Low-rank tensor subspace learning for rgb-d action recognition
dc.contributor.author | Jia, Chengcheng | |
dc.contributor.author | Fu, Yun | |
dc.date.accessioned | 2018-03-26T11:40:33Z | |
dc.date.available | 2018-03-26T11:40:33Z | |
dc.date.issued | 2016 | |
dc.description | p.4641 - 4652 | fr_FR |
dc.identifier.issn | 1057-7149 | |
dc.identifier.uri | http://hdl.handle.net/123456789/5842 | |
dc.language.iso | en | fr_FR |
dc.relation.ispartofseries | in:IEEE Transactions on Image Processing, Vol.25, n°10(Oct.2016); | |
dc.subject | Apprentissage automatique | fr_FR |
dc.subject | Décomposition de la matrice | fr_FR |
dc.subject | Apprentissage (intelligence artificielle) | fr_FR |
dc.subject | Graphes, Théorie des | fr_FR |
dc.title | Low-rank tensor subspace learning for rgb-d action recognition | fr_FR |
dc.type | Article | fr_FR |