2.8. Let fn ∈ Lm(Ω;Rd) and m be restricted as in Theorem 3.2.2, and let the sequence

(un) be a solution satisfying (3.2.30). Then, there exists a constant c depending on ‖fn‖Lm(Ω;Rd)

but not on un, such that

‖un‖W 1,−→p (·)
0 (Ω;Rd)

≤ c.

Proof. Inserting un in (3.2.30) yields

∫
Ω

N∑
i=1

ai (x, Tn(un), Diun) .Diun dx+

∫
Ω
F (x, un).un dx =

∫
Ω
fn.un dx.

The assumption (3.1.6) implies that F (x, un).un ≥ 0, then

∫
Ω

N∑
i=1

ai (x, Tn(un), Diun) .Diun dx ≤
∫

Ω
fn.un dx. (3.2.38)

By the degenerate coercivity (3.1.2) and (3.2.38), we find that

α1(1 + n)−γ
+

N∑
i=1

∫
Ω
|Diun|pi(x) dx ≤

∫
Ω

N∑
i=1

ai(x, Tk(un), Diun).Diun dx

≤
∫

Ω
fn.un dx.

Using Hölder’s inequality, we get

α1(1 + n)−γ
+

N∑
i=1

∫
Ω
|Diun|pi(x) dx ≤ ‖fn‖Lm(Ω;Rd)‖un‖Lm′ (Ω;Rd).

53



Since m > (p∗(x))
′

then m′ < p∗(x). Therefore, thanks to Lemma 1.2.6 and assumption (1.2.4)

m′ < max (p∗(x), p+(x)) = p∗(x), for allx ∈ Ω.

Consequently, we have the following embedding continuous

W
1,−→p (·)
0 (Ω;Rd) ↪→ Lm

′
(Ω;Rd),

then, there exists a positive constant C ′1, such that

N∑
i=1

∫
Ω
|Diun|pi(x) dx ≤ C ′1 (1 + n)γ

+

‖fn‖Lm
α1

N∑
i=1

‖Diun‖Lpi(·)(Ω;Rd).

Put C ′2 =
C ′1 (1 + n)γ

+

‖fn‖Lm
α1

, we recall the following well-know inequalities that holds for any

αj ≥ 0 j ∈ {1, ..., N} and a real p > 0

N∑
j=1

(αj)
p ≤ N

 N∑
j=1

αj

p

. (3.2.39)

Using Proposition 1.1.4 and (3.2.39), we get

N∑
i=1

∫
Ω
|Diun|pi(x) dx ≤ C ′3

N∑
i=1

(∫
Ω
|Diun|pi(x) dx

) 1
βi

≤ C ′4

(
N∑
i=1

∫
Ω
|Diun|pi(x) dx

) 1
βi

,

where

βi =


p−i , if ‖Diun‖Lpi(.) ≥ 1,

p+
i , if ‖Diun‖Lpi(.) ≤ 1.

Then (
N∑
i=1

∫
Ω
|Diun|pi(x) dx

)1− 1
βi

≤ C ′4.
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Hence, the sequence un is bounded in W
1,−→p (·)
0 (Ω;Rd).

Lemma 3.2.9. There exists a positive constant c such that

N∑
i=1

∫
{|un|≤k}

|Diun|pi(x) dx ≤ c(1 + k)γ
+

(∫
Ω
|Tk(un)|m

′
dx

) 1

m
′

. (3.2.40)

Moreover ∫
Ω
|F (x, un)| dx ≤ C, (3.2.41)

also ∫
Ω
|un|s(x) dx ≤ C. (3.2.42)

The constant C is positive and depends solely on the problem’s data, but not on n, the | · | represents

the vector modulus.

