Afficher la notice abrégée
dc.contributor.author |
Ould Mohamed, Ryma |
|
dc.date.accessioned |
2025-03-17T10:31:47Z |
|
dc.date.available |
2025-03-17T10:31:47Z |
|
dc.date.issued |
2022-05-25 |
|
dc.identifier.uri |
http://repository.usthb.dz//xmlui/handle/123456789/10100 |
|
dc.description |
101 p. : ill. ; 30 cm + (CD-Rom) |
en_US |
dc.description.abstract |
Le cube de Fibonacci est un sous-graphe de l’hypercube Qn , engendr´e par les mots binaires qui ne contiennent pas deux 1 cons´ecutifs. Il est introduit au d´ebut des ann´ees 90 comme un nouveau mod`ele de r´eseau d’interconnexion, et ce n’est qu’au d´ebut des ann´ees 2000 qu’on leurs trouvent ´egalement des applications en Chimie Th´eorique. Depuis leurs introduction, ils ont inspir´e bon nombre de travaux de re- cherche, leurs caract´eristiques ont ainsi permis de mettre en ´evidence des relations combinatoires int´eressantes. Par la suite, d’autres structures furent propos´ees, parmi lesquels les cubes de Fibonacci g´en´eralis´es que nous nommons cubes s-bonacci ins- pir´es de la suite de Fibonacci g´en´eralis´ee d’ordre s ´egalement connue sous le nom de suite s-bonacci. Le cube s-bonacci est alors d´efini comme un sous-graphe de l’hyper- cube, engendr´e par les mots binaires ne contenant pas s 1 cons´ecutifs. Le cas s = 2 correspond au cube de Fibonacci et s = 3 au cube Tribonacci. Cette th`ese est consacr´ee a` l’´etude de ces graphes, plus pr´ecis´ement nous ´etudions certaines de leurs propri´et´es structurelles et ´enum´eratives. Dans un premier, nous nous int´eressons au cube Tribonacci, ou` nous mettons en ´evidence des relations de r´ecurrences et des formules explicites sur le nombre de sommets et le nombre d’arˆetes, ou encore le nombre de sous-graphes du cube Tribonacci qui sont isomorphes a` l’hypercube de dimension k. Nous nous int´eressons ´egalement a` la distance de ces sous-graphes par rapport au sommet 0n. En second lieu nous g´en´eralisons les r´esultats obtenus dans le cas des cubes Tribonacci aux cubes s-bonacci. Nous mettons en ´evidence la relation existant entre le cube de Fibonacci et le cube Tribonacci. Nous ´elaborons une bijection entre l’ensemble des codes de Zeckendorf pour les Lucas et l’ensemble des sommets du cube de Lucas. |
en_US |
dc.language.iso |
fr |
en_US |
dc.subject |
Hypercube ; Graphes cubiques ; Cubes de Fibonacci ; Cubes de Lucas ; Cube polynomial |
en_US |
dc.title |
Propriétés combinatoires des cubes de Fibonacci et de Lucas et généralisations |
en_US |
dc.type |
Thesis |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée