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République Algérienne Démocratique et Populaire
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
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Abstract

This thesis studies the wave equation with dynamic Wentzell boundary conditions with
delay feedback in the boundary subjct to a localized Kelvin-Voigt damping.

Using semigroup theory. The problem is shown to be well-posed in a suitable energy
space through the use of Lumer-Phillips’s theorem and semigroup properties. Then, we show
the strong stability of the solution using Arendt-Batty criteria.

For the case where the damping localizing coefficient is smooth, exponential stability is
proven by using the Huang-Prüss criteria which is established using a perturbation argument,
contradiction argument, and multipliers techniques. On the other hand, if the damping
coefficient is discontinuous, polynomial stability is shown using Borichev-Tomilov’s criteria,
along with a cascade-like technique which allows to merge different stability results and a
specific choice of multipliers.

Key words. Delay feedback, Dynamic BC, Exponential stability, Kelvin-Voigt damping, Lo-
calized damping, Polynomial stability, Wentzell BC, Wave equation, Well-posedness.
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Résumé

Dans cette thèse on étudie l’équation des ondes avec des conditions aux bords de type
Wentzell dynamique et un retard sur le bord, l’équation est soumise à un amortissement de
type Kelvin-Voigt localisé.

En utilisant la théorie des semi-groupes, on montre que le problème est bien-posé dans
un espace d’énergie approprié grâce au théorème de Lumer-Phillips et aux propriétés des
semi-groupes. Ensuite, on montre la stabilité forte de la solution en utilisant le critère
d’Arendt-Batty.

Dans le cas où le coefficient d’amortissement localisé est régulier, la stabilité exponentielle
est prouvée en utilisant le critère de Huang-Prüss, établi grâce à une technique de pertur-
bation, un argument de contradiction et des multiplicateurs. En revanche, si le coefficient
d’amortissement est discontinu, la stabilité polynomiale est démontrée en utilisant la critère
de Borichev-Tomilov, ainsi qu’une technique de cascade qui permet de fusionner plusieurs
résultats de stabilité et un choix particulier de multiplicateurs.

Mots clés. Amortissement de Kelvin-Voigt, Amortissement localisé, Condition aux bords
de type Wentzell, Condition aux bords dynamique, Équation des ondes, Probleme bien-posé,
Retard, Stabilité exponentielle, Stabilité polynomiale.
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General Introduction

0.1 Introduction

This thesis is devoted to studying the stabilization of the wave equation with dynamical
boundary conditions of Wentzell type with a delay feedback on the boundary, where the
stabilizing mechanism is done by a localized Kelvin-Voigt damping; Moreover, we consider
two different types of regularity for the localizing coefficient. Namely, we will be interested
in the following problem

utt(x, t)− div{∇u(x, t) + a(x)∇ut(x, t)} = 0, in Ω× R∗
+, (1)

u(x, t) = 0, on Γ0 × R∗
+, (2)

utt(x, t) +
∂u

∂ν
(x, t) + a(x)

∂ut
∂ν

(x, t)−∆Tu(x, t) + kut(x, t− τ) = 0, on Γ1 × R∗
+, (3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (4)

ut(x, t− τ) = f0(x, t− τ), in Ω× (0, τ), (5)

where Ω is an open bounded subset of Rn with a boundary of class C2 divided into two non
empty subsets.

The wave equation with Kelvin-Voigt damping arises in vibration phenomena where the
damping originates from the internal friction of the vibrating structure (extension or compres-
sion) such as vibration of a body made totally or partially of viscoelastic materials. Damping
refers to the process of reducing the energy of a system, resulting from the transformation
of one form of energy into another. This process can occur due to external forces such as
friction or air resistance, or internal forces such as compression or extension present in vis-
coelastic materials. One example of energy transformation due to damping is when an object
is in motion on a surface, and the mechanical kinetic energy of the object is transformed
into heat due to friction. In this context, the term ”dissipation” refers to the loss of energy
from the system in the form of heat or other forms (sound, light,...etc) that are not useful
to the system. Where the dynamical boundary conditions refer to models that don’t neglect
the velocity on the boundary and the Wentzell boundary conditions are utilized to take into
account the potential energy at the boundary.

A lot of work has been done in the context of stabilization of the wave equation and a
large number of articles and books treating this topic appeared such that a full review of
the literature is beyond the scope and can’t fit in our introduction; However, we will review
some results related to our problem that we find interesting and highlight our contributions.
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The wave equation with different boundary conditions and different types of dampings
has been extensively studied in the literature. For instance, it is well-known that the decay
of energy is exponential with the classical boundary damping

∂u

∂ν
= −kut, on Γ1 × R∗

+,

where Γ1 satisfies the so called Geometric Control Condition (GCC in short) introduced by
Bardos, Lebeau and Rauch in [20], as well; a lot of stability results have been shown in
many other cases (see for instance [15, 10, 74, 91, 51, 69, 31, 92, 32, 33, 50]). Nevertheless,
the situation is more complicated with Wentzell boundary conditions, given that the wave
equation with static Wentzel boundary conditions has been studied by Heminna in [46]. The
author has shown that without internal damping we cannot guarantee exponential stability
based solely on a boundary feedback, even if it is applied within the entire boundary. Still,
the strong stability holds in this case.

The wave equation with Wentzell boundary conditions and without damping, was first
studied by Lemrabet in [56] then by Lemrabet and Teniou in [57], existence and regularity
results have been shown for the linear case. Such a model describes a vibrating body with a
thin boundary layer of high rigidity.

Later on, Cavalcanti et al. in [27] showed that in addition to some geometrical assump-
tions, a linear-like interior frictional damping is sufficient to ensure that the energy decays
uniformly at a rate prescribed by the solution to certain ODE, this method was first intro-
duced by Lasiecka and Tataru in [51].

Subsequently, Cavalcanti, Lasiecka and Toundykov in [30] studied the following problem
utt −∆u+ a(x)g (ut) = 0, in Ω× R+,
∂u

∂ν
−∆Tu+ u = 0, on Γ× R+,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω,

where the localized damping doesn’t affect the full part of the boundary subject to the
Wentzell condition. They proved a perturbed observability inequality from which different
decay rates are deduced in accordance with the behavior of the function g(·), while the decay
is exponential if g(·) is linearly bounded. Afterwards, this work was extended and generalized
in the context of dynamical boundary conditions in [29].

In addition to the fact that dynamical boundary conditions do not neglect the velocity over
the boundary, these types of conditions, alongside the interior equation, represent phenomena
where two dynamics are coupled, the interior and the boundary ones. It should be noted
that adding dynamics to the boundary can significantly affect the stability of the system (see
for example [63, 62, 64]). Similarly, in the one dimensional case, it was shown in [59], that
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the following system

utt − uxx = 0, x ∈ (0, 1), t ≥ 0,

u(t, 0) = 0, t ≥ 0,

mutt(t, 1) +
∂u

∂ν
(t, 1) + ut(t, 1) = 0, t ≥ 0,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1),

is not uniformly stable if m = 1 while it is exponentially stable if m = 0.
The question of whether we can stabilize the system by acting on one or both dynamics

has been addressed by many authors.
Khemmoudj and Medjden in [49] proved the exponential stability for the wave equation

with dynamical Wentzell boundary conditions, using a localized linear frictional damping
in the interior besides a linear frictional damping on the boundary, while the system was
exposed to some non-linear forces in both the interior and at the boundary.

Afterwards, in [28], Cavalcanti, Khemmoudj and Medjden extended the previously men-
tioned work in a more general context, where they considered the following problem,

utt +Au+ a(x)g1 (ut) = 0, in Ω× R+,

vtt +
∂u

∂vA
+ATv + g2 (vt) = 0, on Γ1 × R+,

u = v, on Γ× R+,

u = 0, on Γ0 × R+,

(u(0), v(0)) =
(
u0, v0

)
, in Ω× Γ,

(ut(0), vt(0)) =
(
u1, v1

)
, in Ω× Γ,

where A and AT are linear second order differential operators with variable coefficients that
satisfy certain uniform ellipticity conditions. Under some geometrical assumptions the au-
thors proved the uniform decay of the energy, using some energy estimates combined with
Riemannian geometric methods due to Lasiecka, Triggiani and Yao (see [52, 53, 89]).

Recently, the following system

utt −∆u− kΩ∆ut + cΩut = 0, in Ω× R∗
+,

u = 0, on Γ0 × R∗
+,

u− w = 0, on Γ1 × R∗
+,

wtt − kΓ∆T (αwt + w) + ∂v (u+ kΩut) + cΓwt = 0, in Γ1 × R∗
+,

w = 0, on ∂Γ1 × R∗
+,

u(·, ·0) = u0, ut(·, ·, 0) = u1, in Ω,

w(·, 0) = w0, wt(·, 0) = w1, in Γ1,

has been studied under the assumption Γ0 ∩ Γ1 = ∅ by Lasiecka and Fourrier in [42], they
proved that the system is exponentially stable if kΩ > 0, or cΩ > 0 and cΓ > 0, or cΩ > 0
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and kΓα > 0. Later on, the same problem (without assuming Γ0 ∩ Γ1 = ∅) was treated by
Mercier et al. in [72], when kΩ = cΩ = α = 0 and kΓ = cΓ = 1. The authors proved the
strong stability and the lack of uniform stability when Ω is the unit disc and Γ0 = ∅, as well,
they could show the polynomial stability under some geometrical assumptions.

Buffe in [23] treated the wave equation with both static and dynamic Wentzell boundary
conditions, he proved the logarithmic stability with both localized interior and localized
boundary frictional damping, by virtue of a proper Carleman estimate near the boundary
established using microlocal analysis, where the Geometric Control Condition is not satisfied.
Therefore, there is no hope in obtaining exponential stability, instead, an optimal energy
decay was shown (see [55]).

More recently, in [58] the same problem with an additional source term in the boundary
has been considered, and the polynomial stability was proven.

On the other hand, the following problem
utt(x, t)− div(∇u+ a(x)∇ut) = 0, in Ω× R∗

+,

u(x, t) = 0, on Γ× R∗
+,

u(x, 0) = u0(x), u
′(x, 0) = u1(x), in Ω,

(∗)

has been addressed by Liu and Rao in [67]. By assuming that a ∈ C1,1(Ω), ∆a ∈ L∞,
and |∇a(x)|2 ≤ M0a(x) almost everywhere in Ω, where M0 is a positive constant, and the
damping region ω is a neighborhood of the whole boundary, they have proven that exponen-
tial stability holds using frequency domain approach combined with multipliers technique.
Subsequently, Tebou in [84], showed that the exponential stability still holds without need
for the boundedness of ∆a and for a larger class of damping region ω, which in this case
should satisfy the so called the Piecewise Multiplier Geometric Condition (PMGC in short)
introduced by Liu in [65], that generalizes the Lions Multiplier Geometric Condition. Tebou,
in the same paper also proved that if the damping coefficient is only bounded measurable
then the energy decays as t−1.

In [78], Nicaise and Pignotti studied the following problem

utt(x, t)− div(∇u+ a(x)∇ut) = 0, in Ω× R∗
+,

u(x, t) = 0, on Γ0 × R∗
+,

∂u

∂ν
= −a(x)∂v

∂ν
− kut(x, t− τ) = 0, on Γ1 × R∗

+,

u(x, 0) = u0(x), u
′(x, 0) = u1(x), in Ω,

ut(x, t− τ) = f0(x, t− τ), in Ω× (0, τ),

where the damping coefficient a(·) satisfies the same assumptions imposed by Liu and Rao
in [67]. Moreover, assuming some appropriate geometric conditions and relying on an in-
equality similar to (2.7), they proved the exponential stability by means of frequency domain
approach and a perturbation argument. In a previous work [76], the same authors treated
a second-order evolution equation with dynamic boundary feedback laws with a delay where
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the damping was distributed in the whole domain, using the multipliers technique, the ex-
ponential stability has been established. Moreover, the authors gave counterexamples where
(2.7) doesn’t hold, which suggest the optimality of this condition.

It is worth mentioning that the presence of time delay might destabilize systems that are
exponentially stable in absence of delay (see [77, 88, 37, 79]).

Burq and Christianson in [25] considered the problem (∗), by assuming that the damping
coefficient a(·) is smooth (C∞), vanishes nicely, and the damping region {a(·) > 0} controls Ω
geometrically, they proved that the energy of this system decays exponentially. Afterwards,
Burq and Sun in [26] relaxed the regularity condition on a(·) to become a ∈ C1(Ω) and
|∇a| ≤ C

√
a such that the exponential stability always holds.

Note that the smoothness of the coefficient a(·) is crucial for the exponential stability in
the case of Kelvin-Voigt damping in contrast to the case of viscous damping as the exponential
stability holds for the latter case if the GCC is satisfied regardless of the smoothness of the
coefficient. Such a phenomenon can be seen clearly in the work of Liu and Liu [66], where
they showed that the locally damped one dimensional wave equation isn’t exponentially
stable if the coefficient of the Kelvin-Voigt damping is discontinuous; Later on, Alves et al.
in [7] proved the polynomial energy decay of type t−2 for this case and showed the optimality
of this decay rate. Afterwords, the multidimensional case (Namely the problem (∗))with
discontinuous damping coefficient was considered in [87] by Wehbe et al. they proved a
polynomial energy decay rate of type t−1 if either the damping region ω satisfies the GCC
and meas(ω̄∩∂Ω) > 0 or the damping region ω contains strictly a subset satisfying the GCC.
Furthermore, when the domain Ω is a square and these geometrical conditions are violated
they proved a polynomial energy decay rate of type t−

1
3 if the damping region ω is a vertical

strip far away from the boundary and of type t−
2
5 if the damping region ω is next to the

boundary.
Later, in [13] Ammari et al. considered the problem (∗) without assuming any conditions

on the damping region. They established a logarithmic energy decay which is known to be
optimal in the general case (see e.g. [24]).

It is noticeable that many significant and important cases remain unaddressed in the
literature. Therefore, we propose to investigate the stabilization of the wave equation under
boundary dynamics that add energy to the system, primarily from boundary velocity, the
Wentzell component, and the boundary delay. Our goal is to comprehensively analyze and
understand the long-term behavior of such a system when stabilized by localized Kelvin-
Voigt damping. Additionally, we will study the impact of the damping localization coefficient
regularity by considering two different types of regularity for this coefficient.

0.2 Thesis Overview

This thesis is divided mainly into three chapters, which we present in the following section.
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0.2.1 Well-Posedness and Strong Stability

In the second chapter, we focus on presenting the problem within the context of semigroup
theory. We begin by formulating the problem, and then proceed to establish the existence
and uniqueness of a solution. Finally, we demonstrate the strong stability of the solution.

