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Abstract

In a bounded open domain © ¢ RY, where N > 2, with Lipschitz boundary 92, we consider the
Dirichlet problem for the elliptic systems given by

N
_ ;Di (ai(z,u(x), Diu(z))) + F(z,u) = f(x), z €9, 0.0.)
u(z) =0, r € 01,

]Dzu|p’(”)_2Dlu
where a;(x,u, Dyu) = (1 + [u) @

, and the exponents y(-) > 0, p;(-),i = 1,..., N are continu-

U
denotes
ZT;

ous functions, here, u : Q — RY, d > 2, represents a vector-valued function, D;u =
the partial derivative of u with respect to z;, and the vectors fields a; : Q x R x R — R? and
F:Q xRY — R? are Carathédory functions.

In this thesis, we focus on nonlinear degenerate anisotropic elliptic systems with variable growth

N

and L™ data. Specifically, the differential operator A(u) = _ZDi (ai(z,u, D;u)) of the type
i=1

pseudo-monotone, which is well defined between I/VOl ’7(’)(Q;Rd) and its dual space, also it is not

coercive if u large. Moreover, we consider the case where the right-hand side term f belongs to
L™(Q;RY).

On the other hand, to analyze these systems, we work with an appropriate functional setting
that involves anisotropic Sobolev spaces with variable exponents VVO1 70 (Q; Rd) and weak Lebesgue

(Marcinkiewicz) spaces with variable exponents MP” (')(Q; RY).

keywords : Elliptic systems, Degenerate coercivity, Anisotropic Sobolev spaces, Weak Lebesgue

spaces, Variable exponents, Distributional solutions, Structural conditions, L™ Data.



Résumé

Dans un domaine ouvert borné Q ¢ RY, ot N > 2, avec une frontiére de Lipschitz 99, nous

considérons le probleme de Dirichlet pour les systemes elliptiques donnés par

N
- Z D; (ai(z,u(x), Diu(x))) + F(z,u) = f(z), = €8,
i=1 (0.0.2)

u(z) =0, x €09,

. | DyulPi ™) =2 Dy,
ot ailew D) = S

, et les exposants v(.) > 0, p;(-),i = 1,..., N sont des fonctions

ou
8:61‘
partielle de u par rapport & z;, et les champs de vecteurs a; : @ x R x R — R? et F : Q@ x R — R?

continues, ici, u : Q — R?, d > 2, représente une fonction vectorielle, Dju = désigne la dérivée
sont des fonctions de Carathédory.

Dans cette these, nous nous concentrons sur les systemes elliptiques anisotropes non linéaires
dégénérés avec une croissance variable et des données L. Plus précisément, I'opérateur différentiel

N
Au) = — Z D; (a;(x,u, Dju)) du type pseudo-monotone, qui est bien défini entre W&’?(')(Q;Rd)
et son espézé dual, n’est pas coercitif si u est grand. De plus, nous considérons le cas ou le terme
du coté droit f appartient a Lm(Q;Rd). D’autre part, pour analyser ces systemes, nous travail-
lons avec un cadre fonctionnel approprié qui implique des espaces de Sobolev anisotropes avec des
L7 ()

exposants variables W), (Q;RY) et des espaces de Lebesgue faibles (Marcinkiewicz) avec des ex-

posants variables MP)(€; RY).
Mots-clés : Systemes elliptiques, Coercitivité dégénérée, Espaces de Sobolev anisotropes, Espaces

de Lebesgue faibles, Exposants variables, Solutions distributionnelles, Conditions structurelles,

Données L™.
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Notations

Everywhere in the sequel we use the following notations:

N 3
RY: The N-dimensional Euclidean space with the distance || = (Z xf) , where

x = (21, %2, ...,xN) is an element in RY.

MYV the real vector space of d x N matrices.

Q: open bounded set in RY.

Q: closure of Q in RY

0f): boundary of .

|A| or meas(A): Lebesgue measure of the subset A.

a.e.: abbreviation for almost everywhere (with respect to the Lebesgue measure).
V': the dual space of V', where V' is a Banach space.

(-,-): the duality pairing between V and V'

D; = 3 : the partial derivative with respect to x;.
T
o 0 0
Vu={—,—,....,—— |: th dient of u.
u (8x1 92g 3$N) e gradient of u

xA: the characteristic function of a measurable set A.

C(£2): the space of continuous real-valued functions on €.

vi



C(])“(Q): the space of k times differentiable functions on {2 with continuity 0 on €.

C5°(2): the space of smooth functions with compact support in €.

cl(Q) = {p € C(Q) : minp(x) > 0 for all x € Q}
z€S

C.(Q) = {p € C(Q) : minp(z) > 1 forall x € Q}
e
p" = maxp(z), and p~ = minp(z) for p € CY ().
e e

: p(-)

p ()= : the Hélder conjugate exponent of p € Cy(9).

Np(:
N —p()

LPO(Q) = {u Q- Rmeasurable,/ ’%’
Q

if 1 < p(-) < N, the Sobolev critical exponent of p € C(Q).

~|—_ =

p(z)
< oo for some A positive} , variable exponent Lebesgue

space.

MPO) (Q) = {u : 0 — Rmeasurable, sup Al|x{ju>}l Lr) (@) < oo}7 variable exponent weak
A>0

Lebesgue space.

wir)(Q) = {u e LPO(Q), |Vul € Lp(')(Q)},Where p(-) € C(Q) and p > 1, variable exponent
Sobolev space.

Dy () closure of C§° (€2) with respect to W'?()(2) norm.

(Wl,p(')(Q)) : the dual space of Wl,p(~)(Q).

1

i 1
@) N2 pila)

For () = (p1(-), ..., pn(-)) € C (Q), we set:

p+(z) = max {pi(z),....,pn(2)}, p—(x) = min {p1(x), ....,pn(x)},z € Q.

: the harmonic mean of p;(x).

pf =max {p},...px} Py = max {py,...,py}, and p= = min {p;, ..., py }.

Wl’?(')(ﬂ) = {u e LP+0(Q) : Dju e LPO(Q),i =1, ...,N}, the anisotropic variable expo-

nent Sobolev space.

vii



Wa 7O Q) = Wt nwhFO@).

Dé’?("(ﬂ) _ WW”’“(W

(W(}’?(')(Q)>,: the dual space of W&’?(')(Q).

WP O(Q;RY): the R valued version of Wh7 0)(Q).

W&’?(')(Q; R%): the R%- valued version of WOI’?(')(Q).

Ag(5) k= {x € Q:|g| >k}, VE >0, the distribution function of g.
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General introduction and thesis

overview

In recent years, there has been significant development in the field of variable exponent spaces.
The emergence of variable exponent Lebesgue spaces dates back to 1931, as documented by W.
Orlicz [69]. However, the contemporary evolution commenced with the seminal paper by Kovécik
and Réksonik in 1991 [56]. This work primarily delves into fundamental aspects, including reflexivity,
separability, duality, and initial findings related to the embedding and density of smooth functions.
Subsequently, these spaces found application in examining functionals in the calculus of variations
exhibiting non-standard growth. The comprehensive development of the theory of variable exponent
spaces is presented in [28, 31, 38, 41, 44, 79]. Refer to the extensive books [6, 23, 34] for an overview.

One of the reasons for the rapid development of variable exponent function spaces theory can be
attributed, in part, to the paradigm of electrorheological fluids proposed by Rajagopal and Ruzicka
[73, 72, 76]. This model necessitates a functional framework incorporating function spaces with

varying exponents. To clarify, we present the following model

—divS +div(v®v)+ Vr =g+ [VE| P
(0.0.3)

dive =0

where v is the velocity, div(v ® v) is the connective term with v ® v denoting the tensor product
of the vector v, m the pressure, S the extra stress tensor, g the external body forces, E the electric

fields and P the electric polarization. Furthermore, the tensor S satisfies the coercivity, growth



condition and monotonicity. In this case, we can use the theory of monotone operator to show the
existence of weak solution to problem (0.0.3). For more details about the way, we refer the following
papers [77, 78, 33, 32].

Electrorheological fluids change their mechanical properties dramatically when an external electric
field is applied. They are one example of smart materials, whose development is currently one of
the major task in engineering sciences. Electrorheological fluids have been used in robotics and
space technology. The experimental research has been done mainly in the USA, for instance in
NASA laboratories. For more information on properties, modelling and the application of variable
exponent spaces to these fluids, we refer [63, 30, 80].

In [25], Chen, Levine and Rao proposed a framework for image restoration based on a Laplacian
variable exponent, see also [26].

This thesis (see [1]) deals with a class of nonlinear anisotropic elliptic systems with variable
exponents and degenerate coercivity. In a bounded open domain Q € RY, where N > 2, with

Lipschitz boundary 02, we consider the Dirichlet problem for the elliptic systems given by

N
- Z D; (ai(z,u(x), Diu(x))) + F(z,u) = f(z), = €8,
i=1 (0.0.4)

u(z) =0, x € 0N.

Our aim is to prove the existence and regularity of distributional solutions for anisotropic nonlin-
ear elliptic systems with variable exponents and degenerate coercivity. The right-hand side of the
systems (0.0.4) is in L™(Q; R?) where m satisfies the following condition

Np(z)

l<m< — — 3
Np(z) — N +p(x)

(0.0.5)

under additional assumptions on a; and F'.
The primary difficulty of the systems (0.0.4) stems from the fact that, due to the following
hypothesis

G
alw < ai(a7> u, g)fa



where a7 is a positive constant, the differential operator

N
Ur— — Z D; (a;(x,u, Dju)),

i=1

is not coercive on I/VO1 ’7(')(9;]1%‘1) despite being well-defined between I/VO1 ’?(')(Q;Rd) and its dual
(Wl’ﬁ(')(Q;Rd)y. Degenerate coercivity implies that as |u| becomes large, 11“/() tends to
zero. This indicates that conventional techniques for elliptic operators are not(ap41_)1|iléli)ble. To solve
this issue, we will address the operator approximation by employing truncations in a; to derive a
coercive differential operator. Subsequently, we will establish anisotropic a priori estimates for the
sequence of approximate solutions, ultimately we pass to the limit within the approximate systems.
This process will establish the existence of a distributional solution for the systems (0.0.4).

Numerous studies have delved into the context of elliptic problems, and an extensive array of
articles and books on this subject has surfaced. A comprehensive overview of the literature exceeds
the scope of our introduction and cannot be accommodated. Nonetheless, we will examine select
results pertaining to the specific problem that we find noteworthy, highlight our contributions.

Degenerate elliptic equations were initially explored by Boccardo et al. in [16]. Existence and

regularity results have been demonstrated for the linear case under various conditions on f. The

problem they considered is outlined as follows

—div ((Vu) =f(z), = €Q,

1+ Jul)? (0.0.6)

u(x) =0, x €09,

where Q is a bounded open subset of RY, N >2, 0 <~y <1landu:Q —Rand f € L™(Q). Fol-
lowing that, Gao et al. in [48] provided a partial generalization of the anisotropic Laplacian type,
where f € L™(Q2). They demonstrated the existence and regularity of weak energy solutions.On the
other hand, it is worth pointing out that different ranges have an important impact on the behavior
of solutions to the problem (0.0.6), Boccardo et.al in [16], considered the non-existence result of

problem (0.0.6) they required that v > 1 even f is in L°(2). Several papers have addressed and



expanded upon this case; for further details, we recommend consulting the references [75, 50, 53,
81, 71].

The author of [11], has extensively investigated a class of anisotropic elliptic equations with vari-
able exponents. Subsequently, these results were extended to the case where f € e (Q), as
detailed in [67].

Building upon these findings, the authors of [9] expanded the scope of the aforementioned problem

to a coercive case. More precisely, they addressed the following problem

ZN: | DulP" D72 Dy
(1 [l

) + @y =f z €Q,
i=1

u(x) =0, x € 0.

They examined the regularity of these solutions under various assumptions regarding m(-) and s(-),
also the regularity result is associated with v (defined as Iileaﬁx max. vi(x)).

The study of nonlinear elliptic equations involving the p-Laplace operator is based on the theory
of standard Sobolev spaces W1P(Q) in order to find weak solutions see [36, 46, 21], and their
method cannot apply her due to the nonhomogeneous p;(-)-Laplace operators, for this the natural
setting for this approach is the use of the variable exponent anisotropic Sobolev spaces Wl’?(')(Q),
we refer this paper [41].

Existence of weak solutions u has been profoundly examined in [59, 84, 16], while uniqueness
seems to be a delicate matter, see [37, 70]. For the scalar case with lower order term, we refer the
reader to [15, 13, 27, 51]. The anisotropic case, in which each component of the gradient D;u may
have a possibly different exponent p;, is dealt with in [58, 54]. For some papers related to elliptic
and parabolic equations with degenerate coercivity, we refer the reader to [8, 11, 45, 66, 51].

At present, to our knowledge, there are only a few results available regarding the regularity of so-
lutions for anisotropic elliptic systems with variable exponents. In [12, 2], the authors explored the
existence and regularity of distributional solutions for anisotropic p;-harmonic systems. In the realm

of anisotropic elliptic systems with variable exponents, the author of [10] broadened the scope from

p-Laplacian systems to p(z)-Laplacian systems, building upon the same structural condition. Subse-



quently, in [64], the focus shifted towards p;(z)-Laplacian systems characterized by degenerate coer-

civity and an L' right-hand side. The study established that u belongs to the solution space, and the
Npi()(@B() = 1-7)

BOW —1—1() = N7 ()

For some developments on isotropic and anisotropic elliptic systems and recent research, we refer

results are as follows u is in W&’?(')(Q;Rd), where 1 < 7;(+) <

reader to [49, 88, 62, 24, 74].
The systems (0.0.4) with variable exponents is new and has never been studied before when the
data f in L™(€;R?). The following inequality holds for m goes to 1:

Nmp;(-)(p(-) =1 —=~") - Npi()(P() =1 =~7) _
Nm(D(:) =1 =)+ (1 +5()(N —mp(-)) = p()(N =1—=7()) = N(vF —~(-))

Thus, the regularity provided by Theorem 3.2.3 improves Theorem 4.2 presented in [64].

The thesis consists of three chapters that are briefly presented below
Chapter 01 : Preliminaries and basic concepts

In the first chapter, we establish the functional framework for our study, which encompasses
Lebesgue—Sobolev and weak Lebesgue spaces with variable exponents. Accordingly, we provide
an overview of foundational theories related to these spaces. The chapter begins by presenting
Lebesuge and Sobolev spaces with variable exponents, then defining the anisotropic Sobolev spaces
with variable exponents and presenting fundamental theorems. Subsequently, we delve into the
definitions of weak Lebesgue spaces, both in cases of constants and non-constants and we discuss
the embedding between these spaces and the Sobolev spaces.

In the following part, our focus is on introducing the truncation function, a crucial element in
our analysis. We present the truncation function with values in R?, using the definition of the
tensor product, explicitly establish the derivatives of the truncation function. Finally, we define key
concepts and present results related to the theory of monotone/pseudomonotone operators.
Chapter 02: Anisotropic elliptic systems with variable exponents and regular
data

In the second chapter, our attention is directed towards the analysis of nonlinear anisotropic

elliptic systems characterized by variable exponents and regular data. We then shift our focus



to contextualizing the problem within the framework of variational issues and elliptic systems ex-
hibiting non-standard p;(x)-growth conditions. More specifically, we delve into scenarios where the
right-hand side is situated in the dual space (Wl’y(') (Q; ]Rd)>,.

Our initial step involves formulating the problem under coercive conditions with lower-order
terms. Subsequently, we establish the theorem outlining the existence of solutions, formalize the
approximation problem, and finally transition to the limit.

Chapter 04: Anisotropic elliptic system with variable exponents and degenerate
coercivity with L data

In the third chapter, drawing from the insights of the paper [1], our focus is on nonlinear degener-
ate anisotropic elliptic systems exhibiting variable growth. Specifically, we explore cases where the
right-hand side term f belongs to L™ (£2; ]Rd). To prove existence and regularity of distributional so-
lutions, we work with an appropriate functional setting that involves anisotropic Sobolev spaces and
weak Lebesgue (Marcinkiewicz) spaces with variable exponents. We introduce continuous functions,
defined for all z € Q and all i = 1,..., N

_ Nm(p(z) —1-~7")

Nmp;(z)(®(z) —1—~7)
g(z) = ——5— o PSR

~ Nm(p(z) — 1 —7%) + L+ 7@)(N — mp(z)’

gi(z) (0.0.7)

The proof follows the conventional strategy of obtaining uniform estimates for a sequence of
suitable approximate solutions (u, ), and their weak derivatives D;u,, in weak Lebesgue spaces with
variable exponents M‘I(')(Q;Rd) and Mq"(')(Q;Rd), respectively. To establish these estimates, we
employ an anisotropic Sobolev inequality and leverage the embedding between Marcinkiewicz and
Lebesgue spaces. We demonstrate that u, belongs to anisotropic Sobolev spaces WO1 ’?(')(Q; Rd) for
every r;(-) < gi(+),i = 1,..., N where ¢;(-) is as defined in (0.0.7). We then prove almost everywhere
convergence of the partial derivatives D;u,. With this convergence established, we proceed to pass
to the limit in the strong L' sense in the nonlinear vector fields a; (2, upn, Djuy) and ultimately

conclude that the approximate solutions w,, converge to a solution of (0.0.4).



Chapter 1

Preliminaries and basic concepts

In this chapter, we endeavor to offer a comprehensive examination of pivotal findings arising from
functional analyses, laying the groundwork for subsequent utilization. Furthermore, we elucidate
essential details pertaining to the requisite function spaces, enhancing the reader’s understanding
of their fundamental characteristics.

In the context of this chapter, unless specified otherwise, 2 € R is defined as a bounded open set
endowed with N-dimensional Lebesgue measure. It is crucial to recognize that the results outlined
here are not exhaustively presented. Rather, they will be unfolded as required throughout our study

for a more targeted and nuanced exploration.

1.1 Variable exponents Lebesgue / Sobolev spaces

In the following two parts, we present fundamental results concerning Lebesgue-Sobolev spaces
LPO) (Q) and WPL) (). These findings establish the essential groundwork for the exploration of
variational problems and elliptic equations featuring non-standard p(z)-growth conditions. For a
more in-depth understanding, we recommend consulting the works of Musielak [68], Edmunds et al
[39, 40], Kovécik and Rékosnik [56], Diening [28, 29], and the references provided therein.

Let Q be a bounded open subset in RYY with positive measure. Considering the set of all continuous



functions p(.) : @ — (0, +00), we introduce the set C9(Q) defined as

Q) = {p € C(Q) : minp(x) > 0 for all x € Q} )
e

For any variable exponent p € C?r (), We introduce the following notations

p* =maxp(z) and p~ = minp(z).

e z€Q

Note that if p € C?L(ﬁ), then, for all z € Q, 0 < p~ < p(z) < p™ < +00. Moreover, if p~ > 1, we

define the conjugate exponent of p(.) by

Definition 1.1.1. ([23]) Let p € C?(€2). We define the variable exponent Lebesgue space LP0)(Q)

as the set of all measurable functions u : 2 — R for which the modular

ooy () = /Q () @) da,

is finite. The space Lp(')(Q) is equipped with the Luxemburg-Nakano quasi-norm

lull o := int {)\ >0 pp(y (%) < 1} : (1.1.1)

The space LP)(Q) is a quasi-Banach space (see [3]). In particular, if p~ > 1 then the exponent on
(1.1.1) defines a norm in LP*)(2) and the space (Lp(')(Q), H.HLP(.)(Q)> becomes a separable Banach
space.

If p,g € C'_?r(ﬁ) with ¢ < p, then the inclusion Lp(')(Q) C Lq(')(Q) holds. Moreover, if 1 < ¢~ <
q < p, the embedding Lp(')(Q) — LQ(')(Q) is continuous, and its norm does not exceed 1 + |Q].

Henceforth, we denote

Ci(Q) = {p € C(Q) : minp(x) > 1 for all x € Q} .
x€Q)



Lemma 1.1.2. (/56]) Let p € C(Q), the space LPV)(Q) is reflexive and its dual space can be
identified with LP O(€).

Lemma 1.1.3. (The Hélder inequality) For all u € LP*)(Q) and v € Lpl(')(Q), the following Hélder

inequality

/ uv dx
Q

holds true, where

1 1
< (p ¥ p,) ol 191t gy < 20l o @yl -

_ p
.(p):p__17
+
' b
hd (P+) :p+7—1'

Proposition 1.1.4. ([}]) Let p € C(Q), if (un),u € LPO(Q), then the following relations holds

(@) [Jull oy <1(>1;=1) <= ppry(uw) < 1(> 1;=1),
(44) min (pp(,)(u) P pp(.)(u) p*) < HuHLp(.)(Q) < max <pp(.)(u) Pt pp(.)(u)p*) ,
PN + - + -
(iid) min (el ull ) ) < ooy () < max (s el )
(1) [Jun — ull o)y = 0 <= ppry(un —u) — 0.
Throughout this section, we consider Q ¢ R, where N > 2, as a bounded open domain with

a Lipschitz boundary.

Definition 1.1.5. Let p: Q — [1,+00) be a continuous functions, we define the variable exponent
Sobolev space WHP()(Q) as the set of all measurable functions u : @ — R such that u in LPU)(Q)

and Vu are in (LPC)(€))V. Subsequently, we express it as

Wi (Q) = {u e IP(Q), |Vu| € Lp(')(Q)} :



ou ou

h ==\ .., —
where Vu (83:1’ .

). We make use of the norm

HUHWLM-)(Q) = HUHLP(')(Q) + HVUHLP(')(Q)'

Remark 1.1.6. We define Dé’p(')(Q) as the completion of C5°(§2) with respect to the above norm.
Also, the Sobolev space with zero boundary values Wol’p(')(ﬂ) is the space WP (Q) N Wol’l(Q)

equipped with the norm of Wl’p(')(Q).
As Q) is assumed to be a bounded open Lipschitz domain, we can establish the following definition

Definition 1.1.7. We define WO1 P (')(Q) the Sobolev space with zero boundary values by
Wol’p(')(ﬂ) = {u € Wl’p(')(Q); u=20 onaQ} ,

endowed with the norm ||.[[yy1.00) (-

Lemma 1.1.8. The function spaces W'P1)(Q) and Wol’p(')(Q) are reflexive uniformly convex Ba-

nach spaces. Moreover, for any measurable bounded exponent p(-) (1 <p <pt< +oo), the spaces

WhPO(Q) and Wol’p(')(Q) are separable.
The following lemma presents the Poincaré inequality.

Lemma 1.1.9. (/6]) For every u € Wol’p(')(Q)

[ull o) (@) < ellVull oo (@) (1.1.2)

For some constant ¢ that depends on Q and p(-), considering the Poincaré inequality (1.1.2), it

becomes possible to define the equivalent norm of the space Wol P (')(Q) using the relation
HUHWLP(-)(Q) = ”VUHLP<~>(Q)'
We point out that, the above norm is equivalent to the following norm (see [6])

N
Z HDiuHLP(')(Q)'
i=1

10



Remark 1.1.10. The following inequality in general does not holds

/ |u[P@ dz < c/ IVulP® dz
) Q

but by Proposition 1.1.4 and the inequality (1.1.2), we obtain
+ _
/Q uP@ di < O max (||Du|]ipm; \|Du||’£pm) .

The following definition is from [87].

Definition 1.1.11. Let p : Q — R. If there exist a positive constant C' such that

lp(z) — p(y)| < Iz —g|

— 1
, Ve,y € Q) |z —y| < 7
Then, p(-) is called log-Hélder continuous on €.

Theorem 1.1.12. ([6, 52]) Let p,q € C (Q) such that q(z) < p*(z) in Q, then for every u €
1,p(-
WO p() (Q)

HUHLq<->(Q) <C HVUHLM)(Q) )

with a constant C' depending on N,p and Q. The embedding Wol’p(') (Q) = L) (Q) is continuous

and compact.

1.2 Anisotropic Sobolev spaces with variable exponents

Let Q be a bounded open subset of RY and p; > 1,7 =1,...,N, N > 2. We introduce the

anisotropic Sobolev space WO1 ?(Q) which is defined by

Wh7 Q) = {g e WE(Q) : Dig € LP(Q),Vi =1, N} ,

11



which is a Banach space under the norm

N

911, ) = lllzicey + D 1 Digll oo -
=1

We need the anisotropic Sobolev embedding Theorems.

Theorem 1.2.1. ([83]) Suppose g € W&’?(Q). Then

N

19/l La <CHIIngllel(Q
i=1

(1.2.1)

€ [1,00) if p> N,

The constant C, depends on pi,...,pn, N if p < N. Furthermore, if p > N, the inequality (1.2.1)

is true for all ¢ > 1 and C' depends on q and |Q)|.
Theorem 1.2.2. (/83]) Assume Q is a cube in RN with faces parallel to the coordinate planes, and

pi > 1 fori=1,....,N. Suppose u € Wl’?(Q), and set

q=p", if p<N,
e [1,00), if p> N.