Proof. Taking Tk(un) as a test function in (3.2.30)

∫
{|un|≤k}

N∑
i=1

ai(x, Tn(un), Diun).Diun dx+

∫
Ω
F (x, un).Tk(un) dx =

∫
Ω
fn.Tk(un) dx. (3.2.43)

The assumption (3.1.6) implies that F (x, un).Tk(un) ≥ 0, then

∫
{|un|≤k}

N∑
i=1

ai(x, Tn(un), Diun).Diun dx ≤
∫

Ω
fn.Tk(un) dx. (3.2.44)

By the degenerate coercivity together with the angle condition (3.1.10) and (3.2.44), we deduce that

N∑
i=1

∫
{|un|≤k}

|Diun|pi(x)

(1 + |un|)γ(x)
dx

≤ 1

α1

∫
{|un|≤k}

N∑
i=1

ai(x, Tn(un), Diun).Diun dx

≤ 1

α1

∫
Ω
fn.Tk(un) dx.
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Applying Hölder’s inequality for m > 1, which implies

N∑
i=1

∫
{|un|≤k}

|Diun|pi(x)

(1 + |un|)γ(x)
dx ≤ 1

α1
‖fn‖Lm(Ω;Rd)

(∫
Ω
|Tk(un)|m

′
dx

) 1

m
′

. (3.2.45)

For k > 0,

(1 + k)−γ
+

N∑
i=1

∫
{|un|≤k}

|Diun|pi(x) dx ≤ 1

α1
‖fn‖Lm(Ω;Rd)

(∫
Ω
|Tk(un)|m

′
dx

) 1

m
′

,

and thus we obtain the result (3.2.40), where c =
1

α1
‖fn‖Lm(Ω;Rd). Therefore, from (3.2.45)

∫
{|un|≤k}

|Diun|pi(x)

(1 + |un|)γ(x)
dx ≤

N∑
i=1

∫
{|un|≤k}

|Diun|pi(x)

(1 + |un|)γ(x)
dx

≤ c|Ω|
1
m′ k

≤ c′ (1 + k) .

(3.2.46)

By (3.2.46) and for k ≥ 1

∫
{|un|≤k}

k−1−γ(x)|Diun|pi(x) dx ≤
∫
{|un|≤k}

21+γ+ (1 + k)−1−γ(x) |Diun|pi(x) dx

≤ 21+γ+ (1 + k)−1
∫
{|un|≤k}

|Diun|pi(x)

(1 + |un|)γ(x)
dx

≤ c∗.

(3.2.47)

For the proof of (3.2.41), by (3.1.6) and (3.2.43), we obtain

∫
Ω

N∑
i=1

ai (x, Tn(un), Diun) .DTk(un)Diun dx+ k

∫
{|un|>k}

un
|un|

.F (x, un) dx ≤
∫

Ω
fn.Tk(un) dx,

using (3.1.5), we have

un
|un|

.F (x, un) ≥ |F (x, un)| , |un| > 0. (3.2.48)
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Then

α1

N∑
i=1

∫
{|un|≤k}

|Diun|pi(x)

(1 + |un|)γ(x)
+ k

∫
{|un|>k}

un
|un|

.F (x, un) dx ≤ k ‖fn‖Lm(Ω;Rd) + c

Thus ∫
{|un|>k}

|F (x, un)| dx ≤ C, (3.2.49)

Consequently, by (3.1.7) and (3.2.49), we derive (3.2.41). Finally, we combine (3.1.6) and (3.2.41)

to obtain (3.2.42). This ends the proof of Lemma.

Lemma 3.2.10. Assuming pi is defined as in (3.2.4), s(·) > 0, and un is a solution of (3.2.30) in

the sense of (3.2.32). Then there exists a constant C such that

‖un‖Mq(·)(Ω;Rd) ≤ C, q(x) =
Nm(p(x)− 1− γ+)

N −mp(x)
. (3.2.50)

Additionally

‖Diun‖Mqi(·)(Ω;Rd) ≤ C, qi(x) =
Nmpi(x)(p(x)− 1− γ+)

Nm(p(x)− 1− γ+) + (1 + γ(x))(N −mp(x))
. (3.2.51)

Proof. By Lemma 3.2.9 and this fact |Di|un|| ≤ |Diun|, and thanks to remark 1.4.2, we get

N∑
i=1

∫
{|un|≤k}

|Di|un||pi(x) dx ≤ c(1 + k)γ
+

(∫
Ω
|Tk(un)|m

′
dx

) 1

m
′

≤ c(1 + k)γ
+

(∫
Ω
|T+
k (|un|)|m

′
dx

) 1

m
′

.

By applying Lemma 3.2.6 to |un| gives ‖|un|‖Mq(·)(Ω) ≤ C. This proves (3.2.50).