In a bounded domain Ω ⊂ Rn with a smooth boundary Γ divided into two parts Γ0 and
Γ1, such that Γ = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 = ∅ and meas(Γi) ̸= 0, i = 0, 1. We consider the
following initial boundary value problem

utt(x, t)− div(∇u(x, t) + a(x)∇ut(x, t)) = 0, in Ω× R∗
+, (6)

u(x, t) = 0, on Γ0 × R∗
+, (7)

utt(x, t) +
∂u

∂ν
(x, t) + a(x)

∂ut
∂ν

(x, t)−∆Tu(x, t) + kut(x, t− τ) = 0, on Γ1 × R∗
+, (8)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (9)

ut(x, t− τ) = f0(x, t− τ), in Ω× (0, τ).(10)

We are interested in the case when the damping is not active everywhere but only on a
subset ω ⊂ Ω, i.e.

a(x) ≥ 0 a.e in Ω, a(x) ≥ a0 > 0 a.e. in ω,

where ω is an open neighborhood of the part Γ1 and meas(ω̄ ∩ Γ0) > 0.
A very important ingredient for the results of the second chapter and even the coming

chapters is the following inequality
a0 > |k|CP , (11)

where a0 is a lower bound for a(·) in ω and Cp is a type of Poincaré inequality.
After introducing the following new state (substitution)

z(x, ρ, t) = ut(x, t− τρ), x ∈ Γ1, ρ ∈ (0, 1), t > 0,

and denoting ut = v, we are able to write our problem in the context of semigroup theory{
∂tU = AU

U0 = (u0, u1, u1|Γ1 , f0(·,− · τ))T ,
(CB)

where

AU =


v

div(∇u+ a(x)∇v)
−∂u
∂ν

− a(x)
∂v

∂ν
+∆Tu− kz(, 1)

1

τ
zρ

 ,∀U ∈ D(A),

6



with domain

D(A) :=
{
U = (u, v, v|Γ1 , z)

T ∈ H : AU ∈ H
}

=
{
U ∈ V × V × L2(Γ1)× L2(Γ1;H

1(0, 1)) : div(∇u+ a(x)∇v) ∈ L2(Ω),

∂u

∂ν
+ a(x)

∂v

∂ν
−∆Tu ∈ L2(Γ1), v|Γ1 = z(·, 0)

}
,

where, V and H are suitable Hilbert spaces.
Now, we give the following well-posedness result

Theorem 0.1. Assume that the inequality (11) holds. Then for any initial datum U0 ∈ H,
there exists a unique (weak) solution U ∈ C([0,+∞),H) of problem (CB). Moreover, if
U0 ∈ D(A), then

U ∈ C([0,+∞),D(A)) ∩ C1([0,+∞),H).

The proof is based on Lumer-Phillips’s theorem. Since the domain of A, D(A), is dense
in H, then the proof will be based on the following two points.

• The operator A is dissipative. i.e. ℜ⟨AU,U⟩H ≤ 0, ∀U ∈ D(A).

• The range of λ0 −A, R(λ0 −A), is H. i.e. λ0U −AU = F has a solution U ∈ D(A)
for every F ∈ H.

Next, we present our first result regarding the stability, namely the strong stability

Theorem 0.2. The semigroup of contractions (S(t))t≥0 generated by (A,D(A)) is strongly
stable on the energy space H in the sense that

lim
t→∞

∥S(t)U0∥H = 0, ∀U0 ∈ H.

This strong stability result is based on Arendt-Batty’s criteria (Theorem 1.3) which states
that if

1. A has no eigenvalues in iR,

2. σ(A) ∩ iR is countable,

then, the semigroup
(
etA

)
t≥0

is strongly stable. Subsequently, the proof of our theorem will
be a consequence of the following Lemma and Proposition.

Lemma 0.3. If the inequality (11) is satisfied, then, for all β ∈ R, the operator (iβI − A)
is injective, i.e. :

Ker(iβI −A) = {0}.
Proposition 0.4. If the inequality (11) is satisfied, then for all β ∈ R, we have (iβI − A)
is surjective, i.e.

R(iβI −A) = H.
Since the operator A is closed, using the Closed Graph theorem, we infer

iR ⊂ ρ(A),

which leads to the conclusion of Theorem 0.2.

7



0.2.2 Exponential Stability: Case of smooth damping coefficient

This chapter is devoted to the study of the exponential stability of our system. To this end,
we are going to use the frequency domain approach. Specifically, we shall follow Theorem 1.4
(Huang-Prüss [47, 82]) which states that a C0-semigroup of contractions in a Hilbert space
is exponentially stable if and only if

iR ≡ {iβ : β ∈ R} ⊂ ρ(A), (12)

and
sup
β∈R

∥∥(iβI −A)−1
∥∥
L(H)

<∞. (13)

As the first condition was already verified in the previous chapter, we need only to verify
the second condition.

The result of the third and also the fourth chapter will be built up on some estimates
that are easy to get in ω but the difficult part is to extend these estimates to the rest of Ω
which needs some regularity assumptions on a(·). Hence, following Nicaise and Pignotti [78]
on their inspiration from Liu and Rao [67], we suppose the following assumptions that we
illustrate in Figure 1,

(H) meas(Γ1) > 0,
(A1) ∃δ > 0, a (x) ≥ a0 > 0, ∀x ∈ Oδ, where

Oδ = {x ∈ Ω, |x− y| ≤ δ, ∀y ∈ Γ1} ,
(A2) a ∈ C1,1

(
Ω
)
, ∆a ∈ L∞ (Ω).

Also, we assume the following conditions.
There exists a function q ∈ C1 (Ω;Rn) and constants 0 < α < β < δ such that
(D1) ∂jqk = ∂kqj, div q ∈ C1 (Ωβ) and q ≡ 0 on Oα, where Ωβ = Ω\Oβ,
(D2) there exists a constant σ > 0 such that

(∂jqk)1≤k,j≤n ≥ σI, in Ωβ,

(D3) there exists a constant C > 0 such that for all v ∈ V we have

|(q · ∇v)∇a− (q · ∇a)∇v| ≤ C
√
a|∇v|, in Ωβ,

(D4) q (x) · ν (x) ≤ 0 ∀x ∈ Γ0. Then we give a concrete example of Ω where we can
provide an explicit formula for the vector field q(·). Namely, the following remark.

Remark 0.5. If Ω is a disk in R2and Γ0 is a suitable connected arc from the boundary, the
conditions (D1)-(D4) hold with q(x) = m(x)ϱ(x) such that ϱ ∈ C1(Ω) defined by

ϱ(x) =


1 if x ∈ Ωβ,

0 if x ∈ Oα,

ϱ(x) ∈ [0, 1] elsewhere ,

and m(x) = x− x0, where x0 ∈ R2 is chosen such that m(x) · ν(x) ≥ 0 for every x in Γ0 (see
Figure 2).
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Oα

Oβ

Oδ

Γ1

Γ0

Ω

ω

ν(x)

q(x)

x·

Ωβ

Figure 1: An example of a geometric situation satisfying the assumptions (D1)-(D4).

x0

q(x) ≡ 0

q(x) = m(x)ϱ(x)

q(x) = m(x) OαOβ

ω

Ωβ

Γ1

Γ0

Ω

Figure 2: A geometric situation for which there exists a vector field q for which the assump-
tions (D1)-(D4) are satisfied.

Now we give the main theorem of the third chapter.

Theorem 0.6. Suppose that the assumptions (H),(A1),(A2),(D1)-(D4), along with the

9



inequality (11) are satisfied, then there are two constants M > 0, α > 0, such that for all
initial data U0 ∈ H, the solution U := (u, ut, ut|Γ1 , z) of the problem (6)-(10) satisfies the
following uniform exponential decay estimate

∥U (t) ∥H ≤Me−αt∥U0∥H. (14)

The proof of this theorem will be divided into several steps, organized in two sections.
First of all, in a suitable Hilbest space, H0, let’s define the operator A0 which corresponds
to τ = 0 and k = 1, that is

A0 : D (A0) → H0 : (u, v, v|Γ1)
T →

(
v, div (∇u+ a∇v) ,−∂u

∂ν
− a(x)

∂v

∂ν
+∆Tu− v

)T

,

with
D(A0) :=

{
U = (u, v, v|Γ1)

T ∈ H0 : v ∈ V, div(∇u+ a∇v) ∈ L2(Ω),

∂u

∂ν
+ a

∂v

∂ν
−∆Tu ∈ L2(Γ1)

}
.

At this stage, we assume that A0 generates an exponentially stable semigroup. So, from
Theorem 1.4 (Huang-Prüss [47, 82]) we have,

∥ (iξ −A0)
−1 ∥L(H0) ≤ C, ∀ξ ∈ R. (15)

This resolvent estimate will be used to derive the following estimate∫
Γ1

|ṽ|2dΓ ≤ C∥F0∥2H0
, (16)

which we use in the proof of the stability of the problem with delay (Proposition 4.2). In
the next section we study the stability of the delayed problem provided that the operator A0

generates an exponentially stable C0-Semigroup.

Stability of the problem with delay

In this section we are going to establish the proof of our main theorem (Theorem 0.6), using
the inequality (16).

Proposition 0.7. Under the assumptions (11), (H), (A1),(A2), and (D1)-(D4), the op-
erator A satisfies

supβ∈R ∥ (iβI −A)−1 ∥H < +∞.

Proof. The proof uses the resolvent estimate (15), the inequality (16), and some classical
inequalities.

At this point the proof of Theorem 0.6 is finished; However, the exponential stability
of the problem without delay which was used as an assumption will be proved in the next
section.
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Stability of the problem without delay

In this section we prove that the operator A0 that we introduced in the previous section
generates an exponentially stable semigroup. For this matter we use Theorem 1.4 (Huang-
Prüss [47, 82]).

Lemma 0.8. For all β ∈ R, one has

Ker(iβI −A0) = {0}.

Proof. The proof is based on a standard unique continuation argument.

Proposition 0.9. For all β ∈ R, one has

R(iβI −A0) = H0.

Proof. The proof follows the same steps as the damped case which was treated in the strong
stability section.

Next, we present the lemma that’s the pillar of our work.

Lemma 0.10. Under the assumptions (H),(A1),(A2), and (D1)-(D4), A0 satisfies

sup
β∈R

∥(iβI −A0)∥L(H0) <∞. (17)

Proof. We proceed by contradiction. Suppose that (17) doesn’t hold. Then, by the uniform
resonance theorem, there exists a sequence (βn)n∈N ∈ R and a sequence (un, vn, vn|Γ1)n∈N ∈
D(A0) such that

|βn| → +∞, (18)

∥un∥2V + ∥vn∥L2(Ω) + ∥vn∥L2(Γ1)
= 1, (19)

iβn (un, vn, vn|Γ1)−A0 (un, vn, vn|Γ1) := (fn, gn, hn) → 0 in H. (20)

Then,

iβnun − vn := fn → 0 in V, (21)

iβnvn − div (∇un + a(x)∇vn) := gn → 0 in L2(Ω), (22)

iβnvn +
∂un
∂ν

+ a(x)
∂vn
∂ν

−∆Tun + vn := hn → 0 in L2(Γ1). (23)

We look for a contradiction of the form

∥un∥2V + ∥vn∥L2(Ω) + ∥vn∥L2(Γ1)
= o(1). (24)

The proof is divided into several steps.
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Step 1. A standard analysis gives

∥un∥2V + ∥vn∥L2(Ω) = o(1).

Step 2. Using simple multipliers we achieve the following estimate∫
Ω

a|∇vn|2dx+
∫
Γ1

|vn|2dΓ = o(1). (25)

and the following equivalence
∥un∥V ∼ ∥vn∥L2(Ω). (26)

So, in order to achieve the contradiction (24), we only need to show

∥un∥V = o(1). (27)

Step 3. From (25), using the assumption (A1) and Poincaré’s inequality, we find∫
Oδ

|vn|2 dx = o(1). (28)

Then, using the following cut-off function: η ∈ C1(Ω) such that

η(x) =


1 if x ∈ Oδ−ϵ,

0 if x ∈ Ωδ,

η(x) ∈ [0, 1] elsewhere

and suitable multipliers, we deduce∫
Oβ

|∇un|2 dx+
∫
Γ1

|∇Tun|2 dΓ = o(1). (29)

Now, we need only to show ∫
Ωβ

|∇un|2 dx = o(1).

Step 4. In this step, using the assumption (A2) and (22), we find a uniform bound for∫
Ω

a |βnvn|2 dx+
∫
Γ1

a |βnvn|2 dx (30)

which is used in the coming steps.
Until now, we have obtained the estimation of the integral of ∇un on the subdomain Oβ.

Likewise, we will establish a similar estimation on Ωβ which is required to achieve (41). This
is the purpose of the following step.

Step 5. Using the elliptic regularity, the vector field q(·), and the assumptions (D1)-
(D4), besides well chosen multipliers, we deduce∫

Ωβ

|∇un|2 dx = o(1), (31)

which leads to the desired contradiction. Hence, the proof is now completed.
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Γ0Γ1

ω

Õα

Oα

Ω

Figure 3: An example where Γ0 and Γ1 are far away from each other and Oα doesn’t meet
Γ0.

We finish this chapter by the following remark

Remark 0.11. When Ω is the crown domain between two circles Γ0 and Γ1 that constitute
the two parts of boundary, the analysis made in this paper still holds except the estimate (28)
because of the lack of Poincaré’s inequality since Oα can’t meet the part Γ0. However, if we

consider a set Õα containing Oα and such that meas(Õα∩Γ0) > 0, we can use the Poincaré’s
inequality and (28) still holds (see Figure 3).

0.2.3 Polynomial Stability: Case of discontinuous damping coeffi-
cient

In the fourth chapter we study the stability of our problem when the damping coefficient
a(·) is discontinuous, namely, when a(x) = a1ω. We will show that the associated semigroup
is polynomially stable with a decay rate of type t−1/2. For this matter we will use the
perturbation argument from the previous chapter adapted to the discontinuous case and a
cascade technique that allows us to merge different stability results for different systems.
Particularly, this will be based on an early established result (Cavalcanti et al. [28]), hence,
we will put ourselves in the same geometrical situation, that is when ∂Ω = Γ = Γ0 ∪ Γ1

where, Γ0 and Γ1 are closed and disjoint; besides, ω is a neighborhood of Γ1, where

Γ1 = {x ∈ Γ,m(x) · ν > 0},

such that m(x) = x−x0 and x0 is an arbitrary point in Rn. Moreover, we make the following
two assumptions (see Figure 4).

(H) meas(Γ1) > 0, (A) ∃δ > 0, Oδ ⊂ ω, where

Oδ = {x ∈ Ω, |x− y| ≤ δ, ∀y ∈ Γ1} .
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Oδ

Γ1

Γ0

ω

Ω

Figure 4: An example of a geometric situation satisfying the assumptions.

After releasing the regularity assumptions on a(·) our system is still stable, however, with a
slower decay rate this time. This is the subject of the following theorem.

Theorem 0.12. Suppose that the assumptions (H),(A) and the inequality (11) are satisfied,
then there is a constant C > 0, such that for all initial data U0 ∈ D(A) the solution U :=
(u, ut, ut|Γ1 , z) of the problem (6)-(10) satisfies the following polynomial decay estimate

∥U (t) ∥H ≤ C√
t
∥U0∥D(A). (32)

The proof follows the same big lines as the smooth damping coefficient case.
In a suitable Hilbert space H0 we define the operator A0, that corresponds to τ = 0 and

k = 0, that is

A0U =


v

div(∇u+ a∇v)
−∂u
∂ν

− a
∂v

∂ν
+∆Tu

 ,∀U ∈ D(A0),

with
D(A0) :=

{
U = (u, v, w)T ∈ H0 : v ∈ V, div(∇u+ a∇v) ∈ L2(Ω),

∂u

∂ν
+ a

∂v

∂ν
−∆Tu ∈ L2(Γ1), w = v|Γ1

}
.
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At this point we suppose that iR ⊂ ρ(A0) and that the operator A0 generates a polynomially

stable semigroup with a decay rate of type
1√
t
, then from Theorem 1.5 (Borichev-Tamilov

[22]) we have
∥ (iξ −A0)

−1 ∥L(H0) ≤ Cξ2, ∀ξ ∈ R. (33)

This resolvent estimate will be used to derive the estimate∫
Γ1

|ṽ|2dΓ ≤ C|ξ|2∥F0∥2H0
. (34)

which we use in the proof of the stability of the problem with delay (Proposition 0.7).

