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Thèse de Doctorat

présentée pour l’obtention du grade de Docteur

En: Mathématiques

Spécialité : Mathématiques et Applications

Par : Nabila BELHAMRA

THÈME
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Abstract

Let K be a perfect field of positive characteristic p. There are a finite number

of isomorphism classes of supersingular elliptic curves on K and they are all

defined on Fp2 . The determination of these isomorphism classes constitues

an interesting research question since several studies have carried out around

it. Special cases p = 2 and p = 3 have been investigated separately in the

literature. However, the general case p ≥ 5 attracted numerous researchers

and solved in different ways. The references of these proofs are mentionned.

The original aim of this study is to bring an original explicit proof for the

special case p = 5. we present an overview of the theorical background, then

the necessary tools required for our proof.

Keywords: elliptic curve, supersingular elliptic curve, division polynomials

of elliptic curves, group law of elliptic curves
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Chapter 1

Introduction

The commutative ring theory provides the essential tool in the study of

algebraic geometry. In algebraic geometry area the rings studied are the

rings of polynomials in several variables over a field K since these rings are

nœtherians and so theirs ideals are finitely generated, which allow to define

the zero set of an idea and then define the notion of algebraic sets which

are considered the first basic object constructed in this theory. Prime ideals

are also a very important notions in commutative ring theory because they

are used to define a central notion on which the algebraic geometry theory

is based, that is algebraic varieties which are described by the zero set of a

prime ideal. These objects define with their own a theory called the theory

of algebraic varieties from which we derivative another vast theory, called

the algebraic curves theory that is known by it richness in theory and their

interesting applications in different area of algebra. In this work we will not

go far in our study, we need only elementary commutative ring theory, but

farther studied in this subject require a large background in commutative

ring theory. We propose [40] and [42], these books contain all the necessary

material to proceed in this theory.
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Perfect fields have interesting arithmetic properties which don’t hold over

non perfect fields. Finite fields and their algebraic closures are perfect fields of

positive characteristic, number fields and their algebraic closures are perfect

fields of zero characteristic. Among the results needed for our aim in the last

chapter we have those that only hold over perfect fields of finite characteristic.

This work is organized as follows:

Chapters two and three present the introductory facts for defining the con-

cepts and stating the results that we will apply in chapter five for our proof.

In the second chapter we give a revision from the field extension theory. In

section one we give a review on the irreducible polynomials in one variable

over a field since the construction of the field extensions of any field require

the determination of irreducible polynomials over that field. In section two

we define some basics in this theory; degree of an extension, algebraic clo-

sure of a field and its construction, simple extensions of a field and their

constructions. In section four we state some few properties of perfect fields.

Finite fields are an important example of perfect fields, we will state some

basic properties of these fields in the last section and their construction and

we give also effective examples can be found else where: F4, F9, F25.

Chapter three consists on many sections. In section one we give some review

on polynomials in several variables; irreducible polynomials, homogeneous

polynomials and some properties of them. In section two we make deal with

the definitions of the main objects in the algebraic varieties theory. We

define the affine and projective spaces over a field K and algebraic sets in

these spaces with their ideals in the ring of polynomials over K. We define

then the algebraic varieties and we give the characterization of these objects

by their ideals. In section two we define a cover by affine spaces of the whole

projective space. We define then the affine peaces of a projective algebraic

set with their corresponding ideals and we define the set of its points at
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infinity. We define also the projective closure of an affine algebraic set with

its corresponding ideal. In section three we define the coordinate ring of

an algebraic set and the field of rational functions of a variety that is the

rational field of its coordinate ring and we describe the elements of these

fields in the projective case. In section four we define rational maps between

algebraic varieties, we define the regular functions on a variety and then

we define regular maps between algebraic varieties, called also morphisms

of varieties. There is an important distinction between singular points and

nonsingular points on an algebraic variety. Nonsingular varieties are varieties

whose all points are nonsingular, these objects are very important to study,

in section five we will only give a characterization of these objects using

their Jacobian matrix because we will work later by algebraic curves which

are nonsingular. In section five we define the dimension of a variety and

give the connection between the dimension of a projective variety and the

dimension of its affine peace. Finally we come to define algebraic curves

in section six and we discuss briefly the genus of a nonsingular projective

curve that is an important invariant since it classifies non singular algebraic

curves by isomorphism. Nonsingular projective curves of genus one are called

elliptic curves. These curves define with their own a beautiful and vast theory

combining between number theory and algebraic geometry theory.

In chapter four we recall some basics in the theory of elliptic curves and

we state without proofs the results that will be apply for our aim in the last

chapter. At first, we state that every elliptic curve has a structure of abelian

group. Notice that the structure of this group is induced from the group

structure of its Jacobian variety. Then we define isogenies of elliptic curves

and particularly the multiplication by an integer N - isogeny. Its kernel is

called the N - torsion group, we discuss without proof its structure according

to the values of N and the characteristic of the field on which this curve is

defined. Every elliptic curve can be described explicitly by a cubic equation
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called a Weierstrass equation. There are a lot of results provided by this

explicit equation. In section two we discus the Weierstrass equation of an

elliptic curve and some results provided from this equation; explicit formulas

of the abelian group of an elliptic curve, the ȷ-invariant of an elliptic curve

defined by its Weierstrass equation, division polynomials of elliptic curves

and the explicit expression of the multiplication by an integer N -isogeny of

an elliptic curve. The set of esogenies from an elliptic curve to itself defines

a ring called the endomorphism ring of this curve. There are much studies

done for studying the structure of the endomorphism rings of elliptic curves,

in this work we will only give the general structure of these rings and give the

connection between the structure of the endomorphism ring and the structure

of the p- torsion group of an elliptic curve defined over a perfect field of finite

characteristic p. We define the supersingular elliptic curves over these fields

and state that there are only finitely many supersingular elliptic curves up

to isomorphism and they are all defined over the finite field Fp2 . Many

mathematicians were interested to determine the number of these classes or

farther determine these classes and we have various demonstrations provided

for the general case p ≥ 5. Chapter five is the original part of this work. We

will investigate the results reviewed in chapter four to give an explicit proof

for the particular case p = 5.

Notice that elliptic curves are introduced for resolving different theoretical

questions such that Diophantine equations and studying arithmetic progres-

sions defined by squares over number fields. In practices area these curves

are also introduced such that elliptic curve cryptography, [15] gives a brief

discussion with extensive references in this subject.
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Chapter 2

Revision from field extension

theory

In this chapter we recall some facts and results in the field extension theory:

degree of an extension, algebraic extensions, simple extensions and their con-

structions, Algebraic closure of a field and their constructions, perfect fields

and their characterizations and finally finite fields and their constructions.

For general references on fields and their extensions we propose [1, 28, 34, 54].

A field K is a commutative ring in which every nonzero element is a unit

and a subfield K of a field F is a subring closed under passage to the inverse.

From the definition, it is obvious that every field is an integral domain.

From the definition, the only ideals in any field are (1) and (0).

Since every fieldK is an integral domain, it is obvious that the characteristic

of K must be either 0 or a prime number. Notice that fields of positive

characteristic are also said to be fields of finite characteristic.
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If A is a ring and m is a maximal ideal in A, then the quotient ring A\m is

a field.

A ring homomorphism between two fields is called a field homomorphism.

Notice that every non zero field homomorphism f : K → F is injective since

its kernel is an ideal of K and can not be equal to (1).

The most known fields are Q, R, C and the ring of integers modulo prime

integer p that is denoted by Fp.

Let f : Z → K, n 7→ n.1 = 1 + . . .+ 1 (n times) be a ring homomorphism.

ker(f) is an ideal of Z generated by an integer m and obviously this integer

is the smallest integer in ker(f), which implies that m must be equal to

char(K). Then im(f) ≃ Z
(char(K))

. Thus if char(K) = 0, then im(f) ≃ Z
and if char(K) is a prime number p, then im(f) ≃ Z

pZ . This implies that

K contains a field isomorphic to Q if char(K) = 0 and K contains a field

isomorphic to Z
pZ if char(K) = p.

2.1 Irreducible polynomials in one variable

Let K be a field and K[X] is the ring of polynomials in one variable over K.

Then K[X] is an Euclidean domain.

Definition 2.1.1. A polynomial f(X) ∈ K[X] is said to be irreducible over

K if f(X) is nonconstant and the only divisors of f(X) in K[X] are the

constant polynomials. Otherwise, f(X) is said to be reducible over K.

Example 2.1.2. The polynomial X2 − 3 is reducible over R but it is ir-

reducible over Q, and the polynomial X2 + 1 is reducible over C but it is

irreducible over R.

Example 2.1.3. X2 +X + 1 is irreducible over F2.
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Recall that a degree d polynomial f(X) ∈ K[X] is called monic polynomial

if the coefficient of xd in the expression of f(X) is equal to 1. The following

theorem gives an estimation of the number of monic irreducible polynomials

over Fp for a given prime number p. For the proof, see [37] or [50].

Theorem 2.1.4. Let p be a prime number. Let Nd,p denotes the number of

the monic irreducible polynomials of degree d over Fp. Then

pd

2d
≤ Nd,p ≤

pd

d
.