Then, there exists a constant C depending on J = (p1,...spN), N if p < N. Moreover, if p > N,

the inequality (1.2.2) is true for all ¢ > 1 and C depends on q and |Q)|.

2

(1.2.2)

Z\H

lull Lo H [ull Loi (@) + [ Diull e ())

One has the following Lemma.
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Lemma 1.2.3. ([65]) Let v € WOI’?(Q). Then there exists a positive constant C' such that
vl Lri () < CllOw| Lri -

We use standard notations for the vector and matrix-valued versions of the space/ norm intro-
duced above. For example, the R%valued version of Wl’ﬁ(Q) is denoted by W1’7(Q; R%).

In this part, we define the anisotropic Lebesgue and Sobolev spaces with variable exponent and
give some of their properties. Roughly speaking, anisotropic Lebesgue and Sobolev spaces are func-
tional spaces of Lebesgue’s and Sobolev’s type in which different space directions have different
roles, see [17, 42, 43].

Everywhere in this part, Q be a bounded open subset of RY, N > 2. Let p; : @ — [1,+00),i =
1,..., N, be continuous vectorial functions. We denote by 7(:U) = (p1(x),...,pn(x)), and py(x) =

1r<n'a<>]<V pi(x). The anisotropic Sobolev spaces with variable exponents are defined as
WLPO(Q) = {u e LP+O(Q) : Dju e IPO(Q),i=1, ..., N} ,
which is a Banach space with respect to the norm
N
lllyr 700 = 1l s 0y + 3 IDsul s ey (1.2.3)
i=1
We define Wol’?(')(Q) as follow
LB 1,1 T
wo 7O @) = W) n w7 (@),
If Q is a bounded open set with Lipschitz boundary 02, then

wo7O(@) = {u e WETOQ) ; wpg =0},

where, ujgq denotes the trace on 99 of u in WOI’I(Q).
Definition 1.2.4. We define the space Dé’?(')(Q) as the closure of C3°(Q2) in Wl’?(')(Q) as the

13



intersection of Wl’ﬁ(')(Q) and Wol’l(Q), thus

DLPO(q) = WW“?“(QX

Remark 1.2.5. It is well-known that in the constant exponent case, that is, when ?() = ? €
(11, +00))™, Dé’?(Q) = Wol’?(ﬂ). However, in the variable exponent case, in general Dé’ﬁ(')(Q) G
Wol’ﬁ(’)(Q) and the smooth functions are in general not dense in W) LP( )( Q), but if for all i =
1,..., N, p; is log-Hélder continuous, then Ci°(€?) is dense in W), ’?(‘)(Q), thus Dé’?(')(Q) = WOL?(’)(Q).
The spaces Wl’?(')(Q), Dé’?(')(ﬁ) and W&’?(')(Q) are separable and reflexive Banach spaces when

they are supplied with the norm defined in (1.2.3) (see [41]).

Moreover, we proceed to define the function p*(x) for p(z) < N as

. Np(z)
pi(z) = m

Lemma 1.2.6. ([{1]) Suppose Q is a bounded domain in RN and T (z) Q)N. If q(-) €
C(Q) verifies q(z) < max (p*(z),p4(x)) for all z € Q, then the embedding

WETO () < L10(9),

18 continuous and compact.

Lemma 1.2.7. ([{1]) Suppose 2 is a bounded domain in RN and 7 (-) € (C4(Q)N. Ifp(-) € C4(Q),
satisfies the condition

pi(z) < p*(x),Vz € Q. (1.2.4)

Then, the following Poincaré-type inequality holds
LB (-
lull o o <02wmmmm,w6m?Wm
i=1
N

where C' is a positive constant independent of u. Thus, Z ||DiuHLpi<,>(Q) s an equivalent norm on
=1
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WQL?(‘)(Q).

In order to facilitate the manipulation of the space VVO1 ’7(')(9), we introduce the following

notations

o ={p7.py}, Py =max {py,....py}, = = min{py,...py} .

We represent the harmonic mean of ?_ asp

IR RN
__N p.*'

i=1 Y

S

If1<p <N, wedefine (p7)* € Rt and p_ o, € RT by

where p_ o, = max {(ﬁ_)*,pjr}.
In the work of [79], a concise embedding result was established for the space VVO1 PO (Q)

Theorem 1.2.8. Let Q C RY (N > 2) be a bounded domain with Lipschitz boundary. Assume that

Then, for any q € Cy (ﬁ) satisfying
q(z) < p_ oo forall z €Q,

the embedding
W&’?(') (Q) — 90) Q),

18 continuous and compact.

(1.2.5)

(1.2.6)

We use standard notations for the vector and matrix-valued versions of the space/ norm intro-

duced above. For example, the R%valued version of Wl’?(')(Q) is denoted by Wl’?(')(Q; RY).
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1.3 Weak Lebesgue spaces

Weak Lebesgue spaces are essential for demonstrating uniform and a priori estimates on both the
sequence of solutions and their derivatives. In this context, we provide a comprehensive overview,
beginning with the constant case. Additionally, we introduce a recent definition of these spaces in
the variable case. To initiate, let’s revisit the definition of weak Lebesgue spaces, also referred to

as Marcinkiewicz spaces

Definition 1.3.1. ([4]) We define the space M?(Q) for 1 < ¢ < oo as the set of measurable functions

g : €2 :— R for which the distribution function
N(k) = [{z € Q: gl > K}, Yk >0,

satisfies an estimate of the form

for some finite constant c.

Proposition 1.3.2. The space M%(Q) is a Banach space under the norm

* 11 [F .
9[ A a () = sup ke <k;/ g (s) ds) ,
k>0 0

where g* denotes the non-increasing rearrangement of g
g (r)y=inf{k>0: Ag(k) <r}.
Remarks 1.3.3. e We will in what follows use the pseudo norm
19l pma(o) = inf {C D Ag(k) < CE™1,Vk > 0} )

. . . . q
which is equivalent to the norm [|g|/q(q) i-e., <||g||Mq(Q) < N9llma(a) < q_ngHMq(Q))
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e It is clear that LI(Q2) C MY(R2), let us prove it, if g € LY(Q2), we have

K {z e Q: lg(a)] > k) | s/ 19/ dz
{lg|>k}

< [ laftde = gl oy

then, Ag(k) < [|gl|74 (o) and g € M (). Moreover, ||gllsa) < ll9llLae)-

Proposition 1.3.4. A useful property of weak Lebesque spaces is the following version of Hélder’s

inequality. Let E C Q,g9 € M%(Q),r < q, then

1_1

1
q " 1
lolaery < () B lallwece

it is then immediate that M(Q2) C M"(Q) if r < q.
Remark 1.3.5. In similarly with the anisotropic Sobolev spaces, we employ conventional notations
for the vector/matrix-valued versions of weak Lebesgue spaces.

We recall the definition of weak Lebesgue spaces (Marcinkiewicz spaces) with variable exponents.

Definition 1.3.6. Let p(-) € C(f2) such that p~ > 0. We say that a measurable function u :  — R

belongs to the Marcinkiewicz space MP()(Q) if

HUHMP(‘)(Q) = ig%)‘HX{\ub)\}HLP(‘)(Q) < 0, (1.3.1)

where x4 denotes the characteristic function of a measurable set A.
Proposition 1.1.4 suggests that (1.3.1) is equivalent to asserting the existence of a positive constant
M such that
/ M) dg < M, for all A > 0. (1.3.2)
{lu[>A}

The following results are form [82].

Proposition 1.3.7. Let p,q € C2(Q). If (p—q)~ > 0, then

LPO(Q) ¢ MPO(Q) ¢ MIO)(Q).
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Lemma 1.3.8. Let 5(-),7(-) in C(Q) such that r~ > 0, (n — )~ > 0. Ifu € M"(Q), then
lu|"®) e LYQ). In particular, M")(Q) € L™(Q) for all n(-),r(-) > 1 such that (n —r)~ > 0.

Moreover, the following property holds.

Lemma 1.3.9. ([61]) If u € MPO)(Q), with p~ > 0, then
1

where M is the constant appeared in (1.3.2).

Remark 1.3.10. We use standard notations for the vector and matrix-valued versions of the space/

norm introduced above. For example, the R%valued version of AM4() () is denoted by Mat) (Q; RY).

1.4 Truncation function

In the following, our attention is directed towards the introduction of the truncation function, a
pivotal component in our analytical framework. We expound on the truncation function, aligning its
values within R? through the application of the tensor product. Moreover, we explicitly determine
the derivatives of the truncation function, shedding light on its mathematical intricacies.

First of all, we begin by the definition of tensor product a ® b of two vectors a,b € R% a =
((ai)izl’l_.’d>T and b = ((b,-)iil’.“’d)T, is defined to be the d x d matrix of entries (a;b;)

ij with

1,7 =1,...,d. Then

®: RYxR?T — M

(a,b) —a®b= <<(aib]')j—1,“.,d)i1’._.7d>T )

18



d d
here M?*? denotes the space of real d x d matrices equipped with inner product a : b = Z Z a;;b;j.
i=1 j=1
Moreover, we can write

arby azby -+ aghy

arby asby -+ agbo
a:b=

aibg azbg -+ agbg

Proposition 1.4.1. If u : Q@ — R is a measurable function such that Tj(u) € Wl’?(')(Q) for all

k > 0, then there exists a unique measurable function v : Q — R? such that
VT (u) = vigy<py a-e. inQ, Ty(t) = max {—k, min {k,t}} (1.4.1)

Furthermore, if u € Wol’l(Q) then v coincides with standard distributional gradient of u.

The truncation function will be used repeatedly to derive a priori estimates for our approximate
solutions. For that reason, we present for any k£ > 0, the spherical radially symmetric truncation
Ty by

T,: R —R?

5, if s <k,
s  —Ti(s) =

k2 if s> k.
||

The mapping s — Tj(s) as a mapping from R? into R? is not differentiable at s € 9. We clarify

the derivative of T}, as follow, we begin by the first case, if |s| < k then we have

051 05 054

851 881 851

Os1 05 054
DTk(S) — 682 882 882 =7

9s1 0Osp 954

0sq 0sg 084
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d
It is worth noting that, the Euclidean norm of a vector s € R? is denoted by |s| = (Z \sl\2>
=1

Therefore, if |s| > k : Ty (s) = <k81|, ey |Sd|>, then we can express our derivative as following
s s
k < s 5182 $154
= (]s] - 2 _p2ie2 _poted
|s|? |s] El Elk
sk <|S| ~ 85> U L
DTi(s) = s e\ P
8481 8452 k S?l
_podct 242 . _2d
P P (- 1)
8% §189 -+ 8184
k I S9281 S% et 89284
sl |52
2
S4S1  Sds2 -t S4

Thanks to the definition of tensor product, we deduce that

DTy, : R?* — Mxd

I, if |s| <k,
s  — DTy(s) = " (5® )

T (I_ 2 > 9 Zf ‘S‘ > k?

s sl

Remark 1.4.2. We have the following equality for all s € R?

[sl, if sl <k,

1
2

Ti(s)] = (14.2)

E, if |s|>k.
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Furthermore, we define the truncation function T,j : Rt = RT as follow

sl, if sl <k,
T (Jsl) = (1.4.3)

k, if |s|>k.

From (1.4.2) and (1.4.3), we have the following equality

Tk ()| = T, (Is]). (1.4.4)

It is important to observe that s € R? represents a vector, while |s| € RT represents a norm value.
Therefore, T},(s) on the first side of the equality (1.4.4) is different from T}’ (|s|) on the right-hand

of this equality.

We explore the following cubic truncation function

Te(y) = (Tk(y1), s T(va))

= (max(—k,min(k,y1)), ..., max(—k, min(k, yq))) ,

which satisfies

T < lyl, [Tk(y)| < dk. (1.4.5)

For a comprehensive discussion on Ty, 7k, and other test functions pertinent to elliptic systems, we
direct the reader to [57]. This topic is indeed nuanced and requires careful consideration.

Within this section, we intricately explore fundamental outcomes tied to surjectivity, a pivotal
factor in establishing the existence of solutions to nonlinear problems involving pseudo-monotone
operators. Before unveiling the distinguished theorem concerning pseudo-monotone operators, it is

imperative to introduce key definitions referenced in [14].
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1.5 The theory of monotone operators with application

The method of monotone operators, initiated by G. Minty in 1962, has played a pivotal role
in the development of the theory of pseudo-monotone operators, which has undergone significant
advancements and found numerous applications. The extension of this concept to multi-valued
operators and its application to variational inequalities have been extensively explored, as discussed
in [18, 19, 20].

Throughout the ensuing discussion, we denote V' as a real Banach space, with V' representing its

topological dual.