Stability of the problem with delay

Now we are going to prove the main result using the inequality (34).

Proposition 0.13. Under the assumptions (H),(A), the inequality (11) and |β| ≥ 1, the
operator A satisfies

supβ∈R
1

β2
∥ (iβI −A)−1 ∥H < +∞.

Proof. The proof uses the resolvent estimate (33), the inequality (34) and some classical
inequalities.

Now, we go back and show the polynomial stability of the problem without delay, namely,
the problem related to the operator A0.

Stability of the problem without delay

Lemma 0.14. For all β ∈ R, one has

Ker(iβI −A0) = {0}.

Proof. Based on a standard unique continuation argument.

Proposition 0.15. For all β ∈ R one has

R(iβI −A0) = H0. (35)

Proof. Similar to the delayed case.

Lemma 0.16. Under the assumptions (H) and (A), A0 satisfies

sup
β∈R

1

β2
∥(iβI −A0)

−1∥L(H0) <∞.
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Proof. We will prove the result by contradiction, suppose there exist sequences {βn}n∈N in
R∗

+ and {Un := (un, vn, wn)}n∈N in D(A0) such that

|βn| → +∞, (36)

∥un∥2V + ∥vn∥L2(Ω) + ∥wn∥L2(Γ1)
= 1, (37)

β2
n{iβn (un, vn, wn)−A0 (un, vn, wn)} := (fn, gn, hn) → 0 in H. (38)

Using some simples multipliers, we deduce∫
Ω

a|∇vn|2dx = o(
1

β2
n

). (39)

and
∥un∥V ∼ ∥vn∥L2(Ω). (40)

So, all we need to show is
∥un∥V = o(1). (41)

Again, using some multipliers, we deduce∫
ω

|β2
n∇un|2dx = o(1). (42)

∫
Γ1

|∇Tun|2dΓ = o(1). (43)

Now we have all the needed estimates on ω and we need to establish similar estimates on Ω\ω.
To that end, we are going to use a stability result of a similar system with frictional/viscous
damping.

We consider the following auxiliary problem,

φtt(x, t)−∆φ+ a1ωφt = 0, in Ω× R∗
+,

φ(x, t) = 0, on Γ0 × R∗
+,

φtt +
∂φ

∂ν
−∆Tφ+ φt = 0, on Γ1 × R∗

+,

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), in Ω.

(44)

This system is a particular case of the system studied in [28]. From there we can deduce the
exponential stability of the system (44), (See Remark 4.1 in [28]).

Now, since the system (44) is exponentially stable in a suitable Hilbert space Haux,
henceforth, after Theorem 1.4 (Huang-Prüss [47, 82]) the operator

AauxU =


ψ

∆φ− a1ωψ

−∂φ
∂ν

+∆Tφ− ϕ

 ,∀U ∈ D(Aaux),
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such that,

D(Aaux) :=
{
U = (φ, ψ, ϕ)T ∈ V 2 × L2(Γ1),∆φ ∈ L2(Ω),

∂φ

∂ν
−∆Tφ+ ϕ ∈ L2(Γ1)

}
,

satisfies the following uniform inequality

∥(iβn −Aaux)
−1F∥H ≤M∥F∥H, ∀F ∈ Haux (45)

for a positive constant M > 0. Taking F = (0,−un, 0), there exists a unique (φn, ψn, ϕn) ∈
D(Aaux) solution of

(iβnI −Aaux)(φn, ψn, ϕn) = (0,−un, 0).
Finally, from (45) we deduce

∥∇φn∥2L2(Ω) + ∥∇Tφn∥2L2(Γ1)
+ ∥βnφn∥2L2(Ω) + ∥βnφn∥2L2(Γ1)

≤ C∥un∥2L2(Ω), (46)

which we use with some new multipliers to derive the following estimate∫
Ω

|∇un|2dx = o(1) (47)

which finishes the proof.
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Chapter 1

Preliminaries

This chapter is devoted to presenting the methodology used in this thesis related to the
stability of semigroups as well as some well-known results that will be used in the following
chapters. Except Theorem 1.4, all other theorems are presented without proofs, however,
the relevant references are given.

1.1 General notions in stability theory

We are interested in the stability of the following abstract Cauchy problem in a Hilbert space
H {

ut(t) = Au(t), t ∈ (0,+∞)

u(0) = x ∈ H,
(A1)

where A : D(A) ⊂ H → H is a linear unbounded operator.
Two corner stones in the theory of semigroups related to PDEs are the two theorems of

Hille-Yosida and Lumer-Phillips.

Theorem 1.1. (Hille-Yosida, [40]) A linear operator (A,D(A)) in a Banach space X gener-
ates a strongly continuous contraction semigroup

(
S(t)

)
t≥0

if and only if it is closed, densely

defined, and for every λ ∈ C with ℜλ > 0 one has λ ∈ ρ(A) and

∥R(λ,A)∥ ≤ 1

ℜλ (1.1)

where R(λ,A) is the resolvent operator.

Theorem 1.2. (Lumer-Phillips, [40]) For a densely defined, dissipative operator (A,D(A))
on a Banach space X the following statements are equivalent.

• The closure Ā of A generates a contraction semigroup.

• R(λ−A) is dense in X for some (hence all) λ > 0.
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In practice, the resolvent estimate (1.1) in Theorem 1.1 is difficult to verify, in contrast
to the assumptions of Theorem 1.2, which are easier to deal with in most of the rencontred
cases in Hilbert spaces, then one gets (1.1) for free.

Assume that (A,D(A)) generates a C0-semigroup of contraction
(
S(t)

)
t≥0

in H, then the

existence of a unique solution to the Cauchy problem (A1) is derived from the properties of
C0-semigroups (see e.g. Lemma II.1.3 in [40]), and the solution is given by

u(t) = S(t)x, ∀t > 0. (sol)

The semigroup
(
S(t)

)
t∈R+ is called:

• Strongly (asymptotically) stable if for any x ∈ H:

lim
t→∞

∥S(t)x∥H = 0. (ss)

• Exponentially (uniformly) stable if there exist constants M ≥ 0 and α > 0 such that

∥S(t)∥H ≤Me−αt

or equivalently
lim
t→∞

∥S(t)∥H = 0.

• Polynomially stable of type t−αif there exists a constant C > 0 such that for every
x ∈ D(A):

∥S(t)x∥H ≤ C

tα
∥x∥D(A)

One must notice that the norm ∥ · ∥D(A) can’t be replaced by ∥ · ∥H otherwise using the
semigroup property polynomial stability will imply exponential stability.

The asymptotic behavior of the solution (sol) or analogously the semigroup
(
S(t)

)
t≥0

is

related to spectral properties of the infinitisimal generator (A,D(A)). From the Hille-Yosida
theorem we know that the spectrum of A, σ(A) lies in the closed left half of the complex
plane. Obviously, ifA has eigenvalues in the imaginary axis then there is no hope for stability;
However, if this is not the case, then we have the following theorem

Theorem 1.3 (Arendt-Batty, [19]). Assume that A is the generator of a C0-semigroup of
contractions (S(t))t≥0 on a Hilbert space H. If

1. A has no pure imaginary eigenvalues,

2. σ(A) ∩ iR is countable,

then the C0-semigroup (S(t))t≥0 is strongly stable.
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In general, the rate of decay in (ss) can be extremely slow without any further conditions.
Nevertheless, in certain specific scenarios such as our case, the rate of decay in (ss) is related
to the rate at which the energy of the system (A1) decreases. Therefore it is of interest to
investigate if this rate of decay can be quantified.

We know that the semigroup
(
S(t)

)
t≥0

satisfies the following estimate:

∥S(t)∥H ≤Meαt, (1.2)

for some constants M ≥ 1 and α. The smallest possible ω is called the growth bound and is
defined as follows

ω0 = ω0(S) := inf{α ∈ R : ∃M ≥ 1 such that ∥S(t)∥H ≤Meαt,∀t ≥ 0}. (1.3)

Another important quantity is the spectral bound, defined as follow

s(A) := sup{ℜλ, λ ∈ σ(A)}.

Obviously, we have

ω0(S) < 0 ⇔
(
S(t)

)
t≥0

is exponentially (uniformly) stable ⇒ s(A) < 0.

From Hille-Yosida theorem it follows that

s(A) ≤ ω0(S).

The equality is known to fail in general (see e.g. [81, 40] ) but it holds whenever the semi-
group

(
S(t)

)
t∈R+ is eventually norm continuous which is the case for analytic, eventually

differentiable, eventually compact semigroups or semigouprs that are generated by bounded
operators (one can see the diagram II.4.26 in [40]).

If we change the spectral bound s(A) by the pseudospectral bound s0(A)

s0(A) := inf{α ∈ R : sup
ℜλ>α

∥R(λ,A)∥H < +∞}, (1.4)

then, the equality s0(A) = ω(S) always holds in Hilbert spaces. This is the subject of the
following well-known and widely used theorem

Theorem 1.4. (Huang-Prüss, [47, 82]) A C0 semigroup (S(t))t≥0 of contractions on a Hilbert
space H is exponentially stable if and only if

iR ⊂ ρ(A), (H1)

and
sup
β∈R

∥∥(iβI −A)−1
∥∥
L(H)

<∞, (H2)

where A is the infinitisimal generator of (S(t))t≥0 and ρ(A) denotes the resolvent set of the
operator A.
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When the condition (H2) is not satisfied, we still hope to understand and quantify the
rate of the decay. The following theorem provides a characterization of a slower (polynomial)
decay rate in this case.

Theorem 1.5 (Borichev-Tamilov, [22]). Let (S(t))t≥0 be a bounded C0-semigroup on a Hilbert
space H with generator A such that iR ⊂ ρ(A). Then for a fixed ℓ > 0 the following conditions
are equivalent

•
∥∥(iβ −A)−1

∥∥ = O
(
|β|ℓ

)
, β → ∞,

•
∥∥S(t)A−1

∥∥ = O
(
t−1/ℓ

)
, t→ ∞.

We finish this section by a short and elementary proof of Huang-Prüss theorem (Theorem
1.4) given recently by Filippo Dell’oro and David Seifert in [38].

Proof. (of Theorem 1.4) To simplify some expressions in this proof we write R(λ) instead of
R(λ,A) for λ ∈ ρ(A).

The necessary part is standard and well-known. For the sufficiency part we note that, as
a consequence of the semigroup property, it suffices to show that lim

t→∞
∥S(t)∥ = 0. Suppose

then that iR ⊆ ρ(A) and sup
β∈R

∥R(iβ)∥ <∞, and let K be defined as follow

K := sup
t≥0

∥S(t)∥ <∞.

Given α > 0, we consider the rescaled semigroup (Sα(t))t≥0 given by Sα(t) = e−αtS(t) for
t ≥ 0. For every x ∈ X and t > 0 we have

∥Sα(t)x∥2 = 1

t

∫ t

0

∥Sα(t− τ)Sα(τ)x∥2 dτ ≤ K2

t

∫ ∞

0

∥Sα(τ)x∥2 dτ. (1.5)

Now let C = sup
β∈R

∥R(iβ)∥ and ω = C−1. It follows from the resolvent identity that, for α > 0

and β ∈ R,

∥R(α + iβ)∥ = ∥R(iβ)− αR(α + iβ)R(iβ)∥ ≤ C + Cα∥R(α + iβ)∥,

and hence ∥R(α + iβ)∥ ≤ (ω − α)−1 for all α ∈ (0, ω) and β ∈ R. By another application of
the resolvent identity we obtain

∥R(α + iβ)x∥ = ∥R(ω + iβ)x+ (ω − α)R(α + iβ)R(ω + iβ)x∥ ≤ 2∥R(ω + iβ)x∥

for all α ∈ (0, ω), β ∈ R and x ∈ X. If α > 0 and x ∈ X, and if we extend the semigroup
(Sα(t))t≥0 by zero to R,

S̃α(t) =

{
Sα(t), t ≥ 0,

0, t < 0.
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Then, by the integral representation of the resolvent the function β 7→ R(α + iβ)x is the
Fourier transform of the function t 7→ Sα(t)x.

R(α + iβ)x =

∫ ∞

0

e−iβtSα(t)xdt =

∫ ∞

−∞
e−iβtS̃α(t)xdt (1.6)

Thus, applying Plancherel’s theorem (twice) we deduce that, for α ∈ (0, ω),∫ ∞

0

∥Sα(τ)x∥2 dτ =

∫ ∞

−∞

∥∥∥S̃α(τ)x
∥∥∥2

dτ =
1

2π

∫ ∞

−∞
∥R(α + iβ)x∥2dβ ≤ 2

π

∫ ∞

−∞
∥R(ω + iβ)x∥2dβ

= 4

∫ ∞

0

∥Sω(τ)x∥2 dτ ≤ c2∥x∥2

(1.7)
where c = K(2C)1/2. Combining (1.5) and (1.7) gives ∥Sα(t)∥ ≤ Kct−1/2 for all α ∈ (0, ω)
and t > 0, and letting α → 0+we get

∥S(t)∥ ≤ Kc

t1/2
→ 0, t→ ∞.

Thus (S(t))t≥0 is exponentially stable, as required.

1.2 Functional analysis tools

In this section, for the reader’s inconvenience, we provide some functional analysis tools that
are employed in the thesis. Throughout this section X and Y are Banach spaces and Ω is a
connected open set in Rn with a boundary ∂Ω of class C2.

Theorem 1.6. (Closed graph theorem, [83]) Let (A,D(A)) be a linear operator from X to
Y . Then if (A,D(A)) is a closed operator and its domain D(A) is closed in X, then the
operator is bounded.

Theorem 1.7. (The uniform resonance/boundedness theorem, [83]) Let Tn ∈ L(X, Y ),
n ∈ N be such that {Tn} is pointwise bounded in X, then it is uniformly bounded, i.e.
sup
n

∥Tn∥L(X,Y ) <∞.

Theorem 1.8. (Fredholm alternative, [83]) Let A,K ∈ L(X, Y ) and let K be compact. Then
A is an isomorphism if and only if A+K is.

Sobolev embedding

Theorem 1.9. (Poincaré’s inequality, Lemma I.3.1 in [44]) Let Γ0 be a portion of Γ = ∂Ω
with strictly positive measure. Then for every u ∈ H1

Γ0
(Ω), there exists a constant C > 0

such that
∥u∥L2(Ω) ≤ C∥∇u∥L2(Ω).
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Theorem 1.10. (Trace operator, Theorem 1.2 in [75]) Let Γ be at least Lipschitz. Then
there exists a uniquely defined, linear and continuous mapping T : H1(Ω) → L2(Γ) such that
for every x ∈ Γ and v ∈ C∞(Ω̄), it is defined by T (v)(x) = v(x).

Theorem 1.11. (Theorem 1.4.3.2 in [45]) Let s > s′ ≥ 0, then, the injection of Hs(Ω) in
Hs′(Ω) is compact.

Elliptic regularity

Theorem 1.12. (Theorem 8.8 in [43]) Let u ∈ H1(Ω) be the weak solution to the equation
∆u = f and f ∈ L2(Ω). Then for any subdomain Ω′ ⋐ Ω, i.e. Ω′ has a compact closer in Ω,
we have u ∈ H2(Ω′).

Theorem 1.13. (Theorem 8.12 in [43]) Let u ∈ H1
0 (Ω) such that ∆u ∈ L2(Ω). Then

u ∈ H2(Ω).

Unique continuation

Theorem 1.14. (Calderón theorem, [54]). Let g be such that |g(y)| ≤ C|y|. Let ω ⋐ Ω,
with ω ̸= ∅. If u ∈ H2(Ω) satisfies ∆u = g(u) in Ω and u(x) = 0 in ω, then u vanishes in Ω.
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Chapter 2

Well-Posedness and Strong Stability

2.1 Introduction

In this chapter we present our system, then we prove its well-posedness and the strong
stability of its solution.

Let Ω ⊂ Rn be an open bounded set with a boundary Γ of class C2. We assume that Γ
is divided into two open parts Γ0 and Γ1, i.e. Γ = Γ0 ∪ Γ1 with Γ0 ∩ Γ1 = ∅ and meas Γi ̸=
0, i = 0, 1.
In this domain Ω, we consider the following initial boundary value problem

utt(x, t)− div{∇u(x, t) + a(x)∇ut(x, t)} = 0, in Ω× R∗
+, (2.1)

u(x, t) = 0, on Γ0 × R∗
+, (2.2)

utt(x, t) +
∂u

∂ν
(x, t) + a(x)

∂ut
∂ν

(x, t)−∆Tu(x, t) + kut(x, t− τ) = 0, on Γ1 × R∗
+, (2.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (2.4)

ut(x, t− τ) = f0(x, t− τ), in Ω× (0, τ), (2.5)

where ν(x) denotes the outer unit normal vector to the point x ∈ Γ,
∂u

∂ν
is the normal

derivative of u, ∆T is the Laplace-Beltrami operator defined by

∆Tu := divT ∇Tu,

where divT is the tangential divergence such that the following Stokes formula holds∫
Γ1

∆TuũdΓ = −
∫
Γ1

∇Tu∇T ũdΓ, ∀u, ũ ∈ H1
0 (Γ1)

and ∇Tu denotes the tangential gradient where

∇u = ∇Tu+
∂u

∂ν
· ν, on Γ1,
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τ > 0 is the time delay, k is a real number and a(x) ∈ L∞(Ω) satisfies

a(x) ≥ 0 a.e in Ω, a(x) ≥ a0 > 0 a.e in ω.

Here, ω ⊂ Ω is an open neighborhood of the part Γ1 of the boundary that is supposed to be
connected and meas(ω ∩Γ0) > 0 (see Figure 2.1). Furthermore, the initial datum (u0, u1, f0)
belongs to a suitable space.

ω

a(
x)
>
a 0
>
0

Ω
Γ0

Γ1

Figure 2.1: Example satisfying the required geometrical assumptions.

In this chapter, we are going to establish the well-posedness of our system under a suit-
able relation (Inequality (2.7) in the sequel ) between the function a(·) that characterizes
the region where the Kelvin-Voigt damping is active and k the coefficient of the delayed
boundary feedback. This relation ensures the dissipativity of our system which is crucial for
the forthcoming analysis.

Without loss of generality we can suppose that ω has a C2 boundary, then from the trace
theorem we have ∫

∂ω

|v|2dΓ ≤ C∥v∥H1(ω),∀v ∈ H1(ω),

for some positive constant C. Hence, the following Poincare-Trace type inequality holds∫
Γ1

|v|2dΓ ≤ CP

∫
ω

|∇v|2dx,∀v ∈ H1
Γ0
(Ω), (2.6)

where
H1

Γ0
(Ω) =

{
u ∈ H1(Ω) : u|Γ0

= 0
}
,

and CP is the smallest possible positive constant.
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We shall show that, when the damping is active in a neighborhood of the part Γ1 of the
boundary and the following condition is satisfied

a0 > |k|CP , (2.7)

the system (2.1)-(2.5) is well posed and its energy decays to zero. First, we will follow [76]
and [77] and transform the boundary delay feedback using an auxiliary state, then using a
semigroup approach, Lax-Milgram’s lemma and the Lumer-Phillips’s theorem we will prove
the existence and uniqueness of a solution.

As in [76] and [77], we introduce the following new state,

z(x, ρ, t) = ut(x, t− τρ), x ∈ Γ1, ρ ∈ (0, 1), t > 0. (2.8)

The system (2.1)-(2.5) is then equivalent to:

utt(x, t)− div(∇u+ a(x)∇ut) = 0, in Ω× R∗
+, (2.9)

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, in Γ1 × (0, 1)× R∗
+, (2.10)

u(x, t) = 0, on Γ0 × R∗
+, (2.11)

utt +
∂u

∂ν
+ a(x)

∂v

∂ν
−∆Tu+ kz(x, 1, t) = 0, on Γ1 × R∗

+, (2.12)

z(x, 0, t) = ut(x, t), on Γ1 × R∗
+, (2.13)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω, (2.14)

ut(x, t− τ) = f0(x, t− τ), in Ω× (0, τ). (2.15)

We also introduce the following spaces

V =
{
u ∈ H1

Γ0
(Ω) : u|Γ1

∈ H1
0 (Γ1)

}
,

and
H = V × L2(Ω)× L2 (Γ1)× L2 (Γ1 × (0, 1)) ,

endowed with the inner product,

〈
u

v

v|Γ1

z

 ,


ũ

ṽ

ṽ|Γ1

z̃


〉

H

:=

∫
Ω

{∇u(x) · ∇ũ(x) + v(x)ṽ(x)}dx

+

∫
Γ1

{∇Tu(x) · ∇T ũ(x) + v(x)ṽ(x)}dΓ

+ ξ

∫
Γ1

∫ 1

0

z(x, ρ)z̃(x, ρ)dρdΓ,

where ξ is a positive real number such that

|k| ≤ ξ

τ
≤ 2a0

Cp

. (2.16)
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Now, we introduce our unbounded operator A on H,

AU =


v

div(∇u+ a∇v)
−∂u
∂ν

− a
∂v

∂ν
+∆Tu− kz(·, 1)

−1

τ
zρ

 ,∀U ∈ D(A),

with domain,

D(A) :=
{
U = (u, v, v|Γ1 , z)

T ∈ H : AU ∈ H
}

=
{
U ∈ V × V × L2(Γ1)× L2(Γ1;H

1(0, 1)) : div(∇u+ a∇v) ∈ L2(Ω),

∂u

∂ν
+ a

∂v

∂ν
−∆Tu ∈ L2(Γ1), v|Γ1 = z(·, 0)

}
.

If we denote
U = (u, v, v|Γ1 , z)

T ,

where ut = c, we can reformulate our problem in the compact form:{
∂tU = AU

U0 = (u0, u1, u1|Γ1 , f0(·,− · τ))T .
(2.17)

Since the vector field (∇u+ a∇v) belongs only to H(div,Ω), where

H(div,Ω) := {u ∈
(
L2(Ω)

)n
: div u ∈ L2(Ω)},

we need a valid Green’s formula for the related term. However, for a vector field Λ ∈
H(div,Ω), Λ · ν ∈ H− 1

2 (Γ) ⊂ H− 1
2 (Γ1). Where H− 1

2 (Γ1) is the dual space of H̃
1
2 (Γ1) the

space of functions in H
1
2 (Γ1) whose extensions outside Γ1 by zero lies in H

1
2 (Γ), and we have

the following Green’s formula (See identity (I.2.17) of [44])∫
Ω

Λ · ∇φdx = −
∫
Ω

div Λφdx+ ⟨Λ · ν;φ⟩Γ1 , ∀φ ∈ H1
Γ0
(Ω), (2.18)

where ⟨·; ·⟩Γ1 is the duality product between H− 1
2 (Γ1) and H̃

1
2 (Γ1).

Remark 2.1. The inequality (2.7) is very important for the stability of the system considered
in this thesis. Moreover, it is proved to be necessary in some situations; For example, in
the one dimensional setting when a(·) is constant everywhere and the boundary term utt is
multiplied by a sufficiently small parameter µ as we deduce from the counterexample presented
in section (4.3) in [76].
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2.2 Well-Posedness

First of all, we would like to draw the reader’s attention to the fact that the well-posedness
of evolution equations with delay isn’t always guaranteed, as one may see in the work of
Dreher, Quintilla, and Racke in [39].

Now, we present our first theorem regarding the existence, uniqueness, and regularity of
the solution.

Theorem 2.2. Assume that (2.7) holds. Then for any initial datum U0 ∈ H, there exists a
unique (weak) solution U ∈ C([0,+∞),H) of problem (2.17). Moreover, if U0 ∈ D(A), then

U ∈ C([0,+∞),D(A)) ∩ C1([0,+∞),H).

Proof. Take U = (u, v, v|Γ1 , z)
T ∈ D(A). Then

⟨AU,U⟩H =

〈


v

div(∇u+ a∇v)
−∂u
∂ν

− a
∂v

∂ν
+∆Tu− kz(·, 1)

−1

τ
zρ

 ,


u

v

v|Γ1

z


〉

H

=

∫
Ω

∇v∇udx+
∫
Γ1

∇Tv∇TudΓ +

∫
Ω

div(∇u+ a∇v)vdx

+

∫
Γ1

(
− ∂u

∂ν
− a

∂v

∂ν
+∆Tu− kz(·, 1)

)
vdΓ

−
∫
Γ

∫ 1

0

ξ

τ
zρzdρdΓ.

Therefore, by using Green’s formula and the definition of D(A) we get,

ℜ⟨AU,U⟩H =−
∫
Ω

a|∇v|2dx− kℜ
∫
Γ1

z(·, 1)vdΓ

− ξ

2τ

∫
Γ1

(
|z(·, 1)|2 − |v|2

)
dΓ,

where ℜ denotes the real part.
By Cauchy–Schwarz and the Young inequalities we find

ℜ⟨AU,U⟩H ≤−
∫
Ω

a|∇v|2dx+
( |k|

2
+

ξ

2τ

)∫
Γ1

|v|2dΓ

+

( |k|
2

− ξ

2τ

)∫
Γ1

|z(·, 1)|2dΓ.
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Using (2.7), we deduce that

ℜ⟨AU,U⟩H ≤−
(
a0 − CP

( |k|
2

+
ξ

2τ

))∫
ω

|∇v|2dx+−
(
ξ

2τ
− |k|

2

)∫
Γ1

|z(·, 1)|2dΓ

−
∫
Ω\ω

a|∇v|2dx.
(2.19)

Observing that from (2.16) we have,

a0 − CP

( |k|
2

+
ξ

2τ

)
≥ 0,

ξ

2τ
− |k|

2
≥ 0, (2.20)

hence ℜ⟨AU,U⟩H ≤ 0, and the operator A is dissipative.
Now, we will show that the operator A is surjective. Given (f1, f2, f3, f4)

T ∈ H, we seek
(u, v, v|Γ1 , z)

T ∈ D(A) solution of

v = f1,

div(∇u+ a(x)∇v) = f2,

−∂u
∂ν

− a(x)
∂v

∂ν
+∆Tu− kz(, 1) = f3,

−1

τ
zρ = f4.

(2.21)

The first equation in (2.21) gives v ∈ V , whose trace in Γ1 is well defined. Then, from
the fourth equation we deduce

z(x, ρ) = v(x)− τ

∫ ρ

0

f4(x, σ)dσ on Γ1 × (0, 1), (2.22)

and in particular

z(x, 1) = v(x)− τ

∫ 1

0

f4(x, σ)dσ, ∀x ∈ Γ1.

Since f4 belongs to L2(Γ1 × (0, 1)) then z ∈ L2(Γ1 × H1(0, 1)). Moreover, v, v|Γ1 , z are
uniquely defined, hence, we can define the following functional for every u, ũ ∈ V ,

a(u, ũ) =

∫
Ω

∇u∇ũdx+
∫
Γ1

∇Tu∇T ũdΓ,

which is bilinear, continuous, and coercive. Always for every ũ ∈ V , we define the following
linear functional

l(ũ) = −
∫
Ω

(
f2ũ+ a(x)∇f1∇ũ

)
dx−

∫
Γ1

(
f3 + kz(·, 1)

)
ũdΓ.

Using Lax-Milgram theorem we deduce that for every (f1, f2, f3, f4)
T ∈ H, there exists a

unique u ∈ V such that
a(u, ũ) = l(ũ), ∀ũ ∈ V. (2.23)
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Moreover, from (2.23) we have

div(∇u+ a∇v) = f2, in D′(Ω).

Since f2 is in L2(Ω) then, so is div(∇u+ a∇v). Using this in (2.23) besides the fact that

f3 and z(·, 1) belong to L2(Γ1) we get
∂u

∂ν
+a

∂v

∂ν
−∆Tu ∈ L2(Γ1). Consequently, we conclude

the existence of a unique solution (u, v, v|Γ1 , z)
T ∈ D(A) to (2.21). From (2.21), (2.22), and

(2.23) we can deduce
∥(u, v, v|Γ1 , z)∥H ≤ C∥(f1, f2, f3, f4)∥H.

So, 0 ∈ ρ(A). Therefore, by contraction principle, we obtain R(λI − A) = H, for λ > 0
sufficiently small. Thus, applying the Lumer-Phillips Theorem, we conclude that the operator
A generates a C0 semigroup of contractions on H.

Let us introduce the energy of the system.

E(t) := E(u(t)) =
1

2

∫
Ω

{
u2t (x, t) + |∇u(x, t)|2

}
dx+

1

2

∫
Γ1

{
u2t (x, t) + |∇Tu(x, t)|2

}
dΓ

+
ξ

2τ

∫ t

t−τ

∫
Γ1

|ut(x, ρ)|2 dΓdρ.
(2.24)

Proposition 2.3. For any regular solution U = (u, v, v|Γ1 , z) of problem (2.1)-(2.5) the
energy is decreasing and there exists a positive constant C such that

E ′(t) ≤ −C
{∫

ω

|∇ut(x, t)|2 dx+
∫
Γ1

|ut(x, t− τ)|2 dΓ
}
−
∫
Ω\ω

a(x) |∇ut(x, t)|2 dx

Proof. It suffices to notice that
2E(t) = ∥U∥2H,

hence
E ′(t) = ℜ ⟨U ′, U⟩H = ℜ⟨AU,U⟩H.

We then obtain the result owing to (2.19) and the assumption on ξ.

2.3 Strong stability

As pointed out in the introduction, the strong stability is a necessary condition for the
exponential one. In this section we are going to give a strong stability result for the problem
(2.1)-(2.5) under the assumption (2.7). To this end, we shall use Arendt-Batty’s criteria [19].

Theorem 2.4. The semigroup of contractions (S(t))t≥0 generated by (A,D(A)) is strongly
stable on the energy space H in the sense that

lim
t→∞

∥S(t)U0∥H = 0, ∀U0 ∈ H.

30



The criteria of Arendt and Batty [19] ensures that a C0-semigroup of contractions in a
reflexive Banach space is strongly stable, if σ(A) ∩ iR contains only a countable number of
continuous spectrum of A and no eigenvalue. Since 0 ∈ ρ(A), we only need to check that
(i) Ker(iβI −A) = {0} and (ii) R(iβI −A) = H, for all real numbers β ̸= 0. Then, by the
Hille-Yosida theorem the operator (iβ −A) is closed and using the closed graph theorem we
deduce that its inverse (iβ − A)−1, which is defined everywhere is bounded. Consequently,
we deduce that σ(A) ∩ iR = ∅.
Lemma 2.5. If (2.7) is satisfied, then, for all β ∈ R, the operator (iβI − A) is injective,
i.e.,:

Ker(iβI −A) = {0}.
Proof. Let U = (u, v, v|Γ1 , z)

T ∈ D(A) be such that

AU = iβU. (2.25)

Recall (2.19), we have

ℜ⟨AU,U⟩H ≤
(
−a0 + CP

( |k|
2

+
ξ

2τ

))∫
ω

|∇v|2dx+
( |k|

2
− ξ

2τ

)∫
Γ1

|z(x, 1)|2dΓ

−
∫
Ω\ω

a(x)|∇v|2dx,

where Cp is the constant in (2.6). Using (2.20) we infer∫
ω

|∇v|2dx = 0,

∫
Γ1

|z(x, 1)|2dΓ = 0, and

∫
Ω\ω

a(x)|∇v|2dx = 0. (2.26)

Therefore, from (2.26) we have that

a∇v = 0, in Ω, (2.27)

and
∇v = 0, in ω.