For testing if a given polynomial in one variable is irreducible we have the

following knows results. For more studies and criterions provided on the

irreducibility of polynomials in one variable we refer to [9, 12, 17, 30, 62].

Lemma 2.1.5 (Gauss Lemma). If A is a unique factorization domain and

K is its quotient field. Then a polynomial in A[X] whose the coefficients are

relatively prime is irreducible if and only if it is irreducible in K[X].

Theorem 2.1.6 (Eisenstein ’s Criterion). Let A be a unique factorization

domain and K is its fractions field. Let f(X) = anX
n + . . .+ a1X + a0 be a

polynomial in A[X]. Let p be a prime element in A satisfying the following

1. p divides ai for each i = 0, . . . , n− 1.

2. p does not divide an.

3. p2 does not divide a0.

Then f(X) is irreducible in A[X] and so irreducible in K[X].

Example 2.1.7. Let f(X) = 5X4 + 15X3 + 6X2 + 3. We apply the above

theorem by taking p = 3. Then we deduce that f(X) is irreducible over Q.

Theorem 2.1.8. Let f(X) be a polynomial in K[X] of degree two or three.

Then f(X) is irreducible over K if and only if it has no zeros.

Example 2.1.9. X3 + 3X + 2 is irreducible over F5.

Remark. An ideal that is generated by one irreducible polynomial over K is

a maximal ideal in K[X] .
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2.2 Algebraic extensions

Since the only ideals of any field K are (0) and (1), then any non zero field

homomorphism from K to any other field L is injective.

Let L and K be two fields. If there exists a non zero field homomorphism

π : K ↪→ L, then we identify π(K) by K in L and we say that L is an

extension of K. We denote by L/K or K ⊂ L to mean that L is a field

extension of K.

Let L/K be an extension and S = {α1, . . . , αn} is a subset of L. We denote

by K(α1, . . . , αn) the smallest extension of K containing S.

Notice that a field K is called prime field if it has no proper subfield. Fp

and Q are prime fields. Prime fields of characteristic 0 are isomorphic to Q
and prime fields of finite characteristic p are isomorphic to Fp.

Theorem 2.2.1. Let L/K be a field extension. Then L has a structure of

K-vector space and its dimension as a K-vector space is denoted by [L : K]

and called the degree of the extension L/K.

Example 2.2.2. C/R is an extension of degree 2 and {1, ı} is a R-basis of
C.

Remark. If [L : K] is a finite integer n, then we say that L/K is a finite

extension. It is clear |L| = |K|n since every K-vector space of dimension n

is isomorphic to Kn.

Remark. If K is an extension of Q, then K is called a number field.

number fields containing imaginary numbers are called imaginary number

fields and number fields containing only real numbers are called real number

fields.
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Definition 2.2.3. Let L/K be a field extension. An element α in L is said

to be algebraic over K if α is a zero of a non constant polynomial in K[X].

The extension L/K is called algebraic extension of K if every element in L

is algebraic over K.

Definition 2.2.4. Let L/K be a field extension. Let α ∈ L be an algebraic

element over K. Then the extension K(α) is called simple extension of K.

The monic polynomial of the smallest degree in the set of polynomials in

K[X] vanishing at α is called the minimal polynomial of α. It is clear that

the minimal polynomial of α is irreducible and unique. K(α) is called the

root field of this polynomial.

Theorem 2.2.5. Let K be a field and α is an algebraic element over K.

Then the degree of the extension K(α)/K is equal to the degree of the minimal

polynomial of α.

Construction of simple extensions

We summarize the construction of simple extensions as follows: Let L/K be

a field extension. Let α/inL be an algebraic element over K and fα denotes

its minimal polynomial in K[X]. Since fα(X) is irreducible, then the ideal

generated by fα(X) is maximal in K[X], so the quotient ring K[X]
(fα(X))

is a

field. Let π denotes the projection map

π : K[X] → K[X]

(fα(X))

fα(X)Q(X) +R(X) 7→ R(X) = R(X)

Let us set π(X) = α and define a map

ϕα :
K[X]

(fα(X))
→ K(α)

R(X) 7→ R(α)

13



ϕα is bijective. This implies that K(α) is isomorphic to K[X]
(fα(X))

. Therefore,

we define K(α) by the set

K(α) = {R(α) : R(X) ∈ K[X]

(fα(X))
}

= {R(α) : R(X) ∈ K[X] and degR(X) < deg fα(X)}

Example 2.2.6. For all positive square free integer D,
√
D is algebraic over

Q and its minimal polynomial in Q[X] is X2−D. Then Q(
√

(D)) is a simple

extension of degree 2 over Q, called a real quadratic field.

Q(
√
D) = {a+ b

√
D : a, b ∈ Q}.

Example 2.2.7. For all positive square free integer D, ı
√
D is algebraic over

Q and its minimal polynomial in Q[X] is X2 +D. Then Q(ı
√
D) is a simple

extension of degree 2 over Q, called imaginary quadratic field.

Q(ı
√
D) = {a+ ıb

√
D : a, b ∈ Q}.

Definition 2.2.8. Let L/K be a field extension. Let f be a non constant

polynomial in K[X]. We say that f splits completely into linear factors over

L if we have

f(X) = c(X − α1) . . . (X − αn) c ∈ K, α1, . . . , αn ∈ L.

Definition 2.2.9. Let K be a field. K is said to be algebraically closed if

every non constant polynomial in K[X] has a zero (or root) in K. In other

words, every nonconstant polynomial in K[X] splits completely into linear

factors over K.

Example 2.2.10. Q, R and the ring of integers modulo prime number are

not algebraically closed. C is algebraically closed.

Definition 2.2.11. Let L/K be a field extension. L is said to be an alge-

braic closure of K if L/K is an algebraic extension and every non constant

polynomial in K[X] has a zero in L. In other words, every nonconstant

polynomial in K[X] splits completely into linear factors over L.
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Theorem 2.2.12. [40] [Artin’s construction] The algebraic closure of any

field K exists and it is unique up to isomorphism, denoted by K and con-

structed as follows: Let Σ denotes the set of all irreducible monic polynomials

in K[X] and A denote the polynomial ring over K generated by the indetermi-

nates {Xf}f∈Σ. Let a be the ideal generated by the polynomials {f(Xf )}f∈Σ.
Let m be a maximal ideal in A containing a. Let K1 = A

m
. Then K1 is a

field extension of K in which every polynomial f ∈ Σ has a root. We repeat

the same construction with K1 in place of K and then we obtain a field K2.

We repeat the same construction with K2 and so on......Let L =
⋃∞

n=1Kn.

Then L is a field extension of K over which each polynomial f ∈ Σ splits

completely into linear factors. We define K to be the set of all elements of

L which are algebraic over K. Then K is an algebraic closure of K .

2.3 Perfect fields

Definition 2.3.1. Let K be a field. Let f be a non constant polynomial

in K[X]. Let α1, . . . , αs be all the zeros of f in K (not necessary simple).

Then K(α1, . . . , αs) is called the splitting field of f(X). In other words, the

splitting field of f is the smallest extension of K over which f(X) splits

completely into linear factors.

Definition 2.3.2. Let K be a field. An irreducible polynomial f(X) of

degree n in K[X] is said to be separable if it has only simple zeros in its

splitting field.

Definition 2.3.3. Let L/K be a field extension. An element α ∈ L is called

separable overK if it is algebraic overK and its minimal polynomial in K[X]

is separable. The extension L/K is called a separable extension of K if it is

an algebraic extension of K and every element in L is separable.
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Definition 2.3.4. A field K is called perfect if every algebraic extension of

K is separable.

Remark. Every field K having characteristic 0 is perfect. Indeed, if f(X)

is an irreducible polynomial in K[X], then f has no comun zeros with its

derivative f ′, which implies that it has no repeated zero and so it is separable

over K.

Let us give an example of a non perfect field of positive characteristic.

Example 2.3.5. Let p be a prime number. Let t be an element in Fp.

Then we have the field of rational functions Fp(t). The polynomial Xp − t

is irreducible in Fp(t)[X]. Let F be a field extension of Fp(t) containing a

zero θ of Xp − t. Then θp = t, which implies that Xp − θp = 0. Since

char(F ) = p, then Xp − θp = (X − θ)p. This implies that θ is not a simple

zero of Xp − t. Therefore, F is not a separable extension of Fp(t) and thus

Fp(t) is not perfect.

The following theorem characterizes perfect fields of positive characteristic

and it is very helpful to check if a field of positive characteristic is perfect or

not.

Theorem 2.3.6. Let K be a field of characteristic p > 0. Then K is perfect

if and only if Kp = K, where Kp denotes the subfield defined by

Kp = {αp : α ∈ K}.

Example 2.3.7. It is obvious that Fp is perfect for any prime number p.

Among the most important properties holding only over perfect fields is

the following. The application of this theorem will not appear in all the

statements of the next chapters but the reader have to make in mind that

this property was used to get the basic facts of algebraic varieties theory. For

the proof we refer to [28] or [34].
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Theorem 2.3.8. If K is a perfect field, then every finite extension of K is

simple.