We will now focus on proving the derivatives estimate. Putting θi(·) =
pi(·)

q(·) + γ(·) + 1
for i =
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1, ..., N , then, for k ≥ 1 and from the estimates (3.2.47) and (3.2.50) we conclude

∫
{|Diun|θi(x)>k}

kq(x) dx ≤
∫
{|Diun|θi(x)>k}∩{|un|≤k}

kq(x) dx+

∫
{|un|>k}

kq(x) dx

≤
∫
{|un|≤k}

kq(x)

(
|Diun|θi(x)

k

) pi(x)

θi(x)

dx+ C

≤
∫
{|u|≤k}

k−1−γ(x)|Diun|pi(x) dx+ C.

Invoking (3.2.47), we get for all k ≥ 1

∫
{|Diun|θi(x)>k}

kq(x) dx ≤ C. (3.2.52)

If k ∈ (0, 1), we have ∫
{|Diun|θi(x)>k}

kq(x) dx ≤
∫

Ω
kq(x) dx ≤ |Ω|.

Consequently, for all k > 0, we obtain

∫
{|Diun|θi(x)>k}

kq(x) dx ≤ C.

This proves that for all i = 1, ..., N , |Diun| is bounded in Mqi(·)(Ω), where

qi(x) = θi(x)q(x) =
pi(x)q(x)

q(x) + γ(x) + 1

=
Nmpi(x)(p(x)− 1− γ+)

Nm(p(x)− 1− γ+) + (1 + γ(x)(N −mp(x)))
.

This ends the proof of Lemma.

Thanks to the Lemma 1.3.8, we conclude that Diun is bounded in Lri(·)(Ω;Rd) for all ri(·) in

C+(Ω) satisfying (3.2.5), so we have for all i = 1, ..., N

‖Diun‖Lri(·)(Ω;Rd) ≤ C. (3.2.53)
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3.2.4 Proof of the main results

The proof of Theorem 3.2.2 is similar to that of Theorem 3.2.3. Therefore, here we will only

provide the proof of Theorem 3.2.3.

Let (Tn(f))n := (fn)n ∈ L∞(Ω;Rd), be a sequence of functions, such that

fn → f in Lm(Ω;Rd), as n→ +∞, (3.2.54)

and

‖fn‖Lm(Ω;Rd) ≤ ‖f‖Lm(Ω;Rd). (3.2.55)

Let un be a solution of the problem (3.2.30) that satisfies the weak formulation (3.2.32).

From Lemma 1.3.8, the sequence (un)n is bounded in W
1,−→r (·)
0 (Ω;Rd), where ri(x) is defined such

as (3.2.5). Therefore, (un)n is bounded in the Sobolev space

W
1,r−−
0 (Ω;Rd), r−− = min

1≤i≤N
min
x∈Ω

ri(x). (3.2.56)

Thanks to the Rellich embedding Theorem, we can extract a subsequence denoted again as (un)n

such that

un → u strongly in Lr
−
−(Ω;Rd) and a.e. in Ω. (3.2.57)

In order to prove the convergence almost every where of derivatives Diun for all i = 1, ..., N , we

need to present and prove the fundamental Lemma 3.2.13 .Furthermore, we use the analogous ways

in [86] with some modifications.

Firstly, we introduce the following notation

p+
+ = max

1≤i≤N
max
x∈Ω

pi(x), ukn = Tk(un), uk = Tk(u)

.
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Lemma 3.2.11. Let us define the vector ∆i
n(un, u), ∀i = 1, ..., N such that

∆i
n(un, u) := (ai (x, Tn(un), Diun)− ai (x, Tn(un), Diu)) .Di(un − u). (3.2.58)

Then {
∆i
n(un, u)

} 1

p++ ≤ C

(
1 +

N∑
i=1

|Diun|+
N∑
i=1

|Diu|

)
(3.2.59)

Proof. Using assumption (3.1.3) with the fact that |Tn(un)| ≤ ε, we find

∆i
n(un, u) ≤ |ai (x, Tn(un), Diun)− ai (x, Tn(un), Diu)| |Diun −Diu|

≤ (|ai (x, Tn(un), Diun)|+ |ai (x, Tn(un), Diu)|)× (|Diun|+ |Diu|)

≤

C1

np− + |h|+
N∑
j=1

|Djun|pj(x)

1− 1
pi(x)

+ C2

np− + |h|+
N∑
j=1

|Dju|pj(x)

1− 1
pi(x)


×{|Diun|+ |Diu|}

≤

C1

np− + |h|+
N∑
j=1

|Djun|pj(x)

1− 1
pi(x)

+ C2

np− + |h|+
N∑
j=1

|Dju|pj(x)

1− 1
pi(x)


×

{
N∑
i=1

|Diun|+
N∑
i=1

|Diu|

}
,

we recall that (a+ b)α ≤ max
(
1, 2α−1

)
(aα + bα). Obtaining

∆i
n(un, u) ≤ C ′

(
1 +

N∑
i=1

|Diun|pi(x)−1 +

N∑
i=1

|Diu|pi(x)−1

)(
N∑
i=1

|Diuε|+
N∑
i=1

|Diu|

)

≤ C∗
(

1 +
N∑
i=1

|Diun|p
+
+−1 +

N∑
i=1

|Diu|p
+
+−1

)(
N∑
i=1

|Diun|+
N∑
i=1

|Diu|

) (3.2.60)

By using the inequality (
N∑
i=1

|βi|p−1

)(
N∑
i=1

|βi|

)
≤ N

N∑
i=1

|βi|p,

60



then (3.2.60) get as follow

∆i
ε(un, u) ≤ C∗1

(
1 +

N∑
i=1

|Diun|p
+
+ +

N∑
i=1

|Diu|p
+
+

)
.

This ends the proof of Lemma.

Lemma 3.2.12. Our aim is to prove that, For all ε∗ > 0, we have

lim sup
ε∗

d∑
l=1

∫
{|ul,n−ukl |≤ε∗}

al,i(x, Tn(un), Diun)Di(ul,n − ukl ) dx ≤ θ(ε∗), (3.2.61)

with lim
ε∗→0

θ(ε∗) = 0.

Proof. Inserting ϕ = Tε∗(un − uk) into (3.2.32), we get

N∑
i=1

d∑
l=1

∫
{|ul,n−ukl |≤ε∗}

al,i(x, Tn(un), Diun)Dl,i(un − uk) dx +

∫
Ω
F (x, un).Tε∗(ul,n − ukl ) dx

=

∫
Ω
fn.Tε∗(un − uk) dx.

From and (3.2.59), we have the following

d∑
l=1

∫
{|ul,n−ukl |≤ε∗}

al,i(x, Tn(un), Diun)Dl,i(ul,n − ukl ) dx ≤ Cε∗,

where C = 2d
(
‖F (x, un)‖L1(Ω;Rd) + ‖f‖Lm(Ω;Rd)

)
.

Lemma 3.2.13. for all i = 1, ..., N , we have

lim
ε→0

N∑
i=1

d∑
l=1

∫
Ω

(al,i(x, Tn(un), Diun)− al,i(x, Tn(un), Diu))Di (ul,n − ul) dx = 0. (3.2.62)

Proof. We define the integral Sn as follows

Sn =

∫
Ω
{∆i(un, u)}

1

p++ dx, (3.2.63)
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such that ∆i
n(un, u) is defined as (3.2.58). Please note that 0 ≤ Sn <∞. Let us write Sn = S1

n+S2
n,

where

S1
n =

∫
{|u|>k}

{
∆i
n(un, u)

} 1

p++ and S2
n =

∫
{|u|≤k}

{
∆i
n(un, u)

} 1

p++ . (3.2.64)

By invoking (3.2.59) and using Hölder’s inequality

S1
n ≤ C

′
1 |{|u| > K}|

1− 1

p++ + C3

{
‖Diuε‖

L
r−− (Ω;Rd)

+ ‖Diu‖
L
r−− (Ω;Rd)

}
|{|u| > K}|

1− 1

r−− .

Consequently

S1
n ≤ C |{|u| > K}|

1− 1

p++ + C |{|u| > K}|
1− 1

r−− .

Then

S1
n ≤

1

k
r−−(1− 1

p+
)

+
1

kr
−
−−1

.

Letting k, n tends to infinity and zero,respectively, obtaining

lim
k→+∞

lim sup
n→∞

S1
n = 0. (3.2.65)

Now, we divide the integral S2
n on the sets

{
|un − uk| > ε∗

}
and

{
|un − uk| ≤ ε∗

}
, for all ε∗ > 0,

getting

S3
n,ε∗ =

∫
{|u|≤k,|un−uk|>ε∗}

{
∆i
n(un, u

k)
} 1

p++ dx.

and

S4
n,ε∗ =

∫
{|u|≤k,|un−uk|≤ε∗}

{
∆i
n(un, u

k)
} 1

p++ dx.

with similar arguments as in the proof of (3.2.65)

S3
n,ε∗ ≤ C

∣∣∣{|un − uk| > n
}∣∣∣1− 1

p++ + C
∣∣∣{|un − uk| > n

}∣∣∣1− 1
q0

= o(1) (as n→∞) .

(3.2.66)

We define

S4
n,ε∗ = M1

n,ε∗ −M2
n,ε∗ , (3.2.67)
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where

M1
n,ε∗ =

d∑
l=1

∫
{|ul,n−ukl |≤ε∗}

{
al,i(x, Tn(un), Diun)Di(ul,n − ukl )

} 1

p++ dx,

M2
n,ε∗ =

d∑
l=1

∫
{|ul,n−ukl |≤ε∗}

{
al,i(x, Tn(un), Diu

k)Di(ul,n − ukl )
} 1

p++ dx.

Thanks to Lemma 3.2.12, we have

limM1
n,ε∗ = lim

ε∗→0
lim sup

n

N∑
i=1

d∑
l=1

∫
{|ul,n−ukl |≤ε∗}

al,i(x, Tn(un), Diun)Dl,i(ul,n − ukl ) = 0. (3.2.68)

For |ul,n − ul| ≤ ε∗ ≤ 1, we have |ul,n| = |ul,n − ukl + ukl | ≤ 1 + k. Since ukl,n = Tk(ul,n) ⇒ uk+1
l,n =

Tk+1(ul,n), |uk+1
l,n | ≤ 1 + k, then ul,n = uk+1

l,n .

Its easy to verify that Tk(un) ⇀ Tk(u) in W
1,−→p (.)
0 (Ω;Rd), which is implies

uk+1
l,n ⇀ uk+1

l in W
1,−→p (·)
0 (Ω;Rd).

Consequently

Di(u
k+1
l,n − u

k
l ) ⇀ Di(u

k+1
l − ukl ) in Lpi(·)(Ω;Rd).

The dominated convergence Theorem implies that

al,i(x, Tn(un), Diu
k)→ al,i(x, u,Diu

k) strongly in Lp
′
i(·)(Ω;Rd);∀l = 1, ..., d.

Then

lim
n→0

M2
n,ε∗ =

d∑
l=1

∫
{|ul−ukl |≤ε∗}

al,i(x, u,Diu
k)Di(u

k+1
l − ukl ) dx

=
d∑
l=1

∫
Ω
al,i(x, u,Diu

k)DiTε∗(ul − ukl ) dx.
(3.2.69)

It is straightforward to confirm that DiTε∗(ul − ukl ) ⇀ 0 in Lpi(·)(Ω;Rd) ∀i = 1, ..., N, l = 1, ..., d.

As a result

lim
ε∗→0

lim
n→∞

M2
ε∗,n = 0. (3.2.70)
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We combine (3.2.65),(3.2.66),(3.2.68) and (3.2.70), we conclude

lim sup
n→∞

Sn = o(1)(as n→∞) + o(1)(as n→ +∞, ε∗ → 0).

This implies (3.2.62).

Following the same argument as in Application 2.1, we deduce

Diun → Diu a.e. in Ω. (3.2.71)

Lemma 3.2.14. For all i=1,...,N, as n→∞, we have

F (x, un)→ F (x, u) strongly in L1(Ω;Rd), (3.2.72)

and

ai(x, Tn(un), Diun)→ ai(x, u,Diu) strongly in L1(Ω;Rd). (3.2.73)

Proof. As F is a Caratheödory function, and based on equation (3.2.57)

F (x, un)→ F (x, u) a.e. in Ω. (3.2.74)

Under the assumptions (3.1.7), (3.2.41), and (3.2.74), and employing methodologies similar to those

presented in [10], we deduce (3.2.72). Consequently, by combining (3.2.57) and (3.2.71), we obtain

ai(x, Tn(un), Diun)→ ai(x, u,Diu) a.e. in Ω. (3.2.75)

Next, we aim to demonstrate that ai is bounded in L
ri(.)

pi(·)−1 (Ω;Rd), where ri(x) is a continuous

function on Ω satisfying (3.2.5).