Then for some real constant c we have

v = c, in ω. (2.28)

In addition, from (2.26), we derive

z(x, 1) = 0 on Γ1. (2.29)

Now, note that (2.25) can be rewritten as

iβu− v = 0, in Ω,

iβv − div(∇u+ a∇v) = 0, in Ω,

iβv +
∂u

∂ν
+ a

∂v

∂ν
−∆Tu+ kz(·, 1) = 0, in Γ1,

iβz +
1

τ
zρ = 0, in Γ1 × (0, 1).
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Inserting (2.27) and (2.29) we have

iβu− v = 0, in Ω,

β2u+∆u = 0, in Ω,

iβv +
∂u

∂ν
+ a

∂v

∂ν
−∆Tu = 0, in Γ1,

iβz +
1

τ
zρ = 0, in Γ1 × (0, 1).

(2.30)

Then, from the fourth equation in (2.30) and (2.29), we obtain

z(x, ρ) = 0 in Γ1 × (0, 1).

Thus
v(x) = z(x, 0) = 0, x ∈ Γ1. (2.31)

Therefore, from (2.31) and (2.28), we deduce

v = 0, in ω. (2.32)

Now, using the first equation of (2.30), we also have

u = 0, in ω.

Moreover, using the regularity of u and the trace theorem result

u = 0, on Γ1.

Finally, since u satisfies the second equation of (2.30), a unique continuation result (The-
orem 1.14 for example) allows us to deduce

u = 0, in Ω.

Therefore, (u, v, v|Γ1 , z)
T = (0, 0, 0, 0).

Proposition 2.6. If (2.7) is satisfied, then for all β ∈ R, we have that (iβI−A) is surjective,
i.e.

R(iβI −A) = H.

Proof. Since we have already shown in Theorem 2.1 that R(A) = H, we only need to prove
that R (iβI −A) = H for all β ∈ R, β ̸= 0.

Given F = (f1, f2, f3, f4) ∈ H, we need to find U = (u, v, v|Γ1 , z) ∈ D (A) such that

(iβI −A)U = F, (2.33)
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that is, 

iβu− v = f1, in Ω,

iβv − div(∇u+ a∇v) = f2, in Ω,

iβv +
∂u

∂ν
+ a

∂v

∂ν
−∆Tu+ kz(, 1) = f3, in Γ1,

iβz +
1

τ
zρ = f4, in Γ1 × (0, 1).

(2.34)

From the fourth identity in (2.34), we have

z(x, ρ) = e−iτβρ
(
v + τ

∫ ρ

0

eiτβσf4(x, σ)dσ
)
. (2.35)

Then,

z(x, 1) = e−iτβv + τe−iτβ

∫ 1

0

eiτβσf4(x, σ)dσ. (2.36)

Multiplying the second equation in (2.34) by φ ∈ V , integrating and using Green’s formula
(2.18), then using the first and the third equations in (2.34) as well as (2.36) yields,

aβ(u, φ) = lβ(φ),

where

aβ(u, φ) = −β2

∫
Ω

uφdx+

∫
Ω

(1 + iβa)∇u∇φdx− β2

∫
Γ1

uφdΓ +

∫
Γ1

∇Tu∇TφdΓ

+ iβke−iτβ

∫
Ω

uφdx,

and

lβ(φ) =

∫
Ω

f2φ+ iβ

∫
Ω

f1φ+

∫
Ω

a∇f1∇φ+

∫
Γ1

f3φ+ iβ

∫
Γ1

f1φ

+ ke−iτβ

∫
Γ1

f1φ− kτe−iτβ

∫
Γ1

∫ 1

0

eiτβσf4(x, σ)φdσ,

which is a linear form over V .
Now, let’s introduce the operator Aβ : V → V ′ by

⟨Aβu, ũ⟩V ′,V = aβ(u, ũ), ∀ũ ∈ V,

and define the operators A1 and A2 that decompose Aβ as follows{
A1 : V → V ′

u→ A1u,

{
A2 : V → V ′

u→ A2u,

such that, {
(A1u)(φ) = a1(u, φ), ∀u, φ ∈ V,

(A2u)(φ) = a2(u, φ), ∀u, φ ∈ V,
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where 
a1(u, φ) =

(
iβke−iτβ − β2

)∫
Ω

uφdx− β2

∫
Γ1

uφdΓ,

a2(u, φ) =

∫
Ω

(
1 + iβa(x)

)
∇u∇φdx+

∫
Γ1

∇Tu∇TφdΓ.
(2.37)

Our aim here is to prove that Aβ = A1 + A2 is an isomorphism, for which we are going
to prove that A1 is a compact operator and that A2 is an isomorphism.

Let u, φ ∈ V . We have for suitable constant C,

|a1(u, φ)| ≤ C∥u∥L2(Ω)∥φ∥L2(Ω) + C∥u∥L2Γ1
∥φ∥L2(Γ1)

≤ C∥u∥V ∥φ∥L2(Ω) + C∥u∥L2Γ1
∥φ∥L2(Γ1).

Further, for all s ∈ (
1

2
, 1), we have

|a1(u, φ)| ≤ C∥u∥V ∥φ∥Hs(Ω).

Since the canonical injection of V into H1
Γ0
(Ω) (respectively) H1

Γ0
(Ω) into Hs

Γ0
(Ω) is con-

tinuous (respectively) compact, then the injection (Hs(Ω))′ ↪→ V ′ is compact. This proves
the compactness of A1.

On the other hand, we can easily check that a2 is a coercive sesquilinear form on V . So,
by the Lax-Milgram theorem, the operator A2 is an isomorphism.

Now, our proof of Aβ being an isomorphism is reduced to proving that KerAβ = {0}.
Let u ∈ KerAβ, that is

aβ(u, φ) = 0,∀φ ∈ V.

Then from (2.37), we find that

−β2u− div({1 + iβa}∇u) = 0, in D′(Ω),

−β2u+ (1 + iβa)
∂u

∂ν
−∆Tu+ iβke−iτβu = 0, on Γ1.

If we set v = iβu and z(x, ρ) = iβe−iτβρu(x), then (u, v, v|Γ1 , z) belongs to D(A) and
satisfies

(iβ −A)


u

v

v|Γ1

z

 =


iβu− v

iβv −∆u− div(a(x)∇v)
iβv +

∂u

∂ν
+ a(x)

∂v

∂ν
−∆Tu

iβz +
1

τ
zρ

 =


0

0

0

0

 .

Using Lemma 2.5, we easily deduce that Ker(iβ−A) = {0}. Hence u = v = v|Γ1 = z = 0
and KerAβ = {0}. The proof is now completed.
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Chapter 3

Exponential Stability: Case of smooth
damping coefficient

In this chapter, we are going to prove the exponential stability of the problem (2.1)-(2.5)
when (2.7) is verified and the damping coefficient a(·) satisfies certain regularity assumptions
described below.

To this end, we are going to use the frequency domain approach. Specifically, we shall
follow Theorem 1.4 (Huang-Prüss [47, 82]).

Since the condition (H1) of Theorem 1.4 (Huang-Prüss [47, 82]) was already verified in
the proof of Theorem 2.4, we need only to verify the condition (H2).

The result of this chapter and the next one will be built up on some estimates that are
easy to get in ω but the tricky part is to extend them to the rest of Ω which needs some
regularity assumptions on a(·). Hence, following Nicaise and Pignotti [78] on their inspiration
from Liu and Rao [67], we assume the following conditions that we illustrate in Figure 3.1,
(H) measΓ1 > 0, (A1) ∃δ > 0, a (x) ≥ a0 > 0, ∀x ∈ Oδ, where

Oδ = {x ∈ Ω, |x− y| ≤ δ, ∀y ∈ Γ1} ,

(A2) a ∈ C1,1
(
Ω
)
, ∆a ∈ L∞ (Ω).

Also, we assume the following conditions.
There exists a function q ∈ C1 (Ω;Rn) and constants 0 < α < β < δ such that (D1)

∂jqk = ∂kqj, div q ∈ C1 (Ωβ) and q ≡ 0 on Oα, where Ωβ = Ω\Oβ, (D2) there exists a
constant σ > 0 such that

(∂jqk)1≤k,j≤n ≥ σI, in Ωβ,

(D3) there exists a constant C > 0 such that for all v ∈ V we have

|(q · ∇v)∇a− (q · ∇a)∇v| ≤ C
√
a|∇v|, in Ωβ,

(D4) q (x) · ν (x) ≤ 0 ∀x ∈ Γ0.

Remark 3.1. If Ω is a disk in R2and Γ0 is a suitable connected arc from the boundary, the
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Oα

Oβ

Oδ

Γ1

Γ0

Ω

ω

ν(x)

q(x)

x·

Ωβ

Figure 3.1: An example of a geometric situation satisfying the assumptions (D1)-(D4).

conditions (D1)-(D4) hold with q(x) = m(x)ϱ(x) such that ϱ ∈ C1(Ω) defined by

ϱ(x) =


1 if x ∈ Ωβ,

0 if x ∈ Oα,

ϱ(x) ∈ [0, 1] elsewhere ,

and m(x) = x− x0, while x0 ∈ R2 is chosen such that m(x) · ν(x) ≥ 0 for every x in Γ0 (see
Figure 3.2).
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x0

q(x) ≡ 0

q(x) = m(x)ϱ(x)

q(x) = m(x) OαOβ

ω

Ωβ

Γ1

Γ0

Ω

Figure 3.2: A geometric situation for which there exists a vector field q for which the as-
sumptions (D1)-(D4) are satisfied.

Now we give the main theorem of this chapter.

Theorem 3.2. Suppose that the assumptions (H),(A1),(A2),(D1)-(D4), along with the
inequality (2.7) are satisfied. Then there are two constants M > 0, α > 0, such that for
all initial data U0 ∈ H the solution U := (u, v, w, z) of the problem (2.1)-(2.5) satisfies the
following uniform exponential decay estimate

∥U (t) ∥H ≤Me−αt∥U0∥H. (3.1)

The proof is divided into several parts and is contained in the next two sections. Moreover
it is based on a perturbation argument similar to the one used in [78]. We are going to show
that our system is exponentially stable by relying on the exponential stability of the same
system with no time delay. Let H0 be the space,

H0 = V × L2(Ω)× L2(Γ1), (3.2)

equipped with the inner product

〈
u

v

v|Γ1

 ,


ũ

ṽ

ṽ|Γ1


〉

H0

:=

∫
Ω

{
∇u(x)·∇ũ(x)+v(x)ṽ(x)

}
dx+

∫
Γ1

{
∇Tu(x)·∇T ũ(x)+v(x)ṽ(x)

}
dΓ,

and let A0 be the operator corresponding to τ = 0 and k = 1, that is

A0 : D (A0) → H0 : (u, v, v|Γ1)
T →

(
v, div (∇u+ a∇v) ,−∂u

∂ν
− a(x)

∂v

∂ν
+∆Tu− v

)T

,
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with
D(A0) :=

{
U = (u, v, v|Γ1)

T ∈ H0 : v ∈ V, div(∇u+ a(x)∇v) ∈ L2(Ω),

∂u

∂ν
+ a(x)

∂v

∂ν
−∆Tu ∈ L2(Γ1)

}
.

At this stage, we assume that A0 generates an exponentially stable semigroup. So, from
Theorem 1.4 (Huang-Prüss [47, 82]) we have,{

(i) iR ⊂ ρ(A0)

(ii) ∥ (iξ −A0)
−1 ∥L(H0) ≤ C, ∀ξ ∈ R.

(3.3)

The estimate (ii) in (3.3), will be used to derive the estimate (3.6) which we use to prove the
Proposition 4.2. Indeed, for every F0 ∈ H0, the solution (ũ, ṽ, ṽ|Γ1)

T ∈ D (A0) of

(iξI −A0)


ũ

ṽ

ṽ|Γ1

 = F0,

satisfies ∥∥∥∥∥∥∥∥


ũ

ṽ

ṽ|Γ1


∥∥∥∥∥∥∥∥
H0

≤ C||F0∥H0 , (3.4)

which is equivalent to

∥ũ∥H1
Γ0

(Ω) + ∥ṽ∥L2(Ω) + ∥ṽ∥L2(Γ1) ≤ C∥F0∥H0 . (3.5)

Then, ∫
Γ1

|ṽ|2dΓ ≤ C∥F0∥2H0
. (3.6)

3.1 Stability of the problem with delay

In this section we are going to establish the proof of our main theorem (Theorem 4.1), using
the inequality (3.6).

Proposition 3.3. Under the assumptions (2.7), (H), (A1),(A2), and (D1)-(D4), the op-
erator A satisfies

supβ∈R ∥ (iβI −A)−1 ∥H < +∞.

Proof. For F ∈ H and β ∈ R, let U ∈ D (A) be a solution of

(iβI −A)U = F = (f1, f2, f3, f4)
T ,
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that is 

iβu− v = f1, in Ω,

iβv −∆u− div (a∇v) = f2, in Ω,

iβv +
∂u

∂ν
+ a

∂v

∂ν
−∆Tu+ kz(·, 1) = f3, on Γ1,

iβz + τ−1zρ = f4, on Γ1.

(3.7)

The first identity of (3.7) gives
v = iβu− f1.

Recall that, from the identity (2.36), we have

v (x) = eiτβz (x, 1)− τ

∫ 1

0

eiτβf4 (x, σ) dσ,

and so,
∥v∥L2(Γ1) ≤ ∥z (., 1) ∥L2(Γ1) + C∥f4∥L2(Γ1×(0,1)). (3.8)

Moreover, from (2.19), we have

C

∫
Γ1

|z (x, 1) |2dΓ ≤ −ℜ⟨AU,U⟩H .

Then,

C

∫
Γ1

|z (x, 1) |2dΓ ≤ ℜ⟨F,U⟩H ≤ ∥F∥H∥U∥H. (3.9)

From (3.9) and (3.8), we deduce

||v||2L2(Γ1)
≤ C

(
||F ||2H + ||F ||H||U ||H

)
. (3.10)

From (2.35), we also have

||z||2L2(Γ1×(0,1)) ≤ C
(
∥v∥L2(Γ1) + ∥f4∥L2(Γ1×(0,1))

)
. (3.11)

By using (3.11) in (3.10), we obtain

∥v∥2L2(Γ1)
≤ C

{
∥F∥2H + ∥F∥H

(
∥ (u, v, v|Γ1) ∥H0 + ∥v∥L2(Γ1) + ∥f4∥L2(Γ1×(0,1))

)}
.