2.4 Finite fields

We summarize the basic properties of finite fields in the following theorem

Theorem 2.4.1. (a) Every finite field is an extension of some prime field

Fp and thus it is a Fp-vector space and its cardinal is a power of p.

(b) The multiplicative group of every finite field is cyclic.

(c) For every prime number p and positive integer n, there exists a unique

finite field up to isomorphism. This field is the root field of the minimal

polynomial of the generator of its multiplicative group. It is denoted

Fpn.

(d) Let p be a prime number and n ∈ N. A finite field Fpm is a subfield of

Fpn if and only if m|n.

(e) Let q be a power of prime number. The algebraic closure of the finite

field Fq is given by E =
⋃

k∈N Fqk .

(f) Every finite field is perfect 1

Proof. See. [28], [37], [38] and [50] □

Remark. Its obvious that for every prime number p and positive integer n,

the finite field Fpn is the splitting field of the polynomial Xpn −X.

1There exists a field homomorphism of Fpn defined by ϕp : Fpn → Fpn , x 7→ xp.

Since ϕp is injective and Fpn is finite, then ϕp is surjective, which implies that Fp
pn = Fpn .

Therefore Fpn is a perfect field.
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Notice that there are more extensive studies on the finite fields theory

and their applications, see [3, 36, 46, 50]. There are many algorithms for

constructing finite fields larger than prime finite fields, see [23, 39, 59].

Remark. Let q be a power of a prime number. A generator of F∗
q is called a

primitive element and its minimal polynomial is called primitive polynomial.

There are φ(q − 1) generators of F∗
q.

Construction of finite fields

We summarize the construction of finite fields larger than finite prime fields

as follows: let p be a prime number and n ∈ N. There are many monic

irreducible polynomials in Fp[X], to construct Fpn we have to choose the one

whose the root ω = π(X) is primitive in F∗
pn . Let f(X) be the good choice.

Then

Fpn = {P (ω) : P (X) ∈ Fp[X] and degP (X) ≤ n− 1}.

Since ω is a generator of F∗
pn , then every non zero element in Fpn is of the

form ωs for some 0 ≤ s ≤ pn − 2. This writing is called the logarithmic

writing and it is very helpful for doing calculus in finite fields.

Example 2.4.2. Let us give the construction of F4, F9, F25.

1. Construction of F4:

The only irreducible polynomial of degree 2 in F2[X] is the following

f(X) = X2 +X + 1.

We set

ω = X mod (f(X)) .

18



This implies that we have

ω2 + ω + 1 = 0

F4 is defined to be the simple extension F2(ω). The elements of F4 are

the following

0 = 0

ω0 = 1

ω = ω

ω2 = ω + 1

2. Construction of F9: There are three monic irreducible polynomials

of degree 2 over F3.

f1(X) = X2 + 1,

f2(X) = X2 +X − 1,

f3(X) = X2 −X − 1

The primitive polynomial between them is f3(X). We set

ω = X mod (f3(X)) .

Then we have

ω2 − ω − 1 = 0.

Then F9 is defined to be the simple extension F3(ω). Since ω is a

generator of F ∗
9 , every element in F ∗

9 can be written as ωs with 0 ≤
s ≤ 7. To find the s corresponding to each element in F ∗

9 we use the
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formula ω2 = ω + 1. Then the elements of F9 are the following

0 = 0

ω0 = 1

ω = ω

ω2 = ω + 1

ω3 = 2ω + 1

ω4 = 2

ω5 = 2ω

ω6 = 2ω + 2

ω7 = ω + 2

3. Construction of F25:

There are many monic irreducible polynomials of degree 2 in F5[X].

f1(X) = X2 + 2,

f2(X) = X2 − 2,

f3(X) = X2 +X + 2,

f4(X) = X2 + 2X − 2,

f5(X) = X2 + 2X − 1,

f6(X) = X2 +−2X − 1,

f7(X) = X2 +−2X − 2.

f3(X) is a primitive polynomials in F5[X]. We set

ω = X mod (f3(X)) .

Then we have

ω2 + ω + 2 = 0.
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Then F25 is defined to be the simple extension F5(ω). Since ω is the

generator of the multiplicative group F∗
25, then every non zero element

in F25 is equal to ωs for some 0 ≤ s ≤ 23. To find the s corresponding

to every element we use the formula ω2 = −ω − 2. Then the elements

of F25 are the following

0 = 0 ω12 = −1

ω0 = 1 ω13 = −ω
ω = ω ω14 = ω + 2

ω2 = −ω − 2 ω15 = ω − 2

ω3 = −ω + 2 ω16 = 2ω − 2

ω4 = 2ω + 2 ω17 = ω + 1

ω5 = −ω − 1 ω18 = −2

ω6 = 2 ω19 = −2ω

ω7 = 2ω ω20 = 2ω − 1

ω8 = −2ω + 1 ω21 = 2ω + 1

ω9 = −2ω − 1 ω22 = −ω + 1

ω10 = ω − 1 ω23 = 2ω + 2

ω11 = −2ω − 2
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Chapter 3

Recall on algebraic varieties

In this chapter we give a review on some basics in the theory of algebraic

varieties: affine and projective spaces and algebraic sets in these spaces, al-

gebraic varieties and their dimensions, coordinate rings of algebraic sets and

function fields of algebraic varieties, characterization of nonsingular varieties,

rational maps, regular functions and regular maps and finally we define al-

gebraic curves without farther discussions. Notice that there are many other

basic concepts in this theory but we will not discuss. for more basics in the

theory of algebraic varieties we refer to [26, 22, 52, 51].

3.1 Some review on Polynomials

Let n < ∞ be a positive integer. From now and on the ring of polynomials

in n variables over a field K is denoted by K[x, y] if n = 2 and by K[x, y, z]

if n = 3 and by K[x, y, z, w] if n = 4 and by K[x1, . . . , xn] if n > 4. And, the

notation K[x0, . . . , xn] means the ring of polynomials in n+ 1 variables.
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Notice that the rings of polynomials in n variables over a U.F.D is a U.F.D.

This implies that the polynomial rings K[x1, . . . , xn] and K[x0, . . . , xn] are

U.F.D.

Definition 3.1.1. A polynomial f(x1, . . . , xn) in K[x1, . . . , xn] is said to be

irreducible over K if f is non constant and f can not be factored into product

of two non constant polynomials in K[x1, . . . , xn]. Otherwise, f is said to be

reducible over K.

Notice that there are some criterions for testing the irreducibility of poly-

nomials with two or three variables. We refer to [4, 20, 48, 56].

Example 3.1.2. x2 + y2 is irreducible over R but it is reducible over C.

Example 3.1.3. y2 − x3 − x2 and y2 − x3 are irreducible over K.

Remark. A principal ideal in K[x1, . . . , xn] is a prime ideal in K[x1, . . . , xn]

if and only if it is generated by an irreducible polynomial over K.

Definition 3.1.4. A homogeneous polynomial in K[x0, . . . , xn] is defined to

be a non constant polynomial whose all the monomials have the same degree.

Example 3.1.5. xy and xy+ z2 are homogeneous polynomials in K[x, y, z].

Example 3.1.6. xy+ z2 +w3 and x2 + y are not homogeneous polynomials

in K[x, y, z, w].

There are many properties of homogeneous polynomials given in [34] and

[22] which are introduced for providing properties of projective sets and va-

rieties should be reviewed by the reader. The construction of the zeros of

homogeneous polynomials in the projective space requires the following: a

non consonant polynomial f(x0, . . . , xn) in K[x0, . . . , xn] is homogeneous if

and only if we have

∀λ ∈ K∗, f(λx0, . . . , λxn) = λdeg(f)f(x0, . . . , xn).
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Remark. The ring of polynomials in finite number of variables over a nœthe-

rian ring is a nœtherian ring, which implies that K[x0, . . . , xn] is nœtherian.

Therefore, every ideal in K[x0, . . . , xn] is finitely generated.

An ideal in K[x0, . . . , xn] may have many sets of generators. Homogeneous

ideals are characterized by the following property

Proposition 3.1.7. An ideal in K[x0, . . . , xn] is an homogeneous ideal if and

only if it has homogeneous generators in K[x0, . . . , xn].

Example 3.1.8. (xz2 + y3, y, z2) is an homogeneous ideal in K[x, y, z].

Notice that it is not necessary that every set of generators of an homoge-

neous ideal must be defined by only homogeneous polynomials. The above

proposition requires to find only one set of generators that contains only

homogeneous polynomials.

Definition 3.1.9 (homogenization and de-homogenization maps). For all

integer 1 ≤ i ≤ n, we define the homogenization map from K[x1, . . . , xn] to

K[x0, . . . , xn] to be the map corresponding to any non constant polynomial

f(x0, . . . , xn) the homogeneous polynomial

f ∗(x1, . . . , xn) = x
deg(f)
i f(

x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

).

For each i = 0, . . . , xn, we define the de-homogenization map fromK[x0, . . . , xn]

to K[x0, . . . , xn] to be the map corresponding to any non constant homoge-

neous polynomial f(x1, . . . , xn) the polynomial

f∗(x0, . . . , xi−1, xi+1, . . . , xn) = f(x0, . . . , xi−1, 1, xi+1, . . . , xn)
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3.2 Definitions

In this section we make deal with definitions and notations of the principal

objects in the theory of algebraic varieties.

Let K be a field and K is a fixed algebraic closure of K. Let n be a positive

integer. The affine n-space (over K) is the set

An
K
= {P = (x1, . . . , xn) : xi ∈ K}.

x1, . . . , xn are called the affine coordinates of the point (x1, . . . , xn).

Notice that the affine 2-space A2
K

is called the affine plane over K.

We define an equivalence relation on An+1

K
\(0, . . . , 0) as follows:

(x0, . . . , xn+1) ∼ (y0, . . . , yn+1) ⇔ ∃λ ∈ K such that xi = λyi.

The projective n-space (overK), denoted by Pn
K
, is defined to be the quotient

set
An+1

K
\ (0, . . . , 0)

∼
.

The equivalence class of (x0, . . . , xn) is defined by

(x0, . . . , xn) = {(λx0, . . . , λxn) : λ ∈ K}.

This class is denoted by [x0, . . . , xn] and called a projective point in Pn
K
.

x0, . . . , xn are called the projective (or homogeneous) coordinates of [x0, . . . , xn].

Notice that the projective 2-space P2
K
is called the projective plane over K.

Let I be an ideal in K[x1, . . . , xn] generated by polynomials f1, . . . , fm.

Then we define the zero set of I in An
K
, denoted by Z(I), to be the set of all

the points P ∈ An
K

satisfying

f1(P ) = · · · = fm(P ) = 0.
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A subset W in An
K

is called affine algebraic set if it is equal to the zero

set of an ideal I ⊆ K[x1, . . . , xn]. The ideal I is called the ideal of W and

denoted by I(W ). If I(W ) is generated by polynomials which are defined

over K, then we say that W is an affine algebraic set defined over K. We

denote by W/K to mean that W is defined over K.

Let f be a non constant homogeneous polynomial in K[x0, . . . , xn]. For all

(x0, . . . , xn) in An+1\(0, . . . , 0), we have

f(x0, . . . , xn) = 0 ⇔ for all λ ∈ K
∗
, f(λx0, . . . , λxn) = 0.

This implies that every element in the equivalence class [x0, . . . , xn] is a zero

of f . Therefore we define the zero of f in Pn
K

as follows

[x0, . . . , xn] is a zero of f if and only if f(x0, . . . , xn) = 0.

Let I be an homogeneous ideal in K[x0, . . . , xn] generated by homogeneous

polynomials f1, . . . , fm. Then we define the zero set of I in Pn
K
, denoted by

Z(I), to be the set of all the projective points P in Pn
K

satisfying

f1(P ) = · · · = fm(P ) = 0.

A subset W in Pn
K

is called projective algebraic set in Pn
K

if it is equal to

the zero set of an homogeneous ideal I in K[x0, . . . , xn]. I is called the ideal

of W and denoted by I(W ). If the generators of I(W ) are defined over K,

then we say that W is an algebraic set defined over K. We denote by W/K

to mean that W is defined over K.

An affine algebraic set V/K is called affine variety if V can not be expressed

as union of two proper algebraic subsets of V . Similarly, we define a projective

algebraic set.

Affine varieties are characterized as follows
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Theorem 3.2.1. An affine algebraic set V/K is an affine variety if and only

if its ideal is a prime ideal in K[x1, . . . , xn].

Projective varieties are characterized as follows

Theorem 3.2.2. A projective algebraic set V/K is a projective variety if

and only if its ideal is a prime homogeneous ideal in K[x0, . . . , xn].

Example 3.2.3. Z(x2 + y2) is defined over R. This projective set is not a

projective variety since (x2 + y2) is not irreducible in C[x, y].

Example 3.2.4. Z(y − x2) and Z(x− y2) are affine varieties in A2
K
.

Notice that by an algebraic variety we mean an affine variety or a projective

variety, and by an algebraic set we mean an affine algebraic set or a projective

algebraic set.

A subvariety of an algebraic variety V is a subset of V that is also an

algebraic variety over K.

3.3 Affine peaces, Projective closure, Points

at infinity

The projective n-space Pn
K

has a covering by affine n-spaces. Indeed, we set

Hi = {[x0, . . . , xn] ∈ Pn
K
: xi = 0} for all i=0, . . . ,n.

Hi is a projective algebraic set in Pn
K

since its the zero set of the ideal (xi).

We set

Ui = Pn
K
\Hi for all i = 0, . . . , n.
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Every point P = [x0, . . . , x0] ∈ Pn
K

has at least one coordinate xi ̸= 0, then

P is in some Ui. Therefore, Pn
K

is covered by {Ui}0≤i≤n.

For all i = 0, . . . , n, we define a bijection 1

ϕi : Ui → An

[x0, . . . , xn] 7→ (
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)

Its inverse map is ϕ−1
i defined as follows

ϕ−1
i : An → Ui

(y1, . . . , yn) 7→ [y1, . . . , yi, 1, yi+1, . . . , yn]

We identify each Ui by An
K

and thus we have an affine cover of Pn
K
.

Definition 3.3.1. If W/K is a projective algebraic set, then W is covered

by {W ∩ Ui}0≤i≤n. If W ∩ Ui ̸= ∅, then Wi = ϕi(W ∩ Ui) is called an affine

peace of W with respect to i and its points are called the affine points of W .

Notice that all the Wis are isomorphic since each Ui is isomorphic to An
K
. Wi

is defined by the zero set of the following ideal

I(Wi) = {(f∗(x0, . . . , xi−1, xi+1, . . . , xn) : f(x0, . . . , xn) ∈ I(W )}.

The set W\Wi = W ∩ Hi is called the set of points at infinity on W and

defined by the points [x0, . . . , xi−1, 0, xi+1, . . . , xn] satisfying

f(x0, . . . , xi−1, 0, xi+1, . . . , xn) = 0 for every generator f of I(W ).

Example 3.3.2. Let W = Z(y2−x2− z2) be a projective algebraic set over

K. An affine peace of W is W0 = Z(y2 − 1 − z2). The points at infinity of

W are

{[0, y, z] ∈ P2
K
: y2 − z2 = 0} = {[0, 1, 1], [0, 1− 1]}.

1ϕi is well defined since the ratio
xj

xi
are independent of the choice of the homogeneous

coordinates.
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Example 3.3.3. W = Z(y2 + z2 − x2) is a projective set over C. Its affine

peace is a circle W0 = Z(y2 + z2 − 1). The points at infinity of W are

{[0, y, z] ∈ P2
K
: y2 + z2 = 0} = {[0, ı, 1], [0,−ı, 1]}.

Definition 3.3.4. If W/K is an affine algebraic set, then the projective

closure of W in Pn
K

is denoted by W and defined to be the projective set

whose the homogeneous ideal in K[x0, . . . , xn] is generated by

{f ∗(x0, . . . , xn) : f(x1, . . . , xn) ∈ I(W )}.

Example 3.3.5. The projective closure of the affine algebraic set Z(xy− 1)

is the projective algebraic set Z(xy − z2).

Example 3.3.6. the projective closure of the affine algebraic set Z(y2−z3−
x− 1) is the projective algebraic set Z(wy2 − z3 − xw2 − w3).

3.4 Function field

Let W/K be an affine algebraic set. We define the affine coordinate ring of

W , denoted by K[W ], to be the quotient ring

K[x1, . . . , xn]

I(W )
.

If V/K is an affine variety, then the affine coordinate ring of V is an integral

domain since its ideal is prime in K[x1, . . . , xn]. Therefore, we can construct

its fraction field. For the construction of fraction fields of integral domains

we refer to [35] or [40].

Definition 3.4.1. Let V/K be an affine variety. The filed of fractions of the

affine coordinate ring of V is called the field of rational functions on V or

the function field of V . It is denoted by K(V ).
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Example 3.4.2. V = Z(y − x2) is an affine variety over K. The affine

coordinate ring of V is K[x,y]
(y−x2)

. This integral domain is isomorphic to K[x]

via the ring isomorphism y 7→ x2. This implies that the function field of V

is isomorphic to K(x).

Example 3.4.3. It is obvious that the function field of the hole affine space

An
K

is K(x1, . . . , xn) since its ideal is (0).

Let W/K be a projective algebraic set. We define the homogeneous coor-

dinate ring of W , denoted by K[W ], to be the quotient ring

K[x0, . . . , xn]

I(W )
.

If V/K is a projective variety, then for the same argument us in the case

of an affine variety we can define the function field of a projective variety.

Definition 3.4.4. Let V/K be a projective variety. The field of fractions

of the homogeneous coordinate ring of V is denoted by K(V ) and called the

function field of V or the field of rational functions on V .

In the following proposition we describe the elements of the function field

of a projective variety. For the proof, see [26].

Theorem 3.4.5. Let V be a projective variety in Pn
K
. Then K(V ) is isomor-

phic to the set of rational functions f = h
g
such that h, g are homogeneous

polynomials of the same degree in K[x0, . . . , xn] and g /∈ I(V ).

We have also the following theorem

Theorem 3.4.6. [52] Let V be an affine variety in An
K
. Then K(V ) is

isomorphic to K(V ).

Example 3.4.7. the function field of the hole projective space P2
K
is isomor-

phic to K[x, y].
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3.5 Rational maps and morphisms

In this section we define the regular functions on an algebraic variety and

then we define morphisms of varieties. The properties of these maps are

studied in details in [26, 51, 52].

Definition 3.5.1. Let V/K be an affine variety. A function f : V → K

is said to be regular or defined at a point P ∈ V if there are polynomials

h, g ∈ K[x1, . . . , xn] such that f(p) = h(p)
g(p)

and g(P ) ̸= 0. f is said to be

regular on V if f is regular at every point on V .

Let V1 ⊆ An
K

and V2 ⊆ Am
K

be two affine varieties. A rational map ϕ from

V1 to V2 is a map defined by (f1, . . . , fm) such that f1, . . . , fm are rational

functions on V1 and im(ϕ) ⊆ V2.

im(ϕ) = {(f1(P ), . . . , fm(P )) : P ∈ V1 and f1, . . . , fm are defined at P }.

Definition 3.5.2. Let V1 ⊆ An
K

and V2 ⊆ Am
K

be two affine varieties. Let

φ = (f1, . . . , fm) be a rational map from V1 to V2. Let P be a point on V1.

We say that φ is regular or defined at P if f1, . . . , fm are all defined at P .

We say that φ is a regular map or a morphism of affine varities if it is regular

at every point P ∈ V .

Example 3.5.3. Let V = Z(y2−x3). The rational map ϕ : V → A1
K
defined

by (x, y) 7→ y
x
is not a regular map at (0, 0).

Example 3.5.4. Let V = Z(y−x3). The rational map ϕ : A1
K
→ V defined

by x 7→ (x, x3) is a morphism since it is regular at every point in A1
K
.

Definition 3.5.5. Let V/K be a projective variety. A function f : V → K

is said to be regular or defined at P ∈ V if there are two homogeneous

polynomials g, h in K[x0, . . . , xn] of the same degree such that f(P ) = h(P )
g(P )

and g(P ) ̸= 0. We say that f is regular on V if it is regular at every point

P ∈ V .
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Let V1/K and V2/K be two projective varieties with V2 ⊆ Pm
K
. A rational

map φ : V1 → V2 is a map defined by [f0, . . . , fm] such that f0, . . . , fm are

rational functions on V1 and imφ ⊆ V2.

imφ = {[f0(P ), . . . , fm(P )] : P ∈ V1, f0, . . . , fm are defined at P and not all zeros at P}.

Definition 3.5.6. Let V1 and V2 be two projective varieties such that V2 ⊆
Pm
K
. Let ϕ : V1 → V2 be a rational map given by [f0, . . . , fm]. Let P be a

point on V1. We say that φ is regular (or defined) at P if we are in one of

the following two cases:

Case 1: all the functions fi are regular at P and are not all zeros at P .

Case 2: all the fis vanish at P or there exists some i for which fi is not

defined at P , but we can find a function g on V1 such that gfi is defined

at P for all i = 0, . . . ,m and there exists some 0 ≤ i0 ≤ m such that

gfi0(P ) ̸= 0. In this case we set Gi = gfi for all i = 0, . . . ,m and we

write φ(P ) = [G0(P ), . . . , Gm(P )].

We say that φ is a regular map or a morphism of projective varieties if φ is

regular at every point P ∈ V1.

Example 3.5.7. Let V = Z(xy − z2). Let ϕ : V → P1
K

be a rational

map defined by [1, z
x
]. Then ϕ is defined by the rational functions on V ,

f0(x, y, z) = 1, that is defined every where at V and f1(x, y, z) =
z
x
, that is

not defined at [0, 1, 0]. We have every point [x, y, z] on V satisfies xy = z2

and so z
y
= x

z
. We define on V the function g = x

z
. Then g makes ϕ defined

at [0, 1, 0] and ϕ([0, 1, 0]) = [0, 1]. Since ϕ is defined at every point on V1,

then ϕ is a morphism of varieties.

Example 3.5.8. Let V = Z(y2z − x3 − x2z). Let ϕ : V → P1
K

defined by

[x, y]. Then ϕ is not a morphism since it is not regular at the point [0, 0, 1].
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Definition 3.5.9. Two algebraic varieties V1/K and V2/K are said to be

isomorphic over K or K-isomorphic if there exists two morphisms of varieties

φ : V1 → V2 and ψ : V2 → V1 such that φ ◦ψ = idV2 and ψ ◦φ = idV1 . In this

case, we write V1 ≃ V2.

Example 3.5.10. Let V = Z(y2 − x3). The rational map ϕ : A1 → V

defined by x 7→ (x2, x3) is a morphism. The inverse map of ψ is the rational

map ϕ : V → A1
K

defined by (x, y) 7→ y
x
. Since ϕ is not a morphism, then ψ

is not an isomorphism of varieties.

Example 3.5.11. Let V = Z(y2 − x3). Let ψ : V → A1
K

be a rational map

defined by (x, y) 7→ x. Then ψ is a morphism. The inverse map of ψ is the

rational map ϕ : A1
K
→ V defied by x 7→ (x2, x3). Since ψ is a morphism and

its inverse map is also a morphism, then ψ is an isomorphism of varieties.

Example 3.5.12. Let V = Z(xy− z2). Let ψ : P1
K
→ V defined by [x

y
, y
x
, 1].

Then ψ is a morphism. The inverse map of ψ is the rational map ϕ : V → P1
K

defined by [x, y, z] 7→ [1, z
x
]. Then ψ is an isomorphism of projective varieties

since its inverse map is also a morphism.

3.6 Dimension

One of the important notions in the theory of algebraic varieties theory is

the dimension of an algebraic variety.

Definition 3.6.1. [51] The dimension of an algebraic variety V , denoted by

dimV , is the maximal integer r for which there exists a strictly decreasing

chain of length r of distinct sub-varieties Vi ⊆ V .

V0 ⊃ V1 ⊃ . . . ⊃ Vr ⊇ ∅.
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Notice that there is another equivalent definition of the dimension of an

algebraic variety using the transcendence degree of its function field and it

is practice for providing proofs of a lot of results in this theory. We refer to

any reference cited in this chapter.

We have the following proposition [26].

Proposition 3.6.2. A variety V in An
K

has dimension n − 1 if and only

if it is the zero set of an ideal generated by one irreducible polynomial in

K[x1, . . . , xn].

In the following theorem we relate the dimension of a projective variety

with the dimension of its affine peace. For the proof, see [52] or [26].

Theorem 3.6.3. Let V/K be a projective variety and Vi is an affine peace

of V . Then we have dimV = dimVi.

3.7 Nonsingularity

The following theorem gives a characterization of nonsingular algebraic vari-

eties.

Theorem 3.7.1. Let V ⊆ Pn
K

be a projective variety. Let f1, . . . , fm be the

generators of its ideal I(V ). We say that V is nonsingular (or smooth) at a

point P ∈ V if its Jacobian matrix at P(
∂fi
∂xj

(P )

)
1≤i≤m,0≤j≤n

has rank equal to n− dimV . We say that V is a nonsingular variety if it is

nonsingular at every point P ∈ V . Similarly, we characterize a nonsingular

affine variety.
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The particular case of a nonsingular variety given by one irreducible poly-

nomial is given as follows.

Proposition 3.7.2. An affine variety V that is defined over K by only one

irreducible polynomial f(x1, . . . , xn) is nonsingular at a point P ∈ V if and

only if the partials ∂f
∂xi

vanish at P . It is the same in the case of a projective

variety defined by one irreducible polynomial.

Example 3.7.3. The affine variety Z(x3 + y3 − 3xy) is singular at (0, 0).

Example 3.7.4. The projective variety Z = (x3z + x2yz + y3z + x4 + y4) is

singular at [0, 0, 1].

3.8 Algebraic curves

In this section we define algebraic curves and we discuss briefly the genus

of nonsingular projective curves. General references on the algebraic curves

theory and morphisms between them are [22, 24, 26, 32, 44, 51, 52].

Definition 3.8.1. An algebraic curve C/K is defined to be an algebraic

variety of dimension one.

Example 3.8.2. Z(x2 − xz− yw, yz− xw− zw) is a projective curve in P3
K

called the elliptic quartic curve in P3
K
. See [22].

Notice that if C is defined by the zero set of one irreducible polynomial

in K[x, y], then C is called an affine plane curve. If C is defined by the

zero set of one homogeneous irreducible polynomial in K[x, y, z], then C is

called a projective plane curve. We write C : f(x, y, z) = 0 to mean that C is

described by the zero set of the polynomial f(x, y, z). Similarly, in the affine

case.
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The following result about rational maps between nonsingular projective

curves will not be used in our proofs but we state this result because it has a

central role in providing a lot of results in the theory of nonsingular algebraic

curves and maps between them and in particular the elliptic curves theory.