Definition 1.5.1. ([85]) An operator
L: v —V
u = (v (L(w),0)),

is said to be monotone if, for every u,v € V, the inequality (Lu — Lv,u —v) > 0 holds, and it is

strictly monotone if this inequality is strict whenever u # v

Example 1.5.2. We examine the function h : R — R defined as follows

WP i Ju] £0,
h(u) =
0 if |ul=0.

if p > 1, then h is strictly monotone. This is evident from the inequality
(JufP~2u — |v[P~2v) (u — v) > c|u —v[?,

for all u,v € R and fixed p > 2,¢ >0

Definition 1.5.3. ([85]) An operator £ : V — V' is said to be a bounded if the image of a bounded
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subset of V' is a bounded open subset of V/, ie.,
YC > 0,3C" >0 |jully < C = |L(u)||,s <C.

Example 1.5.4. Let Q denote a bounded open set in RY, and let V = T/VO1 P(Q) equipped with the
norm |[v|ly = |||[Vo|||ze. It is known that V' = W~ ().
Consider the operator L(u) = —div (|Vu|p_2Vu), where 1 < p < oo. For any ¢ € Wol’p (Q), the

definition yields

(L(u), ) = / |VulP~? Vu.V de.
Q

We assert that the operator £ is bounded on V. Take p > 0, and for u € B, (0, p), we can represent

[Lolly, = sup  [(Lu,p)|=  sup
{weVillpllv<1} {peVllellv<1}

/ |VuP~2Vu.Ve dx
Q

But

/\Vu]Z’zVu.V@’ g/ \VulP~! V| dx
Q Q

1 1

< </ |Vul? d:c>p </ Vgod:c)p
Q Q
= [lull% llellyr < o2

Therefore, ||Lull,» < pP~'. This establishes that £ (By (0,p)) C By (0,p771).

Definition 1.5.5. Consider a reflexive Banach space V. An operator £ : V — V' is said to be

coercive if, for all v € V,
(Lv,v)
[ollv

— 400 as |jv|ly — +o0.

Definition 1.5.6. ([7]) Consider a Banach space. An operator £ :V — W is said to be hemicon-
tinuous at point ue, of V' if, for any sequence (uy), converging to u~ along a line, the sequence

(Lup,)y, converges weakly to £(u) in W. More explicitly

Vo € V.V An)n € Ry A, — 0, L (Uoo + A\pv) = Lugo weakly in W.
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If £ is semicontinuous at every point of V, it is described as said to be semicontinuous on V. In
. ! . . . .
reflexive spaces, when W = V', and passing from sequential to continuous, we can define hemicon-

tinuity on V can be defined by ensuring that
Vu,v,w € V the application A — (L (u + A\v),w) € R,

is continuous for all )\ in R.

Example 1.5.7. The operator L : Wol’p(Q) — WP (Q) defined by L(u) = —div (|Vu]”_2Vu) is
hemicontinuous. Consider u,v,w € VVO1 P(Q) and A € R. We aim to demonstrate the continuity of

the function from R to R given by

A= (L(u+ ), w)

= /Q (IV (u+ M) P72V (u + M) .V dz
is continuous. Let A € R be fixed, and let (A,),, be a real sequence converging to A. Define
Kn(z) = (IV (u+ ) [P7%) .Vw.
Since a; are Carathédory functions and A\, — XA in R, we have
K, — K ae. in Q.

Consequently,

(L(u+ Apv), w) :/ ’(Vu—l—)\an)P_Q,(Vu—i—)\Vv)’\Vw]
Q
g/ IV + A\ VolP ™ [Vw| da
Q
<Gy [ (I9a ™+ P (Vo) [Vl da
Q

< c/ (Va4 907 Vo] di,
Q
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where C), = max{l,Qp_Q}. Since the sequence (\,), is bounded, the Dominated Convergence

Theorem implies

lim (L(u+ Apv), w) = (L(u + Av), w).

(g dee]
This establishes the hemicontinuity of L.

Definition 1.5.8. ([14]) Consider a reflexive Banach space V. An operator £: V — V' is deemed

pseudo-monotone if it satisfies the following conditions
e [ is bounded.

e For any weak convergence u,,, — win V', and if lim sup( L, , u,—v) < 0, then lim inf (L, , ty, —
m——400 m—+00

v) > (Lu,u —v), for every v € V, where (.,.) denotes the duality product between V' and V'
The fundamental theorem on pseudo-monotone operators is credited to Brézis, as detailed in
[22, 85].

Theorem 1.5.9. Suppose the operator L : 'V — V' is both pseudo-monotone and coercive on the
real, separable, and reflexive Banach space V. In this case, for every f € V,, there exists a solution

u €V such that L(u) = f.

Theorem 1.5.10. (Browder and Minty) Consider a reflexive Banach space V' and an operator

L:V =V with the following properties

Boundedness,

e (Coerciveness,

Hemicontinuity,

o Monotonicity.
Under these conditions, for every f € V,, there exists a solution u € V' such that L(u) = f.

Example 1.5.11. (Application of Theorem 1.5.10) Consider a bounded open subset €2 in R, and
let the operator L : Wol’p (Q) — W1 (Q) be defined by

L(u) = —div (|VuP>Vu), 1 < p < .
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The operator L satisfies all the hypotheses of Theorem 1.5.10, as illustrated in examples 1.5.4,
1.5.2, and 1.5.7, where it is shown to be monotone, bounded, and hemicontinuous. Moreover, £
is coercive: for all u € V, (Lu,u) = |lul},. Consequently, according to Theorem 1.5.10, for every

feW=bP (Q), there exists u € Wol’p (Q) such that

—div (|VulP7?Vu) = f.
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Chapter 2

Anisotropic elliptic systems with

variable exponents and regular data

In this chapter, we establish the existence of distributional solutions for anisotropic nonlinear
elliptic systems with variable exponents and regular data. The system we aim to investigate is

presented under the specified conditions outlined below.

2.1 Setting of the problem and assumptions

Let us defining the following anisotropic nonlinear elliptic systems

N
- Z D; (ai(z,u(z), Diu(z))) + F(z,u) = f(z), = €Q,
i=1 (2.1.1)

u(z) =0, x € 09,

where Q is a bounded open subset of RN, N > 2 with Lipschitz boundary 99, and the right-hand

side f belongs to <W01’?(')(Q; Rd)> . We assume that the variable exponents p;(-) are in C4(2) for

alli =1,...,N. The function u : Q@ — R? where u = (u, ..., uq) for d > 2, represents a vector-valued
ou
ox;
We make the assumption that the vector fields a; : € x R? x RY — R? where i = 1,..., N are

function, and D;u = denotes the partial derivative of u with respect to x;.
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Carathédory functions, meet the following conditions: for almost every z € €, and all v € R, and

all &, 5, € R?, there exist positive constants a1, as. The conditions are given by

a1 €7 < ai(x,u, €) €, (2.1.2)
N 1‘%
Jai(@,u, &) < ag | Bl + [ufP™ + ) ¢ ,|h] € LN(9), (2.1.3)
j=1
(i@, u,€) = aifw,u,€)) . (6 =€) >0, £ €, (2.1.4)

Additionally, consider the perturbation F' :  x R? — R?, which depends on the vector-valued

function uw. This function is Carathédory and satisfies the following conditions for almost every

T €
F(z,y). (y - y’) >0, Vy,y €RY, |yl =y, (2.1.5)
F(z,y).y > [y, vy e RY, (2.1.6)
sup |F(z,y)| € LY(Q), Vt € R. (2.1.7)
lyl<t

2.2 Statement of the result along with its proof

For the systems (2.1.1), the following existence Theorem holds.

/

Theorem 2.2.1. Under the hypotheses (2.1.2)-(2.1.7), let f € (W&’?(') (Q;Rd>) . Then, there

exists a function u € W&’?(')(Q;Rd), which allows to solve (2.1.1) in the sense

N
/QZai(x,u,Diu).Digp dx + /QF(JJ,U).()O dx = (f.), (2.2.1)
i=1

for all p € C° (L RY).

Proof. To establish the aforementioned Theorem, let us examine the sequence of approximate prob-
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lems

N
- Z D; (a;(z,u(x), Diu(z))) + Fp(z,u) = f(z), = €Q,
i=1 (2.2.2)
u(z) =0, x €09,
where u € Wol’ﬁ(')(Q;]Rd) and F,(x,s) = M,Vn € N. Note that

|Fy(x, 8)| < |F(z,s)| and |Fy(x,s)| < n.

We denote by L, : W&’?(')(Q;Rd) — (Wl’ﬁ(')(Q;RdD the operator, for u,v € Wol’?(')(Q;Rd)

N
Ly :u— (v — / Zai(az,u,Diu).Divde’—}— / Fn(x,u).vdx) .
0 Q

‘We consider

N
b(u,v) = / Zai(x,u, Dju).D;v dz,
Q

i=1

and

cn(u,v) = /QFn(x,u).v dzx,

and we seek u € WOL?(’)(Q; R%) such that

b, v) + cn(u, 0) = (f,0); Vo € WEP O (@ RY). (2.2.3)
The generalized problem (2.2.4), associated with (2.2.2) is equivalent to

La()(v) = (£,0), Y0 € Wy TO(@RY,
where L, := B+ C,, with B,C, : Wol’?(')(Q;Rd) — <W01’?(') <Q;Rd>>/ characterized by
(B(u)(v)) = b(u,v); (Cn(u)(v)) = cn(u,v).

Here (.,.) denotes the duality pairing between W&’?(')(Q;Rd) and <W01’?(') (Q;Rd»/.
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e The operator £,, is bounded on W&’?(')(Q; R%)

(i) The boundedness of B. Using Holder’s inequality and the given hypothesis (2.1.3), we obtain

[(Bu),v)]
N
gz/ |a; (2, u, Dyu) || Div| da
i=1 7%
N N l_ﬁ
<Y [ (bl P+ Y D | Dolde
i=1 7% j=1
N N 1_7)1-%9&)
< 2042;” |+ [ul? +;\Dju’pj(x) HLP;(Q(Q;Rd)”DiU”Lpi(~)(Q;Rd)

1—-L

N N »~ N
< 2a Z 1 +/Q Al + u” + Z |[DjulPi® | da Z ”D’W”Lp;(‘)(Q.Rd)
i=1 i=1 ’

J=1

1777
P

N N _
<205 ) 1+/ |h| dx+/ || dx+2/ 1Dl @ da 10113170 (0,0
i=1 Q @ j=1"9 0 ’
1—-L
< 20N (14+C+ [ [P do + [Jul™ o
S 20 5 WEPO (Ra) wh PO (QRd)’
(2.2.4)

Therefore, given that the solution |u| belongs to LP (Q), it is due to the existence of I € {1,..., N}
such that p,; > p~. Consequently, u € P (Q;Rd> by applying Lemma 1.2.3. Based on the final
estimate (2.2.4), we can infer that B is bounded.

(ii) On another note, leveraging Holder’s inequality, we obtain for all u,v € VVO1 70 (Q; Rd)

[{Cn(u),0)| =

/ F,(z,u)vdz
Q

< [ 1B wllo]do
Q
< (4 L F
= E‘FW ” n(xju)”Lp;(‘)(Q;Rd)HUHLP+(-)(Q;R(1)
1

1
1 ’ I\ —
< _ P () (*}) A .
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This, in turn, implies the boundedness of C,,. Additionally, combining the results from (i) and (ii),

we conclude the boundedness of £,,.

e Next, we consider the coerciveness of the operator £, on VVO1 ’?(’)(Q; R%). Indeed, by using

the assumptions (2.1.2) and (2.1.6), we have

N
Z/ a; (z,u, Diju) .Diu
i=1 79

>Oél_

(Ln(u), u)

”uHWOI’?(‘)(Q;Rd)

HUHW()L?(')(Q;Rd)

N
Z/ | DiulPi®) da
i=1 79

> oa1—
HUHWOI’?(‘)(Q;Rd)

al . D . i
Z min H‘DiuHLpi(')(Q;]Rd)? HD'LUHLPZ()(QVRd)
=1

> aq

HUHWOI’?(')(Q;Rd)

N _
p_
(ZZ_; HDZU”W&’7<‘)(Q;R11) - N)

Hu|’W01’?(‘>(Q;Rd)

N 2
a1 (if Z ||DiuHLm(-)(Q;Rd)> —aiN
=1

HUHW&’?(‘)(Q;RCZ)

> o

= Ol e~ T
NP: W&’?(')(Q;Rd) HUHWOI’?(')(Q;Rd) '

This implies that £,, is coercive.

e The operator L, is hemicontinu.

Let u,v, and w € W&’?(')(Q; Rd), and A € R. We aim to prove the continuity of the function from
R to R given by

A =Ly (u+ W), w)

N
= / Z a; (x,u, D; (u+ \v)).Dywdz.
Q

=1
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Let A € R be fixed, and consider the sequence (), in R converging to A. Define

K(z) =

a; (x,u, Diu(u + A\pv)) .Diw.

Since a; are Carathédory functions and A\ — A in R, we have for k£ tends to +oo

a; (x,u, Diu(u + A\pv)) = a; (v, u, Diu(u+ Av)) a.e. infd.

(2.2.5)

Furthermore, from the hypotheses (2.1.3) and as the sequence (\)x converges, it is bounded.

Therefore, we have

la; (z,u, Diu(u + A\gv)) .Diw| < |a; (x,u, Diu(u + Agv)) || Dijw|

1
pi(x)

N
< a2 ’]’L’ + ”U/‘ﬁ_ + Z ]Dju + )\ijvlpj(:B) ]Dlw]
j=1
N N -5@
< an [ Bl H P 4+ Cp QY Dl ) 4 [P || Dol () |Diwl
=1 j=1
N N 1’%
__ ’ X / + .
< ag [ 1B+ ufP” +C, S D@ 4 C (|Ak|p+ + 1) 3 |Djulpi @ Dyl
j=1 j=1
_ 1
. , N ) N ! p_
< oo | |hl+[uf” +C)> D™ + C,C > Dl ) | Dyw),
j=1 j=1
where C’;D = 1/min {1, 2171’1}. Put
_ 1
o ) N , N ! p_
GF@) = | |h|+ |ufP” +C, Y [DjuPi® + C,C Y |Djul ™) | Diw,

Now, let’s demonstrate that the function |G¥| is integrable in L' (Q) for all j = 1,...,N.

J=1 J=1

Conse-
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quently, we can apply Holder’s inequality

1—-L

P

N N
/ G (@) |de < ||| |p] + |uf” + C’; Z |DjulPi® 4+ C;CZ | D[P @)
Q :
7j=1

j=1 ;
i) (;R4)

N
Z HDwHLpi(J(Q;Rd)
=1

1—-L
~

N N
< 1+/ B] + [ulP” +C, > [Dyulp® + €, > |Djuli ) | da
(9] X X
7j=1 7j=1

N
Z HDinLPi(~)(Q;Rd) :
i=1

Given that |h| € L' (Q), |u| € IP (Q), and u,v,w € ng,?(-) (Q;Rd>, we can conclude that |G¥| €
L' () using Hélder’s inequality. Consequently, by the Dominated Convergence Theorem, we deduce

the following

i, f K@ e = i (L (M) ) do
N
= 1l i(@,u, Di(u+ Agv)).D;
kJI-sI—loo/Qiz;a (z,u, Di(u 4+ A\gv)).Diw

N
= / Z a;(z,u, Di(u+ \v)).D;w
Q=
(L (1t M), w) = /Q K(x)dx,

which implies the hemicontinuous of B.

e J3 is strictly monotone.

Let u,v € W&’?(‘)(Q;Rd) with u # v, by the hypothesis (2.1.4), we have
(B(u) — B(v),u —v) = / (ai(z,u, Diu) — a;(x,v, D;iv)).D; (u—v) dx > 0.
Q

Consequently, the Theorem applies and ensures existence of least one distributional solution u, €
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Wol’ﬁ(')(Q;Rd) to (2.2.2) in the sense that
N
/ Z ai(l', Un s Dzun)DﬁOd:p -+ / Fn(xa un)'()@dx = <f7 90)7 (2'2'6)
Qi Q

for all p € Wolj(')(Q;Rd).
Finally, we pass to the limit in the approximate systems to obtain the existence of a distributional

solution for problem (2.2.1). Inserting u, in (2.2.6) and by (2.1.2) and (2.1.6), we have

N
L |Pi(T)
D3 1D o < 171 g T 70

By using Young’s inequality and (iii) in the Proposition 1.1.4, we have

ay . )
IS ||unllwg,7<'>(Q;Rd) <CE) I

e + Nag,&* >0,
<Wé’?<'>(Q;Rd)) " Wol’?(')

(4R9)

a
it suffice to take €* = !

— to get the boundedness of the sequence u,, in WO1 ’?(')(Q;Rd) (still
9 NP

denoted (uy)n). Then, there exists a function u € Wol’ﬁ(')(Q; R%) such that
uy, — uweakly in W&’?(')(Q; R%) and a.e. in Q.

We present the following Lemma

Lemma 2.2.2. Assume (2.1.2) -(2.1.4), and let (uy)n be a sequence in Wol’ﬁ(’)(Q;]Rd) such that

Uy, — u weakly in W&’?(')(Q;Rd), (2.2.7)
and
N
/ Z (ai(z, Uup, Diuy) — ai(x, upn, Diw)) .D; (up, —u) dv — 0, asn — +o0, (2.2.8)
@ i=1
Then
Up —> win W&’?(')(Q;Rd)and a.e. infl, (2.2.9)
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for a subsequence.

We adopt the techniques outlined in [5, 86] with certain modifications.

Proof. Consider A!, = (a;(x, un, Ditiy) — a;(, tup, D)) .Dj (up, — u). According to (2.1.4) we have

A! is a positive function. Moreover, from (2.2.8), we have
AL — 0 in LY(Q;RY) as n — oo.

Thanks to (2.2.7), we have u, — u a.e. in Q. Since A}, — oo a.e. in Q there exists a subset E in

2 with measure zero such that for all x € Q\E,
lu(x)| < oo, |Diu| < 0o, h(z) < 00, up — u, AL — 0.
Given the hypotheses (2.1.2) and (2.1.3), we have

Al (z) = (ai(2, un, Diup) — ai(z, Uy, Diw)) .D; (u, — u)

= a;(x, Up, Diup).Divy + ai(z, un, Div).Diu — a;(x, up, Diuy).Div — a;(x, up, Diu).Diuy,

_1
l_Pi(I)

N
> a1|Diun|Pi($) + a1|Diu|Pi($) —ay | |h|+ JunP” + Z |Djun|pj(x) | Djul
j=1
N l_ﬁ
—ay [ |h] + unl?” + ) |DjulP® | Ditin|
j=1
o1
N p;(x)
> 041|Diun’pi(z) —Cp | 1+ (Z ‘Djun‘pj(x)> + ’Dzun’

=1

N
(2 1 )
> a1|Diun]p’( ) C, (1 + c (1 + ZE 1 |Djun|pl( ) 1) + |D1un]> ,

1—-L
where C, depending on x, without dependence on n, and C' = min {1, 9 7t }

Since u, — wu then (uy), is bounded, we obtain

 [Diug i@ [Diun| | Dyuplpi@-1
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Using the standard argument, we conclude that D;u, is bounded almost everywhere in €. Specifi-

cally, if |Dju,| — oo on a measurable subset E € Q, then

/

lim [ AY(z)dz > lim/ | Diun|Pi®) [ o — Co —— — Co _ CI_ dx = oo,
n—0 Jq n—=0 /g |Diu€‘pt(x) |_D2’u,n| |Diun|pl(x)_1

which is absurd since A}, — 0 in L1(Q; RY).

Let D;w an accumulation point of D;u,, we have |D;w| < oo and by the continuity of a;, we obtain
(ai(z,u, Diw) — a;(z,u, Diu)) . (Dyw — Dju) = 0.
Thanks to (2.1.4), the uniqueness of the accumulation point implies that
D;uy, — D;u ae. in Q,Vi=1,...,N.
Since (a;(x, up, Diuy)),, is bounded in Lp;(')(Q;]Rd) and for all i=1,...,N, we have
a; (,Up, Diuyp) — a; (x,u, Dju) a.e. in€Q.
Then we can establish that
a; (T, Uy, Diuyp) — a; (x,u, Dju) in Lp;(')(Q;]Rd).
Let Y,; = a; (z,un, Diuy,) .Diuy, and Y, = a; (z,u, D;u) .Dyu, then
Vi — Viin Lt (Q;Rd> for alli =1, ..., N.
According to the condition (2.1.2), we have

a1|Diun|p"($) < a; (x, up, Dijuy) .Diuy,.
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Let Z,; = Diup, Z; = Diu and Y, ; = ’A, Y, = —i, in view of the Fatou Lemma, we obtain

oq oq

/ 2.Y;dx < lim inf/ <?n,i +Y,; — | Zni — Zi‘Pi(x)> de,
Q Q

n—o0

then,

0<— limsup/ | Zni — Zi|pi(z) dz,
Q

n—oo

and since

0 < lim inf/ | Zni — Zi\pi(x) dx < lim sup/ | Zni — Zilpi(x) dx <0,
Q Q

n—00 n—0

it follows that

n—o0

lim / | Dity, — Diu|P"®) da: = 0,
Q

and we get

Djuc — Djuin Lpi(')(Q;]Rd) and a.e. in €.

In the following, by (2.2.10) this implies for all i = 1,..., N

a; (T, Up, Diuy) — a; (z,u, D;u) LPi()(BRY),

(2.2.10)

from (2.2.7) and Lebesgue dominated convergence Theorem, we obtain, for every ¢ € VVO1 70 (Q;RY)

and allt=1,....N

a; (T, U, Diuy) .Dip — a; (x,u, Dju) .D;p.
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Chapter 3

Anisotropic elliptic systems with
variable exponents and degenerate

coercivity with L' data

Within this chapter, drawing from the insights of the paper [1], our attention is directed towards
nonlinear degenerate anisotropic elliptic systems that manifest variable growth. More precisely, we
investigate the case in which the right-hand side term f is a member of L™(€2; R?). To establish the
existence and regularity of distributional solutions, we engage with a suitable functional framework,
incorporating anisotropic Sobolev spaces and weak Lebesgue (Marcinkiewicz) spaces characterized

by variable exponents.

3.1 Setting of the problem and assumptions

In a bounded open domain © € RY, where N > 2, with Lipschitz boundary 99, we consider the

Dirichlet problem for the elliptic systems given by

N
— Y Dil(ai(z,u(x), Diu(x))) + F(z,u) = f(z), = €9,

i=1 (3.1.1)
u(z) =0, x € 09,
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ou
(%:i
derivative of u with respect to z;, and the vector fields a; : Q@ x R x R? - R? and F : Q x R? — R?

here, u : Q@ — R d > 2, represents a vector-valued function, D;u = denotes the partial
are Carathédory functions.

We assume that the vector fields a; : 2 x R? x R - R% i = 1,..., N, satisfying the following
conditions: for almost every z € Q, and all v € R? and all f,fl e R% i =1,...,N, there exist

a1,z > 0 and ¥(-) € C(Q) such that y(-) > 0 for all x € 2, and we have

aM<a»(m’u§)§ (3.1.2)
L ful)r ) =T -
N 1’%
Jai(a,u, &) < ag | [B]+ [uff™ + ) ¢ ,|h] € LX(9), (3.1.3)
j=1
(i@, ,€) = aifw,u,€)) (=€) >0, 6 £ € (3.1.4)

Moreover, the variable exponents p; :  — (1,4+00) and s : @ — (0,+0c0) are continuous
functions. Let the perturbation F : Q x R? — R depends on the vector-valued function u, which

satisfies the following conditions for almost every x € 2

F(z,y). (y—y) 20, Vo5 € R, [yl =y (3.15)
F(z,y)y > |yl"™*, vy e RY, (3.1.6)
sup |F(z,y)| € L1(Q), Vt € R. (3.1.7)
ly|<t

We introduce the following notations

N
1 1 1 1 1 / m
+ = Z - : +
Y =maxy(r), — = — P == —, p; =minp;(x), p; = maxp;(x) m = ——.
xeﬁ ( ) p($) N — pl(x) N — ; 1 xeﬁ 7/( ) ) xeﬁ Z( ) m — 1
Assuming
0<~" <pz)—1. (3.1.8)

39



The fundamental problem in extending the results from an equation to a system is to obtain an
estimation of the truncation, as the truncation differs for scalar and vector cases. Therefore, an
additional structural condition is needed to prove the existence of a solution for the elliptic systems
with L™ data. To overcome this obstacle, we have developed a novel technique and we use the
following anisotropic version of the so-called (right-) angle condition: for all x € Q, £ € R, and all

s € R with |s| < 1, we have
ai(z,s,6).[I—s®s)&>0,i=1,..,N, (3.1.9)

here I — s ® s represents the rank d — 1 orthogonal projector onto the space orthogonal to the unit
vector s € RY. Please refer to the assumed condition in [35]. If @;;,1 = 1,...,d denotes components

of the vector a;, then the angle condition can be stated more explicitly as

d
Z agq (ZL', 3,5) gl (5l,i - Sisl) > 07

il=1

here 6;; = 1 and §;; = 0 if I # i. In the case d = 1, the assumption (3.1.9) is void, and the
hypotheses (3.1.2)-(3.1.7) are sufficient to prove the results in this paper.