Therefore,

∥v∥2L2(Γ1)
≤ C

(
∥F∥2H + ∥F∥H∥ (u, v, v|Γ1) ∥H0

)
+ C∥F∥H∥v∥L2(Γ1),

from which follows, by using Young’s inequality,

∥v∥2L2(Γ1)
≤ C

(
∥F∥2H + ∥F∥H∥ (u, v, v|Γ1) ∥H0

)
. (3.12)
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Estimates (3.9), (3.11), and (3.12) imply

∥z (., 1) ∥2L2(Γ1)
≤ C

(
∥F∥2H + ∥F∥H∥ (u, v, v|Γ1) ∥H0

)
. (3.13)

We have now to estimate ∥ (u, v, v|Γ1) ∥H0 . For this, let (ũ, ṽ, ṽ|Γ1) ∈ D (A0) be the solution
of

(−iβ −A0)


ũ

ṽ

ṽ|Γ1

 =


u

−v
−v|Γ1

 , (3.14)

which is equivalent to
−iβũ− ṽ = u in Ω,

−iβṽ − div (∇ũ+ a∇ṽ) = −v in Ω,

−iβṽ + ∂ũ

∂v
+ a

∂ṽ

∂v
−∆T ũ = −v on Γ1.

(3.15)

From another part we have

〈
(iβ −A)U,


ũ

−ṽ
−ṽ|Γ1

0


〉

H

=

〈
iβu− v

iβv − div(∇u+ a∇v)
iβv +

∂u

∂ν
+ a

∂v

∂ν
−∆Tu+ kz(·, 1)

iβz + τ−1zρ

 ,


ũ

−ṽ
−ṽ|Γ1

0


〉

H

=

∫
Ω

∇(iβu− v) · ∇ũdx+
∫
Γ1

∇T (iβu− v) · ∇T ũdx−
∫
Ω

(iβv − div(∇u+ a∇v)) · ṽdx

−
∫
Γ1

(
iβv +

∂u

∂ν
+ a

∂v

∂ν
−∆Tu+ kz(·, 1)

)
ṽdΓ1

=

∫
Ω

∇u∇(−iβũ− ṽ)dx+

∫
Ω

v(iβṽ + div(∇ũ+ a∇ṽ))dx+
∫
Γ1

∇Tu∇T (−iβũ− ṽ)dΓ

+

∫
Γ1

v
(
iβṽ − ∂ũ

∂ν
− a

∂ṽ

∂ν
+∆T ũ

)
dΓ−

∫
Γ

kz(·, 1)ṽdΓ.

Then, from (3.15), we have

〈
(iβ −A)U,


ũ

−ṽ
−ṽ|Γ1

0


〉

H

=

∫
Ω

(
|∇u|2 + |v|2

)
dx+

∫
Γ1

(
|∇Tu|2 + |v|2

)
dx−

∫
Γ1

kz (·, 1) ṽdΓ,

and so

∥(u, v, v|Γ1)∥H0 =

〈
F,


ũ

−ṽ
−ṽ|Γ1

0


〉

H

+

∫
Γ1

kz (x, 1) ṽdΓ,

40



from which follows, by using Cauchy–Schwarz inequality,

∥ (u, v, v|Γ1) ∥2H0
≤ ∥F∥H∥ (ũ, ṽ, ṽ|Γ1) ∥H0 + |k|∥z (., 1) ∥L2(Γ1)∥ṽ∥L2(Γ1). (3.16)

Now, observe that from the estimates (3.4) and (3.6), we have

∥ (ũ, ṽ, ṽ|Γ1) ∥H0 ≤ C∥ (u, v, v|Γ1) ∥H0

and
∥ṽ∥L2(Γ1) ≤ C∥ (u, v, v|Γ1) ∥H0 .

Using these last two inequalities in (4.26), we obtain

∥ (u, v, v|Γ1) ∥H0 ≤ C
(
∥F∥H + ∥z (·, 1) ∥L2(Γ1)

)
.

By recalling (3.13), we have

∥ (u, v, v|Γ1) ∥2H0
≤ C

(
∥F∥2H + ∥F∥H∥ (u, v, v|Γ1) ∥H0

)
,

and so, using Young’s inequality, we obtain

∥ (u, v, v|Γ1) ∥H0 ≤ C∥F∥H0 . (3.17)

Hence, we have
∥v∥L2(Γ1) ≤ C∥F∥H,

and then, from (3.11),
∥z∥L2(Γ1×(0,1)) ≤ C∥F∥H.

This proves that the resolvent of A is uniformly bounded on the imaginary axis.

At this point we have finished the proof of Theorem 4.1; However, the exponential stability
of the problem without delay which was used as an assumption will be proved in the next
section.

3.2 Stability of the problem without delay

In this section we are going to prove that the operator A0 that we introduced in the previous
section generates an exponentially stable semigroup. For this matter we use Theorem 1.4
(Huang-Prüss [47, 82]).

Lemma 3.4. For all β ∈ R, one has

ker(iβI −A0) = {0}.
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Proof. Let U = (u, v, v|Γ1)
T ∈ D(A0) be such that

A0(u, v, v|Γ1)
T = iβ(u, v, v|Γ1)

T . (3.18)

Using Green’s formula (2.18) and (3.18), we have

0 = ℜ⟨A0U,U⟩H = −
∫
Ω

a|∇v|2dx−
∫
Γ1

|v|2dΓ. (3.19)

This implies
a∇v = 0 in Ω and v = 0 on Γ1.

Arguing like in Lemma 2.5, we find
v = 0 on ω,

inserting all these on (2.25), we obtain
iβu− v = 0, in Ω,

β2u+∆u = 0, in Ω,

u = 0, in ω.

Then using a standard unique continuation argument, we deduce (u, v, v|Γ1) = 0. Hence,

ker(iβI −A0) = {0}.

Proposition 3.5. For all β ∈ R, one has

R(iβI −A0) = H0.

Proof. The proof follows the same steps as in Proposition 2.6.

Lemma 3.6. Under the assumptions (H),(A1),(A2), and (D1)-(D2), A0 satisfies

sup
β∈R

∥(iβI −A0)∥L(H0) <∞. (3.20)

Proof. We proceed by contradiction. Suppose that (3.20) doesn’t hold. Then, by the uniform
resonance theorem, there exists a sequence (βn)n∈N ∈ R and a sequence (un, vn, vn|Γ1)n∈N ∈
D(A0) such that

|βn| → +∞, (3.21)

∥un∥2V + ∥vn∥2L2(Ω) + ∥vn∥2L2(Γ1)
= 1, (3.22)

iβn (un, vn, vn|Γ1)−A0 (un, vn, vn|Γ1) := (fn, gn, hn) → 0 in H. (3.23)
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Then,

iβnun − vn := fn → 0 in V, (3.24)

iβnvn − div (∇un + a∇vn) := gn → 0 in L2(Ω), (3.25)

iβnvn +
∂un
∂ν

+ a(x)
∂vn
∂ν

−∆Tun + vn := hn → 0 in L2(Γ1). (3.26)

We look for a contradiction of the form

∥un∥2V + ∥vn∥2L2(Ω) + ∥vn∥2L2(Γ1)
= o(1). (3.27)

The proof is divided into several steps. Step 1. Taking the inner product of (3.24) with un
in V , the product of (3.25) with vn in L2(Ω), and the product of (3.26) with vn|Γ1 in L2(Γ1),
we obtain

iβn ∥un∥2V − ⟨un, vn⟩V = o(1),

iβn ∥vn∥2L2(Ω) −
∫
Ω

div(∇un + a∇vn)vndx = o(1),

iβn ∥vn∥2L2(Γ1)
−

∫
Γ1

(∇un + a∇vn)vndΓ−
∫
Γ1

∆Tuvn + ∥vn∥2L2(Γ1)
dΓ = o(1).

Integrating by part, summing the above identities then, taking the real part , we deduce∫
Ω

a|∇vn|2dx+
∫
Γ1

|vn|2dΓ = o(1). (3.28)

So,
∥vn∥L2(Γ1) = o(1)

and (3.27) becomes,
∥un∥2V + ∥vn∥2L2(Ω) = o(1).

Step 2. Now, taking the inner product of (3.24) with vn in L2(Ω), (3.25) with un in L2(Ω)
and (3.26) with un|Γ1 in L2(Γ1), we have

iβn

∫
Ω

unvndx− ∥vn∥2L2(Ω) = o(1), (3.29)

iβn

∫
Ω

vnundx−
∫
Ω

div(∇un + a∇vn)undx = o(1) (3.30)

and

iβn

∫
Γ1

vnundΓ +

∫
Γ1

(
∂un
∂ν

+ a
∂vn
∂ν

)undΓ−
∫
Γ1

∆TunundΓ +

∫
Γ1

vnundΓ = o(1). (3.31)
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Using Green’s formula (2.18) in (3.30), then summing the result with (3.29) and (3.30), we
find

iβn

∫
Ω

unvndx+ iβn

∫
Ω

vnundx+

∫
Ω

|∇un|2dx+
∫
Γ1

|∇Tun|2dΓ− ∥vn∥2L2(Ω)

+

∫
Ω

a∇vn∇undx+ iβn

∫
Γ1

vnundΓ +

∫
Γ1

vnundx = o(1).

(3.32)

From (3.22), (3.24), and the trace theorem, we have∣∣∣∣iβn ∫
Γ1

vnundΓ

∣∣∣∣ = ∣∣∣∣∫
Γ1

vn(vn + fn)dΓ

∣∣∣∣ ≤ ∥vn∥L2(Γ1)(∥vn∥L2(Γ1) + ∥fn∥L2(Γ1)) = o(1). (3.33)

Using (3.22) and (3.28), we obtain∣∣∣∣∫
Ω

a∇vn∇undx
∣∣∣∣ ≤ ∥a∥

1
2∞∥∇un∥L2(Ω)

(∫
Ω

a(x)|∇vn|2dx
) 1

2
= o(1), (3.34)

and ∣∣∣∣∫
Γ1

vnundx

∣∣∣∣ ≤ ∥vn∥L2(Γ1)∥un∥L2(Γ1) = o(1). (3.35)

Now, taking the real part of (3.32) and using (3.33)-(3.35), we deduce∫
Ω

|∇un|2dx+
∫
Γ1

|∇Tun|2dΓ− ∥vn∥2L2(Ω) = o(1),

hence,
∥un∥V ∼ ∥vn∥L2(Ω). (3.36)

So, in order to achieve the contradiction (3.27), we only need to show

∥un∥V = o(1). (3.37)

Step 3. From (3.28), using the assumption (A1) and Poincaré’s inequality, we find∫
Oδ

|vn|2 dx = o(1). (3.38)

Now, we introduce a cut-off function η ∈ C1(Ω) such that

η(x) =


1 if x ∈ Oδ−ϵ,

0 if x ∈ Ωδ,

η(x) ∈ [0, 1] elsewhere .

Multiplying (3.25) by ηun, (3.26) by un|Γ1 , integrating by parts and summing, we obtain∫
Oδ

η |∇un|2 dx+
∫
Oδ

(iβnvnηun + un∇un · ∇η + a∇vn · ∇ (ηun)) dx

+

∫
Γ1

|∇Tun|2 dΓ + iβn

∫
Γ1

vnundΓ +

∫
Γ1

vnundΓ = o(1).
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Moreover, from (3.22) and (3.24), we see that ∥βnun∥L2(Ω) ≤ ∥vn∥L2(Ω) + ∥fn∥V is uniformly
bounded for all n ≥ 1. Then from (3.28),(3.33), (3.35), and (3.38), we deduce∫

Oβ

|∇un|2 dx+
∫
Γ1

|∇Tun|2 dΓ = o(1). (3.39)

Now, we need only to show ∫
Ωβ

|∇un|2 dx = o(1).

Step 4. Multiplying (3.25) by iβnavn and integrating by parts we have∫
Ω

a |βnvn|2 dx =

∫
Ω

iβn (∇un + a∇vn)∇ (avn) dx−
∫
Ω

iβnavngndx

− iβn

∫
Γ1

(
∂un
∂ν

+ a
∂vn
∂ν

)
avndΓ.

(3.40)

Multiplying (3.26) by iβnavn|Γ1 and integrating by parts, we have∫
Γ1

a |βnvn|2 dx =

∫
Γ1

iβn

(
∂un
∂ν

+ a
∂vn
∂ν

)
(avn) dx+ iβn

∫
Γ1

∇Tun∇T (avn)dΓ

−
∫
Γ1

iβnavnhndx+ iβn

∫
Γ1

a |vn| dΓ.
(3.41)

Adding (3.40) and (3.41), we get∫
Ω

a |βnvn|2 dx+
∫
Γ1

a |βnvn|2 dx =

∫
Ω

iβn (∇un + a∇vn)∇ (avn) dx

+ iβn

∫
Γ1

∇Tun∇T (avn)dΓ−
∫
Ω

iβnavngndx−
∫
Γ1

iβnavnhndx

+ iβn

∫
Γ1

a |vn| dΓ.

(3.42)

Using (3.24) and (3.28), a straightforward computation gives

ℜ
∫
Ω

iβn∇un · ∇ (avn) dx = ℜ
∫
Ω

(∇vn +∇fn) · (a∇vn + vn∇a) dx

= ℜ
∫
Ω

vn∇vn · ∇adx+ o(1)

≤ C∥∆a∥∞
∫
Ω

|vn|2 dx+ o(1).

(3.43)

Similarly, we have

ℜ
∫
Ω

iβna∇vn · ∇ (avn) dx =ℜ
∫
Ω

iβnvna∇vn · ∇adx

≤1

3

∫
Ω

a |βnvn|2 dx+
3∥∇a∥2∞

4

∫
Ω

a |∇vn|2 dx

=
1

3

∫
Ω

a |βnvn|2 dx+ o(1),

(3.44)
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ℜ
∫
Ω

iβnavngndx ≤1

3

∫
Ω

a |βnvn|2 dx+
3

4

∫
Ω

a |gn|2 dx

=
1

3

∫
Ω

a |βnvn|2 dx+ o(1),

(3.45)

ℜ
∫
Γ1

iβn∇un · ∇ (avn) dx = ℜ
∫
Γ1

(∇vn +∇fn) · (a∇vn + vn∇a) dx

= o(1),

(3.46)

ℜ
∫
Γ1

iβnavnhndx ≤1

3

∫
Ω

a |βnvn|2 dx+
3

4

∫
Γ1

a |hn|2 dx

=
1

3

∫
Γ1

a |βnvn|2 dx+ o(1).

(3.47)

Inserting (3.43)–(3.47) into (3.42), we get∫
Ω

a |βnvn|2 dx+
∫
Γ1

a |βnvn|2 dx ≤ C∥∆a∥∞
∫
Ω

|vn|2 dx+ o(1), (3.48)

which is bounded for all n ≥ 1 because of the assumption (A2) and (3.22). In (3.39), we
have obtained the estimation of the integral of ∇un on the subdomain Oβ. Likewise, we will
establish a similar estimation on Ωβ which is required to achieve (3.37). This is the purpose
of the following step. Step 5. Now, observe that

div (∇un + a∇vn) ∈ L2(Ω)

and
div (∇un + a∇vn) = div (∇ (un + avn)−∇avn) ∈ L2(Ω).

Then, {
∆(un + avn) ∈ L2(Ω),

un + avn = 0 on Γ0,

which implies
un + avn ∈ H2(Ω\W ),

where W is a neighborhood of Γ1. Let

Mn := ∇un + a∇vn = ∇un + o(1). (3.49)

Since q ≡ 0 on Oα, q ·Mn ∈ H1(Ω) . Now, observe that by (3.25), taking the inner product
with q ·Mn, results in

ℜ
∫
Ω

iβnvnq ·Mndx−ℜ
∫
Ω

divMnq ·Mndx = o(1). (3.50)

Further, using Green’s formula, we have∫
Ω

divMnq ·Mndx =

∫
∂Ω

Mn · νq ·MndΓ−
∫
Ω

Mn∇
(
q ·Mn

)
dx. (3.51)
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From (3.51), using (3.49) and the fact that u = 0 on Γ0, we deduce

−
∫
Ω

divMnq ·Mndx = −
∫
Γ0

q · ν |Mn · ν|2 dΓ +

∫
Ω

(
Mn,j∂jqkMn,k +Mn,jqk∂kMn,k

)
dx

= −
∫
Γ0

q · ν |Mn · ν|2 dΓ +

∫
Ω

(
Mn,j∂jqkMn,k +Mn,jqk∂kMn,j

)
dx

+

∫
Ω

Mn,jqk
(
∂jMn,k − ∂kMn,j

)
dx.