For the proof, see [26] and [52].

Theorem 3.8.3. Every non constant rational map ϕ from a nonsingular

projective curve C1 to any projective curve C2 is a morphism. Further, if C2

is also nonsingular then ϕ is surjective.

Let C/K be a projective curve and P ∈ C. Let OP,K(C) denotes the

subset of K(C) defined by all the rational functions f ∈ K(C) such that f is

regular at P . Then the local ring of C at P is defined to be OP,K(C) and its

maximal ideal is denoted by mP,K(C) and defined by the rational functions

f ∈ OP,K(C) such that f(P ) = 0 [15]. Notice that for the construction of

local rings and further discussions about their structures and properties we

refer to [40].

Theorem 3.8.4. [15] Let C/K be a nonsingular projective curve and P ∈ C.

Then mP,K(C) is a principal ideal of OP,K(C).

Notice that more properties aboutOP,K(C) andmP,K(C) of any nonsingular

projective curve should be reviewed [15, 52].

Let C/K be a nonsingular projective curve and P ∈ C. Let tP be a

generator of mP,K(C). Let h ∈ OP,K(C).The order of h at P is defined to be

ordP (h) = max{d ∈ Z≥0 : h ∈ (tdP )}.

We define the order of a rational function on V , f = h
g
, at a point P ∈ V to

be ordP (f) = ordP (g) − ordP (h). If ordP (f) < 0, then we say that f has a

pole at P and if ordPf > 0, then we say that f has a zero at P . We have
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any non constant rational function on C has a finitely many poles and zeros

[15].

Let C/K be a nonsingular projective curve. A finite sum of the form

D = n
P1
(P1)+, . . . , nPr(Pr), nP1 , . . . , nPr ∈ Z, P1, . . . , Pr ∈ C

is called a divisor on C. The sum nP1 + . . . + nPr is called the degree of D

and denoted by deg(D). The following set

LK(D) = {f ∈ K(C)∗ : ordPi
(f) ≥ nPi

for all i = 1, . . . , r} ∪ {0}

has a structure of finite dimensional K-vector space and it is called the

Riemann Roch space of D [26]. There exists a minimal integer g such that

for all divisor D on C we have ℓK(D) ≥ deg(D)+1−g, where ℓK(D) denotes

the dimension of LK(D) over K [22, 44].

We define the genus of a nonsingular projective curve as follows [15, 22].

Definition 3.8.5. Let C/K be a nonsingular projective curve. The genus

of C is denoted by gC and defined to be the minimal integer for which we

have ℓK(D) ≥ deg(D) + 1− gC for all divisor D on C.

Notice that there are many other equivalent definitions of the genus of a

nonsingular projective curve, see [26, 51, 52].

Definition 3.8.6. An elliptic curve is defined to be a nonsingular projective

curve of genus one.

Notice that there are many other equivalent definitions of elliptic curves

which flow from the properties provided from their definition given above.
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Chapter 4

Elliptic curves

In this chapter we give a review on some basic facts in the elliptic curves

theory and state the requirement results for our aim of the next chapter.

All the basic concepts and results provided in this theory can be found in

[13, 52, 60].

The following theorem states that the set of points of any elliptic curve

defines an abelian group. For the proof, see [15] or [52].

Theorem 4.0.1. Let E/K be an elliptic curve. Let OE be a fixed point on

E. Then the set of points of E defines a structure of additive group whose

the identity element is OE.

Notice that the point chosen to be the identity element of the additive

group law defined by the set of points of E is called the base point of E or

the identity point of E.

A morphism of elliptic curves ϕ : E1 → E2 is defined to be a morphism

of algebraic varieties since every elliptic curve is by definition an algebraic

variety.
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A group homomorphism of elliptic curves ϕ : E1 → E2 is a morphism of

elliptic curves satisfying the properties of a group homomorphism:

ϕ(P1 + P2) = ϕ(P1) + ϕ(P2) for all P1, P2 ∈ E1 and ϕ(OE1) = OE2 .

Group homomorphisms of elliptic curves are called isogenies of elliptic

curves. They are called isogenies because they are morphisms of varieties

and morphisms of groups at the same time.

Theorem 4.0.2. [15] Let E1/K and E2/K be two elliptic curves. Let ϕ :

E1 → E2 be a morphism of elliptic curves such that ϕ(OE1) = OE2. Then ϕ

is a group homomorphism.

The above theorem makes sens to the following definition

Definition 4.0.3 (Isogeny of elliptic curves). An isogeny of elliptic curves

ϕ : E1 → E2 is a morphism of elliptic curves such that ϕ(OE1) = OE2 .

If E1/K and E2/K are elliptic curves, then every rational map ϕ : E1 → E2

is a morphism of elliptic curves since every elliptic curve is by definition a

nonsingular projective curve.

Two elliptic curves are said to be isomorphic if they are isomorphic as alge-

braic varieties and isomorphic as additive groups, so the following definition

make sens

Definition 4.0.4 (Isomorphic elliptic curves). Let E1/K and E2/K be two

elliptic curves. E1 and E2 are said to be isomorphic over K or K-isomorphic

if there exists an isogeny φ : E1 → E2 and an isogeny ψ : E2 → E1 such that

ψ ◦ φ = idE1 and φ ◦ ψ = idE2 .
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4.1 Points of finite order

Definition 4.1.1 (The multiplication by N -isogeny). Let E/K be an elliptic

curve and OE is its identity point. The multiplication by N -isogeny of E is

denoted by [N ] and defined to be the rational map [N ] : E → E sending a

point P ∈ E to the point [N ]P defined as follows: [0]P = OE and

[N ]P =

N times︷ ︸︸ ︷
P + . . .+ P if N > 0, [N ]P = −[−N ]P if N < 0.

Since the multiplication by N -isogeny is a group homomorphism the fol-

lowing definition make sens

Definition 4.1.2. Let E/K be an elliptic curve and N ∈ N. Let [N ] be

the multiplication by N -isogeny of E. Then the kernel of [N ] is denoted by

E[N ] or E[N ]K and called the N -torsion group of E or the group of points

of order N on E. A point in E[N ] is called a N -torsion point on E.

E[N ] = {P ∈ E : [N ]P = OE}.

Notice that E[N ](K) denotes the subgroup of E[N ] defined by only the points

in E[N ] whose the coordinates are in K.

The most important fact about the multiplication by N -isogeny of an el-

liptic curve is the structure of its kernel from which a lot of powerful results

are provided. The following theorem describes the structure of E[N ]. for the

proof, see [52]

Theorem 4.1.3. Let E/K be an elliptic curve such that K is a perfect field

of characteristic p. Then

(a) ∀N ∈ Z≥2 such that N ̸= p, we have E[N ] ≃ Z
NZ × Z

NZ .

(b) If p > 0, then E[pr] = OE ∀r ∈ Z≥0 or E[pr] ≃ Z
prZ ∀r ∈ Z≥0.
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4.1.1 Explicit equation

Let F (x, y, z) be an irreducible homogeneous polynomial in K[x, y, z] defined

as follows

F (x, y, z) = y2z + a1xyz + a3y
2z − x3 − a2x

2z − a4xz
2 − a6z

3.

The zero set of the polynomial F (x, y, z) defines a projective plane curve

in P2
K
called the projective Weierstrass curve. This curve has only one point

at infinity, that is [0, 1, 0] and its affine curve is called the affine curve of

Weierstrass and defined by Z (f(x, y)) such that

f(x, y) = F∗(x, y) = y2 + a1xy + a3y
2 − x3 − a2x

2 − a4x− a6. (4.1)

The equations f(x, y) = 0 and F (x, y, z) = 0 are called Weierstrass equations.

The polynomials f(x, y) and F (x, y, z) are called Weierstrass polynomials.

Since we have ∂F
∂x
(0, 1, 0) = 1 ̸= 0, then every Weierstrass curve is non-

singular at its point at infinity [0, 1, 0]. This implies that any projective

Weierstrass curve is nonsingular if and only if its affine curve is nonsingular.

Example 4.1.4. C : y2 − x3 − x = 0 is nonsingular, which implies that its

projective curve C : y2z − x3 − xz2 = 0 is nonsingular.

Example 4.1.5. C : y2−x3−x2 = 0 is singular at (0, 0), which implies that

its projective curve C : y2z − x3 − x2z = 0 is singular at [0, 0, 1].

The following quantities are defined in [52] for simplifying notations.

b2 = a21 + 4a2, b4 = a1a3 + 2a4, b6 = a23 + 4a6.

b8 =
1

4
(b2b6 − b24), c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6.
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Definition 4.1.6. The discriminant of the Weierstrass curve C given by the

equation (4.1) is denoted by ∆C and defined to be the quantity

∆C =
C3

4 − C2
6

1728
.

The discriminant of C is the quantity from which we know if a given Weier-

strass curve is nonsingular or not as the following proposition states

Proposition 4.1.7. [52] A Weierstrass curve is nonsingular if and only if

its discriminant is not vanish in K.

Remark. There is an explicit formulas given in [22, 26]. for calculating the

genus of a nonsingular projective plane curve of degree d. This formulas

is (d−1)(d−2)
2

. From this formulas we see that every nonsingular Weierstrass

curve is an elliptic curve.