In particular, (3.1.9) implies for all s, £ € R? the crucial property, for all i =1,..., N

ai(z,s,£).DTy(s)E > ai(x, s,€).EX{|s|<k}- (3.1.10)

As prototype examples, we consider the following models

N ulxz pi(ﬂi)*Q iu(x
—Zm(’“ ) "D ()>+IU(w)IS($)‘1U(w)=f(:v), v en,
i=1

(1 + Ju(a)))"™ (3.1.11)

u(x) =0, x €09,
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and

pi(z)—2

N U 2 s u(x
-2 (U(U(x))g) v |( <) ‘>|>v<x>D | )> +u(@) PO (@) = f@), = €9
i=1 ulx

u(x) =0, x €09,

here v : RY — (0, 400) is a bounded continuous function. Moreover, we have f € L™(Q;R?),

s(+), and the exponents p;(-) are restricted as in Theorem 3.2.3.

3.2 Statement of the results

Definition 3.2.1. A function u is a distributional solution to systems (3.1.1) if
ue Wy (4 RY) and ag(x, u, Diu), F(x,u) € L'(Q;RY), i=1,...,N.
Additionally
N
/ Zai(a:, u, Dju).Djp dx +/ F(z,u).@dx = / fpde, (3.2.1)
0 Q Q

for all ¢ € C°(Q;RY).

Our main results are the following

Theorem 3.2.2. Let P (-) = (p1(.), ..., pn () € (C+ ()N, B(-) < N such that (1.2.4) holds. Under
our given assumptions (3.1.2)-(3.1.7), let f € L™ RY) with m as follow
Np()

m> =N T (3.2.2)

Then the systems (3.1.1) has a distributional solution u € W&’?(')(Q;Rd).
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Theorem 3.2.3. Let f € L™(Q;RY), where m is defined as in (0.0.5) and vT satisfies (3.1.8). We
assume that p;(-),i = 1,...,N, and s(.) are continuous functions on 0 such that p(-) < N for all
i=1,..N

s(-) > pi(-), (3.2.3)

and
Nm(p() =1 =74 + (LA () _
N(p() 1) <p
Nm(B() =1 =7*) + (13O = mp()
(T 7D — min() '

Let a; and F be Carathédory functions, where a; satisfies (3.1.2)-(3.1.4) and (3.1.9), and F satisfies

(3.2.4)

<

(3.1.5)-(3.1.7). Then the systems (3.1.1) has a distributional solution u € VV1 7()(Q;]Rd) where

ri(-),i = 1,...,N are continuous functions on € satisfying

Nmpi()(p() =1 —=7")

1<r(0) < q —, Vi=1,...,N. 3.2.5
<4l = N —1-19) + L+ 10) —ma() 329
Remark 3.2.4. Let us remark that 1 < p(x) < N implies
NB() N
Np()+p() =N ~Bp()’
. . Np(-) o N
which means that the condition m < — — implies m < ——. Therefore, we have
Np(-) +p() - N p(")
qi(-) < pi(+) for all ¢ = 1,..., N. The lower bound of p;(-) guarantees pz‘l)(zl > 1 and the upper

Nmpi()(p() =1 -7")
Nm(p(-) =1 =") + (1 +7()(N —mp())
(3.1.8) ensures that (3.2.4) is well-defined.

Remark 3.2.5. If m =1, thenuEW()l7

> 1. However, the condition

bound of p;(-) guarantees

Npi(-)(P() —1—97)
PO)N —1—=7()) = Ny =~())’
which is the same result as in Theorem 3.1 in [64]. Additionally, if m =1 and d = 1, and ~(x) = 0,

then u € W[)lﬁ

D@ RY) with 1 < () <

Npi(-)(p(-) — 1 . )
()(Q) with 1 < 7;(+) < P O)(p() ), which is the same result as Theorem 3.1 in
p()(N 1)
[11].

In the subsequent section, we introduce a technical lemma, a pivotal outcome of our work, which
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serves as a key element in proving the estimate of the modulus of u in M0 (Q).

3.2.1 Technical Lemma

The following Lemma assumes a central role in substantiating the estimate of the modulus of u

within the space M) (Q).

Lemma 3.2.6. ([1]) Let p;(-) and s(-) be continuous functions, where

and m satisfies
Np(x)
Np(z) — N +p(x)

l<m< (3.2.7)

Let g be a nonnegative function in Wol’ﬁ(')((l). Suppose that there exists a constant ¢ such that

9/l L0y < ¢, (3.2.8)

and

7

N
2/{ . 1Dig|P" ™) da < c(1 + k)7 (/Q T ()™ d;v) " (3.2.9)
i=1 9=

Subsequently, there exists a constant C, depending on c, for all k > 0, ensuring that

/ K@ 4y < O, g(n) = Y@ =1 =0T g
{g>k} N — mp(x)

Proof. We initiate our analysis by examining the case, for all z in Q

Nm(p() =1 —~%)
N — ()

q(z) < (3.2.10)

Firstly, let ¢™ be a constant satisfying

. Nm(p(z) —1—~%) Nm(p~ —1—77)
_ + _

max q(z) = ¢ < min = )
z€Q a@) =4 z€Q N — mp(x) N —mp~
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Additionally, given (3.2.7)

——x

m< @) =m>prpt= . (3.2.11)

Thus, we can express

([rors)”

(/\T+ T @) dx)l'
- (/ T (g) dx)

(3.2.12)

| /\

Using the hypothesis (3.2.9), we derive

N N
DT (g Pi(®) do — Dig Pi(2) 1
k
i—1 78 i—1 J{9<k}

e wy ([ o dx>’”

Exploiting the fact that |D;T k(g)|Pi < ]DiT,:r(g)|pi(x) + 1, we can reformulate the preceding

inequality for all i =1, ..., N as follows
— N —_—
[ ipmi@r s <Y [ inT@r
Q i=1
a1

< (14 k) (/ T (g)|™ dm)m + 19| -

1

<e(l+k) (/|T+ jm dx)m I

<ci(1+ k) <</]T+ )™ d:zc)"t +1>

Subsequently, we deduce

lz_v[1</9 DT (9)[7 daz) e < o(l+k) %T <</ T ()™ m)”ﬁ + 1)1)1_. (3.2.14)
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By virtue of the Sobolev inequality, we attain

i
(/ IT3F (g) dx) < c3(l+ k)7 ((/ T} (g)|™ dx) " + 1) (3.2.15)
By combining (3.2.12) and (3.2.15), we arrive at
(/ T (g) da:> - <e(1+k)" [k ( (/ 1T (9) da:)m + 1) : (3.2.16)
Drawing on (3.2.11), we can articulate
EW <R
This observation, coupled with the estimate (3.2.16), implies
?—*
([mr@p )" caa+mr
Q
-2
(3.2.17)

(1+k)1jm;’* (/ T ()P dx>"1/+(1+k) p

<er(L+k)HT __<</\T+ dm) +1>.

a1
We can distinguish between two cases. First, if < / 1T (g)| daz) "™ <1, and as m > 1 then,
Q
D 1 D
pr om o pt

> </|T+ dx>_+9|<ck”

([ wr

As a consequence, it follows
1

(/ T3 (9) d$> oo < esk”

45



It is evident that |T}' (g)| = k on Ay, such that Ay = {x € Q:|g| > k}, which implies

2 __
A7 < ek~ @ 1) (3.2.18)

1
Here, m > 1 ensures that the exponent f—_* — — > 0. Direct calculation implies that
D m

Nm(E~ —1—+71)

’Ak’ < C7k7 N—mp™

1

In the second case, if < / T (9)P dw) ™ >1, and from (3.2.17), we have
Q

</ T3 (9) dx) B < cg(1+k) 1+7 N </ T3 (9) dx)
p*,ﬂ Db 1 — % 2 7ﬁ
P A < ( [ wr dw)
Q

<es(14+ k) T

Subsequently,

Therefore, for £ > 1, and based on our direct calculation, we have

Nm(p~—1-57)

’Ak| < Cgk‘_ N—mp~

If k < 1, it is straightforward to observe that

Nm(p~ —1—+T)

A <l <k Ve
Nm@p~-1-9")
This proves that g € M N-mp~
Now, let us consider a continuous variable exponent ¢(.) on Q that satisfies the estimate (3.2.10).

Additionally, we have
5= _ 1 _ ~+
q+2Nm(p 17_7 )
N —mp

(3.2.19)
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Due to the continuity of ¢(z),p(z) on Q, there exists a constant § > 0 such that

Nm(p(y) —1-7)
N —mp(y)

min
y€Q(z,0)NQ

max
y€Q(x,6)NQ

<

a(y) (3.2.20)

where Q(x,) is a cube with center 2 and diameter §. Observe that € is compact and therefore we
can cover it with a finite number of cubes (Q;);=1,..; with edges parallel to the coordinate axes.

Moreover, there exists a constant v > 0 such that

0> 19| >v, Q:=Q;NQ, forallj=1,..,1 (3.2.21)

We denote by q; the local maximum of ¢ on §;, respectively (p;j the local minimum of p;(.) on
Q;), foralli=1,...,N.

Applying analogous arguments as before, but on a local scale, we observe that the inequality (3.2.13)

holds within the region €2;. Therefore

1
/ DT (g)|Pis dae < (1 + k)T / T ()™ da | +1 (3.2.22)
Q; Q;
Consequently, we obtain
1 1
7t m’ Pij
LD, <0k | ([ @] )
L703(9;) Q,
1
Ead # v ot
< cg(l4k)" (/ T ()™ dw) +1 + (14 k)P
Q.
J 1 L
, 2 , m’ P
< (14 k) (( T (g)™ dx) r1] 41
J
1
aAl w7 Pi,j
<ecs(1+k)Fid (/ T;F (g)|™ da:) +1
Q;
(3.2.23)

47



The anisotropic Sobolev inequality 1.2.2 implies that

[ meor w)” <all (il +Iomol, )" (224
g €z >¢ gl o= j ) = . -4
o " 6i:1 LFi (9) R LRG (p)
Expanding (3.2.6), we get
Pij <55, 55 = min s(z)
J

By using Proposition 1.1.4 in conjunction with inequality (3.2.8), we can deduce that

gl - Sl—l—/ g|Pii dz

| IILPW(QJ_) le |

<10yl [ gl ds
Q;

< 1+2\Qj|+/ |g]5®) da
Q;

< 1+2|Qj|+/ 1g]*®) da
Q;

!
<cy.

This implies that

z|-

1
o= N
+ n. Py ’ et
{/Qj T, (9)" dx} <] <1+ DT (g)||Lp;j(Qj)> : (3.2.25)

i=1
According to (3.2.23) and (3.2.25), we obtain

1

1
£ Np

1
- o , N , ! i
(/Q T (9)["s dfb‘) J <c]] /Q T ()™ da | +1

J

(3.2.26)

1

7 D,

! U m J
< ¢ (/ T (9)™ d33> + 1 :
Q;
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However, the inequality (3.2.12) remains valid on ;. Therefore, in light of (3.2.26), we obtain

Pj
— %

1
. 5_—* , B . m/
(/ T (g) s da:)J < (14 k) (/ 1T (g)[Ps dm) +1]. (3.2.27)
Q; 2

Put
ALl = [{z € Q;: |g(x)] >k}, k>0,5=1,..,1.
Applying a similar approach as before, this time at the local level, we can conclude that for k > 1
_Nm@; -1-9h)
Al <enk
Taking into account that, for all £ < 1
_ Nm@; —1-9")

ATl < |l N

Therefore,
Nm(p; —1-")

geM NP (Qy). (3.2.28)

Finally, since q(z) < ¢, for all z € Q; and all j =1, ...,1, we have that g € MI(Q).
7 J
Nm(p(z) —1—77")

Moreover, assuming ¢(z) = Vo € Q and let € € (0, ), then

N — mp(x)
/ 1@ = . < C. (3.2.29)
{g>t}
By letting € go to zero, we determine the proof. O
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3.2.2 Approximate problems

In order to prove our main results, let us consider the sequence of approximate systems

N

— Z D; (ai(z, Ty, (up(x)), Diup(x))) + F(z,u,) = fu(z), = €9Q,
i=1 (3.2.30)
un(z) =0, x € 0.

Let (f,)n be a sequence of bounded functions defined in € which converge to f € L™(Q;R?) with

m > 1, and verifies the inequalities
[ful <nand [ful <|fl, YneN. (3.2.31)

and F(z,uy) = Th(F(z,u)), n > 0.