(3.52)
Let us denote

I =

∫
Ω

Mn,jqk∂kMn,jdx,

integrating by parts, we have

I = −
∫
Ω

∂k (Mn,jqk)Mn,jdx+

∫
Γ0

q · ν |Mn|2 dΓ

= −I −
∫
Ω

div q |Mn|2 dx+
∫
Γ0

q · ν |Mn|2 dΓ.

So,

ℜI = −1

2

∫
Ω

div q |Mn|2 dx+
1

2

∫
Γ0

q · ν |Mn|2 dΓ. (3.53)

Inserting (3.53) in (3.52), we obtain

−ℜ
∫
Ω

divMnq ·Mndx =− 1

2

∫
Γ0

q · ν |Mn · ν|2 dΓ

+ ℜ
∫
Ω

(
Mn,j∂jqkMn,k −

1

2
div q |Mn|2

)
dx

+ ℜ
∫
Ω

Mn,jqk
(
∂jMn,k − ∂kMn,j

)
dx.

(3.54)

Note that
∂jMn,k − ∂kMn,j = ∂j (∂kun + a∂kvn)− ∂k (∂jun + a∂jvn)

= ∂ja∂kvn − ∂ka∂jvn.

Then,

ℜ
∫
Ω

Mn,jqk
(
∂jMn,k − ∂kMn,j

)
dx = ℜ

∫
Ω

Mn,jqk (∂ja∂kvn − ∂ka∂jvn) dx

= ℜ
∫
Ω

(Mn · ∇aq · ∇v −Mn · ∇vq · ∇a) dx.
(3.55)
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Using (3.55) in (3.54), we have

−ℜ
∫
Ω

divMnq ·Mndx = −1

2

∫
Γ0

q · ν |Mn · ν|2 dΓ

+ℜ
∫
Ω

(
Mn,j∂jqkMn,k −

1

2
div q |Mn|2

)
dx

+ℜ
∫
Ω

(Mn · ∇aq · ∇vn −Mn · ∇vnq · ∇a) dx.

(3.56)

Now, recalling (3.48), we observe that

ℜ
∫
Ω

iβnvnq ·Mndx = ℜ
∫
Ω

iβnvnq · ∇undx+ o(1)

= −ℜ
∫
Ω

vnq · ∇
(
vn + fn

)
dx+ o(1)

= −ℜ
∫
Ω

vnq · ∇vndx+ o(1).

(3.57)

We have ∫
Ω

vnq · ∇vndx = −
∫
Ω

(
|vn|2 div q + q · ∇vnvn

)
dx,

then,

ℜ
∫
Ω

vnq · ∇vndx = −1

2

∫
Ω

|vn|2 div qdx. (3.58)

From (3.57) and (3.58), we obtain

ℜ
∫
Ω

iβnvnq ·Mndx =
1

2

∫
Ω

|vn|2 div qdx+ o(1). (3.59)

Now, let h ∈ C0,1(Ω). Multiplying (3.24) by hvn, (3.25) and (3.26) by hun, we get∫
Ω

iβnhunvndx−
∫
Ω

h |vn|2 dx = o(1), (3.60)∫
Ω

iβnhvnundx+

∫
Ω

(∇un + a∇vn) · ∇ (hun) dx

−
∫
Γ1

(
∂un
∂ν

+ a
∂vn
∂ν

)
hundΓ = o(1),

(3.61)

−
∫
Γ1

ihβnvnundΓ +

∫
Γ1

(
∂un
∂ν

+ a
∂vn
∂ν

)
hundΓ

−
∫
Γ1

∆TunhundΓ +

∫
Γ1

hvnundΓ = o(1).

(3.62)

Using (3.28), (3.35), and (3.39), we deduce from (3.61) and (3.62)∫
Ω

iβnhvnundx+

∫
Ω

(∇un + a∇vn) · ∇ (hun) dx = o(1). (3.63)

48



Recalling (3.22) and (3.28), we deduce from (3.63)∫
Ω

iβnhvnundx+

∫
Ω

(
h |∇un|2 +∇un · ∇hun

)
dx = o(1). (3.64)

Taking the real part of the sum of (3.60) and (3.64) we have∫
Ω

h |∇un|2 dx =

∫
Ω

h |vn|2 dx−
∫
Ω

un∇un · ∇hdx+ o(1). (3.65)

Moreover, using (3.24),∫
Ω

un∇un · ∇hdx = − i

βn

∫
Ω

(
vn + fn

)
∇un · ∇hdx = o(1). (3.66)

From (3.65) and (3.66) we get∫
Ω

h |vn|2 dx =

∫
Ω

h |∇un|2 dx+ o(1). (3.67)

Choosing h = div q in (3.67) and using it in (3.59), we deduce

ℜ
∫
Ω

iβnvnq ·Mndx =

∫
Ω

1

2
div q |∇un|2 dx+ o(1). (3.68)

By using the definition (3.49) ofMn , we can estimate the second integral in the right–hand
side of (3.56) as∫

Ω

(
Mn,j∂jqkMn,k −

1

2
div q |Mn|2

)
dx =

∫
Ω

(
∂jun∂jqk∂kun −

1

2
div q |∇un|2

)
dx+ o(1).

(3.69)
From (D3), (3.28), and the fact that Mn is bounded in L2(Ω), we can estimate the third

integral in the right–hand side of (3.56) as∫
Ω

∣∣Mn ·
{
(q · ∇vn)∇a− (q · ∇a)∇vn

}∣∣ dx ≤ C

∫
Ω

|Mn|2 dx
∫
Ω

a |∇vn|2 dx = o(1). (3.70)

Coming back to (3.50), by substituting (3.56) (taking into account (3.69) and (3.70)) and
(3.68), we deduce ∫

Ω

∂jqk∂jun∂kundx−
1

2

∫
Γ0

q · ν |Mn · ν|2 dΓ = o(1)

and so, recalling (D2) and (3.39), we have

C

∫
Ωβ

|∇un|2 dx−
1

2

∫
Γ0

q · ν |Mn · ν|2 dΓ = o(1),
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for some C > 0. By the assumption (D4) we then get∫
Ωβ

|∇un|2 dx = o(1). (3.71)

The estimations (3.71) and (3.39) together with (3.36) and (3.28) show the targeted
estimation (3.27), which leads to the desired contradiction. Hence, the proof is now com-
pleted.

Remark 3.7. When Ω is the crown domain between two circles Γ0 and Γ1 that constitute
the two parts of boundary, the analysis made in this paper still holds except for the estimate
(3.38) because of the lack of Poincaré’s inequality since Oα can’t meet the part Γ0. However,

if we consider a set Õα containing Oα and such that meas(Õα ∩ Γ0) > 0, we can use the
Poincaré’s inequality and (3.38) still holds (see Figure 3.3).

Γ0Γ1

ω

Õα

Oα

Ω

Figure 3.3: An example where Γ0 and Γ1 are far away from each other and Oα doesn’t meet
Γ0.
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Chapter 4

Polynomial Stability: Case of
discontinuous damping coefficient

In this chapter we are interested in the stability of the discontinuous damping version of
the system (2.1)-(2.5), namely, when a(x) = a1ω. We are going to prove the polynomial
stability of the associated semigroup with a decay rate of type t−1/2, for which we will use
the perturbation argument from the previous chapter adapted to the discontinuous case and
a cascade technique that allows us to merge different stability results for different systems.
Particularly, this will be based on a previously established result (Cavalcanti, Khemmoudj
& Medjden [28]), hence, we adopt the same geometrical situation, that is when ∂Ω = Γ =
Γ0 ∪ Γ1, such that, Γ0 and Γ1 are closed and disjoint. Besides, ω is a neighborhood of Γ1,
where

Γ1 = {x ∈ Γ,m(x) · ν > 0},
such that m(x) = x − x0 and x0 is an arbitrary point from Rn. Moreover, we suppose the
following two assumptions (see Figure 4.1).

(H) measΓ1 > 0, (A) ∃δ > 0, Oδ ⊂ ω, where

Oδ = {x ∈ Ω, |x− y| ≤ δ, ∀y ∈ Γ1} .

After releasing the regularity assumptions on a(·), our system is still stable, however, with
a slower decay rate this time. This is the subject of the following theorem.

Theorem 4.1. Suppose that the assumptions (H),(A) and the inequality (2.7) are satisfied,
then there is a constant C > 0, such that for all initial data U0 ∈ D(A) the solution U :=
(u, ut, ut|Γ1 , z) of the problem (2.1)-(2.5) satisfies the following polynomial decay estimate

∥U (t) ∥H ≤ C√
t
∥U0∥D(A). (4.1)

The proof follows the same general lines as the smooth damping coefficient case.
Let’s introduce our undelayed system, given the space,

H0 = V × L2(Ω)× L2(Γ1), (4.2)

51



Oδ

Γ1

Γ0

ω

Ω

Figure 4.1: An example of a geometric situation satisfying the assumptions.

equipped with the inner product〈
u

v

w

 ,


ũ

ṽ

w̃


〉

H0

:=

∫
Ω

{
∇u(x)·∇ũ(x)+v(x)ṽ(x)

}
dx+

∫
Γ1

{
∇Tu(x)·∇T ũ(x)+w(x)w̃(x)

}
dΓ,

where V is defined in the second chapter. In this space H0 let A0 be the operator corre-
sponding to τ = 0 and k = 0, that is

A0U =


v

div(∇u+ a(x)∇v)
−∂u
∂ν

− a(x)
∂v

∂ν
+∆Tu

 , ∀U ∈ D(A0),

with
D(A0) :=

{
U = (u, v, w)T ∈ H0 : v ∈ V, div(∇u+ a(x)∇v) ∈ L2(Ω),

∂u

∂ν
+ a(x)

∂v

∂ν
−∆Tu ∈ L2(Γ1), w = v|Γ1

}
.

After some computation we find

ℜ⟨A0U,U⟩H = −
∫
Ω

a(x)|∇v|2dx. (4.3)
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Now we suppose that iR ⊂ ρ(A0) and that the operator A0 generates a polynomially

stable semigroup with a decay rate of type
1√
t
. Then from Theorem 1.5 (Borichev-Tamilov

[22]) we have,
∥ (iξ −A0)

−1 ∥L(H0) ≤ Cξ2, ∀ξ ∈ R, (4.4)

for some positive constant C.
The estimate (4.4) will be used to derive the estimate (4.8) which we use to prove the

Proposition (4.2).
Indeed, from (4.4), for every F0 ∈ H0, the solution (ũ, ṽ, w̃)T ∈ D (A0) of

(iξI −A0)


ũ

ṽ

w̃

 = F0, (4.5)

satisfies ∥∥∥∥∥∥∥∥


ũ

ṽ

w̃


∥∥∥∥∥∥∥∥
H0

≤ C|ξ|2||F0∥H0 . (4.6)

Moreover,

ℜ
〈
A0


ũ

ṽ

w̃

 ,


ũ

ṽ

w̃


〉

H0

= −
∫
Ω

a|∇ṽ|2dx.

Then,

∫
Ω

a|∇ṽ|2dx = ℜ
〈
(iξ −A0)


ũ

ṽ

w̃

 ,


ũ

ṽ

w̃


〉

H0

= ℜ
〈
F0,


ũ

ṽ

w̃


〉

H0

≤ ∥F0∥H0

∥∥∥∥∥∥∥∥


ũ

ṽ

w̃


∥∥∥∥∥∥∥∥
H0

≤ C|ξ|2∥F0∥2H0
,

(4.7)

Using the trace theorem, we obtain∫
Γ1

|ṽ|2dΓ ≤ C|ξ|2∥F0∥2H0
. (4.8)
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4.1 Stability of the problem with delay

Now we prove the main result using the inequality (4.8).

Proposition 4.2. Under the assumptions (H),(A), the inequality (2.7) and |β| ≥ 1, the
operator A satisfies

sup
β∈R

1

β2
∥ (iβI −A)−1 ∥H <∞.

Proof. For F = (f1, f2, f3, f4)
T ∈ H and β ∈ R, let U ∈ D (A) be a solution of

(iβI −A)U = F, (4.9)

that is 

iβu− v = f1, in Ω,

iβv −∆u− div (a∇v) = f2, in Ω,

iβw +
∂u

∂ν
+ a(x)

∂v

∂ν
−∆Tu+ kz(·, 1) = f3, on Γ1,

iβz + τ−1zρ = f4, on Γ1.

(4.10)

The first identity of (4.10) gives
v = iβu− f1. (4.11)

Recall that from the identity (2.36) we have (on Γ1)

v (x) = eiτβz (x, 1)− τ

∫ 1

0

eiτβf4 (x, σ) dσ, (4.12)

and so,
∥v∥L2(Γ1) ≤ ∥z (., 1) ∥L2(Γ1) + C∥f4∥L2(Γ1×(0,1)). (4.13)

Moreover, from Proposition 2.3, we have

C

∫
Γ1

|z (x, 1) |2dΓ ≤ −ℜ⟨AU,U⟩H . (4.14)

Then,

C

∫
Γ1

|z (x, 1) |2dΓ ≤ ℜ⟨F,U⟩H ≤ ∥F∥H∥U∥H. (4.15)

From (4.15) and (4.13) we deduce

||v||2L2(Γ1)
≤ C

(
||F ||2H + ||F ||H||U ||H

)
. (4.16)

From (2.35) also we have

||z||L2(Γ1×(0,1)) ≤ C
(
∥v∥L2(Γ1) + ∥f4∥L2(Γ1×(0,1))

)
. (4.17)
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By using (4.17) in (4.16) we obtain

∥v∥2L2(Γ1)
≤ C

{
∥F∥2H + ∥F∥H

(
∥ (u, v, v|Γ1) ∥H0 + ∥v∥L2(Γ1) + ∥f4∥L2(Γ1×(0,1))

)}
, (4.18)

and therefore

∥v∥2L2(Γ1)
≤ C

(
∥F∥2H + ∥F∥H∥ (u, v, v|Γ1) ∥H0

)
+ C∥F∥H∥w∥L2(Γ1), (4.19)

from which follows, by using Young’s inequality,

∥v∥2L2(Γ1)
≤ C

(
∥F∥2H + ∥F∥H∥ (u, v, v|Γ1) ∥H0

)
. (4.20)

Estimates (4.15), (4.17) and (4.20) imply

∥z (., 1) ∥2L2(Γ1)
≤ C

(
∥F∥2H + ∥F∥H∥ (u, v, v|Γ1) ∥H0

)
. (4.21)

We have now to estimate ∥ (u, v, v|Γ1) ∥H0 . For this, let (ũ, ṽ, ṽ|Γ1) ∈ D (A0) be the solution
of

(−iβ −A0)


ũ

ṽ

ṽ|Γ1

 =


u

−v
−v|Γ1

 , (4.22)

which is equivalent to
−iβũ− ṽ = u in Ω,

−iβṽ − div (∇ũ+ a∇ṽ) = −v in Ω,

−iβṽ + ∂ũ

∂v
+ a

∂ṽ

∂v
−∆T ũ = −v on Γ1.