In the following theorem we see that every elliptic curve is isomorphic to a

nonsingular Weierstrass curve. For the proof, see [26].

Theorem 4.1.8. Let E be an elliptic curve defined over K and OE is the

identity point of E. Then there exists rational functions fE, gE in K(E) such

that ordOE
(fE) = −2 and ordOE

(gE) = −3 and defined at every other point

on E and a1, a3, a2, a4, a6 in K satisfying the following equation

g2E + a1fEgE + a3gE = f 3
E + a2f

2
E + a4fE + a6. (4.2)

Obviously, the equation (4.2) allows to define an isomorphism of algebraic

curves ϕE from E to a Weierstrass curve C ∪ {[0, 1, 0]} such that C is the

affine curve defined from the equation (4.2) as follows.

C : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (4.3)

and the isomorphism ϕE is defined as follows

ϕE(OE) = [0, 1, 0] and ϕE(P ) = (fE(P ), gE(P )) for all P ∈ E.
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The curve C is called the Weierstrass model of E and its equation is called

the Weierstrass equation of E. Notice that the Weierstrass model is not the

only model but there are other models of every elliptic curve E which are

not treated in this work [5, 6, 18, 27, 43, 53].

4.1.2 ȷ-invariant

Definition 4.1.9 (ȷ-invariant). Let E/K be an elliptic curve defined by its

Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, a3, a2, a4, a6 ∈ K. (4.4)

with its points at infinity [0, 1, 0]. The ȷ-invariant of E, denoted by ȷ(E), is

defined to be the following quantity:

ȷ(E) =
C2

4

∆(E)
.

Tow Weierstrass equations are said to be isomorphic if there exists an iso-

morphism between the Weierstrass curves described by these equations and

sending [0, 1, 0] to [0, 1, 0]. In the following proposition we see that a such

isomorphism exists in the case of elliptic curves if and only if these curves

have the same ȷ-invariant.

Proposition 4.1.10. [52]

(a) Two elliptic curves E1/K and E2/K are isomorphic over K if and only

if ȷ(E1) = ȷ(E2).

(b) Let ȷ ∈ K. Then there exists an elliptic curve defined over K(ȷ) whose

43



ȷ-invariant is equal to ȷ, denoted by Eȷ and defined as follows:

Eȷ : y2 + xy = x3 +
36

1728− ȷ
x+

1

1728− ȷ
if ȷ /∈ {0, 1728},

E1728 : y2 = x3 + x,

E0 : y2 + y = x3.

4.1.3 Explicit formulas of the group law

Let E/K be an elliptic curve. The Weierstrass equation of E allows to

provide the explicit formulas of the additive group law defined by the points

of E. For the proof, see [52].

Theorem 4.1.11. Let E/K be an elliptic curve defined by its Weierstrass

equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, a3, a2, a4, a6 ∈ K.

with its point at infinity [0, 1, 0]. The point [0, 1, 0] will be the identity point

of the group law defined on E from its Weierstrass equation. This group law

is defined as follows: let P = (x, y), Q = (x′, y′) be two points on E. Then

we have

1) −P = (x,−y − a1x− a3).

2) If Q = −P , then P +Q = [0, 1, 0].

3) If Q ̸= −P , then P +Q = (x′′, y′′) such that

x′′ = λ2 + a1λ− a2 − x− x′ and y′′ = (−λ+ a1)x
′′ − ν − a3 ,

where,(λ, ν) =
(

y′−y
x′−x

, yx
′−y′x
x′−x

)
if x ̸= x′

(λ, ν) =
(

3x2+2a2x+a4−a1y
2y+a1x+a3

, −x3+a4x+2a6−a3y
2y+a1x+a3

)
if x = x′
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Example 4.1.12. [52] Let E/Q be the elliptic curve defined by its Weier-

strass equation

E : y2 = x3 + 17

and its point at infinity [0, 1, 0]. Let P1 = (−2.3) and P2 = (2, 5) be two

points on E. Then [−2]P1 = (8, 23) and [3]P1 − P2 = (52, 375).

4.2 Division polynomials

In the following theorem we see that the multiplication by N -isogeny of an

elliptic curve E can be defined by explicit rational functions coming up from

the explicit group law of E defined from its Weierstrass equation. For the

proof, see [10, 31].

Theorem 4.2.1. Assume that charK ̸= 2. Let E/K be an elliptic curve

defined by its Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, a3, a2, a4, a6 ∈ K. (4.5)

with its point at infinity [0, 1, 0]. For all poisitive integer N , there exist

rational functions ψN , ϕN and ωN ∈ K[x, y] such that

[N ]P =

(
ϕN(P )

ψ2
N(P )

,
ωN(P )

ψ3
N(P )

)
.
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ψN are defined recursively via:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y + a1x+ a3, (4.6)

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8, (4.7)

ψ4 = ψ2

(
2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x+ (b4b8 − b26)

)
,(4.8)

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 m ≥ 2, (4.9)

ψ2m = ψm

(
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+2

)
/ψ2 m > 2, (4.10)

ϕN are defined recursively via:

ϕ0 = 1, ϕ1 = x, ϕN = xψ2
N − ψN+1ψN−1.

ωN are defined recursively via:

ω0 = 1

ω1 = y

ω2 = −
(
3x2 + 2a2x+ a4 − a1y

)
ϕ2 −

(
−x3 + a4x+ 2a6 − a3y

)
ψ2
2 − (a1ϕ2 + a3ϕ

2
2)ψ2

ω2m+1 = ωmψ3m+2 − ωm+1ψ3m+1 −
(
a1ϕ2m+1 + a3ψ

2
2m+1

)
ψ2m+1 m ≥ 1,

ω2m = (ωm−1ψ3m+1 − ωm+1ψ3m−1)/ψ2 − (a1ϕ2m + a3ψ
2
2m)ψ2m m ≥ 2.

ωN can be defined also by the following relation:

ωN = [(ψN+2ψ
2
N−1 − ψN−2ψ

2
N+1)/ψ2 − (a1ϕN + a3ψ

2
N)ψN ]/2 (4.11)

ψN and ϕN satisfay the following relation:

ϕrψ
2
m − ϕmψ

2
r = ψm−rψm+r, 1 ≤ r ≤ m (4.12)
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Definition 4.2.2. Let E/K be an elliptic curve defined by its Weierstrass

equation (4.5) with its point at infinity. The rational functions defined in

Theorem 4.2.1 are called the N th division polynomials on E. Notice that

division polynomials for elliptic curves over field of characteristic 2 are defined

in [2].

4.3 The Endomorphism ring

The set of isogenies of an elliptic curve E to itself endowed by the addition

of isogenies and the composition of isogenies

∀P ∈ E, (ψ + φ)(P ) = ψ(P ) + φ(P ) and (ψ ◦ φ)(P ) = ψ (φ(P ))

defines a ring called the endomorphism ring of E and denoted by End(E).

The general classification of the endomorphism ring of an elliptic curve is

given in the following theorem. For farther studies about the structure of

the endomorphism rings of these curves we refer to [31, 61].

Theorem 4.3.1. [52] Let E be an elliptic curve. The endomorphism ring

End(E) of an elliptic curve E is either Z, or an order in an imaginary

quadratic field1, or an order in a definite quaternion algebra over Q2. If

char(K) = 0, then only the first two cases are possible.

Remark. If char(K) = 0, then from the above Theorem End(E) is equal to

Z or an order in an imaginary quadratic field, which implies that End(E) is

always commutative. We say that E has complex multiplication or CM for

short if its End(E) is an order in an imaginary quadratic field. We refer to

[33, 60] for more details.
1There are many references studying imaginary quadratic fields and orders in these

number fields, we propose [41]
2for the study of the Arithmetic of quaternion algebra over Q we propose [57]
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Remark. The endomorphism ring of an elliptic curve E defined over Fp is

larger than Z. See [16] or [52].

Definition 4.3.2. [52] LetK be perfect field of finite characteristic and E/K

is an elliptic curve. E is called supersingular if its endomorphism ring is an

order in a quaternion algebra. Otherwise, we say that E is ordinary.

For further studies on supersingular elliptic curves see [47, 55, 58]. Notice

that supersingular elliptic curves are exploited in anti-symmetric cryptogra-

phy that is based on hash functions [14, 15, 21].

The following theorem connects between the structure of the endomorphism

ring of any elliptic curve E and the structure of its p-torsion group when E

is defined over a perfect field of finite characteristic p. For the proof, see [16]

or [52].

Theorem 4.3.3. [16] Let K be a perfect field of positive characteristic p > 0

and E/K is an elliptic curve. Then E is supersingular over K if and only if

E[p] is reduced to {OE}.

Theorem 4.3.4. If E is a supersingular elliptic curve over Fp, then ȷ(E) ∈
Fp2.