We are going to prove the existence of solution u, to a systems (3.2.30).

Lemma 3.2.7. Let s : Q — (0,400), p; : @ — (1,4+00),i = 1,..,N be continuous func-
tion. Assume that (1.2.4) holds. Then, there exists at least one solution u, = (Uin,...,Udn) N

W(}’?(')(Q;Rd) to systems (3.2.30) in the sense that
N
Q=1 @ “

o € WP O, RY) 0 L50(Q, RY).

Proof. Consider the following systems

N
=Y Di(ai(w, Ty(un,, (), Diun,, () + F(2,un,,) = fon (@), © €D,

i=1 (3.2.33)
Un,, (:U) =0, Tz € 0fN.

In a similar way to the results obtained in Application 2.1, we deduce that there exists a solution
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Up,, € W&’?(')(Q,Rd) to systems (3.2.33), which satisfies
N
/ Zai(:v,Tn(unm),Diunm).Digo dr + / F(z,up,,).pdr = / fr,, - dx (3.2.34)
0= 0 Q

for all p € VVO1 ’?(')(Q,Rd). Using (3.1.2) and (3.1.6), Holder inequality, Young’s inequality and

inserting ¢ = uy,, as test function in (3.2.35), we obtain

Z/IDU PO < oyn )( /|unm|dx>

< Ci(n <1+/ U, [P~ dac)
< Cy(n)e” <1 +/ | Dy, |P- dw)

<03 <1+Z/‘Du ’Pz:v)dl->'

1
Wi te = —-+— t
e put € 2C3(n),wege

N
Z/ |Dju,,, [P de < Cy(n),i=1,...,N,
i=1 7%

where C;(n),7 =1, ...,4 are positive constants depending on n. Consequently, there exists a sequence

Up C Wol’?(')(Q,Rd) such that
Up,, — Uy weakly in Wolj(')(Q,Rd) and a.e. in Q.
Using (3.1.4) and arguing as in the proof of (3.2.36), we obtain
Djuy,,, — Dju,, strongly in Lpi(')(Q; ]Rd) and a.e. in €. (3.2.35)

So,

/

a;(x, Tp(un,,), Diun,,) = ai(z, Tn(uy), Diuy,) weakly in <Lp;(')(Q;Rd)) ) (3.2.36)
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Taking T (uy,,) as a test function in (3.2.35), by (3.1.2) and (3.1.10), we obtain

[ Ditt,, [

funm |<E} (1 4 1)@

N N
/ Z ai(x, Ty (un,,), Diun,, ). DT (un,, ) Ditn,, dx > oy Z/
Qi1 i=1 /1

By (3.1.6), (3.1.7) and the fact that

U
~n T, (F(z,un,,)) > [Tm (F(2,un,,))| |tn,| >0,

m
|unm|

this implies

/Tm (F(z,un,.)) Tp () dz > k/ T (F(a,un, )| da.
Q {|ung, | >k}

However, given that

|Tk(s)| < M + k1{|s|>M},VS eR,M > 0.

On the other hand, we have

Ll i) e M U alpsgo k1 fal

|u”m ‘>M}

Through the above mentioned results, we obtain for all M > 0

M fall 1o
/ T}, (F(z,un, )| dz < Ml @ +/ | fo| d. (3.2.37)
(i |> K} k ([t |> M}

Let E C Q) be any measurable set, we write

/ Ty (F (&, wm, )| dx = / (T (F (@, )| do + / T (F (2, wn,,))| da
E {En{|un, |<k}} {En{|un, |[>k}}

then, by (3.1.7) and (3.2.37), we deduce the sequence (T3,(F(x,un,,))),, is equi-integrable in

LY(;RY). Therefore, we can obtain (3.2.32) by passing to the limit in (3.2.35). O
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3.2.3 Uniform estimates

In this part, we establish uniform estimates for both the approximate solutions, denoted as u,,,

and their partial derivatives. Consistently throughout the chapter, the various constants introduced

in this section will represent positive values dependent solely on the problem’s data, remaining

unaffected by the variable n.

Lemma 3.2.8. Let f, € Lm(Q;Rd) and m be restricted as in Theorem 3.2.2, and let the sequence

(un) be a solution satisfying (3.2.30). Then, there exists a constant ¢ depending on || full Lm(ora)

but not on uy, such that

”unHWOL?(')(Q;Rd) S C.

Proof. Inserting u,, in (3.2.30) yields

F(x,up).u, de = / fntn dz.
Q Q

N
/ Z a; (x, Ty (un), Diuy,) .Diuy, dx + /
Q=1

The assumption (3.1.6) implies that F'(z,uy).u, > 0, then

N
/Zai (, Ty (un), Diuy,) .Diuy, de < / fn-un dz.
Q Q

i=1

By the degenerate coercivity (3.1.2) and (3.2.38), we find that

N N
a1(1+n)_7+2/ | Dy [P dae §/Zai(x,Tk(un),Diun).Diundx
— Ja Q=

=1
< / fn-up dz.
Q

Using Holder’s inequality, we get

N
_at .
ar(l+n)"7 Z/Q|Diun|pl( ) dx < anHLm(Q;Rd)||Un||Lm/(Q;Rd)'
=1
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Since m > (p*(x)) then m’ < p*(x). Therefore, thanks to Lemma 1.2.6 and assumption (1.2.4)
m’ < max (p*(x), ps (7)) = p*(z), for allz € Q.
Consequently, we have the following embedding continuous

Wy 7O (@ R < 17 (R,

then, there exists a positive constant Cf, such that

N + N
> /Q\Diunlpl(x)d:rﬁ i O)q 1l > 1 Dstinl| oi ) (o)
=1 =1

+
Ci(l+n)" |fallLm
o
a; >0j€{l,..,N} and areal p >0

Put C) =

, we recall the following well-know inequalities that holds for any

p

N N
DUy <N [ a;] - (3.2.39)
j=1 j=1
Using Proposition 1.1.4 and (3.2.39), we get
N N Bi
Z/ |Diun|m(:r) dx < Cé Z </ |Diun]pi(w) dx) 3
=17 =1 9 X
N B
< (Z / | Dyt 7A@ dx) ,
=174
where
pi_? if HDiunHLPi(~) > 11
B =
pf, if ||Diun||LPi<~) <1
Then

N Blz
<Z/ | D |Pi®) dx) < (.
=174
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Hence, the sequence u,, is bounded in Wo 70 (Q; RY). O

Lemma 3.2.9. There exists a positive constant ¢ such that

1
7/

N
Z/ | Ditn |Pi®) dz < (1 + k)7 (/ T ()] da:) : (3.2.40)
i—1 ¥ {lun|<k}

Moreover

/ P2, un)| da < C, (3.2.41)
Q

also

/ |un |5 d < C. (3.2.42)
Q

The constant C' is positive and depends solely on the problem’s data, but not on n, the |-| represents

the vector modulus.

Proof. Taking Ty (uy,) as a test function in (3.2.30)

/ Zasz(un)Dun)Dundx—i-/
{lun|<k} ;

F(w,un).Tk(un)dx:/fn.Tk(un) dr. (3.2.43)
Q Q

The assumption (3.1.6) implies that F'(x, uy,).Tk(uy) > 0, then

N
/ Z x, Ty, (up), Diuy).Diuy, de < / Jn Tk (uy) dz. (3.2.44)
{lunl<k} ;=7

By the degenerate coercivity together with the angle condition (3.1.10) and (3.2.44), we deduce that

{|un\<k}( +!u !)7(“’)

/ Zale(un)Dun)Dunda?
(071 |un\<k}

1
o /Q Jn Tk (uy) dx

IN
|

IN
|
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Applying Hélder’s inequality for m > 1, which implies
N

1, @ LT > —|[JnllLm(Q;Rd U T . 9
= {Jun|<k} (1 + |u71 |) (x) aq (R4 k\(Un 4

=1

1
o

For k > 0,

1
!

UnS

1
and thus we obtain the result (3.2.40), where ¢ = — || fu || Lm (q;re). Therefore, from (3.2.45)
o ’

| D |P1(®) | Dt |Pi(®)
/{ AU g < Z RO dz

funl <k} (1 + |tz )Y Cunl<ky (1 + )

< Ok (3.2.46)
<c (1+k).
By (3.2.46) and for k£ > 1
/ E | D, [P de < / ol+y* (1+ k)77 | Dy, [P da
{lun|<k} {lun|<k}
<ol (14 k)_l/ D g, (3.2.47)
(il i} (1 [uan )7
< c*.
For the proof of (3.2.41), by (3.1.6) and (3.2.43), we obtain
N
/ Zai (x, Ty (un), Diuy) .DTy(uy) Diuy, do + k:/ — F(z,uy) dx < / frn Tk (up)
Q= {Jun|>k} |Un|
using (3.1.5), we have
’%”’ Fla,un) > |F(z,un)|, |un| > 0. (3.2.48)
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Then

i/ ]D-u ‘pi(x)

o1 Z"+k/ 7F(:Cun)dx<k\|fnﬂm I

= Jlunl<h} (1 + [ug )7 (lun|>k} [t Lm(QRY)

Thus
/ |F(, un)| dz < C, (3.2.49)
{lun|>k}

Consequently, by (3.1.7) and (3.2.49), we derive (3.2.41). Finally, we combine (3.1.6) and (3.2.41)

to obtain (3.2.42). This ends the proof of Lemma. O

Lemma 3.2.10. Assuming p; is defined as in (3.2.4), s(-) > 0, and u, is a solution of (3.2.30) in

the sense of (3.2.32). Then there exists a constant C' such that

Nm(p(z) —1—77F)
N —mp(z)

[unll pac) ray < €, alz) = (3.2.50)

Additionally

Nmpi(z)(p(z) —1—~")
Nm(p(x) =1 —=~F) + (1 + (@) (N — mp(z))

[ Ditn | pgai ) (uray < €, ailx) = (3.2.51)
(R4)

Proof. By Lemma 3.2.9 and this fact |D;|uy|| < |D;u,|, and thanks to remark 1.4.2, we get

N
Z/ ]Dz|un‘|Pz(:E) dx 1 + k </ ‘Tk un dx)
i—1 J{lun|<k}

c(l+ k) </ IT3F (Jun|)|™ daz)

By applying Lemma 3.2.6 to [uy| gives ||[un|[| pqa0) () < C. This proves (3.2.50).

1
7/

pi(°)

RO E

We will now focus on proving the derivatives estimate. Putting 6;(-) =
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1,..., N, then, for £ > 1 and from the estimates (3.2.47) and (3.2.50) we conclude

/ k@) dy < / k1) do; 4 / k@) dy
{IDiun %@ >k} {IDiun|% @ >k} {|un| <k} {lun|>k}

pi(z)

</ (@) | Djuy,|%@) % o
k. x
S {Junl<k} A

< / k=19 Dy [P0 dg + €
{lul<k}
Invoking (3.2.47), we get for all k > 1

/ k1@ do < C. (3.2.52)
{IDiun|% @ >k}

If k € (0,1), we have

/ k@) dy < / k1@ dz < |9
{IDstin %@ >k} Q

Consequently, for all £ > 0, we obtain

k1) dy < C.

/{lDiun9i<z)>k’}

This proves that for all i = 1,..., N, |Dyuy| is bounded in M%) (2), where

)~ ol - P@a@)

_ Nompi(a) (p(z) — 1 )
Nm(p(@) — 1~ ~7) + L+ (@) (N — mp(a)))

This ends the proof of Lemma. OJ

Thanks to the Lemma 1.3.8, we conclude that Dju, is bounded in L") (Q;R?) for all r;(-) in
C, (Q) satisfying (3.2.5), so we have for all i = 1,..., N

HDiunHL”(.)(Q;Rd) S C. (3253)
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3.2.4 Proof of the main results

The proof of Theorem 3.2.2 is similar to that of Theorem 3.2.3. Therefore, here we will only
provide the proof of Theorem 3.2.3.

Let (Th,(f)n := (fa)n € L®(Q;R?), be a sequence of functions, such that
fn— f in L™(Q;RY), as n— +oo, (3.2.54)

and

[ frll L irey < L fllLm@iray- (3.2.55)

Let u,, be a solution of the problem (3.2.30) that satisfies the weak formulation (3.2.32).