The choice of
ri(·)

pi(·)− 1
> 1 is possible, given the condition (3.2.4). Thus, for all i = 1, ..., N , we

have

1 <
ri(·)

pi(·)− 1
<

Nmpi(·) (p(·)− 1− γ+)

(pi(·)− 1) (Nm(p(·)− 1− γ+) + (1 + γ(·))(N −mp(·)))
. (3.2.76)
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By using (3.2.5), we can choose φ as a continuous function on Ω in a manner that

(pi(·)− 1) ri(·)
pi(·)

< φ(.) <
Nm (p(·)− 1− γ+)

Nm (p(·)− 1− γ+) + (1 + γ(·)) (N −mp(·))
< 1,

and

1

pi(·)
< φ(·) < Nm (p(·)− 1− γ+)

Nm (p(·)− 1− γ+) + (1 + γ(·)) (N −mp(.))
.

Then, we have

1 ≤ pi(·)φ(·) < Nmpi(·) (p(·)− 1− γ+)

Nm (p(·)− 1− γ+) + (1 + γ(·)) (N −mp(·))
, (3.2.77)

and

(pi(·)− 1) ri(·)
pi(·)φ(·)

< 1. (3.2.78)

Using the assumption (3.1.3) and by (3.2.78), we obtain for all i = 1, ..., N

|ai(x, Tn(un), Diun)|ri(x) ≤

|h|φ(x) + |un|φ(x)p− +
N∑
j=1

|Djun|φ(x)pj(x)


(pi(x)−1)ri(x)
pi(x)φ(x)

≤

|h|+ |un|p− +
N∑
j=1

|Djun|φ(x)pj(x)

 .

(3.2.79)

Therefore, since the solution |un| is in Lp
−

(Ω), it is because, there exists j ∈ {1, ..., N} such that

p−j ≥ p−, then |un| ∈ Lp
−

(Ω) by using Lemma 1.2.3, based on the last estimate, Lemma 3.2.10,

and (3.2.77). From this, we can conclude that ai(x, Tn(un), Diun) is bounded in Lri(.)(Ω;Rd). Since

we have the almost everywhere convergence (3.2.75), we can apply the Vitali Theorem, we obtain

(3.2.73) for all i = 1, ..., N . By (3.2.73), and (3.2.72), so that

lim
n→∞

∫
Ω

N∑
i=1

ai(x, Tn(un), Diun).Diϕdx+ lim
n→∞

∫
Ω
F (x, un).ϕ dx

=

∫
Ω

N∑
i=1

ai (x, u,Diu) .Diϕdx+

∫
Ω
F (x, u).ϕ dx, ∀ϕ ∈ C∞(Ω;Rd).
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Conclusion and Perspectives

In the study conducted in this thesis, we focus on studying a nonlinear anisotropic elliptic systems

more specifically a generalization of pi(x)-Laplacian with degenerate coercivity and Lm data.

In conclusion, when dealing with the theory of nonlinear systems of partial differential equations,

particularly those with nonlinear terms dependent on the gradient’s natural growth, it is imperative

to introduce an essential condition to establish the existence of distributional solutions.

We have been able to prove the following results

The first result considers the case where f has a high summability, more specifically m > (p∗(x))
′
,

then we prove the solution u is bounded in W
1,−→p (·)
0 (Ω;Rd).

In the second result, if we decrease the summability of f , i.e., f in Lm
(

Ω;Rd
)

where m satisfies

1 < m < (p∗(x))
′
, we find the solutions which do not in general belong any more to W

1,−→p (·)
0 (Ω;Rd),

more precisely, we found the solution u is in W
1,−→r (·)
0 (Ω;Rd) where ri(x) are continuous functions

on Ω which satisfy

1 ≤ ri(·) <
Nmpi(·)(p(·)− 1− γ+)

Nm(p(·)− 1− γ+) + (1 + γ(·))(N −mp(·))
, ∀i = 1, ..., N.

In our result, we get an optimal solution because the regularity given in the case f in Lm(Ω;Rd)

where m > 1 is better than when m = 1.