(4.23)

From another part we have

〈
(iβ −A)U,


ũ

−ṽ
−ṽ|Γ1

0


〉

H

=

〈
iβu− v

iβv − div(∇u+ a∇v)
iβv +

∂u

∂ν
+ a(x)

∂v

∂ν
−∆Tu+ kz(·, 1)

iβz + τ−1zρ

 ,


ũ

−ṽ
−ṽ|Γ1

0


〉

H

=

∫
Ω

∇(iβu− v) · ∇ũdx+
∫
Γ1

∇T (iβu− v) · ∇T ũdΓ

−
∫
Ω

(iβv − div(∇u+ a∇v)) · ṽdx−
∫
Γ1

(
iβv +

∂u

∂ν
+ a(x)

∂v

∂ν
−∆Tu+ kz(·, 1)

)
ṽdΓ1

=

∫
Ω

∇u∇(−iβũ− ṽ)dx+

∫
Γ1

∇Tu∇T (−iβũ− ṽ)dΓ +

∫
Ω

v(iβṽ + div(∇ũ+ a∇ṽ))dx

+

∫
Γ1

v
(
iβṽ − ∂ũ

∂ν
− a

∂ṽ

∂ν
+∆T ũ

)
dΓ−

∫
Γ

kz(·, 1)ṽdΓ.
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Then, from (4.23), we have

〈
(iβ −A)U,


ũ

−ṽ
−w̃
0


〉

H

=

∫
Ω

(
|∇u|2 + |v|2

)
dx+

∫
Γ1

(
|∇Tu|2 + |v|2

)
dx−

∫
Γ1

kz(x, 1)ṽdΓ,

(4.24)
and so

∥(u, v, v)∥2H0
=

〈
F,


ũ

−ṽ
−w̃
0


〉

H

+

∫
Γ1

kz (·, 1) ṽdΓ (4.25)

from which follows, by using Cauchy–Schwarz inequality,

∥ (u, v, v) ∥2H0
≤ ∥F∥H∥ (ũ, ṽ, ṽ) ∥H0 + |k|∥z (., 1) ∥L2(Γ1)∥w̃∥L2(Γ1). (4.26)

Now, observe that from the estimates (4.6) and (4.8) we have

∥ (ũ, ṽ, w̃) ∥H0 ≤ C|β|2∥ (u, v, w) ∥H0 , (4.27)

and
∥w̃∥L2(Γ1) ≤ C|β|∥ (u, v, w) ∥H0 . (4.28)

Using these last inequalities and (4.21) in (4.26), we obtain

∥ (u, v, w) ∥2H0
≤ C|β|2∥F∥H∥ (u, v, w) ∥H0 + C|β|∥F∥

1
2
H∥ (u, v, w) ∥

3
2
H0
. (4.29)

Then by Young’s inequality, we have

∥ (u, v, w) ∥H0 ≤ C|β|2∥F∥H0 , (4.30)

and from (4.17), we get
∥z∥L2(Γ1×(0,1)) ≤ C|β|2∥F∥H. (4.31)

This proves the estimate on the resolvent of A.

Now, we go back and show the polynomial stability of the problem without delay, namely,
the problem related to the operator A0.

4.2 Stability of the problem without delay

Lemma 4.3. For all β ∈ R, one has

Ker(iβI −A0) = {0}.
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Proof. Let U = (u, v, w)T ∈ D(A0) be such that

A0(u, v, w)
T = iβ(u, v, w)T . (4.32)

The inequality

ℜ⟨A0U,U⟩H ≤ −
∫
Ω

a(x)|∇v|2dx, (4.33)

implies that
a(x)∇v = 0 in Ω and v = c in ω, (4.34)

By an argument similar to the one in Lemma 2.5 we find

v = 0 on ω. (4.35)

Inserting all these in (4.32) we obtain{
β2u+∆u = 0, in Ω,

u = 0, in ω.
(4.36)

Then using a standard unique continuation argument we deduce (u, v, w) = 0. Hence
Ker(iβI −A0) = {0}.
Proposition 4.4. For all β ∈ R, one has

R(iβI −A0) = H0. (4.37)

Proof. Similar to the delayed case.

Lemma 4.5. Under the assumptions (H) and (A), A0 satisfies

sup
β∈R

1

β2
∥(iβI −A0)

−1∥L(H0) <∞.

Proof. We will prove this lemma by contradiction. Suppose there exist sequences {βn}n∈N in
R∗

+ and {Un := (un, vn, wn)}n∈N in D(A0) such that

|βn| → +∞, (4.38)

∥un∥2V + ∥vn∥2L2(Ω) + ∥wn∥2L2(Γ1)
= 1, (4.39)

β2
n{iβn (un, vn, wn)−A0 (un, vn, wn)} := (fn, gn, hn) → 0 in H. (4.40)

Then,

iβnun − vn :=
fn
β2
n

→ 0 in V, (4.41)

iβnvn − div (∇un + a∇vn) :=
gn
β2
n

→ 0 in L2(Ω), (4.42)

iβnwn +
∂un
∂ν

+ a(x)
∂vn
∂ν

−∆Tun =
hn
β2
n

→ 0 in L2(Γ1). (4.43)
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Taking the inner product of (4.41) with un in V , the product of (4.42) with vn in L
2(Ω),and

the product of (4.43) with wn in L2(Γ1), we obtain

iβn ∥un∥2V − ⟨vn, un⟩V = o(
1

β2
n

),

iβn ∥vn∥2L2(Ω) −
∫
Ω

div(∇un + a∇vn)vndx = o(
1

β2
n

),

iβn ∥wn∥2L2(Γ1)
+

∫
Γ1

(∂νun + a∂νvn)wndΓ−
∫
Γ1

∆Tuwn = o(
1

β2
n

).

(4.44)

Integrating by part, summing the above identities, and taking to consideration that wn =
vn|Γ1 , then, taking the real part , we deduce∫

Ω

a|∇vn|2dx = o(
1

β2
n

). (4.45)

Now, taking the inner product of (4.41) with vn in L2(Ω), (4.42) with un in L2(Ω) and
(4.43) with un in L2(Γ1), we have

iβn ⟨un, vn⟩L2(Ω) − ∥vn∥2L2(Ω) = o(
1

β2
n

), (4.46)

iβn ⟨vn, un⟩L2(Ω) −
∫
Ω

div(∇un + a∇vn)undx = o(
1

β2
n

), (4.47)

and

iβn ⟨wn, un⟩L2(Γ1)
+

∫
Γ1

(∂νun + a∂νvn)undΓ−
∫
Γ1

∆TunundΓ = o(
1

β2
n

). (4.48)

Using Green’s formula in (4.47), summing the result with (4.46) and (4.48), taking the real
part, then taking to consideration (4.45) and∫

Γ1

wnundΓ ≤ C∥wn∥2L2(Γ1)

∫
Ω

a|∇un|2dx, (4.49)

we deduce
∥un∥V ∼ ∥vn∥L2(Ω). (4.50)

Now, we want to prove that
∥un∥V = o(1). (4.51)

Using (4.38), (4.39) and (4.41) we deduce

∥βnun∥L2(Ω) = O(1). (4.52)

From (4.45), the assumption on a and Poincaré’s inequality we obtain∫
ω

|βnvn|2dx = o(1). (4.53)
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Now, multiplying (4.41) by iβnun, integrating over ω and using estimations (4.53), (4.52)
and the fact that fn converges to 0 in L2(Ω) we get∫

ω

|βnun|2dx = o(1). (4.54)

Taking the gradient of (4.41) then multiplying by −iβ3
n∇un, integrating over ω and using

Cauchy-Schwarz’s and Young’s inequality, estimate (4.45), and the fact that fn converges to
0 in V we get ∫

ω

|β2
n∇un|2dx = o(1). (4.55)

Let’s define the following function, η ∈ C1(Ω)

η(x) =


1 if x ∈ Oδ−ϵ

0 if x ∈ Ωδ

[0, 1] elsewhere.

(4.56)

Multiplying (4.42) by ηun, (4.43) by un|Γ1 , integrating by parts and summing, we obtain∫
Γ1

|∇Tun|2dΓ = o(1). (4.57)

Now we have all the needed estimates on ω and we need to establish similar estimates on
Ω \ ω. To that end, we use a stability result of a similar system with frictional damping.

We consider the following auxiliary problem

φtt(x, t)−∆φ+ a1ωφt = 0, in Ω× R∗
+,

φ(x, t) = 0, on Γ0 × R∗
+,

φtt +
∂φ

∂ν
−∆Tφ+ φt = 0, on Γ1 × R∗

+,

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), in Ω,

(4.58)

This system is a particular case of the system studied in [28] from where we can deduce its
exponential stability, (See Remark 4.1 in [28]).

Since the system (4.58) is exponentially stable in the associated energy space Haux =
V × L2(Ω)× L2(Γ1), by Theorem 1.4 (Huang-Prüss [47, 82]) we conclude that the following
operator

AauxU =


ψ

∆φ− a1ωψ

−∂φ
∂ν

+∆Tφ− ϕ

 ,∀U ∈ D(Aaux),

with domain,

D(Aaux) :=
{
U = (φ, ψ, ϕ)T ∈ V 2 × L2(Γ1),∆φ ∈ L2(Ω),

∂φ

∂ν
−∆Tφ+ ϕ ∈ L2(Γ1)

}
,
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satisfies the following uniform inequality

∥(iβn −Aaux)
−1F∥H ≤M∥F∥H, ∀F ∈ Haux, (4.59)

for a positive constant M > 0.
Taking F = (0,−un, 0), there exists a unique solution (φn, ψn, ϕn) ∈ D(Aaux) solution of

(iβnI −Aaux)(φn, ψn, ϕn) = (0,−un, 0),

equivalently

iβnφn − ψn := 0 in V,

iβnψn −∆φn + a(x)ψn := −un in L2(Ω),

iβnϕn +
∂φn

∂ν
−∆Tφ+ ϕn = 0 in L2(Γ1),

which yields 
β2
nφn +∆φn − iaβn1ωφn = un, in Ω,

φ = 0, on Γ0,

−β2
nφn +

∂φn

∂ν
−∆Tφn + iβnφ = 0, in Γ1.

(4.60)

Moreover, from (4.59) we deduce

∥∇φn∥2L2(Ω) + ∥∇Tφn∥2L2(Γ1)
+ ∥βnφn∥2L2(Ω) + ∥βnφn∥2L2(Γ1)

≤ C∥un∥2L2(Ω). (4.61)

Now we use (4.60), (4.61) and a special choice of multipliers to deduce the needed estimate.
Hence, multiplying (4.41) by iβ3

nφn, (4.42) by β2
nφn and (4.43) by β2

nφn, using Green’s
formula and additing the resulting equations we get

−
∫
Ω

β4
nunφn + β2

n

∫
Ω

∇un∇φn + β2
n

∫
Ω

a∇vn∇φn + iβ3
n

∫
Γ1

wnφn

+ β2
n

∫
Γ1

∇Tun∇Tφn = iβn

∫
Ω

fnφn +

∫
Ω

gnφn +

∫
Γ1

hnφn.

(4.62)

Using (4.52), (4.61), and the fact that (fn, gn, hn) → 0 in H0, we get

−
∫
Ω

β4
nunφn + β2

n

∫
Ω

∇un∇φn + iβ3
n

∫
Γ1

wnφn +β2
n

∫
Γ1

∇Tun∇Tφn = o(1). (4.63)

Integrating by parts and using (4.60) we find

−aβ3
n

∫
Ω

1ωunφn − β2
n

∫
Ω

|un|2dx+ β4
n

∫
Γ1

unφn + iβ3
n

∫
Γ1

unφndΓ + iβ3
n

∫
Γ1

wnφn = o(1).

(4.64)
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We estimate the last term in the left hand side, as

|iβ3
n

∫
Γ1

wnφn| ≤ ∥βnvn∥L2(Γ1)∥β2
nφ∥L2(Γ1)

≤ C∥βn∇vn∥L2(Oδ)∥β2
nφ∥L2(Γ1)

≤ C∥βn∇vn∥L2(Oδ)∥βnun∥L2(Ω) = o(1).

(4.65)

Using (4.55), (4.61) and the trace inequality we deduce

|β4
n

∫
Γ1

unφndΓ + iβ3
n

∫
Γ1

unφndΓ| ≤ C|β4
n

∫
Γ1

unφn|

≤ C∥β2
nun∥L2(Γ1)∥β2

nφ∥L2(Γ1)

≤ C∥β2
n∇n∥L2(Oδ)∥βnun∥L2(Ω) = o(1).

(4.66)

After (4.65) and (4.66), (4.64) becomes

aβ3
n

∫
Ω

1ωunφn + β2
n

∫
Ω

|un|2dx = o(1). (4.67)

Now, using (4.55) and (4.61) we deduce

|aβ3
n

∫
Ω

1ωunφn| ≤ C∥βnun∥L2(ω)∥β2
nφn∥L2(ω)

≤ C∥βnun∥L2(ω)∥β2
nφn∥L2(Ω)

≤ C∥βnun∥L2(ω)∥βnun∥L2(Ω) = o(1).

(4.68)

Hence, we get

β2
n

∫
Ω

|un|2dx = o(1). (4.69)

Next, multiplying (4.42) and (4.43) by un, taking to consideration (4.45), (4.49) and (4.49)
we deduce ∫

Ω

|∇un|2dx = o(1) (4.70)

which gives the desired estimation.
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Conclusion and Perspectives

In the study conducted in this thesis, we explored the effectiveness of localized Kelvin-Voigt
damping in stabilizing the wave equation with dynamic Wentzell boundary conditions and a
delay boundary feedback. Our findings indicate that when the damping is smoothly localized,
it stabilizes the system exponentially. However, when the damping is discontinuously local-
ized, we could show a polynomial decay rate of the form t−1/2 only. Our results demonstrate
that the Kelvin-Voigt damping is robust enough to stabilize the usual energy in addition to
the boundary energy generated by the Wentzell term, the velocity over the boundary and the
time delay feedback. Additionally, the decay rate is heavily dependent on the regularity of
the damping. The slow of the decay observed in the discontinuous case is due to the reflected
waves at the damping region because only a portion of waves proportional to the regularity
of the damping coefficient gets absorbed and damped. Future research topics can include
can cover the following points:

✓ The Poincaré inequality is crucial for the stability results in both the third and fourth
chapters. In practice we can face problems where the damping region doesn’t meet the
Dirichlet boundary, hence, the Poincaré inequality fails. It is of interest to consider
such cases.

✓ According to the literature, specifically the work of Alves and al. in [7], the decay rate
presented in Chapter 4 may be not optimal. A logical next step would be addressing
this and seeking out an optimal or improved decay rate.

✓ Tebou in [84] relaxed the conditions on the damping coefficient and region considered by
Liu and Rao in [67] that we adopted in Chapter 3. Namely, he assumed a ∈ W 1,∞(Ω),
|∇a(x)|2 ≤ Ca(x) and ω satisfy the PMGC. One may consider the relaxed conditions
and see whether we still get the same exponential stability results.

✓ Relaxing the geometrical conditions is of practical interest since one always seeks to
limit the intervention to the model. Hence, considering more general cases for the
damping region such as in [13] is interesting.

✓ A challenging and interesting problem is to consider time dependent damping coeffi-
cients.

✓ Considering a boundary damping with interior delay is interesting from the mathemat-
ical point view and is very challenging even in simpler cases such as static boundary
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conditions without the Wentzell term.
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[16] Käıs Ammari, Serge Nicaise, and Cristina Pignotti. “Feedback boundary stabilization
of wave equations with interior delay”. In: Systems & Control Letters 59.10 (2010),
pp. 623–628.
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