Proof. See. [16] or [33] or [52]. □

From this necessary condition given in the above theorem we see that

there are only finitely many supersingular elliptic curves up to isomorphism

over Fp and they are all defined over Fp2 , which motivated many known

mathematiciens to find the number of the isomorphism classes of super-

singular elliptic curves over Fp, or farther determine these classes. See

[8, 11, 19, 29, 49, 52, 60].
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Chapter 5

Supersingular elliptic curves

over F5

As has been said in the previous chapter, the determination of the supersin-

gular elliptic curves over finite characteristic p is considered by many math-

ematicians. The case p = 2 was treated by Washington [60] and the case

p = 3 was treated by Silverman [52] and for the general case p ≥ 5 we have

several demonstrations [8, 19, 29]. In this chapter we give an explicit proof

for the particular case p = 5, that is stated in the following theorem

Theorem 5.0.1. There is a unique supersingular elliptic curve up to iso-

morphism over F5, and its ȷ-invariant is equal to zero.

Our tools for this proof are reviewed in the previous chapter: Theorem

4.2.1, Theorem 4.3.3, Theorem 4.1.3 and Proposition 4.1.10.
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Proof of Theorem 5.0.1

From Proposition 4.1.10 we have for all ȷ ∈ F5, an elliptic curve Eȷ of ȷ-

invariant equal to ȷ is defined over F5 as follows:

Eȷ : y2 + xy = x3 +
1

3− j
x+

1

3− j
if j ̸= 0 and ȷ ̸= 3, (5.1)

E0 : y2 + y = x3, (5.2)

E3 : y2 = x3 + x. (5.3)

The following change of variables (x, y) 7→ (x+2, y+2x− 1) transforms the

equation (5.1) into the following

y2 = x3 +
2ȷ

3− ȷ
x+

ȷ

3− ȷ
, (5.4)

and the following change of variables (x, y) 7→ (x, y + 2) transforms the

equation (5.2) into the following

y2 = x3 − 1. (5.5)

Now we require the following proposition

Proposition 5.0.2. Let ȷ ∈ F5. Let P be a point on Eȷ. Then we have

[5]P = O ⇔ ψ5(P ) = 0.

Proof. From (5.4), (5.3) and (5.5) we have for all ȷ ∈ F5, the elliptic curve

Eȷ is defined by an equation of the form

y2 = x3 + Aȷx+Bȷ.

Let P be a point on Eȷ. Then we have

[5]P = O ⇔ [3]P = −[2]P ⇔ ϕ3(P )

ψ3(P )2
=

ϕ2(P )

ψ2(P )2
and

ω3(P )

ψ3(P )3
= − ω2(P )

ψ2(P )3
.

(5.6)
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From (4.12) we have

ϕ3(P )

ψ3(P )2
=

ϕ2(P )

ψ2(P )2
⇔ ϕ3(P )ψ2(P )

2 − ϕ2(P )ψ3(P )
2 = 0 ⇔ ψ5(P ) = 0,

and from (4.9) we have

ψ5(P ) = 0 ⇔ ψ4(P )ψ2(P )
3 − ψ3(P )

3 = 0 ⇔ 1

ψ3
2(P )

=
ψ4(P )

ψ3(P )3
.

Therefore, from (4.11) we obtain

ω3(P )

ψ3(P )3
=
ψ5(P )ψ2(P )

2 − ψ4(P )
2

2ψ2(P )ψ3(P )3
=

−ψ4(P )
2

2ψ2(P )ψ3(P )3
=

−ω2(P )

ψ2(P )3
.

Then the system given by (5.6) holds for ψ5(P ) = 0, which completes the

proof. □

In the following theorem we prove that every non zero ȷ-invariant defines a

non supersingular elliptic curve over F5.

Theorem 5.0.3. Every elliptic curve over F5 of non zero ȷ-invariant is not

supersingular.

Proof. In view of Proposition 4.1.10 all the F5 -isomorphic elliptic curves

have the same ȷ-invariant. Then it suffices to study the supersingularity of

the elliptic curve Eȷ defined by the equation (5.4) if ȷ ∈ F∗
5\{3}, and by

the equation (5.3) if ȷ = 3. Let P = (x, y) be a point in A2
F5
. We have

P ∈ Eȷ[5] if and only if P ∈ Eȷ and [5]P = O. From Proposition 5.0.2, we

have ψ5(x, y) = 0. Therefore, we obtain

P ∈ Eȷ[5] ⇔

y2 = x3 + 2ȷ
3−ȷ
x+ ȷ

3−ȷ
,

ψ3
2(x, y)ψ4(x, y)− ψ3

3(x, y) = 0.
if ȷ ∈ F∗

5\{3}, (5.7)

P ∈ E3[5] ⇔

y2 = x3 + x,

ψ3
2(x, y)ψ4(x, y)− ψ3

3(x, y) = 0.
(5.8)
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From (4.6), (4.7) and (4.8) we get

(5.7) ⇔


ȷ

3−ȷ
x10 + ȷ

3−ȷ
x9 + 4ȷ3

(3−ȷ)3
x5 + ȷ4

(3−ȷ)4
x2 +

(
ȷ6

(3−ȷ)6
− 2ȷ4

(3−ȷ)5

)
= 0,

y2 = x3 + 2ȷ
3−ȷ
x+ ȷ

3−ȷ
.

(5.9)

(5.8) ⇔

3x10 + 4 = 0,

y2 = x3 + x.
(5.10)

Since F5 is an algebraically closed field, we see that the two systems given

by (5.7) and (5.8) have solutions over F5. Therefore, for all ȷ ∈ F∗
5, Eȷ[5] is

larger than O, which implies, by Theorem 4.3.3 that Eȷ is not supersingular

over F5. Thus we get the result. □

In the following theorem we prove that the zero ȷ-invariant defines a super-

singular elliptic curve over F5.

Theorem 5.0.4. Let E0 be the elliptic curve defined by the equation (5.5).

Then E0 is supersingular over F5.

Proof. Assume that E0 is not supersingular over F5. Then by Theorem 4.3.3

and Theorem 4.1.3, there exists a 5-torsion point P = (x, y) on E0. This

implies that (x, y) satisfies the equation (5.5) and by Proposition 5.0.2 (x, y)

satisfies also the following equation

ψ5(x, y) = ψ3
2(x, y)ψ4(x, y)− ψ3(x, y)

3 = 0.

From (4.6), (4.7), (4.8) and (5.5) we find that

ψ3
2(x, y)ψ4(x, y)− ψ3(x, y)

3 = 0 ⇔ −1 = 0,

which is impossible. Then the group E0[5] must be reduced to {O}. Thus

by Theorem 4.1.3 E0 is supersingular over F5. □
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In view of Theorem 5.0.3 every F5-isomorphism class defined by a nonzero

ȷ-invariant is not supersingular, and by Theorem 5.0.4 the zero ȷ-invariant

defines a supersingular F5-isomorphism class of elliptic curves. Then, there

exists a unique supersinular elliptic curve up to isomorphism over F5 and its

ȷ-invariant is equal to zero. Thus We get the proof.

Remark. The systems given by (5.9) and (5.10) (for the cas ȷ = 3) allow

to determine the 5-torsion group of any elliptic curve E defined over F∗
5.

For example, from the system given by (5.9) we find that the elliptic curve

defined over F∗
5 given by its Weierstrass equation

y2 = x3 + x+ 3.

with its point at infinity O = [0, 1, 0] and whose the ȷ-invariant is 1 has the

5-torsion group defined over F25,

E[5] = {O, (ω9, ω22), (ω9, ω10), (ω21, ω4), (ω21, ω16)}.
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Conclusion

Explicit proofs are generally provided for particular cases of a given general

case and the object of these proofs is to get a simple and clear vision that

helped us to understand the problematic and its resolution in short or simple

ways.

In this work we have provided an explicit proof for determining supersin-

gular elliptic curves in finite characteristic p for the particular case p = 5

that is the object of our paper [7]. For our object we have studied extension

field theory for understanding some facts in this theory: algebraic closure

of a field, perfect fields and finite fields which are arithmetically important

for studying algebraic curves and in particular elliptic curves. Also we have

needed to acquire some basics in the theory of algebraic geometry for un-

derstanding some arithmetic properties of elliptic curves and then find the

results needed in this theory for our proof.

Notice that the cases p = 2 and p = 3 have been proved separately in

[60] (p = 2) and [52] (p = 3). We can investigate the results that we have

apply for the case p = 5 to give new proofs for these two cases. These proofs

can be done in two ways, the first avoids the division polynomials and needs

only to use the explicit formulas of the group law of elliptic curves and the

second way uses the division polynomials. In the two ways the calculus is

short and quick. However, the case p = 5 can not be treated with only the
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explicit group law of elliptic curves, we have had to introduce the division

polynomials on elliptic curves for getting the object.

From the recurrent formulas of the division polynomials on elliptic curves,

we speculate that we may provide an explicit proof for the case p = 7 but

the calculus will be more complicated and longer than the case p = 5, so we

have to think to introduced some other properties or techniques for madding

the calculus simple or a bit short. Also from the recurrent formulas of these

polynomials, we can see that the work for any case p greater than 7 can not

be completed and if one thinks to provide an explicit proof for any case p

greater than 7, then he has to think to introduce other properties or results

in this theory.
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