Future research topics can include cover the following points

• In the context of anisotropic elliptic problems with variable exponents, the presence of lower-

order terms, under suitable conditions, has allowed us to derive uniform estimates for solutions
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to relevant problems approximating (3.1.1). It would be of great interest to further investigate

problem (3.1.1) in the absence of the lower-order term, i.e., when F = 0, and strive to prove

the existence and regularity of results for problem (3.1.1) based on the summability of the

data f ∈ Lm(Ω;Rd).

• In conclusion, research establishes the non-existence of a p-Laplacian with degenerate coerciv-

ity, as stipulated in the defined problem −div

(
∇u

(1 + |u|)θ

)
, when θ > 1. The pivotal role of

the parameter θ in shaping the problem’s behaviour is underscored, even when the function

f demonstrates high regularity. Looking ahead, a crucial question arises: Can we determine

the non-existence of the −
N∑
i=1

(
|Diu|pi(x)−2Diu

(1 + |u|)θ(x)

)
+ |u|s(x)−1u when θ > p(x)− 1, whether in

the presence of a lower-order term or in its absence?

• A challenging and interesting problem is to consider nonlinear parabolic systems with the

principal part without or having a degenerate coercivity


∂u

∂t
−

N∑
i=1

(
Di

(
|Diu|pi(x)−2Diu

))
+ |u|s(x)−1u = f, x ∈ (0, T )× Ω

u(x, 0) = u0, x ∈ Ω

and 
∂u

∂t
−

N∑
i=1

(
Di

(
|Diu|pi(x)−2Diu

(1 + |u|)γi(x)

))
+ |u|s(x)−1u = f, x ∈ (0, T )× Ω

u(x, 0) = u0, x ∈ Ω

where u : Ω → Rd whatever the data f in Lm, L1 or the data is a radon measure, we have

a big obstacle related essentially to dealing with, there were not a lot of studies before about

systems, what are the structural conditions that we can use it to prove the existence and

regularity of the solution?
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[80] V. Rǎdulescu. “Nonlinear elliptic equations with variable exponent: old and new”. In: Non-
linear Anal. Theor. 121 (2015), pp. 336–369.

[81] J. Wang S. Huang Q. Tian and J. Mu. “Stability for noncoercive elliptic equations”. In:
Electron. J. Differential Equations 2016 (2016), pp. 1–11.

[82] M. Sanchón and M. Urbano. “Entropy solutions for the p(x)-Laplace equation”. In: Trans
Amer Math Soc 361 (2009), pp. 6387–6405.

[83] M. Troisi. “Teoremi di inclusione per spazi di Sobolev non isotropi”. In: Ricerche Mat 18
(1969), pp. 3–24.

[84] C. Trombetti. “Existence and regularity for a class of nonuniformly elliptic equations in two
dimensions”. In: Differential Integral Equation 4-6.13 (2000), pp. 687–706.

[85] E. Zeidler. Nonlinear Functional Analysis and its Applications. II/B, Nonlinear monotone
operators. Translated from the German by the author and Leo F. Boron. Verlag: Springer,
1990.

[86] X. Zhang and Y. Fu. “Solutions for nonlinear elliptic equations with variable growth and
degenerate coercivity”. In: Ann. Mat. Pur. Appl. 1.193 (2014), pp. 133–161.

72

http://dx.doi.org/doi:10.3934/era.2020011


[87] V.V. Zhikov. “Averaging of functionals of the calculus of variations and elasticity theory”. In:
Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), pp. 675–710.

[88] S. Zhou. “A note on nonlinear elliptic systems involving measures”. In: Elect. Jor. of Diff.
Equa. 2000 (2000), pp. 1–6.

73


	Acknowledgement
	General introduction and thesis overview
	Preliminaries and basic concepts
	Variable exponents Lebesgue / Sobolev spaces
	Anisotropic Sobolev spaces with variable exponents
	Weak Lebesgue spaces
	Truncation function
	The theory of monotone operators with application

	Anisotropic elliptic systems with variable exponents and regular data
	Setting of the problem and assumptions
	Statement of the result along with its proof

	Anisotropic elliptic systems with variable exponents and degenerate coercivity with Lm data
	Setting of the problem and assumptions
	Statement of the results
	Technical Lemma
	Approximate problems
	Uniform estimates
	Proof of the main results


	Conclusion and Perspectives