1,7

From Lemma 1.3.8, the sequence (uy,), is bounded in W’ ¢ (Q; RY), where r;(z) is defined such

as (3.2.5). Therefore, (uy )y is bounded in the Sobolev space
Wol’T:(Q;]Rd), T

= min minr;(z). (3.2.56)
1<i<N ze0

Thanks to the Rellich embedding Theorem, we can extract a subsequence denoted again as (uy)n
such that

U, — u strongly in L'~ (€;R%) and a.e.in Q. (3.2.57)

In order to prove the convergence almost every where of derivatives D;u, for all ¢ = 1,..., N, we
need to present and prove the fundamental Lemma 3.2.13 .Furthermore, we use the analogous ways
in [86] with some modifications.

Firstly, we introduce the following notation

pf = max maxpi (). = Ti(un). v = Ti(w)
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Lemma 3.2.11. Let us define the vector A (up,u), Vi =1,..., N such that

A%(un, u) := (a; (x, Tp,(un), Diuy) — a; (x, Tn(uy), Diw)) .Dj(u, — u). (3.2.58)
Then
. % N N
{AL(up,u)} 7+ < C (1 + Z | Djuy| + Z |Diu|> (3.2.59)
i=1 i=1

Proof. Using assumption (3.1.3) with the fact that |T;,(u,)| < €, we find

A;(un, u) <a; (x, Ty (un), Diuy) — a; (z, Ty (uyn), Diw)| | Diuy, — Diul

< (las (=, Tn(un), Diun)| + |a; (x, Tn(un), Diw)|) x (|Diun| + |Diul)

N e N -5
<SG [P 1B+ D | Dy P +Co [ 0P+ |k + ) |Djulri™)

=1 =1
x {|Diun| + |Diul}

N 1*ﬁ N I’ﬁ
<SGy [ nP H 1R+ | Djun 7@ +Co [P 4R+ |Djulpi®

j=1 =1

N N
X {Z | Diun| +Z|Diu|},
=1 i=1

we recall that (a +b)* < max (1,2°7!) (a® + b*). Obtaining

N N N
Al (up,u)  <C (1 + Z \Diun\m(m)—l + Z |Diu‘pi(ﬂb‘)—1> ( | Djue| + Z \Diuy>
= o =1 i (3.2.60)
+_ +_
<C* (1 + ) IDiug 7+ [ Dyl 1) ( | Diun| + ) ’Di“|>
i=1 i=1 =1 i=1

By using the inequality

N N N
(zw—l) (zw) NS AP,
=1 =1 =1
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then (3.2.60) get as follow
; N + N +
Al (up,u) < CY (1 + Z | Diun|P+ + Z |Diu\p+> .
i=1 i=1
This ends the proof of Lemma. O
Lemma 3.2.12. Our aim is to prove that, For all €* > 0, we have
d
lim sup Z/ ari(x, Ty (un), Ditn) Di (g — uf) do < 6(e*), (3.2.61)
{lul,nf’ufﬁwgs*}

S

with lim O(e*) = 0.

e*—0

Proof. Inserting ¢ = Tox (u, — u¥) into (3.2.32), we get

ayi(x, Tn(un), Diwy) Dy i(un — uk) dr + / F(x,up). Tex (ugn — uf) dx
Q

:/fn_’Ts*(un—uk)dm.
Q

From and (3.2.59), we have the following
d

Z ayi(x, Tn(un), Dittn) Dy i(ug pn — uf) dr < Ce*,
=1/ {lun—uf|<er}

where C = 2d (HF(x,un)HLl(Q;Rd) + \|f||Lm(Q;Rd)). O

Lemma 3.2.13. for alli=1,..., N, we have

N d
lim » "y /Q (a1.i(, Tn(un), Dittn) — agi(z, T (un), Diw)) Dy (ug — wp) dz = 0. (3.2.62)

e—0
i=1 =1

Proof. We define the integral S,, as follows

Sn:/Q{Ai(un,u)}p+ dzx, (3.2.63)
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such that A? (u,,u) is defined as (3.2.58). Please note that 0 < S,, < co. Let us write S,, = S! 452,

where
1

s}L:/ {A6 (up,w)} 7+ and sg:/ { AL () } 75 (3.2.64)
{lul>k} {lul<k}

By invoking (3.2.59) and using Hoélder’s inequality

1

1-—=
oy 1Dl ANl > 5

)

, -
Sh< il > k) + G-

Consequently

1

11— 1—-L
Sh<Clflul > K} " +C|{u>K} .

Then

S} ! L
kr:(lfi) g1

n

<

Letting k£, n tends to infinity and zero,respectively, obtaining

lim limsup S: = 0. (3.2.65)

k—4o00 n—oo

Now, we divide the integral S on the sets {]un —uF > 6*} and {|un —uF < 5*}, for all * > 0,

getting
a2
S3 . z/ {A;(un,uk)}pi dzx.
’ {lul<k,lun—uk|>e}
and
ne
S . :/ {A;(un,uk)}pi dx.
’ {lul <k Jun—uk|<e* }

with similar arguments as in the proof of (3.2.65)

1

S§L7E*§C’{|un—uk|>n}‘ oy C’{]un—ukl>n}’ qo

(3.2.66)

We define

S (3.2.67)
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where
d 1

+
Mé,z—:* = Z/ {al,i(x7Tn(un)aDiun)Di(ul,n_uf)}p"' d{]},
{|uln7ul |<8 }
1
T
Mga* = Z/ au(:c,Tn(un),Diuk)Di(ulm—uf)}’% dx.
{|uln—ul |<e* }
Thanks to Lemma 3.2.12, we have
lim M} o= hm hmsupZZ/ ari(x, Tn(un), Dittn) Dy i(ug n — uf) = 0. (3.2.68)
im1 1=1 7/ {lmn—ufl<er}
. _ k k . ko k1 _
For |u;, —w| < e* <1, we have |uj,| = |u,, —u) + ;| < 1+ k. Since Uy, = Ti(urn) = upy
k+1

Tie1(un), |uf;1| < 14k, then u,, = vy A

Its easy to verify that Ti(un) — Ti(u) in W&’?(')(Q; R%), which is implies

uff — uf“ in I/V1 PO (Q;Rd).
Consequently
Di(uftt —uf) = Di(uft —uf) in LPO(Q; RY).

The dominated convergence Theorem implies that

ai(z, T (), Diu®) — ai(x,u, Dyu®) strongly in LPO(Q;RY): Vi =1, ....d.

Then p
lim M2 .. = Z/ ai(@, u, DauF) D;(uf ™ — uf) dw
{lw |<ex}

n—0 m,e*
d
= Z/ ayi(z,u, Diuk)Dﬂ;* (u; — uf) dx
=179
It is straightforward to confirm that D;Tz-(u; — uf) — 0 in LPiO(Q; RY) Vi

=1,..,N,l=1,..d.

As a result
lim lim M =0.

e*—0n—o0
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We combine (3.2.65),(3.2.66),(3.2.68) and (3.2.70), we conclude

limsup S, = o(1)(asn — o0) + o(1)(asn — 400, — 0).

n—o0
This implies (3.2.62). O

Following the same argument as in Application 2.1, we deduce
D;u, — Dju a.e. in Q. (3.2.71)
Lemma 3.2.14. For all i=1,...,N, as n — oo, we have
F(z,u,) — F(z,u) strongly in L'(Q;R%), (3.2.72)

and

a;(x, T (un), Diup) — a;(x,u, Dyu) strongly in Ll(Q;Rd). (3.2.73)

Proof. As F is a Caratheddory function, and based on equation (3.2.57)
F(z,up) — F(z,u) ae.in Q. (3.2.74)

Under the assumptions (3.1.7), (3.2.41), and (3.2.74), and employing methodologies similar to those

presented in [10], we deduce (3.2.72). Consequently, by combining (3.2.57) and (3.2.71), we obtain

a;(x, Ty (un), Diuyn) — ai(z,u, Diu) a.e. in €. (3.2.75)

ri()
Next, we aim to demonstrate that a; is bounded in L7O-1(Q;RY), where r;(z) is a continuous

function on Q satisfying (3.2.5).

The choice of €3()1 > 1 is possible, given the condition (3.2.4). Thus, for all i = 1,..., N, we
pil*) —

have

ri(") Nmpi(-) (p() =1 =)

b P 1~ ()= D) (Nm(p() — 1 —77) + (1 + 1NN —mp())

(3.2.76)
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By using (3.2.5), we can choose ¢ as a continuous function on Q in a manner that

(i) = 1) i) Nm (p() —1-7")

w0 S NGO 1o+ A0 (N =)
and
1 . Nm (p(-) =1 -97)
) < S NGO =Tt + A+ 70) (N =)
Then, we have
Nl Nmpi(-) (p() =1 —7")
L<pi()o() < 5~ GO 1)+ AT 0 (N = m50))’ (3.2.77)
and
(pi(-) = 1) ri(")
! < 1. 3.2.78
PXSEONE (3:278)
Using the assumption (3.1.3) and by (3.2.78), we obtain for all i =1,..., N
(pi(x)—1)ri (=)
N p;(2)d(x)
Jai (@, T (un), Din) @ < S RIPD 4 [ [P 137 | Djuy |45 (@)
j=1 (3.2.79)
N
< QB+ ™+ D 1D #P)
j=1

Therefore, since the solution |uy,| is in LP (Q), it is because, there exists j € {1,..., N} such that
p; =D , then |un,| € LP () by using Lemma 1.2.3, based on the last estimate, Lemma 3.2.10,
and (3.2.77). From this, we can conclude that a;(z, Ty (us), Diuy) is bounded in L") (Q; RY). Since
we have the almost everywhere convergence (3.2.75), we can apply the Vitali Theorem, we obtain

(3.2.73) for all i = 1,..., N. By (3.2.73), and (3.2.72), so that

n—00 n—00

N
lim /Zai(x,Tn(un),Diun).Digodac+ lim F(x,up).odx
Qi 0
N

= / Zai (x,u, Dju) .D;p dz —|—/ F(z,u).odz, Yo € C®°(Q;RY).
0= Q
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Conclusion and Perspectives

In the study conducted in this thesis, we focus on studying a nonlinear anisotropic elliptic systems
more specifically a generalization of p;(x)-Laplacian with degenerate coercivity and L™ data.

In conclusion, when dealing with the theory of nonlinear systems of partial differential equations,
particularly those with nonlinear terms dependent on the gradient’s natural growth, it is imperative
to introduce an essential condition to establish the existence of distributional solutions.

We have been able to prove the following results
The first result considers the case where f has a high summability, more specifically m > (ﬁ*(w))/,
then we prove the solution v is bounded in W&’?(')(Q; RY).

In the second result, if we decrease the summability of f, i.e., f in L™ (Q; Rd) where m satisfies
1 < m < (p*(z))’, we find the solutions which do not in general belong any more to Wol’?(')(ﬂ; R%),
more precisely, we found the solution u is in VVO1 ’?(')(Q;Rd) where 7;(z) are continuous functions
on Q which satisfy

Nmp;(-)(P(-) =1 —77)
Nm(p(-) =1 =7%) + 1+ ()N —mp(-)’

1<ri() < Vi=1,..,N.

In our result, we get an optimal solution because the regularity given in the case f in L™(€; R?)
where m > 1 is better than when m = 1.

Future research topics can include cover the following points

e In the context of anisotropic elliptic problems with variable exponents, the presence of lower-

order terms, under suitable conditions, has allowed us to derive uniform estimates for solutions
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to relevant problems approximating (3.1.1). It would be of great interest to further investigate
problem (3.1.1) in the absence of the lower-order term, i.e., when F' = 0, and strive to prove
the existence and regularity of results for problem (3.1.1) based on the summability of the

data f € L™(Q;R%).

In conclusion, research establishes the non-existence of a p-Laplacian with degenerate coerciv-
Vu

0
(14 [ul)
the parameter 6 in shaping the problem’s behaviour is underscored, even when the function

ity, as stipulated in the defined problem —div ( , when 6 > 1. The pivotal role of

f demonstrates high regularity. Looking ahead, a crucial question arises: Can we determine
N
DulPi®)=2D .,
the non-existence of the — Z <| i e(m)z
i=1 (1+ |ul)
the presence of a lower-order term or in its absence?

) + |ul*® =1y when 0 > p(z) — 1, whether in

A challenging and interesting problem is to consider nonlinear parabolic systems with the

principal part without or having a degenerate coercivity

ou N .

vl D; (1Dl 2 D)) + |u@u = f, = € (0,T) x 0
5 (0 (o)

U(J:?O)ZUO) Tz e

and

N (z)—2
8'11, ‘D’Lu’pz(l’) DZU S(:I:)—l o

=1

u(z,0) = ug, x €8

where u : Q — R? whatever the data fin L™, L' or the data is a radon measure, we have
a big obstacle related essentially to dealing with, there were not a lot of studies before about
systems, what are the structural conditions that we can use it to prove the existence and

regularity of the solution?
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